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Preface

The present volume is based on the selected invited and contributory talks during
the international conference held at Sharda University, Greater Noida, India, during
January 29–31, 2016, on the occasion of the Silver Jubilee of the Indian Society
of Industrial and Applied Mathematics. The conference was inaugurated by
Mr. Rajnath Singh, the Minister for Home Affairs, Government of India. Professor
U.P. Singh, former Vice-Chancellor of Purvanchal University, and former President
of the Indian Mathematical Society, chaired the inaugural session. Professor KR.
Sreenivasan, former Director of Abdus Salam ICTP, Trieste, Italy (UNESCO
organization), and currently a senior functionary of New York University, was the
guest of honor who delivered the keynote address. There were 20 invited speakers
and more than 300 participants from different parts of India and abroad. A good
number of participants presented their research work as contributory talks. Abdus
Salam International Centre for Theoretical Physics (ICTP) and International
Mathematical Union (IMU) provided financial support for the participants from
Malaysia, Turkey, and Uzbekistan. Several functionaries of the International
Council for Industrial and Applied Mathematics (ICIAM) and eminent industrial
and applied mathematicians such as Prof. Barbara Lee Keyfitz (immediate past
President of ICIAM), Prof. Maria J. Esteban (President, ICIAM), Prof. Alistair Fitt
(Vice-Chancellor, Oxford Brooke University, and former secretary, ICIAM), Prof.
Leon O. Chua (University of Berkeley), Prof. Guenter Leugering (Vice-President,
International Affairs, Friedrich Alexander University, Erlangen-Nurenberg,
Germany), and Prof. Maria Skopina (Euler Institute of Mathematical Sciences,
Saint Petersburg State University, Russia) participated and delivered lectures. Three
well-known Indian centers of applied and industrial mathematics: Tata Institute of
Fundamental Research—Centre For Applicable Mathematics (TIFR CAM),
Bengaluru; Indian Institute of Science (IISc), Bengaluru; and Indian Institute of
Technology (IIT) Bombay, were represented by Prof. G.D.V. Gowda, Prof.
A. Adimurthi, Prof. Mythly Ramaswamy, Dr. Venkateswaran P. Krishnan, Prof.
G. Rangarajan, and Prof. A.K. Pani.

The Silver Jubilee Committee of ISIAM honored Prof. Gowda, Prof. Pani, and
Prof. Rangarajan for their valuable contributions in the field of industrial and
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applied mathematics. Professor A. Adimurthi (TIFR CAM, Bengaluru) and Prof.
Mushahid Husain (Vice-Chancellor, Mahatama Jyotiba Phule (MJP) Rohilkhand
University, Bareilly, Uttar Pradesh) were given the Dr. Zakir Husain award insti-
tuted by the Duty Society, Aligarh Muslim University (AMU). Messages by the
then President of India, Shri Pranab Mukherjee, and the Minister for Science and
Technology, Dr. Harsh Vardhan, wished for a successful event.

The invited and contributory talks cover various areas of applied mathematics
and represent the latest advances in the interdisciplinary fields such as mathematics,
environmental science, medical sciences, oil exploration and production, dynamical
systems, and biological sciences.

In Chap. 1, Barbara Lee Keyfitz surveys the current development in linear and
nonlinear waves in gas dynamics. She has discussed many open research problems
in this field. Maria J. Esteban presents an account of nonlinear flows and optimality
for functional inequalities in Chap. 2, based on her joint work with Jean Dolbeault
and Michael Loss. It is mainly related to rigidity results for nonnegative solutions
of the semi-linear elliptic equation on infinite cylinder-like domains or in the
Euclidean space and as a consequence, about optimal symmetry properties for the
optimizers of the Caffarelli–Kohn–Nirenberg inequalities.

Chapter 3 by David Walnut deals with theory and applications of frames. He
discusses some situations in which frames have proven an especially useful tool,
namely noise reduction, robust communications, compressive sensing, and phase-
less recovery. In Chap. 4, challenging problems of industrial applications of
multicore-implemented nonlinear mappings are discussed by Rene Lozi, Jean-Pierre
Lozi, and Oleg Garasym.

In Chap. 5, Guenter Leugering, Falk M. Hante, Alexander Martin, Lars Schewe,
and Martin Schmidt discuss the challenges in optimal control problems for gas and
fluid flow in networks of pipes and canals. Chapter 6 is devoted to the recent work of
Majaz Moonis jointly with Ahmedul Kabir, Carolina Ruiz, and Sergio A. Alvarez on
“comparison of conventional regression in the machine learning methods for stroke
outcome prediction,” which will be published in full in the next issue of the Indian
Journal of Industrial and Applied Mathematics. Professor Moonis in his talk also
discussed the role of imaging in medical sciences, particularly in acute ischemic
stroke. Besides stroke outcome prediction, the chapter is also devoted to the con-
troversy of CAT versus MRI in stroke management, which is an ongoing hot debate.

In Chap. 7, B.I. Golubov and S.S. Volosivets present their new results on
“Fourier transforms of multiplicative convolutions.” Chapter 8 by Maria Skopina
studies tight wavelet frames with matrix dilations, which can be used in many
practical situations. Chapter 9 by Akhtar Khan jointly with M. Cho, B. Jadamba,
R. Kahler, and M. Sama is devoted to the development of a computational
framework for the inverse problem of identifying variable parameters appearing
nonlinearly in a variational problem.

In Chap. 10, M. Brokate and M. Yu Rasulova present the solution of the hier-
archy of quantum kinetics equations with delta potential. In Chap. 11, Yeliz Karaca,
Zafer Aslan, and A.H. Siddiqi present the applications and comparison of 1-DWT
transform and partial correlation multiple sclerosis and subgroup diagnostic
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classification. In Chap. 12, V. Gowda discusses his recent results in the domain of
finite volume method for nonlinear system of hyperbolic conservation laws arising
in oil reservoir simulation. In Chap. 13, Meenakshi and P. Manchanda study certain
properties of Haar–Vilenkin wavelets for solving differential equations. It may be
mentioned that Haar–Vilenkin wavelet was introduced by them along with A.H.
Siddiqi in 2008. In Chap. 14, Rohit Khokher and Ram Chandra Singh study
footprint-based personal recognition using the dactyloscopy technique.

In Chap.15, M. Dilshad, A.H. Siddiqi, Rais Ahmad, and Faizan A. Khan present
their latest results on a class of variational inequalities. In Chap. 16, Sudip
Chakraborty, Sonia Chowdhury, Joydeep Pal, and Priti Kumar Roy discuss the
impact of vaccination to control HPV dynamics.

In Chap. 17, Chhavi Mangla, Harsh Bhasin, Musheer Ahmad, and Moin Uddin
present their work on the innovative solution of nonlinear equations using genetic
algorithm. Rakesh Kumar and Bhupender Kumar Som describe their results on an
M/M/c/N feedback queuing model with reverse balking and reneging in Chap. 18.
In Chap. 19, U.M. Pirzada and D.C. Vakaskar study solution of fuzzy heat equation
under fuzzified thermal diffusivity. Saureesh Das and Rashmi Bhardwaj present
their work on chaos in nanofluidic convection of CuO nanofluid in Chap. 20.

Bhanumati Panda, Anumeha Dube, and Sushil Kumar study the dynamics of the
seasonal variability of plankton and forage fish in Chilika Lagoon using npzf model
in Chap. 21. Chapter 22 by Fahad Al Basir, Sushil Kumar, and Priti Kumar Roy
deals with the effect of glycerol kinetics and mass transfer during enzymatic bio-
diesel production from Jatropha oil.

Chapter 23 by Jahangir Chowdhury, Sourav Rana, Sabyasachi Bhattacharya, and
Priti Kumar Roy is devoted to the work “role of bio-pest control on theta logistic
populations: a case study on Jatropha curcus cultivation system.” In Chap. 24,
Sudipa Chauhan, Sumit Kaur Bhatia, and Nidhi Purohit present their work on the
dynamics of SIRS model with single time delay.

All invited and contributory talks could not find a place in this volume due to one
reason or the other. Therefore, a summary of some of the presented talks, compiled by
Pooja, is presented in Chapter 25. Chapter 25 contains a summary of some of the
invited and contributory talks by L.O. Chua, G. Pfander, G. Rangarajan,
A. Adimurthi, G. Fairweather, Venky Krishnan, Samares Pal, L.M. Saha, Vikram,
Pooja, Mamta Rani, Abdullah, Renu Chugh and Mandeep Kumari, M.K. Ahmad and
Santosh Kumar, Deepti Gupta, Puneet Kaur, Mazibar Rahman, Javed Miya and
M.A. Ansari, A.K. Sahoo and G.S. Mishra, Shelly Arora and Amandeep Kaur,
S. Prabhakaran and L. Jones T. Doss, Vivek Kumar and Bhola Ishwar, Noor e Zahra,
Ruchira Aneja and A.H. Siddiqi, Mijanur Rehman, Nitendra and Khursheed, Nagma
Irfan and A.H. Siddiqi.

Amritsar, India Pammy Manchanda
Nice, France René Lozi
Greater Noida, India Abul Hasan Siddiqi
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Chapter 1
Linear and Nonlinear Waves
in Gas Dynamics

Barbara Lee Keyfitz

Abstract Although systems of hyperbolic conservation laws form an important
model for many phenomena in fluid dynamics, including compressible flow, surface
waves in shallow water, reacting fluids, magnetohydrodynamics, and multiphase
flow, the underlying theory of quasilinear hyperbolic systems in more than one space
variable is poorly developed. This survey outlines a few reasons for the absence of
a comprehensive theory and examines some current research on multidimensional
problems.When one examines the structure of the characteristics of the gas dynamics
equations, it is noteworthy that they fall into two distinct types, which could be called
“nonlinear” and “linear”. Each type governs some aspects of a solution, and the two
types interact in complicated ways. The study of examples gives many suggestions
for further research, although we are still far from a theory.

Keywords Hyperbolic conservation laws ·Multidimensional conservation laws
Wave interactions · Linear and nonlinear characteristics

1.1 Introduction and Background

We begin with a review of the terminology of “characteristics”. As a motivating
example, the first-order equation

∂u

∂t
+ a

∂u

∂x
= 0 (1.1)

has the general solution
u(x, t) = f (x − at),

where f is a function of a single variable.When f is sufficiently smooth, say f ∈ C 1,
we speakof a classical solution; but the usualmechanism—multiply by a test function

B.L. Keyfitz (B)
The Ohio State University, Columbus, OH, USA
e-mail: keyfitz.2@osu.edu

© Springer Nature Singapore Pte Ltd. 2017
P. Manchanda et al. (eds.), Industrial Mathematics and Complex Systems,
Industrial and Applied Mathematics, DOI 10.1007/978-981-10-3758-0_1
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2 B.L. Keyfitz

and integrate by parts—allows us to consider any distribution, f ∈ D ′, as a weak
solution. (For quasilinear hyperbolic systems, ofwhich the equations of gas dynamics
are an example, additional admissibility conditions are generally required in order to
distinguish between physically meaningful weak solutions and spurious ones. That
is not the focus of the paper, so I will not go into detail on this point. See [15]
for background on admissibility conditions, and [16], mentioned in Sect. 1.4.1, for
an example of how the current knowledge of admissibility criteria appears to be
incomplete.)

In this example, the characteristic curves are the lines x − at constant. Their
significance is well known:

• They identify the space-time paths for propagation of signals
• They separate regions of smooth flow (to see this, consider isolated singularities
in f )

• They are unsuitable for prescribing data: data on a line x − at = x0 cannot be
given consistently and would not serve to determine f .

Characteristics also have a geometric significance:

• In physical space, R2 = (x, t), the vector t = (a, 1) (constructed from the coeffi-
cients of the equation) is tangent to each characteristic at every point.

• In a dual spaceR2 = (ξ, τ ), the characteristic normals ν = (1,−a) are normal to
those tangents: ν · t = 0.

The characteristic normals, which are the basic objects, are the solutions of the equa-
tion τ + aξ = 0 obtained from the principal symbol, τ + aξ , of the linear differential
operator ∂t + a∂x .

This generalizes to a first-order system of n equations,

d∑

0

A j
∂u
∂x j

+ b = 0 ,

where now the coefficients A j are n × n matrices, and the state variable u and lower
order term b are n-vectors. The principal symbol is now amatrix, L0= ∑d

0 A jξ j , and
the characteristic normals are the solutions ν=(ξ0, . . . , ξd) of the determinantal equa-
tion det(

∑
A jξ j ) = 0. Now the surfaces in R

d+1 = {(x0, . . . , xd)} whose normals
are characteristic are the characteristic surfaces. From here the story plays out differ-
ently depending on whether the matrices A j are constant, depend on x (A j = A j (x),
giving a linear system) or depend on x and u (A j = A j (x,u), a quasilinear system).
In the case of a quasilinear or a fully nonlinear system, the characteristic normals are
defined with respect to linearization of the equation around a state u0.

The theory of partial differential equations began with the Cauchy–Kovalevsky
theorem, see [20] for example, which proved the existence of a unique analytic solu-
tion locally for any system, provided that the system was defined entirely by analytic
functions, and that analytic data were given on an analytic, noncharacteristic surface.
Characteristics appear again in the classification of partial differential equations by



1 Linear and Nonlinear Waves in Gas Dynamics 3

type. A system is said to be elliptic if there are no real characteristics, and hyper-
bolic if it has a maximal set of real characteristics (in a sense that we will explain).
Clearly, these two categories are not exhaustive. In addition, while characteristics
and their detailed properties play an important—practically a defining—role in the
theory of quasilinear hyperbolic partial differential equations (conservation laws),
that is a reflection of the dominant physical phenomenon—wave motion—modeled
by conservation laws. For many applications, including processes in which reaction,
diffusion, or dispersion plays the decisive role, an analysis that focuses on charac-
teristics misses the point.

We turn our attention now to hyperbolic systems. For completeness, we note
that much classical theory of hyperbolic equations treats second- (or higher-)order
equations rather than first-order systems. The two approaches can be unified, see
[39]; we will not attempt to do so here, but we will draw on familiar examples of
second-order equations for reference.

The notion of a “maximal set of characteristics” is not well defined without the
identification of a distinguished variable. For example, the characteristic equation of
the two-dimensional wave equation, utt = c2(uxx + uyy), is τ 2 = c2(ξ 2 + η2). The
roots of this equation are always real if we are solving the equation for τ but not
if we are solving for ξ or η. In examples that come from a physical problem, it is
usually (though not always) clear which variable should be distinguished as timelike.
We will now assume that has been done, and will rename the first variable, x0, as t .
Then the quasilinear system of n equations,

A0
∂u
∂t

+
d∑

1

A j
∂u
∂x j

+ b = 0 ,

with A j = A j (x, t,u) and b = b(x, t,u) allowed to depend on u, is hyperbolic at
any states (x, t,u) where the equation

det(A0τ +
∑

A jξ j ) = 0

has, for all ξ = (ξ1, . . . , ξd), n real roots, τi (x, t,u; ξ), the characteristic normals.
A system is said to be symmetrizable hyperbolic if it can be put in this form with
A0 symmetric and positive definite, and the remaining A j symmetric for all j . It is
an important, now classic, result that the Cauchy problem for linear symmetrizable
hyperbolic systems is well-posed in the Sobolev space Hs , see [24, 44] for example.

1.1.1 An Example

To fix ideas, consider the linear wave equation in two space dimensions, utt =
c2(uxx + uyy). We can write it as a system, defining

u1 = uy , u2 = ut − cux .



4 B.L. Keyfitz

Then the wave equation becomes

∂t

(
u1
u2

)
= c

(
1 0
0 −1

)
∂x

(
u1
u2

)
+ c

(
0 1
1 0

)
∂y

(
u1
u2

)
.

The characteristic normals are ν = (ξ, η,±c
√

ξ 2 + η2); we can also define charac-
teristic variables,

v =
(

η

ξ ∓ √
ξ 2 + η2

)
;

these are the eigenvectors {v = v(ν) ∈ R
n | L0v = 0} of the principal symbol. The

characteristic normals can be written in the form τ 2 = c2(ξ 2 + η2); they determine
the characteristic cone. For each generator of the cone, there is a characteristic
surface, the plane ξ x + ηy ± c

√
ξ 2 + η2t = 0. The envelope of the characteristic

surfaces through (0, 0, 0) forms the wave cone, x2 + y2 = c2t2. The wave cone
exemplifies several important features of solutions of hyperbolic systems:

• It forms the boundary of the domain of influence of the origin;
• It bounds the support of the fundamental solution of thewave equation (the support
includes the interior of the cone);

• The singular support of a solution is the boundary of the cone;
• A typical solution to aCauchy problem, saywith data u(x, y, 0) = 0, ut (x, y, 0) =
u0(x, y), takes the form

u(t, x, y) = 1

4πc

∫

B

u0(ξ, η)√
c2t2 − (x − ξ)2 − (y − η)2

dξ dη ≡ KW ∗ u0,

where B = {(ξ, η) | (x − ξ)2 + (y − η)2 ≤ c2t2};
• The convolution kernel, KW (·, t) lies in H−d/2+1−ε for any ε > 0.

As a reminder, the Sobolev spaces Hs or Ws,2 consist of functions whose s th order
derivatives are L2 integrable. For negative and fractional values of s, Ws,p is most
conveniently defined by means of Fourier transforms, see [1].

1.1.2 The Problem

Now we get to the point: The analysis of quasilinear hyperbolic systems is faced
with what appear to be incompatible restrictions. On the one hand, the linear the-
ory of hyperbolic systems extends to local (meaning for a limited time) existence for
quasilinear symmetrizable hyperbolic systems in Hs , for s > d/2 + 1. (While linear
systems have solutions in Hs when the data is in Hs (even negative values), quasilin-
ear systems are constrained by a natural limitation that s must be large enough for the
coefficient matrices A j = A j (x, t,u) to be defined.) The life span of Hs solutions
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depends on ‖u0‖s (and on the geometry of the problem, expressed through the flux
matrices A j ).

However, solutions of quasilinear systemsdonot remain inHs for all time.Burgers
equation provides a simple, but compelling, example: The equation ut + uux = 0
with data u(x, 0) = u0 is well known to have a solution given in implicit form by
u(x + u0(x)t, t) = u0(x), and a simple application of the implicit function theorem
makes clear that this solution breaks down at t = min(−1/u′

0(x)). For larger values
of t , the problem has only a weak solution, with a discontinuity along a shock line,
x = s(t). Thewell-developed theory of conservation laws in a single space dimension
gives global-in-time existence (in fact well-posedness) in BV , the space of functions
of bounded variation. (There are some additional restrictions in this theory, which
we will not detail here.) However, BV is not compatible with the Sobolev spaces Hs ,
which are based on L2, and it is not clear whether, even in a single space dimension,
systems of conservation laws are well-posed in L2.

On the other hand, besides the local result mentioned above, there are results for
linear and quasilinear systems, which we will discuss below, that suggest that no
multidimensional hyperbolic systems are well-posed except in the spaces Hs .

Some 25 years ago, I, along with a group of other people, began to explore this
quandary by looking at a number of examples, and by focusing on self-similar solu-
tions to conservation laws in two space dimensions, where the self-similar reduction
gives one a system in two independent variables. I would like to begin by acknowl-
edging the efforts and contributions of my coauthors, some of whom continue to
work on these problems. Their names appear in the appropriate sections, and in the
references. Other researchers also entered this field at about the same time, and I
have tried to include references, although my list is far from complete, to their work.
Besides Chen, Feldman, and their associates [10–12], note the work of Elling [17],
Elling, and Liu [18, 19]. Slemrod, Wang, and their coauthors [9, 43] have noted
a relationship between multidimensional problems coming from conservation law
theory and the geometric problem of isometric embedding.

1.2 Compressible Gas Dynamics in Two Space Dimensions

The equations of compressible ideal gas dynamics in two space dimensions form a
system of four equations. This system is sometimes called the “full Euler system”,
a terminology which is easily confused with the incompressible Euler equations,
about which more later. Compressible, or high-speed, flow is an important and well-
studied topic, both in engineering and computational science (computational fluid
dynamics, or CFD). These equations are an appealing target for analysis. In addition
to the possibility of comparison with computational results, many simplified models
are available. We emphasize, though, that the theory for this example is just as
incomplete as for general quasilinear hyperbolic systems.

The compressible gas dynamics equations take the form
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ρt + (ρu)x + (ρv)y = 0

(ρu)t + (ρu2 + p)x + (ρuv)y = 0

(ρv)t + (ρuv)x + (ρv2 + p)y = 0

(ρE)t + (ρuH)x + (ρvH)y = 0 ,

(1.2)

expressing conservation of mass, momentum, and energy. The state variables are ρ

(density), (u, v) (velocity), and p (pressure); the nonlinear functions appearing in
the equations are the energy and enthalpy, defined by

E = 1

γ − 1

p

ρ
+ 1

2 (u
2 + v2), and H = γ

γ − 1

p

ρ
+ 1

2 (u
2 + v2) . (1.3)

These involve a parameter γ , the ratio of specific heats, a constant determined by the
chemistry of the gas (for air, it has the value 1.4).

When we linearize these equations at a constant state u = (ρ, u, v, p), we find
that the characteristic equation det L0 = 0 has four real roots:

τ̄ = 0, 0, ±√
γ p/ρ

√
ξ 2 + η2 , where τ̄ = τ − (ξu + ηv) .

1.2.1 Characteristic Normals, Familiar and Unfamiliar

The normals are sketched in Fig. 1.1, for u = v = 0. The four families of roots fall
into two classes:

1. The pair τ = (ξu + ηv). In this case, all normals lie in a plane normal to
(u, v,−1). The corresponding characteristic surfaces are planes whose envelope
is the direction (u, v,−1). The dynamic behavior of a characteristic variable asso-
ciated with this characteristic is that of a solution to a scalar equation with such

Fig. 1.1 Characteristic
normals for the compressible
Euler equations
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a characteristic normal. That is, a characteristic variable corresponding to this
family is modeled by a transport equation, wt + uwx + vwy = 0, similar to (1.1).
The domain of influence of the point (0, 0, 0) is the line (x, y, t) = (−ut,−vt, t).
Since this is a double characteristic, one might also anticipate flow features seen
in hyperbolic equations with multiple characteristics. Mizohata [37] and Lax [33]
discuss the question of multiple characteristics in some detail.

2. The pair τ = (ξu + ηv) ± √
γ p/ρ

√
ξ 2 + η2. The characteristic normals form a

pair of conical surfaces (forward and backward in time) somewhat like the linear
wave equation discussed in Sect. 1.1.1. This time, the wave cone (the envelope of
the corresponding characteristic surfaces) is a tilted cone whose axis depends on
u and v, and whose opening angle depends on p and ρ.

We can contrast the families in 1 and 2 in twoways. First, we see “transport equation”
versus “wave equation” as themode of propagation. Either a signal travels along a ray
(in 1), or it spreads into a circle (in 2). Second, the waves in 2 exhibit a “nonlinear”
type of propagation, where the speed of a signal depends on the states (as is the case
for Burgers equation), while thewaves in 1 are linearly degenerate in the terminology
of conservation laws. (The definition here is that a characteristic family is linearly
degenerate or genuinely nonlinear according as ∇τ(u, ξ) · r(u, ξ) = 0 or �= 0.) In
terms of the phenomena modeled by the gas dynamics system, the nondegenerate,
nonlinear waves in 2 are the acoustic waves (where discontinuities are shocks), while
the other two families, in 1, correspond to entropy and vorticity waves, where the
discontinuities are known as contact discontinuities or slip lines.

For general quasilinear hyperbolic systems, other possible combinations may
exist, but they may not correspond to anything that occurs in physical models.

1.2.2 Acoustic Waves in Two Dimensions

We began our study of two-dimensional problems by focusing on the nonlinear,
acoustic waves. My coauthors in this work include Čanić, Lieberman, Kim, Jegdić,
Tesdall, Popivanov, Payne, and Ying. Most of this research concerns self-similar
problems, where the data and the solution are taken to be functions of

ξ = x

t
and η = y

t
.

Note that these reduced variables are not the same as the dual variables (ξ, η) intro-
duced above to define characteristic normals.Note also that initial data for self-similar
problems appear to be given at infinity. In practice, a self-similar problem has data
u(x, y, 0) that are constant on rays from the origin. These data give rise, naturally, to
boundary value problems in the ξ -η plane with boundary conditions at infinity. For
sectorially constant data (the situation we consider), these problems can be restated
as boundary value problems on a bounded domain. A general discussion of the
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Fig. 1.2 Shock reflection by a wedge

background of self-similar problems can be found in [30]. A brief investigation of
self-similar problems when that data are not piecewise constant is the subject of [49].

Such problems, also known as two-dimensional Riemann problems, are interest-
ing for several reasons, [3, 30]. By analogy with one-dimensional problems, they
allow one to focus on simple transport and wave interactions. In one space dimen-
sion, solutions to Riemann problems form the bedrock of the theory, allowing one to
construct solutions to general initial value problems, as well as providing both local
and asymptotic estimates. While there is little hope that they will be as instrumental
in solving Cauchy problems in higher dimensions, they are interesting in themselves
in two dimensions, as there are important problems that admit a self-similar formu-
lation, such as the benchmark problem of shock reflection by a wedge, pictured in
Fig. 1.2.

Our investigation began with Čanić, Lieberman, and myself [8] developing a
method, using Schauder-type fixed point theorems in weighted Hölder spaces, for
the steady transonic small disturbance equation, a simple model system that mimics
the qualitative behavior of the nonlinear waves, and has no linear waves at all. Then
this was modified, with Eun Heui Kim [4, 5], to handle first strong and then weak
regular reflection for the unsteady transonic small disturbance system.

This research was further advanced by Jegdić [26, 27] to handle the nonlinear
wave system, for which the behavior of the ‘acoustic’ waves is very similar to that
for the gas dynamics equations, and which, in addition, contains a single linear wave
family (with a much simpler structure than in gas dynamics, since it is possible to
decouple the acoustic variables from the linear ones). Jegdić’s result, like most what
we have done, is local in the sense that it shows the existence of the reflected shock
and downstream flow only in a neighborhood of the reflection point, introducing a
cutoff function to replace the downstream boundary. For the nonlinear wave system,
Čanić and I, with Kim, also solved a related problem, constructing a prototype of a
Mach stem [7]. For that problem, we were able to prove existence of a solution in
the entire domain, without cutoff functions.

Before describing our work, I should mention that other researchers have adopted
a similar approach using a slightly different idea, originally conceived by Gui-Qiang
Chen andMikhail Feldman, and explained in their book, [13]. A principal difference
between their method and ours is that they have chosen amodel for gas dynamics that
assumes potential flow. This allows for a stream function, and reduces the problem to
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computing a flow potential. It also simplifies the boundary conditions, and removes
the linear waves completely. We refer to their monograph, [13], for details on their
approach and further references to related work.

In the self-similar coordinates ξ and η, we obtain a reduced equation of the form

(−ξ I + A(u))uξ + (−ηI + B(u))uη = 0 .

Here A and B are the Jacobian matrices of the flux functions. (The system can also
be put in conservation form, with a source term.) What is significant is that the
type of this equation changes. It is hyperbolic for (ξ, η) >> 1 but, at least for gas
dynamics, there is a “subsonic” region near the origin. The change of type occurs
in the nondegenerate, acoustic waves only, [6], and in general leads to a system of
“mixed” type with some characteristics real and some complex. The change of type
can be understood by noting that near the origin one is “inside” the wave cone for
the interesting part of the flow, where waves are interacting.

It is reasonable to reformulate the system. In the subsonic region, we replace
one of the equations in the first-order system by a second-order equation, to take
advantage of the well-developed theory of second-order elliptic equations. For the
purpose of this overview we take as our model the simpler, three-equation system for
isentropic gas dynamics, rather than the full system (1.2). For the isentropic system,
the pressure is given as a function of density and there is no equation for the pressure.
We have the first three equations of (1.2) with p = p(ρ) (often taken as p = Aργ

with the same parameter γ ). In the subsonic region, where there are two complex
characteristics, the equation for ρ becomes

Q(ρ;U, V ) = (c2 −U 2)ρξξ − 2UVρξη + (c2 − V 2)ρηη + 2cc′(ρ2
ξ + ρ2

η)

−2ρξ

(
U (1 +Uξ + Vη) − c2 U (Vη+1)−VVξ

U 2+V 2

)

−2ρη

(
V (1 +Uξ + Vη) + c2 UUη−V (Uξ +1)

U 2+V 2

)
= 0 (1.4)

Examination of the principal part shows that the equation changes type at the sonic
line,

(u − ξ)2 + (v − η)2 ≡ U 2 + V 2 = c2 ≡ c2(ρ) .

Equation (1.4) is an equation for ρ, but it is clearly coupled with the pseudovelocity
componentsU = u − ξ andV = v − η and their derivatives. To complete the system,
we also use the transport equations for U and V . These take the form

(U, V ) · ∇U +U = −pξ /ρ = −c2ρξ/ρ ≡ qξ (ρ)

(U, V ) · ∇V + V = −pη/ρ = −c2ρη/ρ ≡ qη(ρ) ;

and in turn involve ρ.
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1.2.3 The Free Boundary Problem and a Local Solution

We have solved boundary value problems for this equation, as well as for the simpler
models listed in Sect. 1.2.2where the density and velocity variables are not coupled in
such a complicated way. As a first attempt, we showed existence of solutions for the
unsteady transonic small disturbance system, for both strong [4] andweak [5] regular
reflection. Later, these results were extended to an artificial system, the nonlinear
wave system, in both the strong [27] and weak [26] case. Our most recent results are
for the isentropic gas dynamics system [28]. Our method to handle strong regular
reflection is described in this section.We are currently completing existence theorems
for weak regular reflection for the isentropic case, and extending this construction
to the full gas dynamics system. In all cases, we look at regular reflection, and in all
cases we have solved a local problem, near the reflection point, with a cutoff function
replacing a downstream boundary condition.

The key to this approach is to formulate a free boundary problem for the reflected
shock, whose position is coupled with the subsonic flow behind the reflection point.
Because Eq. (1.4) is nonlinear, we have found that classical methods for handling the
free boundary problem to be the most suitable.

The complete problem reads:
Equations

Q(ρ;U, V ) = 0
(U, V ) · ∇U +U = −pξ /ρ ,

(U, V ) · ∇V + V = −pη/ρ

⎫
⎬

⎭ in Ω . (1.5)

Boundary conditions (see Fig. 1.3 for the geometry of the boundary curves)

η

Σ

Σ0

Ωσ

Ξs=(ξs,0)Ξ0=(ξ0,0)

Ξ1

η

(U0(θ),V0(θ))

Σ=Γ(θ)

Σ0

σ

Ξs=(ξs,0)Ξ0=(ξ0,0)

Ξ1

ξ ξ

Fig. 1.3 Domain for the subsonic flow Left; Subsonic domain with the transport flow Right
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ρη = 0 on Σ0

N (ρ) ≡ β · ∇ρ = 0 on Σ

ρ = f on σ

ρ = ρs at Ξs

U |Σ = U0 = u0 − ξ V |Σ = V0 = v0 − η .

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(1.6)

Condition on the free boundary given by evolution of the shock

dη

dξ
= F(ρ,U, V ). (1.7)

The oblique derivative condition on Σ , as well as the boundary conditions for U
and V there, and the equation for the evolution of the shock, are all determined from
the Rankine–Hugoniot conditions, which define what it means to be a weak solution
along a line of discontinuity. The condition ρ(Ξs) = ρs in (1.6), where ρs is the
density immediately behind the shock as calculated from the equations of the shock
polar, is necessary, since otherwise the homogeneous boundary conditions would
produce a constant solution if the cutoff function f happened to be constant. The
theory of elliptic boundary value problems does not permit a one-point condition
like this. However, we have the following result.

Theorem 1.1 The boundary condition at Ξs cannot be prescribed but there are
choices of f that give ρ(Ξs) = ρs .

We summarize our approach to the free boundary problem. As applied to the isen-
tropic gas dynamics equations, where one first encounters a serious interaction
between the linear and the nonlinear waves, the approach begins by linearizing the
system about states (ρ,U, V ) = (w,W, Z), fixing an approximate position for the
free boundary and solving the linearized version of the first equation in (1.5),

L ρ =
∑

ai j (w,W, Z)∂i jρ +
∑

bi (w,W, Z ,∇W,∇Z)∂iρ = 0

along with the first three boundary conditions in (1.6), in what is now a fixed domain
Ω . The nonlinear oblique derivative condition is also linearized, as

M ρ = β(w,W, Z) · ∇ρ = 0

on the approximate shock curve Σ . We proved, consistent with Theorem1.1 above,

Theorem 1.2 For each (w,W, Z), there are choices of f that give a solution to the
linearized problem for ρ with ρ(Ξs) = ρs .

The proof of this theorem applies the theory of oblique derivative problems and
mixed (oblique derivative and Dirichlet) problems in Lipschitz domains, developed
by Lieberman. Then, from the solution of the linear equation, using compactness of
the solution operator of a linear elliptic equation, one can prove, using a fixed point
theorem,
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Theorem 1.3 For each (W, Z), the mapping w �→ ρ has a fixed point.

To handle the coupling of the nonlinear waves, as represented by ρ, and the linear
family, as represented by the pseudovelocities U and V , we then proved that the
complete nonlinear system consisting of the Eq. (1.5) and the boundary conditions
(1.6), always with a suitable fixed approximate shock position, has a solution. The
key to this is the observation that

Theorem 1.4 The mapping (W, Z) �→ (U, V ) is a contraction.

In order to explain this somewhat surprising result, we note the important point that
the dependence of ρ on (W, Z) is very smooth. This, again, is a consequence of prop-
erties of elliptic equations. If we let ρ[W, Z ] stand for the solution in Theorem1.2,
then an estimate is given by

Theorem 1.5 For ρ1 = ρ[W1, Z1] and ρ2 = ρ[W2, Z2], we have
∣∣∣∣ρ1 − ρ2

∣∣∣∣
(−(γ+1))

2+ε

≤ M
(∣∣W1 − W2

∣∣(−γ )

1+ε
+ ∣∣Z1 − Z2

∣∣(−γ )

1+ε

)
. (1.8)

With this in hand, we can show that the contraction property gives a fixed point
in a sufficiently small domain, the hence a solution to the fixed boundary problem.
Finally,we integrate the shock evolution equation (1.7). This gives amapping T η = η̃

from a given approximation η for the shock position to a new approximation, η̃. The
mapping T is also compact, and a classical fixed point theorem yields the existence
of the desired solution, which we state here as

Theorem 1.6 (Jegdić, Keyfitz, Čanić and Ying) In a small region behind the reflec-
tion point, there is a solution to the self-similar equations, and a corresponding
position for the reflected shock.

Summarizing, the components of this method involve

• the use of Hölder norms weighted at corners; the parameter γ , between 0 and 1
and not related to the ratio of specific heats in (1.3), is determined by the geometry
of the domain, and allows for less smoothness of the solution at the corners

• standard elliptic estimates for ρ1 − ρ2

• obtaining good bounds near Σ , since we may use the final boundary condition in
(1.6) to specify that (W1, Z1) = (W2, Z2) at Σ .

The details of the proof can be found in [28].

1.2.4 Mysteries

While the technique we have outlined above may yet prove to be quite useful in
solving shock reflection problems that are more complex than the cases we have
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studied up to this time, there are many self-similar problems for which we do not yet
have a good enough understanding of the underlying dynamics to formulate solvable
boundary value problems.

One example is the phenomenon of Guderley Mach reflection. This may occur
for Mach numbers and wedge angles where regular reflection is not possible but
simple Mach reflection is also ruled out. A calculation based on shock properties
(specifically shock polar analysis, see the monograph of Courant and Friedrichs,
[14], for example) shows that there are situations where regular reflection is not
geometrically possible, but there is not enough energy in the linear waves to resolve
the so-called triple-point paradox (that three shocks cannot meet at a single point
in space). For instance, the unsteady transonic small disturbance equation, where
there are no linear waves at all, and the nonlinear wave system, where energy is not
transferred between the nonlinear and the linear waves, generate examples.

Guderley [21] conjectured that for initial conditions that do not permit either reg-
ular or Mach reflection, then a reflected shock that looks somewhat like a Mach stem
but is fundamentally different might appear, and he suggested a structure in which
a supersonic region appears behind the reflected shock. In 2002, Tesdall and Hunter
exhibited this phenomenon numerically in the unsteady transonic small disturbance
equations [48], and later Tesdall, Sanders and I carried out similar computations that
found the same pattern in the nonlinear wave system [46] and in the gas dynamics
equations [47].

The computations indicate that Guderley’s theory is correct, with themodification
that there is a whole series of supersonic patches and secondary shocks. The pattern
was confirmed experimentally by Skews and his group [42], motivated by Tesdall’s
computations. Figure1.4 shows a comparison of the computational and experimental
results. The computational picture (on the left), showing a downstream flow contain-
ing at least four supersonic patches, is quite complicated, and up to this point has
resisted a rigorous analysis, although Tesdall and I made an initial attempt [45], and
Jegdić and Jegdić [25] did some further analysis. A related problem was studied in
[32]. However, all we can be certain about, from the fact that the same phenomenon
occurs in models both with and without linear waves present, is that it is behavior
associated with the nonlinear, acoustic waves.

1.3 The Puzzle of L p Solutions

In Sect. 1.1.2, we mentioned an apparent inconsistency between conservation law
theory in one space dimension and what might be expected in higher dimensions.
There does not appear to be a good candidate for an appropriate function space in
which to locate solutions of multidimensional problems. This difficulty does not
appear in the simple, self-similar examples that have been studied so far, although
the complicated solutions found numerically for Guderley Mach reflection, as pic-
tured in Fig. 1.4, hint that shock interactions might generate oscillations. But in fact
there is already evidence from the theory of linear hyperbolic systems that anticipates
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Fig. 1.4 Computed left and experimental right visualizations of Guderley Mach reflection

the possibility that some generalization of BV , the space of functions of bounded
variation, which served so well in a single space dimension, is not suitable for mul-
tidimensional problems.

This story begins with a pioneering result ofWalter Littman in 1963 [34]. Littman
proved a theorem for the wave equation in d space dimensions,

d∑

1

∂2u

∂x2i
− ∂2u

∂t2
= 0 ,

and a basic seminorm, the energy in L p:

Ep(t) =
∫ (

d∑

1

∣∣∣∣
∂u

∂xi

∣∣∣∣
p

+
∣∣∣∣
∂u

∂t

∣∣∣∣
p
)

dx .

Theorem 1.7 (Littman 1963) An estimate Ep(t) ≤ C(t)Ep(0) holds only if either
p = 2 or d = 1.

Ashort time later, PhilipBrenner [2] generalized this result to anyfirst-order, constant
coefficient linear hyperbolic system,

∂u
∂t

=
d∑

1

A j
∂u
∂x j

+ Bu .

Theorem 1.8 (Brenner 1966) Suppose p �= 2, 1 ≤ p ≤ ∞. The Cauchy problem is
well-posed in L p if and only if the matrices A1, . . . , Ad commute.
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Based on the earlier discussion in this paper, one can penetrate the mystery in this
condition. One need recall only that symmetric commuting matrices have a common
set of real eigenvectors, and are simultaneously diagonalizable, whence all charac-
teristic families are of transport type. That means that a system with acoustic waves,
such as any of the examples in Sect. 1.2, cannot have commuting matrices.

Rauch [38] has shown that Brenner’s result applies equally well to quasilinear
systems. The title of his paper states the important conclusion: “BV Estimates Fail
for Most Quasilinear Hyperbolic Systems in Dimensions Greater Than One”.

1.4 Recent Results on Linear Waves

Some recent research on the equations of incompressible flow offers insight into
the complex behavior of the linear waves in the gas dynamics system. Although
the two systems—compressible and incompressible flow—are mathematically quite
different, and are studied by different techniques, they are related. If we are looking
at smooth solutions, then the system (1.2) can be written in a simpler form, because
conservation is no longer important. By manipulating the equations, one obtains the
system

ρt + uρx + vρy + ρ(ux + vy) = 0

ut + uux + uvy + px/ρ = 0

vt + uvx + vvy + py/ρ = 0

pt + upx + vpy + γ p(ux + vy) = 0 .

(1.9)

Setting ρ ≡ 1 and ignoring the fourth equation, one obtains the incompressible sys-
tem (often called the Euler equations),

ux + vy = 0

ut + uux + uvy + px = 0

vt + uvx + vvy + py = 0 .

(1.10)

Majda [35] and others have derived the Euler equations as the “low Mach number
limit” of compressible gas dynamics. That is, one takes the limit for the acoustic
speed, c = √

dp/dρ → ∞ in the isentropic system. For the full system, (1.2), the
value of c is

√
γ p/ρ. In either case, the limit is taken with respect to some scaling

that relates the acoustic speed to the speed q = |u| of the fluid. A formal derivation
of (1.10) from the first three equations in (1.9) can be made by assuming that ρ is
constant and that p is not a function of ρ. This does not give a very accurate picture
of the relationship, but it is consistent with the fact that as c → ∞ the acoustic
characteristic speeds become infinite and the system loses its hyperbolic character.
The degenerate, linear characteristics are unchanged.
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1.4.1 Nonuniform Dependence in Incompressible
and Compressible Flow

There has been considerable interest in the well-posedness of the incompressible
system (1.10). In [16], De Lellis and Székelyhidi constructed weak solutions of
(1.10) that satisfy the currently accepted definitions of admissibility but are “wild” or
“unphysical” in any reasonable sense, as they can be compactly supported in space
and time. De Lellis and Székelyhidi’s result generalizes earlier work of Scheffer
[40] and of Shnirelman [41], also concerning wild and nonphysical solutions that are
necessarily weak. De Lellis and Székelyhidi’s construction extends to weak solutions
of the compressible gas dynamics system. This may mean that the current definition
of admissibility is inadequate, or it may suggest inherent problems in establishing
well-posedness.

But there may also be questions even about classical (that is, smooth) solutions.
Recent work of Himonas and Misiołek [22] on classical solutions of (1.10) has
opened the way to results by Holmes, Tiğlay and myself. Himonas and Misiołek
study dependence of solutions on initial conditions. The Cauchy problem for (1.10)
poses an initial condition u(·, 0) ≡ (u(·, 0), v(·, 0)) = u0. Standard results for (1.10)
[36] show that the pressure is determined, up to a constant, by the velocity data, so
there is no initial condition for the pressure. As is the case for conservation laws,
classical solutions of (1.10) have a finite life span, and are well-posed in suitably
regular Sobolev spaces. The classical theorem (see [36, Chap. 3] for a history of this
theorem and details of the proof) is

Theorem 1.9 (Classical) If s > d/2 + 1 andu0 ∈ Hs(Ω,Rd)with∇ · u0 = 0, then
there is a T > 0 for which a unique u ∈ C([0, T ], Hs(Ω,Rd)) exists and depends
continuously on u0. We have the bound

‖u(·, t)‖Hs ≤ ‖u0‖Hs

1 − Ct‖u0‖Hs
.

Here the space dimension is d ≥ 2; the domain of the data, Ω is a subset of Rd . We
are interested in periodic solutions,Ω = T

d , or in solutions in all of space,Ω = R
d .

(In other cases additional boundary conditions are also needed; we do not go into
detail about this.)

Since the incompressible system can be solved for the velocity alone by projecting
into the space of divergence-free vector fields u, and then the pressure recovered
from a Poisson equation, [36, Chap. 1], the pressure can be ignored in constructing
solutions. The dependence of pressure on velocity is smooth.

The basic nonuniformity result for periodic data, which is demonstrated by an
explicit construction, is

Theorem 1.10 (Himonas–Misiołek) Let Ω = T
2. The solution map, u0 �→ u(·, t),

is not uniformly continuous from the unit ball in Hs(Ω,R2) into C([0, T ],
Hs(Ω,R2)).
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To prove this result, Himonas and Misiołek take two sequences of 2π -periodic ini-
tial velocities, with the property ‖u1,n

0 − u−1,n
0 ‖s � 1

n (the expression x � y means
Cy ≤ x ≤ y/C for a constant C > 0 independent of x and y):

u1,n
0 (x, y) =

(
1

n
+ 1

ns
cos ny,

1

n
+ 1

ns
cos nx

)

u−1,n
0 (x, y) =

(
−1

n
+ 1

ns
cos ny,−1

n
+ 1

ns
cos nx

)
,

and write down the exact 2π -periodic solution:

u1,n(x, y, t) =
(
1

n
+ 1

ns
cos(ny − t),

1

n
+ 1

ns
cos(nx − t)

)

u−1,n(x, y, t) =
(

−1

n
+ 1

ns
cos(ny + t),−1

n
+ 1

ns
cos(nx + t)

)
.

(1.11)

Now an explicit calculation shows that

‖u1,n − u−1,n‖Hs � | sin t | − 1

n
.

This means that for a given n the difference between corresponding solutions from
the two families grows at a constant rate in t , even though the difference in the data
tends to 0 as n → ∞.

In the same paper [22], it is shown that nonuniform dependence holds also when
Ω = R

2 or Ω = R
3. To obtain functions that are in Hs(Ω) when Ω is all of space,

Himonas and Misiołek introduce cutoff functions to make the solutions tend to zero
sufficiently rapidly at infinity.

The structure of these velocity functions is interesting. The functions consist of
a low-frequency part (which is constant in the periodic case) and a high-frequency
part which is highly oscillatory in space but not in time. When these functions are
substituted into the Euler system, they yield an exact solution because there is some
cancelation between high- and low-frequency components owing to the nonlinearity
of the system. The low-frequency components tend to 0 in Hs as n → ∞, but the
high-frequency parts do not. The high-frequency components of the data approach
each other in Hs (in fact, they are identical), but that is not the case for the solutions.

The study that Holmes, Tiğlay, and I have performed carries out a similar con-
struction for the compressible system, (1.9). A hint for how to do this is given by
the fact that the functions in (1.11) are both oscillatory in space and slow-moving
in time. They can be loosely identified with the linear waves in the compressible
system. As a sidenote, though, we found that although there is a single real, finite
characteristic speed in the system (1.10), we needed the flexibility of the full system
(1.2) or (1.9), with a pair of linear characteristics, to carry out our construction. We
could not reproduce this result for the isentropic system.
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Since solutions of (1.9) do not remain in Hs for s > d/2 + 1, our construction
is also valid for only a finite time. This is not important, since the lack of uniform
dependence on t appears instantaneouslywhen t > 0.Our result [31] inT2 (two space
dimensions, periodic data) for the compressible Euler system is almost identical to
that in [22] for the periodic case.We construct two families of approximate solutions,
for ω = 1 and ω = −1, of the form

ρω,n ≡ ρ0 > 0

uω,n = ω

n
+ 1

ns
cos(ny − ωt)

vω,n = ω

n
+ 1

ns
cos(nx − ωt)

pω,n = ρ0 + 1

n2s
sin(nx − ωt) sin(ny − ωt) .

Unlike the exact solutions (1.11) in the case of the incompressible system, these are
only approximate solutions. We show they are close in Hs to classical solutions of
(1.9). The life span of classical solutions depends only on the Hs norm of the data,
as proved, using various methods, by Kato, Lax and Beale and Majda see [29, 35].
We state it, again using the notation u = (ρ, u, v, p):

Theorem 1.11 For s > 2 (in our two-dimensional case, d/2 + 1 = 2), and T > 0
depending on ‖u0‖s , there is a unique solution u to (1.9) with u(·, 0) = u0 ∈ Hs

whichmaps intoC[(0, T ), Hs(Ω,R2)] and satisfies a bound like that in Theorem1.9.

Our first result is for periodic data [31],

Theorem 1.12 (Keyfitz–Tığlay) For the given data, the exact solution(s) uω,n are
Hs-close to the approximate solutions uω,n and so, for t sufficiently small,

‖u1,n − u−1,n‖Hs � | sin t | − 1

n
.

For data in Hs(R2), we have the same conclusion, but the form of the approximate
solutions is different, taking account of the need to keep the data and solutions in
Hs . The modification is similar to that in [22]. The proof of this result is the subject
of [23].

Readers who consult Kato’s important paper [29] will find a claim of uniformly
continuous dependence, stated as follows.

Theorem 1.13 (Kato) If at t = 0, ‖un
0 − v0‖s ≤ M and ‖un

0 − v0‖0 → 0 as
n → ∞, then ‖un(·, t) − v(·, t)‖s−1 → 0 uniformly in t .

Kato uses a subtly different notion of uniformity. Each of our sequences is bounded
in Hs and tends to v0 ≡ 0, and uω,n → 0 in Hs−1 (not in Hs). In fact, what we have,
as in [22], are two families of data whose difference converges to zero in Hs , but they
do not separately converge. This leads to the amusing observation that even though
we are tracking linear waves, we are using the nonlinearity of the system.
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Chapter 2
Nonlinear Flows and Optimality
for Functional Inequalities: An
Extended Abstract

Maria J. Esteban

Abstract The talk given on the occasion of the ISIAM 2016 conference was mainly
about rigidity results for nonnegative solutions of semilinear elliptic equation on
infinite cylinder-like domains or in the Euclidean espace and as a consequence, about
optimal symmetry properties for the optimizers of the Caffarelli–Kohn–Nirenberg
inequalities. This text contains the main results presented in that conference. All the
results will be stated in the simple case of spherical cylinders, but similar, even if less
precise, results can also be stated and proved for general cylinders generated by any
compact smoothRiemannianmanifoldwithout a boundary.Other consequences from
the results below are optimal estimates for the principal eigenvalue of Schrödinger
operators on infinite cylinders. The text below is an extended abstract of that talk.

Keywords Caffarelli–Kohn–Nirenberg inequalities ·Symmetry
Symmetry breaking ·Optimal constants ·Rigidity results · Fast diffusion equation
Carŕe du champ · Bifurcation · Instability · Emden–Fowler transformation
Cylinders · Noncompact manifolds · Laplace–Beltrami operator
Spectral estimates · Keller–Lieb–Thirring estimate · Hardy inequality

2.1 Rigidity Results

The main result presented in this talk is the following rigidity theorem, which is
contained, with its proof, in [3]. Many references about previous works and related
topics can be found in this article. We will not include all those references in this
short text.

Work done in collaboration with J. Dolbeault and M. Loss.
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Theorem 2.1 For d ≥ 2 define 2∗ = 2d/(d − 2) if d ≥ 3, 2∗ = +∞ if d = 2. And
consider the cylinder C1 := R × Sd−1. For all p ∈ (2, 2∗) and 0 < Λ ≤ ΛFS :=
4 d−1

p2−4 , any positive solution ϕ ∈ H1(C1) of

− ∂2
s ϕ − Δω ϕ + Λϕ = ϕ p−1 in C1 (2.1)

is equal to ϕΛ, up to a translation in the s-direction, where

ϕΛ(s) = ( p
2 Λ

) 1
p−2

(
cosh

(
p−2
2

√
Λ s

))− 2
p−2

. (2.2)

By using the Emden–Fowler transformation

v(r, ω) = ra−ac ϕ(s, ω) with r = |x | , s = − log r and ω = x

r
, (2.3)

it can be easily seen that Theorem 2.1 is equivalent to the following result

Theorem 2.2 Assume that d ≥ 2. If either a ∈ [0, (d − 2)/2) and b > 0, or a < 0
and b ≥ bFS(a), with

bFS(a) := d (ac − a)

2
√

(ac − a)2 + d − 1
+ a − ac , (2.4)

then any nonnegative solution v of

− ∇ · (|x |−2 a ∇v
) = |x |−b p |v|p−2 v in R

d \ {0} (2.5)

which satisfies
∫
IRd

|v|p
|x |b p , dx < ∞, is equal to v� up to a scaling, with

v�(x) = (
1 + |x |(p−2) (ac−a)

)− 2
p−2 ∀ x ∈ R

d .

Next pick n and α such that

n = d − b p

α
= d − 2 a − 2

α
+ 2 = 2 p

p − 2
.

Then, defining
v(r, ω) = w(rα, ω) ∀ (r, ω) ∈ R

+ × Sd−1 (2.6)

it can again be easily seen that the two above theorems are equivalent to

Theorem 2.3 Assume that d ≥ 2. If 0 < α < αFS :=
√

d−1
n−1 , then any nonnegative

solution w(x) = w(r, ω) (r ∈ R+, ω ∈ Sd−1) of
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− α2 w′′ − α2 n − 1

r
w′ − Δw

r2
= wp−1 in R

d \ {0} , (2.7)

which satisfies
∫
IRd |x |n−d |w|p dx < ∞, is equal to w� up to a scaling, and multipli-

cation by a constant, with

w�(x) = (
1 + |x |2)−n ∀ x ∈ R

d .

Notice that the above definitions imply the equivalence of the above three conditions

0 < Λ ≤ ΛFS := 4
d − 1

p2 − 4
; 0 < α < αFS :=

√
d − 1

n − 1
;

a < (d − 2)/2) and b > 0, or a < 0 and b ≥ bFS(a)

Finally, let us remark that the above three results are optimal, since as it is proved
in [2, 4], when the above conditions are not satisfied, there are nonnegative solutions
of the corresponding equations that depend on ω ∈ Sd−1 in a nontrivial way.

2.2 Consequence: Optimal Symmetry Result
for Optimizers of the Critical
Caffarelli–Kohn–Nirenberg Inequalities

The Caffarelli–Kohn–Nirenberg inequalities

(∫

IRd

|v|p
|x |b p

dx

)2/p

≤ Ca,b

∫

IRd

|∇v|2
|x |2 a dx ∀ v ∈ Da,b (2.8)

have been established in [1], under the conditions that a ≤ b ≤ a + 1 if d ≥ 3,
a < b ≤ a + 1 if d = 2, a + 1/2 < b ≤ a + 1 if d = 1, and a < ac where

ac := d − 2

2
,

and where the exponent

p = 2 d

d − 2 + 2 (b − a)
(2.9)

is determined by the invariance of the inequality under scalings. Here Ca,b denotes
the optimal constant in (2.8) and the space Da,b is defined by

Da,b :=
{
v ∈ Lp

(
IRd , |x |−b dx

) : |x |−a |∇v| ∈ L2 (
IRd , dx

) }
.
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Note that, up to scaling and multiplication by a constant, any optimal solution for the
above inequality is a nonnegative solution of (2.5). It was proved in [4] (see also [2]
for a partial result) that whenever a < 0 and b < bFS(a), the optimizers of (2.5) are
never radially symmetric. What Theorem 2.2 implies is that whenever b ≥ bFS(a)

or a ∈ [0, ac), the optimizers, which can be taken as nonnegative functions, thus
yielding an optimal symmetry result.

2.3 Outline of the Proof

Let us now quickly present the main ideas of the proof of the above results in the
case d ≥ 3. We will explain it for in the context of Theorem 2.3. Let us introduce
some notation:

u
1
2 − 1

n = |w| ⇐⇒ u = |w|p with p = 2 n

n − 2
(2.10)

and notice that, up to a multiplicative constant, the r.h.s. in (2.8) is transformed into
a generalized Fisher information

I [u] :=
∫

(0,∞)×Sd−1
u |Dp|2 dμ where p = m

1 − m
um−1 and m = 1 − 1

n
,

(2.11)

with Dp =
(
α

∂p
∂r ,

1
r ∇ωp

)
, while the l.h.s. in (2.8) is now proportional to a mass,

∫
(0,∞)×Sd−1 u dμ, where the measure dμ is defined as rn−1 dr dω on (0,∞) × Sd−1.

Here p is the pressure function, as in [5, 5.7.1 p. 98]. If we replace m by 1 − 1
n , we

get that
p = (n − 1) u− 1

n . (2.12)

Let us next introduce the fast diffusion flow

du

dt
= Łum , m = 1 − 1

n
, (2.13)

with

Łw := −D∗ Dw = α2 w′′ + α2 n − 1

r
w′ + Δw

r2
, ′ = d/dr ,

and assume that it is well defined for all times. It is immediate to verify that
d
dt

∫
(0,∞)×Sd−1 u dμ = 0 . Moreover, long calculations, the study of the regularity of

the solutions of (2.1) at±∞ and the use of the Bochner–Lichnerowicz–Weitzenböck
formula

1
2 Δω (|∇ω f |2) = ‖Hess f ‖2 + ∇ω(Δω f ) · ∇ω f + Ric(∇ω f,∇ω f ) ,
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among others, allow us to prove the following proposition.

Proposition 2.1 With the notations defined by (2.12) if u is a smooth minimizer of
I [u] under a mass constraint, with α ≤ αFS, then there exists a positive constant ζ�

such that

d

dt
I [u(t, ·)] = − 2 (n − 1)n−1

∫

(0,∞)×Sd−1
k[p(t, ·)]p(t, ·)1−n dμ ,

with

k[p] = α4
(
1 − 1

n

) [
p′′ − p′

r
− Δω p

α2 (n − 1) r2

]2
+ 2 α2 1

r2

∣
∣∣
∣∇ωp′ − ∇ωp

r

∣
∣∣
∣
2

+ 1

r4
kM[p]

and
∫

Sd−1
kM[p]p1−n dω ≥ (n − 2)

(
α2
FS − α2)

∫

Sd−1
|∇ωp|2 p1−n dω

+ ζ� (n − d)

∫

Sd−1
|∇ωp|4 p1−n dω .

Therefore, if α ≤ αFS, the Fisher information I [u] is nonincreasing along the flow
defined by (2.13). But actually we do not need to study the flow’s properties, and
we only use it as a guide for a complete rigorous result of Theorem 2.3. This can be
done as follows. Let u be a critical point of I [u] under the mass constraint. Then,
by Proposition 2.1, taking u[0] = u, and assuming α ≤ αFS,

0 = I ′[u] · Łum = d

dt
I [u(t)]|t=0 ≥ ζ� (n − d)

∫

(0,∞)×Sd−1
|∇ωp|4 p1−n dμ ,

and hence, if α ≤ αFS, ∇ωp ≡ 0 and therefore, u is radially symmetric, since it does
not depend on the angular variables. The precise shape of u is given by

p′′ − p′

r
− Δω p

α2 (n − 1) r2
≡ 0 .
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Chapter 3
What is a Frame? Theory and Applications
of Frames

David Walnut

Abstract A frame in a separable Hilbert space is a generalization of an orthonormal
basis that can be used to provide “painless nonorthogonal expansions” of elements in
that space. In some respects, frames are easier to construct and use than orthogonal or
Riesz bases, but the study of frames is tied to a number of deep and interesting results
and conjectures in harmonic analysis (including the recently solvedKadisson–Singer
Conjecture).Because of their relative ease of construction and their overcompleteness
properties, frames have found applications in numerical harmonic analysis and were
the first context in which wavelet expansions were discussed. The goal of this paper
is to give a brief introduction to the theory of frames and to discuss some situations in
which frames have proven an especially useful tool. These include noise reduction,
robust communications, compressive sensing, and phaseless recovery.

Keywords Frame · Basis ·Overcomplete · Riesz basis ·Kadisson–Singer
Phaseless recovery · Compressive sensing · Wavelets

3.1 Introduction

The goal of this paper is to give a brief introduction to the idea of a frame and to
outline some of the uses and applications of frame theory. A frame is essentially a
redundant basis, that is, a spanning set for aHilbert space that containsmore elements
than necessary in order to represent elements in the space as series expansions. It
is interesting that for many years after frames were first defined, the advantages of
redundancywere not fully explored. In this paper, wewill describe some applications
of frames in which redundancy is essential for the effectiveness of the theory, and
demonstrate how frames have become an essential tool and effective language in
which to describe and solve some difficult and long-standing problems in harmonic
analysis, time–frequency analysis, communication theory and physics.
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In Sect. 3.2, we define frames for finite-dimensional spaces and describe some
of their basic properties. This exposition requires only some knowledge of linear
algebra. Motivated by finite-dimensional results in Sect. 3.3, we define frames in
separable Hilbert spaces of arbitrary dimension. We define the analysis, synthesis,
and frame operators and prove the existence of Fourier-like expansions in terms of
frames. We also introduce by comparison the notion of a Riesz basis which can be
thought of as the natural generalization of a basis in finite dimensions, or alternatively
as a nonredundant frame.

In Sect. 3.4, we give some historical remarks about the early development of
frame theory, beginning with its first description by Duffin and Schaeffer in 1952
through the initial recognition that embracing the notion of redundancy conveyed
certain distinct advantages. In Sects. 3.5–3.7, we describe several problems in pure
and appliedmathematics inwhich the notion of frames turns out to be essential for the
description and understanding of the problem. In particular, we describe how frames
are used in communication theory to effectively code signals sent over noisy or lossy
channels, we describe how the language of frames helps in designing measurement
matrices in compressive sensing, and finally show how frames are used to given
insight to the problem of phaseless recovery, a problem in which there had been
almost no systematic progress in a century.

Finally in Sect. 3.7,we briefly describe how frames have had a significant impact in
puremathematics by providing a simple language inwhich to describe several impor-
tant and long-standing conjectures in operator theory and mathematical physics.
These conjectures are known to be equivalent to a simple-to-state question about
finite frames. This conjecture, known to frame theorists as the Feichtinger Conjec-
ture, has now been answered in the affirmative and speaks directly to how to best
understand the limits of redundancy in frames.

3.2 Frames and Linear Algebra

The easiest way to understand frames is to define frames in finite-dimensional vector
spaces. This amounts to some elementary assertions from linear algebra. Let us
consider the d-dimensional vector space Cd of complex d-tuples with inner product
〈·, ·〉 defined by

〈x, y〉 =
d∑

j=1

x j y j

and norm given by ‖x‖2
�2d

= ∑d
j=1 |x j |2. It is an elementary fact from linear alge-

bra that a collection of d vectors in C
d , X = {x1, x2, . . . , xd} is a basis for Cd if

and only if X is linearly independent, that is, if c1x1 + c2x2 + · · · + cd xd = 0
implies that c1 = c2 = · · · = cd = 0. In this case, every x ∈ C

d can be written
uniquely as x = a1x1 + a2x2 + · · · + ad xd . In addition, there exists a collection
X̃ = {̃x1, x̃2, . . . , x̃d} in Cd called the dual basis such that a j = 〈x, x̃ j 〉 for all j .
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These ideas can be expressed more conveniently using matrix notation as follows.
Let

B = [
x1 x2 · · · xd

]

be the d × d matrix whose columns are the vectors x j (written with respect to the
standard basis). Since X is linearly independent, B is invertible. Let

B−1 =

⎡

⎢⎢⎢⎢⎣

x̃1
x̃2
...

x̃d

⎤

⎥⎥⎥⎥⎦

so that x̃ j is the j-th row of B−1. Hence given x ∈ C
d ,

x = B B−1x = B

⎡

⎢⎢⎢⎣

〈x, x̃1〉
〈x, x̃2〉

...

〈x, x̃d〉

⎤

⎥⎥⎥⎦ =
d∑

j=1

〈x, x̃ j 〉 x j .

Note that the vectors {̃x j }d
j=1 form the dual basis of X .

To introduce the idea of a frame, let us now consider a collection Y = {y1, y2,
. . . , yn}, where n > d. Since n > d this collection is necessarily not linearly inde-
pendent so in order to ensure that it truly generalizes the notion of a basis, we assume
that span(Y ) = C

d (equivalent to linear independence when n = d).We say then that
Y is a frame for Cd .

Because Y is not linearly independent, there are constants η j , j = 1, . . . , n such
that not all of the ηi = 0 but η1y1 + η2y2 + · · · + ηn yn = 0. Since every spanning
set forCd contains a basis it follows that for all x ∈ C

d there exist coefficientsα j such
that x = α1y1 + α2y2 + · · · + αn yn but that the coefficients need not be unique.
In this sense, frames mimic bases but are redundant in the sense that not all of the
frame elements need be present in order to represent elements in the vector space,
and that there are multiple representations of each vector in the space.

Once again we can express these ideas conveniently in matrix notation. Let

F = [
y1 y2 · · · yn

]

be the d × n matrix whose columns are the vectors y j (written with respect to the
standard basis). Since n > d, F is necessarily not invertible but if Y constitutes a
frame then rank(F) = d so that the d rows of F are linearly independent in C

n .
Since F has full row rank, the d × d matrix F F∗ is invertible and for all x ∈ C

d ,
x = F F∗(F F∗)−1x . Letting
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F∗(F F∗)−1 =

⎡

⎢⎢⎢⎢⎣

ỹ1
ỹ2
...

ỹn

⎤

⎥⎥⎥⎥⎦
,

it follows that

x = F F∗(F F∗)−1x = F

⎡

⎢⎢⎢⎣

〈x, ỹ1〉
〈x, ỹ2〉

...

〈x, ỹn〉

⎤

⎥⎥⎥⎦ =
n∑

j=1

〈x, ỹ j 〉 y j .

The alert reader will recognize the n × d matrix F∗(F F∗)−1 as the pseudoinverse
or Moore–Penrose inverse of F , usually denoted by F†. This means that c = F†x
is the solution to Fc = x with the smallest norm. In other words, of all coefficients
α1, α2, . . . , αn that satisfy x = ∑n

j=1 α j y j , the one with smallest norm is given
by α j = 〈x, ỹ j 〉. For this reason, the collection of vectors {ỹ j }n

j=1 is called the dual
frame of Y .

3.3 The Frame Inequality

Recall that for any k × m matrix M , its Frobenius norm, denoted ‖M‖ f ro, is
defined to be the square root of the sum of the squared moduli of its elements.
For our purposes, the main thing to know is that for any vector x ∈ C

m , ‖Mx‖�2k
≤

‖M‖ f ro ‖x‖�2m
. Now suppose that the columns of the d × n matrix F form a frame

for Cd . We can write for all x ∈ C
d , x = (F F∗)−1(F F∗)x and taking norms get

‖x‖�2d
≤ ‖(F F∗)−1F‖ f ro ‖F∗x‖�2n

.

Additionally, we can see that if an inequality of the form ‖x‖�2d
≤ C‖F∗x‖�2n

holds for
someC > 0 then it follows that F∗x = 0 implies that x = 0, that the d columns of F∗
are therefore linearly independent, and hence that rank(F∗) = rank(F) = d. Finally,
since always ‖F∗x‖�2n

≤ ‖F∗‖ f ro‖x‖�2d
, we have proved the following theorem.

Theorem 3.1 Let F be a d × n matrix with n ≥ d. Then the columns of F form a
frame in C

d if and only if there exist constants c, C > 0 such that for all x ∈ C
d ,

c‖x‖2
�2d

≤ ‖F∗x‖2�2n ≤ C‖x‖2
�2d

.

The above inequality is referred to as the frame inequality. This turns out to be
the characterization of a frame in C

d that is the most convenient way to generalize
the notion of a frame from finite to arbitrary dimensions.
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Definition 3.1 A frame in a separable Hilbert space H is a sequence of vectors
{xk}k∈K with the property that there exist constants c1, c2 > 0, called the frame
bounds such that for all x in the Hilbert space

c1 ‖x‖2 ≤
∑

k∈K

|〈x, xk〉|2 ≤ c2 ‖x‖2 .

A frame is tight if c1 = c2 and is uniform if
∥∥x j

∥∥ = ‖xk‖ for all j and k.

Corresponding to the operator from C
d to C

n given by x 	→ F∗x , we define the
analysis operator by

T : H → �2(K ); x 	→ {〈x, xk〉}k∈K .

Its adjoint, corresponding to the operator from C
n to C

d given by y 	→ Fy, is the
synthesis operator

T ∗ : �2(K ) → H ; {ck} 	→
∑

k∈K

ck xk .

The frame operator for {xk}k∈K is

S = T ∗T : H → H ; x 	→
∑

k∈K

〈x, xk〉 xk .

The upper frame bound implies that T is bounded, and the lower that it is injective
and continuously invertible on its range, which is a closed linear subspace of �2(K ).
In the case where the range of T is a proper subspace, T ∗ has a nontrivial nullspace,
that is, there exist nonzero sequences {ck} ∈ �2 such that

∑

k∈K

ck xk = 0.

This corresponds to the situation in finite dimensions in which a frame has an excess
of elements, that is, more elements than a basis would and we say in this case that
the frame is overcomplete or redundant.

The frame operator S = T ∗T is always a bounded linear isomorphism of H . This
leads to the following Fourier-like expansions of elements of H in terms of frames.

Theorem 3.2 Given a frame {xk}k∈K for a Hilbert space H, every x ∈ H can be
written as

x =
∑

k∈K

〈x, xk〉 S−1xk =
∑

k∈K

〈x, S−1xk〉 xk .

The sequence {̃xk}k∈K = {S−1xk}k∈K is called the dual frame of {xk}.
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In the case of an overcomplete frame, there are many ways to represent a vector
in terms of the frame. However, as in the finite-dimensional case, the representation
coefficients coming from the dual frame, {〈x, S−1xk〉}, have the smallest norm in �2.

Where there is no redundancy, that is, when the operator T is a surjection onto �2,
then the frame {xk}k∈K is referred to as a Riesz basis which is the analog of a basis
in finite dimensions. A Riesz basis is necessarily also a frame but allows for unique
expansions of elements of H , and in this sense is said to be an exact sequence. A
further characterization of Riesz bases is the following.

Theorem 3.3 A sequence of vectors {xk}k∈K in a Hilbert space H is a Riesz basis
if and only if there exist constants A, B > 0 such that for every finite sequence of
scalars (c j )

n
j=1,

A
n∑

j=1

|c j |2 ≤
∥∥∥∥

n∑

j=1

c j x j

∥∥∥∥
2

H

≤ B
n∑

j=1

|c j |2.

There aremany excellent references for information on the basic theory of frames,
Riesz bases, and their uses such as [17–19, 32, 46, 47].

3.4 Some Historical Remarks

The notion of a frame was first introduced in 1952 by Duffin and Schaeffer in [26]
in the context of nonharmonic Fourier series. The paper considered the proper-
ties of sequences of functions in L2(−1/2, 1/2) of the form {e2π iλn x }n∈Z, where
Λ = {λn}n∈Z is a sequence of points in IR. In this context, we write E (Λ) =
{e2π iλx }λ∈Λ. The fundamental result of the paper is the following.

Theorem 3.4 ([26]) The collection E (Λ) is a frame for L2(−γ, γ ) for all 0 < γ <

1/2 if the set Λ has uniform density 1, that is, if there exist constants δ, L > 0
such that for all n ∈ Z, |λn − n| ≤ L and for all n �= m, |λn − λm | ≥ δ (that is, Λ

is uniformly discrete).

The notion of uniform density is a special case of the more general concept of
Beurling density (see [34]). Given a uniformly discrete subset Λ of IR, define for
r > 0 n+(r) and n−(r) to be respectively the largest and smallest number of points
of Λ in any interval of length r and let

D+(Λ) = lim
r→∞

n+(r)

r
and D−(Λ) = lim

r→∞
n−(r)

r

denote the upper and lower Beurling densities of Λ. If D+(Λ) = D−(Λ) then this
common value is denoted D(Λ) and is referred to as the Beurling density of Λ.

In the landmark paper [34], H. J. Landau showed, among other things, that if
for some uniformly discrete subset Λ of IR, E (Λ) is a frame for L2(−γ, γ ), then
D−(Λ) ≥ 2γ , and that if E (Λ) is a Riesz basis for L2(−γ, γ ), then D+(Λ) ≤ 2γ .



3 What is a Frame? Theory and Applications of Frames 33

This result shows in particular that for sets Λ with uniform density 1, the sets E (Λ)

must necessarily be overcomplete frames for L2(−γ, γ ) whenever 0 < γ < 1/2.
In this sense, Theorem3.4 describes necessarily redundant systems, i.e., frames for
L2(−γ, γ ).

Theorem3.4 can also be thought of as a perturbation result in the following sense.
If L = 0 thenΛ = {e2π inx }n∈Z and E (Λ) is an orthonormal basis for L2(−1/2, 1/2),
hence clearly also a frame for L2(−γ, γ ) for all 0 < γ < 1/2. The theorem can then
be interpreted as saying that any bounded perturbation of Z that remains uniformly
discrete also has this property. Such questions in frame theory were explored by
R.Young in a series of papers in themid-1970s [40–45] for nonredundant systems.He
proved several perturbation results for Riesz bases of complex exponentials which,
while not results in the theory of frames per se, were important papers that high-
lighted clearly the flexibility achieved when overcomplete and redundant systems
are permitted.

In [22], Daubechies, Grossman, and Meyer connected explicitly the notion of
a frame with the expansion of a function in terms of so-called coherent states, in
particular, the transformation of a single function by a fixed collection of transfor-
mations based on the Weil-Heisenberg group and by the affine group. The former
collections are now more commonly referred to as Gabor functions and the latter
as wavelets. In this paper, it was observed that requiring such decompositions to be
orthogonal or nonredundant can lead to undesirable features of the expansion. In the
particular examples given in the paper, these undesirable characteristics are related
to poor time–frequency localization of the expansions. That is, nonlocal changes
in the reconstructed function can arise from local changes in the coefficients. The
important insight of the paper is the embrace of redundancy and the observation that
redundancy can have value. This is stated explicitly in the abstract: It is believed, that
such “quasiorthogonal expansions” will be a useful tool in many areas of theoreti-
cal physics and applied mathematics. In this sense [22] has had enduring influence
by demonstrating that by allowing redundance explicitly in the representation of a
function, you gain a great deal more than you lose.

A good example of the advantages of redundancy comes in the context of Gabor
frames and is known as the Balian–Low Theorem. This theorem is related to the
Heisenberg uncertainty principle and states the following.

Theorem 3.5 ([4], cf. [7, 8, 21]) If the Gabor system {e2π imbx g(x − na)}n,m∈Z
forms a Riesz basis for L2(IR) then

‖x g(x)‖2‖γ ĝ(γ )‖2 = ∞. (3.1)

(Here ĝ denotes the Fourier transform of g).

The theorem asserts that if a Gabor system forms a Riesz basis, then the Gabor
function g cannot have good localization simultaneously in time and frequency.
This can be interpreted as saying that if a function is developed in a Riesz basis
of Gabor functions, then local changes in the time and frequency content of the
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function can result in global changes in the coefficients representing that function.
In particular, the result says that any Gabor frame using the Gaussian g(x) = e−πx2

,
which minimizes the uncertainty product (3.1), must necessarily be overcomplete.
Similar no-go theorems exist for wavelet systems, see e.g., [6].

Another notable development in the use of frames in the context of atomic decom-
positions and coherent state expansions came in a series of papers by H. Feichtinger
and K. Gröchenig, [27–29]. In these papers, the idea of frames consisting of orbits
of a single vector under the action of an irreducible unitary group representation is
explored. The notion of a frame (or atomic) decomposition for general Banach spaces
is described and frames generated by irregular sampling of the group representation
are developed. The idea of an overcomplete representation is essential to achieve the
generality of these results.

The change in perspective on frames represented by these papers, from a topic in
the theory of nonharmonic Fourier series to an important and powerful tool in the
time–frequency analysis of functions, was then fully established in the 1980s. With
the tool of frame theory now firmly in the gaze of the harmonic analysis, wavelet,
and time–frequency analysis communities, fruitful and interesting applications of the
theory began to flourish. In the following section, we will explore some applications
that take particular advantage of redundancy.

Consider the followingmodel for transmission of a signal over a channel. Suppose
that the signal of interest is the vector x ∈ C

d . We store the vector by forming its
coefficients with respect to a finite frame given by the d × n matrix F by comput-
ing y = F∗x ∈ C

n , then transmit y over the channel. The received signal ŷ will be
corrupted by quantization error and by noise, that is, ŷ = y + ε where ε is a random
vector in IRn . Note that in the absence of noise, the original signal x can be recon-
structed from its frame coefficients y. The extent to which the original signal can be
reconstructed from the noisy coefficients ŷ is a measure of the robustness to noise of
the coding scheme. This question was investigated by Goyal, Kovačević, and Kelner
for the scheme outlined above in [31].

Theorem 3.6 ([31]) If the transmission error ε is modeled as zero-mean uncorre-
lated noise, the mean square error of the reconstructed signal is minimized if and
only if the frame is uniform and tight.

The idea behind the usefulness of frames for noise reduction comes directly from
the redundancy of frames. If the d × n matrix F represents a frame, then the range of
the mapping F∗ : IRd → IRn is only a d-dimensional subspace of IRn , and the vector
y is in this subspace, but the distorted vector ŷ is unlikely to be. The reconstruction
scheme x̂ = (F F∗)−1F ŷ solves the least-squares problem minx ‖F∗x − ŷ‖2 with
the minimum-norm solution x̂ , since (F F∗)−1F is the pseudoinverse or Moore–
Penrose inverse of F∗. So in fact this procedure projects the noise vector ε onto
the range of F∗ then reconstructs x̂ from those frame coefficients. Since projection
automatically reduces the norm of a vector, we see that the approximation x̂ is
better than what would have been obtained if the columns of F had constituted a
nonredundant frame.
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Now suppose that, in addition to quantization and noise, the channel distorts the
transmitted vector ŷ by erasing components at random. Robustness to this sort of
distortionmeansmaximizing the number of components that can be erasedwhile still
allowing reconstruction of the signal as accurately as possible from the remaining
coefficients. In the absence of noise, it would be sufficient to have the frame satisfy
the following definition given in [31] (the term Spark is coined in [25]).

Definition 3.2 A frame F = {xk}n
k=1 in C

d is maximally robust to erasures if the
removal of any l ≤ n − d vectors from F leaves a frame. The Spark of an d × n
matrix M is the size of the smallest linearly dependent subset of columns of M . Hence
a frame with frame matrix F is maximally robust to erasures if Spark(F∗) = d + 1.

The paper [31] constructs such frames and analyzes themaximumdistortionwhen
the reconstruction is done on noisy measurements and when the number of erasures
is specified. It should be noted also that other examples of full-spark finite frames
are known and in particular it is known that full-spark finite Gabor frames exist for
all dimensions d [35, 36].

3.5 Compressive Sensing

Consider the following problem in signal or image recovery. Recover an unknown
vector x ∈ IRn from d < n linearmeasurements under the assumption that x is sparse
or compressible, that is, sparse in some orthonormal basis. In other words, we assume
that for some s ∈ N, x has nomore than s nonzero elements (that is, that x is s-sparse)
or equivalently that there is some n × n orthogonal matrix Φ with the property that
the vector Φx is s-sparse. Note that the collection of s-sparse vectors in IRn is not
a linear subspace. In what follows, we will assume that the unknown vector x is
s-sparse.

If we define a d × n matrix F to be the measurement matrix, then the problem
becomes to recover x from y = Fx under the assumption that x is s-sparse. Without
the assumption of sparsity, the problem is clearly underdetermined and hence not
solvable. A very simple necessary and sufficient condition on F guaranteeing that
the problem at the very least has a solution is given in the following theorem.

Theorem 3.7 The collection of s-sparse vectors in R
n is uniquely determined by the

measurements Fx in the sense that for all s-sparse vectors x1 and x2, Fx1 = Fx2
implies x1 = x2 if and only if Spark(F) > 2s.

If we think of the measurement matrix F as a frame matrix, that is, as a matrix
whose columns form a frame for IRd , then it is clear that in order for the problem to
be meaningful, it is required that the frame be redundant.

Theorem3.7 is an injectivity result that leaves aside the very difficult problem of
actually reconstructing x from the measurements. This can be done in principle by
solving a reduced system of d equations in d unknowns for every possible collection
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of d columns of F and looking for the solution with the fewest number of nonzero
entries. In other words, we can solve the minimization problem

min
x̃∈Rn

‖x̃‖0 subject to Fx̃ = y,

where ‖x‖0 is the support size of the vector x . This approach quickly becomes
intractable as d increases. However the problem becomes more tractable under an
additional assumption on the matrix F known as the Restricted Isometry Property.

Definition 3.3 ([13]) For each s ∈ N, define the isometry constant δs of a d × n
matrix F as the smallest number such that

(1 − δs) ‖x‖2
�2n

≤ ‖Fx‖2
�2d

≤ (1 + δs) ‖x‖2
�2n

holds for all s-sparse vectors x ∈ IRn .

If δ2s is sufficiently small, then the �1 minimization problem

min
x̃∈Rn

‖x̃‖�1n
subject to Fx̃ = y (3.2)

yields an exact solution for s-sparse vectors x̃ . Indeed the following theorem holds.

Theorem 3.8 ([13]) If δ2s <
√
2 − 1 then the solution to the �1 minimization prob-

lem (3.2) will yield the unique s-sparse solution to the equation Fx = y.

The RIP also guarantees that stable recovery of x from noisy measurements is
possible. To see how this works, suppose that we possess the measurements ỹ =
Fx + z, where z is an unknown noise vector satisfying ‖z‖�2d

≤ ε. In this case, the
previous theorem becomes

Theorem 3.9 ([12]) If δ2s <
√
2 − 1 then there exists a constant C such that for

any s-sparse solution x∗ to the �1 minimization problem

min
x̃∈Rn

‖x̃‖�1n
subject to ‖ỹ − Fx̃‖�2d

≤ ε

will satisfy ‖x∗ − x‖�2n
≤ Cε.

More information on the basics of this theory and hints for further research can
be found in the excellent expository articles [10, 11, 23, 38].

In order to draw a connection to frame theory, we collect some fundamental results
in matrix theory. Let F be a d × n measurement matrix with d ≤ n. Suppose that
F = [ f1 f2 · · · fm] and that the columns { fi }m

i=1 of F form a uniform frame for Rn

with unit norm. The coherence of { fi }m
i=1 is the quantity

μ(F) = max
i �= j

|〈 fi , f j 〉|.

The coherence of any unit norm uniform frame satisfies the Welch bound [39].
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Theorem 3.10 Let F be a d × n matrix with unit norm columns. Then

μ(F) ≥
√

n − d

d(n − 1)
.

This lower bound is achieved when the quantities |〈 fi , f j 〉| with i �= j are all
equal, and in this case we say that the frame is equiangular. The following standard
result follows from a classical theorem bounding the eigenvalues of a square matrix
due to Gershgorin [30], see also [5, 24, 25].

Theorem 3.11 The d × n matrix F satisfies the RIP with δs ≤ μ(F)(s − 1). This
means that any d × n matrix F satisfies the RIP for δ ≥ μ(F)(s − 1).

From these considerations, it follows that a good measurement matrix should
have maximal spark and the frame formed from its columns should have minimal
coherence. Such matrices are very difficult to construct, e.g., [5, 24].

3.6 Phaseless Recovery

In this section, we examine a similar signal recovery problem, specifically the recov-
ery of a signal from only the magnitudes of a collection of linear measurements.
This problem has been around for a very long time and has its roots in applications
to X-ray crystallography about a century ago. Recently, significant breakthroughs in
understanding and solving the problem have come about by interpreting the problem
in terms of frames.

Specifically, given a frame { fi }n
i=1 for Cd , the problem is to recover a vector

x ∈ R
d from the magnitudes of its frame coefficients, namely from

{|〈x, fi 〉|}n
i=1.

The initial breakthrough in this work is due to Balan, Casazza, and Edidin [3] in
which the following definition was offered.

Definition 3.4 A frame F = { fi }n
i=1 for C

d is called phase retrievable if the map-
ping

α : Cd → R
n; x 	→ {|〈x, fi 〉|}n

i=1

is injective up to a constant phase factor.

The problem of algorithmic recovery of x from α(x) was addressed first in [2].
While a great deal of work has been done on this subject, what is interesting from
our point of view is that the redundancy of frames plays a crucial role in the solution
to the problem as well as provides the correct perspective from which to attack the
problem. While this may seem natural to some degree, what is most interesting is
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that a redundancy factor of about 4 turns out to be what is required in the complex
case and 2 in the real case. An excellent survey of the current state of the art on this
problem as of the beginning of 2016 is given in [1], and the following theorems are
stated there.

Theorem 3.12 ([3]) Assume that F = { fi }n
i=1 is a frame for Rd . Then

• If F is phase retrievable for Rd then n ≥ 2d − 1.
• If n = 2d − 1 then F is phase retrievable if and only if the frame matrix F

corresponding to F has full Spark.

Theorem 3.13 Assume that F = { fi }n
i=1 is a frame for Cd . Then

• ([33]) If F is phase retrievable for Cd then

n ≥ 4d − 2 − 2b(n) +
⎧
⎨

⎩

2 if n is odd and b = 3 mod 4
1 if n is odd and b = 2 mod 4
0 otherwise

where b(n) denotes the number of 1s in the binary expansion of n − 1.
• ([9]) For any positive integer d, a phase retrievable frame F for C

d can be
constructed that contains n = 4d − 4 vectors.

• ([20]) If n ≥ 4d − 4 then for generic frames, F is phase retrievable, and if d =
2k + 1 and n < 4d − 4 then no frame F for Cd is phase retrievable.

3.7 The Feichtinger Conjecture (Now Theorem)

We conclude our discussion of frames and redundancy with the Feichtinger conjec-
ture. This assertion deals with the relationship between frames in Hilbert spaces and
so-called Riesz sequences. A collection of vectors {xn} in a Hilbert space H is a Riesz
sequence if there exist constants A, B > 0 such that for all finite sequences {ck}n

k=1,

A
n∑

j=1

|c j |2 ≤
∥∥∥∥

n∑

j=1

c j x j

∥∥∥∥
2

≤ B
n∑

j=1

|c j |2.

In other words, a Riesz sequence forms a Riesz basis for its closed linear span. It
follows then that a Riesz sequence is nonredundant in the sense that if (ck) ∈ �2 and∑∞

j=1 c j x j = 0 then c j = 0 for all j . It also follows that a Riesz sequence is a frame
for its closed linear span.

Feichtinger conjectured that any uniform frame can be partitioned into a finite
union of Riesz sequences. What is most notable about the Feichtinger conjecture
is that it is equivalent to several other conjectures in diverse areas of mathematical
analysis. This observation was made by Casazza and his collaborators in several
papers starting with [14] in which they prove the equivalence of the Feichtinger
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conjecture to three important, then-unsolved problems: The Kadisson–Singer Con-
jecture (1959), the Paving Conjecture (1979), and the Bourgain–Tzafriri Conjecture
(1991). These were deep, long-standing unsolved problems in operator theory and
have connections to graph theory, mathematical physics, and signal processing.

Very recently, the Feichtinger Conjecture has been proved by Marcus, Spielman,
and Srivastava [37] by proving in the affirmative the equivalent Kadisson–Singer
conjecture. This result gives important insight into the deep structure of frames. It
would imply that any reasonable frame can be realized as a finite union of well-
behaved, nonredundant sets.

In fact, what is quite interesting from a practical point of view is that Feichtinger’s
conjecture has a finite-dimensional version, which is probably the simplest statement
of the problem.

Theorem 3.14 (Feichtinger Conjecture—finite version [14]) For every B > 0 there
exists M ∈ N and A > 0 such that any uniform frame { fi }n

i=1 for Cd with unit norm
can be written as a union of M Riesz sequences with upper bound B and lower
bound A.

There are several excellent references that discuss these conjectures and show
their equivalence, for example, [14–16] as well as many other papers linked from
http://www.framerc.org/.
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Chapter 4
The Challenging Problem of Industrial
Applications of Multicore-Generated
Iterates of Nonlinear Mappings

Jean-Pierre Lozi, Oleg Garasym and René Lozi

Abstract The study of nonlinear dynamics is relatively recent with respect to the
long historical development of early mathematics since the Egyptian and the Greek
civilization, even if one includes in this field of research the pioneer works of Gaston
Julia and Pierre Fatou related to one-dimensional maps with a complex variable,
nearly a century ago. In France, Igor Gumosky and Christian Mira began their math-
ematical researches in 1958; in Japan, the Hayashi’ School (with disciples such as
Yoshisuke Ueda and Hiroshi Kawakami), a few years later, was motivated by appli-
cations to electric and electronic circuits. In Ukraine, Alexander Sharkovsky found
the intriguing Sharkovsky’s order, giving the periods of periodic orbits of such non-
linear maps in 1962, although these results were only published in 1964. In 1983,
Leon O. Chua invented a famous electronic circuit that generates chaos, built with
only two capacitors, one inductor and one nonlinear negative resistance. Since then,
thousands of papers have been published on the general topic of chaos. However,
the pace of mathematics is slow, because any progress is based on strictly rigor-
ous proof. Therefore, numerous problems still remain unsolved. For example, the
long-term dynamics of the Hénon map, the first example of a strange attractor for
mappings, remain unknown close to the classical parameter values from a strictly
mathematical point of view, 40 years after its original publication. In spite of this
lack of rigorous mathematical proofs, nowadays, engineers are actively working on
applications of chaos for several purposes: global optimization, genetic algorithms,
CPRNG (Chaotic Pseudorandom Number Generators), cryptography, and so on.
They use nonlinear maps for practical applications without the need of sophisticated
theorems. In this chapter, after giving some prototypical examples of the industrial
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applications of iterations of nonlinear maps, we focus on the exploration of topolo-
gies of coupled nonlinear maps that have a very rich potential of complex behavior.
Very long computations on modern multicore machines are used: they generate up
to one hundred trillion iterates in order to assess such topologies. We show the emer-
gence of randomness from chaos and discuss the promising future of chaos theory
for cryptographic security.

Keywords Chaos · Cryptography ·Mappings · Chaotic pseudorandom numbers
Attractors

AMS Subject Classification 37N30 · 37D45 · 65C10 · 94A60

4.1 Introduction

The last few decades have seen the tremendous development of new IT technologies
that incessantly increase the need for new and more secure cryptosystems.

For instance, the recently invented Bitcoin cryptocurrency is based on the secure
Blockchain system that involves hash functions [1]. This technology, used for infor-
mation encryption, is pushing forward the demand for more efficient and secure
pseudorandom number generators [2] which, in the scope of chaos-based cryptogra-
phy,were first introduced byMatthews in the 1990s [3]. Contrarily tomost algorithms
that are used nowadays and based on a limited number of arithmetic or algebraic
methods (like elliptic curves), networks of coupled chaotic maps offer quasi-infinite
possibilities to generate parallel streams of pseudorandom numbers (PRN) at a rapid
pace when they are executed on modern multicore processors. Chaotic maps are able
to generate independent and secure pseudorandom sequences (used as information
carriers or directly involved in the process of encryption/decryption [4]). However,
the majority of well-known chaotic maps are not naturally suitable for encryption [5]
and most of them do not exhibit even satisfactory properties for such a purpose.

In this chapter, we explore the novel idea of coupling a symmetric tent map with
a logistic map, following several network topologies. We add a specific injection
mechanism to capture the escaping orbits. In the goal of extending our results to
industrial mathematics, we implement these networks on multicore machines and
we test up to 100 trillion iterates of such mappings, in order to make sure that the
obtained results are firmly grounded and able to be used in industrial contexts such
as e-banking, e-purchasing, or the Internet of Things (IoT).

The chaotic maps, when used in the sterling way, could generate not only chaotic
numbers, but also pseudorandom numbers as shown in [6] and as we show in this
chapter with more sophisticated numerical experiments.

Various choices of PNRGenerators (PRNGs) and crypto-algorithms are currently
necessary to implement continuous, reliable security systems. We use a software
approach because it is easy to change a cryptosystem to support protection, whereas
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replacing hardware used for True Random Number Generators would be costly and
time-consuming. For instance, after the secure software protocol Wi-Fi Protected
Access (WPA) was broken, it was simply updated and no expensive hardware had to
be replaced.

It is a very challenging task to design CPRNGs (Chaotic Pseudo Random Num-
ber Generators) that are applicable to cryptography: numerous numerical tests must
ensure that their properties are satisfactory. We mainly focus on two- to five-
dimensionmaps, although upper dimensions can be very easily exploredwithmodern
multicore machines. Nevertheless, in four and five dimensions, the studied CRPNGs
are efficient enough for cryptography.

In Sect. 4.2, we briefly recall the dawn and the maturity of researches on chaos. In
Sect. 4.3, we explore two-dimensional topologies of networks of coupled chaotic
maps. In Sect. 4.4, we study more thoroughly a mapping in higher dimensions
(up to 5) far beyond the NIST tests which are limited to a few millions of iter-
ates and which seem not robust enough for industrial applications, although they
are routinely used worldwide. In order to check the portability of the computations
on multicore architectures, we have implemented all our numerical experiments on
several different multicore machines. We conclude this chapter in Sect. 4.5.

4.2 The Dawn and the Maturity of Researches on Chaos

The study of nonlinear dynamics is relatively recent with respect to the long historical
development of earlymathematics since theEgyptian and theGreek civilizations (and
even before). The first alleged artifact of mankind’s mathematical thinking goes back
to the Upper Paleolithic era. Dating as far back as 22,000 years ago, the Ishango bone
is a dark brown bone which happens to be the fibula of a baboon, with a sharp piece
of quartz affixed to one end for engraving. It was first thought to be a tally stick, as
it has a series of what has been interpreted as tally marks carved in three columns
running the length of the tool [7].

Twenty thousand years later, the RhindMathematical Papyrus is the best example
of Egyptian mathematics. It dates back to around 1650 BC. Its author is the scribe
Ahmes who indicated that he copied it from an earlier document dating from the 12th
dynasty, around 1800 BC. It is a practical handbook, whose the first part consists
of reference tables and a collection of 20 arithmetic and 20 algebraic problems and
linear equations. Problem32 for instance corresponds (inmodern notation) to solving
x + x

3 + x
4 = 2 for x [8].

Since those early times,mathematics have known great improvements, flourishing
inmanydifferent fields such as geometry, algebra (both linked, thanks to the invention
of Cartesian coordinates by René Descartes [9]), analysis, probability, number and
set theory, and so on.

However, nonlinear problems are very difficult to handle, because, as shown
by Galois’ theory of algebraic equations which provides a connection between
field theory and group theory, it is impossible to solve any polynomial equation
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of degree equal or greater than 5 using only the usual algebraic operations (addition,
subtraction, multiplication, division) and the application of radicals (square roots,
cube roots, etc.) [10].

The beginning of the study of nonlinear equation systems goes back to the original
works of Gaston Julia and Pierre Fatou regarding to one-dimensional maps with a
complex variable, nearly a century ago [11, 12]. Compared to thousands of years of
mathematical development, a century is a very short period. In France, 30 years later,
Igor Gumosky and Christian Mira began their mathematical researches with the help
of a computer in 1958 [13]. They developed very elaborate studies of iterations. One
of the best-known formulas they published is

{
xn+1 = f (xn) + byn
yn+1 = f (xn+1) − xn,

with f (x) = ax + 2(1 − a)
x2

1 + x2
(4.1)

which can be considered as a non-autonomous mapping from the planeR2 onto itself
that exhibits esthetic chaos. Surprisingly, slight variations of the parameter value lead
to very different shapes of the attractor (Fig. 4.1).

In Ukraine, Alexander Sharkovsky found the intriguing Sharkovsky’s order, giv-
ing the periods of periodic orbits of such nonlinear maps in 1962, although these
results were only published in 1964 [14]. In Japan the Hayashi’ School (with disci-
ples like Yoshisuke Ueda and Hiroshi Kawakami), a few years later, was motivated
by applications to electric and electronic circuits. Ikeda proposed the Ikeda attractor
[15, 16] which is a chaotic attractor for u ≥ 0.6 (Fig. 4.2).

{
xn+1 = 1 + u(xn cos tn − yn sin tn)
yn+1 = u(xn sin tn + yn cos tn),

with tn = 0.4 − 6

1 + x2n + y2n
(4.2)

In 1983, Leon O. Chua invented a famous electronic circuit that generates chaos
built with only two capacitors, one inductor and one nonlinear negative resis-
tance [17]. Since then, thousands of papers have been published on the general

Fig. 4.1 Gumowski-Mira attractor for parameter values a = 0.92768 and a = 0.93333
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Fig. 4.2 Ikeda attractor for u = 8.6 and u = 8.9

topic of chaos. However the pace of mathematics is slow, because any progress is
based on strictly rigorous proof. Therefore numerous problems still remain unsolved.
For example, the long-term dynamics of the Hénon map [18], the first example of
a strange attractor for mappings, remains unknown close to the classical parameter
values from a strictly mathematical point of view, 40 years after its original publica-
tion.

Nevertheless, in spite of this lack of rigorous mathematical results, nowadays,
engineers are actively working on applications of chaos for several purposes: global
optimization, genetic algorithms, CPRNG, cryptography, and so on. They use non-
linear maps for practical applications without the need of sophisticated theorems.
During the last 20 years, several chaotic image encryption methods have been pro-
posed in the literature.

Dynamical systems which present a mixing behavior and that are highly sensitive
to initial conditions are called chaotic. Small differences in initial conditions (such
as those due to rounding errors in numerical computation) yield widely diverging
outcomes for chaotic systems. This effect, popularly known as the butterfly effect,
renders long-term predictions impossible in general [19]. This happens even though
these systems are deterministic,meaning that their future behavior is fully determined
by their initial conditions, with no random elements involved. In other words, the
deterministic nature of these systems does not make them predictable. Mastering the
global properties of those dynamical systems is a challenging issue nowadays that
we try to fix by exploring several network topologies of coupled maps.

In this chapter, after giving some prototypical examples of industrial applications
of iterations of nonlinear maps, we focus on the exploration of topologies of coupled
nonlinearmaps that have a very rich potential of complex behavior. Very long compu-
tations onmulticoremachines are used, generating up to one hundred trillion iterates,
in order to assess such topologies.We show the emergence of randomness from chaos
and discuss the promising future of chaos theory for cryptographic security.
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4.3 Miscellaneous Network Topologies of Coupled Chaotic
Maps

4.3.1 Tent-Logistic Entangled Map

In this section we consider only two 1-D maps: the logistic map

fµ(x) ≡ Lµ(x) = 1 − µx2 (4.3)

and the symmetric tent map

fµ(x) ≡ Tµ(x) = 1 − µ|x | (4.4)

both associated to the dynamical system

xn+1 = fµ(xn), (4.5)

where µ is a control parameter which impacts the chaotic degree. Both mappings
are sending the one-dimensional interval [−1,1] onto itself.

Since thefirst study byR.May [20, 21] of the logisticmap in the frameof nonlinear
dynamical systems, both the logistic (4.3) and the symmetric tentmap (4.4) have been
fully explored with the aim to easily generate pseudorandom numbers [22].

However, the collapse of iterates of dynamical systems [23] or at least the existence
of very short periodic orbits, their non-constant invariant measure, and the easily-
recognized shape of the function in the phase space, could lead to avoid the use
of such one-dimensional maps (logistic, baker, tent, etc.) or two-dimensional maps
(Hénon, Standard, Belykh, etc.) as PRNGs (see [24] for a survey). Yet, the very
simple implementation as computer programs of chaotic dynamical systems led some
authors to use them as a base for cryptosystems [25, 26]. Even if the logistic and
tent maps are topologically conjugates (i.e., they have similar topological properties:
distribution, chaoticity, etc.), their numerical behavior differs drastically due to the
structure of numbers in computer realization [27].

As said above, both logistic and tent maps are never used in serious cryptography
articles because they have weak security properties (collapsing effect) if applied
alone. Thus, these maps are often used in modified form to construct CPRNGs
[28–30].

Recently, Lozi et al. proposed innovative methods in order to increase random-
ness properties of the tent and logistic maps over their coupling and sub-sampling
[31–33]. Nowadays, hundreds of publications on industrial applications of chaos-
based cryptography are available [34–37].

In this chapter, we explore more thoroughly the original idea of combining fea-
tures of tent (Tµ) and logistic (Lµ) maps to produce a new map with improved prop-
erties, through combination in several network topologies. This idea was recently
introduced [38, 39] in order to improve previous CPRNGs.
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Fig. 4.3 Auto and
ring-coupling of the T Lµ

and Tµ maps (from [38])

Looking at both Eqs. (4.3) and (4.4), it is possible to reverse the shape of the graph
of the tent map T and to entangle it with the graph of the logistic map L . We obtain
the combined map

fµ(x) ≡ T Lµ(x) = µ|x | − µx2 = µ(|x | − x2) (4.6)

When used in more than one dimension, the T Lµ map can be considered as a two-
variable map

T Lµ(x
(i), x ( j)) = µ(|x (i)| − (x ( j))2), i �= j (4.7)

Moreover, we can combine again the T Lµ map with Tµ in various ways. If with
choose, for instance, a network with a ring shape (Fig. 4.3).

It is possible to define a mapping Mµ,p : J p → J p where Jp = [−1, 1]p ⊂ Rp:

Mµ,p

⎛
⎜⎜⎜⎜⎜⎜⎝

x (1)n

x (2)n
.

.

.

x (p)n

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

x (1)n+1

x (2)n+1
.

.

.

x (p)n+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

Tµ(x (1)n ) + T Lµ(x (1)n , x (2)n )

Tµ(x (2)n ) + T Lµ(x (2)n , x (3)n )

.

.

.

Tµ(x
(p)
n ) + T Lµ(x

(p)
n , x (1)n )

⎞
⎟⎟⎟⎟⎟⎟⎠

(4.8)

However, if used in this form, system (4.8) has unstable dynamics and iterated
points x (1)n , x (2)n , . . . , x (p)n quickly spread out. Therefore, to solve the problemof keep-
ing dynamics in the torus J p = [−1, 1]p ⊂ Rp, the following injection mechanism
has to be used in conjunction with (4.8)

{
if (x (i)n+1 < −1) then add 2

if (x (i)n+1 > 1) then subtract 2
, i = 1, 2, . . . , p. (4.9)
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Fig. 4.4 Return mechanism
from the [−2, 2]p torus to
[−1, 1]p (from [38])

Under this injection mechanism, for 1 ≤ i ≤ p, points come back from [−2, 2]p

to [−1, 1]p (Fig. 4.4).
The T Lµ function is a powerful tool to change dynamics. Used in conjunction

with Tµ, the map T Lµ makes it possible to establish mutual influence between
system components x (i)n in Mµ,p. This multidimensional coupled mapping is inter-
esting because it performs contraction and distance stretching between components,
improving chaotic distribution.

The coupling of components has an excellent effect in achieving chaos, because
they interact with global system dynamics, being a part of them. Component inter-
action has a global effect. In order to study this new mapping, we use a graphical
approach, however other theoretical assessing functions are also involved.

Note that system (4.8) can be made more generic by introducing constants ki

which generalize considered topologies. Let k = (k1, k2, . . . , k p), we define

M
k
µ,p

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

x (1)n

x (2)n

.

.

.

x (p)n

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

x (1)n+1

x (2)n+1
.

.

.

x (p)n+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Tµ(x
(1)
n ) + k1 × T Lµ(x

(i)
n , x ( j)n ), i, j = (1, 2) or (2, 1)

Tµ(x
(2)
n ) + k2 × T Lµ(x

(i)
n , x ( j)n ) i, j = (2, 3) or (3, 2)

.

.

.

Tµ(x
(p)
n ) + k p × T Lµ(x

(i)
n , x ( j)n ) i, j = (p, 1) or (1, p)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(4.10)

System (4.10) is called alternate if ki = (−1)i or ki = (−1)i+1, 1 ≤ i ≤ p, or
non-alternate if ki = +1, or ki = −1. It can be a mix of alternate and non-alternate
if ki = +1 or −1 randomly.
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Table 4.1 The sixteen maps defined by Eq. (4.11)

Case k1 k2 i j i’ j’

#1 +1 +1 1 2 1 2

#2 +1 −1 1 2 1 2

#3 −1 +1 1 2 1 2

#4 −1 −1 1 2 1 2

#5 +1 +1 2 1 2 1

#6 +1 −1 2 1 2 1

#7 −1 +1 2 1 2 1

#8 −1 −1 2 1 2 1

#9 +1 +1 1 2 2 1

#10 +1 −1 1 2 2 1

#11 −1 +1 1 2 2 1

#12 −1 −1 1 2 2 1

#13 +1 +1 2 1 1 2

#14 +1 −1 2 1 1 2

#15 −1 +1 2 1 1 2

#16 −1 −1 2 1 1 2

4.3.2 Two-Dimensional Network Topologies

Wefirst consider the simplest coupling case, inwhich only two equations are coupled.
The first condition needed to obtain a multidimensional mapping, in the aim of
building a new CPRNG, is to obtain excellent uniform distribution of the iterated
points. The second condition is that the CPRNG must be assessed positively by the
NIST tests [40]. In [38, 39] this two-dimensional case is studied in detail. Using a
bifurcation diagram and computation of Lyapunov exponents, it is shown that the
best value for the parameter is µ = 2. Therefore, in the rest of this chapter we use
this parameter value and we only briefly recall the results found with this value in
both of those articles. The general form of Mk

2,2 is then

Mk
2,2

(
x (1)n

x (2)n

)
=

(
x (1)n+1

x (2)n+1

)
=

(
T2(x (1)n ) + k1 × T L2(x (i)n , x ( j)n )

T2(x (2)n ) + k2 × T L2(x (i
′)

n , x ( j
′)

n )

)
(4.11)

with i, j, i ′, j ′ = 1 or 2, i �= j , and i ′ �= j ′.
Considering this general form, it is possible to define 16 differentmaps (Table4.1).
Among this set of maps, we study case #3 and case #13. The map of case #3 is

called Single-Coupled alternate due to the shape of the corresponding network and
denoted T T LSC

2 ,
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T T LSC
2 =

⎧⎨
⎩
x(1)n+1 = 1 − 2|x(1)n | − 2(|x(1)n | − (x(2)n )2) = T2(x

(1)
n ) − T L2((x

(1)
n ), (x(2)n ))

x(2)n+1 = 1 − 2|x(2)n | + 2(|x(1)n | − (x(2)n )2) = T2(x
(2)
n ) + T L2((x

(1)
n ), (x(2)n ))

(4.12)
and case #13 is called Ring-Coupled non-alternate and denoted T T LRC

2 ,

T T LRC
2 =

⎧⎨
⎩
x(1)n+1 = 1 − 2|x(1)n | + 2(|x(2)n | − (x(1)n )2) = T2(x

(1)
n ) + T L2((x

(2)
n ), (x(1)n ))

x(2)n+1 = 1 − 2|x(2)n | + 2(|x(1)n | − (x(2)n )2) = T2(x
(2)
n ) + T L2((x

(1)
n ), (x(2)n ))

(4.13)

Both systems were selected because they have balanced contraction and stretching
processes between components. They allow achieving uniform distribution of the
chaotic dynamics. Equations (4.12) and (4.13) are used, of course, in conjunction
with injection mechanism (4.9).

The largest torus where points mapped by (4.12) and (4.13) are sent is [−2, 2]2.
The confinement from torus [−2, 2]2 to torus [−1, 1]2 of the dynamics obtained by
thismechanism is shown in Figs. 4.5 and 4.6: dynamics cross from the negative region
(in blue) to the positive one, and conversely to the negative region, if the points stand
in the positive regions (in red). Through this operation, the system’s dynamics are
trapped inside [−1, 1]2. In addition, after this operation is done, the resulting system
exhibitsmore complex dynamicswith additional nonlinearity, which is advantageous
for chaotic encryption (since it improves security).

A careful distribution analysis of both T T LSC
2 and T T LRC

2 has been performed
using approximated invariant measures.

Fig. 4.5 Injection mechanism of the iterates from torus [−2, 2]2 to torus [−1, 1]2. If x (1)n > 1 then
x (1)n ≡ x (1)n − 2; if x (1)n < −1 then x (1)n ≡ x (1)n + 2 (from [38])
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Fig. 4.6 If x (2)n > 1 then x (2)n ≡ x (2)n − 2; if x (2)n < −1 then x (2)n ≡ x (2)n + 2 (from [38])

4.3.3 Approximated Invariant Measures

We recall in this section the definition of approximated invariant measures which are
important tools for assessing the uniform distribution of iterates. We have previously
introduced them for the first studies of the weakly coupled symmetric tent map [22].

We first define an approximation PM,N (x) of the invariant measure, also called
the probability distribution function linked to the one-dimensional map f (Eq. (4.5))
when computed with floating numbers (or numbers in double precision). To this
goal, we consider a regular partition of M small intervals (boxes) ri of J = [−1, 1]
defined by

si = −1 + 2i

M
, i = 0,M, (4.14)

ri = [si , si+1[, i = 0,M − 2, (4.15)

rM−1 = [sM−1, 1], (4.16)

J =
M−1⋃
0

ri . (4.17)

The length of each box ri is equal to

si+1 − si = 2

M
(4.18)

All iterates f (n)(x) belonging to these boxes are collected (after a transient regime
of Q iterations decided a priori, i.e., the first Q iterates are discarded). Once the
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computation of N + Q iterates is completed, the relative number of iterates with
respect to N/M in each box ri represents the value PN (si ). The approximated PN (x)
defined in this article is therefore a step function, with M steps. Since M may vary,
we define

PM,N (si ) = 1

2

M

N
(#ri ) (4.19)

where #ri is the number of iterates belonging to the interval ri and the constant 1/2
allows the normalisation of PM,N (x) on the interval J .

PM,N (x) = PM,N (si ), ∀ x ∈ ri (4.20)

In the case of p-coupled maps, we are more interested by the distribution of each

component x (1), x (2), . . . , x (p) of the vector X =

⎛
⎜⎜⎜⎜⎜⎜⎝

x (1)

x (2)

.

.

.

x (p)

⎞
⎟⎟⎟⎟⎟⎟⎠

rather than by the distri-

bution of the variable X itself in J p. We then consider the approximated probability
distribution function PM,N (x ( j)) associated to one component of X . In this chapter,
we use either Ndisc for M or Niter for N , depending on which is more explicit. The
discrepancies E1 (in norm L1), E2 (in norm L2), and E∞ (in norm L∞) between
PNdisc,Niter (x) and the Lebesgue measure, which is the invariant measure associated
to the symmetric tent map, are defined by

E1,Ndisc,Niter (x) = ‖PNdisc,Niter (x) − 0.5‖L1 (4.21)

E2,Ndisc,Niter (x) = ‖PNdisc,Niter (x) − 0.5‖L2 (4.22)

E∞,Ndisc,Niter (x) = ‖PNdisc,Niter (x) − 0.5‖L∞ (4.23)

In the sameway, an approximation of the correlation distribution functionCM,N (x, y)
is obtained by numerically building a regular partition of M2 small squares (boxes)
of J 2, embedded in the phase subspace (xl , xm)

si = −1 + 2i

M
, t j = −1 + 2 j

M
, i, j = 0,M (4.24)

ri, j = [si , si+1[×[t j , t j+1[, i, j = 0,M − 2 (4.25)

rM−1, j = [sM−1, 1] × [t j , t j+1], j = 0,M − 2 (4.26)

ri,M−1 = [si , si+1[×[tM−1, 1], j = 0,M − 2 (4.27)

rM−1,M−1 = [sM−1, 1] × [tM−1, 1] (4.28)
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The measure of the area of each box is

(si+1 − si ).(ti+1 − ti ) =
(

2

M

)2

(4.29)

Once N + Q iterated points (xln, x
m
n ) belonging to these boxes are collected, the

relative number of iterates with respect to N/M2 in each box ri, j represents the value
CN (si , t j ). The approximated probability distribution functionCN (x, y) defined here
is then a two-dimensional step function, with M2 steps. Since M can take several
values in the next sections, we define

CM,N (si , t j ) = 1

4

M2

N
(#ri, j ) (4.30)

where #ri, j is the number of iterates belonging to the square ri, j and the constant 1/4
allows the normalisation of CM,N (x, y) on the square J 2.

CM,N (x, y) = CM,N (si , t j ) ∀(x, y) ∈ ri, j (4.31)

The discrepancies EC1 (in norm L1), EC2 (in norm L2) and EC∞ (in norm L∞)
between CNdisc,Niter (x, y) and the uniform distribution on the square are defined by

EC1,Ndisc,Niter (x, y) = ‖CNdisc,Niter (x, y) − 0.25‖L1 (4.32)

EC2,Ndisc,Niter (x, y) = ‖CNdisc,Niter (x, y) − 0.25‖L2 (4.33)

EC∞,Ndisc,Niter (x, y) = ‖CNdisc,Niter (x, y) − 0.25‖L∞ (4.34)

Finally, let ACNdisc,Niter be the autocorrelation distribution function which is the
correlation functionCNdisc,Niter of (4.31), defined in the delay space (x

(i)
n , x (i)n+1) instead

of the phase (xl , xm) space. We define in the same manner than (4.32), (4.33), and
(4.34) EC1,Ndisc,Niter (x, y), EC2,Ndisc,Niter (x, y), and EC∞,Ndisc,Niter (x, y).

4.3.4 Study of Randomness of TTLSC
2 and TTLRC

2 ,
and Other Topologies

Using numerical computations, we assess the randomness properties of the
two-dimensional maps T T LSC

2 and T T LRC
2 . If all requirements 1–8 of Fig. 4.7

are verified, the dynamical systems associated to those maps can be considered
as pseudorandom and their application to cryptosystems is possible.
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Fig. 4.7 The main criteria for assessing CPRNG (from [34])

Fig. 4.8 Phase space
behavior of T T LRC

2 non
alternative (4.17), plot of
20, 000 points

Whenever one among the eight criteria is not satisfied for a given map, one cannot
consider that the associated dynamical system is a good CPRNG candidate. As said
above, when µ = 2, the Lyapunov exponents of both considered maps are positive.

In the phase space, we plot the iterates in the system of coordinates x (1)n versus
x (2)n in order to analyze the density of the points’ distribution. Based on such an
analysis, it is possible to assess the complexity of the behavior of dynamics, noticing
any weakness or inferring on the nature of randomness. We also use the approximate
invariant measures to assess more precisely the distribution of iterates.

The graphs of the attractor in phase space for the T T LRC
2 non-alternate (Fig. 4.8)

and T T LSC
2 alternate (Fig. 4.9) maps are different. The T T LSC

2 map has well-
scattered points in the whole pattern, but there are somemore “concentrated” regions
forming curves on the graph. Instead, the map T T LRC

2 has good repartition.
Some other numerical results we do not report in this chapter show that even if

those maps have good random properties, it is possible to improve mapping random-
ness by modifying slightly network topologies.
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Fig. 4.9 Phase space
behavior of T T LSC

2
alternative (4.18), plot of
20, 000 points

Equation (4.12) can be rewritten as

T T LSC
2 (x (1)n , x (2)n ) =

{
x (1)n+1 = 1 + 2(x (2)n )2 − 4|x (1)n |
x (2)n+1 = 1 − 2(x (2)n )2 + 2(|x (1)n | − |x (2)n |) (4.35)

In [38], it is shown that if the impact of component x (1)n is reduced, randomness
is improved. Hence, the following MTT LSC

2 map is introduced

MTT LSC
2 (x (1)n , x (2)n ) =

{
x (1)n+1 = 1 + 2(x (2)n )2 − 2|x (1)n |
x (2)n+1 = 1 − 2(x (2)n )2 + 2(|x (1)n | − |x (2)n |) (4.36)

and the injection mechanism (4.9) is used as well, but it is restricted to three phases:

⎧⎪⎨
⎪⎩
if (x (1)n+1 > 1) then subtract 2

if (x (2)n+1 < −1) then add 2

if (x (2)n+1 > 1) then subtract 2

(4.37)

This injection mechanism allows the regions containing iterates to match excel-
lently (Fig. 4.10).

The change of topology leading to MTT LSC
2 greatly improves the density of iter-

ates in the phase space (Fig. 4.11) where 109 points are plotted. The point distribution
of iterates in phase delay for the variable x (2) is quite good as well (Fig. 4.12). On
both pictures, a grid of 200 × 200 boxes is generated to use the box counting method
defined in Sect. 4.3.3. Moreover, the largest Lyapunov exponent is equal to 0.5905,
indicating a strong chaotic behavior.
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Fig. 4.10 Injection
mechanism (4.21) of the
MTT LSC

2 alternative map
(From [38])

Fig. 4.11 Approximate
density function of the
MTT LSC

2 alternative map,
on the (x (1), x (2)) plane
(from [38])

However, regarding the phase delay for the variable x (1), results are not satisfac-
tory. We have plotted in Fig. 4.13 109 iterates of MTT LSC

2 in the delay plane, and
in Fig. 4.14 the same iterates using the counting box method.

When such a great number of iterates is computed, one has to be cautious with raw
graphical methods because irregularities of the density repartition are masked due to
the huge number of plotted points. Therefore, these figures highlight the necessity
of using the tools we have defined in Sect. 4.3.3.

Nevertheless, NIST tests were used to check randomness properties of MTT LSC
2 .

Since they only require binary sequences, we generated 4 × 106 iterates whose
5 × 105 first ones were cut off. The rest of the sequence was converted to binary
form according to the IEEE-754 standard (32-bit single-precision floating point).
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Fig. 4.12 Approximate
density function of the
MTT LSC

2 alternative map,

on the (x (1)n , x (1)n+1) plane
(from [38])

Fig. 4.13 Plot of one billion
iterates of MTT LSC

2 in the
delay plane

Both variables of the generator successfully passed NIST tests, demonstrating strong
randomness and robustness against numerous statistical attacks with respect to these
tests (Figs. 4.15 and 4.16).

As said in the introduction, networks of coupled chaotic maps offer quasi-infinite
possibilities to generate parallel streams of pseudorandom numbers. For example,
in [39], the following modification of MTT LSC

2 is also studied and shows good
randomness properties

NTT LSC
2 (x (1)n , x (2)n ) =

⎧⎪⎨
⎪⎩
x (1)n+1 = 1 − 2|x (2)n | = T2(x (2)n )

x (2)n+1 = 1 − (2x (2)n )2 − 2(|x (2)n | − |x (1)n |)
= L2(x (2)n ) + T2(x (2)n ) − T2(x (1)n )

(4.38)
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Fig. 4.14 Plot of one billion iterates of MTT LSC
2 using the counting box method

Fig. 4.15 Successful results of N I ST tests for the MTT LSC
2 alternate map for the variable x (1)

(from [38])

4.4 Numerical Study of a Particular Realisation of the
Mk

µ, p Map in Higher Dimension

4.4.1 Mapping in Higher Dimension

Higher dimensional systems make it possible to achieve better randomness and
uniform point distribution, because more perturbations and nonlinear mixing are
involved. In this section, we focus on a particular realization of the Mk

µ,p map (4.10)
from dimension two to dimension five.
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Fig. 4.16 N I ST tests for the variable x (2) (from [38])

Usually, three or four dimensions are complex enough to create robust random
sequences as we show here. Thus, it is advantageous if the system can increase its
dimension. Since the MTT LSC

2 alternative map cannot be nested in higher dimen-
sions, we describe how to improve randomness and to obtain the best distribution
of points, and how to produce more complex dynamics than the T T LSC

2 (x (2), x (1))
alternative map in dimension greater than 2. Let

T T LRC,pD
2 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x (1)n+1 = 1 − 2|x (1)n | + 2(|x (2)n | − (x (1)n )2)

x (2)n+1 = 1 − 2|x (2)n | + 2(|x (3)n | − (x (2)n )2)
...

x (p)n+1 = 1 − 2|x (p)n | + 2(|x (1)n | − (x (p)n )2)

(4.39)

be this realization.
We show in Figs. 4.17 and 4.18 successful NIST tests for T T LRC,pD

2 in 3-D and
4-D, for the variable x (1).

Fig. 4.17 N I ST test for T T LRC,3D
2 for x (1) (from [38])
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Fig. 4.18 N I ST test for T T LRC,4D
2 for x (1) (from [38])

4.4.2 Numerical Experiments

All NIST tests for dimensions three to five for every variable are successful, showing
that these realizations in 3-D up to 5-D are good CPRNGs. In addition to those
tests, we study the mapping more thoroughly, far beyond the NIST tests which are
limited to a few million iterates and which seem not robust enough for industrial
mathematics, although they are routinely used worldwide.

In order to check the portability of the computations on multicore architectures,
we have implemented all our numerical experiments on several different multicore
machines.

4.4.2.1 Checking the Uniform Repartition of Iterated Points

We first compute the discrepancies E1 (in norm L1), E2 (in norm L2)n and E∞ (in
norm E∞) between PNdisc,Niter (x) and the Lebesgue measure which is the uniform
measure on the interval J = [−1, 1]. We set M = Niter = 200, and vary the number
Niter of iterated points in the range 104 to 1014. From our knowledge, this article is
the first one that checks such a huge number of iterates (in conjunction with [39]).
We compare E1,200,Niter (x

(1)) for T T LRC,pD
2 with p = 2 to 5 (Table4.2, Fig. 4.19).

As shown in Fig. 4.19, E1,200,Niter (x (1)) decreases steadily when Niter increases.
However, the decreasing process is promptly (with respect to Niter ) bounded below
for p = 2. This is also the case for other values of p, however, the boundary decreases
with p, therefore showing better randomness properties for higher dimensional map-
pings.

Table4.3 compares x (1), x (2), …,x (p) for T T LRC,5D
2 , for different values of Niter .

It is obvious that the same quality of randomness is obtained for each one of them,
contrarily to the results obtained for MTT LSC

2 .
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Table 4.2 E1,200,Niter (x
(1)) for T T LRC,pD

2 with p = 2 to 5

Niter p = 2 p = 3 p = 4 p = 5

104 1.5631 1.5553 1.5587 1.5574

105 0.55475 0.5166 0.51315 0.5154

106 0.269016 0.159306 0.158548 0.158436

107 0.224189 0.050509 0.0501934 0.0505558

108 0.219427 0.0164173 0.0159175 0.0160018

109 0.218957 0.00640196 0.00505021 0.00509754

1010 0.218912 0.00420266 0.00160505 0.00160396

1011 0.218913 0.00392507 0.000513833 0.000505591

1012 0.218913 0.00389001 0.000189371 0.000160547

1013 0.218914 0.00388778 0.000112764 5.04473e-05

1014 0.218914 0.003887 0.000101139 1.59929e-05

Fig. 4.19 Graph of E1,200,Niter (x
(1)) for T T LRC,pD

2 with p = 2 to 5, with respect to Niter (hori-
zontal axis, logarithmic value)

Table 4.3 E1,200,Niter (x
(i)) for T T LRC,5D

2 for i = 1 to 5

Niter x (1) x (2) x (3) x (4) x (5)

104 1.5574 1.55725 1.556 1.5585 1.55925

105 0.5154 0.51061 0.5098 0.51494 0.51293

106 0.158436 0.159162 0.159564 0.159864 0.159926

107 0.0505558 0.0504866 0.0503746 0.0505688 0.0505268

108 0.0160018 0.0158328 0.0158498 0.0160336 0.01591

109 0.00509754 0.0050514 0.00505756 0.00501442 0.00503467

1010 0.00160396 0.00159738 0.00160099 0.00159454 0.00159916

1011 0.000505591 0.000506327 0.000507006 0.000504258 0.000507526

1012 0.000160547 0.000159192 0.000160014 0.000159213 0.000159159

1013 5.04473e-05 5.03574e-05 5.05868e-05 5.04694e-05 5.01681e-05

1014 1.59929e-05 1.60291e-05 1.59282e-05 1.59832e-05 1.60775e-05
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Table 4.4 Comparison between E1,200,Niter (x
(1)), E2,200,Niter (x

(1)), and E∞,200,Niter (x
(1)) for

T T LRC,5D
2

Niter Norm L1 Norm L2 Norm L∞
104 1.5574 2.0038 19

105 0.5154 0.635522 3.4

106 0.158436 0.199731 0.96

107 0.0505558 0.0633486 0.256

108 0.0160018 0.02007 0.0896

109 0.00509754 0.00638219 0.02688

1010 0.00160396 0.00200966 0.008672

1011 0.000505591 0.000631963 0.0027444

1012 0.000160547 0.000201102 0.0008602

1013 5.04473e-05 6.32233e-05 0.00026894

1014 1.59929e-05 2.00533e-05 9.89792e-05

Fig. 4.20 Comparison between E1,200,Niter (x
(1)), E2,200,Niter (x

(1)), and E∞,200,Niter (x
(1)) (verti-

cal axis) for T T LRC,5D
2 with respect to Niter (horizontal axis, logarithmic value)

The comparisons between E1,200,Niter (x
(1)), E2,200,Niter (x

(1)), and E∞,Niter (x
(1)) for

T T LRC,5D
2 in Table4.4 and Fig. 4.20 show that

E1,200,Niter (x
(1)) < E2,200,Niter (x

(1)) < E∞,Niter (x
(1)) (4.40)

for every value of Niter .

4.4.2.2 Autocorrelation Study in the Delay Space

In this section, we assess autocorrelation errors EAC1,Ndisc,Niter (x, y),
EAC2,Ndisc,Niter (x, y), and EAC∞,disc,Niter (x, y), defined by Equations (4.32), (4.33),
and (4.34), in the delay space. As in Sect. 4.4.2.1, we have performed the experi-
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Table 4.5 Comparison between EAC1,200,Niter (x
(1)
n , x (1)n+1), EAC1,200,Niter (x

(1)
n , x (1)n+2), and

EAC1,200,Niter (x
(1)
n , x (1)n+3) for T T LRC,2D

2

Niter (x (1)n , x (1)n+1) (x (1)n , x (1)n+2) (x (1)n , x (1)n+3)

104 1.55955 1.57265 1.5515

105 0.55199 0.699355 0.547539

106 0.269654 0.519675 0.250936

107 0.224104 0.49941 0.198634

108 0.21938 0.497011 0.193007

109 0.218949 0.496766 0.192309

1010 0.218914 0.496808 0.192253

1011 0.218915 0.496793 0.192247

1012 0.218913 0.496797 0.192245

1013 0.218914

1014 0.218914

Table 4.6 Comparison between EAC1,200,Niter (x
(1)
n , x (1)n+1), EAC1,200,Niter (x

(1)
n , x (1)n+2), and

EAC1,200,Niter (x
(1)
n , x (1)n+3) for T T LRC,3D

2

Niter (x (1)n , x (1)n+1) (x (1)n , x (1)n+2) (x (1)n , x (1)n+3)

104 1.55575 1.5528 1.5489

105 0.51516 0.512514 0.514889

106 0.160148 0.158843 0.159728

107 0.0505148 0.0515855 0.0550998

108 0.0164343 0.0190644 0.0269715

109 0.00640451 0.0113919 0.0221408

1010 0.00420824 0.0103092 0.0216388

1011 0.003926197 0.0102078 0.0215621

1012 0.00388937 0.0101965 0.0215576

1013 0.00388768

1014 0.003887

ments for M = 20 to 20, 000, however, in this chapter, we only present the results for
M = 200. We first compare EAC1,200,Niter (x

(1)
n , x (1)n+1) with EAC1,200,Niter (x

(1)
n , x (1)n+2)

and EAC1,200,Niter (x
(1)
n , x (1)n+3) for T T LRC,pD

2 when the dimension of the system is
within the range p = 2 to 5 (Tables4.5, 4.6, 4.7 and 4.8). It is possible to see that
better randomness properties are obtained for higher dimensional mappings.

The comparison between EAC1,200,Niter (x
(1)
n , x (1)n+1), EAC2,200,Niter (x

(1)
n , x (1)n+1), and

EAC∞,200,Niter (x
(1)
n , x (1)n+1) for T T LRC,5D

2 in Table4.9 shows that numerically
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Table 4.7 Comparison between EAC1,200,Niter (x
(1)
n , x (1)n+1), EAC1,200,Niter (x

(1)
n , x (1)n+2), and

EAC1,200,Niter (x
(1)
n , x (1)n+3) for T T LRC,4D

2

Niter (x (1)n , x (1)n+1) (x (1)n , x (1)n+2) (x (1)n , x (1)n+3)

104 1.5571 1.5518 1.54985

105 0.51115 0.510784 0.511188

106 0.158472 0.159263 0.159292

107 0.0503522 0.0506053 0.0506126

108 0.0159245 0.0159484 0.015918

109 0.00502109 0.00502642 0.00502197

1010 0.00159193 0.00161135 0.00162232

1011 0.00051438 0.000532052 0.0005489

1012 0.000189418 0.000217634 0.000276982

1013 0.000112771

1014 0.000101139

Table 4.8 Comparison between EAC1,200,Niter (x
(1)
n , x (1)n+1), EAC1,200,Niter (x

(1)
n , x (1)n+2), and

EAC1,200,Niter (x
(1)
n , x (1)n+3) for T T LRC,5D

2

Niter (x (1)n , x (1)n+1) (x (1)n , x (1)n+2) (x (1)n , x (1)n+3)

104 1.5577 1.5531 1.54975

105 0.51372 0.511144 0.513918

106 0.15872 0.158775 0.158022

107 0.0503658 0.0504011 0.0501632

108 0.0159765 0.0159229 0.0159837

109 0.00509015 0.00502869 0.00503495

1010 0.00159581 0.00159398 0.00158143

1011 0.000505068 0.000506309 0.000502137

1012 0.000160547 0.000159144 0.000159246

1013 5.0394e-05

1014 1.59929e-05

EAC1,200,Niter (x
(1)
n , x (1)n+1) < EAC2,200,Niter (x

(1)
n , x (1)n+1) < EAC∞,200,Niter (x

(1)
n , x (1)n+1)

(4.41)

Equation (4.41) is not only valid for M = 200, but also for other values of M and
every component of X .

In order to illustrate the numerical results displayed in these tables, we plot in
Fig. 4.21 the repartition of iterates of T T LRC,5D

2 in the delay plane (x (1)n , x (1)n+1),
using the box counting method. On a grid of 200 × 200 boxes (Niter = M = 200),
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Table 4.9 Comparison between EAC1,200,Niter (x
(1)
n , x (1)n+1), EAC2,200,Niter (x

(1)
n , x (1)n+1), and

EAC∞,200,Niter (x
(1)
n , x (1)n+1) for T T LRC,5D

2

Niter Norm L1 Norm L2 Norm L∞
104 1.5577 2.0012 19

105 0.51372 0.633959 3.8

106 0.15872 0.199793 0.88

107 0.0503658 0.0631425 0.26

108 0.0159765 0.0200503 0.084

109 0.00509015 0.00636626 0.02528

1010 0.00159581 0.00199936 0.008604

1011 0.000505068 0.000633088 0.0025432

1012 0.000160547 0.000201102 0.0008602

1013 5.0394e-05 6.31756e-05 0.000280168

1014 1.59929e-05 2.00533e-05 9.89792e-05

Fig. 4.21 Repartition of iterates in the delay plane (x (1)n , x (1)n+1) of T T LRC,5D
2 with the box counting

method; 106 points are generated on a grid of 200 × 200 boxes, the horizontal axis is x (1)n , and the
vertical axis is x (1)n+1

we have generated 106 points. The horizontal axis is x (1)n , and the vertical axis is
x (1)n+1. In order to check very carefully the repartition of the iterates of T T LRC,5D

2 ,

we have also plotted the repartition in the delay planes (x (1)n , x (1)n+2), (x
(1)
n , x (1)n+3), and

(x (1)n , x (1)n+4) (Figs. 4.22, 4.23, and 4.24). This repartition is uniform everywhere as
shown also in Table4.8.

We find the same regularity for every component x (2), x (3), x (4), and x (5), as shown
in Figs. 4.25, 4.26, 4.27, 4.28, and in Table4.10.
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Fig. 4.22 Repartition of
iterates in the delay plane
(x (1)n , x (1)n+2) of T T LRC,5D

2 ,
as in Fig. 4.21

Fig. 4.23 Repartition of
iterates in the delay plane
(x (1)n , x (1)n+3) of T T LRC,5D

2 ,
as in Fig. 4.21

4.4.2.3 Autocorrelation Study in the Phase Space

Finally, in this section, we assess the autocorrelation errors EC1,Ndisc,Niter (x, y),
EC2,Ndisc,Niter (x, y), and EC∞,Ndisc,Niter (x, y), defined byEqs. (4.32), (4.33), and (4.34),
in the phase space. We checked all combinations of the components. Due to
space limitations, we only provide part of the numerical computations we have
performed to carefully check the randomness of T T LRC,pD

2 for p = 2, 5 and
i = 1, p. Like in the previous section, we only provide the results for M = 200. We
first compare EC1,200,Niter (x

(1)
n , x (2)n ), EC2,200,Niter (x

(1)
n , x (2)n ), and EC∞,200,Niter (x

(1)
n ,

x (2)n ) (Table4.11), and our other results verified that
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Fig. 4.24 Repartition of
iterates in the delay plane
(x (1)n , x (1)n+4) of T T LRC,5D

2 ,
as in Fig. 4.21

Fig. 4.25 Repartition of
iterates in the delay plane
(x (2)n , x (2)n+1) of T T LRC,5D

2 ;
box counting method, 106

points are generated on a
grid of 200 × 200 boxes, the
horizontal axis is x (2)n , and
the vertical axis is x (2)n+1

EC1,Ndisc,Niter (x
(1)
n , x (2)n ) < EC2,Ndisc,Niter (x

(1)
n , x (2)n ) < EC∞,Ndisc,Niter (x

(1)
n , x (2)n )

(4.42)

We have also assessed the autocorrelation errors EC1,Ndisc,Niter (x
(i)
n , x ( j)n ) for i, j =

1, 5, i �= j , and various values of the number of iterates for T T LRC,5D
2 (Table4.12).

We have performed the same experiments for EC1,Ndisc,Niter (x
(1)
n , x (2)n ) for p = 1, 5

(Table4.13).
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Fig. 4.26 Repartition of
iterates in the delay plane
(x (3)n , x (3)n+1) of T T LRC,5D

2 ,
as in Fig. 4.25

Fig. 4.27 Repartition of
iterates in the delay plane
(x (4)n , x (4)n+1) of T T LRC,5D

2 ,
as in Fig. 4.25

Our numerical experiments all show a similar trend: T T LRC,pD
2 is a good candi-

date for a CPRNG, and the randomness performance of such mappings increases in
higher dimensions.

4.4.2.4 Checking the Influence of Discretization in Computation
of Approximated Invariant Measures

In order to verify that the computations we have performed using the discretization
M = Ndisc = 200 of the phase space and the delay space in the numerical experi-
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Fig. 4.28 Repartition of
iterates in the delay plane
(x (5)n , x (5)n+1) of T T LRC,5D

2 ,
as in Fig. 4.25

Table 4.10 Comparison between EAC1,200,Niter (x
(i)
n , x (i)n+1), EAC1,200,Niter (x

(i)
n , x (i)n+2), and

EAC1,200,Niter (x
(i)
n , x (i)n+3) for T T LRC,5D

2 for i = 1 to 5

Niter i (x (i)n , x (i)n+1) (x (i)n , x (i)n+2) (x (i)n , x (i)n+3)

104 1 1.5577 1.5531 1.54975

2 1.5577 1.5526 1.5508

3 1.5577 1.5542 1.54445

4 1.5577 1.5533 1.5468

5 1.5577 1.5541 1.5504

108 1 0.0159765 0.0159229 0.0159837

2 0.0159765 0.0159999 0.0158293

3 0.0159765 0.0159047 0.0159605

4 0.0159765 0.0159269 0.0159282

5 0.0159765 0.0160591 0.0159274

1012 1 0.000160547 0.000159144 0.000159246

2 0.000159192 0.000159635 0.000159064

3 0.000160014 0.00015892 0.000160555

4 0.000159213 0.000159696 0.000159215

5 0.000159159 0.000158831 0.000160007

ments do not introduce artifacts, we have performed the same computations varying
also the value of M = Ndisc = 20, 200, 2000, 20000, for T T LRC,4D

2 (Table4.14 and
Fig. 4.29). The results show a normal regularity following the increasing value of
Ndisc.
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Table 4.11 Comparison between EAC1,200,Niter (x
(1)
n , x (2)n ), EAC2,200,Niter (x

(1)
n , x (2)n ), and

EAC∞,200,Niter (x
(1)
n , x (2)n ) for T T LRC,5D

2

Niter Norm L1 Norm L2 Norm L∞
104 1.55915 2.00818 15

105 0.514 0.633448 3.4

106 0.158058 0.198943 0.96

107 0.0505508 0.0634574 0.308

108 0.0160114 0.0200538 0.0852

109 0. 00507915 0.0063595 0.02716

1010 0.0015927 0.00199644 0.008128

1011 0.000506086 0.000633916 0.0025712

1012 0.000158795 0.000199203 0.00089288

1013 5.03666e-05 6.30356e-05 0.000270156

1014 1.60489e-05 2.00692e-05 8.53124e-05

Table 4.12 Comparison between EC1,200,Niter (x
(i)
n , x ( j)n ), for i, j = 1 to 5, i �= j , and for various

values of number of iterates for T T LRC,5D
2

Niter 106 108 1010 1012 1014

x(1), x(2) 0.158058 0.0160114 0.0015927 0.000158795 1.60489e-05

x(1), x(3) 0.158956 0.0159261 0.00159456 0.000159326 1.73852e-05

x(1), x(4) 0.15943 0.0160321 0.00160091 0.000160038 1.74599e-05

x(1), x(5) 0.159074 0.0158962 0.00160204 0.000159048 1.59133e-05

x(2), x(3) 0.15825 0.0159754 0.00159442 0.000160659 1.60419e-05

x(2), x(4) 0.159248 0.0159668 0.00159961 0.000160313 1.73507e-05

x(2), x(5) 0.15889 0.0160116 0.0015934 0.000160462 1.73496e-05

x(3), x(4) 0.159136 0.0158826 0.00158123 0.000158758 1.59451e-05

x(3), x(5) 0.159216 0.0159341 0.00161268 0.000159079 1.75013e-05

x(4), x(5) 0.158918 0.0160516 0.0016008 0.000159907 1.59445e-05

4.4.2.5 Computation Time of PRNs

The numerical experiments performed in this section have involved several multicore
machines. We show in Table4.15 different computation times (in seconds) for the
generation of Niter PRNs for T T LRC,pD

2 with p = 2 to 5, and various values of the
number of iterates (Niter ). The machine used is a laptop computer with a Core i7
4980HQ processor with eight logical cores.

Table4.16 shows the computation time of only one PRN in the same experiment.
Time is expressed in 10−10 s.
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Table 4.13 Comparison between EC1,200,Niter (x
(i)
n , x ( j)n ), for T T LRC,pD

2 for p = 2, . . . , 5, and
various values of the number of iterates

Niter p = 2 p = 3 p = 4 p = 5

104 1.5624 1.5568 1.55725 1.55915

105 0.57955 0.5163 0.51083 0.514

106 0.330084 0.160282 0.158256 0.158058

107 0.294918 0.0509584 0.0504002 0.0505508

108 0.291428 0.0176344 0.0157924 0.0160114

109 0.291012 0.00911485 0.00506758 0.00507915

1010 0.291025 0.00783204 0.00159046 0.0015927

1011 0.291033 0.00771201 0.000521561 0.000506086

1012 0.291036 0.00769998 0.000209109 0.000158795

1013 0.00769867 0.000150031 5.03666e-05

1014 0.00769874 0.000144162 1.60489e-05

Table 4.14 Comparison between EC1,Ndisc,Niter (x
(1)
n , x (2)n ),for T T LRC,4D

2 M = Ndisc =
20, 200, 2000, 20000, and various values of the number of iterates

Niter Ndisc = 20 Ndisc = 200 Ndisc = 2000 Ndisc = 20000

104 0.1508 1.55725 1.99501 1.99995

105 0.04894 0.51083 1.95066 1.9995

106 0.015544 0.158256 1.55759 1.99501

107 0.005487 0.0504002 0.512542 1.95062

108 0.00159524 0.0157924 0.158971 1.55763

109 0.000517392 0.00506758 0.0504555 0.513028

1010 0.000205706 0.00159046 0.0159528 0.159054

1011 0.000147202 0.000521561 0.0050481 0.0504422

1012 0.000209109

1013 0.000150031

1014 0.000144162

Fig. 4.29 Comparison
between EC1,Ndisc,Niter

(x (1)n , y(2)n ), for T T LRC,4D
2 ,

M = Ndisc = 20, 200, 2000,
20, 000, and various values
of the number of iterates
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Table 4.15 Comparison of computation times (in second) for the generation of Niter PRNs for
T T LRC,pD

2 with p = 2 to 5, and various values of Niter iterates

Niter p = 2 p = 3 p = 4 p = 5

104 0.000146 0.000216 0.000161 0.000142

105 0.000216 0.000277 0.000262 0.000339

106 0.001176 0.002403 0.001681 0.002467

107 0.011006 0.016195 0.018968 0.022351

108 0.113093 0.161776 0.166701 0.227638

109 1.09998 1.58949 1.60441 2.29003

1010 11.4901 18.0142 18.537 26.1946

1011 123.765 183.563 185.449 257.244

Table 4.16 Comparison of computation times (in 10−10 s) for the generation of only one PRN for
T T LRC,pD

2 with p = 2 to 5, and various values of the number of iterates

Niter p = 2 p = 3 p = 4 p = 5

104 73.0 72.0 40.25 28.4

105 10.8 9.233 6.55 6.78

106 5.88 8.01 4.2025 4.934

107 5.503 5.39833 4.742 4.702

108 5.65465 4.0444 4.16753 4.55276

109 5.4999 5.2983 4.01103 4.58006

1010 5.74505 4.50335 4.63425 5.23892

1011 6.18825 6.11877 4.63622 5.14488

These results show that the pace of computation is very high. When T T LRC,5D
2

is the mapping tested, and the machine used is a laptop computer with a Core i7
4980HQ processor with 8 logical cores, computing 1011 iterates with five parallel
streams of PRNs leads to around 2 billion PRNs being produced per second. Since
these PRNs are computed in the standard double precision format, it is possible to
extract from each 50 random bits (the size of the mantissa being 52 bits for a double
precision floating-point number in standard IEEE-754). Therefore, T T LRC,5D

2 can
produce 100 billion random bits per second, an incredible pace!With a machine with
4 Intel Xeon E7–4870 processors having a total of 80 logical cores, the computation
is twice as fast, producing 2 × 1011 random bits per second.
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4.5 Conclusion

In this chapter, we thoroughly explored the novel idea of combining features of
a tent map (Tµ) and a logistic map (Lµ) to produce a new map with improved
properties, through combination in several network topologies. This ideawas recently
introduced [38, 39] in order to improve previous CPRNGs.We have summarized the
previously explored topologies in dimension two. We have presented new results of
numerical experiments in higher dimensions (up to five) for the mapping T T LRC,pD

2

on multicore machines and shown that T T LRC,5D
2 is a very good CPRNGwhich is fit

for industrial applications. The pace of generation of random bits can be incredibly
high (up to 200 billion random bits per second).
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Challenges in Optimal Control Problems
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of Pipes and Canals: From Modeling
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Abstract We consider optimal control problems for the flow of gas or fresh
water in pipe networks as well as drainage or sewer systems in open canals. The
equations of motion are taken to be represented by the nonlinear isothermal Euler
gas equations, the water hammer equations, or the St. Venant equations for flow.
We formulate model hierarchies and derive an abstract model for such network flow
problems including pipes, junctions, and controllable elements such as valves, weirs,
pumps, as well as compressors. We use the abstract model to give an overview of the
known results and challenges concerning equilibria, well-posedness, controllability,
and optimal control. A major challenge concerning the optimization is to deal with
switching on–off states that are inherent to controllable devices in such applications
combinedwith continuous simulation and optimization of the gas flow.We formulate
the corresponding mixed-integer nonlinear optimal control problems and outline a
decomposition approach as a solution technique.
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5.1 Introduction

The optimization and control of networked transport systems are becoming an
increasingly important branch of industrial applied mathematics. In particular, gas
flow in pipe networks including providers, customers, valves, compressor stations,
and the like provides a grand challengewith respect to customer satisfaction, low-cost
operation of the network, legal restrictions, pressure and flow restrictions, sensitiv-
ities with respect to temperature, and market conditions. Given the fact that pipe
systems involve easily thousands of pipes, valves, and a number of compressor sta-
tions, which, in turn, are whole factories all by themselves, turns the overall problem
into a multiscale problem in time and space.

While the physical quantities are typically viewed as continuous entities, deci-
sions are not. The decisions of switching a compressor on or closing a valve are
0–1 processes. On the other hand, having switched on a compressor based on some
decision-enhancing argument, the compressor as physical entity is controlled by a
continuous profile ranging from the idle state to the desired state. Similarly, the oper-
ation of valves, release elements, or tanks for fresh water or sewage water systems is
again a combination of discrete or integer controls and continuous controls. Pressur-
ized flow problems appear also in hot steam pipes in power plants, where in addition
to the transportation problem nonlinear fluid-structure interactions and a variety of
design problems are important.

What has been said so far exactly applies to other transportation systems in civil
engineering, such as in fresh water pressure-flow pipe networks as well as sewer
systems with the free surface flow in open or closed canals that, in turn, may switch
to pressurized flow under severe weather conditions. Again, opening a weir or a
sluice gate in the possibly polluted waste water networks or river regulatory sys-
tems as well as operating valves, tanks, purification plants, or pumps in fresh water
systems involves discrete and continuous optimization variables and cost or merit
functions to be optimized. In conclusion, one ends upwith a vastly complex, discrete-
continuous multilevel, and multicriteria optimization problem involving systems of
time-dependent partial differential equations, ordinary differential equations, as well
as algebraic equality and inequality constraints for the governing state variables
as well as control constraints. On top of that, the problem formulations are typi-
cally inexact, as parameters (e.g., wall roughness and other material properties) are
unknown or uncertain. Knowledge about initial and equilibrium conditions are lack-
ing as well. This indicates that data plays a predominant role in the applicability of
the mathematical methods. Finally, all what is done in controlling, operating, and
planning of such a complex system should be done in real time or for a large num-
ber of instances, respectively. An example for the different aspects to tackle such a
problem is given in [51], where these aspects are discussed for gas networks.

It is obvious that amathematical programcannot copewith all these difficulties and
challenges. Nevertheless, it is also obvious that the mathematics community should
be aware of these challenges and particular of those leading to new and interesting
mathematics. The particular instant that the Indian Society of Industrial Applied



5 Challenges in Optimal Control Problems for Gas … 79

Fig. 5.1 A gas compressor

Fig. 5.2 A real-world gas network of Germany’s largest gas transport company Open Grid Europe
GmbH. Lines correspond to pipes or active elements like compressors as given in Fig. 5.1. Connec-
tion points of these lines correspond to simple junctions or entry as well as exit customers
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Mathematics (ISIAM)held an internationalworkshopat ShardaUniversity in January
2016 and is now committed to publishing a thematic volume regarding industrial
appliedmathematics is an opportunity to provide a survey article on problems that are
grand challenges both for the Indian society and the Indianmathematical community.
The authors sincerely hope that this article provides somehints and stipulationswhere
to concentrate future research resources.

The article is organized as follows: In Sect. 5.2, we first embark on the modeling
of gas flow. We start with a rather general system of equations and then derive a hier-
archy of simpler models until we arrive at algebraic relations for which even explicit
formulae are known. We then provide a network modeling for the corresponding
systems of equations, where we introduce boundary conditions at so-called sim-
ple nodes (inflow and outflow nodes) and transmission conditions at interior nodes,
where either pipesmeet or valves, compressors, and the like are coupled to pipes. The
node conditions involve discrete and continuous control variables. The same program
is then pursued for fresh and waste water systems. It becomes obvious that all the
systems can be put into a common abstract framework, namely systems of switching
nonlinear hyperbolic balance laws on metric graphs. Clearly, such hybrid formula-
tions are non-standard from the point of view of dynamical systems (PDEs, ODEs,
Integro-PDEs, etc.). We then discuss some system-theoretical results in Sect. 5.3 that
are needed for optimal control by discussing the existence of equilibria, lineariza-
tions around such an equilibrium, Riemann invariants, and discretization techniques.
The topic of the final Sect. 5.4 is then how to apply these results and techniques to
optimal control problems. Here, we also show computational results on problems
from real-world applications. We provide, in a sense, a road-map from modeling to
optimal control, where in addition to the dynamical system, side constraints for the
states and the controls have to be satisfied throughout the operation. At each step,
we pose open questions and refer to known results.

5.2 Modeling of Flow in Pipes and Open Canals

In this section, we introduce three example problems and their common general-
ization. For every problem, we first state the model for a single pipe or canal and
then introduce a network model that also contains active, i.e., controllable, elements.
Apart from this common structure, we emphasize different aspects of the models
in our examples. For instance, the gas network example contains a discussion of a
fine-grained model hierarchy, whereas the sewage example contains a derivation of
the model equations.

Before we start with the different examples, we fix some notation common to all
models. We consider networked systems that we commonly model by a metric graph
G = (N , E) with nodes N = {n1, n2, . . . , n|N |} and edges E = {e1, e2, . . . , e|E |}.
Each edge ei represents a pipe or canal as a one-dimensional object of normalized
length 1, and we therefore associate to each edge an interval [0, 1]. Moreover, we
associate with each edge a direction pointing from x = 0 to x = 1. For what follows,
we introduce the edge-node-incidence matrix D ∈ Z

|E |×|N | with entries
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di j =

⎧
⎪⎨

⎪⎩

−1, if node n j is the left node of the edge ei ,

+1, if node n j is the right node of the edge ei ,

0, else.

The set of edges that are connected to a node j is denoted byI j := {i = 1, . . . , |E | :
di j �= 0} and the set of in- and outgoing edges are given byI +

j := {i ∈ I j : di j = 1}
and I −

j := {i ∈ I j : di j = −1}. Finally, for each node we introduce the edge
degree d j := |I j |.

We subdivide the set of nodes further, depending on their role in the network. To
this end, we introduce three sets of node indices:

• the set Jα corresponds to nodes that are active, i.e., controllable, e.g., valves,
compressors, and pumps;

• the set Jβ corresponds to boundary nodes at which gas or water enters or exits
the system; and

• the set Jπ corresponds to nodes that are passive in the sense that they do not
belong to one of the sets above. We call such nodes also junctions.

The set Jα will typically be subdivided further depending on the discussed model.
For nodes n j with j ∈ Jα , we assume that d j = 2 with one incoming edge with
index i ∈ I +

j and one outgoing edge with index k ∈ I −
j . For all other node types,

we make no assumptions on their edge degree. We setJ = Jα ∪ Jβ ∪ Jπ .

5.2.1 Gas Flow

In this section, we describe the modeling of gas flow. We start by presenting a
hierarchy of models for a single pipe in Sect. 5.2.1.1 and afterward discuss a model
for an entire network with valves and compressors in Sect. 5.2.1.2.

5.2.1.1 A Single Pipe

The Euler equations for the flow of gas are given by a system of nonlinear hyperbolic
partial differential equations (PDEs), which represent the motion of a compressible
non-viscous fluid or a gas. They consist of the continuity equation, the balance of
moments, and the energy equation. The full set of equations is given by (see, e.g.,
[10, 57, 58, 70])

∂tρ + ∂x (ρv) = 0,

∂t (ρv) + ∂x (p + ρv2) = − λ

2D
ρv |v| − gρh′,

∂t

(

ρ(
1

2
v2 + e)

)

+ ∂x

(

ρv(
1

2
v2 + e) + pv

)

= −kw
D

(T − Tw) .

(5.1)
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Here, ρ denotes the density, v the velocity of the gas, T its temperature, and p the
pressure. We further denote with g the gravitational constant, with h′ = h′(x) the
slope of the pipe, with λ the friction coefficient of the pipe, with D the diameter,
with kw the heat coefficient, with Tw = Tw(x) the temperature of the wall, and the
variable e = cvT + gh denotes the internal energy, where cv is the specific heat.
The conserved, respectively balanced, quantities of the system are the flux q = aρv
(where a is the cross-sectional area of the pipe), the density ρ, and the total energy
E = ρ(1/2v2 + e). In addition to the Eq. (5.1) we use the constitutive law for a real
gas

p = RsρT z(p, T ),

where z = z(p, T ) is the real gas, or compressibility, factor and Rs is the specific
gas constant. Note that z = 1 holds for an ideal gas. The Eq. (5.1) allow for three
characteristics corresponding to the eigenvalues of the Jacobi matrix of the flux
function that are given by

λ1 = v − c, λ2 = v, λ3 = v + c,

where c is the speed of sound, i.e., c2 = ∂ρ p (for constant entropy). For a natural gas,
this is approximately 340ms−1.While the first and third characteristics are genuinely
nonlinear, the second is linear degenerate. For the linear degenerate contact discon-
tinuities evolve. We consider pipes of finite length � and by a reparameterization
x �→ x� we may assume having (5.1) for x ∈ (0, 1). The characteristics determine
the direction and velocity of acoustic waves inducing the gas flow in the pipe and,
hence, the number of boundary conditions that have to be imposed at the ends of
the pipe. In particular, in the subsonic case (|v| < c) that we consider in the sequel
and with positive flow direction of the gas, the first two characteristics are oriented
such that the first is right and the second is left going. In this case, two boundary
conditions have to be imposed on the left and one at the right end of the pipe.

We consider here the isothermal case only but note, however, that the temperature
may have a significant effect: Long pipes may develop large temperature gradients
depending on the weather conditions. In the isothermal case (T ≡ const), the energy
equation becomes obsolete. Thus, we obtain

∂tρ + ∂x (ρv) = 0,

∂t (ρv) + ∂x (p + ρv2) = − λ

2D
ρv |v| − gρh′.

(5.2)

In this case, there are two characteristics λ1 = v − c and λ2 = v + c such that in the
common subsonic case we have one in- and one outgoing characteristic, and, hence,
one boundary condition at each boundary point. In the particular case z(p) ≡ const,
we obtain a constant speed of sound c = √

p/ρ.
It is often more convenient to express the state variables in a different way. In

particular, often the flux q and the pressure p in a pipe are used. Here we have
q = aρv and p = c2ρ. With this, we can rewrite System (5.2) as follows:
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∂t p + c2

a
∂xq = 0,

∂t q + ∂x

(

ap + c2

a

q2

p

)

= − λc2

2Da

q |q|
p

− ga

c2
h′ p.

(5.3)

We now write this system in terms of vectors. To this end, we define

y :=
(
p
q

)

, F(y) :=
(

c2

a q

ap + c2

a
q2

p

)

, S(y; x) :=
(

0
− λc2

2Da
q|q|
p − ga

c2 h
′ p

)

. (5.4)

Then, System (5.3) can be rewritten as a first-order system of nonlinear hyperbolic
balance equations

∂t y + ∂x F(y) = S(y; x).

For small velocities |v| 
 c, we arrive at the semilinear model

∂t p + c2

a
∂xq = 0,

∂t q + a∂x p = − λc2

2Da

q |q|
p

− ga

c2
h′ p.

(5.5)

This model exhibits the simple characteristics λ1 = −c and λ2 = c. If in addition
∂t q is small, one obtains the quasi-stationary (friction dominated) model, see [10],

∂t p + c2

a
∂xq = 0,

a∂x p = − λc2

2Da

q |q|
p

− ga

c2
h′ p.

(5.6)

Finally, when considering the stationary case, all derivatives with respect to time
vanish and we obtain

c2

a
∂xq = 0,

a∂x p = − λc2

2Da

q |q|
p

− ga

c2
h′ p.

(5.7)

With constant compressibility factor z ≡ const and by further neglecting the gravity
term, we get that flux q is constant (hence, determined by the boundary data) and
the remaining momentum equation turns into the algebraic model

pout =
√

p2in − λc2�

Da2
q |q|, (5.8)



84 F.M. Hante et al.

where pout and pin are the pressure at the end and the inlet of the pipe, respectively.
The algebraic model (5.8) is discussed, e.g., in [67] and in chapter [26] of the recent
book [51].

Remark 5.1 In view of the vectorial notation (5.4), we may embed the hierarchy of
models (5.3), (5.5), (5.6), and (5.7) into one format. For this, it is only necessary to
introduce

M1 :=
(
1 0
0 1

)

, F1(y) :=
(

c2

a q

ap + c2

a
q2

p

)

,

M2 :=
(
1 0
0 1

)

, F2(y) :=
(

c2

a q
ap

)

,

M3 :=
(
1 0
0 0

)

, F3(y) :=
(

c2

a q
ap

)

,

M4 :=
(
0 0
0 0

)

, F4(y) :=
(

c2

a q
ap

)

.

(5.9)

Then, we can write

M j∂t y + ∂x F
j (y) = S(y; x), j = 1, 2, 3, 4.

The above hierarchy and even further intermediate models can also be obtained from
asymptotic analysis; see [10].

5.2.1.2 Networks with Pipes, Valves, and Compressors

In order to formulate a complete model for an entire network on a finite time horizon,
we have to specify some continuity conditions. First, the pressure variables pi (n j )

coincide for all incident edges i ∈ I j . We express these transmission conditions at
all passive nodes by imposing

pi (n j , t) = pk(n j , t), j ∈ Jπ , i, k ∈ I j , t ∈ (0, T ).

The nodal balance equation for the fluxes can be written as the classical Kirchhoff-
type condition at non-boundary nodes:

∑

i∈I j

di j qi (n j , t) = 0, j ∈ J \ Jβ.

We now turn to the active, i.e., controllable, nodes j ∈ Jα . These model com-
pressors (Jc) and valves (Jv). Themain problem in gas flow is the inherent pressure
drop due to friction at the interior pipe surface. This significant pressure drop neces-
sitates compressor stations within the network. Clearly, such compressor stations are
costly and expensive to operate. Therefore, typically only few such stations appear
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in the given network. For example, the German gas network contains about 70 such
stations with a power of approximately 2400MW. The pressure at the outlet of such
a station can be up to over 100 bar. The description of compressors is typically estab-
lished via characteristic diagrams based on measured specific changes in adiabatic
enthalpy Had of the compression process. This quantity depends on the pressure and
the temperature and is given by

Had = z(pL , TL)TL Rs
κ

κ − 1

((
pR
pL

) κ−1
κ

− 1

)

,

where the isentropic exponent κ is itself pressure and temperature dependent, but is
often taken to be a compressor specific constant, e.g., κ = 1.29. Here, TL denotes
the temperature at the inlet of the compressor. Accordingly, pL and pR denote the
pressures at the inlet and outlet of the compressor. After introducing a switching
variable scj (t) ∈ {0, 1} and the shorthand notation κ̄(qk) = sign(qk(n j , t))(κ − 1)/κ ,
we obtain a model for a compressor node with index j ∈ Jc for all t ∈ (0, T ):

0 = scj (t)

[

u j − C |qk(n j , t)|
((

pk(n j , t)

pi (n j , t)

)κ̄(qk )

− 1

)]

+ (1 − scj (t))
[
pi (n j , t) − pk(n j , t)

]
.

For valves, the model is considerably simpler. With the switching variable scj (t) ∈
{0, 1}, the model for a valve node with index j ∈ Jv for all t ∈ (0, T ) reads

svj (t)
(
pi (n j , t) − pk(n j , t)

)+ (1 − svj (t))qi (n j , t) = 0.

In total, we arrive at the following system given in Model 1.

5.2.2 Fresh Water Systems

In this section, we describe the modeling of fresh water flow. We again derive a
hierarchy of models for a single pipe in Sect. 5.2.2.1 and afterward discuss a model
for an entire network with valves and pumps in Sect. 5.2.2.2.

5.2.2.1 A Single Pipe

In order to obtain a model hierarchy for pressurized pipe flow of water similar to the
onewe have seen for gas flowwe consider the fundamental equations of conservation
of mass and conservation of momentum for incompressible flow
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∂t (ρa) + ∂x (ρua) = 0,

∂t (ρua) + ∂x (ρau
2) + a∂x p = −gaρ

(
d

dx
z + λ

2gD
u|u|

)

,

where ρ is the density, u is the fluid velocity, and p is the pressure. Here, a is the
cross-sectional area of the pipe, D its diameter, and z its elevation above a reference
level. One introduces the piezometric height h(t, x) = z(x) + p(t, x)/(gρ0), where
ρ0 is the density of water in free surface flow at reference level, the flux q = ua and
one assumes c2 = ∂ρ p, where c is the speed of sound in fresh water at normalized
conditions. With these variables, we can verify for ρ = ρ0 that

∂t h = − c2

gρ0a
∂xq,

a∂x p = gaρ0∂x (h − z).

Thus, we arrive at

∂t h + c2

ga
∂xq = 0,

∂t q + 1

a
∂xq

2 + ga∂xh = − λ

2aD
|q|q.

(5.10)

For a pipe of finite length � we may again employ a reparameterization x �→ x�,
having (5.10) for x ∈ (0, 1). Moreover, we may again introduce a vectorial notation
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y :=
(
h
q

)

, F(y) :=
(

c2

ga q
1
a q

2 + gah

)

, S(y; x) :=
(

0
− λ

2aD q |q|
)

.

Then (5.10) can be rewritten as a first-order system of nonlinear hyperbolic balance
equations

∂t y + ∂x F(y) = S(y; x).

As in the case of gas flow, one may deduce a number of simplifications and
obtain a hierarchy of models. First, we may neglect the nonlinear term 1

a ∂xq
2 in the

momentum equation in order to arrive at a semilinear model called water hammer
equations [1], i.e.,

∂t h + c2

ga
∂xq = 0,

∂t q + ga∂xh = − λ

2aD
|q|q.

(5.11)

We may also neglect the temporal dynamics in the second equation to end up with
the quasi-stationary model

∂t h + c2

ga
∂xq = 0,

ga∂xh = − λ

2aD
|q|q.

(5.12)

In the stationary case, we have

c2

ga
∂xq = 0,

ga∂xh = − λ

2aD
|q|q.

(5.13)

As this implies q = q0 = const, we have the formula

hin − hout = λL

2ga2D
q0|q0|.

Remark 5.2 As we did for the gas case, we also embed the hierarchy of models
(5.10)–(5.13) into one format. With M1, . . . , M4 as in (5.9) and

F1(y) :=
(

c2

ga q
1
a q

2 + gah

)

, F2(y) := F3(y) := F4(y) :=
(

c2

ga q
gah

)

we can write
M j∂t y + ∂x F

j (y) = S(y; x), j = 1, 2, 3, 4.
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5.2.2.2 Pipe Networks

On a finite time horizon (0, T ), let us consider a fresh water pipeline system includ-
ing valves and pumps. The pressure increase of a pump expressed in terms of the
piezometric height Δh = hR − hL for given flow q and piezometric heights hL and
hR corresponding to the pressure at the inlet and outlet can be described by

Δh = u2
(
α − β

(q

u

)γ)
,

where pump-dependent α > 0 is the maximal pressure increase, γ and β are effi-
ciency parameters, and u is the relative speed subject to our control [63]. Valves are
modeled in a straightforward sense similarly to the gas case. Thus, letting Jv and Jp
denote the set of node indices corresponding to valves and compressors, respectively,
we obtain the network model given in Model 2.

5.2.3 Modeling Sewage Flow

The third type of models concerns the flow of water in open canals and, in particular,
in networks of such canals. The latter are often considered as sewer systems. More
precisely, sewage flow is modeled as a wave of shallow water running through a
long, slender, and prismatic canal. While the shape of the canal profile is often of
minor theoretical interest, we have to deal with nontrivial canal shapes in practical
applications and, therefore, we describe a canal and its properties in a more general
setting.
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5.2.3.1 A Single Canal

To model a single canal we may again choose a one-dimensional model because a
canal is long and relatively thin (small aspect ratio) and the flow changes significantly
only along the flow direction of the canal. The floor of the canal is elevated by a
(assumed smooth) floor function z0 and the shape profile of the canal is characterized
by the canal width function w(h), describing the width of the canal in dependence of
the filling height, and is assumed to fulfill the following well-shapedness property:
Namely, the canal width function w(h) is called well-shaped if there exists εwmin and
εwmax both in R+ with εwmax > εwmin > 0 and w(h) ∈ C 1(R+; [εwmin, ε

w
max]). We now

focus on sewage flowing through a well-shaped canal X ⊂ R. The motion of the
liquid is observed over a time interval Θ ⊂ R+ and can be described by physical
quantities, which we call primary variables: These variables consist of the water
height h and the velocity along the canal V . In the case of pollution, the primary
variables are completed by the vectorρ ∈ Rr representing concentrations of chemical
solutes transported by the sewage. We have to remark that ρ(t, x) ∈ (R+

0 )r for all
(t, x) ∈ Θ × X would be a reasonable restriction, as negative concentrations have
no physical meaning. Nevertheless, this restriction is not required for the correctness
of the mathematical derivations and is therefore neglected. Based on these primary
variables and the canal width functionw(h), we introduce some additional, so-called
secondary variables, consisting of the wetted cross-sectional area of the sewage
A(t, x), the flow rate of the sewage Q(t, x), and, in case of pollution, the vector
of r amounts of substances R(t, x) is used to describe the mass of pollution in a
cross-sectional area. These are defined as

A(t, x) :=
∫ h(t,x)

0
w(z) dz,

Q(t, x) := V (t, x)
∫ h(t,x)

0
w(z) dz,

R(t, x) := ρ(t, x)
∫ h(t,x)

0
w(z) dz.

We use the vector notation in order to distinguish explicitly from the scalar case.
In order to derive the physical balance laws describing the dynamics of the flow
variables, we introduce a small but arbitrary part of the time-space domain, which
is called control volume and is defined as Θc × Xc := (t0, t1) × (x0, x1) ⊂ Θ × X.

We can now state the system in terms of the variables (A, Q,R) instead of (h, V, ρ).
Indeed, by A = ∫ h

0 w(z) dz we can interpret A = A(h) and ∂h A(h) = w(h). Our
assumption that the canal is well-shaped then implies that A(h) is bijective. We have

h′(A) = 1

w(h(A))
, h(A) =

∫ A

0

1

w(h(a))
da.
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The inversion of the other variables provides

V (A, Q) = Q

A
, ρ(A,R) = 1

A
R.

We use this to define the hydrostatic pressure function η as a function of A,

η(A) := g
∫ h(A)

0
(h(A) − z)w(z) dz,

and its derivative is given by

η′(A) = gAh′(A) = gA

w(h(A))
> 0, A ∈ R+,

where g is, as before, the acceleration due to gravity. Let us now assume that the
quantities A, Q, andR are continuously differentiable functions with respect to time
and space. We arrive at the mass balance equation in integral form

∫

Θc

∫

Xc

∂t A(t, x) + ∂x Q(t, x) dx dt =
∫

Θc

∫

Xc

sM(t, x) dx dt, (5.14)

where sM(t, x) is a lateral in- or outflow along the canal. Similarly, the momentum
balance is equivalent to

∫

Θc

∫

Xc

∂t Q(t, x) + ∂x

(Q2(t, x)

A(t, x)
+ η(A(t, x))

)
dx dt

=
∫

Θc

∫

Xc

sP(A(t, x), Q(t, x), x) dx dt,

where sP(A, Q, x) is the friction term. Moreover, in case of pollution, the corre-
sponding balance reads as

∫

Θc

∫

Xc

∂tR(t, x) + ∂x
Q(t, x)

A(t, x)
R(t, x) dx dt =

∫

Θc

∫

Xc

sS(R(t, x), t, x) dx dt.

(5.15)

As Θc × Xc is chosen arbitrarily, we can conclude that Eqs. (5.14) and (5.15) must
hold in a pointwise sense inΘ × X . For a canal of length �, using a reparameterization
x �→ x�, this leads to a system of hyperbolic equations on (0, 1), which we call
augmented shallow water equations in conservation form:
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∂t A + ∂x Q = sM(t, x),

∂t Q + ∂x

(
Q2

A
+ η(A)

)

= −g

(

Az′
0 + λQ(x, t)|Q(x, t)|

2DA

)

=: sP(A, Q, x),

∂tR + ∂x

(
Q

A
R
)

= sS(R, t, x),

(5.16)
where sS(R, t, x) is a lateral in- or outflow term for the pollutant. We can put this in
a vector format as follows

∂t

⎛

⎝
A
Q
R

⎞

⎠+ ∂x

⎛

⎝
Q

Q2

A + η(A)
Q
AR

⎞

⎠ =
⎛

⎝
sM(t, x)

sP(A, Q, x)
sS(R, t, x)

⎞

⎠ .

For convenience, we set

y(t, x) :=
⎛

⎝
A(t, x)
Q(t, x)
R(t, x)

⎞

⎠ , F(y) :=
⎛

⎝
Q

Q2

A + η(A)
Q
AR

⎞

⎠ , S(y, t, x) :=
⎛

⎝
sM(t, x)

sP(A, Q, x)
sS(R, t, x)

⎞

⎠

and arrive at the system of hyperbolic balance laws:

∂t y(t, x) + ∂x F(y(t, x)) = S(y(t, x), t, x). (5.17)

Remark 5.3 We add that the system variables may be switched to V, A. Then we
have,

∂t

⎛

⎝
A
V
R

⎞

⎠+ ∂x

⎛

⎝
AV

V 2

2 + gh(A)

VR

⎞

⎠ =
⎛

⎝
sM(t, x)

sP,1(A, V, x)
sS(R, t, x)

⎞

⎠ ,

where sP,1(A, V, x) is a suitably modified friction term. If we set

y(t, x) :=
⎛

⎝
A(t, x)
V (t, x)
R(t, x)

⎞

⎠ , F(y) :=
⎛

⎝

AV
V 2

2 + gh(A)

VR

⎞

⎠ , S(y, t, x) :=
⎛

⎝
sM (t, x)

sP,1(A, V, x)
sS(R, t, x)

⎞

⎠ ,

we arrive again at a format as in (5.17). The quasilinear format then reads as

∂t

⎛

⎝
A
V
R

⎞

⎠+
⎛

⎝
V A 0
g

w(h(A))
V 0

0 R V

⎞

⎠ ∂x

⎛

⎝
A
V
R

⎞

⎠ =
⎛

⎝
csM(t, x)

sP,1(A, V, x)
sS(R, t, x)

⎞

⎠ .
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In this system, the first two equations resemble the classical shallow water equa-
tions, which are completely independent from the substance amounts R. The last r
equations regarding the transport of the substance amounts are also called transport
equations of passive scalars.

Remark 5.4 As in the preceding examples, we can also derive a stationary variant
of the Eq. (5.16) and write these two models in a common format. With

M1 :=
⎛

⎝
1 0 0
0 1 0
0 0 Ir

⎞

⎠ ,

where Ir is the r × r identity matrix, M4 the (2 + r) × (2 + r) zero matrix and

F1(y) := F4(y) :=
⎛

⎝
Q

Q2

A + η(A)
Q
AR

⎞

⎠

we can write
M j∂t y + ∂x F

j (y) = S(y; t, x), j = 1, 4.

5.2.3.2 Shallow Water Equations on Networks

On a finite time horizon (0, T ), we now consider an urban drainage network consist-
ing of a set of nodes representing canal junctions possibly involving active elements
such as slice gates or pumps and a set of edges representing prismatic sewer canals.
As the pipe model, we use the shallow water equations discussed in the preceding
section. To connect the pipes, we need adequate coupling conditions which occur
as boundary conditions for each canal. The boundary conditions at the canal bound-
aries, yi (n j , t), j ∈ Jβ , are given for all t ∈ (0, T ). At the other nodes n j , i.e., nodes
n j with j ∈ J \ Jβ , the states have to satisfy transmission conditions. The most
important of these conditions is again Kirchhoff’s junction rule, which guarantees
that no mass is lost as the liquid flows across the vertices n j :

∑

i∈I j

di j Qi (n j , t) = 0, t ∈ (0, T ).

For passive nodes, Kirchhoff’s junction rule is completed with another coupling
condition stating continuity of free surface height

hi (n j , t) = hk(n j , t), j ∈ Jπ , i, k ∈ I j , t ∈ (0, T ),
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or continuity of particle velocity

Qi (n j , t)

Ai (n j , t)
= Qk(n j , t)

Ak(n j , t)
, j ∈ Jπ , i, k ∈ I j , t ∈ (0, T ). (5.18)

Active nodes can be subdivided into two types: gates (Jg) and pumps (Jp). At a
sluice gate, we have an upstream water level h1 and a downstream level h2 ≤ h1.
The actual height of the gate is h0. Considering a simple geometry of the gate area,
we have a width b and hydraulic constant κ that we do not want to elaborate upon
further. With this, the flow through the gate is given by

Q = κbh0
√
h1 − h2.

In our context, we identify the gate as a boundary condition between two consecutive
canals. We control the height h0 and put the coefficients into the definition of the
control that we then call u j (t), where j is the index for the active node n j with
j ∈ Jg. Thus, for i, k ∈ I j and t ∈ (0, T ) we have

Qi (n j , t) = u j (t) sign(hi (n j , t) − hk(n j , t))
√|hi (n j , t) − hk(n j , t)|.

We again introduce a decision variable sgj (t) ∈ {0, 1} such that if the gate is turned
off (not active) sgj (t) = 0 and otherwise sgj (t) = 1 holds. Thus, for i, k ∈ I j and
t ∈ [0, T ] we have

0 = sgj (t)
(
Qi (n j , t) − u j (t) sign(hi (n j , t) − hk(n j , t))

√|hi (n j , t) − hk(n j , t)|
)

+ (1 − sgj (t))
(
hi (n j , t) − hk(n j , t)

)
.

Pumps can be included in the modeling in a similar way. There are a number of
models with increasing accuracy when compared to real data. See [61] for an account
of models that are represented as transmission conditions between two adjacent
canals. Clearly, the simplest such model is when the flow rate is set equal to the
pump rate and there appears a transmission condition

s pj (t)(Qi (n j , t) − Q̂ j ) + (1 − s pj (t))(hi (n j , t) − hk(n j , t)) = 0, j ∈ Jp, t ∈ (0, T ).

Combining these parts then leads to the network model given in Model 3, where,
for concreteness, we choose (5.18) as the coupling condition.
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5.2.4 Abstract Model

The modeling in this section has revealed that in all cases of interest, say on the level
of a quasilinear formulation, we can write all models in a common abstract setting as

∂t yi + Ai (yi )∂x yi = Si (yi ), i ∈ I , (x, t) ∈ (0, 1) × (0, T ),

Ei (yi )(n j ) = Ek(yk)(n j ), j ∈ Jπ , i, k ∈ I j , t ∈ (0, T ),
∑

i∈I j

di j Qi (yi )(n j ) = 0, j ∈ J \ Jβ, t ∈ (0, T ),

C j (yi (n j ), yk(n j ), s j , u j ) = 0, j ∈ Jα, i, k ∈ I j , t ∈ (0, T ),

Bi (yi )(n j ) = u j , j ∈ Jβ, i ∈ I j , t ∈ (0, T ),

yi (·, 0) = yi0, i ∈ I .

(5.19)

The following three examples give a detailed overview how the preceding models fit
into this abstract framework.
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Example 5.1 We begin with gas networks, where we have

yi =
(
pi
qi

)

, Fi (yi ) =
(

c2i
ai
qi

ap + c2i
ai

q2
i
pi

)

, Ai (yi ) = DFi (yi ) =
⎛

⎝
0 c2i

ai

a − c2i
ai

q2
i

p2i
2 c2i
ai

qi
pi

⎞

⎠

and
Ei (yi ) = pi , Qi (yi ) = qi .

At active nodes j ∈ Jα = Jv ∪ Jc we impose valve or compressor conditions.
Thus, for j ∈ Jv we have

C j (yi (n j ), yk(n j ), s j , u j ) = svj (t)(pi (n j , t) − pk(n j , t)) + (1 − svj (t))qi (n j , t)

and for j ∈ Jc we have

C j (yi (n j ), yk(n j ), s j , u j )

= scj (t)

[

u j − C |qk(n j , t)|
((

pk(n j , t)

pi (n j , t)

)κ̄(qk )

− 1

)]

+ (1 − scj (t))
[
pi (n j , t) − pk(n j , t)

]
.

Example 5.2 For fresh water systems, we have

yi =
(
hi
qi

)

, Fi (yi ) =
(

c2i
gai

qi
1
ai
q2
i + gaihi

)

, Ai (yi ) = DFi (yi ) =
(

0 c2i
gai

gai
2
ai
qi

)

and
Ei (yi ) = hi , Qi (yi ) = qi .

At active nodes j ∈ Jα = Jp ∪ Jv, we impose pump or valve conditions. Thus,
for j ∈ Jp we have

C j (yi (n j ), yk(n j ), s j , u j )

= s pj (t)

[

hi (n j , t) − hk(n j , t) − u2j

(

α j − β j

(
qk(n j , t)

u j

)γ j
)]

+ (1 − s pj (t))
[
hi (n j , t) − hk(n j , t)

]

and for j ∈ Jv we have

C j (yi (n j ), yk(n j ), s j , u j ) = svj (t)
(
hi (n j , t) − hk(n j , t)

)+ (1 − svj (t))qi (n j , t).
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Example 5.3 Finally, we consider sewer systems. There, the pipe model can be
brought into the desired form via

yi :=
(
Ai (t, x)
Qi (t, x)

)

, Fi (yi ) :=
(

Qi
Q2

i
Ai

+ η(Ai )

)

,

as well as

Ai (yi ) := DFi (yi ) =
(

0 1

− Q2
i

A2
i

+ gAi

w(h(Ai ))
2 Qi

Ai

)

,

and for the coupling conditions, we set

Ei (yi ) := Qi

Ai
, Qi (yi ) := Qi .

At active nodes j ∈ Jα = Jp ∪ Jg we impose pump or gate conditions. Thus, for
j ∈ Jp we have

C j (yi (n j ), yk(n j ), s j , u j ) = s pj (t)(Qi (n j , t) − Q̂ j ) + (1 − s pj (t))(hi (n j , t) − hk(n j , t)),

and for j ∈ Jg, we have

C j (yi (n j ), yk(n j ), s j , u j )

= (1 − sgj (t))
(
hi (n j , t) − hk(n j , t)

)

+ sgj (t)
(
Qi (n j , t) − u j (t) sign(hi (n j , t) − hk(n j , t))

√|hi (n j , t) − hk(n j , t)|
)

.

Our framework can also be extended to a setting where we switch between models.
From the point of view of efficiency in the context of large-scale applications like,
e.g., real-world gas or water networks, we would like to take into account model
adaptivity. That is to say, in a network region with very little dynamics we would
like to invoke a stationary model, in regions where moderate dynamics govern the
process, a semilinear time-dependent model may be appropriate, whereas in regions
with significant dynamics, the fully nonlinear system needs to be taken into account.
Thus, we have a set of mass matrices

M
smi (t)
i , smi (t) ∈ {0, 1, 2, . . . ,mi }

and a set of system matrices

A
smi (t)
i (yi ), smi (t) ∈ {0, 1, 2, . . . ,mi }.

In all models, we keep the source terms as they are essential in the applications
discussed here, yielding
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M
smi
i ∂t yi + A

smi
i (yi )∂x yi = Si (yi ), i ∈ I ,

Ei (yi )(n j ) = Ek(yk)(n j ), j ∈ Jπ , i, k ∈ I j ,
∑

i∈I j

di j Qi (yi )(n j ) = 0, j ∈ J \ Jβ,

C j (yi (n j ), yk(n j ), s j , u j ) = 0, j ∈ Jα, i, k ∈ I j ,

Bi (yi )(n j ) = u j , j ∈ Jβ, i ∈ I j ,

yi (·, 0) = yi0, i ∈ I ,

(5.20)

where x ∈ (0, 1) and t ∈ (0, T ). Such model adaptivity with smi taken as adjoint-
based error estimators and hence state depending switching rules can numerically be
exploited to speed up simulations [21]. However, in one way or another, systems of
Type (5.20) appear also naturally in the context of gas and water network simulation
and control or, in a more general notion, in energy networks. We also want to add
that one also may have to consider model switching in the transmission conditions
to ensure well-posedness.

Remark 5.5 To the best knowledge of the authors, there is no mathematical analysis
available for Model 1, 2, and 3 covering all nonlinearities and mixed regularities
due to the switching functions s j (t) ∈ {0, 1} for j ∈ Jα . This holds even for the
simplest possible network, namely a two-link system with one controllable device
(e.g., a valve or a compressor) at the connection point and of course extends to the
abstract system (5.19). Even for smooth relaxations of s j (·), no published result
seems to be available, though we belief that the theory of Li Tatsien can be applied
in this case—at least for tree-like graphs. As a matter of fact, once the corresponding
problem is understood for a star-like graph, the tree network can typically be handled
using a so-called peeling technique; see [53, 59].

What has been said of course also applies to problem (5.20) including model
switching.Note that, for state depending switching rules, one can no longer guarantee
a classical notion of continuous dependency of the solution on parameters. Rather,
one has to work with set-valued solutions and discuss upper semicontinuity of the
solution set. How this can be realized for semilinear equations on networks and
implications thereof are discussed in [45, 46].

5.3 System-Theoretical Results

In this section, we collect some relevant system-theoretical facts that apply to our
abstract model (5.19) and point out open problems. For fixed integer variables, we
show how to derive equilibria for such a system using the example of gas networks
and discuss how linearization can be used to investigate solutions in a neighborhood
of such an equilibrium. We then study Riemann invariants for the system that are
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the basis for well-posedness, controllability, and reachability results. We close the
section by discussing discretization and piecewise linearization to obtain simplified
models that can cope with integer variables.

5.3.1 Equilibria and Linearization

It has become amply clear that in all applications discussed in Sect. 5.2 we arrive
at the common abstract model (5.19). An elementary question is the existence and
characterization of equilibria Y , i.e., a solution of

Ai (Yi )∂xYi = Si (Yi ), i ∈ I ,

Ei (Yi )(n j ) = Ek(Yk)(n j ), j ∈ Jπ , i, k ∈ I j ,
∑

i∈I j

di j Qi (Yi )(n j ) = 0, j ∈ J \ Jβ,

C j (Yi (n j ),Yk(n j ), s j , u j ) = 0, j ∈ Jα, i, k ∈ I j ,

Bi (Yi )(n j ) = u j , j ∈ Jβ, i ∈ I j ,

(5.21)

for x ∈ (0, 1), a constant s = (s j ) j∈Jα
, and constant u = (u j ) j∈Jα∪Jβ

. In order to
provide some evidence that the analytical description of such equilibria is possible
but can be quite involved, we exemplarily study here the stationary solutions of the
isothermal Euler equations in a single horizontal pipe. The case of non-horizontal
pipes and results concerning tree-like networks can be found in [37]. An analysis
concerning more general networks including cycles is available in [41, 42].

Example 5.4 Consider the isothermalEuler equation (5.2). For every stationary state,
the flow rate q is constant. Hence, the density ρ satisfies the ordinary differential
equation

(a2c2 ρ2 − q2)ρx = −1

2
θq|q|ρ − a2ρ3gh′,

where θ = λ/D. Separation of variables yields

∫
a2c2 ρ2 − q2

1
2θq|q| ρ + a2ρ3gh′ ρx dx = −x + Ĉ .

For horizontal pipes (i.e., for h′ = 0), we get a constant solution ρ if q = 0 and for
q �= 0 we have

∫ (
2a2c2

θq|q|ρ − 2 sign(q)

θρ

)

ρx dx = −x + Ĉ .
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This yields the implicit solution

a2c2

θq|q|ρ
2 − sign(q)

θ
ln(ρ2) = −x + Ĉ . (5.22)

By multiplication with θq we obtain

a2c2

|q| ρ2 − |q| ln(ρ2) = θ q(−x + Ĉ)

and, hence, we have the equation

1

|q|a
2c2ρ2 − |q| ln(a2c2ρ2) + |q| ln(a2c2) = θ q (−x + Ĉ).

Therefore,

(

ac
ρ

q

)2

− ln

((

ac
ρ

q

)2
)

= θ sign(q) (−x + Ĉ) − ln(a2c2) + ln(q2).

With the auxiliary variable ξ = (acρ/q)2, for which in the subcritical case ξ ∈
(1,∞), we obtain

−ξ + ln(ξ) = θ sign(q) (x − Ĉ) + ln(a2c2) − ln(q2).

The application of the exponential function on both sides of the equation yields

exp(−ξ + ln(ξ)) = exp
(
θ sign(q) (x − Ĉ) + ln(a2c2) − ln(q2)

)
. (5.23)

Let W−1(x) denote a special branch of the Lambert W function defined as the
inverse function of x �→ x exp(x) for x ∈ (−∞,−1). ThusW−1(x) ≤ −1 is defined
for x ∈ (−1/e, 0). For x ∈ [−1/e, 0) we get the equation

W−1(x) = ln(−x) − ln(−W−1(x)).

Then we obtain from (5.23)

−ξ = W−1

(

−a2c2

q2
exp
(
θ sign(q) (x − Ĉ)

))

.

Hence, resubstituting ξ and solving for ρ we get

ρ = |q| 1
ac

√

−W−1

(

−a2c2

q2
exp
(
θ sign(q)(x − Ĉ)

))

. (5.24)
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Note that the value of Ĉ can be computed from the boundary values. For example,
with ρ0 = ρ(0), Eq. (5.22) implies

Ĉ = sign(q)
1

θ

((

ac
ρ0

q

)2

− ln(ρ2
0 )

)

. (5.25)

The Lambert W function W−1(x) can be computed to arbitrary precision or approx-
imated by

W−1(x) ≈ ln(−x) − ln(−(ln(−x) − ln(− ln(−x) − · · · ))),

see [12].
An example of a pressure-flow relation for stationary solutions obtained by such

an approximation compared to the stationary solution obtained from the lowest level
in the model hierarchy is plotted in Fig. 5.3. It shows the typical behavior of the
considered dynamics that is largely determined by the source term.

It becomes apparent from the discussion in the above example that equilibria may
become singular, i.e., there is a critical length. This has severe practical implications,
as gas pipes need to be calibrated in order to avoid such singular behavior. This
becomes a critical issue for very long under-water pipes.

Stationary states are of great interest in the industrial context, as one is interested
in small variations around such equilibria if it is not possible to stay there. In that
respect, the variation y of the stationary state Y is of interest. Now, assume the sum
ŷ := Y + y satisfies (5.19). By (5.21), we have

Fig. 5.3 The stationary
pressure p = c2ρ for h′ = 0
with p(0) = 6500 kPa,
c = 340m s−1, D = 1m,
and λ = 0.005 on a pipe of
length � = 30 km in
dependency of
q ∈ [0, 1200] kg s−1,
obtained by numerically
solving Eqs. (5.24), (5.25)
(solid line) and the
approximation resulting
from (5.8) (dashed line)
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∂t yi + Ai (Yi + yi )∂x yi = −Ai (Yi + yi )∂xYi + Si (Yi + yi ), i ∈ I ,

Ei (Yi + yi )(n j ) = Ek(Yk + yk)(n j ), j ∈ Jπ , i, k ∈ I j ,
∑

i∈I j

di j Qi (Yi + yi )(n j ) = 0, j ∈ J \ Jβ,

C j ((Yi + yi )(n j ), (Yk + yk)(n j ), s j , u j ) = 0, j ∈ Jα, i, k ∈ I j ,

Bi (Yi + yi )(n j ) = u j , j ∈ Jβ, i ∈ I j ,

yi (·, 0) = yi0 − Yi0, i ∈ I ,

where, as usual x ∈ (0, 1), t ∈ (0, T ). We define

−Ai (Yi + yi )∂xYi + Si (Yi + yi ) =: Ŝi (yi ),
Ei (Yi + yi )(n j ) =: Êi (yi )(n j ),

Qi (Yi + yi )(n j ) =: Q̂i (yi )(n j ),

C j ((Yi + yi )(n j ), (Yk + yk)(n j ), s j , u j ) =: Ĉ j (yi )(n j ), (yk)(n j ), s j , u j ).

(5.26)

We clearly see that, ŷ satisfies a modified version of (5.21), where we replace each
operator with its counterpart from (5.26). Moreover, we get

Ŝi (0) = 0.

This shows that the perturbation y of the equilibrium, which is not assumed small,
satisfies the original systemwith a source term that vanishes for the zero perturbation.

If the perturbations of an equilibrium are considered small, then one arrives at
a linear model. To this end, we fix the switching structure s and the controls u at
the equilibrium Y . As changing the switching structure s cannot be considered as a
small variation, we concentrate on variations v = (v j ) j∈Jβ

of continuous boundary
controls. A Taylor approximation in Y for all terms in (5.19) then yields

∂t yi + Ai (Yi )∂x yi = DSi (Yi )yi , i ∈ I ,

DEi (Yi )yi (n j ) = DEk(Yk)yk(n j ), j ∈ Jπ , i, k ∈ I j ,
∑

i∈I j

di j DQi (Yi )yi (n j ) = 0, j ∈ J \ Jβ,

DC j (Yi (n j ),Yk(n j ), s j , u j )(yi , yk)(n j ) = 0, j ∈ Jα, i, k ∈ I j ,

DBi (Yi )yi (n j ) = v j , j ∈ Jβ, i ∈ I j ,

yi (·, 0) = yi0 − Yi0, i ∈ I .

Questions regarding well-posedness, controllability, stabilizability, and optimal con-
trol for these linear systems on general graphs have been considered in the literature
to a certain degree of maturity; see, e.g., [16, 52, 53, 64] and the discussion in
Sect. 5.4.
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Remark 5.6 We pose some open questions:

• For the general abstract situation, the existence of an equilibrium Y to (5.19)
through (5.21) appears to be an open question.

• In general, it appears interesting to obtain full information of the set of equilibria,
e.g., connectedness or convexity, also in the case of compressors or pumps.

• Howdoes an equilibrium for a given switching structure behave once the switching
structure changes?

• What is the sensitivity of equilibria with respect to parameter changes in general?

5.3.2 Riemann Invariants

Solutions of (5.19) can be analyzed in small neighborhoods of a given equilibrium Y .
The method of choice is the concept of semi-global classical solutions in the sense
of Li Tatsien [59]. In order to apply the theory given in [59], one needs to transform
System (5.19) into a new coordinate system which reveals a diagonal hyperbolic
differential expression. To this end, Riemann invariants are very useful. Fortunately,
in the applications, the edgewise 2-by-2 hyperbolic balance laws admit suchRiemann
invariants. We consider the equations in quasilinear form:

∂t yi + Ai (yi )∂x yi = Si (yi ), i ∈ I , (5.27)

and we assume that

Ai (yi ) has two eigenvalues λ−
i < 0 < λ+

i . (5.28)

This condition is typically fulfilled in our examples: In the case of gas and fresh water
networks, it corresponds to the assumption that the flow is subsonic, in the case of
sewage networks it corresponds to the assumption that the flow is subcritical. We
denote the corresponding left eigenvectors by �±

i (yi )while the right eigenvectors are
denoted by r±

i (yi ). We impose

�±
i r

±
i = 0, ‖r±

i ‖ = ‖�±
i ‖ = 1.

By definition, the Riemann invariants ξ±
i (yi ) satisfy the equation

∇ξ±
i = �±

i .

We apply �±
i from the left of (5.27) and obtain

�±
i ∂t yi + λ±

i �±
i ∂x yi = �±

i Si (yi ).
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Clearly, using the Riemann invariants ξ±
i , we obtain

∂tξ
±
i = �±

i ∂t yi , ∂xξ
±
i = �±

i ∂x yi

and, therefore, we arrive at the system

∂tξ
±
i + λ±

i (yi )∂xξ
±
i = �±

i Si (yi ).

Thus, themain part (the one including spatial derivatives) is diagonalizedwith respect
to ξ±

i . Clearly, the coupling still is present via the state variables yi and via the source
terms. In case of a perturbed equilibrium Y + y, we have eigenvalues λ±

i (Yi + yi ) of
Ai (Yi + yi ) and left and right eigenvectors �±

i (Yi + yi ) and r
±
i (Yi + yi ), respectively.

Accordingly, ξ±
i (Yi + yi ) satisfy

∂tξ
±
i + λ±

i (Yi + yi )∂xξ
±
i = �±

i (Yi + yi )S̃i (Yi + yi ) =: S±
i (yi ). (5.29)

We assume that we have a diffeomorphism Hi such that

yi = (y1i , y
2
i )

� = H(ξ+
i , ξ−

i ) = (h1i (ξ
+
i , ξ−

i ), h2i (ξ
+
i , ξ−

i ))�,

together with

H−1(yi ) = (ξ+
i , ξ−

i )� = (h−1
1i (y1i , y

2
i ), h

−1
2i (y1i , y

2
i ))

�.

We now partition the system into Riemann invariants with labels “−” and “+”:
ξ− := (ξ−

1 , . . . , ξ−
n )� and ξ+ := (ξ+

1 , . . . , ξ+
n )�. We further introduce the diagonal

matrix

Λ(ξ+, ξ−) := diag(λ−
1 (H1(ξ

+
1 , ξ−

1 )), . . . , λ−
n (Hn(ξ

+
n , ξ−

n )),

λ+
1 (H1(ξ

+
1 , ξ−

1 )), . . . , λ+
n (Hn(ξ

+
n , ξ−

n )))

and split Λ into Λ = (Λ−,Λ+)� with

Λ− = diag(λ−
1 (H1(ξ

+
1 , ξ−

1 )), . . . , λ−
n (Hn(ξ

+
n , ξ−

n )))

and
Λ+ = diag(λ+

1 (H1(ξ
+
1 , ξ−

1 )), . . . , λ+
n (Hn(ξ

+
n , ξ−

n ))).

Moreover, we introduce the system source vector

S(ξ+, ξ−) := (S−
1 (ξ+

1 , ξ−
1 ), . . . , S−

n (ξ+
n , ξ−

n ), S+
1 (ξ+

1 , ξ−
1 ), . . . , S+

n (ξ+
n , ξ−

n ))�.

Then, (5.29) can be written as
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∂tξ
± + Λ±(ξ+, ξ−)∂xξ

− = S±(ξ+, ξ−).

We would like to express the boundary and nodal conditions in terms of the new
variables ξ±. In fact, we would like to have a two-point boundary value problem.
Clearly, one can impose boundary conditions at x = 0 for ξ+, while at x = 1 we
may impose boundary conditions for ξ−. Thus, we are aiming at a reformulation of
the boundary and nodal conditions in the following way,

ξ+(0, t) = G1(ξ−(0, t); s, u) + R1(t; s, u),

ξ−(1, t) = G2(ξ+(1, t); s, u) + R2(t; s, u),

such that, finally, the entire system (5.19) can be put into the standard format

∂tξ
± + Λ±(ξ+, ξ−)∂xξ

− = S±(ξ+, ξ−),

ξ+(0, t) = G1(ξ−(0, t); s, u) + R1(t; s, u),

ξ−(1, t) = G2(ξ+(1, t); s, u) + R2(t; s, u),

ξ+(·, 0) = ξ+
0 ,

ξ−(·, 0) = ξ−
0 .

(5.30)

It is not obvious, however, how the nodal conditions included in (5.19) can be trans-
formed into the format of (5.30). We will use the particular structure, namely the
continuity conditions and the Kirchhoff-type balance condition as well as the bound-
ary conditions between two consecutive edges including a valve and a compressor
or pump, respectively,

Ei (Yi + yi )(n j ) = Ek(Yk + yk)(n j ), j ∈ Jπ , i, k ∈ I j , t ∈ (0, T ),
∑

i∈I j

di j Qi (Yi + yi )(n j ) = 0, j ∈ J \ Jβ, t ∈ (0, T ),

C j ((Yi + yi )(n j ), (Yk + yk)(n j ), s j , u j ) = 0, j ∈ Jα, i, k ∈ I j , t ∈ (0, T ),

Bi (Yi + yi )(n j ) = u j , j ∈ Jβ, i ∈ I j , t ∈ (0, T ).

We need to express the equilibrium Yi by the Riemann invariants ξ̃±
i and yi =

(y1i , y
2
i )

� by the Riemann invariants ξ±
i using the mappings H and H−1. In order to

proceed, we first consider a node n j , j ∈ Jπ , with d j = m. At such a node we have
the junction condition Pj = Pj (ξ

+, ξ−) = 0 with Pj (ξ
+, ξ−) given by

⎛

⎜
⎜
⎜
⎜
⎜
⎝

E1(ξ̃
+
1 + ξ+

1 , ξ̃−
1 + ξ−

1 )(n j ) − Em(ξ̃+
m + ξ+

m , ξ̃−
m + ξ−

m )(n j )

E2(ξ̃
+
2 + ξ+

2 , ξ̃−
2 + ξ−

2 )(n j ) − Em(ξ̃+
m + ξ+

m , ξ̃−
m + ξ−

m )(n j )
...

Em−1(ξ̃
+
m−1 + ξ+

m−1, ξ̃
−
m−1 + ξ−

m−1)(n j ) − Em(ξ̃+
m + ξ+

m , ξ̃−
m + ξ−

m )(n j )∑
i∈Ii

di j Qi (ξ̃
+
i + ξ+

i , ξ̃−
i + ξ−

i )(n j )

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.
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We consider the Jacobian of Pj (ξ
+, ξ−) with respect to ξ+ evaluated at (0, 0) and

abbreviate

∂ξ+
i
Ei (ξ̃

+
i + ξ+

i , ξ̃−
i + ξ−

i )(n j )|(ξ+
i ,ξ−

i )=(0,0) =: ∂ξ+
i
Ẽi ,

∂ξ+
i
di j Qi (ξ̃

+
i + ξ+

i , ξ̃−
i + ξ−

i )(n j )|(ξ+
i ,ξ−

i )=(0,0) =: ∂ξ+
i
Q̃i .

This yields the Jacobian

Dξ+ Pj (0, 0) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

∂ξ+
1
Ẽ1 −∂ξ+

m
Ẽm

∂ξ+
2
Ẽ2 −∂ξ+

m
Ẽm

. . .
...

∂ξ+
m−1

Ẽm−1 −∂ξ+
m
Ẽm

∂ξ+
1
Q̃1 ∂ξ+

2
Q̃2 · · · ∂ξ+

m−1
Q̃m−1 ∂ξ+

m
Q̃m

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (5.31)

Assuming that Dξ+ Pj (0, 0) is invertible, by the implicit function theorem, there
exists a function G j such that

ξ+(n j ) = G j (ξ−(n j )).

Remark 5.7 By the same arguments, one can consider the Jacobian Dξ− Pj (0, 0) of
Pj with respect to ξ− at the point (0, 0). By the construction of the quantities Ei and
Qi it is clear that, once Dξ+ Pj (0, 0) is invertible, the same applies to Dξ− Pj (0, 0).
Thus,

∇ξ−G j (0) = (det Dξ+ Pj (0, 0))
−1 det Dξ− Pj (0, 0).

We now look at a serial node n j , j ∈ Jα , containing active elements such as valves
and compressors or pumps, respectively. We have the equation

C j ((Yi + yi )(n j ), (Yk + yk)(n j ), s j , u j ) = 0, j ∈ Jα, i, k ∈ I j , t ∈ (0, T ).

Upon using the Riemann invariants, this turns into

C j ((ξ̃
+
i + ξ+

i , ξ̃−
i + ξ−

i )(n j ), ((ξ̃
+
k + ξ+

k ), ξ̃−
k + ξ−

k ))(n j ), s j , u j )

=: C̃ j (ξ
+
i , ξ−

i , ξ+
k , ξ−

i ; s, u) = 0.

In addition, at such nodes, we have the equation

di j Qi (ξ̃
+
i + ξ+

i , ξ̃−
i + ξ−

i )(n j )) + dkj Qk(ξ̃
+
k + ξ+

k , ξ̃−
k + ξ−

k ))(n j ))

=: Q̃i (ξ
+
i , ξ−

i ) + Q̃k(ξ
+
k , ξ−

k ) = 0.
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Therefore, the full nodal condition for nodes containing active elements reads

Wj (ξ
+
i , ξ−

i , ξ+
k , ξ−

k ; s, u) :=
(

C̃ j (ξ
+
i , ξ−

i , ξ+
i , ξ−

i ; s, u)

Q̃i (ξ
+
i , ξ−

i ) + Q̃k(ξ
+
k , ξ−

k )

)

= 0.

Thus,

Dξ+Wj (0, 0, 0, 0; s, u) =
(

∂ξ+
i
C̃ j (s, u) ∂ξ+

i
C̃ j (s, u)

∂ξ+
i
Q̃i ∂ξ+

k
Q̃k

)

. (5.32)

We assume again that Dξ+Wj (0, 0, 0, 0; s, u) is invertible for all choices of s, u. In
this case, there is also a function G j such that

(ξ+
i , ξ+

k )(n j ) = G j ((ξ−
i , ξ−

k )(n j ); s, u).

It is obvious that the controlled simple nodes can also be put into the desired format
without any further assumption. In the above derivations, we may always assume
that all nodes n j with d j > 2 lie at x = 0 for all adjacent arcs and all nodes n j

with d j = 2 lie at x = 1 for all adjacent arcs. This assumption can be satisfied by
artificially subdividing each arc with a passive node of degree 2. Hence, we have
established the following result.

Theorem 5.1 Assume that (5.28) holds, that (5.31) is invertible for all j ∈ Jπ ,
and that (5.32) is invertible for all j ∈ Jα . Then, System (5.19) can be rewritten in
standard form (5.30).

We can verify the assumptions of Theorem 5.1 for all applications from Sect. 5.2.
We consider here exemplarily the case of sewage flow. In case of gas and fresh water,
similar arguments apply.

Example 5.5 For the shallow water equations, we have the Riemann invariants

ξ±
i := Qi

Ai
± ζi (Ai ), ζi (Ai ) :=

∫ Ai

0

√
g

awi (hi (a))
da, ξ 3

i := Ri

Ai
.

The diffeomorphism and its inverse are given as

ξ+
i − ξ−

i = 2ζi (Ai ), ξ+
i + ξ−

i = 2
Qi

Ai
,

Ai = ζ−1
i

(
ξ+
i − ξ−

i

2

)

, Qi = ξ+
i + ξ−

i

2
ζ−1
i

(
ξ+
i − ξ−

i

2

)

.
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The continuity conditions may have different formats. We choose the internal energy
and the conservation of fluxes

Ei (Ai , Qi ) := 1

2

(
Qi

Ai

)2

+ ghi (Ai ).

For details, see [56].

Theorem 5.1 can be seen as a key for the well-posedness of the abstract system
(5.19) and hence of all the applications mentioned above in the following sense.

Remark 5.8 We may now use the concept of semi-global classical solutions by Li
Tatsien [59] in order to show the existence of solutions of (5.30) and, hence, of (5.19),
once compatibility conditions for the data of first and second order are fulfilled and
these data are sufficiently small. We do not want to provide the full results, as these
results can be seen from the literature as particular examples of the general result
described here. See, e.g., [34, 35, 38, 40, 56, 59].

5.3.3 Discretization and Piecewise Linearization

In practical applications the switching structure, i.e., the decision driven part of the
process, becomes more and more important. As there is no “sensitivity method” for
discrete optimization problems, the process of linearization around an equilibrium
solution may not be appropriate. To tackle a problem of the form (5.19) including
switching variables, we may discretize in time and space.

For the timediscretization, a typical choice is an implicit Euler scheme.To this end,
we assume that [0, T ] is replaced by grid points t0 = 0 < t1 < · · · < tK = T with
time steps Δtκ := tκ+1 − tκ , κ = 0, . . . , K − 1. Then, the discretized state and the
discretized controls can be written as yi,κ := yi (tκ , ·), s j,κ := s j (tκ), u j,κ := u j (tκ),
and the semi-discretized dynamics become

yi,κ+1 + Δtκ Ãi (yi,κ+1)∂x yi,κ+1 = Δtκ S̃i (yi,κ+1) + yi,κ , i ∈ I ,

Ẽi (yi,κ+1)(n j ) = Ẽk(yk,κ+1)(n j ), j ∈ Jπ , i, k ∈ I j ,
∑

i∈I j

di j Q̃i (yi,κ+1)(n j ) = 0, j ∈ J \ Jβ,

C̃ j (yi,κ+1(n j ), yk,κ+1(n j ), s̄ j,κ+1, ū j,κ+1) = 0, j ∈ Jα, i, k ∈ I j ,

B̃i (yi,κ+1)(n j ) = ūi , j ∈ Jβ, i ∈ J j ,

yi,0(·, 0) = yi0, i ∈ I ,

where x ∈ (0, 1).
For the space discretization, various possibilities exist. For instance, in [21] an

implicit Box-Scheme is used for the applications mentioned in Sect. 5.2. Such dis-
cretization schemes typically give rise to a nonlinear system of equations which
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then has to be solved. Given that the problem already involves discrete variables,
these nonlinearities can also be approximated by piecewise linear functions (see,
e.g., [60]). The idea is visualized in the left part of Fig. 5.4.

An extension of this approach covers the space of feasible states for each arc with
polytopes, yielding a relaxation of the underlying nonlinear equation system; see
again the left part of Fig. 5.4. These systems can then be incorporated more readily
into mixed-integer optimization problems. The outlined approach was developed in
[28] and used in various problems coming from gas and water network optimization
(see, e.g., [30, 31, 51, 61, 67]). We discuss selected results in Sect. 5.4.3.

Remark 5.9 The idea of piecewise linear approximations can also be carried over to
the abstract problem (5.19) prior to discretization. Rather than relying on the notion
of linearization at some equilibrium, a piecewise linear approximation for the flux
function or a piecewise constant matrix for the quasilinear form may be reasonable.
To this end, we introduce a tesselation of the range space of the states y into a
finite set of mutually disjoint polyhedra. On each polyhedron Pλ, we assume that
the matrices Ai (yi ) are constant Aλ

i . Similarly, we assume that all matrices DEi =
Eλ
i , DQi = Qλ

i , DC j = Cλ
j , DBi = Bλ

i , and SDi = Sλ
i are constant on that Pλ; see

Fig. 5.4 (right), where we give an illustration for a piecewise linear approximation
of the source term S of Euler’s momentum equation.

This turns (5.19) into a hybrid dynamical system, where the dynamics are given
by a family of affine–linear PDEs along with a discrete selection rule and solutions
are to be understood in the sense of characteristics. Model switching in the sense of
Sect. 5.2.4 can then also be included. The quality of the approximation depends on the
granularity of the tesselation. However, in continuous space and time, assuming that
the solution of the piecewise-affine dynamics can be handled in each mode, the Zeno
phenomenon, i.e., an eventual accumulation of discrete events, immediately becomes
an issue for the global existence of solutions. We provide further information and
provide some open questions in this context:
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Fig. 5.4 Left Piecewise linear approximation (dashed) and relaxation (gray boxes) of the gas
pressure p according to (5.8) in dependenceof themassflowq.Right Piecewise linear approximation
of the source term S of Euler’s momentum equation



5 Challenges in Optimal Control Problems for Gas … 109

• For scalar hyperbolic equations piecewise continuous flux functions are the base
for the so-called front-tracking method [9, 50]. For systems, the piecewise linear
approach is applied to the Riemann problem rather than the original PDE.

• Discontinuous flux functions have been considered by Adimurthi and Gowda
[2, 3].

• Control theoretical analysis is available for the case of piecewise-affine ODEs, see
e.g., [15, 71, 72].

• Hybrid dynamical PDEs in the above generality have not been studied. If piecewise
linearization is understood in a lumped sense along each edge in the network, well-
posedness and stability analysis is available in [6, 44, 46, 47, 68].

5.4 Control, Stabilization, and Optimization

In this section, we discuss controllability, stabilizability, and optimal control prob-
lems for the models of Sect. 5.2. We also sketch a technique that may lead to an
applicable method. For this, we use the methods and results of Sect. 5.3.

5.4.1 Controllability and Stabilizability Problems

Exact controllability and observability, nodal reachability, and feedback stabilizabil-
ity are crucial problems in control theory. Of course even more, the controls realizing
these properties are of practical relevance. In exact controllability, one wants to reach
in finite time T a prescribed full-state profile across a single element (pipe, canal, etc.)
or along a network thereof at process time T using a minimum amount of boundary
controls. Obviously, the control time in order to achieve this goal is limited below by
the speed of propagation of information along the network. In fact, the time is twice
the time a signal needs to travel from the controlled node to the farthest uncontrolled
Dirichlet or Neumann node. Exact boundary observability refers to the possibility
of reconstructing the initial data, and hence the entire state, from boundary mea-
surement. As in the previous case, the speed of propagation comes in crucially. In
the linear case, it is well-known that exact controllability and observability are dual
concepts—they are equivalent. This is not true for the nonlinear equations discussed
in this paper. A more realistic notion is that of profile nodal reachability. Here one
asks whether it is possible to achieve a prescribed time function (the “profile”) at a
given node in the network. In terms of the application we address here, this means
that one is interested whether a customer can be guaranteed to receive exactly the
gas or fresh water he or she was asking for in an appropriate time window.

For a fixed switching structure, in view of Theorem 5.1 and Remark 5.8, exact
controllability, exact observability, exact boundary profile nodal controllability, and
uniform boundary feedback stabilizability results follow along with the lines of [13,
22, 34, 35, 56, 59]. Boundary feedback stabilization with or without time delays is
typically achieved via Lyapunov-functions [7, 14, 17–19, 36].
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Further, for the variable switching structure, uniform exponential stability can be
addressed on the level of linearized models [4–6]. For linear switched systems also a
particular Lyapunov theory is available [48, 49]. The switching mechanismmay also
be used for stabilization. This is demonstrated in [55] for the case when switching
only changes the boundary conditions of a linear conservation law.

Remark 5.10 Despite the many individual results that are available—noting that
there are many non-equivalent notions of controllability and observability—we sug-
gest the following open questions:

• The equivalence of the problem of exact controllability and exact observability for
quasilinear systems of hyperbolic balance equations is an open problem. Also the
relation to nodal profile controllability is unknown.

• Exact controllability or observability for systems of nonlinear hyperbolic balance
laws using switching controls is open.

• For bilinearly acting controls, as in valves, gates, compressors, or pumps, exact
controllability (observability) is very unlikely to hold. In this case approximate
controllability may be the right question to address. But this also remains open.

• Stability and stabilizability for switched nonlinear problems are open problems.

5.4.2 A Discrete-Continuous Optimal Control Problem

While feedback stabilizability providing closed-loop control is, of course, very sig-
nificant in real applications for the operation of gas, fresh water, or sewage water
networks, open-loop and hence optimal control problems are relevant for various
planning purposes. To this end, we consider the formulation of a general discrete-
continuous optimal control problem for non-stationary systems of nonlinear hyper-
bolic balance laws. Regarding our abstract model, a discrete-continuous state-control
vector (y, u, s) is feasible if it satisfies the system

Msi
i ∂t yi + Asi

i (yi )∂x yi = Si (yi ), i ∈ I ,

Ei (yi )(n j ) = Ek(yk)(n j ), j ∈ Jπ , i, k ∈ I j ,
∑

i∈I j

di j Qi (yi )(n j ) = 0, j ∈ J \ Jβ,

C j (yi (n j ), yk(n j ), s j , u j ) = 0, j ∈ Jα, i, k ∈ I j ,

Bi (yi )(n j ) = u j , j ∈ Jβ, i ∈ J j ,

si (t) ∈ {1, 2, 3, 4}, s j (t) ∈ {0, 1}, i ∈ I , j ∈ Jα,

yi (·, 0) = yi0, i ∈ I ,

(5.33)
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for x ∈ (0, 1), t ∈ (0, T ). We further define the cost functional

I (y, u, s) :=
∑

i∈I

∫ T

0

∫ 1

0
Ii (yi ) dx dt +

∑

j∈Jα

∫ T

0
s j (t)ψ

1
j (u j ) + (1 − s j (t))ψ

0
j (u j ) dt

+
∑

j∈Jα

∫ T

0
ϕ(s j (t)) dt +

∑

j∈Jα∪Jβ

∫ T

0
‖u j (t)‖2 dt

and the bounds

Ξ(s) := {(y, u) : y−
i (s) ≤ yi ≤ y+

i (s), u−
j (s) ≤ u j ≤ u+

j (s), i ∈ I , j ∈ Jα ∪ Jβ }

on the state y and the continuous control variables u, which depends on the discrete
control s. With this notation, the discrete-continuous optimal control problem reads

min
(y,u)∈Ξ(s)

I (y, u, s) s.t. (y, u, s) satisfies (5.33). (5.34)

Remark 5.11 We note some related work:

• The problem belongs to the class of mixed-integer optimal control problems
(MIOCP) with partial differential equations. The notion of optimal switching con-
trol problems, mixed-integer dynamic optimization problems, and hybrid optimal
control problems are also used for this and related problem classes; for a discussion
see [43, 47, 68].

• If the PDEmodel remains fixed, with e.g., si ≡ 1 or si ≡ 2, the problem reduces to
optimal boundary control problems with hyperbolic PDE constraints and switched
boundary data; see [44, 65, 66] for related work addressing scalar cases.

• Full discretization turns the problem into a (typically very large) mixed-integer
nonlinear problem (MINLP). In the stationary case, i.e., si ≡ 4, or in the case of
very coarse discretizations, these can be solved using structure exploiting algo-
rithms; see Sect. 5.4.3.However, this approach suffers from the curse of dimension-
ality when discretization step sizes are reduced to fully resolve the spatiotemporal
dynamics of the system.We are therefore interested in new approaches for solving
such problems, possibly on the level of semi-discretizations (spatial or temporal),
cf. Sect. 5.3.3, and using continuous optimality conditions for appropriate sub-
problems. We outline such an approach in Sect. 5.4.4 below. We note that for fixed
discrete controls the problem can be approached via optimality conditions, see
e.g., [73] for the scalar case.

5.4.3 Exemplary Computational Results for Special Cases

In this subsection, we discuss computational results for special cases to give an
overview of what is the state of the art for the applications discussed in Sect. 5.2.
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We use two examples: One from gas network optimization, where we show what
state-of-the-art MINLP methods can achieve on stationary problems and one from
fresh water network optimization, where we show how instationary problems can be
tackled. In both cases, the solution approach is based on discretization and piecewise
linearization as outlined in Sect. 5.3.3.

In the gas network setting,wediscuss someof the results of [30].Here,we consider
the network given in Fig. 5.2. It is a real-world network operated by Open Grid
Europe GmbH and consists of 4189 passive and boundary nodes, whereof 976 are
used as boundary nodes. These nodes are connected by 3550 pipes. Additionally, the
network contains roughly 1000 non-pipe elements, notably 12 groups of compressors
and 401 valves.

In [30], the authors implement a piecewise linearization technique as discussed in
Sect. 5.3.3 for the stationary model (M4 and F4 in our hierarchy) and combine it with
an alternating direction method to compute accurate gas quality parameters (more
precisely, the calorific value). The method was tested on 33 real-world load scenarios
provided by Open Grid Europe GmbH. The results are shown in Table5.1. Here
the columns ‖ΔP‖∞, ‖Δrel

P ‖∞, ‖Δπ‖∞ show different error measures to evaluate
the quality of the solutions (in order: absolute error in the computed power, the
relative error in the computed power, and absolute error in the squared pressures).
The column N shows the number of iterations needed in the alternating direction
method.

In the fresh water network example, we discuss one result of Chap.4 of [61].
Here, the network used is shown in Fig. 5.5. It consists of 16 pipes of 10.5 km total
length, 3 pumps, and 2 valves. There are also four storage tanks, which are not
part of the models discussed here. The load scenario is given in Fig. 5.6. As pipe
model the water hammer equations (5.11) are used, i.e., M2 and F2 in our model
hierarchy. The optimal control problem is to be solved for a time horizon of one day
with a time step size of one hour. After discretization and piecewise linearization,
the resulting mixed-integer linear problem has a size of 25077 variables (10839
binary) and 25000 constraints and 19310 variables (6401 binary). The solution time
for this mixed-integer linear problem is then 41 s using standard solvers. For further
details on the methods used, we refer to Chap.3 in [61]. This shows that for small
networks, such methods can be used to compute solutions of discrete-continuous
control problems. To achieve the goal to compute controls for larger networks in
real time these methods need to be refined or other methods need to be developed to
achieve a synthesis of the discrete and continuous aspects of the considered problems.
The idea of such a synthesis is outlined in the following section.
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Table 5.1 Computational results (taken from [30]) for the L-gas network of Open Grid Europe
GmbH; see Fig. 5.2

Instance ‖ΔP‖∞ ‖Δrel
P ‖∞ ‖Δπ‖∞ N Time (s)

L-01 4.21 × 10−1 0.0257 0.00 4 4131

L-02 3.63 × 10−2 0.0000 0.00 4 943

L-03 6.75 × 10−2 0.0000 0.00 4 536

L-04 3.76 × 10−1 0.0151 0.00 3 460

L-05 6.64 × 10−2 0.0000 0.00 3 313

L-06 6.61 × 10−2 0.0000 0.00 3 590

L-07 6.72 × 10−2 0.0000 0.00 3 1089

L-08 2.34 × 10−1 0.0029 0.00 4 2774

L-09 5.12 × 10−1 0.0022 0.00 4 3968

L-10 2.58 × 10−1 0.0095 0.00 4 1514

L-11 2.38 × 10−1 0.0312 0.00 3 1152

L-12 4.53 × 10−2 0.0000 0.00 4 2752

L-13 8.38 × 10−1 0.0110 0.00 3 2637

L-14 1.83 0.0111 0.00 3 1617

L-15 1.81 × 10−2 0.0000 0.00 6 2671

L-16 2.49 × 10−1 0.0028 0.00 3 1647

L-17 5.52 × 10−1 0.0110 0.00 3 1697

L-18 4.93 × 10−2 0.0000 0.00 5 3940

L-19 1.82 0.0472 0.00 3 2148

L-20 2.74 × 10−1 0.0124 0.00 3 2423

L-21 8.79 × 10−1 0.0111 0.00 3 2569

L-22 7.78 × 10−1 0.0111 0.00 3 2127

L-23 4.03 × 10−2 0.0000 0.00 4 1762

L-24 2.55 × 10−1 0.0113 0.00 3 2432

L-25 2.45 × 10−1 0.0688 0.00 3 3090

L-26 2.71 × 10−2 0.0000 0.00 5 1705

L-27 2.27 × 10−2 0.0000 0.00 5 1175

L-28 4.45 × 10−1 0.0096 0.00 3 1473

L-29 3.72 × 10−1 0.0624 0.00 3 1741

L-30 4.68 × 10−2 0.0000 0.00 4 2215

L-31 1.17 × 10−1 0.0061 0.00 5 3857

L-32 2.97 × 10−2 0.0000 0.00 4 1692

L-33 3.64 × 10−1 0.0383 0.00 3 1805
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Fig. 5.5 An exemplary fresh water network (taken from [61])
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Fig. 5.6 Load scenario for the water network of Fig. 5.5 (from [61])

5.4.4 A Decomposition Approach for Discrete-Continuous
Optimal Control

In what follows, we decompose Problem (5.34) along the continuous and discrete
controls in order to set up an iterative framework. In addition, one may also need
to decompose the network into small subnetworks, possibly consisting of single
pipes. This is the approach of domain decomposition. In optimization and control
for systems on metric graphs, domain decompositions should not only be applied
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for the sake of simulation but rather also for optimization. In the ideal case, after
decomposition, we arrive at a fully parallel set of optimization problems to solve.
Such strategies are known for elliptic and linear hyperbolic equations; see [54] for a
general reference.

Decomposition is also possible on the level of time so that in principle small time-
space units can be considered in an iterative framework.Using the abbreviationK :=
{0, . . . , K − 1}, the optimal control problem (5.34) after time discretization reads,
with x ∈ (0, 1),

min
y,u,s

∑

i∈I

K−1∑

κ=0

∫ 1

0
Ii (yi,κ+1) dx

+
∑

j∈Jα

K−1∑

κ=0

s j,κ+1ψ
1
j (u j,κ+1) + (1 − s j,κ+1)ψ

0
j (u j,κ+1)

+
∑

j∈Jα

K−1∑

κ=0

ϕ(s j,κ+1) +
∑

j∈Jα∪Jβ

K−1∑

κ=0

‖u j,κ+1‖2

s.t. Msi
i yi,κ+1 + Δtκ Ã

si
i (yi,κ+1)∂x yi,κ+1 = Δtκ S̃i (yi,κ+1) + yi,κ , i ∈ I , κ ∈ K ,

Ẽi (yi,κ+1)(n j ) = Ẽk(yk,κ+1)(n j ), j ∈ Jπ , i, k ∈ I j , κ ∈ K ,
∑

i∈I j

di j Qi (yi,κ+1)(n j ) = 0, j ∈ J \ Jβ, κ ∈ K ,

C̃ j (yi,κ+1(n j ), yk,κ+1(n j ), s j,κ+1, u j,κ+1) = 0, j ∈ Jα, i, k ∈ I j , κ ∈ K ,

B̃i (yi,κ+1)(n j ) = ui , j ∈ Jβ, i ∈ J j , κ ∈ K ,

yi,0(·, 0) = yi0, i ∈ I ,

(yκ+1, uκ+1) ∈ Ξ(sκ+1), κ ∈ K ,

It is clear that the problem above involves all time steps in the cost functional. As a
matter of fact, even for this discrete-time optimization problem, no publishedmethod
seems to be available and the development of solution techniques for this setting is
an open and great challenge. Thus, at this point in time, we can only utilize solutions
for stationary problems. To this aim, we consider what has come to be known as
rolling horizon control or instantaneous control. The latter amounts to reduce the
sums in the cost functional of the discrete-time problem to a single time step of the
discretization. Thus, for each κ ∈ K and given yi,κ we consider the problem
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min
∑

i∈I

∫ 1

0
Ii (yi,κ+1) dx +

∑

j∈Jα

s j,κ+1ψ
1
j (u j,κ+1) + (1 − s j,κ+1)ψ

0
j (u j,κ+1)

+
∑

j∈Jα

ϕ(s j,κ+1) +
∑

j∈Jα∪Jβ

‖u j,κ+1‖2

s.t. Msi
i yi,κ+1 + Δtκ Ã

si
i (yi,κ+1)∂x yi,κ+1 = Δtκ S̃i (yi,κ+1) + yi,κ , i ∈ I ,

Ẽi (yi,κ+1)(n j ) = Ẽk(yk,κ+1)(n j ), j ∈ Jπ , i, k ∈ I j ,
∑

i∈I j

di j Qi (yi,κ+1)(n j ) = 0, j ∈ J \ Jβ,

C̃ j (yi,κ+1(n j ), yk,κ+1(n j ), s j,κ+1, u j,κ+1) = 0, j ∈ Jα, i, k ∈ I j ,

B̃i (yi,κ+1)(n j ) = ui , j ∈ Jβ, i ∈ J j ,

(yκ+1, uκ+1) ∈ Ξ(sκ+1),

(5.35)

where x ∈ (0, 1) and where we optimize over yκ+1, uκ+1, sκ+1. Problem (5.35) is a
nonlinear optimization problem that is constrained by a system of ordinary differen-
tial equations on a graph. It contains discrete control variables sκ+1 and continuous
control variables uκ+1. Thus, (5.35) is still in the format of a mixed-integer optimal
control problem (MIOCP); cf. Remark 5.11. For the rest of this section, we give a
sketch of a two-stage method that may be used to solve problems like (5.35). Our
aim is to decompose the problem such that we have two problems that are easier to
solve and that allow to design iterative algorithms with convergence or termination
guarantees. To this end, we set up amaster problem that optimizes the discrete control
variables s j , j ∈ Jα , for fixed continuous control variables u j , j ∈ Jα ∪ Jβ , and
a subproblem that optimizes a continuous control u given a fixed discrete control s.

Typically, optimizing with respect to discrete controls is harder than optimizing
with respect to continuous controls. This is why one often wants to simplify the
physical model of the master problem. This model may be chosen as, e.g., si = 4
for all i ∈ I , yielding M4

i , Ã
4
i . Once this MIOCP is solved for (y, s), the optimal

switching structure is delivered to the subproblem, where the more complicated
physical model, i.e., si < 4 for all i ∈ I , is optimized with respect to the continuous
control variables u and a new state y. The optimal state of the master problem will
typically be infeasible for the subproblem. Thus, there will be an error and one has
to design a mechanism that drives this error to zero in the course of an iterative
algorithm.

For a more detailed discussion, we now state the master and the subproblem.
The master problem is obtained by (5.35) with the continuous control u fixed to ū.
Moreover, we assume that the data yi,κ for all i ∈ I from the last time step is given.
This yields the optimization problem
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min
∑

i∈I

∫ 1

0
Ii (yi,κ+1) dx +

∑

j∈Jα

s j,κ+1ψ
1
j (ū j,κ+1) + (1 − s j,κ+1)ψ

0
j (ū j,κ+1)

+
∑

j∈Jα

ϕ(s j,κ+1)

s.t. Msi
i yi,κ+1 + Δtκ Ã

si
i (yi,κ+1)∂x yi,κ+1 = Δtκ S̃i (yi,κ+1) + yi,κ , i ∈ I ,

Ẽi (yi,κ+1)(n j ) = Ẽk(yk,κ+1)(n j ), j ∈ Jπ , i, k ∈ I j ,
∑

i∈I j

di j Qi (yi,κ+1)(n j ) = 0, j ∈ J \ Jβ,

C̃ j (yi,κ+1(n j ), yk,κ+1(n j ), s j,κ+1, ū j,κ+1) = 0, j ∈ Jα, i, k ∈ I j ,

B̃i (yi,κ+1)(n j ) = ūi , j ∈ Jβ, i ∈ J j ,

(yκ+1, ūκ+1) ∈ Ξ(sκ+1)

(5.36)

in yκ+1 and sκ+1. Let now (ŷ, ŝ) be an optimal pair of (5.36) for fixed u = ū. The
subproblem (in the continuous variables yκ+1 and uκ+1 and for given yκ ) is then
given by

min
∑

i∈I

∫ 1

0
Ii (yi,κ+1) dx +

∑

j∈Jα

ŝ j,κ+1ψ
1
j (u j,κ+1) + (1 − ŝ j,κ+1)ψ

0
j (u j,κ+1)

+
∑

j∈Jα∪Jβ

‖u j,κ+1‖2

s.t. Msi
i yi,κ+1 + Δtκ Ã

si
i (yi,κ+1)∂x yi,κ+1 = Δtκ S̃i (yi,κ+1) + yi,κ , i ∈ I ,

Ẽi (yi,κ+1)(n j ) = Ẽk(yk,κ+1)(n j ), j ∈ Jπ , i, k ∈ I j ,
∑

i∈I j

di j Qi (yi,κ+1)(n j ) = 0, j ∈ J \ Jβ,

C̃ j (yi,κ+1(n j ), yk,κ+1(n j ), ŝ j,κ+1, u j,κ+1) = 0, j ∈ Jα, i, k ∈ I j ,

B̃i (yi,κ+1)(n j ) = ui , j ∈ Jβ, i ∈ J j ,

(yκ+1, uκ+1) ∈ Ξ(ŝκ+1),

(5.37)
where we fixed the discrete control s to ŝ.

We now receive an optimal pair (y∗, u∗) for the continuous nonlinear optimal
control problem (5.37) and the errors ey := ‖ŷ − y∗‖ and eu := ‖ū − u∗‖. Clearly,
in the next iteration we set ū = u∗.

If we neglect that we would like to choose different models for our hierarchy of
ODEs in the master and subproblem, we mainly constructed a primal alternating
direction method: We split the variables and solved the problem for one block of the
variables, fixed the result, and solved the problem for the other block of the variables.
Such an iterative procedure is closely related to general alternating directionmethods
(ADMs). ADMs have originally been proposed in the context of nonlinear variational



118 F.M. Hante et al.

problems in [27, 33] and have been also used recently for the optimization of large-
scale real-worldmixed-integer stationary gas transport problems; see, Sect. 5.4.3 and,
e.g., [30, 31].

Another way to interpret the sketched iterative procedure is as a method related to
generalized Benders decomposition; see [8, 32]. However, some additional assump-
tions must be made and some additional techniques have to be designed if one wants
to embed the decomposition in a Benders-like framework. First of all, the master
problem has to be a relaxation of the overall problem. This is not given if one sim-
ply chooses a coarser physics model in (5.36), since this does not translate into an
embedding of the corresponding feasible sets. A possible remedy would be to use a
relaxation, e.g., given by a suitably chosen outer approximation; see [23, 24]. Addi-
tionally, we also have to construct Benders-like feasibility cuts (in the case of an
infeasible subproblem for a given discrete control ŝ) and optimality cuts (in case of
a feasible subproblem). Since the overall problem, as well as both the master and the
subproblem, are inherently nonconvex, standard Benders cuts are not globally valid
and one thus has to derive problem-specific cuts; see [69].

Remark 5.12 The program outlined above is widely open. No general procedure is
known, no convergence results shown on this general level. This can safely be said
to be an open challenge for the discrete-continuous optimization community. More
specifically, one has to answer the following questions:

• Consider amaster problem that—after suitable relaxation of theODE—is amixed-
integer linear or nonlinear problem (MIP or MINLP) and that can be solved to
global optimality. Assume further that the subproblem can be solved to global
optimality as well. Under which conditions is it true that the alternation between
master problem and subproblem converges and if it does, is the solution globally
optimal?

• What is the right way to introduce Benders-like cuts in the master problem in order
to take into account (in)feasibility of the subproblem?

• Can one provide special examples for this Benders-type decomposition, where the
questions above can be answered positively!

Alluding to the last point, we can provide a first result in [39], where the authors
exploit MIP and MINLP techniques that have been intensively discussed in [25, 62,
63, 67] and [20, 29, 60] in the context of gas transport problems. A more general
but related approach is given in the recent paper [11].
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Chapter 6
Imaging in Acute Ischemic Stroke
and Stroke Outcome Prediction

Majaz Moonis

Abstract This invited talk ismainly based on jointwork ofAhmedulKabir, Carolina
Ruiz, Sergio A. Alvarez, and Majaz Moonis. There are two parts of this talk. The
first part deals with imaging in acute ischemic and second is devoted to a comparison
of conventional Regression with Machine Learning Methods for Stroke Outcome
Prediction. The second part is based on Kabir et al., Indian J. Indust. Appl. Math.
7(2), 12, 2016 [4].

Keywords CT scans · Magnetic resonance imaging · Acute ischemic stroke
Stroke outcome · Supervised machine learning

6.1 Imaging in Ischemic Stroke

Imaging modalities have continued to evolve from the time of plain uniplanar
X-rays to multiplanar CT scans and more recently Magnetic Resonance Imagin-
ing (MRI) in various neurological disorders yielding diagnostic signatures. For the
role of mathematics in medical imaging, we refer to [1–3].

Perhaps, the most important evolution has been in recognizing and utilizing the
properties of unpaired electrons and protons in the tissue. Unpaired electrons have
an inherent spin which is not synchronized and when subjected to multiplanar strong
magnetic fields, there is synchronization and depending on the magnetic pulse (90–
180 degree), the axis of magnetization changes. Subsequently, when the radiofre-
quency pulse is stopped, realignment occurs, with the release of magnetic energy,
captured in appropriately placed coils. Because water and solid tissue release energy
in different time frames, a differential energy is captured in 2 sequences, T1 and T2
images. This in turn using FFA and other mathematical equations transform the raw
images into recognizable MRI images [1, 2]. Adding contrast agents further adds
to the process of enhancement especially in T1-based sequences. Other paradigms
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are used to superimpose these images into a FLAIR and GRE images to look for
ischemic damage and the presence of blood products.

In the management of acute stroke, it is crucial to visualize brain arteries, and the
dead tissue (ischemic core) as well as the tissue at risk of destruction, the PENUM-
BRA. The implications are that if there is a viable PENUMBRA, acute interventions,
to rescue tissue at risk of infarction, is possible and forms the basis of acute stroke
treatment.

Parallel to theMRI technology, multiplanar CAT scans [1, 3] were developed that
are capable of similar results with the advantage of less scanning time but with the
disadvantage of not being to visualize the very early stroke.

The controversy of CAT versus MRI in stroke management is an ongoing hot
debate. The basic physics of these techniques in acute stroke management and the
advantages of either technique over the other in this life threatening condition with
some basic physics andmathematical algorithms that form the concepts of the under-
lying basis of these techniques are investigated [5].

6.2 Stoke Outcome Prediction

In performing statistical analysis in clinical trials, the conventional method is to
conduct univariate analysis for variable selection, followed by multivariate logistic
regression to find more details about the variables. While this approach is widely
used and does deliver useful explanations of the data, it has several shortcomings.
In [4], we compare the results obtained with conventional methods with those of
alternative machine learning algorithms in terms of their ability to predict stroke
outcome of patients. We also examine in this paper the different models constructed
by the algorithms, and compare them with the logistic regression model. We find
that machine learning can be used to predict more precise outcomes and reveal more
variables than previously known that may play an important role in determining
stroke outcomes.

In most clinical trials, the goal is to attain information about how different inde-
pendent variables X1…n affect the value of a dependent variable Y. The conventional
method to perform this sort of analysis in medical trials is a two-step process. In the
first step, a univariate analysis is performed that assess the effects on the depen-
dent variable of each independent variable individually. This step filters out some
variables that have no statistically significant effect on the dependent variable. The
second step is multivariate logistic regression which builds a model that takes into
account all the independent variables that are chosen from the univariate analysis.
The results obtained from multivariate logistic regression are particularly helpful
from a clinical point of view because they facilitate the computation of odds ratios.
The odds ratio represents the odds that an outcome will occur given the presence of
a particular variable, compared to the odds of the outcome occurring in the absence
of that variable.

Most clinical trials, including those related to stroke, use multivariate logistic
regression to examine the effect of one or more treatments or conditions. There have
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been numerous such studies that deal with factors influencing stroke outcome, of
which we mention a few. Moonis et al. [5] examined the effect of statins in treating
ischemic stroke patients and reports that using statins improved stroke outcome since
the statins obtained an odds ratio of 1.57 in a logistic regression model predicting
mRS-90 Here we demonstrate the efficacy of machine learning algorithms for pre-
diction and variable selection on the data of stroke patients. In the context of stroke,
the dependent variable is a measure of stroke outcome, and the independent variables
are different factors that may affect stroke recovery. Patient’s data with known stroke
outcomes are fed to the machine learning algorithm to construct a model, which is
used to predict the future stroke outcome of patients. Kabir et al. [4] presented the
results of our experiments with several variable selection and supervised learning
algorithms.

6.3 Prediction Through Supervised Learning

Figure6.1 presents the basic idea and process of prediction through supervised learn-
ing. The data provided for the predictive algorithms to work on are called training
data. From the training data, the algorithms build models that can be used to make
predictions about the value of the target (or dependent) variable. The test set con-
tains unlabeled data that can then be used to evaluate how well the model performs.
Ideally, the algorithm will be able to learn general rules or methods from known data
that can be applied to unknown data.

Variable Selection Algorithms Used

Very often, a larger set of predictive variables does not equate to a better predictive
model. The task of variable selection is to find a smaller subset of variables that build
simpler models and are likely to have better generalization performance. The basic
idea behind the two variable selection methods we have used in [4] are described
below.

Fig. 6.1 The general process of supervised machine learning
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Correlation-based Feature Selection (CFS)

Thismethod evaluates theworth of a subset of variables by considering the individual
predictive ability of each variable along with the degree of redundancy between
them. The subset of variables with high correlation with the dependent variable and
low internal correlation is selected. The advantage of this technique over univariate
analysis is that CFS looks at the interactions between the variables, not just individual
relationships with outcome.

ReliefF

The key idea of ReliefF is to estimate the quality of variables according to how well
their values distinguish between the data points of the same and different classes that
are close to each other. In this method, each variable is given equal initial weight and
goes through an iterative process of calculation where the weights may increase or
decrease. The weight of any given variable decreases if it differs from that variable
in nearby instances of the same class more than nearby instances of the other class,
and increases in the reverse case. After a certain number of iterations, the process
stops and the variables are ranked per their weights. For variable selection, one may
select the desired number of variables starting from the top of the list.

6.4 Methodology

Comparison of conventional regression with machine learning based methods in
predicting stroke outcome is discussed in [4]. The comparison is done in two fronts:
in assessing the predictive power of different models and in finding what the different
models say about the variables involved. We also experiment with variable selection
algorithms and evaluate their influence over the predictive ability of the algorithms.
In our research, the statistics tool SPSS is used for conventional regression analysis,
while the machine learning tool Weka is used for all the other machine learning
algorithms.

We run four sets of experiments with our predictive algorithms: one with the full
set of variables and the others with three separate variable selection methods. For
the conventional univariate variable selection process, chi-square tests are performed
for categorical variables, while Mann–Whitney U tests are performed for continuous
variables in preference to a t test, after nonnormality of predictor variable distributions
is determined by way of a Shapiro–Wilk test. Only the variables with a p value less
than 0.05 are chosen for further analysis. For Correlation-based Feature Selection
(CFS) the best subset of variables returned by the CFS algorithm is selected for use
in supervised learning algorithms. ReliefF algorithm is also used, and the variables
with ten largest weights are selected for further analysis.

The four separate sets of variables are then fed to the machine learning algo-
rithms for predictive analysis. For logistic regression and Naïve Bayes, no particular
parameter optimization is necessary. For C4.5 decision trees, we experiment with
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different values of the confidence factor and minimum number of objects in a node
to try out trees of different sizes with a varied amount of pruning [6]. For Bayesian
networks, we experiment with the maximum number of allowable parents of a node.
We use random ordering of variables and set the network to not initialize as Naïve
Bayes [7]. For k-nearest neighbors, the hold-one-out cross validation approach is
used to select the best value of k. For the purpose of testing, tenfold cross validation
is used. The results are evaluated based on the following two metrics: accuracy and
F-measure.

6.5 Prediction Results

The results of predictive modeling with and without variable selection are shown in
Table6.1. The conventional method of univariate selection followed by multivariate
regression has accuracy of 0.778 and F-measure of 0.774. Several other combina-
tions of variable selection and prediction algorithms perform at least as good as that.
However, tests to establish statistical significance did not find that there is any statis-
tically significant improvement. The results indicate that variable selection enhances
predictive ability overall, although the only statistically significant improvement is

Table 6.1 Comparison of different learning algorithms for different sets of chosen variables

Variable set Algorithms Accuracy F-measure

Full set of variables Logistic regression 0.773 0.768

C4.5 Decision tree 0.778 0.775

Naïve Bayes 0.769 0.768

Bayesian network 0.752 0.750

k-nearest neighbor 0.718 0.690

Variables selected by Univariate analysis Logistic Regression 0.778 0.774

C4.5 decision tree 0.778 0.776

Naïve Bayes 0.769 0.768

Bayesian network 0.763 0.762

k-nearest neighbor 0.701 0.676

Variables selected by CFS Logistic regression 0.789 0.785

C4.5 decision tree 0.780 0.778

Naïve Bayes 0.780 0.775

Bayesian network 0.777 0.778

k-nearest neighbor 0.797 0.796

Variables selected by ReliefF Logistic regression 0.771 0.767

C4.5 Decision tree 0.764 0.761

Naïve Bayes 0.773 0.772

Bayesian network 0.780 0.779

k-nearest neighbor 0.707 0.699



128 M. Moonis

found for k-nearest neighbor algorithm for CFS selected variables over the full set of
variables (the k-nearest neighbor algorithm is very sensitive to the variable selection
method used and yields significantly lower accuracy when paired with the selection
methods other than CFS considered here).

6.6 Conclusions

We have described an experimental comparison of different machine learning algo-
rithmswith conventional univariate selection followedbymultivariate logistic regres-
sion for the task of stroke outcome prediction in [4]. We have also examined the
models to find additional insights about stroke recovery. We have worked with two
different variable selection methods that consider sets of multiple variables simul-
taneously, as alternatives to traditional univariate selection. We have also applied
several supervised learning algorithms before and after variable selection. It is found
that the predictive performance of these algorithms can equal or surpass that of
conventional logistic regression. Moreover, the models obtained from the super-
vised learning algorithm give useful additional information about the various factors
affecting stroke outcome.

Regarding the significant negative effects of older age and higher NIHSS score
at admission on stroke outcome, the decision tree and the Bayesian network models
agree with the conventional logistic regression model. However, both these models
discover the presence of atrial fibrillation as a factor for poor outcome, something
the conventional model failed to do. The decision tree model also shows hemor-
rhagic conversion to be associated with poor stroke outcome, whereas the logistic
regression model counterintuitively showed it to be associated with good outcome.
In the Bayesian network model hypertension is directly linked with stroke outcome,
although the conventional model did not deem it to be a significant variable. There-
fore, the use of machine learning algorithms provide insights that are different from
the conventional method, and thus can serve as auxiliary sources of information for
decision-making in stroke treatment.
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Chapter 7
Fourier Transforms of Multiplicative
Convolutions

B.I. Golubov and S.S. Volosivets

Abstract We consider P-adic Fourier transform introduced by N.Y. Vilenkin that
generalizes famous Walsh transform and P-adic convolution of functions defined on
R+, where P = {p j }∞j=1 ⊂ N and 2 ≤ p j ≤ N for all j . The order of decreasing to
zero of remainder integral for P-adic Fourier transform is studied for convolutions of
Lq1 and Lq2 functions. In the case q1 = q2 = 2 a characterization result is obtained.
The sharpness of results is established.

Keywords Multiplicative Fourier transform · Multiplicative convolution
Absolute integrability · Monotone function

2010 Mathematics subject classification Primary 42A38 · Secondary 42A85 ·
44A35

7.1 Introduction

Let {pn}∞n=1 be a sequence of natural numbers such that 2 ≤ p j ≤ N . We set p− j =
p j for all j ∈ N,m j = p1 . . . p j for j ∈ N,m0 = 1 andm−l = 1/ml for l ∈ N. Then
each number x ∈ R+ has the expansion

x =
∞∑

j=1

x− jm j−1 +
∞∑

j=1

x j

m j
, x j ∈ Z ∩ [0, p j ), | j | ∈ N. (7.1)
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Here the first sum in (7.1) is finite and for x = k/ml , k, l ∈ N, the expansion with
finite number x j �= 0 is taken. If x, y ∈ R+ are written in the form (7.1), then by
definition

x ⊕ y = z =
∞∑

j=1

z− jm j−1 +
∞∑

j=1

z j
m j

, z j ∈ Z ∩ [0, p j ), | j | ∈ N,

where z j = x j + y j (mod p j ). If z j = p j − 1 for all j ≥ j0, then this operation is
not defined, i.e. x ⊕ y exists for all y except countable set, where x ∈ R+ is fixed.
The inverse operation x 
 y is defined in a similar way.

For x, y ∈ R+ with expansions of type (7.1) we set

χ(x, y) = exp

⎛

⎝2π i
∞∑

j=1

x j y− j + x− j y j
p j

⎞

⎠ .

It is well known that the equalities χ(x ⊕ z, y) = χ(x, y)χ(z, y) and χ(x 

z, y) = χ(x, y)χ(z, y) hold for almost all z ∈ R+ when (x, y) ∈ R+ × R+ is fixed.
In particular, we have χ(x, 0 
 y) = χ(x, y), x, y ∈ R+. Therefore, χ(x, y) =
χ({x}, [y])χ([x], {y}), where {x} be the fractional part of x and [x] be the entire
part of x , and the kernel χ(x, y) is constant by x on all intervals I kj = [ j/mk, ( j +
1)/mk), j ∈ Z+, for 0 ≤ y < mk (see [1, Sect. 1.5]).

The spaces L p(R+), 1 ≤ p < ∞, consist of Lebesgue measurable on R+ func-

tions such that ‖ f ‖p =
(

∫

R+
| f (t)|pdt

)1/p

< ∞. If p = ∞, then we shall use the

uniform norm ‖ f ‖∞ = sup
x∈R+

| f (x)| for bounded on R+ functions f ( f ∈ B(R+)).

For f ∈ L1(R+) we define the multiplicative P-adic Fourier transform (see
[1, 2]) by the formula f̂ (x) = ∫

R+ f (y)χ(x, y) dy, where the right-hand side is the
Lebesgue integral. For f ∈ L p(R+), 1 < p ≤ 2, we define P-adic Fourier transform
as Lq -limit of

∫ a
0 f (y)χ(x, y) dy, a → +∞, where 1/p + 1/q = 1. According to

[1, Chap. 6, Theorem 6.1.7], a counterpart of Hausdorff–Young inequality

‖ f̂ ‖q ≤ ‖ f ‖p, f ∈ L p(R+), 1 ≤ p ≤ 2, (7.2)

holds. For f ∈ L2(R+) by (7.2) we have f̂ ∈ L2(R+) and the analogue of Parseval-
Plancherel equality ‖ f ‖2 = ‖ f̂ ‖2. The last assertion is easily deduced from
[1, Theorem 6.2.4].

Finally, if f is decreasing on (0,∞), lim
x→∞ f (x) = 0 and f is integrable near

zero, then we define f̂ (x) as improper integral
∫ ∞
0 f (y)χ(x, y) dy (see [3] and

Lemma2).
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Similarly, the inverse multiplicative P-adic Fourier transform f̌ (x) = ∫ ∞
0 f (y)χ

(x, y) dy is defined for f ∈ L1(R+) or f ∈ L p(R+), 1 < p ≤ 2. We note that prop-
erties of f̌ are the same as f̂ ones; in particular, the analogue of (7.2) holds.

The multiplicative P-adic convolution of functions f, g ∈ L1
loc(R+) is defined

by f ∗ g(x) = ∫
R+ f (x 
 t)g(t) dt , if the last integral exists. It is known that if

f ∈ L p(R+), g ∈ L1(R+), then f ∗ g ∈ L p(R+) and ‖ f ∗ g‖p ≤ ‖ f ‖p‖g‖1 (for
p = 1 see [1, Sect. 6.1]). Let Gn be the linear space of functions having constant
value on each interval I nk , k ∈ Z+, for some n ∈ Z+, and Emn ( f )p := inf{‖ f − g‖p :
g ∈ Gn}, n ∈ Z+, 1 ≤ p < ∞.

Let f ∈ L p(R+), 1 ≤ p < ∞, Dmn (x) = ∫ mn

0 χ(x, y) dy. Then A.V. Efimov
inequality [1, Sect. 10.5]

Emn ( f )p ≤ ‖ f − f ∗ Dmn‖p ≤ 2Emn ( f )p (7.3)

is valid.
In the present paper we study the conditions implying integrability of multiplica-

tive Fourier transforms of convolutions h = f ∗ g and the asymptotic behaviour of
integral norms of ĥX [mn ,∞). The sharpness of these conditions in various senses is
established. In the case of trigonometric series the absolute convergence and its gen-
eralizations for 2π -periodical convolutions are studied by M. Izumi and S. Izumi [4]
and C.W. Onneweer [5], while in the case of multiplicative systems one can note the
papers of C.W. Onneweer [6] and the second of authors [7]. The following result is
contained in [5].

Theorem A. (1) If g, h ∈ L p
2π , 1 < p ≤ 2, 1/p + 1/q = 1, then the series of mod-

ules of their 2π -periodic convolution (g ∗ h)2π Fourier coefficients raised to the
power q/2 converges.

(2) For each 1 < p ≤ 2 there exist g, h ∈ L p
2π , such that the series of modules

of their 2π -periodic convolution (g ∗ h)2π Fourier coefficients raised to the power
β < q/2 diverges.

The counterpart of Theorem A for multiplicative Fourier transforms was estab-
lished by authors [8], while for the multiplicative systems it was obtained in [7].

N.A. Il’yasov [9–11] considered the quantities

ρ(r)
n (h) =

⎛

⎝
∑

|k|≥n

|ck(h)|r
⎞

⎠
1/r

,

where {ck(h)}k∈Z be the sequence of complex Fourier coefficients of the function h
that is 2π -periodic convolution of functions f and g and studied relations of ρ(r)

n (h)

with best approximations of f and g. So, he established in [9] the following theorem.

TheoremB. (1) Let 1 < p ≤ 2, 1/p + 1/p′ = 1, f, g ∈ L p(T),h be the2π -periodic
convolution of f and g, γ = p′/2. Then

ρ
(γ )

n+1(h) ≤ C(p)En( f )L p(T)En(g)L p(T),
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where En( f )L p(T) = inf tn∈Tn ‖ f − tn‖L p(T) is the best approximationof f by trigono-
metric polynomials tn of order at most n (tn ∈ Tn) in L p(T).

(2) Let 1 < p ≤ 2, 1/p + 1/p′ = 1, α, β > 0, γ = p′/2. Then there exist f, g ∈
L p(T) such that En( f )L p(T) � n−α , En(g)L p(T) � n−β and for 2π -periodic convo-
lution h of functions f and g we have

ρ
(γ )

n+1(h) � n−α−β .

Here and further we write An � Bn , if An = O(Bn) and simultaneously Bn =
O(An), n ∈ N. In [11] the following result is proved.

Theorem C. Let {λn}∞n=0 be decreasing to zero. Then the set of continuous 2π -
periodic functions h with property ρ

(1)
n+1(h) = O(λn), n ∈ Z+, coincides with the

set of 2π -periodic convolutions of functions f ∈ L2(T) and g ∈ L2(T) such that
En( f )L2(T), En(g)L2(T) = O(λ

1/2
n ).

The Theorem C is a quantitative variant of the M. Riesz theorem (see [12, Chap.
IX, Sect. 7]). By this theorem a function with absolutely convergent Fourier series is
represented as 2π -periodic convolution of two functions from L2(T). The counterpart
of the M. Riesz theorem for locally compact groups may be found in W. Rudin
monograph [13, Sect. 1.6].

In the present paper we prove an analogue of the Hardy–Littlewood theorem con-
cerning trigonometric series with monotone coefficients (see [12, Chap. X, Sect. 3])
in the case of multiplicative Fourier transforms. This result is applied to the proof of
sharpness of some embeddings for classes of convolutions. Corresponding embed-
dings (Theorems7.3 and 7.4) are analogues and generalizations of ones from [10] that
in turn generalize the Theorem B. Also the counterpart of Theorem C is established.

7.2 Auxiliary Propositions

Lemma 1 Let Dy(x) = ∫ y
0 χ(x, t) dt, x, y ∈ R+. Then

(1) The equality Dmn (x) = mnX [0,1/mn)(x), n ∈ Z, holds, where XE is the indi-
cator of a set E. In particular, ‖Dmn‖p = m1−1/p

n , 1 ≤ p < ∞, n ∈ Z.

(2) We have D̂mn (x) = X [0,mn)(x), x ∈ R+, n ∈ Z.

The Proposition (1) is well known (see [1, Sects. 1.5 and 11.1]), while the Propo-
sition (2) follows from the definition.

Lemma 2 Let f be non-increasing on (0,∞), f ∈ L1[0, 1) and lim
x→∞ f (x) = 0.

Then the improper integral f̂ (x) = ∫
R+ f (y)χ(x, y) dy converges for all x > 0. If,

in addition, f (x)x1−2/p ∈ L p(R+), 1 < p ≤ 2, then f̂ (x) ∈ L p(R+).

The assertion of Lemma2 is proved in [3, Theorem 3].
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Lemma 3 Let a(y) ∈ L1
loc(R+) and the integral

∞∫

0
a(y)χ(x, y) dy converges every-

where on R+ except at most countable set to a function f (x) ∈ L1
loc(R). Then

a(x) = lim
n→+∞

mn∫

0

f (y)χ(x, y) dy

a.e. on R+.

Lemma3 is established by V.A. Skvortsov [14].

Lemma 4 Let f ∈ L p(R+), g ∈ Lq(R+), p ≥ 1, q ≥ 1 and 1/r = 1/p + 1/q −
1 > 0. Then the multiplicative convolution f ∗ g exists as an element of Lr (R+) and
‖ f ∗ g‖r ≤ ‖ f ‖p‖g‖q .

This lemma is a multiplicative counterpart of the Young theorem and it may be
proved similarly to [15, Chap.1, Sect. 1.2] using Minkowski and Hölder inequalities
and M. Riesz–Thorin theorem.

Lemma 5 Let1 ≤ q1, q2 ≤ 2,3/2 ≤ 1/q1 + 1/q2 ≤ 2, f ∈ Lq1(R+), g ∈ Lq2(R+).
Then f̂ ∗ g(x) = f̂ (x)ĝ(x) a.e. on R+. For f, g ∈ L1(R+) the equality f̂ ∗ g(x) =
f̂ (x)ĝ(x) holds for all x ∈ R+.

Proof The second assertion of Lemma5 easily follows from the Fubini theorem (see
the proof of Theorem6.1.4 in [1]). In the general case by Lemma4 the function
f ∗ g belongs to Lr (R+), where 1/r = 1/q1 + 1/q2 − 1 ∈ [1/2, 1], i.e. r ∈ [1, 2]
and f̂ ∗ g(x) iswell defined as a function from Lr ′

(R+). Let ft (x) = f X [0,t), gt(x) =
gX [0,t). Then ft ∈ L1(R+) ∩ Lq1(R+), gt ∈ L1(R+) ∩ Lq2(R+) and by the second

assertion of lemma we have f̂t ∗ gt(x) = f̂t (x)ĝt (x) for x ∈ R+. Since ft → f in
Lq1(R+) and gt → g in Lq2(R+) as t → +∞, by the analogue of Hausdorff–Young
-F. Riesz inequality (7.2) we obtain that f̂t → f̂ in Lq ′

1(R+) and ĝt → ĝ in Lq ′
2(R+).

Therefore, by Hölder inequality taking in account that 1/q ′
1 + 1/q ′

2 = 1/r ′ we find
that

‖ f̂ ĝ − f̂t ĝt‖r ′ = ‖ f̂ ĝ − f̂t ĝ + f̂t ĝ − f̂t ĝt‖r ′ ≤ ‖ f̂ − f̂t‖q ′
1
‖ĝ‖q ′

2
+ ‖ f̂t‖q ′

1
‖ĝ − ĝt‖q ′

2

and the right-hand side of the last inequality tends to zero as t → ∞. On the other
hand, f ∗ g − ft ∗ gt = ( f − ft ) ∗ g + (g − gt) ∗ ft and Lr -norm of the right-hand
side and the left-hand side by Lemma4 tends to zero. By (7.2) the difference f̂ ∗ g −
f̂t ∗ gt = f̂ ∗ g − f̂t ĝt converges in L(r ′)(R+) to zero. These two statements give
f̂ ∗ g(x) = f̂ (x)ĝ(x) a.e. on R+. Lemma is proved. �
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7.3 Main Results

Theorem 7.1 Let g(x)benon-increasingon (0,∞), g ∈ L1[0, 1)and lim
x→+∞ g(x) =

0, 1 < p ≤ 2. Then for existence of a function f ∈ L p(R+) such that f̂ (x) = g(x)
almost everywhere on R+ the condition g(x)x1−2/p ∈ L p(R+) is necessary and
sufficient. If this condition holds, then the following inequalities

‖ f (x)‖p ≤ C‖g(x)x1−2/p‖p, (7.4)

Emn ( f )p ≤ C

(
mp−1

n g p(mn) +
∫ ∞

mn

g p(x)x p−2 dx

)1/p

, n ∈ Z+, (7.5)

are valid and constants in (7.4) and (7.5) do not depend on g and n ∈ Z+.

Proof (a) Sufficiency. Let g(x)x1−2/p ∈ L p(R+), 1 < p ≤ 2. By Lemma2 the func-
tion h(x) := ĝ(x) exists as improper integral for x > 0 and, due to condition, we
have h ∈ L p(R+). By Lemma3 we see that

g(x) = lim
n→+∞

∫ mn

0
h(y)χ(x, y) dy (7.6)

for a.e. x ∈ R+. On the other hand, similarly to the proof of Hausdorff–Young
-F. Riesz inequality (7.2) we obtain

∥∥∥∥ȟ −
∫ mn

0
h(t)χ(·, t) dt

∥∥∥∥
q

→ 0, n → ∞, 1/p + 1/q = 1.

By F. Riesz theorem about convergent a.e. subsequence (it is valid for sets of infinite
measure, see [16, Sect. 13]) there exists {mni }∞i=1 such that

∫ mni

0
h(t)χ(x, t) dt → ȟ(x) (7.7)

a.e. on R+. Combining (7.6) and (7.7) we obtain g(x) = ȟ(x) = ĥ(
·)(x) =: f̂ (x)
a.e. on R+, where f ∈ L p(R+).

(b) Necessity. The inverse assertion follows from [3, Theorem 2].
(c) Proof of inequalities (7.4) and (7.5). Under condition f ∈ L p(R+) byTheorem

5 from [17] in the case γ = 2/p − 1, p = q = r , we deduce the inequality (7.4).
For the proof of (7.5) let us consider the sequence of functions {gn(x)}n∈Z+ such

that gn(x) = g(x) − g(mn) if x ∈ [0,mn) and gn(x) = 0 if x ∈ [mn,∞). These
functions satisfy the same conditions as the function g above, and therefore we
can find fn ∈ L p(R+) such that f̂n = gn . By Corollary 2 from [18] we have
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fn(x) = lim
i→∞

∫

Bi

gn(t)χ(x, t) dt =
∫

Bn

gn(t)χ(x, t) dt

for a.e. x ∈ R+. The last expression is constant on all I nk , k ∈ Z+ (see Introduction).
Changing fn on a set of measure zero, we can state fn ∈ Gn .

Further the function

g(x) − gn(x) =
{
g(mn), x ∈ [0,mn);
g(x), x ∈ [mn,∞);

is non-increasing onR+, tends to zerowhen x → +∞ and also satisfies the condition
(g(x) − gn(x))x1−2/p ∈ L p(R+). According to (7.4) we find that

‖ f − fn‖p ≤ C1

(∫ ∞

0
(g(x) − gn(x))

px p−2 dx

)1/p

≤

≤ C1

(
mp−1

n

p − 1
gp(mn) +

∫ ∞

mn

g p(x)x p−2 dx

)1/p

.

Theorem is proved. �

Remark 1 For cosine Fourier transform close to Theorem7.1 and Lemma2 results
were obtained by G. Hardy and J.E. Littlewood (see [19, Chap. 4, Theorems 79,
80, 82]). The estimate (7.5) is an analogue of A.A. Konjushkov inequality for best
approximations of sums of trigonometric series [20].

Theorem 7.2 Let f ∈ L1(R+) be such that f̂ ∈ L1(R+), while {εn}∞n=0 be decreas-
ing to zero. Then f satisfies the relation

∫ ∞
mn

| f̂ (t)| dt = O(εn), n ∈ Z+, if and only
if f = g ∗ h, where g, h ∈ L2(R+) and

Emn (g)2 = O(ε1/2n ), Emn (h)2 = O(ε1/2n ), n ∈ Z+.

Proof Sufficiency. Let f = g ∗ h, g, h ∈ L2(R+), and Emn (g)2 = O(ε
1/2
n ), Emn

(h)2 = O(ε
1/2
n ), n ∈ Z+. We set gn = g ∗ Dmn , where Dy(x) is defined in Lemma1

(hn and fn are defined in a similar manner). Then by A.V. Efimov inequality (7.3)
we have ‖g − gn‖2 ≤ 2Emn (g)2 and ‖h − hn‖2 ≤ 2Emn (h)2, n ∈ Z+. We write the
equality

(g − gn) ∗ (h − hn) = g ∗ h − gn ∗ h − hn ∗ g + gn ∗ hn.

By Lemmas 1 and 5 we obtain ̂Dmn ∗ Dmn (x) = (̂Dmn (x))
2 = X [0,mn) and by the

uniqueness theorem the equalities Dmn ∗ Dmn = Dmn and gn ∗ h = g ∗ Dmn ∗ h =
g ∗ hn = gn ∗ hn are valid. Therefore, (g − gn) ∗ (h − hn) = f − fn and f̂ − f̂n =
f̂ (1 − X [0,mn)) = f̂ X [mn ,∞). Thus, we obtain due to the Cauchy–Bunyakovsky–
Schwarz inequality and the analogue of Plancherel theorem



136 B.I. Golubov and S.S. Volosivets

∫ ∞

mn

| f̂ (t)| dt = ‖ f̂ − f̂n‖1 = ‖(ĝ − ĝn)(̂h − ĥn)‖1 ≤

≤ ‖ĝ − ĝn‖2‖ĥ − ĥn‖2 = ‖g − gn‖2‖h − hn‖2 ≤ C1εn.

Necessity. Let us construct g, h ∈ L2(R+) such that f = g ∗ h. We introduce
the functions ψ(x) = | f̂ (x)|1/2 and ϕ(x) = | f̂ (x)|1/2sign( f̂ (x)), where sign(z) =
exp(i arg z) for z ∈ C. Further we define g and h as the inverse Fourier multiplica-
tive transforms ϕ̌ and ψ̌ . Then we obtain f̂ = ϕψ = ĝĥ = ĝ ∗ h by Lemma5 and
f = g ∗ h by the uniqueness theorem. Now we have again ĝ − ĝn = ĝX [mn ,∞) and,
by the analogue of Plancherel theorem, ‖ĝ − ĝn‖2 = ‖g − gn‖2. Finally,

‖g − gn‖2 = ‖h − hn‖2 =
(∫ ∞

mn

|̂g(x)|2 dx
)1/2

=
(∫ ∞

mn

| f̂ (x)| dx
)1/2

≤ C2ε
1/2
n ,

and Emn ( f )2,Emn (g)2 ≤ C2ε
1/2
n . Theorem is proved. �

Theorem 7.3 (1) Let 1 < q1, q2 < 2, 3/2 < 1/q1 + 1/q2 < 2, 1/r = 1/q1 + 1/
q2 − 1, 1/r + 1/r ′ = 1. If f ∈ Lq1(R+), g ∈ Lq2(R+), then h = f ∗ g ∈ Lr (R+)

and the inequalities

‖ĥ‖r ′ ≤ ‖ f ‖q1‖g‖q2;
(∫ ∞

mn

|̂h(t)|r ′
dt

)1/r ′

≤ 4Emn ( f )q1Emn (g)q2 , n ∈ Z+,

(7.8)
are valid.

(2) Under conditions of part (1) for 2 ≥ θ > r and 0 < γ < r ′ there exist f0 ∈
Lq1(R+) and g0 ∈ Lq2(R+) such that h0 = f0 ∗ g0 /∈ Lθ (R+) and ĥ0 /∈ Lγ (R+).

Proof (1) We set again hn = h ∗ Dmn , fn and gn are defined similarly. The first
inequality (7.8) follows from Lemma4 and inequality (7.2). To prove the second
inequality we write similar to the proof of Theorem7.2 h − hn = ( f − fn) ∗ (g −
gn) ĥ − ĥn = ĥX [mn ,∞). Applying Lemma4, (7.2) and (7.3), we obtain

(∫ ∞

mn

|̂h(t)|r ′
dt

)1/r ′

= ‖ĥ − ĥn‖r ′ ≤ ‖h − hn‖r ≤

≤ ‖ f − fn‖q1‖g − gn‖q2 ≤ 4Emn ( f )q1Emn (g)q2 .

(2) Let b(x) = x−1/q ′
1(log2 x + 1)−1 if x ∈ [1,∞) and b(x) = 1 if x ∈ [0, 1).

Then bq1(x)xq1−2 = x−1(log2 x + 1)−q1 for x ≥ 1 and bq1(x)xq1−2 is equal to xq1−2

on (0, 1), so bq1(x)xq1−2 ∈ L1(R+) and by Theorem7.1 there exists f0 ∈ Lq1(R+)

such that f̂0 = b. Also there exists g0 ∈ Lq2(R+) such that

ĝ0(x) =
{
x−1/q ′

2(log2 x + 1)−1, x ≥ 1;
1, x ∈ [0, 1).
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If 2 ≥ θ > r , we have for h0 = f0 ∗ g0 and x ≥ 1

(ĥ0(x))
θ xθ−2 = ( f̂0(x)ĝ0(x))

θ xθ−2 = x−θ(1−1/q1+1−1/q2)+θ−2(log2 x + 1)−2θ =

= xθ/r−2(log2 x + 1)−2θ /∈ L1[1,+∞).

Since ĥ0(x) = f̂0(x)ĝ0(x) is decreasing and integrable on [0, 1), by Theorem7.1 we
conclude that h0 /∈ Lθ (R+). If 0 < γ < r ′, we find that

∫ ∞

1
(ĥ0(x))

γ dx =
∫ ∞

1
( f̂0(x)ĝ0(x))

γ dx =
∫ ∞

1
x−γ /r ′

(log2 x + 1)−2γ dx = ∞.

Theorem is proved. �

Remark 2 Amore general statement than existence of h0 = f0 ∗ g0 /∈ Lθ (R+) may
be found in Theorem 1.1 (iii) in [21] for locally compact but non-compact groups.
Our proof is more simple.

Remark 3 The statements of part (1) of Theorem7.3 are valid for 1 ≤ q1, q2 ≤ 2 and
3/2 ≤ 1/q1 + 1/q2 ≤ 2. In the case r ′ = ∞ the left-hand side of second inequality
(7.8) must be replaced by ‖ĥX [mn ,∞)‖∞. In Theorem7.4 we establish the sharpness
of this more general assertion.

Theorem 7.4 Let 1 ≤ q1, q2 ≤ 2, 3/2 ≤ 1/q1 + 1/q2 ≤ 2, 1/r = 1/q1 + 1/q2 − 1
and 1/r + 1/r ′ = 1, the sequences {νn}∞n=0 and {μn}∞n=0 are decreasing to zero and
satisfy the conditions

∞∑

k=n

ν
q1
k = O(νq1

n ),

∞∑

k=n

μ
q2
k = O(μq2

n ), νn ≤ Cνn+1, μn ≤ Cμn+1, n ∈ Z+.

Then there exist functions f0 ∈ Lq1(R+) and g0 ∈ Lq2(R+) such that Emn ( f0)q1 �
νn, Emn (g0)q2 � μn, n ∈ Z+, and for convolution h0 = f0 ∗ g0 ∈ Lr (R+) we have
ĥ0(x) ≥ 0 on R+ and

(∫ ∞

mn

(ĥ0(x))
r ′
dx

)1/r ′

� νnμn, n ∈ Z+. (7.9)

Proof (1) Let q1, q2 > 1. We set b(x) = m
−1/q ′

1
n νn on [mn,mn+1), n ∈ Z+, and

b(x) = ν0 for x ∈ [0, 1). Then we obtain

bq1(x)xq1−2 ≤
(
N 1/q ′

1x−1/q ′
1νnx

1−2/q1
)q1 = Nq1−1x−1νq1

n

on [mn,mn+1), n ∈ Z+, and

http://dx.doi.org/10.1007/978-981-10-3758-0_1
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∫ ∞

0
bq1(x)xq1−2 dx = ν

q1
0

∫ 1

0
xq1−2 dx +

∞∑

n=0

∫ mn+1

mn

bq1(x)xq1−2 dx ≤

≤ ν
q1
0

q1 − 1
+

∞∑

n=0

νq1
n Nq1−1

∫ mn+1

mn

x−1 dx ≤ C1

∞∑

n=0

νq1
n < ∞,

where C1 depends on the majorant N of sequence {pi }i∈N and q1. Since b(x) is
decreasing on (0,∞) and b ∈ L1[0, 1), by Theorem7.1 there exists f0 ∈ Lq1(R+)

such that f̂0 = b. For n ∈ Z+ we have

Emn ( f0)q1 ≤ C2

(
mq1−1

n bq1 (mn) +
∫ ∞

mn

bq1 (x)xq1−2 dx

)1/q1
≤

≤ C2

(
ν
q1
n +

∞∑

k=n

mq1−2
k (mk+1 − mk)m

1−q1
k ν

q1
k

)1/q1

≤ C3

(
ν
q1
n +

∞∑

k=n

ν
q1
k

)1/q1

≤ C4νn .

On the other hand, by inequality (7.3) we obtain

Emn ( f0)q1 ≥ 1

2
‖ f0 − Smn ( f0)‖q1 ≥ 1

2
‖ f̂0 − ̂f0 ∗ Dmn‖q ′

1
=

= ‖bX [mn ,∞)‖q ′
1
=

( ∞∑

k=n

m−1
k ν

q ′
1

k (mk+1 − mk)

)1/q ′
1

≥ νn, n ∈ Z+.

Similarly, we prove the existence of g0 ∈ Lq2(R+) such that ĝ0(x) = m
−1/q ′

2
n μn on

[mn,mn+1), n ∈ Z+, ĝ0(x) = μ0 for x ∈ [0, 1) andEmn (g0)q2 � μn , n ∈ Z+. Finally,
by Lemma5 ĥ0 = f̂0 ĝ0 a.e. on R+, whence the equality

ĥ0(x) =
{
1, x ∈ [0, 1);
m−2+1/q1+1/q2

n νnμn, x ∈ [mn,mn+1), n ∈ Z+;

follows. Therefore (2 − 1/q1 − 1/q2 = 1 − 1/r = 1/r ′),

∫ ∞

mn

(ĥ0(x))
r ′
dx =

∞∑

k=n

m−1
k νr

′
k μr ′

k (mk+1 − mk) ≤ N
∞∑

k=n

νr
′

k μr ′
k . (7.10)

But the decreasing of {νn}∞n=0 and the condition
∑∞

k=n μ
q2
k = O(μ

q2
n ) imply

∞∑

k=n

νr
′

k μr ′
k ≤ νr

′
n

∞∑

k=n

μr ′
k ≤ C5ν

r ′
n μr ′

n .
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Here we use the inequality q2 ≤ 2 ≤ r ′ and the Jensen inequality of type

( ∞∑

k=n

μr ′
k

)1/r ′

≤
( ∞∑

k=n

μ
q2
k

)1/q2

≤ C6μn.

Finally, by (7.10)

∫ ∞

mn

(ĥ0(x))
r ′
dx ≥

∞∑

k=n

m−1
k νr

′
k μr ′

k mk ≥ νr
′

n μr ′
n .

From obtained inequalities the relation (7.9) follows.
(2) If q1 = 1, then we consider the function f0 = ∑∞

n=0 νn(Dmn+1 − Dmn ). By
Lemma1, (7.2) and (7.3) we have

Emn ( f0)1 ≤
∞∑

k=n

νk‖Dmk+1 − Dmk‖1 ≤ 2
∞∑

k=n

νk ≤ C7νn

and

Emn ( f0)1 ≥ 2−1‖ f0 − f0 ∗ Dmn‖1 ≥ 2−1‖ f̂0 − ̂f0 ∗ Dmn‖∞ = 2−1‖ f̂0X [mn ,∞)‖∞.

(7.11)

Since f̂0 = ∑∞
k=0 νk X [mk ,mk+1) and {νk}∞k=0 is decreasing, the norm in the right-

hand side of (7.11) is equal to νn . The function g0 for 1 < q2 ≤ 2 is defined as in
the part 1, while for q2 = 1 we set g0 = ∑∞

n=0 μn(Dmn+1 − Dmn ). We have again
Emn (g0)q2 � μn , n ∈ Z+, and (1/q ′

2 = 0 for q2 = 1)

ĝ0(x) =
∞∑

k=0

m
−1/q ′

2
k μk X [mk ,mk+1)(x), x ≥ 1.

By Lemma5 we obtain for h0 = f0 ∗ g0 the equality

ĥ0(x) = f̂0(x)ĝ0(x) =
{
0, x ∈ [0, 1),
m

−1/q ′
2

k μkνk, x ∈ [mk,mk+1), k ∈ Z+.

In the case q1 = 1 we obtain r = q2 and

(∫ ∞

mn

(ĥ0(x))
r ′
dx

)1/r ′

=
( ∞∑

k=n

m−1
k (mk+1 − mk)ν

q ′
2

k μ
q ′
2
k

)1/q ′
2

. (7.12)
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Similarly to the proof in (1) we establish that the right-hand side of (7.12) has the
same order as νnμn . For q2 = 1 the statement easily follows from the formula for
ĥ0(x). Theorem is proved. �

Acknowledgement The authors are grateful to the referee for the remarks on the first version of
this paper.
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Chapter 8
Tight Wavelet Frames with Matrix Dilations

Maria Skopina

Abstract Construction of compactly supported tight wavelet frames with arbitrary
matrix dilation is discussed. An algorithmic method for the construction of such
frameswith any prescribed approximation order is proposed. Themethod is very suit-
able for practical use. Except of calculating several roots of univariate trigonometric
polynomials (in the sense of Riesz’s Lemma) all steps of the algorithm are described
by explicit formulas. The number of generating wavelet functions depends linearly
on the dimension of the space. The method is based on the polyphase approach.

Keywords Multivariate wavelets · Tight frame · Approximation order
Polyphase method

A wavelet system in L2(R
d) is a set of functions ψ

(ν)
jk , ν = 1, . . . , r, j ∈ Z, k ∈ Z

d ,

where ψ
(ν)
jk (x) = m j/2ψ(ν)(M j x + k), M is an integer d × d matrix such that all its

eigenvalues are strictly bigger in module than 1, m = | det M |. A wavelet system
is a tight frame if there exist positive number A > 0 such that

∑
j,k,r |〈 f, ψ(ν)

jk 〉|2 =
A‖ f ‖2 for every f ∈ L2(R

d). Without loss of generality, we set A = 1. The notion
of frame was introduced by Duffin and Schaeffer in [4]. The main property of tight
frames lies in the fact that any function f ∈ L2(R

d) can be expanded into the uncon-
ditionally convergent series

f =
∑

j,k,r

〈 f, ψ(ν)
jk 〉ψ(ν)

jk . (8.1)

A general scheme for the construction of wavelet frames is known. This scheme
is based on a method called Matrix Extension Principle, which was developed by
Ron and Shen in [7]. However, the implementation of this principle for the con-
struction of compactly supported wavelet frames is difficult in practice. A difficulty
arises in finding suitable trigonometric polynomials m0 (refinable mask) and mν ,
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ν = 1, . . . , r , (wavelet masks), or equivalently, their polyphase matrices, i.e., the
matrix consisting of trigonometric polynomials μνk , k = 0, . . . ,m − 1, which are
polyphase components (with respect to M) of mν , ν = 0, . . . , r respectively (see.,
e.g., [11, Sect. 6]). The columns of thismatrix should be biorthonormal. Thenmν , and
hence a polyphase matrix with orthonormal columns should be constructed. Main
difficulties are connected with the following. First, an analog of the Riesz Lemma
does not exist in the multivariate case. Second, there is an open algebraic problem
of possibility to extend any suitable row to a unitary matrix.

If a polyphase matrix is constructed, then it is easy to find all masksmν . Refinable
mask m0 provides refinable function ϕ by means of their Fourier transform defined
by

ϕ̂(ξ) =
∞∏

j=1

m0(M
∗− jξ).

The wavelet functions ψ(ν), ν = 1, . . . , r , are defined by

ψ̂(ν)(ξ) = mν(M
∗−1ξ)ϕ̂(M∗−1ξ).

If the above scheme is implemented, then the wavelet system {ψ(ν)
jk } is a tight frame.

Different approaches for the construction of multivariate compactly supported
tight wavelet frames have been proposed in many papers, see, e.g., [1–3, 5, 6, 8, 9]
and references therein. Moreover, a lot of concrete examples useful for applications
can be found in the literature.Wepropose an approach based on the polyphasemethod
developed in [10].

Let {ψ(ν)
jk } be a tight wavelet frame. Expansion (8.1) is said to have approximation

order n if there exist C > 0 and λ > 1 such that
∥
∥
∥
∥
∥
∥
f −

∑

i< j

∑

k∈Zd

r∑

ν=1

〈 f, ψ(ν)
ik 〉ψ(ν)

ik

∥
∥
∥
∥
∥
∥
2

≤ C
‖ f ‖Wn

2

λ jn
. (8.2)

for any f in the Sobolev space Wn
2 .

A wavelet system {ψ(ν)
jk } is said to have property VMn, n ∈ Z+, (vanishing

moment property of order n) if Dβψ̂(ν)(0) = 0, ν = 1, . . . , r , r ≥ m − 1, for all
β ∈ Z

d+, ‖β‖1 ≤ n.
It is well known that the vanishing moment property is required to provide desir-

able approximation order of the frame expansion. This fact can be found in the
literature in many different forms. We present the following statement which is a
special case of Theorem 4 in [10].

Proposition 8.1 Let {ψ(ν)
jk } be a compactly supported tight wavelet frame with

VMn−1 property. Then expansion (8.1) has approximation order n, and any number
which is bigger than 1 and strictly smaller in modulus than each eigenvalue of M,
can be taken as λ in (8.2). If M = cId , then one can take λ = |c|.
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Existence of compactly supported tight wavelet frames with vanishing moments
up to any given order was proved by Han in [5]. He proved that for every matrix
dilation there exist at most

(
3
2

)d
m smooth compactly supported wavelet functions

ψ(ν) generating a tight frame constructed. We provide an algorithmic method for
the construction of wavelet tight frames, where the number of generating wavelet
functions depends linearly on the dimension of the space d as well as onm. Namely,
the following statement holds.

Theorem 8.1 For any matrix dilation M and any natural n, there exists a tight
wavelet frame generated by compactly supported functions ψ(ν), ν = 1, . . . , r , with
vanishing moments up to order n, where r ≤ d(m − 1) + m.

The proof is based on the polyphase method developed in [10]. Combining
Theorems 11, 14 in [10] and Proposition 3 in [12], we have the following state-
ment which clarifies how to provide VMn property for tight wavelet frames.

Theorem 8.2 Let a tight wavelet frame {ψ(ν)
jk } be generated by a refinable mask

m0 for which μ00, . . . , μ0m−1 are polyphase components. If {ψ(ν)
jk } has VMn prop-

erty, then there exist complex numbers λγ , γ ∈ Z
d+, ‖γ ‖1 ≤ n, λ0 = 1, such that the

relations

Dβμ0k(0) = 1√
m

∑

0≤γ≤β

λγ

(
β

γ

)

(−2π iM−1sk)
β−γ ∀β ∈ Z

d
+, ‖β‖1 ≤ n

(8.3)

hold for all k = 0, . . . ,m − 1, and

∑

0≤γ≤α

(
α

γ

)

λγ λα−γ = 0 ∀α ∈ Z
d
+, 0 < ‖α‖1 ≤ n. (8.4)

Theorem8.2 gives a necessary condition forVMn property,which is not sufficient.
A sufficient condition is given in the following statement.

Theorem 8.3 Let μ00, . . . , μ0m−1 be trigonometric polynomials. If there exist com-
plex numbers λγ , γ ∈ Z

d+, ‖γ ‖1 ≤ n, λ0=1, satisfying (8.3) for all k = 0, . . . ,m − 1,
and there exist trigonometric polynomials μ0k , k = m, . . . , r , μνk , ν = 1, . . . , r ,
k = 0, . . . , r , r ≥ m − 1, such that the matrix M ext := {μνk}rν,k=0 is unitary and

Dβμ0k(0) = 0, k = m, . . . , r, ∀β ∈ Z
d
+, ‖β‖ ≤ n, (8.5)

then the matrix M consisting of m first columns of M ext generates a compactly
supported tight wavelet frame with VMn property.

The proof follows immediately from Theorem 8 in [10].
Thus to construct a compactly supported tight wavelet frame with VMn property

we need a refinable mask whose polyphase row (μ00, . . . , μ0m−1) satisfies (8.3),
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(8.4) and can be extended by trigonometric polynomials μ0m, . . . , μ0r so that (8.5)
holds and

∑r
k=0 |μ0k |2 = 1. After that the row (μ00, . . . , μ0r ) should be extended

to a unitary matrix. As was mentioned above, a possibility of such extension in the
general case is an open problem.

According to this method, we find trigonometric polynomials μ00, . . . , μ0m−1 so
that their derivatives up to order n at zero satisfy (8.3). It is possible to choose numbers
λα such that each of these functions is a tensor product of trigonometric polynomials
of one variable, and the sum of their squired magnitudes does not exceed 4. Due
to the Riesz’s Lemma, the difference 4 − ∑m−1

k=0 |μ0k |2 can be represented as the
sum of squired magnitudes of trigonometric polynomials μ0m, . . . , μ0r−1, where
r = d(m − 1) + m. This row cannot be extended to a unitary matrix. It is possible
to fix these functions preserving the values of their derivatives at zero setting σ :=∑m−1

k=0 |μ0k |2,

μ′
0k := 3 − σ

2
μ0k, k = 0, . . . ,m − 1, μ′

0k := 1 − σ

2
μ0k, k = m, . . . , r − 1.

Due to the identity 4 − (3 − σ)2σ = (1 − σ)2 (4 − σ), we have
∑r−1

k=0 |μ′
0k |2 ≡ 1.

Next we add the function μ′
0r ≡ 0. Since μ′

0r ≡ const, the row μ′
00, . . . , μ

′
0r can be

extended to a unitary matrix using Householder transformation. Namely, the entries
μνk , ν = 1, . . . , r , of the matrix M ext are given by

μνr := μ0,r−ν, μνk := δr−ν,k − μ0kμ0,r−ν, k = 0, . . . , r − 1, ν = 1, . . . , r.

All conditions of Theorem 8.3 are satisfied, and hence thematrixM consisting of the
first m columns of the constructed unitary matrix {μνk}rν,k=0 generates a compactly
supported tight wavelet frame with VMn property.

A frame constructed according to Theorem 8.2 has approximation order n + 1.
Note also that our method is suitable for practical use. Except several calculating
roots of univariate trigonometric polynomials (in the sense of Riesz’s Lemma), all
steps of the algorithm are described explicitly. For a large class of matrices M ,
slight modification of the algorithm leads to its simplification and significantly fewer
number of wavelet functions.

Acknowledgements This research is supported by the RFBR grant # 15-01-05796 and the SPbGU
grant # 9.38.198.2015
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Chapter 9
First-Order and Second-Order Adjoint
Methods for the Inverse Problem of
Identifying Non-linear Parameters in PDEs

M. Cho, B. Jadamba, R. Kahler, A.A. Khan and M. Sama

Abstract The primary objective of this work is to develop a computational frame-
work for the inverse problem of identifying variable parameters appearing non-
linearly in a variational problem. We propose a new first-order adjoint method and
two new second-order adjoint methods. All the derivative formulas are given in con-
tinuous as well as discrete setting. Detailed numerical examples are given to show
the feasibility of the proposed framework.

Keywords Inverse problems · Variational problems · Regularization
Output least-squares · First-order adjoint method · Second-order adjoint method

9.1 Introduction

Let V be a Hilbert space and let B be a Banach space. Let A be a nonempty, closed
and convex subset of B. Let T : B × V × V → R be linear and symmetric with
respect to the second and third arguments, but in general non-linear in the first
argument, and let m : V → R be a linear and continuous map. We assume that
T is twice Fréchet differentiable with respect to the first argument and the partial
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derivative of T with respect a, denoted by ∂aT (a, u, v), is linear and symmetric
with respect to the second and the third arguments, that is, for all u, v ∈ V, we
have ∂aT (a, u, v) = ∂aT (a, v, u) and ∂aT (a, ·, v) and ∂aT (a, u, ·) are linear. We
assume that there are constants α > 0, β > such that

T (a, u, v) ≤ β‖a‖B‖u‖V ‖v‖V , for all u, v ∈ V, a ∈ B, (9.1a)

T (a, u, u) ≥ α‖u‖2
V , for all u ∈ V, a ∈ A. (9.1b)

Consider the following variational problem: Given a ∈ A, find u ∈ V such that:

T (a, u, v) = m(v), for every v ∈ V . (9.2)

Our focus is on the inverse problem of identifying a parameter a ∈ A for which
a solution u of the variational problem (9.2) is closest, in some norm, to a given
measurement z of u.

In view of the imposed coercivity and continuity of T (·, ·), the Lax–Milgram
lemma at once ensures that for every a ∈ A, there exists a unique u ∈ V satisfying
(9.2), that is, for every a ∈ A, the map a → S(a) = u(a) is well-defined and single-
valued.

9.2 Output Least-Squares Formulation
for the Inverse Problem

We consider the following output least-squares (OLS) functional

J (a) = 1

2
‖u(a) − z‖2 (9.3)

where z is the measured data and u(a) solves the variational problem (9.2).
Since inverse problems are known to be ill-posed, the OLS functional (9.3) needs

to be regularized (see [3–6]). Consequently, we will study the following regularized
optimization problem: Find a ∈ A by solving the following:

min
a∈A

Jκ(a) = 1

2
‖u(a) − z‖2 + κR(a), (9.4)

where, given a Hilbert space H , R : H → R is a regularizer, κ > 0 is a regularization
parameter, u(a) is the unique solution of (9.2) that corresponds to the coefficient a
and z is the measured data. Throughout this work, we assume that the map R is twice
differentiable.

We have the following result concerning the solvability of the above optimization
problem:
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Theorem 9.1 Assume that the Hilbert space H is compactly embedded into the
space B, A ⊂ H is nonempty, closed and convex, the map R is convex, lower semi-
continuous and there exists α > 0 such that R(a) ≥ α‖a‖2

H , for every a ∈ A. Then
(9.4) has a nonempty solution set.

Remark 9.1 A natural choice of spaces and the regularizer involved in the above
result is H = H2(Ω), B = L∞(Ω) and R(a) = ‖ · ‖2

H2(Ω). Evidently, this choice
is only satisfactory for smooth parameters. However, for discontinuous parameters
total variation regularization can be employed and the framework given in [6] easily
extends to the case of non-quadratic regularizers.

The following result will play a key role:

Theorem 9.2 For each a in the interior of A, u(a) is infinitely differentiable at a.

The first derivative of u at a in the direction δa, denoted by δu(a), is the unique
solution of the variational problem:

T (a, δu, v) = −∂aT (a, u, v)(δa), for every v ∈ V . (9.5)

Proof The proof is based on standard arguments.

9.3 Derivative Formulae

In this section, our objective is to derive a first-order adjoint method to compute the
first-order derivative of the regularized OLS, and two second-order adjoint methods
for the computation of its second-order derivative. We note that the adjoint approach is
a very commonly used idea for derivative computation in inverse and shape optimiza-
tion problems. Some of the recent developments, mostly for the first-order adjoint
methods, can be found in [1, 2, 7–9] and the cited references therein.

9.3.1 First-Order Adjoint Method

Since the regularized output least-squares functional is given by:

Jκ(a) = 1

2
‖u(a) − z‖2 + κR(a),

it follows, by using the chain rule, that the derivative of Jκ at a ∈ A in any direction
δa is given by

DJκ(a)(δa) = 〈Du(a)(δa), u(a) − z〉 + κDR(a)(δa),
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where Du(a)(δa) is the derivative of the coefficient-to-solution map u and DR(a)

(δa) is the derivative of the regularizer R, both computed at a in the direction δa.

For an arbitrary v ∈ V, we define the functional Lκ : B × V → R by

Lκ(a, v) = Jκ(a) + T (a, u, v) − m(v).

Since u(a) is the solution of variational problem (9.2), for every v ∈ V, we have
Lκ(a, v) = Jκ(a), and consequently, for every v ∈ V and for every direction δa, we
have

∂a Lκ(a, v) (δa) = DJκ(a) (δa) .

The key idea for the first-order adjoint method is to choose v to bypass a direct
computation of δu = Du(a)(δa). To get an insight into such a choice of v, we use
the chain rule again to obtain

∂a Lκ(a, v) (δa) = 〈Du(a)(δa), u − z〉 + κDR(a)(δa) + ∂aT (a, u, v)(δa)

+ T (a, Du(a)(δa), v). (9.6)

For a ∈ A, let w(a) be the unique solution of the variational problem

T (a,w, v) = 〈z − u, v〉 , for every v ∈ V, (9.7)

where the right-hand side involve the solution u of (9.2) and the data z.
By plugging v = w in (9.6), using (9.7) and the symmetry of T and ∂aT, we obtain

∂a Lκ(a,w) (δa) = 〈Du(a)(δa), u − z〉 + κDR(a)(δa) + ∂aT (a, u,w)(δa)

+ T (a, Du(a)(δa),w)

= 〈Du(a)(δa), u − z〉 + κDR(a)(δa) + T (a,w, Du(a)(δa)) + ∂aT (a,w, u)(δa)

= 〈Du(a)(δa), u − z〉 + κDR(a)(δa) + 〈z − u, Du(a)(δa)〉 + ∂aT (a,w, u)(δa)

= κDR(a)(δa) + ∂aT (a,w, u)(δa),

which yields the following formula for the first-order derivative of Jκ :

DJκ(a) (δa) = κDR(a)(δa) + ∂aT (a,w, u)(δa). (9.8)

Summarizing, the following scheme computes DJκ(a) (δa) for the direction δa:

1. Compute u(a) by using (9.2).
2. Compute w(a) by using (9.7).
3. Compute DJκ(a) (δa) by using (9.8).

Remark 9.2 Note that if T is linear in the first argument, then (9.8) becomes

DJκ(a) (δa) = κDR(a)(δa) + T (δa,w, u), (9.9)
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and the above algorithm can be used for this case by computing DJκ(a) (δa) by
(9.9).

9.3.2 Second-Order Adjoint Method

We now give a second-order adjoint method for the computation of the second-
order derivative of the regularized OLS functional. The aim is to give a formula
for the second-order derivative that does not involve the second-order derivative of
the parameter-to-solution map u. The key idea is to compute δu directly by using
Theorem 9.2 while the computation of δ2u is avoided by using an adjoint approach.

Given a fixed direction δa2 and an arbitrary v ∈ V , we define

Lκ(a, v) = DJκ(a)(δa2) + T (a, Du(a)(δa2), v) + ∂aT (a, u, v)(δa2)

= 〈Du(a)(δa2), u − z〉 + κDR(a)(δa2) + T (a, Du(a)(δa2), v)

+ ∂aT (a, u, v)(δa2).

Evidently, by the definition of Lκ , for every v ∈ V, and any direction δa1, we have

∂a Lκ(a, v)(δa1) = D2 Jκ(a)(δa1, δa2).

Computing this derivative of Lκ in the direction δa1 directly, we have

∂a Lκ (a, v)(δa1) = 〈
D2u(a)(δa1, δa2), u − z

〉 + 〈Du(a)(δa2), Du(a)(δa1)〉
+ κD2R(a)(δa1, δa2) + T (a, D2u(a)(δa1, δa2), v) + ∂aT (a, Du(a)(δa2), v)(δa1)

+ ∂aT (a, Du(a)(δa1), v)(δa2) + ∂2
a T (a, u, v)(δa1, δa2).

Let w(a) be the solution of the variational problem (9.7). By plugging v = w in the
above, we get

∂a Lκ (a,w)(δa1) =
〈
D2u(a)(δa1, δa2), u − z

〉
+ 〈Du(a)(δa2), Du(a)(δa1)〉

+ κD2R(a)(δa1, δa2) + T (a, D2u(a)(δa1, δa2),w) + ∂aT (a, Du(a)(δa2),w)(δa1)

+ ∂2
a T (a, u,w)(δa1, δa2) + ∂aT (a, Du(a)(δa1),w)(δa2)

=
〈
D2u(a)(δa1, δa2), u − z

〉
+ 〈Du(a)(δa2), Du(a)(δa1)〉 + κD2R(a)(δa1, δa2)

+ ∂aT (a, Du(a)(δa2),w)(δa1) + ∂aT (a, Du(a)(δa1),w)(δa2)

+ ∂2
a T (a, u,w)(δa1, δa2) −

〈
D2u(a)(δa1, δa2), u − z

〉

= κD2R(a)(δa1, δa2) + 〈Du(a)(δa2), Du(a)(δa1)〉 + ∂aT (a, Du(a)(δa2),w)(δa1)

+ ∂aT (a, Du(a)(δa1),w)(δa2) + ∂2
a T (a, u,w)(δa1, δa2).
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Consequently, it follows that:

D2 Jκ(a)(δa1, δa2) = κD2R(a)(δa1, δa2) + 〈Du(a)(δa2), Du(a)(δa1)〉
+ ∂aT (a, Du(a)(δa2),w)(δa1) + ∂aT (a, Du(a)(δa1),w)(δa2)

+ ∂2
a T (a, u,w)(δa1, δa2).

In particular, we have the following:

D2 Jκ(a)(δa, δa) = κD2R(a)(δa, δa) + 〈δu, δu〉 + 2∂aT (a, δu,w)(δa)

+ ∂2
a T (a, u,w)(δa, δa). (9.10)

Summarizing, the following scheme computes the derivative D2 Jκ(a)(δa, δa) for
any direction δa :
1. Compute u(a) by (9.2).
2. Compute δu by (9.5).
3. Compute w(a) by (9.7).
4. Compute D2 Jκ(a)(δa, δa) by (9.10).

Remark 9.3 Note that if T is linear in the first argument, then (9.5) reads

T (a, δu, v) = −T (δa, u, v), for every v ∈ V . (9.11)

Moreover, by using the above analogue and the linearity of T , the formula (9.10)
reads:

D2 Jκ(a)(δa, δa) = κD2R(a)(δa, δa) + 〈δu, δu〉 + 2T (δa, δu, w̄), (9.12)

and hence the above scheme can be modified by computing D2 Jκ(a)(δa, δa) by
(9.12) for this case.

9.3.3 Second-Order Derivative Using the First-Order Adjoint
Formula

We now give a direct second-order adjoint method for the computation of the second-
order derivative of the regularized OLS functional. The goal again remains to give
a formula that does not involve the second-order derivative of the map u. The key
idea of the second-order adjoint approach is to use the derivative characterization
Theorem 9.2 twice to avoid a direct computation of δ2u.

We begin with defining the functional Lκ : A × V × V → R by
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Lκ (a, t, s) = DJκ (a)(δa2) + T (a, u, t) − m(t) + T (a,w, s) − 〈z − u, s〉
= κDR(a)(δa2) + ∂aT (a, u,w)(δa2) + T (a, u, t) − m(t) + T (a,w, s) − 〈z − u, s〉 ,

where δa2 is a fixed direction, u is the solution of (9.2), w is the solution of (9.7), t
and s are arbitrary elements in V , and for DJκ(a)(δa2) formula (9.8) was used. By
the definition of the above functional, for every t, s ∈ V , we have

∂a Lκ(a, t, s)(δa1) = D2 Jκ(a)(δa1, δa2).

The derivative of Lκ at a ∈ A in the direction δa1 can easily be computed as
follows:

∂a Lκ(a, t, s)(δa1) = κD2R(a)(δa1, δa2) + ∂2
a T (a, u,w)(δa1, δa2)

+ ∂aT (a, Du(a)(δa1),w)(δa2) + ∂aT (a, u, Dw(a)(δa1))(δa2)

+ T (a, Du(a)(δa1), t) + ∂aT (a, u, t)(δa1) + T (a, Dw(a)(δa1), s)

+ ∂aT (a,w, s)(δa1) + 〈Du(a)(δa1), s〉 . (9.13)

By plugging v = Dw(a)(δa1) in (9.5), we get

T (a, Dw(a)(δa1), Du(a)(δa2)) + ∂aT (a, u, Dw(a)(δa1))(δa2) = 0. (9.14)

Moreover, it can be shown that the derivative Dw(a)(δa2) of the unique solution
w(a) of (9.7) in any direction δa2 is characterized as the solution of the following
variational problem:

T (a, Dw(a)(δa2), v) = −∂aT (a,w, v)(δa2) − 〈Du(a)(δa2), v〉 , for all v ∈ V .

(9.15)
By plugging v = Du(a)(δa1) into (9.15), we deduce

T (a, Du(a)(δa1), Dw(a)(δa2)) + 〈Du(a)(δa2), Du(a)(δa1)〉
+ ∂aT (a,w, Du(a)(δa1))(δa2) = 0. (9.16)

By setting s = Du(a)(δa2) and t = Dw(a)(δa2) in (9.13) and combining the result-
ing expression with (9.14) and (9.16), we obtain the following:



154 M. Cho et al.

∂a Lκ(a, t, s)(δa1) = κD2R(a)(δa1, δa2) + ∂2
a T (a, u,w)(δa1, δa2)

+ ∂aT (a, Du(a)(δa1),w)(δa2) + ∂aT (a, u, Dw(a)(δa1))(δa2)

+ T (a, Du(a)(δa1), Dw(a)(δa2)) + ∂aT (a, u, Dw(a)(δa2))(δa1)

+ T (a, Dw(a)(δa1), Du(a)(δa2)) + ∂aT (a,w, Du(a)(δa2))(δa1)

+ 〈Du(a)(δa1), Du(a)(δa2)〉
= κD2R(a)(δa1, δa2) + ∂2

a T (a, u,w)(δa1, δa2)

+ ∂aT (a, Du(a)(δa2),w)(δa1) + ∂aT (a, u, Dw(a)(δa2))(δa1),

and consequently we obtain the following formula for the second-order derivative of
the regularized OLS that has no involvement of the second-order derivatives of the
solution map:

D2 Jκ(a)(δa1, δa2) = κD2R(a)(δa1, δa2) + ∂2
a T (a, u,w)(δa1, δa2)

+ ∂aT (a, Du(a)(δa2),w)(δa1) + ∂aT (a, u, Dw(a)(δa2))(δa1).

In particular,

D2 Jκ(a)(δa, δa) = κD2R(a)(δa, δa) + ∂2
a T (a, u,w)(δa, δa)

+ ∂aT (a, δu,w)(δa) + ∂aT (a, u, δw). (9.17)

Summarizing, the following scheme computes D2 Jκ(a)(δa, δa) given a ∈ A and a
direction δa:

1. Compute u by (9.2).
2. Compute δu by (9.5).
3. Compute w by (9.7).
4. Compute δw by (9.15).
5. Compute D2 Jκ(a)(δa, δa) by (9.17).

Remark 9.4 Note that if T is linear in the first argument, then (9.15) becomes as
follows:

T (a, Dw(a)(δa), v) = −T (δa,w, v) − 〈Du(a)(δa), v〉 , for all v ∈ V . (9.18)

Moreover, by using (9.11) and the above analogue, the formula (9.17) reads as
follows:

D2 Jκ(a)(δa, δa) = κD2R(a)(δa, δa) + T (δa, u, Dw(a)(δa))

+ T (δa,w, Du(a)(δa)), (9.19)

and hence the above algorithm can be modified by computing D2 Jκ(a)(δa, δa) by
(9.19) for this case.
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9.4 Computational Framework

We begin with a triangulation Th on Ω, Lh is the space of all piecewise continuous
polynomials of degree da relative to Th and Uh is the space of all piecewise continu-
ous polynomials of degree du relative to Th . Let the basis for Ah and Uh be given by
{ϕ1, ϕ2, . . . , ϕm} , and {ψ1, ψ2, . . . , ψk}, respectively. The space Ah is then isomor-
phic toRm and for anya ∈ Lh , we define A ∈ R

m by Ai = a(xi ), for i = 1, 2, . . . ,m,

where the nodal basis {ϕ1, ϕ2, . . . , ϕm} corresponds to the nodes {x1, x2, . . . , xm}.
Conversely, each A ∈ R

m corresponds to a ∈ Ah defined by a = ∑m
i=1 Aiϕi . Sim-

ilarly, u ∈ Uh will correspond to U ∈ R
k , where Ui = u(zi ), i = 1, 2, . . . , k, and

u = ∑k
i=1 Uiψi , where z1, z2, . . . , zk are the nodes of the mesh defining Uh .

The discrete variational problem seeks, for each ah, the unique uh ∈ Vh such that:

T (ah, uh, v) = m(v), for every v ∈ Vh . (9.20)

We define S : Rm → R
k to be the finite element solution operator that assigns to

each ah ∈ Ah, the unique discrete solution uh ∈ Uh . Then S(A) = U , where U is
given by the following:

K (A)U = F, (9.21)

where K (A)i, j = T (a, ψ j , ψi ), i, j = 1, 2, . . . , k.
We discretize T and the derivatives ∂aT and ∂2

a T directly to get

T (a, u, v) =
k∑

i, j=1

T (a,Uiψi , Vjψ j ) = V T K (A)U

∂aT (a, u, v)(δa) =
k∑

i, j=1

∂aT (a,Uiψi , Vjψ j )(δa) = V T K̃A(δA)U,

∂2
a T (a, u, v)(δa, δa) =

k∑

i, j=1

∂2
a T (a,Uiψi , Vjψ j )(δa, δa) = V T K̃ 2

A(δA, δA)U,

with

δa =
m∑

s=1

(δA)sϕs

K̃ A(δA)i, j = ∂aT (a, ψi , ψ j )(δa)

K̃ 2
A(δA, δA)i, j = ∂2

a T (a, ψi , ψ j )(δa, δa).
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9.4.1 Gradient Computation by a Direct Approach

Recall that the regularized OLS functional is given by

Jκ(a) = 1

2
‖u(a) − z‖2 + κR(a),

where z is the measured data and u(a) solves (9.2). The discrete analogue of the
above functional is given by

Jκ(A) := 1

2
(U − Z)TM(U − Z) + κR(A),

where U solves (9.21), the matrix M is given by 〈u1, u2〉V = UT
2 MU1, for any

u1, u2 ∈ Vh, and Z is the discrete data.
The first-order derivative of the above functional

DJκ(a)(δa) = 〈δu, u − z̄〉 + DR (a) (δa),

involves δu(a), which by Theorem 9.2, solves the following variational problem:

T (a, δu, v) = −∂aT (a, u, v)(δa), for every v ∈ V .

By standard arguments, the discrete version of the above system reads as follows:

K (A)δU = −K̃ A(δA)U = −KA(U )δA, (9.22)

where KA is the directional stiffness matrix given by K̃ A(δA)U = KA(U )δA,

for every U ∈ R
k, δA ∈ R

m . Let {E1, E2, . . . , Em} be the basis of R
m . Since

K̃ A(δA)U = (∑m
s=1 δAs K̃ A(Es)

)
U, the matrix KA(U ), consists of columns

K̃ A(Es)U , that is, KA(U ) := [
K̃ A(E1)U K̃A(E2)U · · · K̃ A(Em)U

]
.

Nonetheless, the directional stiffness matrices has the following explicit expres-
sion:

KA(U )i, j = ∂aT (a, u, ϕ j )(χi ) for every i = 1, . . . , k, j = 1, . . . ,m.

The Jacobian ∇U is computed by solving m equations:

K (A)∇iU = −KA(U )i , i = 1, . . . ,m, (9.23)

where KA(U )i denotes i th column. A discrete gradient formula is then given by the
following:

DJκ (A)(δA) = δUT
M(U − Z) + κδAT∇R (A) = δAT∇UT

M(U − Z) + κδAT∇R (A) ,
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which at once leads to the following expression for the gradient as follows:

∇ Jκ(A) = ∇UT
M (U − Z) + κ∇R (A) . (9.24)

Summarizing, we propose the following scheme for the gradient computation:

Step 1. Compute U by solving linear system (9.21).
Step 2. Compute ∇U by solving m linear systems (9.23).
Step 3. Compute ∇ Jκ(A) by using formula (9.24).

9.4.2 Computation of the Gradient Using the First-Order
Adjoint Method

We shall now give a scheme for computing the gradient of the first-order adjoint
approach. Recall that the first-order adjoint approach led to the following formula
for the first-order derivative:

DJκ(a)(δa) = κDR(a)(δa) + ∂aT (a, u,w)(δa) (9.25)

where u and w are the solutions of (9.2) and (9.7), respectively. The discrete counter-
parts of these elements are U , which solves (9.21), and W which solves the system:

K (A)W = M(Z −U ). (9.26)

Therefore, the discrete derivative formula reads as follows:

DJκ(A)(δA) = κ∇R(A)(δA) + δAT
KA(U )TW,

which at once leads to an explicit formula for the gradient as follows:

∇ J (A) = κ∇R(A) + KA(U )TW. (9.27)

We have the following scheme for the derivative:

Step 1. Compute U by solving linear system (9.21).
Step 2. Compute W by solving linear system (9.26).
Step 3. Compute ∇ J (A) by using formula (9.27).

9.4.3 Hessian Computation by the Second-Order Adjoint
Approach

We recall that the second-order adjoint approach led to the following formula
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D2
a Jκ(a)(δa) = κD2R(a)(δa, δa) + 〈δu, δu〉 + 2∂aT (a, δu,w)(δa)

+ ∂2
a T (a, u,w)(δa, δa). (9.28)

To give a discretization of the above formula, we note that for the first term, we have

D2R(a)(δa, δa) = δAT∇2R(A)δA

where ∇2R(A) ∈ R
m×m is the Hessian matrix of the regularization functional.

For the second term, we have 〈δu, δu〉 = δAT∇UT
M∇UδA, and for the third

term, we note that

∂aT (a, δu,w)(δa) = δUT K̃A(δA)W = δAT∇UT
KA(W )δA,

and for the last term, we have

∂2
AK (A, u,w)(δA, δA) = δAT K̃ 2

A(A,U,W )δA,

where K̃ 2
A(A,U,W ) ∈ R

m×m is the matrix defined by the following:

K̃ 2
A(A,U,W )i, j = ∂2

a T (a, u,w)(ϕi , ϕ j ), for every i, j = 1, . . . ,m.

In view of the above formulae, we deduce an explicit formula for the Hessian as
follows:

∇2 Jκ(A) = κ∇2R(A) + ∇UT
M∇U + 2∇UT

KA(W ) + K̃ 2
A(A,U,W ). (9.29)

We have the following scheme for the computation of the Hessian of the regularized
OLS:

Step 1. Compute U by solving linear system (9.22).
Step 2. Compute W by solving linear system (9.26).
Step 3. Compute ∇U by solving m linear systems (9.23).
Step 4. Compute ∇2 Jκ(A) by using formula (9.29).

9.5 Numerical Results

In this section we present some numerical results. We consider the following elliptic
boundary value problem (Example 1)

−∇ · (a∇u) = f in Ω

u = 0 on ∂Ω
(9.30)
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where the domain is Ω = [0, 1]2. The exact coefficient a and the load function f
are given by the following:

a(x, y) = 1 + 0.5

1 + e50||p1−(x,y)||2−3
+ 0.3

1 + e100||p2−(x,y)||2−3

f (x, y) = 1 + 4||(x, y)||

where p1 = (0.6, 0.3) and p2 = (0.4, 0.75). Additionally, we consider an example
(Example 2) again with the same parameter as Example 1 but that appears in the
following:

− ∇ · (ea∇u) = f in Ω (9.31)

We note that in Example 2, T is non-linear in the first argument. For these examples,
the exact solution u is not known. The measured solution z is computed by solving
the problem with the exact parameter a and f . Thereafter the noisy data is created
from a uniform distribution on the interval [−α, α] with α = 0.001, where α is the
noise level, then added to the measured solution z (Fig. 9.1). The optimization was
performed using the Newton method for the second-order algorithm. All coefficients
were identified in a finite dimensional space of dimension of 1129 on a mesh with
2136 triangles. The H 1 semi-norm regularization was used with κ = 7 · 10−8. For
Example 2, the optimization problem was solved using the non-linear Conjugate
Gradient algorithm for the first-order method and the Newton method for the second-
order method, respectively. While the first-order method converges to the solution
in 155 iterations, the second-order method needs 97 iterations when both are started
from the same initial points and performed under the similar stopping criteria (∇ J <

10−10). Subfigure (a) in Figs. 9.2 and 9.3 shows how the comparison of the computed
parameter at several algorithm steps can be seen. We consider (Example 3) the
boundary value problem (9.30), but where the exact coefficient a is

a(x, y) = 1 + xy2 (9.32)

and the exact solution u is given by

u(x, y) = xy(1 − x)(1 − y) (9.33)

The function f in (9.30) can be found from this information. In Figs. 9.4 and 9.5, we
compare two algorithms to Example 3 where T is linear in all arguments.

Finally, we consider a similar example (Example 4) with identifying parameter a
as Example 1 but the differential equation becomes as follows:

− ∇ · (a3∇u) = f in Ω (9.34)

where the exact parameter function a and the load function f are given by the
following:
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Fig. 9.1 Numerical results of Example 1 using the second-order algorithm (total 47 iterations)
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Fig. 9.2 Numerical results of Example 2 using the first-order algorithm (total 155 iterations)
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Fig. 9.3 Numerical results of Example 2 using the second-order algorithm (total 97 iterations)
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Fig. 9.4 Numerical results of Example 3 using the first-order algorithm (total 89 iterations)
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Fig. 9.5 Numerical results of Example 3 using the second-order algorithm (total 29 iterations)
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Fig. 9.6 Numerical results of Example 4 using the second-order algorithm (total 26 iterations)
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a(x, y) = 1 + e||(x,y)||

f (x, y) = 0.5 + ||(x, y)||2 + 1.3[sin(20||(x, y)||) + 1]

In this example, the regularization value is taken as κ = 7 × 10−9 (Fig. 9.6).
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Chapter 10
The Solution of the Hierarchy of Quantum
Kinetic Equations with Delta Potential

Martin Brokate and Mukhayo Rasulova

Abstract The existence of a unique solution, in terms of initial data of the hierarchy
of quantum kinetic equations with delta potential, has been proven. The proof is
based on nonrelativistic quantum mechanics and application of semigroup theory
methods.

10.1 The Dynamics of a One-Dimensional System Bosons
Interacting via a Delta Function Potential

In 1931, Hans Bethe used an ansatz, now known as the Bethe ansatz, to find the exact
eigenvalues and eigenvectors of the one-dimensional Heisenberg model [2]. This
model describes a chain of spin- 12 particles with nearest-neighbor interactions. Since
then, the Bethe ansatz has been used to find a number of exactly solvable quantum
many-body models in one dimension. In 1963, Lieb and Liniger used the Bethe
ansatz to determine the exact solution of a one-dimensional model of interacting
spinless particles with bosonic exchange symmetry [8]. In this model, now known
as the Lieb–Liniger model, N bosons interact on a line of length L via a repulsive
contact potential. Unlike the one-dimensional Heisenberg model, in which spins are
fixed at discrete lattice sites, the Lieb–Liniger model is a continuum model in which
the particles are free to move along a line. The Hamiltonian operator describing this
model is given by [1]

H = −
N∑

i=0

∂2

∂x2i
+ 2c

∑

i< j

δ(xi − x j ). (10.1)
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Here Hamiltonian operator is total energy

H = − �

2m

N∑

i=0

∂2

∂x2i
+ V (x1, . . . , xN ) (10.2)

and where the constant � is called the reduced Planck constant, m is the mass and
V is the potential energy, c > 0 (the repulsive case) and R : all 0 ≤ xi ≤ L . In
(10.1) we suppose that � = 2m = 1.

Function that is often used in physics is the Dirac delta function, designated
δ(x − x0). It is a generalized function that is defined as

δ(x − x0) =
{∞, i f x=x0,
0 i f x �=x0

and has the property

∫ b

a
f (x)δ(x − x0)dx =

{
f (x0) i f a<x0<b,
0 otherwise.

Let the particles be confined between 0 and L on the real line and let SN denote
the symmetric group of all N! permutations of the numbers (1;2;:::;N). The problem
of solving the differential problem related to the Schrödinger equation is reduced by
the Bethe ansatz to a much simpler system of algebraic equations, called the Bethe
ansatz equations:

ψ |x j=xk+0 = ψ |x j=xk−0,

(
∂ψ

∂x j
− ∂ψ

∂xk
)|x j=xk+0 − (

∂ψ

∂x j
− ∂ψ

∂xk
)|x j=xk−0 = 2cψ |x j=xk ,

for all x j = xk for all j, k=1,2, …,N and j �= k. The solution of the Schrödinger
equation in R1 : 0 ≤ x1 ≤ x2 ≤ . . . ≤ xN ≤ L in this case will have Bethe ansatz
form:

ψB(x1, . . . xN ) =
∑

P

a(P)Pexp(i
N∑

j=1

k j x j ),

where the summation extends over all permutations P of an ordered of N numbers
k = k1, . . . , kN , and a(P) are certain coefficients depending on P:

a(P) = −c − i(kα − kβ)

c + i(kα − kβ)
.

In [5] using the ideas of Bethe ansatz given a method to solve the time-dependent
Schrödinger equation for a system of one-dimensional bosons interacting via a repul-
sive delta function potential. Authors of [5] considered the problem of the solution
of time-dependent Schrödinger equation:
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Hψ = i
∂ψ

∂t
,

with initial condition

ψ(x; 0) = ψ(x1, x2, . . . , xN ; 0) = ψ0(x1, x2, . . . , xN ).

The problem of solving reduced to the solution of equation

i
∂ψ

∂t
= −

∑

i

∂2ψ

∂x j

in theR0 : x1 < x2, . . . < xN with the initial condition Schrödinger equation

ψ(x; 0) =
N∏

j=1

δ(x j − y j ) (10.3)

inR : −∞ < x1 ≤ x2 ≤ · · · ≤ xN < ∞ and the boundary condition:

(
∂

∂x j+1
− ∂

∂x j
)ψ |x j+1=x j = cψ |x j+1=x j . (10.4)

for a system of one-dimensional bosons interacting via a delta function potential.
In (10.3) y j ∈ R are fixed and y1 < y2, . . . < yN . Equation (10.4) is the effect of
the δ function which is confined to the boundary of R, e.g., on the hyperplanes
x j+1 = x j . The interest of authors [5] in the Lieb–Liniger model has arisen because
of its connection to ultracold gases confined in a quasi-one-dimensional trap [5, 16].

In present paper, we give approach to solve the time-dependent BBGKY [3, 4]
chain of quantum kinetic equations for a system of one-dimensional bosons inter-
acting via a delta function potential.

Wewill consider a systemN one-dimensional particles contained in a finite region
(vessel) Λ = L3 with volume V = |Λ|. The operators ρΛ

N and Hamiltonian HΛ
N act

in the space H with zero boundary condition [9]. Finally, we get the equation

i
∂ρΛ

s (t, x1, . . . , xs; x ′
1, . . . , x

′
s)

∂t
= [HΛ

s , ρΛ
s ](t, x1, . . . , xs; x ′

1, . . . , x
′
s)

+N

V

(
1 − s

N

)
Trxs+1

∑

1≤i≤s

(
φi,s+1(|xi − xs+1|) − φi,s+1(|x ′

i − xs+1|)
)×

× ρΛ
s+1(t, x1, . . . , xs, xs+1; x ′

1, . . . , x
′
s, xs+1) (10.5)

with initial date
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ρΛ
s (t, x1, . . . , xs; x ′

1, . . . , x
′
s)|t=0 = ρΛ

s (0, x1, . . . , xs; x ′
1, . . . , x

′
s).

for 1 ≤ s < N . For s = N , we have

i
∂ρΛ

N (t, x1, . . . , xN ; x ′
1, . . . , x

′
N )

∂t
= [HΛ

N , ρΛ
N ](t, x1, . . . , xN ; x ′

1, . . . , x
′
N ).

For the case when potential φi, j (xi − x j ) has form delta function δ(xi − x j ) =
δ(xi − xi+1) = 0 for xi �= x j , (i, j = 1, . . . s), 1 ≤ s < N we can reduce
problem (10.5) to solution of system equations:

i
∂ρΛ

s (t, x1, . . . , xs; x ′
1, . . . , x

′
s)

∂t
= [−

s∑

j=1

∂2

∂x2j
, ρΛ

s ](t, x1, . . . , xs; x ′
1, . . . , x

′
s)

with initial date

ρΛ
s (t, x1, . . . , xs; x ′

1, . . . , x
′
s)|t=0 = ρΛ

s (0, x1, . . . , xs; x ′
1, . . . , x

′
s),

where

−
s∑

j=1

(
∂2

∂x2j
)ρΛ

s (0) = EρΛ
s (0)

inside R1, and

( ∂

∂x j+1
− ∂

∂x j

)
ρΛ
s (0)|x j+1=x j = cρΛ

s (0)|x j+1=x j

on the boundary of R1.

According to the theory group [9, 11, 12] the solutions of these equations have
the following form:

ρΛ
s (t, x1, . . . , xs; x ′

1, . . . , x
′
s) = UΛ(t)ρΛ

s (0, x1, . . . , xs; x ′
1, . . . , x

′
s) =

=
(
eΩ(Λ)e

−i(− ∑s
j=1

∂2

∂x2j
)t
e−Ω(Λ)ρΛe

i(− ∑s
j=1

∂2

∂x2j
)t)

s
(0, x1, . . . , xs; x ′

1, . . . , x
′
s) =

(
e
−i(− ∑s

j=1
∂2

∂x2j
)t
ρΛe

i(− ∑s
j=1

∂2

∂x2j
)t)

s
(0, x1, . . . , xs; x ′

1, . . . , x
′
s),

where [9]
(Ω(Λ)ρΛ)s(0, x1, . . . , xs; x ′

1, . . . , x
′
s) =

= N

V
(1 − s

N
)

∫

Λ

∑

i

ρΛ
s+1(0, x1, . . . , xs , xs+1; x ′

1, . . . , x
′
s , xs+1)g

1
i (xs+1)g̃

1
i (xs+1)dxs+1,
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g1i (xs+1) is a complete orthonormal system of vectors in the one-particle space L2(Λ)

and [8]

ρΛ
s (0, x1, . . . , xs; x ′

1, . . . , x
′
s) =

∑

α=1

wαψα(x1, . . . , xs)ψ
∗
α(x ′

1, . . . , x
′
s).

Here ψα(x1, . . . , xs) is a symmetric function

ψα(x1, . . . xs) = 1

s!
∑

P

(−1)|P|exp
(
i

s∑

j=1

x j k
α
P j

)
exp

[ i
2

∑

j>i

θ(kα
Pj

− kα
Pi )

]
,

in fundamental domain x1 < x2 < · · · < xs, (s = 1, . . . , N ) with eigenvalues
Es = ∑s

i=1 k
2
i .

In the Rs, (−∞ < x j < +∞, j = 1, 2, . . . , s) function ψα have the following
form:

ψα(x1, . . . xs) = 1

s!
∏

j>i

(ε(x j − xi )
∑

P

(−1)|P|exp(i
s∑

j=1

x j k
α
P j )×

×exp[ i
2

∑

j>i

(ε(x j − xi )θ(kα
Pj

− kα
Pi )],

where

θ(k) = i log
ic + k

ic − k
,

k = kPj − kPi and the branch of the logarithm is chosen so that θ(k) is continuous
antisymmetric function if k is real (θ(k) = 2arctan( kc ), Imk = 0). This form of the
wave function is quite typical of models solvable by mean of Bethe ansatz. We are
interested in the repulsive case, so that c ≥ 0. In this case in the domain RN the
corresponding k’s entering Ψ should be all real, Imk j = 0, and spectrum has form
Es = ∑s

j=1 k
2
j with −∞ < k j < +∞, so the spectrum consists of the elementary

particles only [6, 7].
It should be noted that the dynamics of an infinite number of bosons can also

explore on the basis of the nonlinear Schrödinger equation [10–14] or Gross–
Pitaevskii equation.Using themethod proposed byH.G. Spohn [17] for the derivation
of the Hartree equation from BBGKI, B. Schlein derived Gross–Pitaevskii equation
for the time evolution of the Bose–Einstein condensates [15].

Acknowledgements Authors are grateful to Prof. H. Spohn for the discussion of results and useful
comments.
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Chapter 11
1D Wavelet and Partial Correlation
Application for MS Subgroup Diagnostic
Classification

Yeliz Karaca, Zafer Aslan and Abul Hasan Siddiqi

Abstract In this study, 1Dwavelet and Partial correlation analyseswere applied to a
data set obtained from patients with Multiple Sclerosis along with a control group of
healthy individuals. The analysis is limited to a sample of 139 individuals, 76 being
with Relapsing-Remitting Multiple Sclerosis, 38 with Secondary Progressive Mul-
tiple Sclerosis, 6 with Primary Progressive Multiple Sclerosis, and 19 being Healthy
individuals. It is the main objective of the study to develop a clinical decision support
system in order to classify the patients’ diagnostic data based on features gathered
from Magnetic Resonance Imaging. The 1-D Continuous Wavelet Transforms are
developed to measure the health status of the patients based on features gathered
from Magnetic Resonance Imaging and Expanded Disability Status Scale (EDSS).
Classification of the Multiple Sclerosis (MS) diagnosis level indicates that it can be
used as an important indicator for making decisions to identify MS health status
of patients. Our results of relative distribution of three indicators help to identify
some differences of “Remitting Relapsing Multiple Sclerosis”, “Secondary Progres-
siveMultiple Sclerosis”, and “Primary ProgressiveMultiple Sclerosis”. Features like
sex, the maximum and minimum lesion sizes, and maximum and minimum values
of EDSS scores are widely known and applied in medical studies. This study has ful-
filled what lacked in terms of mathematical explanation concerning the significance
of such features.
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11.1 Introduction

Recently, studies on the interaction of mathematics with different fields have evoked
interest and started to be used inmedicine. In this respect, researchers have attempted
to design smart interfaces to ensure the interaction between mathematics and mul-
tiple sclerosis in an effective way. Among such interfaces are Magnetic Resonance
Imaging (MRI), Expanded Disability Status Scale (EDSS), and Cerebrospinal Fluid
which helps diseases be diagnosed. Using magnetic resonance (MR) images and
lesion numbers, following the assessment of their magnitudes, through EDSS scale,
the limit of the patients movements can be detected. Based on the variables obtained
from the devices and mathematical models, the correlation of diagnosis along with
its subtypes type has been examined [1–3].

Multiple Sclerosis is a disorder that affects the spinal cord and brain in the central
nervous system. Determining the causes of MS is difficult since the clinical manifes-
tations and its course may change significantly [1–3]. Multiple Sclerosis has three
subgroups examined in the study [1–4]:

1 Relapsing-Remitting Multiple Sclerosis (RRMS): RRMS is the typical form of
multiple sclerosis which often has an onset in the late teens or twenties of indi-
viduals. At the beginning, there is a severe attack which is followed by either full
recovery or partial recovery. Further attacks may be seen in intervals that are not
predictable, which are followed by increasing disability. In the late thirties, the
relapsing-remitting pattern tends to change into the secondary progressive type
[1–4].

2 Secondary Progressive Multiple Sclerosis (SPMS): The relapsing-remitting form
of MS frequently develops into secondary progressive multiple sclerosis men-
tioned above following a variable period of time usually in the late thirties [1–4].

3 PrimaryProgressiveMultiple Sclerosis (PPMS): The disease shows a steadywors-
ening course. This course is interrupted by periods of dormancy without improve-
ment. The progression is variable. In the worst case, this situation may end up
with death within a few years [1–4].

Linear model has been formed in the study of Karaca et al. with the same data
group used in this present study. In Fig. 11.1, a general block diagram of the model is
presented [2, 3]. The researchers used linear models for each bifurcation. Distinction
between Healthy/Patient was made in the first node. Upon determination that the
subject was withMS, a distinctionwasmadewhether it was RRMS–SPMS or PPMS.
The final step included the differentiation of RRMS/SPMS if it was determined
that the patient had RRMS or SPMS. RRMS, SPMS, and PPMS subgroups were
determined as a result through three bifurcations [2, 3].

A linearmodel is designed based on the number of lesions. 94.17%accuracy rate is
attained for the distinction between patients. In the division between RRMS/SPMS,
73.68% accuracy is attained. Based on EDSS scores, an accuracy rate of 99.28%
is achieved for the division between MS patients and healthy individuals. 94.17%
accuracy rate is obtained for RRMS–SPMS/PPMS and the rate is 61.67% for
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Fig. 11.1 Healthy, Patient, RRMS, SPMS, and PPMS distinction [2, 3]

RRMS/SPMS. As can be seen, it is possible to attain highly accurate results so
as to identify MS and subgroups. These results are parallel to clinical findings [2, 3].

In the literature, Shahvar et al. have introduced a new approach to form synthetic
models of sonic by logs using wavelet coefficients and artificial neural network.
They obtained results that ascertain the applicability of this model for sonic log
prediction [5]. In another study by Safarinezhadian et al., a wavelet transform was
applied in a single coherent analysis to decompose data in spatial nature into a
series of independent components at different scales [6]. A study by Zope-Chaudhari
provides distortion assessment of geospatial data. The study used wavelet-based
invisible watermarking. The study used eight wavelets at different levels of wavelet
decomposition levels. Error measures like maximum and mean square errors were
used for accuracy assessment [7]. Safarinezhadian et al. proposed a new method
for development of Digital Elevation Model (DEM) of soil surface. Data collection
basis and wavelet modeling were used in the study. The multiresolution nature of the
method has proven to have many advantages compared to other methods. The power
and versatility of wavelets are shown upon analysis of the laser scanner data [6]. In an
article by Aloe, synthesization of two indices under different situations is evaluated
for accuracy. In such situations partial correlation and the semi-partial correlation
both appeared to behave as expected with regard to bias and root-mean-squared
error (RMSE) [8]. Algina and Olejnik studied applications, in partial correlation and
multiple regression analyses, of the tables. Other than those used in forming the
tables, sample size for levels of probabilities, accuracy and parameter values, and for
Type I error rates could be selected by researchers using SAS and SPSS computer
programs. It has been revealed that planning correlation studies in order to obtain an
adequate level of estimation accuracy is important. Another important goal revealed
is to obtain adequate power. It is also possible to calculate from the distribution of r
the sample size necessary to accomplish a target for power [9].
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Karaca et al. analyzed 1-D Continuous Wavelet Analysis, 1-D Wavelet Coeffi-
cient Method and Partial CorrelationMethod on variousWechsler Adult Intelligence
Scale-Revised parameters including School Education, Gender, Age, Information
Verbal and Performance Full-Scale Intelligence Quotient. Particularly, gender vari-
able has been shown to have a negative yet important role on age and Performance
Information Verbal factors. The age parameters, too, have a significant relation in
Full-Scale Intelligence Quotient change and Performance Information Verbal [10].

The literature review has shown that as to the application and comparison of 1D
continuous wavelet analyses and partial correlation method, no study related to MS
exists comprising three parts of the brain using the analyses under discussion.

11.2 Material and Method

11.2.1 Material

11.2.1.1 MS Data

In the present study, the monitoring was conducted in Hacettepe University (Ankara,
Turkey), Faculty of Medicine, Neurology Department and Radiology Department
as well as Primary Magnetic Resonance Imaging center. 120 patients (88 females,
32 males) who were definitely diagnosed to have MS with RRMS, SPMS, or PPMS
based on the McDonald criteria were taken. MS patients were aged 20–65, and those
19 ones were healthy subjects who did not have the disease (as shown byMRI scans).
They were also enrolled as the control subjects. The disability level of MS patients
was determined using the EDSS through different devices. Magnetic resonance was
read for three regions lesion covering data of different years. Comparison of data
was made based on the criteria mentioned above [2, 3, 11].

11.2.1.2 Expanded Disability Status Scale

Neurologists make use of this scale in their diagnostic classification of MS for their
patients. EDSS scale is used by neurologists and physicians forMS causes tomeasure
disability. The details of the scale can be found in reference [11, 12].

11.2.1.3 Magnetic Resonance Imaging

Magnetic Resonance Imaging (MRI) is one of the most beneficial tools for the diag-
nosis of MS [11–13].

The number of lesions was used in this study. The locations of the brain were
considered along with EDSS score for modeling. The first, second, and third regions
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were designated as brain stem, periventricular corpus callosum, and upper cervical
regions, respectively. The first, second, and third MRI brain regions of each patient
were taken into consideration.

For MRI scans of the first, second, and third regions, the numbers of lesions in the
three regions were designated as features. The labels for such features are provided
below:
Max. MRI1: The maximum lesion number in the first region of MRI scan.
Min. MRI1: The minimum lesion number in the first region of MRI scan.
Max. MRI2: The maximum lesion number in the second region of MRI scan.
Min. MRI2: The minimum lesion number in the second region of MRI scan.
Max. MRI3: The maximum lesion number in the third region of MRI scan.
Min. MRI3: The minimum lesion number in the third region of MRI scan.

11.2.2 Methodology

11.2.2.1 1-D Continuous Wavelet Transforms

Wavelet theory is the result of amultidisciplinary approach in science, throughwhich
different scholars have started to work together. For example, mathematicians, physi-
cists, and engineers perform studies on wavelet theory and applications. Likewise,
wavelet analysis has involved a great deal of interest recently in signal processing.
Many applications in image analysis, transient signal analysis, communications sys-
tems, and other signal processing have been performed effectively by means of this.
Despite not being a new type of analysis, it has an innovative aspect in that the devel-
opment of recent results on wavelet mathematical foundations has provided a unified
framework for the scope [10, 14–17].

A common link is formed between a lot of varied problems which are of interest
for various fields. In order for further development in mathematical understanding
of wavelet, there exist opportunities in the future regarding its applications in the
scopes of natural sciences as well as in engineering [10, 14–17].

The following part outlines the main formulae for wavelet analyses [10, 14–17].
With a complex-valued function ψ , the conditions below are met:

∞∫
−∞

|ψ (t)|2dx < +∞ (11.1)

cψ = 2π
∞∫

−∞
|ψ (ω) |2

ω
dω < +∞, (11.2)

where ψ is the Fourier transform of ψ . The first condition hints finite energy of the
function ψ , whereas the other, being admissibility, shows that if ψ(ω) is smooth,
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then ψ(0) = 0. The mother wavelet is the function ψ . For a continuous wavelet
transform, see [10, 14–17].

If ψ meets the aforementioned conditions, then the wavelet transform of a real
signal s(t) with respect to the wavelet function ψ(t) is termed as in [10, 14–17]:

S(b, a) = 1√
a

∞∫
−∞

ψ ′
(
t − b

a
,

)
s(t)dt (11.3)

where ψ ′ displays the complex conjugate of ψ , which defines the open (b,a) half-
plane (b ∈ R, a). The parameter b refers to the time shift, whereas the parameter a
refers to the scale of analyzing wavelet. If ψa,b(t) is defined as

ψa,b (t) = a−1/2ψ

(
t − b

a

)
. (11.4)

This means doing rescaling by a and doing the shifting by b. Given this Eq.11.3 can
be formulated as either a scalar or the inner product of the real signal s(t) with the
function of ψa,b(t):

S(b, a) = ∞∫
−∞

ψ ′
a,b (t) s (t) s(t)dt (11.5)

when functionψ(t) fulfills the condition of admissibility, Eq.11.2, the original signal
s(t) can be received from the wavelet transform S(b, a) through the inverse formula
as given below [10, 14–17]:

s(t) = 1

Cψ

∞∫
−∞

∞∫
−∞

S (b, a) ψa,b (t)
dadb

a2
. (11.6)

11.2.3 Partial Correlation

The Pearson correlation coefficient (r) defines linear association among continuous
randomvariables. It has been extended in the literature for several variable interaction
mapping problems [10, 18]. However, the direct or indirect relationship between
variables cannot be distinguished by the correlation coefficient per se. Table11.1
below provides the general terminology for partial correlation coefficients [10, 18]:

When we consider two variables, e.g., A and B, the association between them
can be seen in different ways like a direct correlation, A → B, both are co-regulated
by a third variable, being C , (i.e., C → B and C → A) or an indirect one A →
C → B. r , the regular correlation coefficient, is defined on two variables, A and
B not distinguished between the relation types. It shows that A and B have direct
relationship or they do not have relation [10, 18–20].
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Table 11.1 Partial correlation coefficients: general terminology [10, 18]

A, B,C, D, X, Z selected variable in a given system

r correlation coefficient i, j, k subscripts used to identify the variables

n number of observations N data matrices used in training

p number of variables M correlation coefficient matrix

k number of classes l number of samples in a class

x order of partial correlation d number of correlation defined in the system

The partial correlation coefficient illustrates such difference by separating indirect
relations namely path relations. The correlation between two variables is conditioned
upon the third or a filtered form, A and B prior to computing the coefficient. Hence,
partial correlation rAB/C underscores that correlation exists between A and B if the
effect of the conditioned variable C is removed. With no conditioning upon any
variable, the order of the partial correlation coefficients is zero where one defines
the correlation directly between A and B. The order is x when the correlation is
calculated subsequent to the conditioning on x number of different variables apart
from A and B. Equations11.1–11.3 provide an overall definition as to the first three
orders of partial correlations [10, 18–20].
Zeroth-order correlation is presented as follows:

rAB = COV (A, B)√
var (A) ∗ var (B)

. (11.7)

First-order partial correlation is presented as follows:

rAB/Z = [rAB − (rAZ ∗ rBZ )]√(
1 − r2AZ

) ∗ (
1 − r2BZ

) . (11.8)

Second-order partial correlation can be seen as follows:

rAB/XZ =
[
rAB − (

rAZ/X ∗ rBZ/X
)]

√(
1 − r2AZ/X

)
∗

(
1 − r2BZ/X

) . (11.9)

Correlation measures rAB , partial correlation measures rAB/Z and rAB/XZ show
symmetric property (i.e., rAB = rBA, rAB/Z = rBA/Z , etc.). Such coefficients are lim-
ited to a range of values from −1 to 1 [10, 18–20].

For this reason, instead of making the estimation of a full complete correlation
matrix that has redundant entries, the inter-variable association pattern may be con-
sidered a single array which contains unique values of correlation coefficients. This
depicts a defined order of variable combinations. Such vector coefficients are referred
to asPCCMin this study. PCCMstores the pattern defined aswell as the strong aspects
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of interval-variable associations for a particular system. In a system with p number
of variables, zeroth-order PCCM will have [p(p − 1)/2] elements, and first-order
PCCM will have [p(p − 1)(p − 2)(p − 3)/4] elements in the vector [18].

Partial correlation coefficient infers direct and indirect associations between ran-
dom measurements, which is stated in the literature [10, 18–20].

The following could be expressed to generally state the classification problem;
consider a system N [nxp; k] where the measurement of p variables yields n obser-
vations that belong to k different classes in the system. Discriminant analysis aims at
improving a classifier that uses the observations in N . Each of the k classes is mod-
eled accordingly. The classifier capability is afterward tested based on its estimation
ability as to the classes of samples in N , which may be regarded as resubstitution
test or self-consistency. Those of new set of samples Ntest [mxp; k], not used during
the modeling process (independent sample test) [10, 18–20].

11.3 Results

11.3.1 Application of Wavelet Analysis MRI Lesion Extreme
Values

MRI1 Lesion Extreme Values

The first region means brain stem region. 1D wavelet has been applied taking maxi-
mum andminimum lesion numbers in brain stem into consideration. The illustrations
can be seen in Figs. 11.2 and 11.3, respectively.

Maximum MRI1 Lesion Numbers

Maximum data number from 1 to 88 belongs to maximum lesion number of female
group for the first region.

If we divide females’ group into three subsections:
Patients 0–35 constitute the first group; they have small and large lesions size.
Patients 35–60 constitute the second group. It is found out in this study that large

lesions are dominant in this group. Finally, the last group (patients between 60 and
120) seemed to have medium and large lesion sizes.

If we analyze the smaller data sets for male groups between the patient 89–110,
small- and medium-size lesions have been accrued but for the last group (for the last
10 female) large-size lesions are dominant.

Minimum MRI1 Lesion Numbers

Minimum numbers of lesions for females are associated with small-, medium-, and
large-size lesions. For the male group mainly small- and medium-size lesions are
dominant.
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Fig. 11.2 Maximum MRI1 lesion numbers

Fig. 11.3 Minimum MRI1 lesion numbers
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Fig. 11.4 Maximum MRI2 lesion numbers

MRI2 Lesion Extreme Values

Periventricular corpus callosum region is shown as the second region. 1D wavelet
has been applied using maximum and minimum number of lesions in periventricular
corpus callosum region as can be seen in Figs. 11.4 and 11.5, respectively.

Maximum MRI2 Lesion Numbers

For the female patients, the last group has small, medium, and large sizes of lesions
(mixed) but the first of half of female data set has small- and medium-size lesions in
this region. For the male group, small, medium, and large sizes of lesions have been
observed.

Minimum MRI2 Lesion Numbers

Variations of lesion size are similar for all the patients in this region (small-, medium-,
and large-size lesions could be recorded).

MRI3 Lesion Extreme Values

The third region illustrates the upper cervical regions. 1D wavelet has been applied
taking the maximum and minimum lesion numbers in the upper cervical regions,
which can be seen in Figs. 11.6 and 11.7, respectively.
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Fig. 11.5 Minimum MRI2 lesion numbers

Fig. 11.6 Maximum MRI3 lesion numbers
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Fig. 11.7 Minimum MRI3 lesion numbers

Maximum MRI3 Lesion Numbers

For the male group, small, medium, and large sizes of lesions are observed. The first
group of patients are mainly affected by medium- and large-size lesions.

Minimum MRI3 Lesion Numbers

The sizes of minimum lesions for the first 60 patients have been compared.Minimum
lesion characters are totally different in the male and female group. The first group of
patients is mainly affected by medium- and large-size lesions. If we compare the last
group of female and the first group of male data, they are very similar and minimum
lesions are generally small andmedium sizes. As for the last group ofmale patients, it
can be said that they have basically medium or large sizes for both groups of lesions.

11.3.2 Application of Partial Correlation

In each MRI scan of each patient, the three parts of brain, brain stems, corpus
callosum–periventricular region, and the upper cervical spine, have been chosen;
and different variables (max. MRI1, min. MRI1, EDSS) have been used in Tana-
gra program [21]. Partial correlation is put into application (for α = 0.05). Control
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Table 11.2 Table for control variables regarding first region

Variables

1 Max. MRI1

2 Min. MRI1

3 EDSS

Table 11.3 Partial correlation coefficients

No Att. Y Att. X r r2 T p-value

1 SPMS Max. MRI1 0.00712 0.00005 0.07636 0.93927

2 SPMS Min. MRI1 0.00643 0.00004 0.06897 0.94513

3 SPMS EDSS 0.00618 0.00004 0.06633 0.94723

4 PPMS Max. MRI1 0.00318 0.00001 0.03406 0.97289

5 PPMS Min. MRI1 −0.00051 0.00000 −0.00546 0.99565

6 PPMS EDSS −0.00454 0.00002 −0.04866 0.96128

7 RRMS Max. MRI1 0.00898 0.00008 0.0963 0.92345

8 RRMS Min. MRI1 0.00648 0.00004 0.06953 0.94469

9 RRMS EDSS 0.00428 0.00002 0.04595 0.96343

Table 11.4 Control variables Variables

1 Max. MRI2

2 Min. MRI2

3 EDSS

variables for the first region (namely brain stems region) can be seen in the table
provided below:

Table11.2 shows the partial correlation coefficients for the first region. Partial
correlation coefficients are concluded in the first region and EDSS relation of max-
imum lesions at first region, with a minimum lesion in the first region and EDSS is
positive. There is a positive correlation for the minimum lesion numbers at the first
region. EDSS is higher than the other parameters.

For the second region (corpus callosum–periventricular region), control variables
can be seen in the table provided below:

Table11.2 shows partial correlation coefficients for the second region.
Table11.3 shows the role of partial relations between maximum and minimum

lesion numbers and EDSS. Partial relations are negative in general.
For PPMS, the highest partial role of maximum lesions is 0.025 (alpha = 0.22).
For the third region (the upper cervical spine) control variables are providedbelow:
Table11.4 shows the partial correlation coefficients for the third region.
Table11.5 shows partial correlation coefficients amongmaximum lesion numbers

in the third region. It also provides their impact on variations of the minimum lesion



184 Y. Karaca et al.

Table 11.5 Partial correlation coefficients

No Att. Y Att. X r r2 t p-value

1 SPMS Max. MRI2 −0.01521 0.00023 −0.16317 0.87067

2 SPMS Min. MRI2 −0.00303 0.00001 −0.03253 0.97411

3 SPMS EDSS −0.00162 0.00000 −0.01739 0.98615

4 PPMS Max. MRI2 0.02546 0.00065 0.27313 0.78525

5 PPMS Min. MRI2 −0.01064 0.00011 −0.1141 0.90036

6 PPMS EDSS 0.00136 0.00000 0.01456 0.98841

7 RRMS Max. MRI2 −0.00343 0.00001 −0.03673 0.97076

8 RRMS Min. MRI2 0.00834 0.00007 −0.08943 0.9289

9 RRMS EDSS 0.00103 0 −0.011 0.99124

Table 11.6 Control variables

Variables

1 Max. MRI3

2 Min. MRI3

3 EDSS

Table 11.7 Partial correlation coefficients

No Att. Y Att. X r r2 t p-value

1 SPMS Max. MRI3 0.00652 0.00004 0.06987 0.94442

2 SPMS Min. MRI3 −0.01701 0.00029 −0.18241 0.85558

3 SPMS EDSS −0.00756 0.00006 −0.08106 0.93554

4 PPMS Max. MRI3 −0.02403 0.00058 −0.25772 0.79708

5 PPMS Min. MRI.3 0.02584 0.00067 0.27718 0.78214

6 PPMS EDSS −0.00738 0.00005 −0.07912 0.93708

7 RRMS Max. MRI3 −0.00514 0.00003 −0.0551 0.95615

8 RRMS Min. MRI3 −0.0048 0.00002 −0.05151 0.95901

9 RRMS EDSS −0.01145 0.00013 −0.1228 0.90248

numbers and EDSS for the same region concerning SPMS and PPMS. There are only
two positive correlations between the maximum and minimum numbers of lesions.
The variation of minimum lesion numbers for the third region has some significant
features pertaining to SPMS (r = 0.025, α = 0.22) (Tables11.6 and 11.7).
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11.4 Conclusion

The first part of the present paper is concerned with the 1D wavelet applications on
lesion sizes and numbers belonging to MS patients’ MRI images. For the wavelet
analyses specific results have been yielded. For maximum MRI1 Lesion Numbers,
small- and medium-size lesions have been accrued but for the last group (for the
last 10 females). For the second region, based on Minimum MRI2, lesion numbers
are seen to be small-, medium-, and large-size lesions for females. For the second
region, Maximum MRI2 lesion numbers are seen to be small- and medium-size
lesions. It has been observed that lesion characters are totally different in the male
and female group. The first of group of patients are mainly affected by medium-
and large-size lesions. The second part of the present paper is concerned with partial
correlation analyses. Lesion sizes and numbers of male and female test groups have
been compared by partial correlation. Results describe only the existences of positive
or negative relationships. The highest partial correlation coefficient is r = 0.026
(n = 120, α = 0.05). These analyses should be extended for an additional data set.
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Chapter 12
Numerical Methods for Nonlinear System
of Hyperbolic Equations Arising in Oil
Reservoir Simulation

G.D. Veerappa Gowda

Abstract Here, we propose a higher order finite volume scheme by using the idea
of discontinuous flux for the numerical study of two-phase flow in a heterogeneous
porous media, arising in oil reservoir simulation. To enhance the oil recovery, chem-
ical components called polymers are dissolved in the aqueous phase. This results in
studying theBuckley–Leverett modelwithmulticomponent polymer flooding, which
is a coupled non-strictly hyperbolic system of conservation laws in the absence of
capillary pressure. In the presence of gravity, the flux function is non-monotone and
the construction of Godunov type upwind scheme for this system becomes diffi-
cult and computationally expensive. To overcome this difficulty, the coupled system
is reduced to an uncoupled system of scalar conservation laws with discontinuous
coefficients and applied the idea of discontinuous flux to solve these scalar equations.

Keywords Conservation laws · Finite volume · Riemann problems
Multi-component · Polymer flooding · Buckley–Levrett model
Enhanced oil recovery

12.1 Introduction

In this article briefly I review the works done with Adimurthi, Jerome Jaffre,
C. Praveen, and K. Sudarshan Kumar on applications of discontinuous flux and
how it can be used to solve numerically a certain class of systems of hyperbolic
conservation laws such as systems modeling polymer flooding in the heterogeneous
oil reservoir engineering.

It is well known that in a heterogeneous media fingering instability will be devel-
oped when the water (aqueous phase) with less viscous displaces the oil with more
viscous, due to which water can reach the recovery well before all the oil reaches and
this end up with a poor oil recovery. To overcome this difficulty, in an enhanced oil
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recovery (EOR) process different polymers of varying concentrations are injected
along with the water. As the concentration of polymers increases, viscosity of water
increases that increases the oil andwatermobility ratio. Improving in the oil andwater
mobility ratio reduces the fingering effect which in turn enhances the oil production.

In the absence of capillary pressure, flow is described by the Buckley–Leverett
equation with multicomponent polymer flooding, see [3–5, 9]. In two dimensions,
this corresponds to a systemof (m + 1) × (m + 1), non-strictly, nonlinear hyperbolic
conservation laws given by

st + ∇ · F(s, c1, c2, . . . cm, x) = 0
(scl + al(cl))t + ∇ · (cl F(s, c1, c2, . . . cm, x)) = 0, l = 1, 2, . . . ,m

(12.1)

where s = s(x, t) , cl = cl(x, t) , (x, t) ∈ IR2 × (0,∞), are saturation of water and
concentration of the polymers, respectively, and the flux function, F(s, c, x) =
(F1, F2) ∈ IR2 is given by

F1(s, c, x) = v1(x) f (s, c)
F2(s, c, x) = [v2(x) − (ρw − ρo)gλo(s)K (x)] f (s, c),

(12.2)

where c = (c1, c2, . . . , cm), ρw and ρo are the densities of water and oil, g is the
acceleration due to gravity, al , l = 1, . . . ,m are adsorption functions, K (x) is the
absolute permeability of the rock, λw(s, c) and λo(s, c) are mobilities of water and
oil, respectively, and v = (v1, v2) ∈ IR2 is the total velocity given by Darcy’s law:

v = −((λw + λo)K (x)
∂ p

∂x1
, (λw + λo)K (x)

∂ p

∂x2
+ (λwρw + λoρo)gK (x)),

where p is a pressure. The velocity v is governed by the incompressibility of the flow

∇ · v = 0,

which leads to a Poisson equation for the pressure p.
For this system, developing a Godunov type upwind numerical scheme is diffi-

cult as it needs the exact or approximate Riemann solvers. The presence of gravity
makes the flux in s no longer monotone and can also change the sign. All this com-
bined with heterogeneity of the porous medium makes the computation of Reimann
problem solution complicated and expensive. Hence, the construction of Godunov
type scheme becomes complicated. Most often these numerical methods require the
eigenstructure of the system. Here by using the idea of discontinuous flux, coupled
system is reduced to an uncoupled scalar equations with discontinuous coefficients.
Next we study each scalar equation by using the idea of discontinuous flux (DFLU),
developed in [1, 2]. This approach does not require detailed information about the
eigenstructure of the full system but one has to handle discontinuous coefficients
properly.
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12.1.1 One-Dimensional Problem with Single Polymer
Component

In one space dimension and form = 1, system (12.1) reduces to the following 2 × 2
system of conservation laws:

st + f (s, c, x)x = 0
(sc + a(c))t + (c f (s, c, x))x = 0,

(12.3)

where

f (s, c, x) == λ1(s, c)

λ1(s, c) + λ2(s, c)
[v + (ρ0 − ρw)gK (x)λ2(s, c)]. (12.4)

12.1.2 Finite Volume Method to Solve the System (12.3)

Wedefine the space grid points as xi+ 1
2

= ih, h > 0 and i ∈ Z and forΔt > 0define

the time discretization points tn = nΔt for all nonnegative integer n, and λ = Δt
h .

The finite volume scheme for the system (12.3) is given by

sn+1
i = sni − λ(Fn

i+ 1
2
− Fn

i− 1
2
)

cn+1
i sn+1

i + a(cn+1
i ) = cni s

n
i + a(cni ) − λ(Gn

i+ 1
2
− Gn

i− 1
2
),

(12.5)

where numerical fluxes Fn
i+ 1

2
and Gn

i+ 1
2
are associated with the flux functions

F(S, c, x) and G(S, c, x) = cF(S, c, x) respectively and they are functions of the
left and right values of the saturation s and the concentration c at xi+ 1

2
:

Fn
i+ 1

2
= F̄(sni , c

n
i , s

n
i+1, c

n
i+1, xi+ 1

2
), Gn

i+ 1
2

= Ḡ(sni , c
n
i , s

n
i+1, c

n
i+1, xi+ 1

2
).

The choice of the numerical flux functions F̄ and Ḡ determines the numerical scheme.
Once we compute sn+1

i from the first equation of (12.5), then we recover cn+1
i from

second equation using an iterative method, like Newton-Raphson method.
Now we briefly explain the discontinuous flux given in [1, 2].

12.1.3 The DFLU Numerical Flux

The DFLU flux is an extension of the Godunov scheme that was proposed and
analyzed in [2] for scalar conservations laws with a flux function discontinuous in
space.
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We define

Gn
i+ 1

2
=

{
cni Fn

i+ 1
2

if Fn
i+ 1

2
> 0

cni+1Fn
i+ 1

2
if Fn

i+ 1
2

≤ 0.
(12.6)

Now the choice of the numerical scheme depends on the choice of Fn
i+1/2. To do

so we treat c(x, t) in F(s, c, x) as a known function which may be discontinuous at
the space discretization points and F is allowed to be discontinuous in the x variable
at the same space discretization points. Therefore on each rectangle (xi− 1

2
, xi+ 1

2
) ×

(tn, tn+1), we consider the conservation law:

st + F(s, cni , x)x = 0,

with initial condition s(x, 0) = sni for xi− 1
2

< x < xi+ 1
2
(see the figure below).

st + F (s, cn
i
, xi)x = 0

s(tn) = sn
i

st + F (s, cn
i+1, xi+1)x = 0

s(tn) = sn
i+1

xi+ 1
2

xi− 1
2

xi+3/2

t = tn

t = tn+1

The above problem can be considered as a conservation law with flux function
discontinuous in x for which DFLU flux can be used. Then the DFLU flux is given
as

Fn
i+ 1

2
= FDFLU (sni , c

n
i , s

n
i+1, c

n
i+1)

= max{F(max{sni , θni }, cni , xi ), F(min{sni+1, θ
n
i+1}, cni+1, xi+1)}, (12.7)

where θni = argminF(., cni , xi ).

12.2 Multicomponent Polymer Flooding in Two Dimensions

The ideas of previous sections can be extended to two dimensions with multicom-
ponent polymer flooding and higher order accurate schemes can be constructed by
introducing slope limiter in space variable and a strong stability preserving Runge–
Kutta scheme in the time variable, see [7, 8]. The resulting schemes are shown to
respect a maximum principle and other desired properties. These schemes are easy to
implement on a computer and they are less expensive from the point of computation.
Numerical experiments clearly show that (see [7, 8]) by adding polymers (in the
presence/absence of gravity) to water improves the efficiency of oil recovery even in
a highly heterogeneous medium.
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Chapter 13
Construction and Properties
of Haar-Vilenkin Wavelets

Meenakshi and P. Manchanda

Abstract The Haar wavelet based on Haar system, introduced by the Hungarian
mathematician Alfred Haar [5], is the simplest example of wavelets. Recently, we
have studied the concept of Haar-Vilenkin wavelet in [8] which is a generalization of
Haar wavelet. We have introduced a Special Type of Multiresolution Analysis [10]
generated by Haar-Vilenkin wavelet which is a special case of matrix multiresolu-
tion analysis studied in [18]. In this paper we represent Haar-Vilenkin wavelets in
discrete form by introducing Haar-Vilenkin matrices and expand a function in Haar-
Vilenkinwavelet series.We have applied thismethod for solving ordinary differential
equations in this paper.

Keywords Wavelets · Haar-Vilenkin system multiresolution analysis · Matrices

AMS classification 42A38 · 42A55 · 42C15 · 42C40 · 43A70

13.1 Introduction

We have introduced the concept of Haar-Vilenkin wavelet and Haar-Vilenkin scaling
function and have studied the basic properties of Haar-Vilenkin wavelet series and
coefficients in [8]. Haar-Vilenkin wavelet is a generalization of Haar wavelet. Haar
wavelet basis is the simplest and historically the first example of an orthonormal
wavelet basis. Haar basis functions are step functions with jump discontinuities.
Haar wavelet basis provides a very efficient representation of functions that consist
of smooth, slowly varying segments punctuated by sharp peaks and discontinuities.
Haar system is an orthonormal system such that each continuous function on [0, 1]
has a uniformly convergent Fourier series with respect to this system.
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The Haar wavelet is the function defined on the real line R as

h(x) =
⎧
⎨

⎩

1 x ∈ [0, 1
2 )−1 x ∈ [ 12 , 1)

0 otherwise
.

It can be expressed in the form

h(x) = χ[0, 12 )(x) − χ[ 12 ,1)(x).

By taking the translations anddilations ofh(x), the system {h j,k(x)} j,k∈Z is referred as
the Haar system on R where h j,k(x) = 2 j/2h(2 j x − k), j, k ∈ Z. The Haar scaling
function on the real line is p(x) = χ[0,1)(x). The collection {p j,k(x)} j,k∈Z is referred
to as the system of Haar scaling functions:

supp h j,k = [ k

2 j
,
k + 1

2 j

)
,

where the intervals
[
k
2 j ,

k+1
2 j

)
for j, k ∈ Z form the family of dyadic intervals. The

various properties of Haar system have been extensively studied. It has been shown
that the system {h j,k(x)} j,k∈Z is an orthonormal system in L2(R) [2, 16, 18]. The
family {h j,k} j,k∈Z is also associated with multiresolution analysis, for example:
Let Sn = span {h j,k} j<n,k∈Z, and

Ln = {all functions in L2(R) constant on all intervals [k2−n, (k + 1)2−n) for k ∈ Z}.

Both the families have the following properties:

. . . S−1 ⊂ S0 ⊂ S1 ⊂ . . . ,

f (t) ∈ Sn ⇐⇒ f (2t) ∈ Sn+1,

f (t) ∈ S0 ⇐⇒ f (t + k) ∈ S0 for k ∈ Z.

It can be proved that Ln = Sn for all n ∈ Z, then the family {Ln}∞n=−∞ form a mul-
tiresolution analysis.

Theorem 13.1 ([18]) The system {h j,k(x)} j,k∈Z forms an orthonormal basis in
L2(R).

Theorem 13.2 [18] If f ∈ L p(R) with 1 < p < ∞ or f is C0 on R, then limr→∞
Pr ( f ) = f and for eachr ∈ Z, limμ→∞ Pr ( f ) + Qμ

r ( f ) = Pr+1( f )where Pr ( f ) =∑
j<r

∑
k∈Z < f, h j,k > h j,k and Qμ

j ( f ) = ∑
k≤μ < f, h j,k > h j,k . The conver-

gence is in the norm of the space.

The convergence in L p[0, 1] for 1 ≤ p < ∞ has been shown by Schauder in [11].
Comparison of Fourier series of a function f ∈ L2(R) and its expansion with respect
to theHaar systemhas been investigated.Behavior ofHaar coefficients is also studied.
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13.2 Behavior of Haar Coefficients Near Jump
Discontinuities

The following estimates are obtained in [16].
Suppose f (x) is a function defined on [0, 1] with a jump discontinuity at x0 ∈

(0, 1) and continuous at all other points in [0, 1].
Let us assume that the function f (x) is C2 on the intervals [0, x0] and [x0, 1].

Now we have two possibilities, either x0 ∈ [
k
2 j ,

k+1
2 j

)
or x0 /∈ [

k
2 j ,

k+1
2 j

)
. Let x j,k is

the mid point of the interval
[
k
2 j ,

k+1
2 j

)
, i.e., x j,k = 2− j (k + 1/2).

Case I If x0 /∈ [
k
2 j ,

k+1
2 j

)
, then

| < f, h j,k > | ≈ 1

4
| f ′(x j,k)|2−3 j/2.

Case II If x0 ∈ [
k
2 j ,

k+1
2 j

)
, then

| < f, h j,k > | ≈ 1

4
| f (x−

0 ) − f (x+
0 )|2− j/2.

Thus we see that the decay of | < f, h j,k > | for large j is considerably slower if
x0 ∈ [

k
2 j ,

k+1
2 j

)
than if x0 /∈ [

k
2 j ,

k+1
2 j

)
. That is, large coefficients in theHaar expansion

of a function f (x) that persist for all scales suggest the presence of jumpdiscontinuity
in the intervals

[
k
2 j ,

k+1
2 j

)
corresponding to the large coefficients.

It may be observed that Haar function was introduced in 1910 [5], Walsh function
in 1923 [17] and Haar type Vilenkin system in 1947, see for e.g., [12, 14, 15].
Certain properties of multidimensional generalized Haar type Fourier series have
been investigated [13].

In the recent years various extensions and concepts related to Haar wavelet have
been studied, see e.g., [1, 3, 4, 7, 13]. Thematrix form of Haar wavelets, the integrals
related to it, and the solution of ODE’s using HaarWavelet coefficients are studied in
[6]. In this paper we have introduced matrix form of Haar-Vilenkin wavelets. System
of ODE’s is also solved using Haar-Vilenkin wavelet coefficients.

This paper is organized as follows: In section 2 we have recalled the concept
of Haar-Vilenkin wavelets and a special type of multiresolution analysis. Integrals
related to Haar-Vilenkin wavelets have been evaluated in section 3 and wavelets have
been represented inmatrix form and procedure for expanding a function or a signal in
Haar-Vilenkin wavelet series is given. In section 4 the procedure for solving ODE’s
using Haar-Vilenkin wavelets is introduced.
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13.3 Haar-Vilenkin Wavelet

Let us recall the system of Haar-Vilenkin wavelets studied in [8]:
The following system which is a generalization of Haar system is connected with
the name of Vilenkin. Very often it is termed as a generalized Haar system or a Haar
type Vilenkin system.

Let m = (mk, k ∈ N) be a sequence of natural numbers such that mk ≥ 2, N
denotes the set of nonnegative integers. Let M0 = 1 and Mk = mk−1Mk−1, k ∈ P.

Let P denotes the set of positive integers and let k ∈ P can be written as

k = Mn + r(mn − 1) + s − 1, (13.1)

where n ∈ N, r = 0, 1, . . . , Mn − 1 and s = 1, 2, . . . ,mn − 1. This expression is
unique for each k ∈ P. Let us write an arbitrary element t ∈ [0, 1) in the form

t =
∞∑

k=0

tk
Mk+1

, (0 ≤ tk < mk). (13.2)

It may be noted that there exists two such expressions (13.2), for so-called m-adic
rational numbers. In such cases we use the expression which contains only a finite
number of terms different from zero.

Define the function system (hk, k ∈ N) by h0 = 1 and

hk(t) =
{√

Mne
2π istn
mn

r
Mn

≤ t < r+1
Mn

0 otherwise
. (13.3)

This system can be extended to R by periodicity of period 1: hk(t + 1) = hk(t),
t ∈ [0, 1). It can be checked that {hk(t)} is a complete orthonormal system in L2(R).
This system is called Haar-Vilenkin system. It is clear that

hk(t) = χ[ r
Mn

, r+1
Mn

](t)
√
Mne

2π istn
mn

.

Certain properties of this system have been recently studied [8].
For k ∈ P and t ∈ [0, 1) as defined in (13.1) and (13.2) theHaar-Vilenkin scaling

function is defined as

pk(t) = √
Mnχ[ r

Mn
, r+1
Mn

)

=
{√

Mn,
r
Mn

≤ t < r+1
Mn

0 otherwise
. (13.4)

The collection {φa,b(t)}a,b∈Z is referred to as the system of Haar-Vilenkin scaling
functions where φa,b(t) = ma/2

n pk(ma
nt − b).
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We have studied the basic properties of Haar-Vilenkin system in [8]. We have
proved the orthogonality of Haar-Vilenkin wavelet, convergence of Haar-Vilenkin
wavelet series, and properties of Haar-Vilenkin wavelet coefficients. We have intro-
duced a multiresolution analysis where translation and dilation are taken by b

Mn

(b ∈ Z) and mn , respectively.
Define

ψa,b(t) = ma/2
n hk(m

a
nt − b). (13.5)

The collection {ψa,b(t)}a,b∈Z is referred to as the Haar-Vilenkin system.
ψa,b(t) is supported on the interval Ia,b where

Ia,b =
[

r
ma

nMn
+ b

ma
n
, r+1
ma

nMn
+ b

ma
n

)
, a, b ∈ Z.

The system ψa,b(t) can also be written as {m a
2
n hk(ma

nt − b)} = Dma
n
Tbhk(t).

Theorem 13.3 The system {m a
2
n hk(ma

nt − b)} = {ψa,b}, a, b ∈ Z is an orthonormal
system in L2(R).

Behavior of Haar-Vilenkin Coefficients Near Jump Discontinuities.

Suppose that f (x) is defined on interval
[

r
Mn

, r+1
Mn

]
with a jump discontinuity at

x0 ∈
(

r
Mn

, r+1
Mn

)
and continuous at all other points in

[
r
Mn

, r+1
Mn

]
. We have to check

whether Haar-Vilenkin coefficients < f, ψa,b > such that x0 ∈ Ia,b behave differ-
ently than do the Haar-Vilenkin coefficients such that x0 /∈ Ia,b.

Let us assume that given function f (x) is C2 on the intervals [ r
Mn

, x0] and

[x0, r+1
Mn

]. This means that both f ′(x) and f ′′(x) exist, are continuous functions
and hence are bounded on these intervals. Fix integers a ≥ 0 and 0 ≤ b ≤ ma

n − 1
and let xa,b be the midpoint of the interval Ia,b, i.e., xa,b = r+1/2

ma
nMn

+ b
ma

n
.

Case I If x0 /∈ Ia,b, then we find that for the large values of a

| 〈 f, ψa,b
〉 | ≈ 1

4
m−3a/2

n M−3/2
n | f ′(xa,b)|.

Case II If x0 ∈ Ia,b,
Thus for the large values of a

| < f, ψa,b > | ≈ ma/2
n

√
Mn

1

2ma
nMn+1

| f (x−
0 ) − f (x+

0 )|

= m−a/2
n M1/2

n

2Mn+1
| f (x−

0 ) − f (x+
0 )|.

Comparing the two cases, we see that the decay of | < f, ψa,b > | for the large a is
considerably slower if x0 ∈ Ia,b than if x0 /∈ Ia,b.

The large coefficient in the Haar-Vilenkin expansion of the coefficient f(x) that
persist for all scales suggests the presence of jump discontinuity in the intervals Ia,b

corresponding to the large coefficient.
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13.3.1 A Special Type of Multiresolution Analysis

Definition 13.1 For k as in (13.1), a special type of multiresolution analysis is a
sequence {Vj } j∈Z of closed subspaces of L2(R) such that

1. Vj ⊂ Vj+1 for all j ∈ Z.
2. ∪ j∈ZVj is dense in L2(R).
3. ∩ j∈ZVj = {0}.
4. f (x) ∈ Vj iff f (m− j

n x) ∈ V0 for all j ∈ Z.
5. There exists a function gk(x) in L2(R), called the scaling function such that the

collection {gk(t − b
Mn

)}b∈Z is an orthonormal system of translates and

V0 = span{T b
Mn
gk(x)}.

For details on wavelet generated by a special type of multiresolution analysis see [9].

Remark 13.1 Aspecial type ofmultiresolution analysis is defined by first identifying
the space V0, defining Vj by letting

Vj = { f (x) : f (x) = Dm j
n
g(x), g(x) ∈ V0}

so that the Definition (13.1)(4) is satisfied and then proving that Definition (13.1)(1),
(2), (3), and (5) hold. V0 can be defined by just identifying the function gk(x) such
that {T b

Mn
gk(x)}b∈Z is an orthonormal system of translates and then defining

V0 = span{T b
Mn
gk(x)}.

Example 13.3.1 (Haar-Vilenkin Multiresolution Analysis) Let V0 consist of all step
functions f (x) such that
(i) f (x) ∈ L2(R).

(ii) f (x) is constant in the intervals I0, b
Mn

≡
[
r+b
Mn

, r+b+1
Mn

)
for all b ∈ Z.

It can be verified that for l ∈ Z

V0 = span{T l
Mn

pk(x)}

, where pk(x) = √
Mnχ[ r

Mn
, r+1
Mn

)(x).

13.4 Haar-Vilenkin Wavelets and Their Integrals

TheHaar-Vilenkin system (hn, n ∈ N) over the interval [A, B] of length 1 is defined
by h0 = 1 and
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hk(t) =
{√

Mne
2π istn
mn

A + r
Mn

≤ t < A + r+1
Mn

0 otherwise
. (13.6)

We have proved the orthogonality of Haar-Vilenkin wavelets in [8].
We need the following integrals of Haar-Vilenkin functions:

Pv,i (x) =
∫ x

A

∫ x

A
. . .

∫ x

A
hi (t) dt

v

= 1

(v − 1)!
∫ x

A
(x − t)v−1hi (t) dt.

For i �= 1,we have
If r

Mn
≤ x < r

Mn
+ 1

Mn−1
, then we have

Pα,i (x) = 1

(α − 1)!
∫

r/Mn

x(x − t)α−1
√
Mn dt

=
√
Mn

(α − 1)!
∫

r/Mn

x(x − t)α−1 dt

=
√
Mn

(α − 1)! .
1

α

(

x − r

Mn

)α

=
√
Mn

α!
(

x − r

Mn

)α

.

If r
Mn

+ 1
Mn−1

≤ x < r
Mn

+ 2
Mn−1

, then on solving as above, we have

Pα,i (x) =
√
Mn

α!
[

x −
(

r

Mn
+ 1

Mn−1

)]α

.e
2π is

mn
.

. . .

. . .

If r
Mn

+ mn−1
Mn−1

≤ x < r+1
Mn

, we have

Pα,i (x) =
√
Mn

α!
[

x −
(

r

Mn
+ mn − 1

Mn−1

)]α

.e
2π is(mn − 1)

mn
.

Therefore,
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Pα,i (x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 x < r
Mn√

Mn

α!
(
x − r

Mn

)α
r
Mn

≤ x < r
Mn

+ 1
Mn−1√

Mn

α!
[
x −

(
r
Mn

+ 1
Mn−1

)]α

.e 2π is
mn

r
Mn

+ 1
Mn−1

≤ x < r
Mn

+ 2
Mn−1

. . .√
Mn

α!
[
x −

(
r
Mn

+ mn−1
Mn−1

)]α

.e 2π is(mn−1)
mn

r
Mn

+ mn−1
Mn−1

≤ x < r+1
Mn

0 otherwise

.

(13.7)
If i = 0, we have hi (t) = 0 and

Pα,1(x) = 1

(α − 1)!
∫ x

A
(x − t)α−1 dt

= 1

(α − 1)! .
1

α
(x − A)α

= (x − A)α

α! (13.8)

Equation (13.7) holds for i > 1.
For i = 1, we have Eq. (13.8).

13.4.1 Matrix Form of Haar-Vilenkin Wavelets

Consider the case where A = 0 and B = 1.
We have formulated the Haar-Vilenkin wavelets in the discrete form:
Denote the grid points by

x̃l = A + lδx, l = 0, 1, . . . ,m0. (13.9)

We have considered

xl = 1

2
( ˜xl−1 + x̃l), l = 1, 2, . . . ,m0. (13.10)

On replacing x by xl in Eqs. (13.1), (13.7) and (13.8), we will obtain Haar-Vilenkin
wavelet matrices.We introduce the square matrices H, P1, P2, . . . , Pv. The elements
of these matrices are

H(i, l) = hi (xl), Pv(i, l) = Pvi (xl), v = 1, 2, 3, . . . .

A = 0, B = 1 and

δx = B − A

m0
= 1

m0
.
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Example 13.1 Consider the sequence (mk, k ∈ N) = (2, 2, 2, 2, . . .).
Then x1 = 1

4 , x2 = 3
4 .

Therefore,

h1(t) =
⎧
⎨

⎩

1 0 ≤ t < 1/2
−1 1/2 ≤ t < 1
0 otherwise

h2(t) =
⎧
⎨

⎩

√
2 0 ≤ t < 1/4

−√
2 1/4 ≤ t < 1/2

0 otherwise
.

The Haar-Vilenkin matrix H is

H =
[
h1(x1) h1(x2)
h2(x1) h2(x2)

]

. =
[
1 −1
−√

2 0

]

.

Similarly, the other Haar-Vilenkin matrices are

P1 =
[
P11(x1) P11(x2)
P12(x1) P12(x2)

]

, P2 =
[
P21(x1) P21(x2)
P22(x1) P22(x2)

]

. . . .

Using Eqs. (13.7) and (13.8), we obtain

P1 =
[

1
4

3
4

1
32

9
32

]

.

Example 13.2 Consider the sequence (mk, k ∈ N) = (4, 3, 2, 2, . . .).
Then x1 = 1

8 , x2 = 3
8 , x3 = 5

8 , x4 = 7
8 .

Therefore,

h1(t) =
{
e π i t0

2 0 ≤ t < 1
0 otherwise

h2(t) =
{
eπ i t0 0 ≤ t < 1
0 otherwise

h3(t) =
{
e 3π i t0

2 0 ≤ t < 1
0 otherwise

h4(t) =
{
2e2π i t0 0 ≤ t < 1/4
0 otherwise

.

The Haar-Vilenkin matrix H is
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H =

⎡

⎢
⎢
⎣

h1(x1) h1(x2) h1(x3) h1(x4)
h2(x1) h2(x2) h2(x3) h2(x4)
h3(x1) h3(x2) h3(x3) h3(x4)
h4(x1) h4(x2) h4(x3) h4(x4)

⎤

⎥
⎥
⎦ .

On solving, we obtain

H =

⎡

⎢
⎢
⎣

1 i −1 −i
1 −1 −1 i
1 −i −1 i
2i 0 0 0

⎤

⎥
⎥
⎦ .

Similarly, the other Haar-Vilenkin matrices are

P1 =

⎡

⎢
⎢
⎣

P11(x1) P11(x2) P11(x3) P11(x4)
P12(x1) P12(x2) P12(x3) P12(x4)
P13(x1) P13(x2) P13(x3) P13(x4)
P14(x1) P14(x2) P14(x3) P14(x4)

⎤

⎥
⎥
⎦ , P2 =

⎡

⎢
⎢
⎣

P21(x1) P21(x2) P21(x3) P21(x4)
P22(x1) P22(x2) P22(x3) P22(x4)
P23(x1) P23(x2) P23(x3) P23(x4)
P24(x1) P24(x2) P24(x3) P24(x4)

⎤

⎥
⎥
⎦ . . . .

Using Eqs. (13.7) and (13.8), we obtain

P1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
8

3
8

5
8

7
8

1
2

(
1
8

)2 1
2

(
3
8

)2 1
2

(
5
8

)2 1
2

(
7
8
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13.4.2 Expanding a Function into Haar-Vilenkin Wavelet
Series

Let f ∈ L2[A, B]. It can be expanded into Haar-Vilenkin Wavelet series as

f (x) =
m0∑

i=1

aihi (x), (13.11)

where ai denotes the Haar-Vilenkin wavelet coefficients. The discrete form of
Eq. (13.11) is

f̂ (xl) =
m0∑

i=1

aihi (xl). (13.12)

The matrix form of Eq. (13.12) is

f = aH, (13.13)
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where H is the Haar-Vilenkin matrix.
a = (ai ), f = ( fl) both are m0 dimensional row vectors.
On solving the matrix (13.13), we get

a = f H−1. (13.14)

On replacing the value of a, in Eq. (13.11), we obtain the wavelet approximation of
f . We can also check the degree of exactness of the approximation.
There are different ways to estimate the error function Δ of wavelet approxima-

tions. We have defined the error function as

Δ =
∫ B

A
[ f (x) − f̂ (x)]2 dx, (13.15)

where f̂ (x) denotes the approximation of f (x). The discrete form of Eq. (13.15) is

Δm0 = δx
m0∑

i=1

[ f (xi ) − f̂ (xi )]2. (13.16)

Example 13.3 Let f (x) = √
x for x ∈ (0, 1).

Then Haar-Vilenkin matrix is formed as shown in Examples (13.1) and (13.2). The
Haar-Vilenkin wavelet coefficients are calculated as in Eq. (13.14).

The error estimates Δm0 for the wavelet approximation are calculated as

m0 Δm0

4 1.270
5 0.312
6 0.0715
7 0.0183
8 0.0046

13.5 Solution of Ordinary Differential Equations

In this section we have expanded the highest order derivatives by Haar-Vilenkin
wavelet series. Other lower order derivatives and the function are obtained through
the integration and all the ingredients are substituted in the differential equation.

Consider the n-th order linear differential equation
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n∑

p=0

Ap(x)y
(p)(x) = f (x), x ∈ [a, b], (13.17)

with the initial conditions

y(p)(a) = y(p)
0 , p = 0, 1, 2, . . . , n − 1. (13.18)

Here Ap(x) are f (x) are prescribed functions and y(p)
0 are given constants.

Expand y(n)(x) by Haar-Vilenkin wavelet series as

y(n)(x) =
m0∑

i=1

aihi (x), (13.19)

where ai are Haar-Vilenkin wavelet coefficients. On integration Eq. (13.19), n − p
times, we get

y(p)(x) =
m0∑

i=1

ai Pn−p,i (x) + Ξp(x), (13.20)

where

Ξp(x) =
n−p−1∑

m=0

1

m! (x − a)m y(p+m)

0 . (13.21)

We will replace x by xl in Eqs. (13.17), (13.19), (13.20), and (13.21). We will sub-
stitute the values of (13.19), (13.20), and (13.21) in Eq. (13.17) and get a system
of linear equations for calculating the Haar-Vilenkin coefficients ai . After solving
this system of equations the desired solution is calculated from (13.20). We can also
check the exactness of this solution.

Example 13.4
dy

dx
= x2 − y, y(0) = 0. (13.22)

For m0 = 2, we have calculated the values of H and P1 in Example (13.1).

H =
[

1 −1
−√

2 0

]

. P1 =
[

1
4

3
4

1
32

9
32

]

.

By solving as above procedure, we have

y(1)(xl) =
2∑

i=1

aihi (xl) = a1h1(xl) + a2h2(xl). (13.23)
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y(xl) =
2∑

i=1

ai P1i (xl) + Ξ(xl)

=
2∑

i=1

ai P1i (xl) + y0

=
2∑

i=1

ai P1i (xl). (13.24)

On using the value of Eqs. (13.23) and (13.24) in (13.23), we obtain

2∑

i=1

aihi (xl) +
2∑

i=1

ai P1i (xl) = x2l .

We will obtain a system of equations

a(H + P1) = F.

On solving, we will obtain the value of Haar-Vilenkin wavelet coefficients. On sub-
stituting these values in (13.22) we will get the required value and by using Matlab
we have checked that these are very near to the exact value.

We will get the more exactness on taking the larger values of m0.

References

1. Ciesielski, Z.: Haar orthogonal Functions in Analysis and Probability, Colloquia Societatis
James Bolyai, 49, Alfred Haar Memorial Conference, Budapest, pp. 25–27 (1985)

2. Daubechies, I.: Ten Lectures on Wavelets, CBMS 61, SIAM, Philadelphia (1992)
3. Dubeau, F., Emejdani, S., Ksantini, R.: Non-uniform Haar wavelet. Appl. Math. Comput. 159,

675–693 (2004)
4. Grozdanov, V., Stoilova, S.: Price and Haar type functions and uniform distribution of

sequences. J. Inequal. Pure Appl. Math. 5(2), 1–17 (2004)
5. Haar, A.: Zur Theorie der orthogonalen funktionen systeme. Math. An. 69, 331–371 (1910)
6. Lepik, U., Hein, H.: Haar Wavelets with Applications. Springer International Publishing,

Switzerland (2014)
7. Malozemov, V.N., Masharkii, S.M.: Generalized wavelet bases related to the discrete Vilenkin-

Chresmathbben transform. St. Peterb. Math. J. 13, 75–106 (2002)
8. Manchanda, P., Meenakshi, Siddiqi, A.H.: Haar-Vilenkin wavelet. Aligarh Bul. Math. 27(1),

59–73 (2008)
9. Manchanda, P., Meenakshi: New classes of wavelets. In: Proceedings of the AIP Conference

on Modelling of Engineering and Technological Problems, vol. 1146, pp. 253–271
10. Manchanda, P., Meenakshi, Siddiqi, A.H.: A Special Type of Multiresolution Analysis,

accepted for publication
11. Schauder, M.J.: Einine eingenschaft der Haarschen orthogonalsystems. Math. Z. 28, 317–320

(1928)



206 Meenakshi and P. Manchanda

12. Schipp, F., Wade, W.R., Simon, P.: (with assistance by Pal, J.), Walsh Series: An Introduction
to Dyadic Harmonic Analysis. Adam Hilger Ltd., Bristol and New York (1990)

13. Smailov, E.S.: On Paley-type theorem formultidimensional Fourier series on generalizedHaar-
type systems. Fundam. Prinkl. 7(2), 533–563 (2000)

14. Uljanov, P.L.: Haar series and related questions, Colloqui Mathematica Societatis Janos Bolyai
49, Alfred Haar Memorial Conference, Budapest, pp. 57–96 (1985)

15. Vilenkin, N.Y.: On the theory of lacunary orthogonal systemwith gaps. Izo. Akad. Nauk. SSSR
Ser. Math. 13, 242–252 (1949)

16. Walnut, D.: An Introduction to Wavelet Analysis. Birkhäuser, Boston (2001)
17. Walsh, J.L.: A closed set of normal orthogonal function. Am. J. Math. 45, 5–24 (1923)
18. Wojtaszczyk, P.: A Mathematical Introduction to Wavelets. London Mathematical Society

Student Texts 37. Cambridge University Press, Cambridge (1997)



Chapter 14
Footprint-Based Personal Recognition
Using Dactyloscopy Technique

Rohit Khokher and Ram Chandra Singh

Abstract The uniqueness of human footprint has drawn attention of academia and
industry in recent years and is emerging as a latest biometric trait for biometric
authentication. A robust technique to be used for identification and recognition of an
individual using footprint as a biometric trait has been proposed in this work. Most
of the footprint recognition methods require segmentation or connected component
analysis. The determinant values that produce the features of the human footprint
are generally utilized in the recognition processes. Static footprint images of 94
individuals (57 males and 37 females) of different regions of North India between
age group 15–25 years have been acquired using Dactyloscopy technique. Biometric
performance parameters such as false accept rate, false reject rate, genuine accept
rate, half total error rate, and accuracy have been computed. The experimental results
show that the performance parameters computed for Dactyloscopy technique could
be used for biometric authentication. This study could be of potential use for forensic
and non-forensic purposes and researchers working in foot biometrics.

Keywords Biometrics ·Morphological operation ·Dactyloscopy technique ·FAR
FRR · Accuracy

14.1 Introduction

An increased number of computer frauds like identity theft and computer hacking
have been reported in past few years and therefore today’s e-security are facing chal-
lenges against these threats and are in search of secure, accurate, and most effective
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alternatives to personal identification numbers and passwords. These fundamental
problems can be resolved by biometric solutions because the biometric data of an
individual is unique and inalienable. The physiological and behavioral characteristics
of an individual are the two important capabilities to distinguish between an impostor
and an authentic user. Biometric authentication has an advantage that the user has to
be physically present during the process of identification. Therefore, it is inherently
more reliable and capable than traditional knowledge based and token based tech-
niques. Biometric personal identification has received growing interests, in recent
years, from both the academia and the industry [1]. There are two types of biometric
features: physiological (e.g., fingerprint, iris, and face) and behavioral (e.g., voice
and handwriting). Each biometric feature has its own strengths and limitations and
accordingly each biometric feature is used in authentication or identification appli-
cations. It is quite difficult to steal a biometric feature, create a copy, and use the
fake one to attack the biometric systems. Recognition, identification, and verification
of physiological biometric traits from video data and still images have been widely
used in security access, multimedia, video indexing of large databases, and other
commercial applications.

Footprint recognition is emerging as an important biometric trait and has drawn
significant attention of the researchers working in the field of biometrics in past few
years. Most studies are based on extracting some recognizable features since they are
more robust than the features of the time domain. Biometric footprint recognizes an
individual based on texture, foot shape, minutiae points, singular points, foot length,
etc. For forensic applications, Kennedy [2] used, for the first time, barefoot inked
images to extract geometrical features of foot impressions and since then foot bio-
metrics has seen a considerable growth in this field. Kumar in his study [3] captured
footprint images of left leg of 100 people from different angles; positioned and
cropped these images according to the key points. A sequential modified Haar trans-
form has been used to resize the footprint images to obtain modified Haar energy
feature from the resized images. The Euclidean distance has been used to compare
modified Haar energy feature with the feature vectors stored in the database. Krish-
nan [4] carried out his study on Gujjars of North India and studied the characteristics
of their footprints. The static footprint features (e.g., foot shape and friction edge)
have been used by King and Xiaopeng [5] to study the personal identification of an
individual. Wang et al. [6] deliberated alternative system grounded on gait investi-
gation. The dissemination of footprint substantial pressure surface reproduces the
performance characteristics and the physiological characteristics of the humanoid
figure. Recently, Khokher et al. [7] used principal component analysis (PCA) and
independent component analysis (ICA) linear projection methods to extract texture-
and shape-based features for personal identification of an individual. Uhl and Wild
[8] explored an approach to study foot biometric characteristics, image enhance-
ment, and feature extraction highlighting the characteristics of the foot geometry,
their durability, and uniqueness properties. The gait recognition has also emerged as
a remarkable signal processing tool for the biometric proof of identity [9]. Such as
there is no minutia-based pattern matching system, study on gait-based identification
by reflection of a person’s walking style provides indication that such a system is
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accurate, possible to be advanced and used in the forthcoming days. Kuragano et
al. [10] proposed a method to measure foot print similarity for gait analysis. Wild
and Uhl [11] provided an overview of footprint and single-sensor based multimodal
biometric recognition, and has developed a system for contemporary humanity, and
as it is assumed that no complete biometric modality suitable for all the applications
has been established. Khokher and Singh [12] in their study showed that the perfor-
mance parameters computed for human footprint images using scanning technique
show a better agreement with experimental results and could be used for biometric
authentication. A correlation analysis has also been performed and a strong correla-
tion is observed between actual height and toes, actual height and foot length, height
and weight.

A growing interest, uniqueness of human footprint and limited study in this field
motivated us to carryout this study. It is very difficult to achieve a high recognition
rate by verifying raw footprint directly because people generally stand in various
positions and postures with distances and angles between the two feet. To match
the input pair of footprints with the centralized database, the input pair of footprints
should be enhanced by using enhancement operations of preprocessing, normaliza-
tion, orientation, and filtration. Such normalization may remove useful information
for recognition, so geometric information of the footprint prior to normalization into
an evaluation function for personal recognition decision is included. In this paper,
we propose a footprint-based personal recognition using dactyloscopy technique to
test its reliability. In the subsequent section, this paper deliberates the steps involved
in acquiring footprint database in Sect. 14.2 and footprint enhancement process in
Sect. 14.3. Section14.4 includes feature extraction algorithm. Section14.5 explains
the simulation results and discussion of the study. The conclusion and future scope
of this work is discussed in Sect. 14.6.

14.2 Data Acquisition

Dactyloscopy technique has been used to capture footprint images of 94 individuals
(57 males and 37 females) of different genders, age groups, and of different regions
of North India and create a database of these images (Table14.1).

Table 14.1 Database

S. No. Gender Age group (in years) No. of individual

1. Male 15–20 32

2. 20–25 25

3. Female 15–20 17

4. 20–25 20
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Fig. 14.1 Images captured
using Dactyloscopy
technique

In this technique, ink is applied on the lower part of the foot of an individual and
its impression is taken on A4 size paper. After that, the images have been scanned at
300 dpi resolution as shown (Fig. 14.1).

To increase the accuracy andminimize the error in image capturing, the procedure
of taking the footprint impressions and then scanning the same has been repeated
five times for every individual. MATLAB functions, represented in italics, have been
used for acquiring data and analysis of the footprint images.

14.3 Footprint Image Enhancement

The performance of the feature extraction algorithm depends on the quality of foot-
print images. In order to ensure that the terminal and bijunction feature extraction
algorithm is robust to the quality of the input footprint images, an enhancement
algorithm is necessary for the images acquired using Dactyloscopy technique to
improve the clarity of the images. The proposed footprint image processing frame-
work consists of the following stages: (i) preprocessing of image, (ii) normalization,
(iii) orientation correction, (iv) frequency estimation, and (v) filtering. Preprocess-
ing of image is important for reliable foot recognition. In the preprocessing stage, an
improvement of the input image data is done that suppresses unwanted distortions
or enhances image quality for further processing.
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In stage (ii), normalization is done to reduce thevariation ingray-level values along
ridges and valleys by pixel-wise operation. A gray-level footprint image, Id(a, b)
obtained by Dactyloscopy technique is defined as a N × N matrix which represents
the intensity of the pixel at the xth row and yth column. The mean and variance of a
gray-level footprint image Id(a, b) are defined as,

M(Id) = 1

N 2

N−1∑

a=0

N−1∑

b=0

Id(a, b) (14.1)

and

V AR(Id) = 1

N 2

N−1∑

a=0

N−1∑

b=0

(Id(a, b) − M(Id))
2 (14.2)

respectively. Id(a, b) is the gray-level value at pixel (a, b), M and VAR are the
estimated mean and variance of Id , respectively. The normalized image is defined
as,

Gd(a, b) =

⎧
⎪⎪⎨

⎪⎪⎩

M0 +
√

V AR0(Id (a,b)−M)2

V AR , i f Id(a, b) > M

M0 −
√

V AR0(Id (a,b)−M)2

V AR , otherwise

(14.3)

where Gd(a, b) is the normalized gray-level value at pixel (a, b), M0 and VAR0 are
the desired mean and variance values, respectively. Normalization is a pixel-wise
operation which does not changes the clarity of the ridge and the valley structures.
Figure14.2 shows normalized image Gd(a, b). A similar methodology is used by
Hong et al. [13] for fingerprint image enhancement. Using normalization in direc-
tion and position, Nakajima et al. [14] improved Euclidean distance based footprint
recognition method from roughly 30 to 85% on raw images.

In stage (iii), orientation has been done on the normalized image Gd(a, b). The
orientation is the intrinsic property of the footprint image which defines the invariant
coordinates for ridges and valleys in local neighborhood. By studying the pixel-
wise orientation of the image, the direction of each pixel along x-axis and y-axis is
estimated to recognize the pattern of ridges in the footprints. Themain steps involved
in the orientation process are (a) divideGd(a, b) into blocks of size 5×5, (b) compute
the gradients ∂x (a, b) and ∂y(a, b) at each pixel (a, b). Gaussian low-pass filter is
used to compute gradients, (c) to smooth the gradients, Gaussian low-pass filter is
used again to compute gradients, (d) estimate the local ridge orientation Vx (a, b)
and Vy(a, b) along x-axis and y-axis, respectively, of each block centered at pixel
(a, b) using the following equations [13]:

Vx (a, b) =
a+ w

2∑

u=a− w
2

b+ w
2∑

v=b− w
2

2∂x (u, v)∂y(u, v) (14.4)
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Fig. 14.2 Normalized image, Gd (a, b)

V y(a, b) =
a+ w

2∑

u=a− w
2

b+ w
2∑

v=b− w
2

(∂2
x (u, v) − ∂2

y (u, v)) (14.5)

θ(a, b) = 1

2
tan−1

(
Vy(a, b)

Vx (a, b)

)
(14.6)

where θ(a, b) is least square estimate of the local ridge orientation at the block
centered at pixel (a, b). The computed gradients from the Gaussian low-pass filter
is passed to the filter2() function along with Gd(a, b) to generate the local ridge
orientation image Od(a, b) of same size as Gd(a, b). The local ridge orientation
image Od(a, b) is shown in Fig. 14.3.

In stage (iv), the local ridge frequency is estimated. A frequency image Fd(a, b)
is a N × N image where Fd(a, b) represents the local ridge frequency and is defined
as the frequency of the ridge and valley structures in a local neighborhood along a
direction normal to the local ridges orientation. Themain steps involved in frequency
estimation are (a) the normalized imageGd(a, b) and the orientation image Od(a, b)
are taken as input of freqest() function to interpolate frequency of data intensity, (b)
the function freqest() returns frequency estimated image Fd(a, b) (see Fig. 14.4) of
same size as Gd(a, b).

In filtering process applied in stage (v), to remove the undesired noise efficiently
and preserve the true ridge and valley structure, a band-pass filter is tuned to the
corresponding frequency and orientation. The sinusoidal shaped waves of ridged
and valleys vary slowly in a local constant orientation. Therefore, a band-pass filter
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Fig. 14.3 Orientation image, Od (a, b)

Fig. 14.4 Frequency estimated image Fd (a, b)
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Fig. 14.5 Enhanced image, Ed (a, b)

is tuned to the corresponding frequency and orientation that can efficiently remove
the undesired noise and preserve the true ridge and valley structure. There are many
filters available in MATLAB which are used to enhance and process the image. Ten
such filters namely, median, order-statistic, Wiener, average, Gaussian, Laplacian,
Prewitt, Sobel, Gabor and circular-mean filters have been applied by us on footprint
images acquired by Dactyloscopy technique to compute number of terminals and
bijunctions of ridges in footprint images using feature extraction algorithm. It has
been observed that the Gabor filter is good in comparison to other filters listed above
because the number of variations between computed number of terminals and bijunc-
tions are minimum. Gabor filter has optimal joint resolution in both spatial and fre-
quency domain and has properties like frequency-selective and orientation-selective.
The Od(a, b) and Fd(a, b) images computed in Sects. 14.3 and 14.4, respectively,
are passed through the Gabor filter to remove the undesired noise from image and
preserve true ridge/valley structure. The output of Gabor filter is an enhanced image
Ed(a, b) which is stored in the database. An enhanced filter image Ed(a, b) is a
N × N image and is shown in Fig. 14.5.

14.4 Algorithm for Feature Extraction

The enhanced image Ed(a, b) is passed through the feature extraction algorithm.
Morphological thinning operation is applied on the enhanced image Ed(a, b) to
remove the foreground pixels and return the single pixel data of the footprint image
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Fig. 14.6 Morphological thinning on enhanced image a Ed (a, b) to get skeletal image, b Sd (a, b)

as skeleton image Sd(a, b), as shown in Fig. 14.6. This operation is done using
bwmorph() function which applies thin morphological operation to the binary image
Ed(a, b). The following steps of the algorithm are used to extract number of terminals
and bijunctions in footprints obtained by Dactyloscopy technique:

Step 1: Skeleton image Sd(a, b) is operated using nlfilter() function to perform
general sliding-neighborhood operations.

Step 2: Binary image Ld(a, b) is obtained using nlfilter(Sd(a, b), [3 3], FUN)
where nlfilter() applies the function FUN to each 3× 3 sliding block of the Sd(a, b).

Step 3: Counting of features are performed as

(a) if Ld(a, b)==1 then number of terminal++
(b) else if Ld(a, b)==3 then number of bijunctions++

Step 4: End

The computed features, i.e., number of terminals and bijunctions are stored in the
database as templates for matching and identification of an individual.

14.5 Results and Discussion

To study the performancemeasurements and correlation between theweights, height,
foot and body mass index, a database of footprint impressions of 94 individuals (57
males and 37 females) of age groups between 15–20 years and 20–25 years of
different regions of North India has been created. The architecture of the footprint
identification system used in this study is shown in Fig. 14.7.

If a user is using biometric application for the first time, the user needs to enroll
his footprint images in a centralized database as a template linked internally to user’s
identity document (ID). During the time of authentification of the user, the biometric
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Footprint 
Acquisition on 

A4 sheet

Performance parameters 
FAR|FRR|GAR|HTER| 

Accuracy Enhancement/Feature Extraction Module

Decision 
Module 

Accepted/Rejected 
Stored  

Database

Fig. 14.7 The architecture of the footprint identification system using Dactyloscopy technique

input (footprint) of the user is compared to the data stored in the centralized database
as templates by amatching algorithm that responds to false acceptance rate (FAR) and
false reject rate (FRR), the metrics used to measure the performance of a biometric
system.

The FAR is a measure of the probability that a biometric system incorrectly
authorizes a non-authorized user. The acceptance (match) occurs due to incorrectly
matching of the template and the biometric input. Similarly, the FRR is a measure of
the probability that the system incorrectly rejects access to an authorized user. The
rejection (no match) occurs due to failing to match the template with the biometric
input. Thenumber of errormust be lowasmuch as possible for the user’s convenience.
For age group 15–20 years, the FAR and FRR are 32 and 18.1%, respectively, for
males; 30 and 15.2% for females. For age groups 20–25 years, the FAR and FRR
for males are 31 and 11.3%, respectively and for females 30 and 13.6%. The FAR
and FRR for the age group of 20–25 years for males are 31 and 11.3%, respectively,
and for female 30 and 13.6%. The accuracy of a biometric system depends on these
metrics. Practically, a biometric system with low FAR and high FRR must not allow
access of any unauthorized user. Therefore, an authorized user have to put his feet
on the device several times before access. It would also mean that the authorized
users will have to put their feet on the device several times before they are allowed
access. The development of a robust artifact removal algorithm and selection of an
appropriate imaging sensor will help in achieving the accuracy of a biometric system.

The genuine accept rate (GAR), half total error rate (HTER), and accuracy are
few other biometric metrics that determine the performance of a biometric system.
The GAR is defined as a percentage of genuine users accepted by the system and is
given by relation: GAR = 1-FRR. In a biometric authentication system, a reference
threshold defined as a value that can decide whether a user is authorized or non-
authorized by using biometric authentication is set at a particular value of FAR and
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Table 14.2 Performance parameters (in percentage)

Gender Age group
(in years)

FAR FRR GAR HTER Accuracy

Male 15–20 32 18.1 81.9 25.0 74.9

20–25 31 11.3 88.7 21.1 78.8

Female 15–20 30 15.2 84.8 22.6 77.4

20–25 30 13.6 86.4 21.8 78.2

the GAR can be measured accordingly for this particular value of FAR. In this study,
the threshold value is set as 20 pixels.When comparedwith other systems, the system
with the highest GAR rate is considered to bemost accurate. In this study, the GAR is
found to bemore than 80% for both the genders in the age groups of 15–20 and 20–25
years. Another possible way to measure the performance of a biometric system is to
use the half total error rate (HTER) which combines the FRR and FAR and is defined
by the formula: HTER= (FAR+ FRR)/2. The FRR and FAR are strongly correlated
to each other as they depend on the threshold value; when FAR increases, the FRR
decreases and vice-versa. The average value of HTER is found to be 23.05% for
males and 22.2% for females.

The accuracy of a biometric system is based on several verifying criteria including
the identification rate, FAR, FRR, HTER, and additional biometric system standards
and is normally expressed in percentage. The ability to identify an individual by
an accuracy in a biometric system is in terms of percentage efficiency of a system.
The accuracy of the biometric system depends on the threshold range, i.e., less the
threshold range, more is the accuracy and vice-versa. The accuracy is calculated by
the formula: Accuracy = 100 − (FAR + FRR)/2.

The results of Table14.2 show that the average accuracy of for males is 76.8 and
77.8% for females. For the user’s identification dactyloscopy technique can be used
as one of the parameter. When some information is lost during the acquisition of
image, the accuracy of dactyloscopy technique lowers down and can be increased by
the advancement of feature extraction algorithm. The performance of other biometric
traits such as fingerprint, face, iris, voice, key stroke, and hand geometry which are
used for individual verification and identification by the commercialized security
system are shown in Table14.3.

Biometric systems are generally affected by demographic, performance, and envi-
ronmental factors. The performance factors include capturing images of good qual-
ity, composition of target user size, time interval between enrollment and verification
phases and robustness of recognition algorithm. Illumination conditions around the
system, humidity, and temperatures are the environmental factors that affect the per-
formance of a biometric system.
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Table 14.3 Evaluation of biometric features

Biometric Performance parameters (in percentage) Samples

FAR FRR

Face 1 10 37,437

Fingerprint 2 2 25,000

Hand geometry 2 2 129

Iris 0.94 0.99 1224

Keystrokes 7 0.1 15

Voice 2 10 30

14.6 Conclusion

This study focuses on a footprint-based recognition system of an individual using
dactyloscopy technique. A database of footprint images of 94 individual of northern
India of different gender and age group is acquired using dactyloscopy technique. The
simulated results show a moderate accuracy to recognize an individual, an improve-
ment is required before it can be implemented for commercial use. The result shows
that an accuracy of 78.8% is achieved as the highest recognition rate in this study
which could be used for forensic investigations. An accuracy of over 90% and almost
100% have been reported for face and fingerprint recognitions, respectively [15–18].
A limitation of this research is that all the images of footprint have been acquired in
one standing position only. The results may deviate when the postures of acquiring
footprint images varies.

The promising areaswhere commercialized biometric systemusing footprint rates
can be used are public bathe, water parks, thermal bathe, swimming pools, spas and
holy places like temples, mosque, and gurudwaras where person enters barefoot. A
footprint of an individual visiting these areas can be acquired by simple installation
of the sensor and scanner on the main entrance of the place. This study can be helpful
for getting the evidences at the criminal sites and the footprint feature can be used
to identify criminals. Footprint biometric trait has a promising feature in both types
of biometric security systems, i.e., single-trait biometric system and multi-modal
biometric system where footprint can be combined with other biometric traits and
can give better results.
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Chapter 15
An Iterative Algorithm for a Common
Solution of a Split Variational Inclusion
Problem and Fixed Point Problem
for Non-expansive Semigroup Mappings

M. Dilshad, A.H. Siddiqi, Rais Ahmad and Faizan A. Khan

Abstract In this paper, we consider a split variational inclusion problem and a fixed
point problem for non-expansive semigroup mappings in real Hilbert spaces. An
iterative algorithm is introduced to approximate the common solution of split varia-
tional inclusion problem and a fixed point for a non-expansive semigroup mappings.
Further, under some suitable conditions, it is proved that the sequences generated by
the proposed algorithm converge strongly to a common solution of split variational
inclusion problem and fixed point problem for a non-expansive semigroupmappings.

Keywords Split variational inclusion problem · Fixed point problem
Monotone operator · Non-expansive semigroup · Iterative algorithm
Strong convergence

15.1 Introduction

Throughout this paper,we assume thatH1 andH2 are two realHilbert spaces equipped
with the norm ‖ · ‖ and inner product 〈·, ·〉. A mapping T : H1 → H1 is called con-
traction, if there exists a constant k ∈ (0, 1) such that ‖T x − T y‖ ≤ k‖x − y‖, for
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all x, y ∈ H1. If k = 1, then T is called non-expansive. The mapping T is said to
have a fixed point x ∈ H1, if T x = x .

Let C be a non-empty closed convex subset of the Hilbert space H1. A family
S = {T (s) : 0 ≤ s < ∞} of mappings from C into itself is called a non-expansive
semigroup on C if it satisfies the following conditions:

(i) T (0)x = x, ∀x ∈ C .
(ii) T (s + t) = T (s)T (t), ∀s, t ≥ 0.
(iii) ‖T (s)x − T (s)y‖ ≤ ‖x − y‖ ,∀x, y ∈ C and s ≥ 0.
(iv) For all x ∈ C, s �→ T (s)x is continuous.

The set of all common fixed point of a family S is denoted by Fix(S), i.e.

Fix(S) = {x ∈ C : T (s)x = x, 0 ≤ s < ∞}
=

⋂

0≤s<∞
Fix(T (s)),

where Fix(T (s)) is the set of fixed points of T (s). It is trivial to show that Fix(S) is
closed and convex.

We consider the following fixed point problem for non-expansive semigroup S
(in short FPP):

Find x ∈ H1 such that x ∈ Fix(S). (15.1)

Shimizu and Takahashi [18] introduced and studied the following iterative method
to prove a strong convergence theorem for FPP (15.1) in a real Hilbert spaces:

xn+1 = αnu + (1 − αn)
1

sn

∫ sn

0
T (s)xnds, ∀ n ∈ N ,

where {αn} is a sequence in (0, 1) and {sn} is a sequence of positive real numbers
which diverges to +∞. Recently, Chen and Song [8] introduced and studied the
following iterative scheme for FPP (15.1) in real Hilbert spaces:

xn+1 = αn f xn + (1 − αn)
1

sn

∫ sn

0
T (s)xnds, ∀ n ∈ N ,

where f is a contraction mapping.

Definition 15.1 A mapping T : H1 → H1 is said to be

(i) monotone, if
〈T x − T y, x − y〉 ≥ 0, ∀x, y ∈ H1;

(ii) α-strongly monotone, if there exists a constant α > 0 such that

〈T x − T y, x − y〉 ≥ α‖x − y‖2, ∀x, y ∈ H1;
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(iii) β-inverse strongly monotone, if there exists a constant β > 0 such that

〈T x − T y, x − y〉 ≥ β‖T x − T y‖2, ∀x, y ∈ H1;

(iv) firmly non-expansive, if

〈T x − T y, x − y〉 ≥ ‖T x − T y‖2, ∀x, y ∈ H1.

Definition 15.2 A multi-valued mapping B : H1 → 2H1 is said to be maximal
monotone, if its graph(B) = {(x, y) ∈ H1 × H1 : y ∈ Bx} is not properly contained
in the graph of any other monotone mapping.

It is well known that a monotone mapping B ismaximal if and only if for (x, u) ∈
H1 × H1, 〈x − y, u − v〉 ≥ 0, for every (y, v) ∈ graph(B) implies that u ∈ Bx . If
B is maximal monotone, then for each x ∈ H1 and λ > 0 there is a unique z ∈ H1

such that x ∈ (I + λB)−1z. In this case, the operator J B
λ = (I + λB)−1, called the

resolvent of B of parameter λ, is a non-expansive mapping and define everywhere.
The concept of split variational inequality problem is given by Censor et al. [5],

which is to find a solution of variational inequality such that its image under a given
bounded linear operator solves another variational inequality, i.e. to find x∗ ∈ C such
that

〈 f x∗, x − x∗〉 ≥ 0, ∀ x ∈ C, (15.2)

such that
y∗ = Ax∗ ∈ Q solves 〈gy∗, y − y∗〉 ≥ 0, ∀y ∈ Q, (15.3)

where C is closed, convex subset of the Hilbert space H1; Q is closed, convex subset
of the Hilbert space H2, A : H1 → H2 is a bounded linear operator, f : H1 → H1

and g : H2 → H2 are two operators.
Recently,Moudafi [16] introduced the following split monotone variational inclu-

sion (in short, SMVIP): Find x∗ ∈ H1 such that

0 ∈ f x∗ + B1x
∗, (15.4)

such that
y∗ = Ax∗ ∈ H2 solves 0 ∈ gy∗ + B2y

∗, (15.5)

where B1 : H1 → 2H1 and B2 : H2 → 2H2 are multi-valued monotone mappings.
Moudafi [16] introduced an iterative method for solving SMVIP (15.4) and (15.5)

which is an important generalization of iterative algorithm given by Censor et al. [5].
Moudafi [16] emphasized that SMVIP (15.4) and (15.5) includes many special cases
such as the split variational inequality problem, split common fixed point problem,
split zero problem and split feasibility problem, see [2, 4–6, 15, 16], which have
already been used in practice as amodel in the intensity-modulation radiation therapy
treatment planning, see [6, 7]. This formalism is also at the core of the modelling
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of many inverse problems arising for phase retrieval and other real-world problems;
for instance, in sensor networks in computerized tomography and data compression,
see [4, 9] and references therein.

Byrne et al. [2] studied the following split variational inclusion problem (SVIP):
Find x∗ ∈ H1 such that

0 ∈ B1x
∗ (15.6)

such that
y∗ = Ax∗ ∈ H2 solves 0 ∈ B2y

∗. (15.7)

The solution set of SVIP (15.6) and (15.7) is denoted by Ξ = {x∗ ∈ H1 : 0 ∈
B1x∗ such that 0 ∈ B2(Ax∗).

Byrne et al. [2] proposed the following iterative scheme to prove the strong and
weak convergence theorem for SVIP (15.6) and (15.7). For given x0 ∈ H1 and λ > 0
compute iterative sequence {xn} generated by the following scheme:

xn+1 = J B1
λ

[
xn + γ A∗

(
J B1
λ − I

)
Axn

]
.

Motivated by the work of Moudafi [16], Byrne et al. [2] and by the ongoing
research in this direction, we propose an iterative algorithm for approximating a
common solution to fixed point problem FPP (15.1) and split variational inclusion
problem SVIP (15.6) and (15.7). Furthermore, we prove that the sequences generated
by the iterative algorithm converge strongly to a common solution of FPP and SVIP.

15.2 Preliminaries

The metric projection onto the set C (C ⊂ H1), denoted by PC , is defined by, for
all x ∈ H1, PCx ∈ C and ‖x − PCx‖ = inf y∈C ‖x − y‖. PC is also characterized by
the fact PCx ∈ C , 〈x − PCx, y − PCx〉 ≤ 0 and ‖x − y‖2 ≥ ‖x − PCx‖2 + ‖y −
PCx‖2, for all x ∈ H1, y ∈ C . It is well known that PC is non-expansive and satisfies
〈x − y, PCx − PC y〉 ≥ ‖PCx − PC y‖2, for all x, y ∈ H1.

Let T : H1 → H1 be a non-expansive operator. Then, the inequality

〈(x − T x) − (y − T y), T y − T x〉 ≤ 1

2
‖(T x − x) − (T y − y)‖2, (15.8)

holds for all (x, y) ∈ H1 × H2. Thus, we get for all (x, y) ∈ H1 × Fix(T ),

〈x − T x, y − T x〉 ≤ 1

2
‖T x − x‖2. (15.9)

See ([11], Theorem 3.1) and ([10], Theorem 2.1) for the above inequalities.
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It is also known that H1 satisfies Opial’s condition [17], i.e. for any sequence {xn}
with xn ⇀ x , the inequality

lim inf
n→∞ ‖x − y‖ < lim inf

n→∞ ‖xn − y‖ (15.10)

holds for every y ∈ H1 with y �= x .
AmappingT : H1 → H1 is said to beaveraged if andonly if it canbewritten as the

average of identity mapping and a non-expansive mapping, namely T = (1 − α)I +
αS, where α ∈ (0, 1) and S : H1 → H1 is non-expansive mapping. Thus firmly non-
expansive mapping (in particular, projection on nonempty closed and convex subsets
and resolvent operators of maximal monotone operators) are averaged. It can also be
note that average mappings are non-expansive.

The following are some important properties of averaged operators, see e.g.,
[1, 3, 14]

Proposition 15.1 (i) If T = (1 − α)S + αV , where S : H1 → H1 is averaged,
V : H1 → H1 is non-expansive and α ∈ (0, 1), then T is averaged.

(ii) The composite {T1, . . . , TN } are averaged and have a nonempty common fixed
point, then

N⋂

i=1

Fix(Ti ) = Fix(T1, T2, . . . , TN ).

(iii) If T is τ -inverse strongly monotone, then for γ > 0, γ T is τ
γ
-inverse strongly

monotone.
(iv) T is averaged if and only if, its complement I − T is τ -inverse strongly

monotone for some τ > 1
2 .

Lemma 15.1 ([18])Let C be a non-empty bounded closed convex subset of aHilbert
space H1 and let S = {T (s) : 0 ≤ s < ∞} be a non-expansive semigroup onC. Then
for any 0 ≤ h < ∞ and t > 0,

lim sup
t→∞x∈C

∥∥∥∥
1

t

∫ t

0
T (s)xds − T (h)

(
1

t

∫ t

0
T (s)xds

)∥∥∥∥ = 0.

Lemma 15.2 ([19]) If {an} be a sequence of nonnegative real numbers such that

an+1 ≤ (1 − αn)an + δn, n ≥ 0,

where {αn} is a sequence in (0, 1) and {δn} is a sequence in R such that

(i)
∞∑
n=1

αn = ∞;

(ii) lim supn→∞
δn
αn

≤ 0 or
∞∑
n=1

|δn| < ∞
Then, lim

n→∞ an = 0.
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Lemma 15.3 The following inequality holds in real Hilbert space H1:

‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉, ∀x, y ∈ H1.

Lemma 15.4 ([12])Assume that T is non-expansive self-mapping of a closed convex
subset C of a Hilbert space H1. If T has a fixed point, then I − T is demiclosed,
that is, whenever {xn} is a sequence in C converging weakly to some x ∈ C and the
sequence {(I − T )xn} converges strongly to some y, it follows that (I − T )x = y,
where I is the identity mapping on H1.

Following lemma can be proved easily using the definition of resolvent operator.

Lemma 15.5 x∗ ∈ H1 and y∗ = Ax∗ are the solution of SVIP (15.6), (15.7) if and
only if

x∗ = J B1
λ x∗ and y∗ = Ax∗ = J B2

λ y∗, f or some λ > 0.

15.3 Main Result

In this section, we prove a strong convergence of sequences based on the proposed
iterative algorithm for computing the common approximate solution of FPP (15.1)
and SVIP (15.6), (15.7).

Theorem 15.1 Let H1 and H2 be two real Hilbert spaces. Assume that B1 : H1 →
2H1 and B2 : H2 → 2H2 are maximal monotone operators and A : H1 → H2 is a
bounded linear operator. Let S = {T (s) : 0 ≤ s < ∞}beanon-expansive semigroup
on H1 such that {Fix(S)} ∩ {Ξ} �= ∅. Let f : H1 → H1 be a contraction mapping
with constant α ∈ (0, 1). Let {sn} be a positive real sequence which diverges to ∞.
For a given arbitrary x0 ∈ H1, {un}, {xn} are the iterative sequences generated by
the iterative algorithm:

un = J B1
λ

(
xn + γ A∗

(
J B2
λ − I

)
Axn

)
;

xn+1 = αn f xn + (1 − αn)
1

sn

∫ sn

0
T (s)unds, (15.11)

where γ ∈ (0, 1
L ), L is the spectral radius of the operator A
A and A
 is the adjoint

of A and {αn} is a sequence in (0, 1) satisfying

(i) lim
n→∞ αn = 0,

∞∑
i=1

αn = ∞ and
∞∑
i=1

|αn − αn−1| < ∞;

(ii)
∞∑
i=1

|sn+1−sn |
sn+1

< ∞.

Then, the sequence {xn} converges to z ∈ {Fix(S)} ∩ {Ξ}, where z = P{Fix(S)}∩{Ξ} f z.



15 An Iterative Algorithm for a Common Solution … 227

Proof Let x∗ ∈ {Fix(S)} ∩ {Ξ} ⇒ x∗ ∈ Ξ ⇒ x∗ = J B1
λ x∗, Ax∗ = J B2

λ Ax∗.Then
by (15.11), we have

‖un − x∗‖2 =
∥∥∥J B1

λ [xn + γ A

(
J B2
λ − I

)
Axn] − x∗

∥∥∥
2

=
∥∥∥J B1

λ [xn + γ A

(
J B2
λ − I

)
Axn] − J B1

λ x∗
∥∥∥
2

≤
∥∥∥xn + γ A


(
J B2
λ − I

)
Axn − x∗

∥∥∥
2

≤ ‖xn − x∗‖2 + γ 2
∥∥∥A


(
J B2
λ − I

)
Axn

∥∥∥
2

+2γ
〈
xn − x∗, A


(
J B2
λ − I

)
Axn

〉

≤ ‖xn − x∗‖2 + 2γ
〈
xn − x∗, A


(
J B2
λ − I

)
Axn

〉

+γ 2
〈(
J B2
λ − I

)
Axn, AA



(
J B2
λ − I

)
Axn

〉
. (15.12)

By using (15.9), we have

2γ
〈
xn − x∗, A


(
J B2
λ − I

)
Axn

〉

= 2γ
〈
A(xn − x∗),

(
J B2
λ − I

)
Axn

〉

= 2γ
〈
A(xn − x∗) +

(
J B2
λ − I

)
Axn −

(
J B2
λ − I

)
Axn,

(
J B2
λ − I

)
Axn

〉

= 2γ

{〈
J B2
λ Axn − Ax∗,

(
J B2
λ − I

)
Axn

〉
−

∥∥∥
(
J B2
λ − I

)
Axn

∥∥∥
2
}

≤ 2γ

{
1

2

∥∥∥
(
J B2
λ − I

)
Axn

∥∥∥
2 −

∥∥∥
(
J B2
λ − I

)
Axn

∥∥∥
2
}

≤ −γ

∥∥∥
(
J B2
λ − I

)
Axn

∥∥∥
2
, (15.13)

and

γ 2
〈(
J B2
λ − I

)
Axn, AA



(
J B2
λ − I

)
Axn

〉
≤ Lγ 2

〈(
J B2
λ − I

)
Axn,

(
J B2
λ − I

)
Axn

〉

= Lγ 2
∥∥∥
(
J B2
λ − I

)
Axn

∥∥∥
2
. (15.14)

Using (15.13) and (15.14), (15.12) becomes

‖un − x∗‖2 ≤ ‖xn − x∗‖2 + γ (Lγ − 1)
∥∥∥
(
J B2
λ − I

)
Axn

∥∥∥
2
. (15.15)
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Since γ ∈ (
0, 1

L

)
, this implies that

‖un − x∗‖2 ≤ ‖xn − x∗‖2. (15.16)

Let tn = 1
sn

∫ sn
0 T (s)unds. Then using T (s)x∗ = x∗ and (15.16), we have

‖tn − x∗‖ =
∥∥∥∥
1

sn

∫ sn

0
T (s)unds − x∗

∥∥∥∥

≤ 1

sn

∫ sn

0
‖T (s)un − T (s)x∗ds‖

≤ ‖un − x∗‖
≤ ‖xn − x∗‖. (15.17)

Now, we show that {xn} is bounded.

‖xn+1 − x∗‖ = ‖αn f xn + (1 − αn)tn − x∗‖
≤ αn‖ f xn − x∗‖ + (1 − αn)‖tn − x∗‖
≤ αn‖ f xn − f x∗‖ + αn‖ f x∗ − x∗‖ + (1 − αn)‖tn − x∗‖
≤ αnα‖xn − x∗‖ + αn‖ f x∗ − x∗‖ + (1 − αn)‖xn − x∗‖
= [1 − αn(1 − α)] ‖xn − x∗‖ + αn‖ f x∗ − x∗‖
≤ max

{
‖xn − x∗‖ ,

‖ f x∗ − x∗‖
1 − α

}

...

≤
{
‖x0 − x∗‖ ,

‖ f x∗ − x∗‖
1 − α

}
.

Hence, {xn} is bounded, and consequently {un}, { f xn}, {tn} are bounded.
Now, we estimate

‖tn+1 − tn‖
=

∥∥∥∥
1

sn+1

∫ sn+1

0
T (s)un+1ds − 1

sn

∫ sn

0
T (s)unds

∥∥∥∥

=
∥∥∥

1

sn+1

∫ sn+1

0
[T (s)un+1 − T (s)un]ds +

(
1

sn+1
− 1

s

) ∫ sn+1

0
T (s)unds

+ 1

sn+1

∫ sn+1

sn

T (s)unds
∥∥∥

=
∥∥∥

1

sn+1

∫ sn+1

0
[T (s)un+1 − T (s)un]ds +

(
1

sn+1
− 1

s

) ∫ sn

0
[T (s)un − T (s)x∗]ds

+ 1

sn+1

∫ sn+1

sn

[T (s)un − T (s)x∗]ds
∥∥∥
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≤ ‖un+1 − un‖ + |sn+1 − sn|sn
sn+1sn

‖un − x∗‖ +
( |sn+1 − sn|

sn+1

)
‖un − x∗‖

≤ ‖un+1 − un‖ + 2|sn+1 − sn|
sn+1

‖un − x∗‖. (15.18)

Since γ ∈ (
0, 1

L

)
, themapping J B2

λ

(
I + γ + A∗

(
J B1
λ − I

)
A
)
is average and hence

non-expansive, then we have

‖un+1 − un‖
=

∥∥∥J B1
λ

[
xn+1 + γ A


(
J B2
λ − I

)
Axn

]
− J B1

λ

[
xn + γ A


(
J B2
λ − I

)
Axn

]∥∥∥

=
∥∥∥J B1

λ

[(
I + γ A


(
J B2
λ − I

))
A
]
xn+1 − J B1

λ

[(
I + γ A


(
J B2
λ − I

))
A
]
xn

∥∥∥
≤ ‖xn+1 − xn‖. (15.19)

Further using (15.18), (15.19) and boundedness of {un}, { f xn} and {tn}, we have

‖xn+1 − xn‖
= ‖αn f xn + (1 − αn)tn − αn−1 f xn−1 − (1 − αn−1)tn−1‖
= αn‖ f xn − f xn−1‖ + (αn − αn−1)‖ f xn−1‖ + (1 − αn)‖tn − tn−1‖

+(αn − αn−1)‖tn−1‖
= αnα‖xn − xn−1‖ + (1 − αn)‖tn − tn−1‖ + |αn − αn−1| {‖ f xn−1‖ + ‖tn−1‖}
≤ αnα‖xn − xn−1‖ + (1 − αn)‖un − un−1‖ + 2

|sn − sn−1|
sn

‖un−1 − p‖
+2|αn − αn−1|K

≤ [1 − αn(1 − α)]‖xn − xn−1‖ + 2
|sn − sn−1|

sn
‖un − x∗‖ + 2|αn − αn−1|K

= [1 − αn(1 − α)]‖xn − xn−1‖ + 2

{
M

|sn − sn−1|
sn

+ K |αn − αn−1|
}

.

Letβn = [1 − αn(1 − α)], δn = 2
{
M |sn−sn−1|

sn
+ K |αn − αn−1|

}
, thenusingLemma

15.2, we get
‖xn+1 − xn‖ → 0, as n → ∞. (15.20)

Now, since

xn+1 − xn = αn f xn + (1 − αn)tn − xn
= αn( f xn − xn) + (1 − αn)(tn − xn),
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then, we have

(1 − αn)‖tn − xn‖ ≤ αn‖ f xn − xn‖ + ‖xn+1 − xn‖.

Since αn → 0 and ‖xn+1 − xn‖ → 0 as n → ∞, we have

‖tn − xn‖ → 0, as n → ∞. (15.21)

Next, we estimate

‖T (s)xn − xn‖ =
∥∥∥T (s)xn − T (s)

1

sn

∫ sn

0
T (s)unds + T (s)

1

sn

∫ sn

0
T (s)unds

− 1

sn

∫ sn

0
T (s)unds + 1

sn

∫ sn

0
T (s)unds − xn

∥∥∥

≤
∥∥∥∥T (s)xn − T (s)

1

sn

∫ sn

0
T (s)unds

∥∥∥∥

+
∥∥∥∥T (s)

1

sn

∫ sn

0
T (s)unds − 1

sn

∫ sn

0
T (s)unds

∥∥∥∥

+
∥∥∥∥
1

sn

∫ sn

0
T (s)unds − xn

∥∥∥∥

≤
∥∥∥∥xn − 1

sn

∫ sn

0
T (s)unds

∥∥∥∥

+
∥∥∥∥T (s)

1

sn

∫ sn

0
T (s)unds − 1

sn

∫ sn

0
T (s)unds

∥∥∥∥

+
∥∥∥∥
1

sn

∫ sn

0
T (s)unds − xn

∥∥∥∥

≤ 2

∥∥∥∥xn − 1

sn

∫ sn

0
T (s)unds

∥∥∥∥

+
∥∥∥∥T (s)

1

sn

∫ sn

0
T (s)unds − 1

sn

∫ sn

0
T (s)unds

∥∥∥∥ . (15.22)

Let U = {w ∈ H1 : ‖w − x∗‖ ≤ m}, where m = min
{
‖x0 − x∗‖, ‖ f x∗−x∗‖

1−α

}
. Since

{xn}, { f xn} are bounded, thenU is a nonempty bounded closed convex subset of H1

which is T (s)-invariant, for each 0 ≤ s < ∞ and contains {xn}. So without loss of
generality, we may assume that S = {T (s) : 0 ≤ s < ∞} is a non-expansive semi-
group on U . By Lemma 15.1, we have

lim
n→∞

∥∥∥T (s)
1

sn

∫ sn

0
T (s)unds − 1

sn

∫ sn

0
T (s)unds

∥∥∥ = 0. (15.23)
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By using (15.21), (15.22) and (15.23), we have

lim
n→∞ ‖T (s)xn − xn‖ = 0.

It follows from (15.15) and Lemma 15.4 that

‖xn+1 − x∗‖2
= ‖αn f xn + (1 − αn)tn − x∗‖2
= αn‖ f xn − x∗‖2 + (1 − αn)‖tn − x∗‖2
≤ αn‖ f xn − x∗‖2 + (1 − αn)‖un − x∗‖2

≤ αn‖ f xn − x∗‖2 + (1 − αn)

[
‖xn − x∗‖2 + γ (Lγ − 1)

∥∥∥
(
J B2
λ − I

)
Axn

∥∥∥
2
]

≤ αn‖ f xn − x∗‖2 + ‖xn − x∗‖2 + γ (Lγ − 1)
∥∥∥
(
J B2
λ − I

)
Axn

∥∥∥
2
. (15.24)

This implies that

γ (−Lγ + 1)
∥∥∥
(
J B2
λ − I

)
Axn

∥∥∥
2

≤ αn‖ f (xn) − x∗‖2 + ‖xn − x∗‖2 − ‖xn+1 − x∗‖2
= αn‖ f (xn) − x∗‖2 + ‖xn+1 − xn‖(‖xn − x∗‖ + ‖xn+1 − x∗‖).

Since (1 − Lγ ) > 0, αn → 0, ‖xn+1 − xn‖ → 0, this implies that

∥∥∥
(
J B2
λ − I

)
Axn

∥∥∥ → 0, as n → ∞. (15.25)

Also, we have

‖un − x∗‖ =
∥∥∥J B1λ

(
xn + γ + A∗ (

J B2λ − I
)
Axn

)
− x∗∥∥∥

=
∥∥∥J B1λ

(
xn + γ A∗ (

J B2λ − I
)
Axn

)
− J B1λ x∗∥∥∥

≤
〈
un − x∗, xn + γ A∗ (

J B2λ − I
)
Axn − x∗〉

= 1

2

{
‖un − x∗‖2 +

∥∥∥xn + γ A∗ (
J B1λ − I

)
Axn − x∗∥∥∥

2

−
∥∥∥(un − x∗) −

[
xn + γ + A∗ (

J B1λ − I
)
Axn

]∥∥∥
}

≤ 1

2

{
‖un − x∗‖ + ‖xn − x∗‖ + γ (lγ − 1)

∥∥∥
(
J B2λ − I

)
Axn

∥∥∥
2

−
∥∥∥un − xn − γ A∗ (

J B2λ − I
)
Axn

∥∥∥
}
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≤ 1

2

{
‖un − x∗‖ + ‖xn − p‖ + γ (lγ − 1)

∥∥∥
(
J B2λ − I

)
Axn

∥∥∥
2 −

[
‖un − xn‖2

+‖xn − x∗‖2 − ‖un − xn‖2 + 2γ ‖A(un − xn)‖
∥∥∥
(
J B2λ − I

)
Axn

∥∥∥
]}

.

(15.26)

Therefore, we have

‖un − x∗‖2 ≤ ‖xn − x∗‖2 − ‖un − xn‖2 + 2γ ‖A(un − xn)‖
∥∥∥
(
J B2
λ − I

)
Axn

∥∥∥ .

(15.27)
From (15.24) and (15.27), we have

‖xn+1 − x∗‖2 = αn‖ f xn − x∗‖ + (1 − αn)
[
‖xn − x∗‖ − ‖un − xn‖2

+2γ ‖A(un − xn)‖
∥∥∥
(
J B2
λ − I

)
Axn

∥∥∥
]

≤ αn‖ f xn − x∗‖ + ‖xn − x∗‖2 − ‖un − xn‖2
+2γ ‖A(un − xn)‖

∥∥∥
(
J B2
λ − I

)
Axn

∥∥∥ .

This implies that

‖un − xn‖ ≤ αn‖ f xn − x∗‖ + ‖xn − x∗‖2 − ‖xn+1 − x∗‖2
+2γ ‖A(un − xn)‖

∥∥∥
(
J B2
λ − I

)
Axn

∥∥∥

≤ αn‖ f xn − x∗‖ + ‖xn+1 − xn‖
(‖xn − x∗‖2 + ‖xn+1 − x∗‖2)

+2γ ‖A(un − xn)‖
∥∥∥
(
J B2
λ − I

)
Axn

∥∥∥ .

By (15.20) and (15.25), we have

‖un − xn‖ → 0, as n → ∞. (15.28)

Now, we can write

‖T (s)tn − xn‖ ≤ ‖T (s)tn − T (s)xn‖ + ‖T (s)xn − xn‖
≤ ‖tn − xn‖ + ‖T (s)xn − xn‖ → 0 as n → ∞,

and

‖T (s)tn − tn‖ ≤ ‖T (s)tn − T (s)xn‖ + ‖T (s)xn − xn‖ + ‖xn − tn‖
≤ ‖tn − xn‖ + ‖T (s)xn − xn‖ + ‖xn − tn‖ → 0 as n → ∞.

Since {tn} is bounded, there exists a subsequence {tni } ⊆ {tn} such that tni ⇀ w ∈ C .
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Now, we prove thatw ∈ {Fix(S)} ∩ {Ξ}. First, we show thatw ∈ Fix(S). Assume
that w �= Fix(S). Since tni ⇀ w and T (s)w �= w. From opial condition, we have

lim inf
i→∞ ‖tni − w‖ ≤ lim inf

i→∞
∥∥tni − T (s)w

∥∥

≤ lim inf
i→∞

{∥∥tni − T (s)tni
∥∥ + ∥∥T (s)tni − T (s)w

∥∥}

≤ lim inf
i→∞ ‖tni − w‖,

which is a contradiction. Hence w ∈ Fix(S).
Also, we have

‖T (s)un − un‖
≤ ‖T (s)un − T (s)xn‖ + ‖T (s)xn − xn‖ + ‖xn − un‖
= ‖xn − un‖ + ‖T (s)xn − xn‖ + ‖xn − un‖ → 0 as n → ∞.

(15.29)

Since {un} is bounded, we consider a weak cluster point w of {un}. Hence, there
exists a subsequence {unk } of {un}, which converges weakly to w.

Now T (s) being non-expansive, by (15.29) and Lemma 15.4, we obtain w ∈
Fix(S). On the other hand

unk = J B1
λ

(
xnk + γ

(
J B1
λ − I

)
Axn

)
,

(xnk − unk ) + A
(J B2
λ − I )Axnk

λ
∈ B1unk .

By taking k → 0 and by (15.25), (15.28) and using that graph of maximal monotone
operator is weakly strong closed, we obtain 0 ∈ B1w. Since {xn} and {un} have same
asymptotical behaviour, so {Axnk } weakly converges to Aw.

Next, using (15.25) and the fact that the resolvent operator is non-expansive and
Lemma 15.1, we obtain Aw ∈ B2(Aw). Thus w ∈ {Fix(S)} ∩ {Ξ}.

Now,we claim that limn→∞sup〈 f z − z, xn − z〉 ≤ 0,where z = P{Fix(S)}∩{Ξ} f z.
Indeed, we have

lim sup
n→∞

〈 f z − z, xn − z〉 = lim sup
n→∞

〈 f z − z, tn − z〉
≤ lim sup

n→∞
〈 f z − z, tni − z〉

= lim sup
n→∞

〈 f z − z,w − z〉
≤ 0, (15.30)

because z ∈ P{Fix(S)}∩{Ξ} f z.
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Finally, we have

‖xn+1 − z‖2 = 〈αn f xn + (1 − αn)tn − z, xn+1 − z〉
= αn〈 f xn − z, xn+1 − z〉 + (1 − αn)〈tn − z, xn+1 − z〉
= αn〈 f xn − f z, xn+1 − z〉

+αn〈 f z − z, xn+1 − z〉 + (1 − αn)〈tn − z, xn+1 − z〉
≤ αn

2

{‖ f xn − f z‖2 + ‖xn+1 − z‖2}

+αn〈 f z − z, xn+1 − z〉 + (1 − αn)

2

{‖tn − z‖2 + ‖xn+1 − z‖2}

≤ αn

2

{
α2‖xn − z‖2 + ‖xn+1 − z‖2

}

+ (1 − αn)

2

{‖tn − z‖2 + ‖xn+1 − z‖2} + αn〈 f z − z, xn+1 − z〉

≤ α2αn

2
‖xn − z‖2 + αn

2
‖xn+1 − z‖2 + (1 − αn)

2
‖xn − z‖2

+ (1 − αn)

2
‖xn+1 − z‖2 + αn〈 f z − z, xn+1 − z〉

= 1

2
[1 − αn(1 − α2)] ‖xn − z‖2 + (1 − αn)

2
‖xn+1 − z‖2

+αn

2
‖xn+1 − z‖2 + αn〈 f z − z, xn+1 − z〉.

This implies that

‖xn+1 − z‖2 ≤ [1 − αn(1 − α2)] ‖xn − z‖2 + 2αn〈 f z − z, xn+1 − z〉. (15.31)

By using (15.28) and Lemma 15.3, we see that xn → z. Further, from ‖un −
xn‖ → 0,un ⇀ w ∈ {Fix(S)} ∩ {Ξ}, xn → z as n → ∞ that z = w. This completes
the proof.

Remark 15.1 The results presented in this paper can be seen as the extension and
generalization of the previous known results in this field, see e.g. [2, 13].
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Chapter 16
The Impact of Vaccination to Control
Human Papillomavirus Dynamics

Sudip Chakraborty, Joydeep Pal, Sonia Chowdhury
and Priti Kumar Roy

Abstract Human papillomavirus (HPV) has been a prevalent virus for a long time.
The number of cancer cases from benign tumours is constantly increasing andHPV is
playing an important role, more aggressively is evolving as cervical cancer in young
females. More than 170 types of HPV virus exists and among them some are “High-
risk” variety, some are “Low-risk” variety. The control of this virus outbreak remains
a challenge till date. The aim of this study is to investigate the role of vaccination as
a control strategy in decreasing of the spread of the disease. In this research article,
we formulated a model considering high-risk-type HPV, low-risk-type HPV, and
low–high risk (infected by both low-risk and high-risk)-type HPV. We derive the
basic reproduction ratio and also show that there exists a disease-free equilibrium,
which is locally asymptotically stable. Furthermore, an analysis is then performed
on crucial parameters in order to determine their importance and potential impact
on HPV dynamics. Our analytical and numerical analysis reveals that HPV infection
can be reduced by using vaccination as a control strategy.

Keywords Human papillomavirus (HPV) · Cervical cancer · Low–high risk type
Vaccination · Basic reproduction ratio · Next-generation method

16.1 Introduction

Human papillomavirus (HPV) is a family of virus that includes more than 170 dif-
ferent types of virus and among them 40 types of virus are sexually transmitted [1].
Genital HPVs, which are transmitted sexually, are the primary factors in cervical can-
cer worldwide [2]. Cervical cancer is now one of the most common forms of cancer
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worldwide among young women [3]. It is also the cause of non-cervical cancers in
young men with occurrences of anal cancers, oropharyngeal cancers, and penile and
prostate cancer [4]. It is revealed clinically, that Human papillomavirus (HPV) type
16 and 18 are responsible for about half of the cervical cancer cases in the United
states and Europe [5]. Sexually transmitted HPV types fall into two categories: some
types of HPV which can cause warts, are treated as low-risk genotype of HPV, while
other types which lead to different kinds of cancer in females including cervical
cancer, are treated as high-risk genotype of HPV [1, 6]. The virus types 2, 3, 4, 7,
8, 11, 22 are some low-risk HPV types and the virus type 16, 18, 31, 33, 45 are
some high-risk HPV types [5]. For instance, HPV infections are recovered automat-
ically by an individual immune system before they have the chance to develop into a
productive infection. Around one-half of these infections are with a high-risk HPV
type [7]. Most high-risk HPV infections occur without any symptoms and within
1–2years it cures without any interventions and do not cause cancer. Some HPV
infections, however, can exist for many years. Persistent infections with high-risk
papillomavirus types can lead to cellular changes which if untreated, may progress
to cancer. Generally, all types of cervical cancer are caused by HPV and it is also
diagnosed to be clinically related factor for 95% anal cancer, 70% oropharyngeal
cancers, and other rarer cancer cases in sexually active men. Cervical cancer is more
prevalent in young women from 20–24 years [8].

Vaccination programs are recognized as being among the world’s most success-
ful public health programs. Its impact on lowering rates of infection (and sequential
reduction in complications and health burden)makes vaccination one among themost
cost effective and economically attractive of all health interventions strategies for var-
ious infectious diseases [9]. For HPV, vaccination seems to be the best approach to
prevent cervical cancer. Merck and GlaxoSmithKline have developed two vaccines,
Gardasil and Carvarix, respectively for treating HPV-induced cancers. These vac-
cines mainly targets on type 16 and 18 HPV ailments. Additionally, Gardasil also
protects against type 6 and 11 [6]. Successful vaccination increases virus-neutralizing
antibodies in serum [10]. These vaccines are nearly 100% effective in women at pre-
venting diseases caused by virus-specific strains, including precancerous lesions of
the cervix, vagina as well as genital warts. However, the HPV vaccine was con-
fronted with some social myths and side effects like pain and syncope’s which led
some controversy in some Western countries recently [11, 12].

Studies on presence of HPV DNA in cervical samples show that 10% or more of
all clinical lesions contain at least two different HPV types. McLaughlin et al. [13]
have investigated if multiple HPV types can coexist in the same cell and interact
with one another. His studies provide valuable insights into the interactions that may
occur between different HPV types. Robert J. Smith [14] andMori [15] has also give
an idea about that coinfection of multiple genotypes of HPV is commonly observed
among women with abnormal cervical cytology. A broad body of biological and
clinical literature exist globally for HPV but mathematical modeling on the subject,
generated quite recent interest among epidemiologists. In India, this seems to be a
unexplored area, and predicting the possibilities of applying vaccination programs
to fight against HPV.
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Different models have been developed to analyze the transmission dynamics of
sexually transmitted disease (STD) as well as the effectiveness of some intervention
strategies against the spread of these diseases [16–19]. Mathematical study on the
disease is quite limited and mostly focused on the biological and epidemiological
backgrounds including some preventive strategies through vaccination. Previously,
works involving mathematical studies associated to cervical cancer has been con-
centrated generally on epidemiology, with importance on the transmission among
individuals and the efficacy of HPV vaccines [20–22].

In this research article, we have introduced a mathematical model to describe
the interpretation between low-risk type and high-risk type HPV and their dynamics
including a new class low–high risk HPV population and how vaccination becomes
important in the effort of reducing the HPV infection in the population which is a
novelty in itself.

16.2 Formulation of the General Mathematical Model

We consider a HPV population model taking susceptible, vaccinated, infected, and
recovered classes. Let the total population at any time t be denoted by N (t). The total
population is divided into six compartments, that are Susceptible(S), Vaccinated(V ),
Infected by Low-risk HPV(IL ), Infected by High-risk HPV(IH ), Infected by both
Low–High risk HPV(ILH ), and Recovered(R). It is assumed that susceptible indi-
viduals are recruited into the population at a rate Π . The susceptible individuals are
vaccinated at a rate ω and the vaccinated individuals return to the susceptible class
after losing their immunity at a rate σ . The susceptible individuals are infected by
the classes IL , IH and ILH at the rate λ respectively. Furthermore, it is assumed that
vaccinated individuals may also be infected at a low rate (1 − φ), where φ ∈ (0, 1)
measures the efficacy of the vaccine. Now, the infected individuals by low-risk HPV
may also be infected High-risk HPV at a rate β and move to the class ILH and vice
versa. The infected individuals by low-risk, High-risk, and both low–High risk HPV
can recover at the rates r1, r2 and r3 respectively. However, some recovered indi-
viduals revert to the susceptible class at a rate α after a wane their immunity. All
individuals naturally die at a rate μ and sick individuals die of cancer at a rate ξ .

Thus, we have the following mathematical model:

dS

dt
= Π − λS(IL + IH + ILH ) − ωS + αR + σV − μS,

dV

dt
= ωS − (1 − φ)V (IL + IH + ILH ) − (σ + μ)V,

d IL
dt

= λSIL + (1 − φ)V IL − β IL IH − (r1 + μ)IL ,

d IH
dt

= λSIH + (1 − φ)V IH − β IL IH − (r2 + μ + ξ)IH ,
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d ILH
dt

= λSILH + (1 − φ)V ILH + β IL IH − (r3 + μ + ξ)ILH ,

dR

dt
= r1 IL + r2 IH + r3 ILH − (α + μ)R. (16.1)

where N = S + V + IL + IH + ILH + R and S(0) > 0, V (0) ≥ 0, IL(0) ≥ 0,
IH (0) ≥ 0, ILH (0) ≥ 0, V (0) ≥ 0.

16.2.1 Theoretical Analysis of the System

We begin by showing that all feasible solutions are uniformly bounded in a proper
subset of Λ ∈ R

+
6 . The feasible region Λ with Λ = {

(S, V, IL , IH , ILH , R) ∈ R
+
6 :

N ≤ Π
μ

}
is considered. Now, taking the sum all the equations of the model we have

dN (t)

dt
= Π − μN (t) − β IL IH − ξ(IH + ILH ),

≤ Π − μN (t). (16.2)

Applying integration on (16.2), we obtain

N (t) ≤ N (0)e−μt + Π

μ
(1 − e−μt ), (16.3)

where N(0) represents the initial value of the respective variables. Then 0 ≤ N ≤ Π
μ

as t → ∞. Therefore, Π
μ

is an upper bound of N (t) provided N (0) ≤ Π
μ
. Hence,

the feasible solution of the above model system enters the region Λ is positively
invariant set. Thus, the system is biologically meaningful and mathematically well
posed in the domain of Λ. In this domain, it is sufficient to consider the dynamics of
the flow generated by the model system (16.2).

16.2.1.1 Stability of the Disease-Free Equilibrium

In this system, the disease-free equilibrium is given by

E0 = (S0, V0, 0, 0, 0, 0) = (
Π(σ+μ)

μ(σ+ω+μ)
, Πω

μ(σ+ω+μ)
, 0, 0, 0, 0).

The stability of this equilibriumwill be investigated using the next-generationmethod
[23, 25]. Using the common notations of next-generation method for the above
model, the associatedmatrices F and V for the new infection terms and the remaining
transition terms are respectively given by

F =
⎛

⎝
λS0 + (1 − φ)V0 0 0

0 λS0 + (1 − φ)V0 0
0 0 λS0 + (1 − φ)V0

⎞

⎠
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=
⎛

⎜
⎝

λΠ(σ+μ)+(1−φ)Πω

μ(λ+ω+μ)
0 0

0 λΠ(σ+μ)+(1−φ)Πω

μ(λ+ω+μ)
0

0 0 λΠ(σ+μ)+(1−φ)Πω

μ(λ+ω+μ)

⎞

⎟
⎠

and V =
⎛

⎝
r1 + μ 0 0

0 r2 + μ + ξ 0
0 0 r3 + μ + ξ

⎞

⎠.

It follows that, FV−1 =
⎛

⎜
⎝

λΠ(σ+μ)+(1−φ)Πω

μ(λ+ω+μ)(r1+μ)
0 0

0 λΠ(σ+μ)+(1−φ)Πω

μ(λ+ω+μ)(r2+μ+ξ)
0

0 0 λΠ(σ+μ)+(1−φ)Πω

μ(λ+ω+μ)(r3+μ+ξ)

⎞

⎟
⎠.

Thus, the reproduction number

R0 = ρ(FV−1) = λΠ(σ + μ) + (1 − φ)Πω

μ(λ + ω + μ)(r2 + μ + ξ)
(16.4)

as r2 < r3 < r1 and ξ is very low and where ρ(FV−1) is the spectral radius of the
matrix FV−1.

Now, we have the following theorem.

Theorem 16.2.1 If R0 < 1, infection-free equilibrium is stable, while if R0 > 1, the
infection-free equilibrium is unstable and the infected state equilibrium exists.

16.2.1.2 Existence of the Endemic Equilibrium

In this system, endemic equilibrium point E is the steady-state solution where
the disease persists in the population. For the existence of endemic equilibrium
E = (S∗; V ∗; I ∗

L; I ∗
H ; I ∗

LH ; R∗), its coordinates should satisfy the conditions; E =
(S∗; V ∗; I ∗

L ; I ∗
H ; I ∗

LH ; R∗) �= 0, where S∗ > 0; V ∗ > 0; I ∗
L > 0; I ∗

H > 0; I ∗
LH > 0;

R∗ > 0. The endemic equilibrium point is obtained by setting equation of the sys-
tem (16.1) to zero. We then solve for state variables in terms of S and obtain the
following;

V ∗ = ωS∗

(1 − φ)Z + C
;

I ∗
L = XS∗ − E

β
;

I ∗
H = XS∗ − D

β
;

I ∗
LH = (XD − S∗)(XS∗ − E)

β(F − XS∗)
;

R∗ = (r1 + r2)βZ − (XS∗ − D)r1 − (XS∗ − E)r2
βG

(16.5)
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where,
A = ω + μ,C = σ + μ, D = r1 + μ, E = r2 + μ + ξ , F = r3 + μ + ξ ,G = α +
μ, X = λ + (1−φ)ω

(1−φ)Z+C and Z = I ∗
L + I ∗

H + I ∗
LH .

Now substituting the values we have

S∗ = (a1 + a2Z)(a3Z + C)2

(a4 + a5Z)(a3Z + C) + a6
. (16.6)

where, a1 = Dr1 + Er2, a2 = ΠβG + αβ(r1 + r2)Z , a3 = 1 − φ, a4 = βAG −
σω, a5 = βλG, a6 = (r1 + r2)[λ + (1 − φ)ω].

Hence putting the value of S∗ in Z = I ∗
L + I ∗

H + I ∗
LH we have an eighth degree

polynomial of Z as

h0 + h1Z + h2Z
2 + h3Z

3 + h4Z
4 + h5Z

5 + h6Z
6 + h7Z

7 + h8Z
8 = 0. (16.7)

The polynomial (16.7) has at least one positive root if h0 < 0 and h0 + h1 + h3 +
h5 + h7 > 0. This implies that there exists at least one endemic equilibrium point.
Hence, the existence of the endemic equilibriumpointwill be governed by the follow-
ing theorem. The model system (16.1) has at least one endemic equilibrium point, if
h0 < 0 and h0 + h1 + h3 + h5 + h7 > 0. Then, the theorem below gives a condition
for the existence of the endemic equilibrium point for HPV model with vaccination.
The endemic equilibrium point of HPV model with vaccination exists if and only if
R0 > 1.

16.3 Numerical Simulation

Numerical simulations of the model system are carried out using a set of parameter
values given in Table16.1. Some parameter values were obtained from different
literature and others were estimated. We simulate the model system by using ODE45
solver coded inMATLAB program language by using the parameter values shown in
Table16.1 and the following initial conditions; S(0) = 2000; V (0) = 100; IL(0) =
200; IH (0) = 50; ILH (0) = 20 and R(0) = 200.

16.3.1 Numerical Results in the Presence of Vaccination

Here, we show the trend of the state variables of the modified HPV model. The
decrease in the number of susceptible individuals implies that many of the suscep-
tible individuals are vaccinated as in Fig. 16.1a. As initially susceptible proportion
remains larger, so the vaccinated individuals increases. With continuous vaccination
to individuals the no. of vaccinated people decreases over time. It is reflected in
the Fig. 16.1b. Figure16.1c shows that, the number of infected by low-risk HPV
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Table 16.1 List of parameters used in the model (16.1)

Parameter Definition Value (month)−1 Reference

Π Rate of recruitment into the susceptible
population

40 Estimated

λ Rate of infection 0.001 Estimated

ω Rate of vaccination 0.3 [24]

α Rate of reversion from recovered to
susceptible population

0.2 [24]

σ Rate of returning from vaccinated to
susceptible population

0.02 [24]

φ Rate of non-infection of vaccinated
population

0.99 [24]

β Contact rate between IL and IH classes
to make ILH class

0.01 [14]

r1 Recovery rate of IL population 4 Estimated

r2 Recovery rate of IH population 3.6 Estimated

r3 Recovery rate of ILH population 3.65 Estimated

μ Natural death rate 0.2 [24]

ξ Disease death rate 0.01 [24]
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Fig. 16.1 Simulation results showing the trends of the state variables of the HPV model for a
Susceptible population, b Vaccinated population, c Infected with low-risk HPV, d Infected with
high-risk HPV, e Infected with low–high risk HPV and f Recovered population of the model system
(16.1) where R0 = 0.3374

individuals decreases. Figure16.1d shows that the number of infected by high-
risk HPV individuals decreases very fast due to vaccination, disease death etc.
Figure16.1e indicates that, the number of individuals with both low- and high-
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risk HPV individuals increases initially due to interaction of IL and IH classes
then decreases for vaccination. Furthermore, the number of recovered individuals
increases because of the high rate of recovery for IL class and then it decreases as
many recovered individuals goes to susceptible class again, as shown in Fig. 16.1f.

16.3.2 Variation of Population Under Different
Vaccination Rates

In Fig. 16.2, we show the role of vaccination in reducingHPV infection in the popula-
tion. Figure16.2a shows that, when the vaccination rate ω increases the susceptible
population decreases rapidly. This implies that most of the susceptible individu-
als become vaccinated. When the value of ω increases, the vaccination population
increases as shown in Fig. 16.2b. It is to be noted that vaccine can protect HPV-
infected people with certain High-risk seropositive cases. However, the vaccine can-
not protect the spectrum of low-risk HPV. So obviously people can get infected
with low-risk virus from vaccinated class also and this is reflected with variation
of parameter in Fig. 16.2c. Figure16.2d shows that, the rate of decreasing of num-
ber of infected by high-risk HPV population goes higher as the rate of ω increases
and vaccination plays an very important role in this population. Similarly, Fig. 16.2e
indicates that, the number of individuals of ILH class decreases in higher rate as ω

increases. As vaccination rate increases the number of recovered individuals also
increases, as shown in the Fig. 16.2f.
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Fig. 16.2 Simulation results showing the effect of varying vaccination rate (ω) on a Susceptible
population, b Vaccinated population c Infected with low-risk HPV, d Infected with high-risk HPV,
e Infected with low–high risk HPV and f Recovered population
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Fig. 16.3 Contour plots of R0 as a function of Π and ω

Color legend is for differentiating the different region of R0. From our analytic
study if R0 < 1 then the system will be stable. So above the dark blue region the
system will be unstable. The contour plot exhibits the R0 as a function of Π and
ω (Fig. 16.3), it shows that when the value of Π lies within 10 the system becomes
stable (R0 <1) with increasing value of the vaccination programme. However, if we
increase the value of Π beyond this value the system loses its stability although the
vaccination rate may be higher.

16.4 Discussion

In this research article, we have formulated a mathematical model of HPV dynamics
considering six population classes which are interrelated to the transmission of the
disease. Here, we have studied the impact of vaccination as a control strategy against
the transmission of the HPV infection. We have taken vaccinated population as an
individual class. We have introduced a new class considering those individuals who
are co-infected by both low-risk and high-risk HPV. Our analytical results indicated
taking the reproduction number R0 < 1, all the population exhibits stable equilib-
rium. It is observed that the parameter ω is an important parameter in respect of
the infection control. We have derived numerically the stable region for ω and Π .
Moreover, it is observed that the 100% vaccination rate can maintain its stability for
values of Π below 10. It is also observed that the infection readily decreases after
an initial 1-month period when the vaccination imparts its biological efficacy on the
coinfection cases (i.e. infected by the low–high risk HPV) to reduce the prevalence
of infection. The model analysis showed that there exists a domain where the model
is epidemiologically and mathematically well posed. The threshold parameter that



246 S. Chakraborty et al.

operates the disease transmission has been computed by next generation operator
approach as described by Van [23, 25]. Then the model has been analyzed for the
existence and stability of disease-free and endemic equilibrium. It is proved that the
disease-free equilibrium is locally asymptotically stable under certain conditions.
Numerically we have discussed the variation of each population under different vac-
cination rate. The result shows that if we increase the vaccination rate ω in a certain
range i.e. from 0.05 to 1.5, it definitelymakes an affect on the susceptible, vaccinated,
high-risk and low–high risk populations.

16.5 Conclusion

In this research work, we have investigated the impact of vaccination on the preven-
tion of human papillomavirus (HPV) infection dynamics in humans.We haveworked
out the feasibility of the vaccination strategy where we have shown analytically and
numerically how vaccination can ensure a predictable preventive policy against the
disease transmission among sexually active population who are at a greater risk to
develop cervical cancer from the high-risk and low–high risk strains of the papil-
lomavirus. Here, we developed a mathematical model system of HPV which can
capture some relevant properties of the disease with its clinical manifestation and
biological background. Although the total eradication of this HPV disease remains
a challenge in some countries but from the result of our study, we request that our
policymakers should initiate some programs on implementing vaccination for this
disease. Vaccination is indeed needed to reduce the transmission of HPV infection
in HPV prevalent area as it has significant impact on the reduction of infection trans-
mission, which we have showed in the research article. It is also revealed from our
numerical and analytical study that coinfection plays a crucial role in propagating
the complexities of the disease that can welcome more extreme cases. Through vac-
cination we can also address the problem of high risk HPV in a better way.
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Chapter 17
Novel Solution of Nonlinear Equations
Using Genetic Algorithm

Chhavi Mangla, Harsh Bhasin, Musheer Ahmad and Moin Uddin

Abstract Nonlinear equations represent highly complex systems and their solutions
by conventional methods have high computational complexity. Methods like Bisec-
tion, Regula Falsi, Newton–Raphson, Secant, Muller, etc., are used to solve such
problems. This work find gaps in the existing methods and justifies the applicability
of Genetic Algorithm to the problem. A Genetic Algorithm-based method has been
proposed, which is more efficient and produces better results as compared to the
existing methods.

Keywords Nonlinear equations · Soft computing techniques · Genetic Algorithm

17.1 Introduction

Linear and nonlinear system of equations are used in numerous engineering appli-
cations. Finding a robust and efficient solution to such system, is a tedious task and,
at times, too complex to be handled by the conventional methods like Newton’s
Method, Bisection method, Regula Falsi, etc. The existing conventional approaches
dealing the above problem can be categorized as follows:

(a) Calculus-based methods, which include conventional Newton’s method, Secant
method, Bisection method, etc.
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(b) Heuristic methods, which include evolutionary computational techniques like
Particle swarm optimization, Genetic Algorithm etc.

The high computational complexity, both in terms of time and space, and the con-
straints involved in the conventional methods make their application to the said
problems difficult. This opens the window of Genetic Algorithm (GA) to the fasci-
nating world of mathematics. Note that GA is heuristic search process based on the
Darwin’s theory of evolution. It has been found that the application of GA produces a
robust, efficient, and effective result in finite time. Also, it can deal with the problem
of local maxima. The problem of finding out the solution of a given equation or that
of a given set of equations is also a search problem. Moreover, one of the factors that
justifies the applicability of GA to the problem is the vastness of the search space.

This work proposes a soft computing technique for finding efficient solutions to
solve the given system of equations. This approach uses principle of evolutionary
computation and has been effectively applied to find the approximate solutions of
such problems. The empirical analysis has been carried out to reach the solution to
the problem. The crossover and mutation rates in the experiments carried out, were
kept constant but, in the ongoing work, the variations of these, are also being ana-
lyzed. The process has been successfully implemented and results are encouraging.
The advantage of the current approach is that no additional constraint involving dif-
ferentiability of the equation is required. Therefore, this approach can be used for
noncontinuous equations also.

The organization of the paper is as follows: In Sect. 17.2, a brief literature review
providing the state of the art of available work is presented. Section17.3 provides
an overview of GA. In Sect. 17.4, the proposed algorithm is presented. Section17.5
includes the experiment and results. The last section presents the conclusion, appli-
cations and future scope.

17.2 State of Art

A systematic review provides a great source to understand, evaluate and interpret all
available research work related to the research area. It also helps to access the state
of the art and to find problems, if any, in the existing works. Moreover, it also helps
to justify to the proposed approach.

In this view, an extensive literature review has been carried out. The results of
the review have been presented in the following table (Table 17.1). Though, many
other papers were studied and analyzed, the methodology are more or less similar
to those adopted in the papers given in the following table. The important points
and the issues pertaining to the methodologies were considered while designing
the experiment. However, review of these papers has not been mentioned in the
table [1, 4, 5, 7, 9, 11, 12, 14, 20].
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Table 17.1 State of art

S.No. Year Work proposed Verification/validation

1 2001 The work uses a gradient descent method in order
to solve nonlinear system of equations [2]

The proposed work has
been verified on the
following test problems:

• Extended rosenbrock
function

• Broyden tridiagonal
function

2 2005 The author presents a methodology for sorting
equations from system of nonlinear equations,
which can be solved using fixed point method.
The work involves combining machine learning
on the basis of Genetic and Genetic Algorithm,
which help in managing a population of possible
solution processes [19]

The work has been verified
on the Combined cycle gas
turbine simulation problem

3 2006 In this paper, real-coded multi-crossover Genetic
Algorithm has been developed for estimating the
various parameters of nonlinear system [3]

The proposed work has
been verified on the
following test problems:

• First-order plus dead-time
system

• Nonlinear and unstable
plant problem

4 2006 In the paper, the nonlinear system of equations, at
each step, is first transformed into a constrained
nonlinear programming problem, and then with a
line search strategy, it is solved using sequential
quadratic programming (SQP) algorithm [15]

For validation of the current
approach, few examples on
system of nonlinear
equations in two variables
with quadratic degree are
taken into consideration

5 2008 A new perspective has been proposed in the work,
by considering nonlinear system of equations as
multi-objective optimization problem [6]

The proposed work has
been verified on the
following test problems:

• Interval arithmetic
benchmark

• Neuropsychology
application

• Kinematic application

• Combustion application

• Chemical equilibrium
application

6 2011 In the proposed work, the author combines two
heuristic optimization tools, Genetic Algorithm,
and Particle Swarm Optimization for solving
complex nonlinear equation system [1]

Methodology has been
verified with a suit of 17
unconstrained test problems

7 2013 The paper describes a specialized application of
Genetic Algorithm for approximating solution of
optimum problems by introducing pairs of
harmonious and symmetric individuals [18]

Few examples involving 2
variables have been used for
verification of the proposed
technique

(continued)
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Table 17.1 (continued)

S.No. Year Work proposed Verification/validation

8 2013 In this paper, the author first converted single and
simple set of nonlinear system of equations into
unconstrained optimization problem, and complex
set of systems into constrained optimization
problem. Afterward, Genetic Algorithm tool is
applied to solve the system [16]

The proposed work has
been verified on the
following test problems:

• Fluid mechanics
application

• Arithmetic applications

• Combustion applications

• Neurophysiology
applications

9 2014 The article presents the estimation of root of
nonlinear equations using Genetic Algorithm via.
population size, crossover rate, degree of
mutation, and coefficient size [10]

The proposed work has
been verified on the
following test problems:

• Traveling Salesman
Problem

• Neurophysiology
Application

• Tank Reactor System

10 2015 The author developed a new approach in which
optimum solution of nonlinear system of
equations is obtained by a method based on
variants of Genetic Algorithm using evolutionary
computational technique [17]

The work has been verified
on a set of different 20
nonlinear equations in
single variable

17.3 Genetic Algorithm

GA is a heuristic-based search process based on the theory of natural selection and
survival of the fittest [5, 13]. These were developed by John Holland [8] in 1960 at
University of Michigan, USA. Many computational problems require searching the
optimal solution from a large search space. For such problems, GA has proved to be
robust and efficient way to evolve optimal solution. Thus, GA has been successfully
applied to numerous areas like artificial intelligence, financial time series analysis,
image processing, multi-modal optimization, robotics, portfolio management, etc.

17.3.1 Mechanism of Genetic Algorithm [8]

In GA, a population of candidate solutions for a specified optimization problem is
randomly created. Each individual in GA, is then represented as a chromosome,
which is a candidate of the solution. The selection of chromosome is done in a
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competitive manner based on their fitness. This is followed by the application of the
genetic search operators namely, selection, crossover, and mutation, are applied over
such chosen chromosomes to create a new generation of chromosomes in which the
expected quality in terms of their fitness value is better than the previous generation.
This process is repeated until the termination criterion is met and the best class of
chromosome, which is actually a double type, is reported as solution to the concerned
problem.

17.4 Proposed Work

Nonlinear system of equations:
A system of nonlinear equation may be defined as follows.

f1(x) = 0

f2(x) = 0

.

.

.

fn(x) = 0

where each function fi is nonlinear function, which act as mapping a vector x =
(x1, x2, ..., xn)t of the n-dimensional spaceRn to real line. Some of the functionsmay
be linear and others nonlinear. The solution for nonlinear system involves finding
solution in such a way that each of the above function fi (x) is equal to zero.

The proposed work presents a solution to such nonlinear system using soft com-
puting technique called Genetic Algorithm. The algorithm is as follows:
Step 1: Transform each function fi (x) into zi (x) as

zi = abs fi (x) for each i = 1, 2, . . . , n.

Thus, the above system becomes a multi-objective optimization problem:

min z1,min z2, . . . ,min zn

Step 2: An initial generation of population is created which act as a chromosome for
the GA.
Step 3: On the basis of fitness value, some chromosomes are chosen from the initial
population.Using crossover andmutation rate (which are predefined), a newoffspring
generation is created until it does not exceed the predefined number of generations.
Step 4: The fitness value for each individual from offspring population is evaluated
on the basis of multi- objective problem and the feasibility of the solution is checked.
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Step 5: The termination criterion is to minimize z which is the sum of the individual
fitness functions:

z = z1 + z2 + · · · + zn

If the termination criterion is satisfied, then go to step 6, else go to step 3.
Step 6: Report the solution.
It may be noted that the initial population is crafted as per the given problem and
the plausibility of finding the solution, in given time, by the selected initial popu-
lation. The initial population can neither have too many chromosomes or too less
chromosomes. An appropriate number of chromosomes has been found by the ini-
tial empirical analysis and hence, is used in the experiment. The values of various
parameters and the experimental setup has been reported in the next section.

17.5 Experimentation and Results

To validate the performance of the proposed algorithm, an extensive empirical analy-
sis has been carried out. The experimentation is performed by setting the various
parameters for GA as depicted in Table 17.2. In order to validate and verify the
proposed approach, the following equations have been selected such that some of its
roots are nonintegral and the range of the roots variate considerably.

4x3 − 7x2 + 0.578 = 0 (17.1)

8x3 − 6x2 − 3x − 54 = 0 (17.2)

x4 − 5x3 + 5x2 + x − 20 = 0 (17.3)

x4 − 19x3 − 21x2 + 400 = 0 (17.4)

x3 − 977x2 + 975x + 976 = 0 (17.5)

x2 + 105x + 500 = 0 (17.6)

3x2 + 3001x + 1000 = 0 (17.7)

x2 − 9999x − 10000 = 0 (17.8)

Table 17.2 Parameters of
GA

Parameters Settings

Population size 200

Scaling function Rank

Selection function Tournament/Roulette wheel

Mutation function Gaussian

Crossover function Single point

Generations 50

Ratios/Fractions Default
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Fig. 17.1 Experimentation and results
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Table 17.3 Objective value

Equation number Equation Objective function value

1 4x3 − 7x2 + 0.578 = 0 4.02E − 06

2 8x3 − 6x2 − 3x − 54 = 0 6.96E − 04

3 x4 − 5x3 + 5x2 + x − 20 = 0 5.47E − 05

4 x4 − 19x3 − 21x2 + 400 = 0 5.92E − 04

5 x3 − 977x2 + 975x + 976 = 0 3.20E − 03

6 x2 + 105x + 500 = 0 4.96E − 04

7 3x2 + 3001x + 1000 = 0 1.48E − 02

8 x2 − 9999x − 10000 = 0 1.20E − 02

The equation has at least one solution, however, the proposed approach does not
find all the solution, but stops as soon as it finds even a single solution. The experi-
mentation has been carried out for roulette wheel selection function and tournament
selection function separately. 25 runs for each selection function has been carried out
and the results has been noted in Fig. 17.1. Table17.3 shows the objective function
value for each equation, and the corresponding best value. These values are obtained
by taking the minimum of corresponding best values, for each roulette wheel and
tournament selection function, for each equation which has been shown in Fig. 17.1.

17.6 Conclusion

This paper presents a novel approach to get an approximate solution for system
of nonlinear equations using soft computing technique called Genetic Algorithm.
GA optimizes the time complexities for solving such nonlinear system. The solu-
tion strategy involves an initial assumption of various parameters of GA, which are
population size, crossover, and mutation functions, along with number of genera-
tions. The parameter selection helps in improving the efficiency of the algorithm.
The computational cost can be reduced by treating the problem as multi-objective
optimization problem and hence, applying the heuristic search technique. In addition
to that, it is proposed to use the variants of GA like Diploid Genetic Algorithm for
solving these problems [21, 22]. In the work being continued, the crossover rate and
mutation rate has been varied to see the effects of these rates on the quality of the
solution obtained. Also, as a part of future scope, the work can be taken further for
handling higher dimension and complex nonlinear systems.
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Chapter 18
An M/M/c/N Feedback Queuing Model
with Reverse Balking and Reneging

Rakesh Kumar and Bhupender Kumar Som

Abstract In this paper, a finite capacity Markovian multi-server feedback
queuing system with reverse balking and reneging is studied. The steady-state solu-
tion of themodel is derived recursively. Some importantmeasures of the performance
like expected system size, expected rate of reneging, and expected rate of reverse
balking are derived. The sensitivity analysis of the model is performed. Some useful
comparisons are performed. Finally special cases of the model are discussed.

Keywords Reverse balking · Reneging · Customers’ impatience
Sensitivity analysis · Queuing models

18.1 Introduction

Business environment is highly challenging these days due to uncertainty. Uncer-
tainty appears in all dimensions of an operatingfirm, for example, uncertain economic
environment, uncertain natural calamities and uncertain customer behavior. Hence
the margin of error is very low for business organizations. Every firm is looking
for risk management and precise prediction of future. Customer behavior is one of
the most uncertain characteristics of business environment. Customers have become
more selective. Brand switching is more frequent. Due to higher level of expectations
customers get more impatient with a particular firm. Thus customers’ impatience has
become a burning problem for corporate world. A customer is said to be impatient
if he tends to join the queue only when a short wait is expected and tends to remain
in the line if his wait has been sufficiently small.
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Impatience is of three forms. The first is balking, deciding not to join the queue
at all up on arrival; the second is reneging, the reluctance to remain in the waiting
line after joining and waiting, and the third is jockeying between lines when each of
a number of parallel service channels has its own queue, Gross and Harris [1]. Wang
et al. [5] have presented a nice review on queuing systems with impatient customers.
They have surveyed queuing systems according to various dimensions like customer
impatience behaviors, solutionmethods of queuingmodelswith impatient customers,
and associated optimization aspects.

In the case of balking as described in aforementioned paragraphs, the arriving cus-
tomer balkswithmore probability if there is large number of customers in the queuing
system and vice-versa. But when we talk about the businesses like investment, there
are more chances for customers to invest with the firms having large number of cus-
tomers associated with them. Thus the probability of joining of customers in such
firms is high that is, the probability of balking will be low.

If we view the investment firm in terms of a queuing system, the probability
of balking (not joining the firm) will be less when the system size (the number of
customers with the firm) is large and vice-versa. This kind of balking is referred to
as Reverse Balking.

Recently, Jain et al. [2] incorporate the concept of reverse balking in queuing
theory. Queues with reverse balking find their applications in investment business,
restaurants, hospitals, schools, business of quality products, etc. Kumar et al. [3]
extend the work of Jain et al. [2] by studying a single server queue with reverse
balking and reverse reneging. Kumar et al. [4] study a single serverMarkovian queue
with reverse balking and feedback customers. They derive the steady-state solution
of the model and present some important performance measures. They study this
model with reference to its applications in insurance business.

In this paper we generalize the work of Kumar et al. [4] by considering the multi-
server case along with reneging. We study an M/M/c/N feedback queuing system
with reverse balking and reneging.We perform the steady-state analysis of themodel.

Rest of the paper is structured as follows: in Sect. 18.2, the queuing model is
described; in Sect. 18.3, the mathematical model of the queuing system is presented;
the steady-state solution of the model is obtained in Sect. 18.4; Sect. 18.5 deals with
measures of performance; the sensitivity analysis and comparisons are provided in
Sect. 18.6; in Sect. 18.7, special cases of the model are discussed. Finally, the paper
is concluded in Sect. 18.8.

18.2 Model Description

Consider amulti-server queuing system inwhich arrivals to the queuing system occur
one by one in accordance to a Poisson process with mean rate λ. The inter-arrival
times are independently, identically, and exponentially distributed with parameter λ.
There is a finite number of servers, (say, c) and the service times at each server are
independently, identically and exponentially distributed with parameter μ such that
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mean service rate μn = nμ for n < c and μn = cμ for n ≥ c. The capacity of the
system is finite, say N . Customers are served in order of their arrival, that is, the
queue discipline is First-Come, First-Served. When the system is empty customers
balk with probability q ′ and may not balk with probability p′(= 1 − q ′). When there
is at least one customer in the system, the customers balk with a probability 1 − n

N−1
and join the system with probability n

N−1 . Such kind of balking is referred to as
reverse balking. The customers may get impatient due to certain reasons and decide
to leave the queue before receiving service, that is, the customers wait up to certain
time (T , say) and may leave the system before getting service due to impatience
(reneging). The reneging times, T are independently, identically, and exponentially
distributedwith parameter ξ . Further, a customermay not be satisfiedwith the service
and may decide to rejoin the queue with a probability q (= 1 − p) as a feedback
customer.

18.3 Mathematical Model

In this section the mathematical model of the queuing system is presented. Let Pn(t)
be the probability that there are n customers in the system at time t . The differential-
difference equations governing the model are

d

dt
P0(t) = −λp′P0(t) + μpP1(t), n = 0 (18.1)

d

dt
P1(t) = λp′P0(t) −

[(
1

N − 1

)
λ + μp

]
P1(t) + (2μp)P2(t), n = 1 (18.2)

d

dt
Pn(t) =

(
n − 1

N − 1

)
λPn−1(t) −

[(
n

N − 1

)
λ + nμp

]
Pn(t) +

{(n + 1)μp}Pn+1(t), 2 ≤ n < c ≤ N − 1 (18.3)

d

dt
Pn(t) =

(
n − 1

N − 1

)
λPn−1(t) −

[(
n

N − 1

)
λ + cμp + (n − c)ξ}

]
Pn(t) +

[cμp + {(n + 1) − c}ξ ]Pn+1(t), c ≤ n ≤ N − 1 (18.4)

d

dt
PN (t) = λPN−1(t) − [cμp + (N − c)ξ ]PN (t), n = N (18.5)
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18.4 Steady-State Solution

In this section, we present the steady-state equations of the queuing model and solve
them recursively in order to obtain the steady-state probabilities of system size.

In steady-state as limt→∞ Pn(t) = Pn . Therefore, limt→∞ dPn(t)
dt = 0. Hence, the

Eqs. (18.1)–(18.5) reduce to the following:

0 = −λp′P0 + μpP1, n = 0 (18.6)

0 = λp′P0 −
[(

1

N − 1

)
λ + μp

]
P1 + (2μp)P2, n = 1 (18.7)

0 =
(
n − 1

N − 1

)
λPn−1 −

[(
n

N − 1

)
λ + nμp

]
Pn +

{(n + 1)μp}Pn+1, 2 ≤ n < c ≤ N − 1 (18.8)

0 =
(
n − 1

N − 1

)
λPn−1 −

[(
n

N − 1

)
λ + cμp + (n − c)ξ}

]
Pn +

+[cμp + {(n + 1) − c}ξ ]Pn+1, c ≤ n ≤ N − 1 (18.9)

0 = λPN−1 − [cμp + (N − c)ξ ]PN , n = N (18.10)

Solving the Eqs. (18.6)–(18.10) recursively, we get

Pn =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

[
(n−1)!

(N−1)n−1

∏n
r=1

λ
rμp

]
p′P0, n < c ≤ N − 1

[
(n−1)!

(N−1)n−1

∏n
s=c

λ
cμp+(s−c)ξ

∏c−1
r=1

λ
rμp

]
p′P0, c ≤ n ≤ N − 1

[
(N−2)!

(N−1)N−2

∏N
s=c

λ
cμp+(s−c)ξ

∏c−1
r=1

λ
rμp

]
p′P0, n = N

Using condition of normality
∑N

n=0 Pn = 1, we obtain

P0 = 1

1 + Q1 + Q2 + PN
(18.11)

where

Q1 =
[

(n − 1)!
(N − 1)n−1

n∏
r=1

λ

rμp

]
p′,
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Q2 =
[

(n − 1)!
(N − 1)n−1

n∏
s=c

λ

cμp + (s − c)ξ

c−1∏
r=1

λ

rμp

]
p′

and

PN =
[

(N − 2)!
(N − 1)N−2

N∏
s=c

λ

cμp + (s − c)ξ

c−1∏
r=1

λ

rμp

]
p′.

Thus, we have obtained explicitly the steady-state system size probabilities.

18.5 Measures of Performance

In this section, we derive some important measures of performance. Once the steady-
state probabilities are obtained it is easy to derive certain measures of performance
as follows.

18.5.1 Expected System Size (Ls)

Ls =
N∑

n=0

nPn

=
c−1∑
n=0

nPn +
N−1∑
n=c

nPn + N PN

or

Ls =
c−1∑
n=0

[
n

(n − 1)!
(N − 1)n−1

n∏
r=1

λ

rμp

]
p′P0

+
N−1∑
n=c

[
n

(n − 1)!
(N − 1)n−1

n∏
s=c

λ

cμp + (s − c)ξ

c−1∏
r=1

λ

rμp

]
p′P0

+
[
N

(N − 2)!
(N − 1)N−2

N∏
s=c

λ

cμp + (s − c)ξ

c−1∏
r=1

λ

rμp

]
p′P0
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18.5.2 Expected Rate of Reneging (Rr)

Rr =
N∑

n=c

(n − c)ξ Pn

or

Rr =
N−1∑
n=c

(n − c)ξ

[
(n − 1)!

(N − 1)n−1

n∏
s=c

λ

cμp + (s − c)ξ

]
p′P0 +

(N − c)ξ

[
(N − 2)!

(N − 1)N−2

N∏
s=c

λ

cμp + (s − c)ξ

c−1∏
r=1

λ

rμp

]
p′P0

18.5.3 Expected Rate of Reverse Balking (R′
b)

R′
b = q ′λP0 +

N−1∑
n=1

(
1 − n

N − 1

)
λPn

or

R′
b = q ′λP0 +

c−1∑
n=1

(
1 − n

N − 1

)
λ

[
(n − 1)!

(N − 1)n−1

n∏
r=1

λ

rμp

]
p′P0

+
N−1∑
n=c

(
1 − n

N − 1

)
λ

[
(n − 1)!

(N − 1)n−1

n∏
s=c

λ

cμp + (s − c)ξ

c−1∏
r=1

λ

rμp

]
p′P0

18.6 Sensitivity Analysis

In this section, we perform sensitivity analysis of the model. We study effect of
various parameters on measures of performance. We also compare this model with
the one studied by Kumar et al. [4]. From Table18.1, we can observe that as the
mean arrival rate increases the expected system size, the expected rate of reneging
and expected rate of reverse balking increases.

The variation in performance measures with respect to parameter μ is presented
in Table18.2. All the performance measures show a decreasing trend as μ (service
rate) increases.
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Table 18.1 Variation in Ls , Rr and R′
b w.r.t. λ. For μ = 3, ξ = 0.4, N = 10, q ′ = 0.1, c = 3 and

q = 0.2

λ Ls R′
b Rr

2 0.4626 0.8900 0.0001

2.5 0.5313 1.2254 0.0001

3 0.5914 1.5820 0.0003

3.5 0.6450 1.9542 0.0005

4 0.6941 2.3381 0.0008

4.5 0.7398 2.7308 0.0013

5 0.7833 3.1299 0.0020

5.5 0.8255 3.5335 0.0030

6 0.8673 3.9400 0.0044

6.5 0.9097 4.3479 0.0064

7 0.9535 4.7555 0.0091

7.5 1.0000 5.1613 0.0129

8 1.0506 5.5631 0.0180

8.5 1.1068 5.9586 0.0249

9 1.1705 6.3450 0.0342

9.5 1.2443 6.7185 0.0466

10 1.3308 7.0749 0.0630

Table 18.2 Variation in Ls , Rr and R′
b w.r.t. μ. For λ = 3, ξ = 0.4, N = 10, q ′ = 0.1, c = 3, and

q = 0.2

μ Ls R′
b Rr

2 0.7393 1.8206 0.0012

2.5 0.6551 1.6918 0.0005

3 0.5914 1.5820 0.0003

3.5 0.5404 1.4878 0.0001

4 0.4983 1.4062 0.0001

4.5 0.4626 1.3349 0.0001

5 0.4320 1.2723 0.0000

5.5 0.4054 1.2167 0.0000

6 0.3819 1.1671 0.0000

6.5 0.3611 1.1226 0.0000

7 0.3425 1.0824 0.0000

7.5 0.3257 1.0459 0.0000

8 0.3105 1.0127 0.0000

8.5 0.2967 0.9823 0.0000

9 0.2841 0.9544 0.0000

9.5 0.2726 0.9286 0.0000

10 0.2619 0.9049 0.0000
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Table 18.3 Variation in Ls , Rr and R′
b w.r.t. ξ . For λ = 4, μ = 3, N = 10, q ′ = 0.1, c = 3, and

q = 0.2

ξ Ls R′
b Rr

0.1 0.6946 2.3380 0.0002

0.2 0.6944 2.3381 0.0004

0.3 0.6942 2.3381 0.0006

0.4 0.6941 2.3381 0.0008

0.5 0.6939 2.3381 0.0010

0.6 0.6938 2.3382 0.0011

0.7 0.6937 2.3382 0.0013

0.8 0.6936 2.3382 0.0014

0.9 0.6935 2.3382 0.0015

1 0.6934 2.3382 0.0016

Table 18.4 Variation in Ls , Rr and R′
b w.r.t. q ′ for λ = 4, μ = 3, N = 10, ξ = 0.4, c = 3, and

q = 0.2

q ′ Ls R′
b Rr

0.1 0.6941 2.3381 0.0008

0.2 0.6629 2.4127 0.0008

0.3 0.6268 2.4993 0.0007

0.4 0.5843 2.6011 0.0007

0.5 0.5336 2.7224 0.0006

0.6 0.4722 2.8694 0.0005

0.7 0.3962 3.0514 0.0004

0.8 0.2997 3.2824 0.0003

0.9 0.1732 3.5853 0.0002

1 0.0000 4.0000 0.0000

Table18.3 shows the variation in performance measures with respect to reneging
rate, ξ . We can see that there is increase in expected rate of reneging as well as
expected rate of reverse balking but the expected system size decreases with increase
in ξ .

The variation in performance measures with respect to the probability of balking,
q ′ (when the system is empty) is presented in Table18.4. As the balking probability
increases the expected system size and the expected rate of reneging decreases but the
expected rate of reverse balking increases rapidly with increase in q ′. This justifies
the functioning of the present model.
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Fig. 18.1 Effect of feedback on expected system size

In Fig. 18.1 the effect of feedback on expected system size is shown. We take
μ = 3, N = 10, ξ = 0.6 andq ′ = 0.3. The feedback customers increase the expected
system size. We can see from the figure that when the feedback probability is 0.6 the
expected system size is relatively higher in comparison to the case when there is no
feedback.

18.6.1 Comparison with the Model Studied
by Kumar et al. [4]

In this subsection,we perform certain comparisons.When c = 1 and ξ = 0 themodel
studied in this paper reduces to the one studied by Kumar et al. [4].

Figure18.2 shows the effect of reneging on expected system size inmultiple server
case (c = 3). It can be observed that the expected system size is always lower in case
of reneging than the case of without reneging.

Fig. 18.2 Effect of reneging on expected system size
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Fig. 18.3 Comparison of the model with the model at [4]

In Fig. 18.3 we consider the single server case with feedback and study the vari-
ation in expected system size with and without reneging. In case of reneging the
system size is significantly lower than the case when there is no reneging. This
comparative scenario is useful to the people dealing with implementation of various
queuing systems.

18.7 Special Cases

In this section, the special cases of the model are discussed.

Case 1: When there is a single server and no reneging

The model reduces to a single server feedback queuing model with reverse balking
as studied by Kumar et al. [4].

Case 2: When there is a single server, no reneging and no feedback

In this case, the queuing model resembles with the one studied by Jain et al. [2].

18.8 Conclusions and Future Work

An M/M/c/N queuing system with reverse balking, reneging, and feedback is
studied. The steady-state probabilities are obtained. Sensitivity analysis of the model
is also performed.Analysis of numerical results establishes the role of reverse balking
in this queuing system.
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The transient analysis of the model can also be carried out. The same model can
be studied in non-Markovian environment. The model can also be extended to study
the effect of heterogeneous servers.
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Chapter 19
Solution of Fuzzy Heat Equation Under
Fuzzified Thermal Diffusivity

U.M. Pirzada and D.C. Vakaskar

Abstract This paper presents a solution for a fuzzy partial differential equation
with fuzzy boundary and initial conditions. The solution of fuzzy heat equation is
proposed using Seikkala differentiability of a fuzzy-valued function. The effect of
fuzzified thermal diffusivity is studied.

Keywords Fuzzy numbers · Heat equation · Thermal diffusivity

19.1 Introduction

Seldom it is observed that for many physical systems, involving incomplete and
imprecise description which is reflected in their mathematical model. It well known
that fuzzy theory is one of the most powerful tool to study and analysis problems
involving uncertainty, impreciseness, ambiguity. This motivates us to study these
systems as fuzzy systems. The uncertain dynamical systems often lead to uncertain
(fuzzy) partial differential equations. Fuzzy partial differential equations (FPDEs) are
the generalization of partial differential equations (PDEs) in fuzzy sense.Modeling of
real situation in terms of partial differential equations involves uncertain variables and
parameters (known partially or approximately). This impreciseness or uncertainties
can be described mathematically using fuzzy numbers. For example, in case of heat
equation, temperature variable can be treated as a fuzzy variable as it is defined by
linguistic states like cool, cold, normal, hot, etc. The diffusivity coefficient can be
regarded as fuzzy because it may not be precisely available.
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Buckley and Feuring [7] examined solutions of elementary fuzzy partial differen-
tial equations in [7]. They checked the Buckley–Feuring (BF) solution exist or not.
If the BF-solution does not exist Seikkala solution is found. The solution is based on
the Seikkala derivative defined in [15].

In [1], Allahviranloo (2002) proposed a difference method to solve FPDEs. This
method was based on Seikkala derivative of fuzzy functions. The Adomian method
was studied to find the approximate solution of fuzzy heat equation in [2] (2009)
based on Hukuhara derivatives. While in [3], Allahviranloo and Afshar (2010) pre-
sented numerical methods for solving the fuzzy partial differential equations. These
numerical methods were based on the derivative due to Bede and Gal [6]. Mah-
moud and Iman [13] (2013) presented finite volume method that solves some FPDEs
such as fuzzy hyperbolic equations, fuzzy parabolic equations, and fuzzy elliptic
equations. They have obtained explicit, implicit, and Crank–Nicolson schemes for
solving fuzzy heat equation. Study of heat, wave, and Poisson equations with uncer-
tain parameters are given in [5] (2013). Recently, Allahviranloo et al. have studied
fuzzy solutions for fuzzy heat equation with fuzzy initial value based on generalized
Hukuhara differentiability in [4] (2014). Applications to FPDEs are presented with
a new inference method in [8](2009). B.A. Faybishenko [12] (2012) presented a
hydrogeologic system as a fuzzy system. He derived a fuzzy logic form of parabolic-
type partial differential equation and solved the basic principles of fuzzy arithmetic.
Pirzada and Vakaskar have studied solution of fuzzy partial differential equations
using Adomian decomposition method in [14] (2015). They have used Seikkala dif-
ferentiability to find the solution.

Thermal diffusivity computes how fast a body can change its temperature. For
certain composite material, crisp estimate of thermal diffusivity is difficult to obtain.
Some sort of perceptional uncertainty is there in the measures of thermal diffusivity.
Hence, in such a situation it may be advisable to be used as a fuzzy diffusivity. The
simultaneous effect of varying thermal diffusivity can be studied by defining it as
a fuzzy number. With this motivation, we study the solution of fuzzy heat equation
under the effect of fuzzy thermal diffusivity constant. To the best of our knowledge,
this work is not explored by any previous researcher. The paper is organized as
follows:

The concepts of fuzzy numbers and fuzzy-valued function are given in Sect. 19.2.
Fuzzy modeling of heat equation and solution are explained in Sect. 19.3. Illustration
is given in Sect. 19.4. The conclusions are presented in Sect. 19.5.

19.2 Preliminaries

In this section, we state some basic concepts regarding fuzzy numbers and fuzzy-
valued functions. The following definition of fuzzy number is stated from [14].

Definition 19.1 ([14]) Let R be the set of real numbers and ã : R → [0, 1] be a
fuzzy set. We say that ã is a fuzzy number if it satisfies the following properties:
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(i) ã is normal, that is, there exists x0 ∈ R such that ã(x0) = 1;
(ii) ã is fuzzy convex, that is, ã(t x + (1 − t)y) ≥ min{ã(x), ã(y)}, whenever x, y

∈ R and t ∈ [0, 1];
(iii) ã(x) is upper semi-continuous on R, that is, {x/ã(x) ≥ α} is a closed subset of

R for each α ∈ (0, 1];
(iv) cl{x ∈ R/ã(x) > 0} forms a compact set,

where cl denotes closure of a set. The set of all fuzzy numbers on R is denoted by
F(R).

The α-level set for a fuzzy number is defined as follows:

Definition 19.2 For α ∈ (0, 1], α-level set ãα of any ã ∈ F(R) is defined as

ãα = {x ∈ R/ã(x) ≥ α}.

The 0-level set ã0 is defined as the closure of the set {x ∈ R/ã(x) > 0}.
Remark 19.1 (i) We can easily see that, for any ã ∈ F(R) and for each α ∈ (0, 1],

ãα is compact convex subset of R, and ãα = [a1(α), a2(α)].
(ii) The fuzzy number ã ∈ F(R) can be generated from its α-level sets by a well-

known decomposition theorem (Ref. [10]).

The following theorem of Goetschel and Voxman [11], shows the characterization
of a fuzzy number in terms of its α-level sets.

Theorem 19.1 For ã ∈ F(R), define two functions ã1(α), ã2(α) : [0, 1] → R. Then

(i) ã1(α) is bounded left continuous non-decreasing function on (0,1];
(ii) ã2(α) is bounded left continuous non-increasing function on (0,1];
(iii) ã1(α) and ã2(α) are right continuous at α = 0;
(iv) ã1(α) ≤ ã2(α).

Moreover, if the pair of functions ã1(α) and ã2(α) satisfy the conditions (i)-(iv), for
each α ∈ [0, 1], then there exists a unique ã ∈ F(R) such that ãα = [ã1(α), ã2(α)],
for α ∈ [0, 1].
Definition 19.3 The membership function of a triangular fuzzy number ã is defined
as

ã(r) =

⎧
⎪⎨

⎪⎩

(r−aL )

(a−aL )
i f aL ≤ r ≤ a

(aU−r)
(aU−a)

i f a < r ≤ aU

0 otherwise

which is denoted by ã = (aL , a, aU ). The α-level set of ã is then

ãα = [(1 − α)aL + αa, (1 − α)aU + αa].
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Definition 19.4 Using Zadeh’s extension principle, addition, multiplication of two
fuzzy numbers ã, b̃ and scalar multiplication of fuzzy number ã with a scalar λ ∈ R

by their α-level sets are defined as follows:

(ã ⊕ b̃)α = [ã1(α) + b̃1(α), ã2(α) + b̃2(α)]
(ã ⊗ b̃)α = [min

{
ã1(α)b̃1(α), ã1(α)b̃2(α), ã2(α)b̃1(α), ã2(α)b̃2(α)

}
,

max
{
ã1(α)b̃1(α), ã1(α)b̃2(α), ã2(α)b̃1(α), ã2(α)b̃2(α)

}]
(λ � ã)α = [λ · ã1(α), λ · ã2(α)], i f λ ≥ 0

= [λ · ã2(α), λ · ã1(α)], i f λ < 0,

where α-level sets of ã and b̃ are ãα = [ã1(α), ã2(α)], b̃α = [b̃1(α), b̃2(α)], for α ∈
[0, 1].
Definition 19.5 Let V be a real vector space and F(R) be a set of fuzzy numbers.
Then a fuzzy-valued function f̃ : V → F(R) is defined on V . Corresponding to such
a function f̃ and for each α ∈ [0, 1], we denote two real-valued functions f̃1(x, α)

and f̃2(x, α) on V for all x ∈ V . These functions f̃1(x, α) and f̃2(x, α) are called
α-level functions of the fuzzy-valued function f̃ .

Seikkala differentiability of fuzzy-valued function Ũ (x, t) is defined as follows.

Definition 19.6 ([7]) Let I1, I2 be subsets of R. Let Ũ be a fuzzy-valued func-
tion defined on I1 × I2, I1, I2 are intervals. Let α-level sets Ũα(x, t) = [u1(x, t, α),

u2(x, t, α)] for all α ∈ [0, 1]. We assume that ui (x, t, α) have continuous partial
derivatives, for all (x, t) ∈ I1 × I2, for each α, i = 1, 2. Define

[
∂Ũ

∂t
(x, t)

]

α

=
[
∂u1
∂t

(x, t, α),
∂u2
∂t

(x, t, α)

]

for all (x, t) ∈ I1 × I2, all α. If, for each fixed (x, t) ∈ I1 × I2,
[

∂U
∂t (x, t)

]

α
defines

the α-level set of a fuzzy number, then we say that Ũ (x, t) is partially differentiable
with respect to t . Similarly, we can define partial differentiability of Ũ with respect
to x . Also, we can define higher order partial derivatives in same manner.

The sufficient conditions for [ ∂U
∂t (x, t)]α to define α-level sets of a fuzzy number are

(i) ∂u1
∂t (x, t, α) is an increasing function of α for each (x, t) ∈ I1 × I2;

(ii) ∂u2
∂t (x, t, α) is a decreasing function of α for each (x, t) ∈ I1 × I2; and

(iii) ∂u1
∂t (x, t, 1) ≤ ∂u2

∂t (x, t, 1) for all (x, t) ∈ I1 × I2.
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19.3 Fuzzy Heat Equation

19.3.1 Fuzzy Model

In a thin uniform metal rod with nonuniform temperature, heat (thermal energy) is
flowed from regions of higher temperature to regions of lower temperature. This tem-
perature distribution is mathematically modeled as an one-dimensional heat equation

∂u

∂t
= P

∂2u

∂x2
, (19.1)

where P is the thermal diffusivity and u(x, t) is the temperature. The term temper-
ature is defined as a fuzzy variable with different linguistic states, like cold, normal,
hot etc. To capture more realistic phenomena, we study the heat equation in fuzzy
sense by treating the variable temperature as a fuzzy variable. In this case, we have
a fuzzy heat equation

∂Ũ

∂t
= P � ∂2Ũ

∂x2
, (19.2)

where Ũ (x, t) is the fuzzy temperature represented by fuzzy numbers, P is the
thermal diffusivity and an operator � defines multiplication of a fuzzy number with
a real number. Here, ∂Ũ

∂t is a partial derivative of fuzzy function Ũ with respect to

variable t where as ∂2Ũ
∂x2 is a second-order partial derivative of Ũ with respect to x .

To estimate how fast a body can change its temperature, thermal diffusivity is
useful. Many times it is not reasonable to define it using one crisp number. By fuzzy
theory, it is possible to study the simultaneous effect of varying thermal diffusivity
by treating as a fuzzy number. Hence, we modify our fuzzy model of heat equation
with fuzzy diffusivity as

∂Ũ

∂t
= P̃ ⊗ ∂2Ũ

∂x2
, (19.3)

where Ũ (x, t) is the fuzzy temperature, P̃ is the fuzzy thermal diffusivity and ⊗ is a
multiplication operator between two fuzzy numbers.Moreover, we see that boundary
conditions and initial conditions are not often precise or known completely. We
express this impreciseness in the boundary and initial conditions in terms of fuzzy
numbers. That is, Ũ (0, t) = T̃0, Ũ (l, t) = T̃l and Ũ (x, 0) = f̃ (x), where T̃0 and T̃l
are fuzzy constants and f̃ (x) is a fuzzy function.
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19.3.2 Solution Concept

We consider the fuzzy heat equation in the form

∂Ũ

∂t
= P̃ ⊗ ∂2Ũ

∂x2
, (19.4)

where P̃ is a fuzzy diffusivity, Ũ (x, t) is fuzzy temperature at (x, t) ∈ I1 × I2, sub-
ject to certain fuzzy boundary and initial conditions and ⊗ is fuzzy multiplication
operator.

The Eq. (19.4) is well defined in fuzzy sense since we assume that Seikkala deriv-
atives of Ũ with respect to variables t and x exist. We find the Seikkala solution
(S-solution) of (19.4) subject to specific fuzzy boundary and initial conditions.

Let Ũα(x, t) = [u1(x, t, α), u2(x, t, α)], [ ∂U
∂t (x, t)]α = [ ∂u1

∂t (x, t, α), ∂u2
∂t (x, t,

α)], [ ∂2U
∂x2 (x, t)]α = [ ∂2u1

∂x2 (x, t, α), ∂2u2
∂x2 (x, t, α)] and P̃α = [p1(α), p2(α)], for all

(x, t) ∈ I1 × I2 and all α ∈ [0, 1]. Using differentiability of Ũ and fuzzy arithmetic,
the fuzzy equation (19.4) can be written as the system of parametric form of heat
equations

∂u1
∂t

= min

{

p1(α)
∂2u1
∂x2

, p1(α)
∂2u2
∂x2

, p2(α)
∂2u1
∂x2

, p2(α)
∂2u2
∂x2

}

, (19.5)

∂u2
∂t

= max

{

p1(α)
∂2u1
∂x2

, p1(α)
∂2u2
∂x2

, p2(α)
∂2u1
∂x2

, p2(α)
∂2u2
∂x2

}

, (19.6)

for all (x, t) ∈ I1 × I2 and all α ∈ [0, 1]. We assume that p1(α), p2(α) > 0.

Case (i): ∂2u1
∂x2 , ∂2u2

∂x2 > 0, we further simply the system as

∂u1
∂t

= p1(α)
∂2u1
∂x2

, (19.7)

∂u2
∂t

= p2(α)
∂2u2
∂x2

, (19.8)

for all (x, t) ∈ I1 × I2 and all α ∈ [0, 1]. The fuzzy boundary conditions are
Ũ (0, t) = T̃0 and Ũ (l, t) = T̃l and fuzzy initial condition is Ũ (x, 0) = f̃ (x). Then,
we write boundary conditions in terms of α-level sets as

u1(0, t, α) = t01(α), u2(0, t, α) = t02(α) (19.9)

u1(l, t, α) = tl1(α), u2(l, t, α) = tl2(α). (19.10)
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The initial condition

u1(x, 0, α) = f̃1(x, α), u2(x, 0, α) = f̃2(x, α). (19.11)

Let ui (x, t, α) solve Eqs. (19.7) and (19.8) with boundary conditions (19.9) and
(19.10) and initial conditions (19.11), i = 1, 2. If

[u1(x, t, α), u2(x, t, α)] (19.12)

defines the α-level set of a fuzzy number, for each (x, t) ∈ I1 × I2, then Ũ (x, t) is
the S-solution.

Case (ii): ∂2u1
∂x2 < 0, ∂2u2

∂x2 > 0, the Eqs. (19.5) and (19.6) simplified as

∂u1
∂t

= p2(α)
∂2u1
∂x2

, (19.13)

∂u2
∂t

= p1(α)
∂2u2
∂x2

, (19.14)

for all (x, t) ∈ I1 × I2 and all α ∈ [0, 1]. We solve this system with specified bound-
ary and initial conditions same as first case.

Case (iii): ∂2u1
∂x2 < 0, ∂2u2

∂x2 < 0, the Eqs. (19.5) and (19.6), we simply the system
same as (19.13) and (19.14).

19.4 Illustration and Analysis

Let I1 = [0, 1] and I2 = [0, 1]. Consider a fuzzy heat equation

∂Ũ

∂t
= P̃ ⊗ ∂2Ũ

∂x2
, (19.15)

where P̃ is a fuzzy diffusivity, Ũ (x, t) is fuzzy temperature at (x, t) ∈ I1 × I2 and
⊗ is fuzzy multiplication operator. We have specific fuzzy boundary conditions
Ũ (0, t) = Ũ (1, t) = 0̃ and fuzzy initial condition Ũ (x, 0) = C̃ � cos (πx − π/2),
where C̃ is a fuzzy number (An operator � defines multiplication of a fuzzy number
with a real number), and 0̃(r) = 1 at r = 0 and 0̃(r) = 0 for r 	= 0.

We proceed to look for a S-solution. As the fuzzy initial condition involves cosine
function, ∂2u1

∂x2 < 0, ∂2u2
∂x2 < 0, the Eqs. (19.5) and (19.6) can be simplified as

∂u1
∂t

= p2(α)
∂2u1
∂x2

, (19.16)
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∂u2
∂t

= p1(α)
∂2u2
∂x2

, (19.17)

for all (x, t) ∈ I1 × I2 and all α ∈ [0, 1]. subject to

ui (0, t, α) = ui (1, t, α) = 0 (19.18)

ui (x, 0, α) = ci (α) cos (πx − π/2) (19.19)

for i = 1, 2. The solution is

u1(x, t, α) = c1(α)e−p2(α)π2t cos (πx − π/2), (19.20)

and
u2(x, t, α) = c2(α)e−p1(α)π2t cos (πx − π/2), (19.21)

for (x, t) ∈ I1 × I2 and α ∈ [0, 1].

If [u1(x, t, α), u2(x, t, α)] defines α-level sets of a fuzzy number for each x ∈ I1
and t ∈ I2, then fuzzy solution of (19.15) exist with specified fuzzy boundary and
initial conditions. Since ui (x, t, α) are continuous and u1(x, t, 1) = u2(x, t, 1), what
we need to check is ∂u1

∂α
> 0 and ∂u2

∂α
< 0. Hence the S-solution exists if

∂u1
∂α

= e−p2(α)π2t cos (πx − π/2)(c′
1(α) − c1(α)p′

2(α)π2t) > 0 (19.22)

for all α ∈ [0, 1], and
∂u2
∂α

= e−p1(α)π2t cos (πx − π/2)(c′
2(α) − c2(α)p′

1(α)π2t) < 0, (19.23)

for all α ∈ [0, 1] and (x, t) ∈ I1 × I2.

Analysis:

Now take fuzzy diffusivity constant as a fuzzy number P̃ = (1.9, 2, 2.1) a trian-
gular fuzzy number (see Definition 19.3) with p1(α) = 1.9 + 0.1α and p2(α) =
2.1 − 0.1α, α ∈ [0, 1]. Let C̃ = 2̃ = (1, 2, 3) as a coefficient in the fuzzy initial
condition Ũ (x, 0) = C̃ � cos (πx − π/2). So that Ũ (x, 0) = 2̃ � cos (πx − π/2)
where c1(α) = 1 + α and c2(α) = 3 − α. By substituting pi (α), ci (α), i = 1, 2 in
(19.20) and (19.21), we get ui , i = 1, 2 as

u1(x, t, α) = (1 + α)e−(2.1−0.1α)π2t cos (πx − π/2), (19.24)
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and
u2(x, t, α) = (3 − α)e−(1.9+0.1α)π2t cos (πx − π/2). (19.25)

If [u1(x, t, α), u2(x, t, α)] defines α-level sets of a fuzzy number for each x ∈ I1
and t ∈ I2, then it is a fuzzy solution of Eq. (19.15) with fuzzy boundary conditions
Ũ (0, t) = Ũ (1, t) = 0̃ and fuzzy initial condition Ũ (x, 0) = 2̃ � cos (πx − π/2).

We see that ui (x, t, α) are continuous, i = 1, 2 and u1(x, t, 1) = u2(x, t, 1).
Then, for a S-solution we need

∂u1
∂α

= e−(2.1−0.1α)π2t cos (πx − π/2)(1 + 0.1(1 + α)π2t) > 0 (19.26)

and

∂u2
∂α

= e−(1.9+0.1α)π2t cos (πx − π/2)(−1 − 0.1(3 − α)π2t) < 0, (19.27)

for each fixed (x, t) and for all α ∈ [0, 1]. Since e−(1+α)π2t > 0 for each t ∈ I2 =
[0, 1] and for all α, and cos (πx − π/2) > 0 for each x ∈ I1 = [0, 1], we need to
check (1 + 0.1(1 + α)π2t) > 0 for each t and all α in (19.26) and (−1 − 0.1(3 −
α)π2t) < 0 for each t and all α in (19.27). By analysis, we see that (1 + 0.1(1 +
α)π2t) > 0 in (19.26) and (−1 − 0.1(3 − α)π2t) < 0 in (19.27) for each t ∈ [0, 1]
and all α. Therefore, u1(x, t, α) is increasing and u2(x, t, α) is decreasing with
respect to α and for all (x, t) ∈ I1 × I2. Hence, we say that Seikkala solution for the
given fuzzy heat equation exists for (x, t) ∈ I1 × I2. The solution surfaces of u1 and
u2 are shown in Fig. 19.1. To visualize u1 and u2 more clearly, we draw the surfaces
in separate figures. See Figs. 19.2 and 19.3. We observed from the figures that u2
values lies in upper surface and u1 values lies in lower surface.
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Fig. 19.1 Surfaces of u1 and u2 for (x, t) ∈ [0, 1] × [0, 1]
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19.5 Conclusions

We have presented the solution of fuzzy heat equation with fuzzy temperature vari-
able, fuzzy diffusivity and fuzzy boundary, and initial conditions. The solution is
based on Seikkala derivatives of fuzzy-valued function. Our study allows us to select
a flexible value for fuzzy thermal diffusivity, which can vary in certain range with
different membership grades.We have analyzed the concept of solution by providing
an appropriate illustration.
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Chapter 20
Chaos in Nanofluidic Convection of CuO
Nanofluid

Rashmi Bhardwaj and Saureesh Das

Abstract This paper deals with the nonlinear stability dynamics of nanofluid
convection under magnetic and temperature variation for Copper Oxide (CuO)
nanofluid, which is used as coolant in heat transfer applications. The system com-
prises a cavity in which the fluid layer is subjected to external magnetic field and
heat exposure. The partial differential equations of conservation of momentum and
energy are the governing equations, which are converted to a system of nonlinear
differential equations. Using stability, phase portrait and time series analysis, the
effect of magnetic field and temperature variation through Hartmann number and
Rayleigh number on the chaotic CuO nanofluid convection is studied. It is observed
that as the value of Hartman number increases, then the system enters into a stable
phase. However, on increasing the Rayleigh number system becomes chaotic. Also,
it is observed that by controlling the Rayleigh number chaos cannot be controlled
but only on increasing the applied field the chaotic state in nanofluid convection can
be controlled, which indicates towards a kind of magnetic cooling. It is concluded
that as temperature varies the nanofluid convection exhibit chaotic motion which
can be stabilized by applying magnetic field which has many applications in drug
delivery, nano technology, environmental engineering, industrial engineering and in
pharmaceutical industry.
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20.1 Introduction

The interest in understanding chaotic behavior of dynamical system is growing in the
past few decades. In nature and laboratory, chaotic convection plays a significant role
with extended application in understanding the evolution of dynamical systems. The
effect of magnetic field on chaotic convection for magneto-convection with stress-
free boundary conditions is studied by Bekki and Moriguchi [1]. Nanofluids are the
mixture of very small amount of nanoparticles whose dimensions varies from 1 to
100nmwith water or ethylene-glycol as base fluid is proposed by Choi [2]. Garandet
et al. [3] obtained analytical solution for the equations of magneto hydrodynamics
to transverse the effect of a magnetic field on buoyancy-driven convection in a two-
dimensional cavity and showed that for high Hartmann number the velocity gradient
lies outside the two Hartmann layers at the vicinity of the walls normal to magnetic
field in the core is constant. Idris and Hashim [4] demonstrated that the convective
motion of a fluid in saturated porous layer can be delayed using magnetic field and
observed transitions from steady state convection to chaotic via Hopf bifurcation and
discussed the effect of magnetic field on the route to chaos of fluid in saturated porous
layer. The uniform internal heating can enhance the onset of chaotic convection in
porous medium, which is studied by Jawdat and Hashim [5]. Kimura et al. [6] used
a pseudo-spectral numerical scheme and showed the evolution of convection of fluid
in saturated porous layer from steady to chaotic phase with increase in Rayleigh
number. A lot of studies are based upon the work of Lorenz [7] who studied the
chaos in fluid layer for unpredictedweather behavior and discussedRayleigh–Benard
problem of two-dimensional fluid cells which are cooled and heated from above and
below respectively. A set of three-dimensional partial differential equations known
as model of fluid convection are obtained. The chaotic synchronization through
linear control of two identical systems is discussed by Odibat et al. [8] who showed
that synchronization of two different fractional order chaotic systems is feasible
by active control of parameters. Pecora and Carroll [9] discussed the problems on
synchronization of fractional chaotic systems.

Vadasz and Olek [10] discussed the transition in a porous layer from steady state
convection to non-periodic state at a sub-critical value of Rayleigh number and
observed the spatially coherent and temporally chaotic rolls in the long-term behavior
of magneto-convection in contrast to that of highly turbulent fluids for analyzing the
characteristic of transition during natural convection in porous media with sudden
change in nature. Dynamical systems research by Yan [11] attracted much attention
with the consistent improvement inmodelswith fractional order differential structure.

The study finds its relevance in the utilization of nanofluids as coolants in reac-
tors where exposure to high temperatures can lead to chaotic fluid convection and
cause damage to the cooling system and the reactor. To prevent the damages, the
stability of the steady state is essential for the nanofluid convection with an alter-
nate mechanism to control it in chaotic state. Another importance of the study is
in the Wiendemann–Franz Law, which states that the ratio of the thermal conduc-
tivity to the electrical conductivity of a metal is proportional to the temperature.
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Qualitatively, this relationship is based upon the fact that the heat and electrical trans-
port both involve the free electrons in the metal. The thermal conductivity increases
with the average particle velocity as it increases the forward transport of energy.How-
ever, the electrical conductivity decreases with particle velocity increases because
the collisions divert the electrons from forward transport of charge. When the fluid is
heated particle velocity increases which lead to more collisions, disorder and chaos,
thus electrical conductivity decreases.

20.2 Mathematical Modeling

Let us consider an infinitesimal cavity in Cartesian coordinate system through which
electrically conductive CuO nanofluid passes. During its flow through cavity, the
horizontal nanofluid layer is subjected to heat and magnetic exposure. The two long
walls aremaintained at temperature TH and TC , respectively,while the short endwalls
are thermally insulated. The vertical axis z is collinear with gravity and a uniform
constant magnetic field B is applied normally to the heated side of the cavity as
discussed in Fig. 20.1. Garandet et al. [3] discussed the mechanism of buoyancy is
experienced by the fluid.

Due to heat transfer the fluid density changes with variation in temperature and the
interaction of the magnetic field with the convective motion. The induced magnetic
field is negligible as smaller magnetic Reynolds number being considered.

In Darcy’s equation, the time derivative terms cannot be neglected for low val-
ues of Prandtl number. Darcy’s law is assumed to govern the fluid flow. Boussinesq
approximation is applied in momentum equation to study the effects of density vari-
ations in the gravity term only.

The set of equations governing the conservation of mass, momentum, energy and
electric charge transfer for laminar flow [4] are given by:

Fig. 20.1 The schematic diagram of the cavity with CuO nanofluid
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∇.V = 0 (20.1)

∂V∗
∂t

+ V∗.∇V∗ = −1

ρn f
∇p∗ + νn f ∇2V∗ + J × B − (ρβ)n f

ρn f
g(T∗ − TC) (20.2)

∇.J = 0; J = σ(−∇σ + V∗ × B∗) (20.3)

∂T

∂t∗
+ V∗.(∇T ) = αn f ∇2T (20.4)

where V∗ = velocity, T = temperature, p∗ = pressure, β = thermal expansion
coefficient, φ = electric potential, ν = fluid viscosity, J = electric current density,
σ = electric conductivity, B∗ = magnetic field, ρn f = effective density, αn f =
thermal diffusivity, g = gravity, (ρβ)n f = thermal expansion coefficient, (T∗ − TC)

= temperature difference.
The following non-dimensional transformations are used for Eqs. (20.1)–(20.4)

V = H∗
α f
V∗; p = H 2∗

α2
f
p∗; t = α f

H 2∗
t∗; (x, y, z) = 1

H∗ (x∗, y∗, z∗); T�TC =
(T∗ − TC); B = B∗

H∗
where V∗ = (u∗, v∗, z∗) is the velocity component, �TC = (TH − TC) is the charac-
teristic temperature difference, α f is the effective thermal diffusivity and H∗ is the
scaling factor. The fluid layer with horizontal boundaries and stress-free condition
is considered. The solution must follow the impermeability condition V.ên = 0 and

the stress-free condition
∂u

∂z
= ∂v

∂z
= ∂2w

∂z2
= 0 on these boundaries, where ên is a

unit vector normal to the boundary. The temperature boundary conditions are: T = 0
at z = 1 and T = 1 at z = 0. In terms of stream function, the convective rolls with
axes parallel to y axes, when v = 0 is defined by u = −∂ψ

∂z and w = ∂ψ

∂x . Applying
curl on Eq. (20.2) the following partial differential equations are obtained:

[
1

Pr

(
∂

∂t
− ∂ψ

∂Z

∂

∂X
− ∂ψ

∂X

∂

∂Z

)
− ν̄∇2 + γ̄

]
∇2ψ = β̄Ra

∂T

∂X
(20.5)

∂T

∂t
− ∂ψ

∂Z

∂T

∂X
+ ∂ψ

∂X

∂T

∂Z
= ᾱ

(
∂2T

∂X2
+ ∂2T

∂Z2

)
(20.6)

where Pr = ν̄
α f
; ν̄ = νn f /ν f ; Ra(Rayleigh Number)= [(ρβ)n f g�H 3∗

[ρn f α
2
f ]

; β̄ = − (ρβ)n f
ρn f β f

;

Ha (Hartmann Number) = BL
√

σ
μn f

; L (Characteristic length) = 1 unit ; ᾱ = αn f

α f

The boundary condition for stream function on horizontal boundaries of the
stream function is given as ψ = ∂ψ

∂z = 0. The nonlinear coupled system formed
by Eqs. (20.5) and (20.6) with the boundary conditions gives the basic motionless
conduction solution. The following stream function and temperature function, which
represent Galerkin expansion of the solution in both x and y direction, is considered:
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ψ = A11 sin(kx) sin(π z) (20.7)

T = 1 − z + B11 cos(kx) sin(π z) + B02 sin(2π z) (20.8)

The time and amplitude are rescaled with respect to convective fixed points and given
as follows:

X = Ã11√
β̄ᾱλ

ν̄π2

(
ᾱν̄

β̄
− R

L

) ; (20.9)

Y =
˜−B11

√
β̄ᾱλ

ν̄π2

(
ᾱν̄

β̄
− R

L

)

L
√

ν̄ᾱλ

β̄

; (20.10)

Z = ˜−B02

L
2

(
ᾱν̄

β̄
− R

L

) ; (20.11)

Thus, the following system of differential equation is obtained:

Ẋ = Pr ν̄L

⎡
⎣ π(

ᾱν̄

β̄
− R

L

)Y − X

⎤
⎦ (20.12)

Ẏ =
[

Rβ̄

ν̄Lπ

](
ᾱν̄

β̄
− R

L

)
X − ᾱY +

(
β̄

ν̄

) (
ᾱν̄

β̄
− R

L

)2

X Z (20.13)

Ż = ᾱλ

[(
ᾱν̄

β̄
− R

L

)−1

XY − Z

]
(20.14)

where L =
(
1 + γ̄

π2+k2

)
.

20.3 Stability Analysis

The system of Eqs. (20.12)–(20.14) is expressed as a system of following equations:

Ẋ = c[NY − X ] (20.15)

Ẏ = T X − aY − MXZ (20.16)

Ż = s(FXY − Z) (20.17)
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where L = (1 + γ̄

π2+k2 ); c = LPr ν̄; T =
[

Rβ̄

ν̄Lπ

] (
ᾱν̄

β̄
− R

L

)
; M =

(
β̄

ν̄

) (
ᾱν̄

β̄
− R

L

)2
;

a = ᾱ; F =
(

ᾱν̄

β̄
− R

L

)−1
; s = aλ; N = π(

ᾱν̄

β̄
− R

L

) .

The fixed points (0, 0, 0); (

√
a−T N
MF ,

√
a−T N
MF , a−T N

MF ); (−
√

a−T N
MF ,−

√
a−T N
MF ,

a−T N
MF ) are obtained.

• The point(0, 0, 0) is stable for NT < a, unstable for NT > a and critical for
NT = a.

• The point (

√
a−NT
MF , 1

N

√
a−NT
MF , a−NT

MN ) and (−
√

a−NT
MF ,− 1

N

√
a−NT
MF , a−NT

MN ) are
stable for NT < NTc, critical for NT = NTc and chaotic for NT > NTc where
NTc = c(3a + c + s)/(c − a − s) which is obtained from characteristic equation

of the following Jacobian: J =

⎡
⎢⎢⎣

−c cN 0
a
N −a

√
M(T N−a)

F

s
N

√
F(T N−a)

M

√
F(T N−a)

M −s

⎤
⎥⎥⎦.

20.4 Result and Discussion

In order to observe the effect ofmagnetic field and temperature onCuOnanofluid con-
vection, the systemof equations are numerically solvedusingMATLAB.The thermo-
physical properties of the fluid and CuO nanoparticle are given in
Tables 20.1 and 20.2 respectively mentioned as follows: The three stages of the
dynamics of CuO nanofluid convection as determined through stability analysis and
observed through numerical simulation on MATLAB as shown in Figs. 20.2, 20.3
and 20.4 (Table20.3).

The transition from stable to chaotic stage on varying R is shown and transition
from chaotic stage to stable stage on varying Ha are shown in Fig. 20.5. In Fig. 20.6

Table 20.1 Thermophysical properties of fluid

Fluid ρ (kgm−3) k (Wm−1K−1) Cp (Jkg−1K−1) β × 105 (K−1)

Water 997.1 0.613 4179 21

Table 20.2 Thermophysical properties of nanoparticles

Nanoparticle ρ (kgm−3) k (Wm−1K−1) Cp (Jkg−1K−1) β × 105 (K−1) ν̄ β̄ ᾱ

CuO 6500 18 540 0.85 0.890 0.7548 1.150
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Fig. 20.2 Stable phase of CuO nanofluid at R = 20 and Ha = 0.5

Fig. 20.3 Stable phase of CuO nanofluid at R = 30 and Ha = 0.5
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Fig. 20.4 Stable phase of CuO nanofluid at R = 40 and Ha = 0.5

Table 20.3 Effect of Temperature and Magnetic field variations

State Variation of R at Ha = 0.5 Variation of Ha at R = 46.4

Stable ≤22 ≥1.3

Critical 23–32 1.1–1.2

Chaotic ≥33 ≤1.0

the Lyapunov plots for both the transitions are shown. In Table20.4 the Lyapunov
exponents, Hurst exponent(H)and fractal dimension are listed for different phases
of the system for whom the critical value NTc = 28.18 as per the parameter values
listed in Tables20.1 and 20.2. The bifurcation diagram is shown in Fig. 20.7. The
chaotic stage is observed only when the NT exceeds the critical value of NTc whose
relation has been derived from stability analysis.
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Fig. 20.5 Phase Transition of CuO nanofluid for variation in R and Ha

Fig. 20.6 Lyapunov plots of CuO nanofluid for variation in R and Ha
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Table 20.4 Lyapunov Exponent, Hurst Exponent(H) and Fractal Dimension(D) for different stages

R Ha NT Phase λ1 λ2 λ3 Hurst
exponent

Fractal
dimen-
sion

20 0.5 15.8 Stable −0.43 −0.46 −12.91 0.7 1.3

30 0.5 23.7 Critical −0.09 −0.18 −13.52 0.6 1.4

40 0.5 31.5 Chaotic 1.08 −0.03 −14.76 0.5 1.5

40 1.1 24.9 Critical 0.00 −0.18 −16.58 0.7 1.3

40 1.4 22.5 Stable −0.32 −0.38 −18.31 0.7 1.3

Fig. 20.7 Bifurcation plots
of CuO nanofluid for
variation in R and Ha
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20.5 Conclusion

In this paper, the convection of CuO nanofluid is modeled and effect of magnetic field
and temperature on the nanofluid convection is studied using stability analysis and
numerical simulation on MATLAB. The three stages, stable state, critical state and
chaotic state of nanofluid convection are observed. The transition of the nanofluid
convection from stable to chaotic state on increasing Rayleigh number clearly indi-
cates that increase in temperature leads the convection system to chaotic from where
it cannot be restored to stability again until magnetic field is applied externally. On
increasing the Hartmann number, the system restore to stable state of nanofluid con-
vection indicating towards magnetic cooling. Thus in case of transition of nanofluid
to chaotic state of convection is obtained by increasing the applied magnetic field
intensity which provides an alternate mechanism to bring the system back to stable
state.

Acknowledgements The author is thankful to Guru Gobind Singh Indraprastha University, Delhi
(India) for providing research facilities.
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Chapter 21
Study of the Seasonal Variability
of Plankton and Forage Fish in Chilika
Lagoon Using NPZF Model: A Case Study

Bhanumati Panda, Anumeha Dube and Sushil Kumar

Abstract A four-compartment, Nutrient (N), Phytoplankton (P), Zooplankton (Z)
and Forage fish (F), nonlinear mathematical model is used to study the seasonal
variability of plankton and forage fish in the Chilika lagoon (19◦28′ N–19◦54′ N,
85◦06′ E–85◦36′ E), the largest brackish water lagoon with estuarine character on the
east coast of India. It is a highly biological productive and ideal system for aquaculture
study. Almost every component at each tropic level of an aquatic food web are
dependent on phytoplankton and the availability of nutrient in the study domain.
The coupled ordinary differential equations with four state variables represent the
interaction of the biological and chemical processes in a marine ecosystem. The
main objective of the study is to obtain a set of parameters which can be used in a
mathematical model to simulate the ecology of a shallow water lagoon. The model
which is presently used in this study enables to bring significant changes in planktonic
distribution in the lagoon.

Keywords NPZF model · Plankton · Forage fish · Chilika lagoon

21.1 Introduction

The shallow coastal lagoons are highly productive systems with large concentration
of species like algae, plankton and fish, etc. The dynamical behaviour of coastal
lagoon ecosystem is unstable because of high variability of physical, biological and
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chemical parameters. Since the lagoon exhibit estuarine characters hence the pri-
mary productivity is high in these regions. The water characteristics of the lagoons
are also influenced by fresh water influx from river run off and saline influx from
the ocean. Hence the spatial as well as temporal variations observed in these ecosys-
tems are high as compared to purely fresh water or saline water bodies. Hence these
lagoons are regions of high fertility and fish productivity which is the main source
of food and income for the population around this area. The NPZ (Nutrient, Phyto-
plankton and Zooplankton) model is one of the conventional model for researchers
and oceanographers to describe the oceanic plankton dynamics. The simulation of
the model becomes complicated when new state variables are added to the system.
Many mathematical models are used to study plankton dynamics of marine ecosys-
tem (Franks et al. [9]; Wroblewski et al. [22]; Fasham et al. [7]; Marra and Ho [15];
Dippner [2]; Felip and Chatalan [8]; Edwards [5]; Sarkar et al. [20]). Evans and
Parslow [6] formulated an NPZ model to understand the factors controlling different
annual plankton cycles in the Atlantic and Pacific ocean basins by using vertical
mixing cycles. Through this study they were able to show that the occurrence of an
algal bloom requires a low rate of primary production in winter and does not require
shallowing of the mixed layer. Dube and Jayaraman [3, 4] used four (nutrient, fresh
water plankton, marine plankton and zooplankton) and three compartment (NPZ)
ecological models to study the seasonal variability of plankton in different sectors of
Chilika lagoon. They studied the effect of increased salinity influx on the production
of fresh water and marine phytoplankton in the lagoon. Earlier studies (Lehodey et
al. [14]; Isoda [11]; Pikitch et al. [18]; Naithani et al. [16]; Ghosh and Kar [10]) have
explained successfully by including forage fish or tuna fish to marine environment.
Turner et al. [21] observed thatNPZ dynamics must extend to couple benthic nutrient
cycling to the basic NPZ interactions. Kumar and Kumari [13] used NPZF (nutri-
ent, phytoplankton, zooplankton and forage fish), a nonlinear mathematical model
to explain the variability of plankton and forage fish in the Gulf of Kutch.

In the current paper, a four-compartment nonlinear mathematical model NPZF
(Fig. 21.1) is used as a case study to understand the seasonal variations in Chilika
lagoon. In Sect. 21.2, the mathematical formulation of the model and the details of
the parameters are elaborated. Section21.3 gives the study area, where the model is

Fig. 21.1 Schematic diagram of NPZF Model. Source The End-to-End Approach to Marine
Ecosystem Modelling (Mandy Bunke, Department of Biology, University of York, March 2010)
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used as a case study. Section21.4 gives the model validation along with sensitivity
analysis and followed by Sects. 21.5 and 21.6 which gives the result, discussion and
conclusion of this study.

21.2 Mathematical Formulation of the Model

Thegoverning equations of a coupledphysical, biological quantity are sameasKumar
and Kumari [13], given by

dCi

dt
= Si + Di, i = 1, 2, 3, ......... (21.1)

where Si is the source term and Di is the decay term of the ith biological or chemical
tracer of concentration Ci.

The four-compartment NPZF model is nonlinear and the governing system of
equations are as follows:

dN

dt
= −

(
α(φ,H, t)N

KN + N
− r

)
P + m0

H
(N0 − N) (21.2)

dP

dt
=

(
α(φ,H, t)N

KN + N
− r

)
P − c0(P − P0)Z

KZ + (P − P0)
− q1P

B

c1(B − B0)F

KF + (B − B0)
− m1P

H
(21.3)

dZ

dt
= e0c0(P − P0)Z

KZ + (P − P0)
− g1Z − q2Z

B

c1(B − B0)F

KF + (B − B0)
(21.4)

dF

dt
= e1c1(B − B0)F

KF + (B − B0)
− g2F (21.5)

where B = q1P + q2Z , represents the total food perceived by forage fish, q1 and q2
are the preferences of forage fish for phytoplankton and zooplankton respectively.

The state variables N ,P,Z and F are measured in (mg/l), ‘t’ is the time, α is
the photosynthetic growth rate of phytoplankton, r (d−1) is the mortality loss rate of
phytoplankton,KN ,KZ andKF which are measured as (mg/l) are the uptake, grazing,
predation half saturation coefficient of phytoplankton, zooplankton and forage fish
respectively.m0(m d−1) is the vertical mixing rate andH is the depth of the lagoon in
metres. N0 (mg/l) is the nutrient source and m1 is the settling rate of phytoplankton
in (m d−1). P0 and B0 are the threshold value of phytoplankton and the threshold
value of B respectively. g1(d−1) and g2(d−1) are the mortality rate of zooplankton
and forage fish respectively. c0 and c1 are the maximum grazing and predation rate of
zooplankton and forage fish measured as (d−1) respectively. e0 and e1 are the grazing
and predation efficiency of zooplankton and forage fish respectively. q1 and q2 are
palatability coefficient of zooplankton and forage fish respectively.
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21.2.1 Photosynthetic Growth Rate (α)

The photosynthetic growth rate of phytoplankton depends on the surface light and
mixed layer depth. The growth rate of phytoplankton is averaged over the course of
a day (Evans and Parslow [6]; Dube and Jayaraman [4]; Kumar and Kumari [13]) is
as follows:

α(φ,H, t) = 2 Q

k1H

∫ τ

0

∫ βek1H

β

t dy dt

y(y2 + t2)1/2
(21.6)

where β = Q τ

k2J
, τ = 1

2 cos
−1(− tan δ tan φ), δ = 23.45 sin(2π(t − 81)/365), Jτ =

R
π
(τ sin δ sin φ + cos δ cosφ sin τ), R = 3

8 (1 − a0) S0.
Where a0 is the average albedo of earth and S0 = 1.375 kWm−2 is the solar

constant.

21.2.2 Nutrient (N)

The Eq. (21.2) represents the rate of change of nutrients where the first term in
Eq. (21.2), −(

α(φ,H,t)N
KN+N ) represents the loss of nutrients concentration due to the

growth of phytoplankton and ( N
KN+N ) is the nutrient limited growth rate of phyto-

plankton. The second term rP represents the increase of nutrients due to themortality
loss rate of phytoplankton, m0

H (N0) represents the addition of nutrients due to the ver-
tical diffusion.

21.2.3 Phytoplankton (P)

TheEq. (21.3) represents the rate equation of phytoplankton. Thefirst term (
α(φ,H,t)N
KN+N )

of the Eq. (21.3) represents the growth rate of phytoplankton due to loss of nutrients
and the terms − c0(P−P0)Z

KZ+(P−P0)
Z and − q1P

B
c1(B−B0)F
KF+(B−B0)

represent the loss of phytoplankton
due to grazing and predation by zooplankton and forage fish respectively and the
loss term −m1P

H is due to the settling of phytoplankton.

21.2.4 Zooplankton (Z)

The model Eq. (21.4) represents the rate of change of zooplankton and the term
e0c0(P−P0)Z
KZ+(P−P0)

represents the growth of zooplankton due to the loss by phytoplankton

and − q2Z
B

c1(B−B0)F
KF+(B−B0)

represents the decrease of zooplankton due to the predation by
forage fish and the loss term g1Z is due to the mortality loss of zooplankton.
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21.2.5 Forage Fish (F)

The Eq. (21.5) represents the rate equation of forage fish and the term e1c1(B−B0)F
KF+(B−B0)

represents the growth rate of forage fish due to the loss of phytoplankton and zoo-
plankton. The term −g2F represents the mortality loss of forage fish.

21.3 Study Area (Chilika Lagoon)

Chilika lagoon (19◦28′ N – 19◦54′ N, 85◦06′ E – 85◦36′ E) (Fig. 21.2) on the east
coast of India in the state of Odisha is one of the largest tropical lagoon in the world
and the largest brackish water lagoon in Asia with estuarine character and designated
as Ramsar site of Wetland in 1981. The average depth of the lagoon is about 2m and
of length 65km and spreading over an area of 960km2 during summer and 1,165km2

during monsoon. The lake is divided into four different sectors i.e., southern, central,
northern sectors and outer channel area. A 32km long outer channel is connected
with the lake at Arakhuda village with the Bay of Bengal.

Phytoplankton community of Chilika lagoon consists ofmixture ofmarine, brack-
ish and fresh water. The four group of algae, diatoms (Bacillariphyceae), dinoflagel-
lates (Phyrrophyceae and Dinophyceae), blue-green algae (Chlorophyceae) and
green algae are mainly found in the lagoon. During summer season phytoplank-
ton of the lagoon are dominated by diatoms, certain dinoflagellates and blue-green
algae (Adhikary and Sahu [1]) and during winter it is mainly dominated by blue-
green algae and green algae (Panigrahi et al. [17]). The entire lagoon is dominated
by diatoms except the northern region.

The different species of zooplankton which are the dominant group of the mainly
copepods, chaetognaths, cladocerans,mysids, lucifers, euphasids, siphonophores and
sergestids (Sarkar et al. [19]).

Forage fish are small, pelagic fish which are a prey to many large fishes,
seabirds and marine mammals. They include particularly fishes of the family

Fig. 21.2 Chilika Lagoon: The study area
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clupeidai (herring, sardines, shad, hilsa, menhaden, anchovies and sparts). In Chilika
lagoon, hilsa is the dominant group of forage fish (Jones and Sujansingani [12]).

21.4 Numerical Experiments and Sensitivity Analysis

The model discussed in Sect. 21.2 is used to study the effect of additional state
variable forage fish to the plankton dynamics in Chilika lagoon. Earlier the model is
used by Kumar and Kumari [13] to study the dynamics of plankton and forage fish
in the Gulf of Kutch. The model equations are solved by using fourth-order Runge
Kutta method. There are total 22 parameters involved in the model equations. During
model simulation the sensitivity analysis is performed for stability of the model and
some parameters, KN , KZ , r, P0, B0, q2,m1, e0, c0, g1 and g2 responds more sensitive
to the model and the parameters are obtained from sensitivity analysis whereas the
other parametersQ, k1, k2, a0, S0 are constants and collected from the literature (Dube
and Jayaraman, [3, 4]). Table21.1 gives the description of the parameters and their
values that are fixed for the current study.

Table 21.1 Description of parameters and its values used for model simulation

Symbols Parameters Units Values as per
stability criteria

N0 Nutrient Source mg/l 100.25

KN Half saturation coefficient of phytoplankton mg/l 1.5

KZ Half saturation coefficient of zooplankton mg/l 280

KF Half saturation coefficient of forage fish mg/l 90

P0 Threshold value of Phytoplankton mg/l 50.1

B0 Threshold value of B mg/l 50

r Mortality loss rate of phytoplankton d−1 0.1

m0 Vertical mixing rate md−1 5.7

m1 Settling rate of phytoplankton md−1 0.54

H Depth of Chillika lagoon m 4

g1 Mortality rate of Zooplankton d−1 0.01

g2 Mortality rate of Forage fish d−1 0.01

c0 Maximum grazing rate of Zooplankton d−1 0.45

c1 Maximum predation rate of Forage fish d−1 0.1

e0 Grazing efficiency of Zooplankton – 0.44

e1 Predation efficiency of Forage fish – 0.15

q1 Palatability coefficient of Phytoplankton – 50.0

q2 Palatability coefficient of Zooplankton – 10
aParameters description and values used in simulations
Source Kumar and Kumari [13], Dube and Jayaraman [4]
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21.5 Result and Discussion

The model simulated results of phytoplankton and zooplankton are depicted in
(Figs. 21.3, 21.4, 21.5 and 21.6). The model results of phytoplankton are compared
with the observed value of Adhikary and Sahu [1] as well as Dube and Jayaraman
[4]. The inclusion of extra component forage fish results in variations in the mortality
of phytoplankton and zooplankton population due to the predation by forage fish. So
it effects the temporal distribution of phytoplankton and zooplankton population. In
Fig. 21.5, it is seen that the increase in the concentration of the zooplankton is due to
the loss of phytoplankton. For the comparison of themodelwith the available data and
stability criteria, the parameters involved in the model equations are required to be
perfectly tuned. It was found through sensitivity analysis that the effective parameter,
which controls the plankton distribution of the system, is the photosynthetic growth

Fig. 21.3 Model simulated and observed phytoplankton

Fig. 21.4 Sensitivity of KZ for phytoplankton
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Fig. 21.5 Model simulated phytoplankton and zooplankton

Fig. 21.6 Sensitivity of KZ
for zootoplankton

rate. Figures21.4 and 21.6 show the effect of KZ through sensitivity analysis for the
distribution of phytoplankton and zooplankton. Beyond certain range (<180 mg/l),
the model becomes numerically unstable. Another critical parameter is the mortal-
ity loss rate r and for value (< 0.5 d−1) the model becomes numerically unstable.
The other parameters which are case sensitive to the model have been discussed in
Sect. 21.4.

21.6 Conclusion

The simulation of themodel shows that addition of forage fish toNPZ model changes
the systemdynamics significantly and for stability of themodel, parameter estimation
is done through sensitivity analysis and the range of the values are fixed. The trend
of temporal variation of plankton is also seen through model-simulated results. The
agreement between themodel and observations is not perfect whichmay be attributed
to many factors like imperfection in formulation of model, non-inclusion of climatic
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variables and their effect on the ecosystem, imperfect initial conditions, etc. All these
factors cause a difference between the simulations and observations. Since the system
of equations is highly nonlinear, it is difficult to set the parameters in order to match
the model results with the observed data exactly. Currently the work is going on to
extend the study to include indepth sensitivity and phase space analysis.
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Chapter 22
Effect of Glycerol Kinetics and Mass
Transfer During Enzymatic Biodiesel
Production from Jatropha Oil

Fahad Al Basir, Xianbing Cao, Sushil Kumar and Priti Kumar Roy

Abstract Enzymatic transesterification for biodiesel production from Jatropha
curcas oil has gained favorable attention due to high selectivity and mild reaction
conditions. Beside this, mass transfer limitation is a barrier for maximum biodiesel
yield. Stirring and enzyme regulates the mass transfer in transesterification of Jat-
ropha oil. Moreover, the effects of enzyme and stirring have been considered by
many researchers but the effect of glycerol was neglected while studying mass trans-
fer kinetics. In this article, the aim is to study the mass transfer resistance due to
immiscibility of alcohol and oil as well as to reduce glycerol inhibition to increase
enzyme activity by formulating amathematical model. Optimal control approach has
been applied onmixing intensity to avoid mass transfer limitations in both the phases
which minimizes the glycerol effect and gives cost effective production of biodiesel.
Simulation results of the model system are in a good agreement with experimental
results available in the literature.

Keywords Biodiesel · Enzymatic transesterification · Stirring · Mass transfer
Enzyme inhibition · Glycerol kinetics · Optimization

F. Al Basir · P.K. Roy (B)
Centre for Mathematical Biology and Ecology, Department of Mathematics,
Jadavpur University, Kolkata 700032, West Bengal, India
e-mail: pritiju@gmail.com

S. Kumar
Department of Applied Mathematics, School of Vocational Studies
and Applied Sciences, Gautam Buddha University, Gr. Noida, India
e-mail: sushil.kumar@gbu.ac.in

X. Cao
College of Science, Beijing Technology and Business University,
Beijing 100048, China

© Springer Nature Singapore Pte Ltd. 2017
P. Manchanda et al. (eds.), Industrial Mathematics and Complex Systems,
Industrial and Applied Mathematics, DOI 10.1007/978-981-10-3758-0_22

305



306 F. Al Basir et al.

22.1 Introduction

Biodiesel, the most appropriate alternative fuel for diesel engines, is gaining the
enormous importance as diminishing petroleum sources and the environmental con-
sequences due to exhaust gases from petroleum based engines. To reduce the cost of
biodiesel production, less expensive feedstock such as Jatropha oil is used as feed
stock [1]. Jatropha curcas (Linn), a multipurpose plant, contains high amount of
oil in its seeds which is used to produce biodiesel. The fuel properties of Jatropha
biodiesel are similar to diesel and can be used as an alternative fuel in diesel engine
[2]. Moreover, Jatropha curcas can be cultivated on semiarid and barren land to sup-
ply raw material for biodiesel production and thereby reduces production cost [3–5].
Hence, Jatropha oil is chosen as raw material for biodiesel production.

Generally, biodiesel is produced by transesterification of triglycerides by homoge-
neous alkaline catalysts [6, 7]. But this process is not suitable for transesterification
of Jatropha oil since it contains high amount of free fatty acid (FFA). FFA reacts with
the alkaline catalysts to form soap as a by-product and deactivates the catalyst [8].
This process requires high temperature and stirring. But higher temperature and stir-
ring enhances saponification during the reaction process. Instead of using chemical
process, enzymatic production features more safe, eco-friendly, and cost-effective
alternative to generate biodiesel [9]. Enzymatic transesterification has also attracted
much attention for biodiesel production as it produces high purity product. Separa-
tion from the by-product, glycerol, is very easy. But the cost of enzyme remains a
barrier for its industrial implementation. In order to increase the cost effectiveness
of the process, enzyme deactivation by glycerol is reduced and thus it is reused by
immobilizing in a suitable biomass supported particle [10].

In enzymatic transesterification reaction, Jatropha oil is immiscible with alcohol
due to polar and nonpolar nature of alcohol and oil respectively which causes mass
transfer resistance problem [11]. Mechanical stirring is applied to overcome this
problem. It enhances the rate of reaction by reducing mass transfer resistance [12–
14]. Stirring reduces mass transfer resistance by producing higher diffusion and low
effectiveness factor. Moreover, glycerol is formed during the transesterification of
Jatropha oil. It decreases the enzyme activity by forming a layer on it. The glycerol
inhibition is due to mass transfer limitation in immobilized enzymes [15]. Glycerol
forms a hydrophilic layer that is not completely miscible with oil. This hydrophilic
layer serves as a partition between alcohol and oil and decreases in the conversion
rate of oil to biodiesel. Glycerol accumulates in the mixture to such an extent that
the reactivity of the enzyme is decreased during the transesterification process [16].
To overcome this problem, stirring is introduced in the system which removes the
glycerol-enzyme layer thereby increasing the activity of the enzyme. Thus, opti-
mization of mechanical agitation for evaluation of the mass transfer resistance and
glycerol phase is essential formaximumbiodiesel production and tomake the process
cost effective.

Mathematical modeling is an important tool to determine suitable reaction con-
ditions for chemical or biochemical reactive system [17–20]. There are few research
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articles available on modeling considering enzymatic biodiesel production. Deng
et al. [21] established a kinetic model for lipase-catalyzed biodiesel production from
waste cooking oil and determines reaction conditions using the mathematical model.
Halim et al. [12] have experimentally shown that biodiesel yield is initially mass
transfer controlled, and mathematical models for biodiesel production have also
been developed for the cases of mass transfer [22–24]. Roy et al., 2014 [22] and
Basir et al., 2015 [17] have established mathematical models transesterification of
Jatropha oil and shown that mass transfer limitation can be avoided by controlling
stirrer rotation in an optimum level. But, there are no such mathematical models
considering mass transfer limitation between the polar methanol/glycerol phase and
nonpolar oil phase in biodiesel production.

Here, the aim is to reduce mass transfer resistance due to immiscibility of alcohol
and oil, as well as to remove glycerol phase to increase enzyme activity by optimizing
stirring. With this view, a mathematical model is developed considering the glycerol
effect and mass transfer resistance in different phases of biodiesel production. Using
optimal control theory, an optimal stirring profile is derived to avoid mass transfer
limitation and glycerol-related problem, and to make the production process cost
effective. Results obtained from numerical simulation of the model system are in a
good agreement with experimental results.

22.2 The Mathematical Model

Here, we have considered the mathematical model formulated by Basir, Datta, and
Roy [17], and developed the following model by some additional assumptions. The
following assumptions are taken to develop themathematicalmodel for the enzymatic
transesterification of Jatropha oil.

Enzymatic transesterification of Jatropha curcas oil with an alcohol (AL) can be
described as two-step process. The first step is the hydrolysis of Jatropha curcas oil
or TG to produce acylated enzyme (F) and release of glycerol through a complex C1

(i.e., complex [E .TG]); and the second step is the esterification of methanol (AL)
with F to form the desired product, i.e., biodiesel with the release of free enzyme (E)
through a second complex C2 [F.AL], [25]. Moreover, Glycerol reacts with enzyme
and forms a hydrophilic layer (complex C3, i.e., [E.G]) that serves as a partition
between enzyme and oil [15, 16].

All the mechanistic steps for the biodiesel production can be represented by the
following sequence of reactions:

E + TG
k1�
k−1

[E .TG] k2�
k−2

F + GL

F + AL
k3�
k−3

[F.AL] k4�
k−4

E + BD

E + GL
k5�
k−5

[E .GL] (22.1)
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Here, k1, k2, k3 and k4 are the forward rate constants and k−1, k−2, k−3, and k−4 are
the backward rate constants.

Mixing intensity directs the mass transfer between reaction phases, so mechanical
stirring has an effect on biodiesel yield. Here, we use ks as the mass transfer rate
constant and the term has been defined as below [17, 22]

ks = a

1 + e−b(N−c)
, (22.2)

where N is the speed of stirrer and a, b, and c are constants. Here Bmax represents
maximum production of biodiesel in an ideal reaction conditions. We denote the
concentration of TG, E, F,C1,C2, AL , BD,C3 and GL as xT , xE , xF , xC1, xC2,
xA, xB , xG and xC3 respectively. Now from the above assumptions with the above
reaction mechanism followed by law of mass action, we can formulate the set of
differential equations given below:

dxE
dt

= −k1xT xE + k−1xC1 + k4xC2 − k−4xE xB

−k5xE xG + k−5xC3,

dxT
dt

= −k1xT xE + k−1xC1,

dxF
dt

= k2xC1 − k−2xF xG − k3xF xA + k−3xC2,

dxB
dt

= k4xC2 − k−4xE xB + ksxB

(
1 − xB

Bmax

)
,

dxA
dt

= −k3xF xA + k−3xC2,

dxC1

dt
= k1xT xE − k−1xC1 − k2xC1 + k−2xF xG,

dxC2

dt
= k3xF xA − k−3xC2 − k4xC2 + k−4xE xB,

dxG
dt

= k2xC1 − k−2xF xG − k5xE xG + k−5xC3,

dxC3

dt
= k5xE xG − k−5xC3 − ksxC3

(
1 − xC3

C3max

)
. (22.3)

The initial conditions are as follows:

xE (0) = xE0 , xC1(0) = 0, xF (0) = 0,

xA(0) = xA0 , xT (0) = xT0 , xC2(0) = 0,

xB(0) = 0, xG(0) = 0, xC3(0) = 0. (22.4)
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22.3 The Optimal Control Problem

The objective of giving optimal control on stirring is to find an optimal profile of
stirring to getmaximumand cost-effective production of biodiesel.Weuse the control
variable u(t), which represents the stirring activator input at time t satisfying 0 ≤
u(t) ≤ 1 [22].

Incorporating the control u(t), the system (22.3) becomes,

dxE
dt

= −k1xT xE + k−1xC1 + k4xC2 − k−4xE xB − k5xE xG + k−5xC3

dxT
dt

= −k1xT xE + k−1xC1,

dxF
dt

= k2xC1 − k−2xF xG − k3xF xA + k−3xC2,

dxB
dt

= k4xC2 − k−4xE xB + u(t)ksxB

(
1 − xB

Bmax

)
,

dxA
dt

= −k3xF xA + k−3xC2,

dxC1

dt
= k1xT xE − k−1xC1 − k2xC1 + k−2xF xG,

dxC2

dt
= k3xF xA − k−3xC2 − k4xC2 + k−4xE xB,

dxG
dt

= k2xC1 − k−2xF xG − k5xE xG + k−5xC3,

dxC3

dt
= k5xE xG − k−5xC3 − u(t)ksxC3

(
1 − xC3

C3max

)
. (22.5)

with initial conditions as given by (22.4).
The above state system can be written in a compact form as

dx

dt
= f (x, u, t), (22.6)

x = (x1, x2, . . . , x9)T and f = ( f1, f2, . . . , f9)T , fi , i= 1, 2, …, 9, 3 are right sides
of the above system. The cost function is thus formulated as

J [u(t)] =
t f∫

t0

[Pu2(t) − Qx2B(t) + Rx2C3]dt. (22.7)

The parameter P (> 0) is the weight constant on the benefit of the cost of production
and Q > 0, R > 0 are the penalty multiplier. Thus, we have to find out the optimal
control u∗(t) such that
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J (u∗) = min {J (u) : u ∈ U },
where U is the admissible control set defined as:

U = {u(t) : u(t) is measurable,0 ≤ u(t) ≤ 1, t ∈ [ti , t f ]}. (22.8)

Pontryagin Minimum Principle [27, 28] is used to find the optimal stirring in term
of u∗(t). For this, the Hamiltonian is formulated as,

H = Pu2(t) − Qx2B(t) + Rx2C3 + ξ T f. (22.9)

Theorem 22.3.1 If the given optimal control u∗(t) and the solution (x∗
E , x

∗
T , x

∗
F , x

∗
B,

x∗
A, x

∗
C1, x

∗
C2, xG) of the corresponding system (22.3) minimize J (u) over U, then

there exists adjoint variables ξ1 - ξ9 which satisfying the following equations:

dξ1

dt
= k1xT (ξ1 − ξ6) + k−4xB(ξ4 − ξ7) + k5xG(ξ1 + ξ8 − ξ9),

dξ2

dt
= k1xE (ξ1 + ξ2 − ξ6),

dξ3

dt
= k3xA(ξ5 − ξ7) + k−2xG(ξ3 − ξ6),

dξ4

dt
= 2QxB − ξ4

[
k−4xE + u(t)ksxB

Bmax
+ u(t)ks

(
1 − xB

Bmax

)]
− ξ7k−4xE ,

dξ5

dt
= k3xF (ξ5 − ξ7),

dξ6

dt
= k−1(ξ6 − ξ2) + k2(ξ6 − ξ3),

dξ7

dt
= −k4ξ4 − k−3 + k−3ξ7,

dξ8

dt
= k−2(ξ8 − ξ6) + k5xE (ξ1 + ξ8 − ξ9),

dξ9

dt
= k−5(−ξ1 − ξ8 + ξ9) + ξ9

[
u(t)ksxC3

C3max
+ u(t)ks

(
1 − xC3

C3max

)]
, (22.10)

along with the boundary conditions ξi (t f ) = 0 for i = 1 to 9. Further, u∗(t) can be
written as,

u∗(t) = max

(
0, min

(
1,

uks[ξ9xC3(1 − xC3
C3max

) − ξ4xB(1 − xB
Bmax

)]
2P

))
.

Proof The Hamiltonian (22.9) can be written as

H = Pu2(t) + uks

[
ξ4xB(1 − xB

Bmax
) − ξ9xC3(1 − xC3

C3max
)

]

+ terms without u(t). (22.11)
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According to the Pontryagin Minimum Principle, the unconstrained optimal control
variable u∗(t) satisfies

∂H

∂u∗ = 0. (22.12)

Thus from (22.11) and (22.12), we have

∂H
∂u∗ = 2Pu∗ + ξ4ksxB

(
1 − xB

Bmax

)
− ksξ9xC3

(
1 − xC3

C3max

)
= 0.

Solving we get,

u∗(t) = ks[ξ9xC3(1 − xC3
C3max

) − ξ4xB(1 − xB
Bmax

)]
2P

. (22.13)

Due to the boundedness of the standard control, the compact form of u∗(t) is

u∗(t) = max

(
0, min

(
1,

ks[ξ9xC3(1 − xC3
C3max

) − ξ4xB(1 − xB
Bmax

)]
2P

))
.

(22.14)

According to Pontryagin Minimum Principle, adjoint variables satisfy the following
equation:

dξ

dt
= −∂H

∂x
, (22.15)

where x = (xE , xT , xF , xB, xA, xC1, xC2, xG, xC3)
T and ξ = (ξ1, ξ2, . . . , ξ9)

T and
the necessary condition satisfying the optimal control u(t) is given by

H
(
x(t), u∗(t), ξ(t), t

) = min
u∈U (H(xi (t), u(t), ξ(t), t)) . (22.16)

So, adjoint equations (22.10) can be determined by Eq. (22.15) with boundary con-
ditions ξ(t f ) = 0.

The adjoint system (22.5) together with state (22.14) and optimal control (22.10)
represents the optimality system. Thus, the optimal system consists of state system,
adjoint system, and the optimal control. Moreover, the optimal profiles for stirring
(N ∗) can be obtained by the following relations:

u∗ks = a

1 + e−b(N ∗−c)
. (22.17)
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22.4 Numerical Simulation

In this section, numerical simulation of the model equations are shown in the fol-
lowing figures. To study the effect of glycerol phase on mass transfer resistance,
reaction parameters such as enzyme loading and stirring on are varied. The optimal
control problem is solved to find the optimal stirring profile to minimize enzyme
deactivation by glycerol and cost-effective production of biodiesel.

To study the possible mass transfer effect on the biodiesel productivity, simulation
of the model has been performed using different agitating speeds (150–600 rpm)
keeping all other variables fixed. In Fig. 22.1, raising the stirring rate from 150 to
600 rpm, biodiesel yield is plotted at the fixed molar ratio (4:1). We have seen that,
stirrer rotation reduces the mass transfer resistance and increases overall reaction
rate. It is also seen that, the conversion of oil to biodiesel could not be enhanced
by further increment of agitation speed above 300 rpm. The stirring over 350 rpm
decreases the yield, which is possibly due to the shearing of the lipase molecule or
inactivation of the lipase.

Influence of glycerol on enzyme is shown in Fig. 22.2. Enzyme activity is para-
lyzed byglycerol due to the formation of complexC3.As stirring increases, formation
of complex C3 is decreased and hence inhibition of enzyme by glycerol is reduced
by this process. Stirrer speed removes the hydrodynamic boundary layer near the
enzyme surface which enhances the activity of the enzyme.

Figure22.3 shows that effect of enzyme amount has significant effect on biodiesel
yield. Here, final concentration of biodiesel is plotted by varying the amount of
enzyme. It is established that 0.25 mol/L enzyme loading is the best for biodiesel
production in presence of 200–250 rpm stirring. The addition of larger lipase quantity

Fig. 22.1 Effect of
parameters such as stirring
on biodiesel production is
shown with parameter as
given in Table22.1
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Fig. 22.2 Concentration of C3 as function stirring (N) is shown using the parameters as given in
Table22.1
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Fig. 22.3 Yield of biodiesel is plotted with varying enzyme concentration (lower panel) and com-
bined effect of stirring and initial enzyme concentration on biodiesel yield is shown (upper panel)
with 4:1 methanol to oil molar ratio and other parameters as given in Table22.1 and 4h of reaction
time

is not practical due to the formation of excess amount of complex C3 (see Fig. 22.2)
and also the raw materials and lipase together make the solution extremely viscous
[13]. Thus, higher amount of lipase will not help to increase of biodiesel yield further.

Figure22.4 shows that optimal stirring produces the highest biodiesel yield using
a lower enzyme loading (xE (0) = 0.25 mol/L). Initial mass transfer rate is increased
and reaction time is also reduced. Thus, production of biodiesel is more favorable
in enzymatic transesterification reaction using optimum stirring profile. It reduces
time and cost of production. This figure also shows that optimal stirring is needed
for three hours from the beginning of the reaction. Also from Fig. 22.5, it is seen that
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Fig. 22.4 Control profile of biodiesel and optimal stirring (N∗(t)) is plotted as a function of time
and for two cases, with control and without control with parameters as given in Table22.1
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Fig. 22.5 Control profile of enzyme and complex C3 are plotted respectively as function of time
for two cases, with control and without control with parameters as given in Table22.1

inhibition of enzyme by glycerol is minimized, enzyme is reverted back at the end
of the reaction which can be reused further.

22.5 Discussion and Conclusion

In this research article, a mathematical model has been developed for enzymatic
biodiesel production from Jatropha oil considering mass transfer resistance in both
oil phase and glycerol phase. The main focus is on maximum production of biodiesel
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Table 22.1 Values of rate
constants at temperature
40 ◦C and other parameters
used for numerical simulation
of the model system [17, 26]

Parameters Value Unit

k1 7.5128 mol L−1 h−1

k−1 0.1147 h −1

k2 0.1032 h −1

k−2 0.0988 mol L−1 h−1

k3 1.937 mol L−1 h−1

k−3 0.0323 h −1

k4 1.9230 h −1

k−4 0.0011 mol L−1 h−1

r5 0.1213 mol L−1 h−1

r−5 0.03887 h−1

a 0.320 −
b 0.003 rpm−1

and therefore mass transfer limitation is minimized in both the phases. Influences
of glycerol on mass transfer resistance on biodiesel productivity, in terms of stirring
are studied using the mathematical model. For cost-effective production of biodiesel
through enzyme catalyzed reaction, we have applied control approach on mixing
intensity. It has been shown that control measures have a great impact on reaction
system and gives maximum production of biodiesel. Mass transfer is significantly
influenced by agitation speed, enzyme amount, and glycerol. Finally, using control
theory, an optimal profile for stirring is obtained tominimizemass transfer resistance,
hence cost-effective maximum glycerol-free biodiesel can be produced within 3h.
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Chapter 23
Role of Bio-Pest Control on Theta Logistic
Populations: A Case Study on Jatropha
Curcus Cultivation System

Jahangir Chowdhury, Sourav Rana, Sabyasachi Bhattacharya
and Priti Kumar Roy

Abstract Renewable crops are themost demanding source for biodiesel production.
Jatropha sp. oil has shown promising features in generating renewable energy source.
Presently, the crop cultivation faces severe damage to the seed production during pest
invasion. We consider a nonlinear mathematical system with biomass of Jatropha
sp., susceptible pest population, infected pest population and virus population. The
biomass of Jatropha sp. and susceptible pest population follows theta logistic growth
as theta logistic growth curve is amore natural choice in comparisonwith the classical
logistic growth curvemodel. Introductionof pest control by the applicationofNuclear
Polyhedrosis Virus (NPV) was applied through foliar spraying to arrest the pest
invasion. The values of θ have to depend on the process of interaction at different
densities. In this research communication we observe how various values of theta can
affect crop survival during pest invasion which makes the model biologically more
realistic. Stability and bifurcation analyses have been worked out for the system.
Analytically and numerically we find out the threshold value of θ = 0.74. We have
seen that for θ < 0.74 the system is stable and for θ ≥ 0.74, the system shows limit
cycle oscillation which holds upto θ = 1. Analytical and numerical results based on
simulated findings validate our mathematical model.
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23.1 Introduction

The growing consumption of oil resource can deplete the present natural fossil oil
reserve in near future. In order to meet the growing oil demand, we need to develop
alternative resource. Recently, biodiesel evolves as a promising alternative fuel to
replace traditional petroleum diesel. Biodiesel is best obtained from the plant Jat-
ropha sp. among many alternative crops. Jatropha sp. is a renewable non-edible
oil producing plant [1]. Jatropha sp. is not pest and disease resistant [2]. The main
obstacle of Jatropha sp. seed oil production is the pest attack. The major pests and
diseases affecting Jatropha are: (1) the leaf miner Stomphastis thraustica, (2) the
leaf and stem miner Pempelia morosalis, and (3) the shield-backed bug Calidea
panaethiopica, which can cause flower and fruit abortion.

Pest management models through control strategies have been designed and ana-
lyzed by many researchers mathematically oftentimes [3–5]. The practical evidence
of the use of virus against insect pests is practised in North America and European
countries [6]. The experimental and field use of pathogenic viruses in Europe is
listed by Falcon et al. [7]. Roy et al. [8] studied the effect of insecticide spraying on
Jatropha sp. and using mathematical model they showed how to control mosaic virus
by adopting appropriate strategy. In this system, the growth profile of the pest is the
primary source of this attack. However, the logistic growth of the pest population is
considered in most of the recent studies [3, 4].

Note that in a recent study Sibly et al. [9] suggested density regulation in species
growth for most of the taxonomic species (e.g., fish, birds, mammals, and insects) is
concave. The pest is amember of this insect family and it is reasonable to assume theta
logistic structure in their growth to incorporate this density regulation. Sowe consider
the theta logistic growth of insect population instead of logistic growth which is more
appropriate. Theta logistic equation is followed in the form of density dependence
with extra liberty,where the parameter θ indicates the curvature of relationship. There
are concave relationships between abundance and per capita growth rate (PGR) if
θ < 1 and convex relationship if θ > 1 [10]. When θ = 1, the term is equivalent to
the logistic growth term.

Recently, researchers [11–16] are paying attention to explore ecological and epi-
demiological outbreak in discrete-time setup. There are three definite causes behind
using of discrete time models. Firstly, it is very much appropriate and perfect to
explain pest control scenario by applying discrete-time models as statistical infor-
mation is collected at discrete time. Secondly, numerical simulations of continu-
ous models are attained through discretization. Finally, too many critical dynamical
behavioral patterns are furnished for discrete-time models [16, 17]. However, no
substantial and systematic work has been done on bio-pest control with theta logistic
growth profile.We have studied the impact of theta logistic growth on this cultivation
system by mathematical analysis and numerical simulations.

TheNPVbelongs to the family of Baculoviruses. NPV is known for high epizootic
levels, self-perpetuating and safe to natural enemies due to host specificity. NPV is
being one of the important biopesticides, as it is eco-friendly, having less residual
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toxicity, compatiblewithmany chemical pesticides.Hence,NPVcanbe implemented
as one of major components in IPM programme.

Our goal is to study whether the density dependent theta logistic growth of pest
has a substantial impact on the survival of Jatropha sp.. Through mathematical mod-
eling we want to study how these type of eco-epidemiological system minimizes
the damage of Jatropha sp.. We also study the impact of NPV to minimize pest
population within the system dynamics.

The research article is organized as follows, in the first section we discuss the
ecological backdrop of the problem and a general introduction. In the next section
we present the formulation of themathematical model. In Sect. 23.3 we perform local
stability analysis of different equilibriums. In Sect. 23.4, we study the dynamics of
the system, namely stability of the system. Numerical simulations are shown in
Sect. 23.5. Finally, we discuss our results and conclude our findings.

23.2 Formulation of the Mathematical Model

In our formulated model, we consider four populations to analyze the system:

(i) Biomass of Jatropha plant, j (t),
(ii) The susceptible pest population, s(t),
(iii) The infected pest, i(t) and
(iv) The virus, v(t).

We formulate a four-species mathematical model, which contains biomass of Jat-
ropha sp., susceptible pest, infected pest and virus. Biomass of Jatropha sp. grows
in a logistic fashion with carrying capacity k1(k1 > 0) and with an intrinsic growth
rate constant r1 for pest-free system. Jatropha sp. is affected by pest and that is
why plant biomass is abolished with a simple mass action β js, where β represents
effective per capita pest contact rate with plant. Susceptible pest infected by virus
with mass action λsv, where λ represents effective per capita pest contact rate with
virus. We assume that only susceptible pest is capable of reproducing with logistic
growth term, i.e., infected class of pest is removed by lysis before having possibility
of reproducing. The infected individuals fail to contribute the reproduction process
due to their inability to compete for resources. However, they still contribute with
susceptible pest to population growth towards the carrying capacity. The lysis of
infected pest largely produces virus, on average per insect is called the virus repli-
cation number. The virus population v(t) has natural mortality due to temperature
changes, enzymatic attack, pH dependence, etc.

Based on the above assumptions, we can formulate the following mathematical
model:

d j

dt
= jr1

(
1 − j

k1

)
− β js,
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ds

dt
= sr2

(
1 − s + i

k2

)
+ β js − λsv,

di

dt
= λsv − ξ i,

dv

dt
= πv + κξ i − μv, (23.1)

where r2 is the per capita growth rate of susceptible pest population, k2 is the per capita
carrying capacity of susceptible pest population, ξ is the mortality rate of infected
pest, κ is the virus replication number and πV is the constant rate of reproduction of
free virus.

Logistic growth of a population follows an S-shaped sigmoid curve when the
population increases its density. But in nature relationship between density and per
capita growth are concave for most of the species (e.g., fish, birds, mammals and
insects) as observed by Sibly (2005) [9]. Incorporation of this density regulation
as theta logistic equation is appropriate, because pest is a member of insect family.
Hence, theta logistic growth curve is more realistic than the classical logistic growth
model. Herewe incorporate the discrete version of themodel (23.1), since the species
abundance data for eco-epidemiological study are generally observed in discrete time
setup.

Based on the above perception along with the theta logistic growth in susceptible
pest using the Forward Euler Scheme for discretization [16], we have revised the
Eq. (23.2) as

jt+1 = jt + l

[
jtr1

[
1 −

(
jt
k1

)]
− αst jt

]
,

st+1 = st + l

[
str2

[
1 −

(
st + it
k2

)θ
]

+ αst jt − βst vt

]
,

it+1 = st + l [βst vt − ξ it ] ,

vt+1 = vt + l [πv + κξ it − μvt ] , (23.2)

where l(>0) denotes the step size and θ(>0) describes the curvature of the relation-
ship.

23.3 Dynamics of the System

23.3.1 Equilibria and Stability

The above system (23.2) has four equilibrium points, viz.

(a) The axial equilibrium point E0(0, 0, 0,
πv
μ

),
(b) Pest free equilibrium point E1(k1, 0, 0,

πv
μ

),
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(c) Virus free equilibrium point E2( j2, s2, 0, 0) here πv = 0 and
(d) The interior equilibrium point E∗( j∗, s∗, i∗, v∗).

where,

j∗ = k1
(
1 − αμξ i∗

r1β(κξ i∗+πv)

)
,

s∗ = μξ i∗
β(κξ i∗+πv)

,

v∗ = κξ i∗+πv

μ
and i∗ is the positive root of the following equation:

r2

[
1 −

(
s∗ + i∗

k2

)θ
]

+ α j∗ − βv∗ = 0.

Proposition 23.1 The system always unstable around axial equilibrium point
E0(0, 0, 0,

πv
μ

). Again at disease free equilibrium point E1(k1, 0, 0,
πv
μ

) the system

is stable around E1 if | 1 − lr1θ1 |< 1, | 1 + lr2 + lαk1 − βπvl
μ

|< 1, | 1 − ξ l |< 1
and | 1 − lμ |< 1, critically stable if at least one of above inequality hold equality.
Otherwise the system is unstable.

The Jacobian matrix of the system at vanishing equilibrium point E0(0, 0, 0,
πv
μ

)

is given by:

J (E0) =

⎡
⎢⎢⎣
1 + lr1 0 0 0

0 1 + lr2 − βπvl
μ

0 0

0 βπvl
μ

1 − ξ l 0
0 0 κξ l 1 − lμ

⎤
⎥⎥⎦ .

1 + lr1, 1 + lr2 − βπvl
μ

, 1 − ξ l and 1 − lμ are eigenvalues of J (E0). Here, l and r1
are always positive and thus the axial equilibrium point is unstable.

The Jacobian matrix of the system at pest free equilibrium point E1(k1, 0, 0,
πv
μ

)

is given by:

J (E1) =

⎡
⎢⎢⎣
1 − lr1 −lαk1 0 0

0 1 + lr2 + lαk1 − βπvl
μ

0 0

0 βπvl
μ

1 − ξ l 0
0 0 κξ l 1 − lμ

⎤
⎥⎥⎦ .

The eignevalue of J (E1) are 1 − lr1, 1 + lr2 + lαk1 − βπvl
μ

, 1 − ξ l and 1 − lμ.
Thus, by Jury Condition the system is stable around E1 if modulus of eigenvalues

are less than one (Fig. 23.1).
The Jacobian matrix of the system at virus free equilibrium point E2( j2, s2, 0, 0)

is given by:
s2 = r1

α
(1 − (

j2
k1

)θ1) and j2 satisfy the equation r2(1 − ( s2k2
)θ ) + α j2 = 0.
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Fig. 23.1 Trajectory portrait of model system (23.2). Which shows that the system stable around
pest free equilibrium point corresponds to θ = 0.1 other parameter values given in Table 23.1

J (E2) =

⎡
⎢⎢⎢⎣

B11 −lα j2 0 0

lαs2 B22 − ls2r2θ
k2

(
s2
k2

)θ−1 −lβs2
0 0 1 − ξ l lβs2
0 0 −κξ l 1 − lμ

⎤
⎥⎥⎥⎦ .

Where

B11 = 1 + lr1 − 2lr1 j2
k1

− lαs2 (23.3)

B22 = 1 + lr2

[
1 −

(
s2
k2

)θ
]

− lr2s2θ

k2

(
s2
k2

)θ−1

+ lα j2 (23.4)

has the following characteristic equation:

(λ2 + d1λ + d2)(λ
2 + d3λ + d4) = 0. (23.5)

Where,

d1 = lμ + lξ − 2, d2 = (1 − ξ l)(1 − lμ) + l2κξβs2

d3 = lr2s2θ

k2

(
s2
k2

)θ−1

−
{
lr1

[
1 −

(
2 j2
k1

)]
+

lr2

[
1 −

(
s2
k2

)θ2
]}

+ lαs2 − lα j2 − 2,
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d4 =
(
1 + lr1 − 2lr1 j2

k1
− lαs2

) (
1 + lr2

[
1 −

(
s2
k2

)θ
]

−

lr2s2θ

k2

(
s2
k2

)θ−1

+ lα j2

)
+ l2α2 j2s2.

Then eigenvalues of the system satisfy the equation P1(λ) = λ2 + d1λ + d2 = 0 and
P2(λ) = λ2 + d3λ + d4 = 0, by Jury Condition the system is asymptotically stable
around E2( j2, s2, 0,

πv
μ

) if,

P1(1) > 0, P1(−1) > 0 and d2 < 1,

P2(1) > 0, P2(−1) > 0 and d4 < 1.

23.3.2 Stability of Interior Equilibrium

The Jacobian matrix of the system at interior equilibrium point E∗( j∗, s∗, i∗, v∗) is
given by:

JE∗ =

⎡
⎢⎢⎣
C11 C12 0 0
C21 C22 C23 C24

0 0 C33 C34

0 0 C43 C44

⎤
⎥⎥⎦ .

Where,

C11 = 1 + lr1

[
1 −

(
2 j∗

k1

)]
− lαs∗

C22 = 1 + lr2

[
1 −

(
s∗ + i∗

k2

)θ
]

− lr2s∗θ
k2

(
s∗ + i∗

k2

)θ−1

+ lα j∗ − βlv∗

C12 = −lα j∗

C21 = lαs∗

C23 = − ls∗r2θ
k2

(
s∗ + i∗

k2

)θ−1

C24 = −lβs∗

C33 = 1 − ξ l

C34 = lβs∗

C43 = −κξ l

C44 = 1 − lμ. (23.6)
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Now we choose the Lyapunov function as follows:

ψ( j, s, i, v) = 1

2
(c1 j

2 + c2s
2 + c3i

2 + c4v
2),

where ci > 0; i = 1, 2, 3, 4, is to be chosen suitably.Obviouslyψ is positive definite.
Derivative of ψ along the solution of the equation Ẋ(t) = JE∗ X (t), where X (t) =
( j (t), s(t), i(t), v(t))T is as follows:

ψ̇ = c1 j j̇ + c2sṡ + c3i i̇ + c4vv̇,

= c1 j[ jC11 + sC12] + c2s[ jC21 + sC22 + iC23 + vC24]
+ c3i[iC33 + vC34] + c4v[iC43 + vC44)],

= c1C11 j
2 + c2C22s

2 + c3C33i
2 + c4C44v

2 +
(c1C12 + c2C21) js + c2C23si + c2C24sv + (c3C34 + c4C43)iv.

Thus symmetric matrix corresponding to ψ̇ is given as:

M = 1

2

⎡
⎢⎢⎣

2c1C11 (c1C12 + c2C21) 0 0
(c1C12 + c2C21) 2c2C22 c2C23 c2C24

0 c2C23 2c3C33 (c3C34 + c4C43)

0 c2C24 (c3C34 + c4C43) 2c4C44

⎤
⎥⎥⎦ .

The positive equilibrium E∗ is locally asymptotically stable if ψ̇ is negative definite.
Which in turns follows if the symmetric matrix M is negative definite. But M is
negative definite if odd rank principal minor in order is negative and the even rank
principal minor in order is positive, which in turn follows if,

(i) 2c1C11 < 0,

(i i) 4c1c2C11C22 − (c1C12 + c2C21)
2 > 0,

(i i i) 2c1C11[4c2c3C22C33 − (c2C23)
2] − 2c3C33(c1C12 + c2C21)

2 < 0,

(iv) 2c4C44[LHS of expression of inequality (iii)]
− (c3C34 + c4C43)[Minor with respect to (4, 3) element of matrix M]
+ c2C24[Minor with respect to (4, 2) element of matrix M] > 0.

Now, we choose c1, c2, c3, c4 such as

(c1C12 + c2C21) = 0, (23.7)

(c3C34 + c4C43) = 0, (23.8)

c4C44[4c2c3C22C33 − (c2C23)
2] − c2c3(C24)

2 = 0, (23.9)

4c2c3C22C33 − (c2C23)
2 > 0. (23.10)
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Then the above four inequalities are satisfied if,

1 + lr1

[
1 −

(
2 j∗
k1

)]
− lαs∗ < 0 (23.11)

1 + lr2

[
1 −

(
s∗ + i∗

k2

)θ
]

− lr2s
∗θ

k2

(
s∗ + i∗

k2

)θ−1
+ lα j∗ − βlv∗ < 0 (23.12)

1 − lμ < 0. (23.13)

We summarize the above results with the following theorem:

Theorem 23.2 The system is globally asymptotically stable around E∗( j∗, s∗, i∗,

v∗) if 1 + lr1
[
1 −

(
2 j∗
k1

)]
− lαs∗ < 0, 1 + lr2

[
1 −

(
s∗+i∗
k2

)θ
]

− lr2s∗θ
k2

(
s∗+i∗
k2

)θ−1

+lα j∗ − βlv∗ < 0 and 1 − lμ < 0.

23.4 Bifurcation Analysis

The characteristic equation of JE∗ = Ci j is

λ4 + σ1λ
3 + σ2λ

2 + σ3λ + σ4 = 0. (23.14)

Where,

σ1 = −
∑

C11,

σ2 =
∑

C11C22 − C12C21 − C34C43

σ3 = −
∑

C11C22C33 + C12C21(C33 + C44) + C34C43(C11 + C22)

σ4 = C11C22C33C44 − C12C21C33C44 − C11C22C34C43 + C12C21C34C43.

(23.15)

Here, Ci j are given in (23.6).
Now, we shall find out the conditions for which E∗ enters Hopf bifurcation as θ

varies over the interval (0, 1).

Routh–Hurwitz criterion and Hopf bifurcation: Let Ψ : (0,∞) → R be the fol-
lowing continuously differentiable function of θ :

Ψ (θ) := σ1(θ)σ2(θ)σ3(θ) − σ 2
3 (θ) − σ4(θ)σ 2

1 (θ).

Hopf bifurcation can occur if the following conditions are satisfied:

(A) There exists θ∗ ∈ (0, 1), at which a pair of complex eigenvalues λ(θ∗), λ̄(θ∗) ∈
σ(θ) are such that

Reλ(θ∗) = 0, Imλ(θ∗) = ω0 > 0,

and the transversality condition
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dReλ(θ)

dθ
|θ∗ �= 0;

(B) All other elements of σ(θ) have negative real parts, where σ(θ) = {ρ : D(ρ) =
0} is the spectrum of the characteristic equation (23.14).

Theorem 23.3 The system (5) around the interior equilibrium E∗ enters Hopf bifur-
cation at θ = θ∗ ∈ (0, 1) if and only if

i. Ψ (θ∗) = 0
ii. σ 3

1 σ ′
2σ3(σ1 − 3σ3) > 2(σ2σ

2
1 − 2σ 2

3 )(σ ′
3σ

2
1 − σ ′

1σ
2
3 ),

and all other eigenvalues are of negative real parts, where λ(θ) is purely imaginary
at θ = θ∗.

Proof The existence of θ∗ can be obtained by solving Ψ (θ∗) = 0. By the condition
Ψ (θ∗) = 0, the characteristic equation can be written as

(
λ2 + σ3

σ1

) (
λ2 + σ1λ + σ1σ4

σ3

)
= 0.

If it has four roots, say λi , (i=1,2,3,4) with the pair of purely imaginary roots at
θ = θ∗ as λ1 = λ̄2, then we have

λ3 + λ4 = −σ1,

ω2
0 + λ3λ4 = σ2,

ω2
0(λ3 + λ4) = −σ3,

ω2
0λ3λ4 = σ4,

(23.16)

where ω0 = Imλ1(θ
∗). By above ω0 =

√
σ3
σ1
. Now, if λ3 and λ4 are complex con-

jugate, then from (23.16), it follows that 2Reλ3 = −σ1; if they are real roots, then
by (23.14) and (23.16) ρ3 < 0 and ρ4 < 0. To complete the discussion, it remains to
verify the transversality condition.

As Ψ (θ∗) is a continuous function of all its roots, so there exists an open interval
θ ∈ (θ∗ − ε, θ∗ + ε) where λ1 and λ2 are complex conjugate for θ . Suppose, their
general forms in this neighborhood are

λ1(θ) = χ(θ) + iν(θ),

λ2(θ) = χ(θ) − iν(θ).

Now, we shall verify the transversality condition

dRe(λ j (θ))

dθ
|θ=θ∗ �= 0, j = 1, 2.

Substituting λ j (θ) = χ(θ) ± iν(θ), into (23.14) and calculating the derivative, we
have
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K (θ)χ ′(θ) − L(θ)ν ′(θ) + M(θ) = 0,
L(θ)χ ′(θ) + K (θ)ν ′(θ) + N (θ) = 0.

Here,

K (θ) = 4χ3 − 12χν2 + 3σ1(χ
2 − ν2) + 2σ2χ + σ3,

L(θ) = 12χ2ν + 6σ1χν − 4χ3 + 2σ2χ,

M(θ) = σ1χ
3 − 3σ ′

1χν2 + σ ′
2(χ

2 − ν2) + σ ′
3χ,

N (θ) = 3σ ′
1χ

2ν − σ ′
1ν

3 + 2σ ′
2χν + σ ′

3χ.

Solving for χ ′(θ∗) we have
[
dRe(λ j (θ))

dθ

]
θ=θ∗

= χ ′(θ)θ=θ∗ = − L(θ∗)N (θ∗)+K (θ∗)M(θ∗)
K 2(θ∗)+L2(θ∗)

= σ 3
1 σ ′

2σ3(σ1−3σ3)−2(σ2σ
2
1 −2σ 2

3 )(σ ′
3σ

2
1 −σ ′

1σ
2
3 )

σ 4
1 (σ1−3σ3)2+4(σ2σ

2
1 −2σ 2

3 )2
> 0,

if σ 3
1 σ ′

2σ3(σ1 − 3σ3) > 2(σ2σ
2
1 − 2σ 2

3 )(σ ′
3σ

2
1 − σ ′

1σ
2
3 ).

Thus the transversality conditions hold and hence Hopf bifurcation occurs at θ = θ∗.

23.5 Numerical Simulation

The dynamics of the model system are analyzed using Mathworks MATLAB
ver.2008. In this section we verify the analytical predictions obtained in the pre-
vious sections through numerical results of the system (23.2).

For our numerical studies, we have taken the step size parameter value l = 0.4.
FromFig. 23.2 it is clear that themodel variables j (t), s(t), i(t) and v(t) oscillate ini-
tially before the system moves toward its stable region as time increases for θ = 0.1.
From Figs. 23.3, 23.4 and 23.5 we have shown that system (23.2) is asymptotically
stable at interior equilibrium point E∗( j∗, s∗, i∗, v∗) for θ < 0.74 and also it is seen
that stability of the system took longer time as the value of theta increases. On the
other side from Figs. 23.6 and 23.11 it is seen that for θ ≥ 0.74, the system is unsta-
ble and periodic which also holds for θ = 1, i.e., the pest population follows logistic
growth. Our result suggests that the assumption of theta logistic growths (Sibly
et al. 2005) [9] for insect population are more realistic and natural. Thus theta logis-
tic growth may help to sustain the biomass of Jatropha sp.-pest–virus population
which is not the case for simple logistic growth.

In Fig. 23.7 and 23.8, we have shown the stability region by varying intrinsic
growth rate parameter (r1, r2) and carrying capacity parameter (k1, k2) for biomass
of Jatropha sp. and susceptible pest at pest free equilibrium point E1(k1, 0, 0,

πv
μ

).
Phase portraits of biomass of Jatropha sp., healthy pest, infected pest and virus

are drawn for θ = 0.1 in Fig. 23.9 and for θ = 0.9 in Fig. 23.10. Figure23.9a is phase
diagram for the virus, biomass of Jatropha sp. and susceptible pest. Figure23.9b is
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Fig. 23.2 Densities of biomass of Jatropha sp., Susceptible pest, Infected pest andVirus population
for θ = 0.1 for model system (23.2), other parameter values given in Table23.1

Table 23.1 Values of parameters used in numerical calculation for system (23.2).

Parameters Definition Values (Unit)

r1 The growth rate of Jatropha sp. 0.5day−1 [18]

k1 The maximum density of Jatropha sp. 500ha−1 [18]

β The infection rate 0.0032pest−1 day−1 [4, 19]

λ Interaction rate of virus with pest 0.004pest−1 day−1 [19]

ξ The mortality rate of infected pest 0.1day−1 [4]

r2 The growth rate of pest 0.1day−1 [19]

πV The acquisition rate of virus 0.01day−1 [4]

k2 The pest carrying capacity 800plant−1 [20]

κ The virus replication parameter 1pest−1 day−1 (estimated)

phase diagram for the infected pest, biomass of Jatropha sp. and susceptible pest.
Both figures show that the system (23.2) starting with the initial value (30, 5, 12, 10)
converges to the interior equilibrium point E∗( j∗, s∗, i∗, v∗). On the other hand
Fig. 23.10a is phase diagram for the virus, susceptible pest and biomass of Jatropha
sp. and Fig. 23.10b is phase diagram for the infected pest, susceptible pest and bio-
mass of Jatropha sp. with the initial value (30, 5, 12, 10). Limit cycle oscillation
occurs in both figures, i.e., the system (23.2) is unstable compare to logistic curve.

In Fig. 23.11 we have drawn time series plot corresponding to the Figs. 23.9
and 23.10.

In Fig. 23.12 we have drawn the bifurcation diagrams of biomass of Jatropha sp.,
susceptible pest, infected pest and virus with respect to the parameter θ . From this
figure it is clear that the system under goes Hopf bifurcation around θ = 0.74.
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Fig. 23.3 Densities of biomass of Jatropha sp., Susceptible pest, Infected pest andVirus population
for θ = 0.3 for model system (23.2), other parameter values given in Table23.1
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Fig. 23.4 Densities of biomass of Jatropha sp., Susceptible pest, Infected pest andVirus population
for θ = 0.4 for model system (23.2), other parameter values given in Table23.1

23.6 Discussion and Conclusion

Jatropha sp. is a renewable non-edible plant, and it can be used as a potential resource
for biodiesel production. Unfortunately, the Jatropha sp. production is immensely
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Fig. 23.5 Densities of biomass of Jatropha sp., Susceptible pest, Infected pest andVirus population
for θ = 0.71 for model system (23.2), other parameter values given in Table23.1
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Fig. 23.6 Densities of biomass of Jatropha sp., Susceptible pest, Infected pest andVirus population
for θ = 0.74 for model system (23.2), other parameter values given in Table23.1

hampered due to serious pest attack. Therefore, the pest population needs to be
controlled for better prospect of the biodiesel production. There are several ways to
control this Jatropha sp. pest population, but the most elegant and modern strategy
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Fig. 23.7 Domain of stability region in which pest free equilibrium of model (23.2) is stable with
respect to k1 and r1 corresponds to θ = 1 other parameter values given in Table23.1
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Fig. 23.8 Domain of stability region in which pest free equilibrium of model (23.2) is stable with
respect to k2 and r2 corresponds to θ = 1 other parameter values given in Table23.1

0

100

200

300

400

0
100

200
300

400
500

0
100
200

Susceptible pest

(a)

Biomass of Jatropha plant

Vi
ru

s

0

100

200

300

4000
100

200
300

400
500

0

500

1000

Biomass of Jatropha plant

(b)

Susceptible pest

In
fe

ct
ed

 p
es

t

Fig. 23.9 Phase diagram of biomass of Jatropha sp., susceptible pest, infected pest and virus
population as a function of time shows that the system starting with the initial value (30, 5, 12, 10)
converges to the interior equilibrium point E∗( j∗, s∗, i∗, v∗). We have taken the parameter value
θ = 0.1 and the other parameter values are the same as in Table23.1. a The phase diagram for
the virus, susceptible pest and biomass of Jatropha sp.. b The phase diagram for the infected pest,
biomass of Jatropha sp. and susceptible pest

is to introduce the viral population, viz. NPV, by which we can suppress the effects
of the pest on Jatropha sp..

To capture the entire dynamics, we proposed a mathematical model based on
the three major populations viz., Biomass of Jatropha sp.–pest–virus. Recent study
reveals that most of the insect population follows the theta logistic growth instead
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Fig. 23.10 Phase diagram of biomass of Jatropha sp., susceptible pest, infected pest and virus
population as a function of time shows that the system starting with the initial value (30, 5, 12, 10)
exhibit limit cycle oscillation. We have taken the parameter value θ = 0.9 and the other parameter
values are the same as in Table23.1. a The phase diagram for the virus, susceptible pest and biomass
of Jatropha sp.. b The phase diagram for the infected pest, biomass of Jatropha sp. and susceptible
pest

Fig. 23.11 Densities of
biomass of Jatropha sp.,
Susceptible pest, Infected
pest and Virus population for
θ = 0.9 for model system
(23.2). Clearly the system
oscillate periodically after
500 days other parameter
values given in Table23.1
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of logistic and the density - PGR (per capita growth rate) relationship is concave in
nature (Sibly et al. 2005) [9]. So theta logistic must be a realistic and natural choice
for explaining susceptible pest growth profile.

Assuming theta logistic growth for susceptible pest the proposed system with
four populations exhibits stable behavior (i.e., all the populations co-exists) for low
value of theta (θ < 0.74). For θ > 0.74, the system shows limit cycle oscillation.
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Fig. 23.12 Bifurcation diagrams of densities with respect to θ , assuming the parameters are as in
Table23.1

The same unstable behavior is observed even the theta reached the value one, which
is the simple logistic case.

So we observed that for sustainability of the four populations we need to assume
theta logistic growth in the susceptible prey. That is density regulation can be acted as
a stabilizing agent for such four species interactive model. As nature supports (Sibly
et al. 2005) [9] this theta logistic growth for the pest, so pest control by introducing
viral population must a potential solution to retrieve Jatropha sp. from infection.
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Chapter 24
Dynamics of Sirs Model
with Single Time Delay

Sudipa Chauhan, Sumit Kaur Bhatia and Nidhi Purohit

Abstract In this paper, we have considered two models: SICRS model without and
with single time delay in infective population. The global dynamics of both models
have been carried out and the effect of carriers on transmission dynamics is discussed
through the basic reproduction number.

Keywords Equilibrium point · Reproduction number · Local stability
Global stability

24.1 Introduction

The repeated threats of infectious disease have become an alarming issue in today’s
world. In the context of global health, control of such diseases has become manda-
tory. It has been recorded that in 2008, infectious diseases accounted for about sixteen
percent of deaths worldwide. The infectious diseases are those which get transmitted
from one person to another through various agents like, bacteria, virus (foodborne,
waterborne, airborne) which are known as carriers. They play a vital role in transmis-
sion of the infection from one class of individuals to another but, they themselves do
not exhibit the disease. Considering a closed population, i.e., (susceptible, infective,
carriers and recovered) the introduction of an infective individual or an external vec-
tor can result in the spread of an infectious disease within the population [1]. Some
carriers carry the disease on their respective gene known as genetic carriers, but here
our concern is asymptotic carriers which particularly causes typhoid, hepatities B
and diarrhea. In our models we will discuss these infectious diseases in general.

S. Chauhan (B) · S.K. Bhatia · N. Purohit
Amity Institute of Applied Science, Amity University, Sector-125, Noida, India
e-mail: sudipachauhan@gmail.com

S.K. Bhatia
e-mail: sumit2212@gmail.com

N. Purohit
e-mail: nidhipurohit95@gmail.com

© Springer Nature Singapore Pte Ltd. 2017
P. Manchanda et al. (eds.), Industrial Mathematics and Complex Systems,
Industrial and Applied Mathematics, DOI 10.1007/978-981-10-3758-0_24

337



338 S. Chauhan et al.

Typhoid, hepatitis B, and diarrhea are most common infectious diseases that are
transmitted through asymptotic carriers. These diseases remain an important public
health problem in developing countries.Typhoid fever is a systemic infection caused
by Salmonella enterica serotype Typhi (S. typhi). In 2000, it was estimated that over
2.16million episodes of typhoid occurredworldwide, resulting in 216000deaths, and
that more than 90% of this morbidity and mortality occurred in Asia [2]. It has been
observed that the pathogens causing typhoid and diarrhea mainly occur in the areas
surrounded by water bodies. As the inhabitants remain in contact with the natural
reservoir in their daily routine and thus catch the disease easily and spread it among
the individuals. The bacteria Salmonella is a bacteria genus that is closely related to
diarrhea but recent data show that the mortality from diarrhea has declined over the
past two decades from an estimated 5million deaths among children under five to 1.5
million deaths in 2004 [3]. Another major infectious disease that causes long-term
asymptomatic carriage is hepatitis B, a liver disease caused by the HBV virus of the
Hepadna virus family. The population of infective increases as the individuals are
generally not aware of the treatment methods and if at all, the treatment is given,
they may not respond to it due to the unavailability of adequate facilities. Most
people infected with HBV recover completely and develop a lifelong immunity and
15–25%of these develop liver disease. Clostridiumdifficile is a bacterium that causes
Clostridium difficile-associated diseases (CDAD). CDAD remains themost common
cause of acute hospital-acquired diarrhea, responsible for more than 300,000 cases of
diarrhea annually in acute-care facilities in the United States. Asymptomatic carriage
rates of up to 30 have been reported in long-term care facilities. It is believed that
carriers are responsible for transmission and large outbreaks of CDAD in Europe
and North America [4]. Keeping the public health significance, many studies have
been done in forming the models in which vaccination has been given to cure the
disease and then the work has been done to predict the further situation but models
in which the role of vaccination is not taken into consideration, there the prominent
role of reproduction number comes into the scene to analyze the system [5–8].

The study of thismodel is focusedmainly on the impact of the effects of carriers of
disease on population.Although infectious diseases are present in human populations
at all times to some degree, the effects of epidemics are the most noticeable and
spectacular. It is possible to mathematically model the progress of typhoid fever to
discover the likely outcome of an epidemic [9]. Fever in KISII Town Kenya [9]. In
the present paper, we have formulated two models showing the transmission of the
infectious disease through asymptotic carriers. We have proposed two models, in
Model I we have considered delay in time to come to recovered class from infected
class and in Model II we have introduced a probability factor which is more realistic.
Both the models are different from classical SEIR model as the growth of infective
class is due to exposed class whereas in our model growth of infective class is
due interaction between carrier and susceptible. Also, we have incorporated the
interaction between susceptible and infective and the diagnosis rate of carrier. We
have shown boundedness and existence of the endemic equilibrium point for both
the models and their basic dynamical features.
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This paper is organized in three sections. In the first section, we have formulated
Model I and Model II and in the second section we obtained boundedness of both
models. Further, we have obtained basic dynamical features in third section.

24.2 Model Development

In this section, we have developed the models under the following assumptions:
Let C(t) be the number of the carriers, S(t) be the number of susceptibles, I(t) be

the number of infectives, R(t) be the number of recovered population. Models are
appropriate to use under the following assumptions:

1. The population is fixed.
2. Age, sex, social status, and race do not affect the probability of being infected.
3. There is no inherited immunity.
4. The member of the population mix homogeneously (have the same interactions

with one another to the same degree).
5. The natural birth and death rates are included.
6. All births are into the susceptible class.
7. The death rate is equal for members of all four classes, and it is assumed that the

birth and death rates are equal so that the total population is stationary.

Model I

1. Susceptible population is growing at a rate α1 and members of the population
of susceptible class interact with members of population of carrier class at the
rate α. Also, recovered is coming again into susceptible class at the rate δ and
susceptible die naturally at the rate d1. Thus, the equation is as follows:

dS

dt
= α1S − αSC + δR − d1S (24.1)

where
α1 = constant rate at which the susceptible grows.
δ = rate of loss of disease induced immunity (waning rate).
d1 = natural death of susceptible.

2. Members of infective class leave the class at the rate β with the time delay T.
Also, infective dies naturally at the rate d1. Thus, equation is as follows:

d I

dt
= αSC − β I (t − T ) − d1 I (24.2)

where
d1 = natural death of infective.
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3. Members of infective class will enter in recovered class at the rate β. Also,
recovered dies naturally at the rate d1.Thus, equation is as follows:

dR

dt
= β I − δR − d1R (24.3)

d1 = natural death of recovered.

4. Carriers die naturally at the rate d2. Thus, equation is as follows:

dC

dt
= γ I − d2C (24.4)

where, d2 = natural death of carriers.

Model II

1. The susceptible population S(t) at any time t is growing exponentially with growth
rate of α1, this respective population is converting to the carriers and infective
with some conversation rate of α and β respectively. The recovered individuals
have become susceptible again with a rate of π and dying with a natural death
rate of d1.

dS

dt
= α1S − αSC − βSI − d1S + δR (24.5)

2. The infective population I(t) at any time t can become a carrier with the probability
(1 − p) and the carriers are getting prone to infection with the rate α2. The
population is dying with a natural and disease caused death rate of d2.

d I

dt
= (1 − p)αSC + (1 − p)βSI + α2C − m1 I − d2 I (24.6)

3. The carriers population C(t) at any time t is dying with a natural and disease
caused death rate of d3.

dC

dt
= pαSC + pβSI − d3C − α2C (24.7)

4. The infective population is recoveringwith a rateπ . The individuals are becoming
susceptible again with the rate δ and dying with a natural rate of d4.

dR

dt
= m1 I − δR − d4R (24.8)
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where
α1: growth rate of susceptible.
α2: conversion rate of susceptible into infective.
β: role of transmission of susceptible into infective and carriers.
m1: recovery rate.
δ: rate at which the recovered transmit into susceptible.
d1: natural deaths of susceptible.
d2: natural and disease caused death of the infective.
d3: natural and disease caused death of the carriers.
d4: natural death of recovered population.
p: susceptible will become a carriers with probability p.

24.3 Boundedness

In this section, we shall obtain the boundedness of the system.

Proposition 24.1 Model I is bounded.

Proof Let W = S + I + C + R

dW

dt
= α1S + γ I + d1S − d1 I − d1R − d2C

dW

dt
≤ α1S + γ I − dW

where d = min(d1, d2)

dW

dt
+ dW = A1W − AR − BC

where A1 = max(α1, γ )

dW

dt
+ dW − A1W ≤ 0

dW

dt
+ (d − A1)W ≤ 0

We(d−A1)dt ≤ 0

Therefore the system is bounded.

Proposition 24.2 Model II is bounded.

Proof Let N = S + I + C + R

dN

dt
= dS

dt
+ d I

dt
+ dC

dt
+ dR

dt
(24.9)
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dN

dt
= α1S + (d1 + d2 + d3 + d4)(S + I + R + C) (24.10)

Let d = min(d1, d2, d3, d4)

dN

dt
= α1S − dN

Since, S is bounded above by S∗ = α1
d1
.

dN
dt ≤ α1S∗ − dN

dN
dt + dN ≤ A

Thus N ≤ A
d .

Therefore, Model II is bounded.

24.4 Basic Dynamical Features

In this section, we will obtain the equilibrium points of Model I and Model II.

Equilibrium points: Model I

Equilibrium points for Model I are:

• Trivial equilibrium point: E0(S = 0, I = 0, R = 0,C = 0)
• Endemic equilibrium point:

E∗
(
S∗ = d2(β + d1)

αγ
, I ∗ = d2(β + d1)(α1 + d1)(δ + d1)

αγ (d1(β + d1 + δ))
,C∗ = γ I ∗

d2
,

R∗ = β I ∗
(δ+d1)

)

Thus, disease-free equilibrium point does not exist.

Equilibrium Points: Model II

Equilibrium points for Model II are as follows:

• Disease-free equilibrium point
E0(

α1
d1

, 0, 0, 0)
• Non-trivial equilibrium point

E∗(S∗, I ∗,C∗, R∗)

where
I ∗ = (d3+α2−pαS∗)(α1−d1)S∗

(d3+α2−pαS∗)(βS∗− πδ
δ+d4

)+pβS∗ > 0 provided d3 + α2 > pαS∗ and βS∗ > πδ
δ+d4
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S∗ = (d3+α2)(d2+m1)

pβα2+(d3+α2)(1−p)β+pα(m1+d2)

R∗ = m1 I ∗
δ+d4

C∗ = pβS∗ I ∗
d3+α2−pα2S∗

Now, we define,

R0 = α1
S∗d1

= α1(pβα2+(d3+α2)(1−p)β+pα(m1+d2))
(d3+α2)(d2+m1)d1

which is a threshold parameter.
R0 can be written as

R0 =
[

(1−p)β
(d2+m1)

+ p( α
(d3+α2)

+ βα2

(d3+α2)(d2+m1)

]
α1
d1

Wewill show that R0 is the basic reproduction numberwhich is the average number of
secondary infections caused by a single infective in an entire susceptible population
during its entire infectious period. The probability of introduction of non-carrier into
the system is (1 − p) which makes β effective contacts per unit time. We multiply
β with (average infectious period) 1

(d2+m1)
for non carriers. The infective is a carrier

with probability p, which makes β effective contacts per unit time during the average
period 1

d3+α2
it remains a carrier. Even though infective have become a non-carrier,

it caused β 1
(d2+m1)

number of infective with probability α2β

d3+α2
so that it can survive

in the carrier stage. Therefore [ (1−p)β
(d2+m1)

+ p( α
(d3+α2)

+ βα2

(d3+α2)(d2+m1)
] is the per capita

average number of secondary infections. The product of this expression with the
number of susceptible at the disease-free equilibrium, ( α1

d1
), gives R0.

Since R0 have the parameter α2, β and p all are related to the carrier class and all
are present in the reproduction number from Eq. (24.7), therefore carriers have great
effect on R0. We can analyze that R0 increases as β increases.

The effect of p and R0.

∂R0
∂p =

[ −β

(d2+m1)
+ α

(d3+α2)
+ β

(d2+m1)
α2

(d3+α2)

]
α1
d1

= α1
d1(d3+α2)

[
α − βd3

d2+m1

]

and thus,
∂R0
∂p > 0 if α >

βd3
d2+m1

Development of carriers has great impact on the basic reproduction number under
the above condition. There will be an increase in the reproduction number as the
probability of carriers increases.

We can also analyze the effect of diagnosis rate α2 on R0.
Analyze the effect of α2 on R0.



344 S. Chauhan et al.

∂R0
∂α2

= − 1
(d3+α2)2

[
−α + βd3

d2+m1

]
and thus,

∂R0
∂α2

< 0 if α >
βd3

d2+m1

Hence, from the above analysiswe observed that the parameter p andα2 have opposite
effects on R0, i.e., they are inversely proportional to each other, the higher probability
p of carrier increases R0, a higher diagnosis rate α2 of carriage decreases R0.

24.4.1 Local Stability

Model I:

The Jacobian corresponding to Model I is:

J (S∗, I ∗, R∗,C∗) =

⎛
⎜⎜⎝

α1 − αC − d1 0 δ −αS
αC −d1 0 αS
0 β −δ − d1 0
0 γ 0 −d2

⎞
⎟⎟⎠ + e−μT

⎛
⎜⎜⎝
0 0 0 0
0 −β 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

α1 − αC − d1 0 δ −αS
αC d1 − βe−μT 0 αS
0 β −δ − d1 0
0 γ 0 −d2

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

α1 − αC − d1 − μ 0 δ −αS
αC d1 − βe−μT − μ 0 αS
0 β −δ − d1 − μ 0
0 γ 0 −d2 − μ

⎞
⎟⎟⎠

The characteristic equations corresponding to trivial equilibrium point is:

(α1 − d1 − μ)(d1 − βe−μT − μ)(−δ − d1 − μ)(−d2 − μ) = 0 (24.11)

Case 1: T = 0

(α1 − d1 − μ)(d1 − β − μ)(−δ − d1 − μ)(−d2 − μ) = 0 (24.12)

μ1 = d1 − α1, μ2 = β − d1, μ3 = δ + d1, μ4 = d2 (24.13)

Since μ3 and μ4 will remain positive even if μ1 and μ2 are negative. Hence, the
trivial equilibrium will always remain unstable.

Case 2: T > 0

(α1 − d1 − μ)(d1 − βe−μT − μ)(−δ − d1 − μ)(−d2 − μ) = 0 (24.14)
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μ4 + a3μ
3 + a2μ

2 + a1μ + a0 + e−μT (y3μ
3 + y2μ

2 + y1μ + y0) = 0 (24.15)

where
a3 = d1 + d2 − α1 + 2d1 + δ

a2 = d2d1 − (d1 + d2)(α − 2d1 − δ) − α1δ − α1d1 + d1δ + d2
1

a1 = (d2d1)(α1 − 2d1 − δ) + (α1S + α1d1 − d1S − d2
1 )(d1 + d2)

a0 = −(α1S + α1d1 − dS − d2
1 )(d1 + d2)

y3 = β, y2 = β(μ + 2d1 + d2 + δ − α1)

y1 = β(d1d2 − α1(δ + d1 + d2))
y0 = d1d2(d1 − α1)

Let μ = iη

η4 − a3iη
3 − a2η

2 + a1iη + a0 + e−iηT (−iy3η
3 − y2η

2 + iy1η + y0) (24.16)

Separating real and imaginary part of (24.16), then by squaring and adding both the
equations, we get,

η8 + (−2a2 + a23 + y23 )η
6 + (a22 + 2a0 + y22 − 2a1a3 − 2y1y3)η4

+(−2a2a0 − 2y22y0 + a1 + y21 )η
2 + (a20 + y20 ) = 0

Let s = η2, then above equation becomes:

s4 + (−2a2 + a23 + y23 )s
3 + (a22 + 2a0 + y22 − 2a1a3 − 2y1y3)s2

+(−2a2a0 − 2y22y0 + a1 + y21 )s + (a20 + y20 ) = 0

By Routh Hurwitz criteria, above equation has roots with negative real parts if
a > 0, b > 0, c > 0, ab − c > 0, ad − c > 0, where a = −2a2 + a23 + y23 ,
b = a22 + 2a0 + y22 − 2a1a3 − 2y1y3, c = a22 + 2a0 + y22 − 2a1a3 − 2y1y3, d = a20+y20 .

But s = η2 > 0, this proves that the assumption μ = iη is wrong and thus the
equation has no positive roots and the real part of all eigenvalues are negative for all
T > 0. Therefore, system is stable for T > 0.

Endemic Equilibrium Point:

Case 1: T = 0

The Jacobian corresponding to endemic equilibrium point is:

=

⎛
⎜⎜⎝

α1 − αC∗ − d1 0 δ −αS∗
αC∗ d1 − βe−μT 0 αS∗
0 β −δ − d1 0
0 γ 0 −d2

⎞
⎟⎟⎠

⎛
⎜⎜⎝

α1 − αC∗ − d1 − μ 0 δ −αS∗
αC∗ d1 − βe−μT − μ 0 αS∗
0 β −δ − d1 − μ 0
0 γ 0 −d2 − μ

⎞
⎟⎟⎠
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Characteristic equation corresponding to endemic equilibrium point is:

λ4 − (A + B + C + D)λ3 + (AB + BC + CD + DA)λ2

− (ABC + BCD + CDA)λ + ABCD = 0 (24.17)

where, A = α1 − αC − d1, B = d1 − β, C = −δ − d1, d = −d2.
Eigenvalues corresponding to above characteristic equation are negative if, A +

B + C + D and ABC + BCD + CDA are negative.

Case 2: The local stability of endemic equilibrium for T > 0 can be obtained in the
same way as has been done for trivial equilibrium.
Model II: To examine the local stability of the disease-free equilibrium, we calculate
Jacobian matrix at E0(

α1
d1

, 0, 0, 0), which is:

E0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1 − d1 −β
(

α1
d1

)
−α2

(
α1

d1

)
0

0 (1 − p)β
(

α1
d1

)
− (d2 + m1) (1 − p)α2

(
α1

d1

)
+ α2 0

0 pβ

(
α1

d1

)
pα2

(
α1
d1

)
− (d3 + α2) 0

0 m1 0 −(d4 + δ)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(24.18)

One of the eigenvalues is λ1 = −(d1 − α1) < 0. The others eigenvalues λ2, λ3, λ4

are obtained by 3× 3 matrix.

⎡
⎢⎢⎢⎢⎣

(1 − p)β

(
α1

d1

)
− (d2 + m1) (1 − p)α2

(
α1

d1

)
+ α2 0

pα2

(
α1

d1

)
pα2

(
α1
d1

)
− (d3 + α2) 0

m1 0 −(d4 + δ)

⎤
⎥⎥⎥⎥⎦ (24.19)

Second eigenvalue is λ2 = −(d4 + δ) < 0. Now reduce the above matrix M 2× 2

M =

⎡
⎢⎢⎣

(1 − p)β

(
α1

d1

)
− (d2 + m1) (1 − p)α2

(
α1

d1

)
+ α2

pα2

(
α1

d1

)
pα2

(
α1
d1

)
− (d3 + α2)

⎤
⎥⎥⎦ (24.20)

In order to prove that the other two eigenvalues are negative, we will prove that
tr(M) < 0 and det (M) > 0 when R0 < 1.
Consider tr(M)
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tr(M) = (1 − p)β
(

α1
d1

)
− (d2 + m1) + pα2

(
α1
d1

)
− (d3 + α2)

= (d2 + m1)

(
(1−p)β

(
α1
d1

)
(d2+m1)

− 1

)
+ (d3 + α2)

(
pα2

(
α1
d1

)
(d3+α2)

− 1

)

If, R0 = [ (1−p)β
(d2+m1)

+ p( m1
(d3+α2)

+ α2β

(d3+α2)
1

(d2+m1)
)] α1

d1
< 1 then,

β(1−p) α1
d1

(d2+m1)
< 1 and

α2 p
α1
d1

(d3+α2)
< 1. Thus, tr(M) < 0.

Consider det (M);

det (M) =
[(

(1 − p)β
(

α1
d1

)
− (d2 + m1)

) (
pα2

(
α1
d1

)
− (d3 + α2)

)]
−[(

pα2

(
α1
d1

)) (
(1 − p)α2

(
α1
d1

)
+ α2

)]

= (1 − p)α2βp
(

α1
d1

)2 − (1 − p)β
(

α1
d1

)
(d3 + α2) − α2 p

(
α1
d1

)
(d2 + m1)+

(d2 + m1)(d3 + α2) − α2
2 p(1 − p)

(
α1
d1

)2 − α2
2 p

(
α1
d1

)

= (d2 + m1)(d3 + α2) −
[
(d2 + m1)α2 p

(
α1
d1

)
− (d3 + α2)(1 − p)β

(
α1
d1

)
−

α2
2 p(1 − p)

(
α1
d1

)2 − α2
2 p

(
α1
d1

)]

= (d2 + m1)(d3 + α2)[1 − R0]
Therefore det (M) > 0 if and only if R0 < 1.

Proposition 24.3 E0 is locally asymptotically stable if R0 < 1 and is unstable if
R0 > 1.

24.4.2 Global Stability

Model I:

Proposition 24.4 E∗ is globally asymptotically stable if it satisfies the following
conditions:

(i) 6a212 < a11a22
(ii) 4a214 < a11a44
(iii) 3a223 < a22a33
(iv) 6a224 < a22a44

where, a11 = −α1 + d1, a44 = (δ + d4), a33 = d2, a12 = −αC∗, a14 = −δ, a23 =
−αSmax − γ, a24 = −β, a22 = (β + d1).

Proof To study the global stability we will make use of Lyapunov function V(S, I,
C, R) of the form:
V (S, I,C, R) = 1

2 (S − S∗)2 + 1
2 (I − I ∗)2 + 1

2 (C − C∗)2 + 1
2 (R − R∗)2
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We will show the derivative of Lyapunov function as negative definite.
Let z1 = S − S∗, z2 = I − I ∗, z3 = C − C∗, z4 = R − R∗, then we get, which

implies

V̇ = z1[α1S − αSC + δR − d1S] + z2[αSC − β I − d1 I ] + z3[γ I − d2C]
+z4[β I − δR − d1R]
which on further simplification gives the following:

V̇ ≤ −
[a11
2

z21 + a12z1z2 + a22
3

z22 + a22
3

z21 + a23z1z3 + a33z
2
3 + a11

2
z21+

a14z1z4 + a44
2 z24 + a22

3 z22 + a24z2z4 + a44
2 z23

]
Thus,V̇ ≤ 0.

Hence E∗ is global asymptotically stable under the conditions stated in the theo-
rem.

Model II:

Proposition 24.5 E0 is globally asymptotically stable if R0 ≤ 1.

Proof Here, we will use the method of Lyapunov functions

L =
[

β

d3 + α2
+ γα2

(d3 + α2)(d2 + m1)

]
C +

(
γ

d2+m1

)
I

dL

dt
=

[
β

d3 + α2
+ γα2

(d3 + α2)(d2 + m1)

]
C

′ +
(

γ

d2 + m1

)
I

[
β

d3 + α2
+ γα2

(d3 + α2)(d2 + m1)

]
pα2SC + pβSI − (d3 + α2)C+

(
γ

d2+m1

)
(1 − p)α2SC + (1 − p)βSI + α2C − (d2 + m1)I

=
[

pβ

d3 + α2
+ pγα2

(d3 + α2)(d2 + m1)
+ (1 − p)γ

(d2 + m1)

]
S(α2C + γ I ) − (α2C + γ I )

=
[
d1
α1

R0S − 1

]
[α2C + γ I ] by S ≥ α1

d1

dC

dt
≤ (R0 − 1)(α2C + γ I ) ≤ 0

so
dL

dt
≤ 0 if R0 ≤ 1

further
dL

dt
= 0 (=) C = I = 0 or R0 = 1 and S = α1

d1
.

Hence, by LaSalle’s Invariance Principle, E0 is globally asymptotically stable.
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Next, we will prove the global stability of endemic equilibrium point.

Proposition 24.6 E∗ is globally stable if it satisfies the following conditions:

(i) 6a212 < a11a22
(ii) 9a213 < a11a33
(iii) 6a214 < a11a44
(iv) 9a223 < a22a33
(v) 6a234 < a33a44

where, a11 = −α1 + d1 − β I ∗ + αC∗, a22 = −(1 − p)βS∗ + π + d2,
a33 = −pαS∗, a44 = δ + d4, a12 = −(1 − p)β I ∗ + (1 − p)αC∗, a13 =
pαC∗ + pβ I ∗, a23 = −(1 − p)αS∗ − α2 − pβS∗, a14 = −δ, a34 = −π .

Proof Tostudy theglobal stabilitywewillmakeuseofLyapunov functionV(S,I,C,R)
of the form:

V (S, I,C, R) = 1

2
(S − S∗)2 + 1

2
(I − I ∗)2 + 1

2
(C − C∗)2 + 1

2
(R − R∗)2

We will show that the derivative of Lyapunov function as negative definite.

Let z1 = S − S∗, z2 = I − I ∗, z3 = C − C∗, z4 = R − R∗, then, we get,

V̇ = z1[α1S − αSC − βSI − d1S + δR] + z2[(1 − p)αSC + (1 − P)βSI
+α2C − m1 I − d2 I ] + z3[pαSC + pβSI − d3C − α2C] + z4[m1 I − δR − d4R]

which on further simplification gives the following:

V̇ ≤ z21[α1 − d1 + β I ∗ − αC∗] + z22[(1 − p)βS∗ − π − d2] + pαS∗z23− (δ + d4)z24 + z1z2[(1 − p)β I ∗ − (1 − p)αC∗] + z1z3[−pαC∗ − pβ I ∗]
+ z2z3[(1 − p)αS∗ + α2 + pβS∗] + δz1z4 + π z3z4

Then,

V̇ ≤ −
[a11
3

z21 + a12z1z2 + a22
2

z22 + a11
3

z21 + a13z1z3 + a33
3

z23 + a11
3

z21+
a14z1z4 + a44

2 z24 + a22
3 z22 + a12z2z3 + a33

3 z23 + a33
3 z23 + a34z3z4 + a44

2 z24
]

Thus, dV
dt ≤ 0.

Hence E∗ is global asymptotically stable under the conditions stated in the theo-
rem.
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24.5 Conclusion

In this paper, we have studied two models where population is divided into four
classes: susceptible, carrier, infected and recovered. InModel I we have incorporated
delay in time to come to recovered class from infected class. In Model II we have
introduced a probability factor andwe have also incorporated the interaction between
susceptible and infective and the diagnosis rate of carrier. We have obtained bound-
edness, existence of equilibrium points for both the models. In the case of Model
I, the disease-free equilibrium point does not exist. Further, we have also obtained
the local and global stability of endemic equilibrium point. In the case of Model
II, we have obtained basic reproduction number and obtained the local and global
stability analysis of disease-free equilibrium point depending on the basic reproduc-
tion number. We have also proved that as the probability of carrier increases, the
basic reproduction number increases and as diagnosis rate of carrier increases, basic
reproduction number decreases. Thus, carrier can be taken as a control parameter for
disease butwithModel II, we also have interaction between susceptible and infective;
hence to control number of infective, we should go for various vaccination policies
in addition to the control of disease.
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Chapter 25
Resume of Some Invited and Contributed
Talks

Pooja

Abstract In this chapter we present a summary of those talks that could not find a
place in the volume due to its limited extent.

Keywords Resume

In this chapter we present a summary of those talks that could not find a place in the
volume due to its limited extent.

Professor Leon Chua, University of California, Berkeley delivered a long lecture
entitled, “Principle of local activity and the Edge of Chaos”. His lecture provided
the mathematical foundation for the currently very active research area named as
“Complexity”, which is based on anecdotes and computer simulations. In particular
it will provide a definitive foundation for Turning’s theory of the morphogenesis and
a resolution of hitherto unsolved Smale’s paradox.

Professor Goetz Pfander, Jacobs University, Germany, delivered a talk on “The
BalianLow Theorem for subspaces in higher dimensions” based on his joint work
with Carlos Cabrelli and Ursula Molter. An abstract of his talk is given below.

The classical BalianLow Theorem states that time and frequency well-localized
window functions cannot give rise to a Gabor orthonormal basis for the space of
square integrable functions on Euclidean space. Certainly, well-localized orthonor-
mal bases of Gabor type are possible for subspaces. We establish BalianLow type
theorems for subspaces, i.e., for spaces generated by a discrete set of time frequency-
shifted copies of a single window function. We show that whenever the generating
system forms an Riesz bases for its closed linear span, and if the closed linear space
has a nontrivial shift invariance, then the generating window function is again not
well localized in time or in frequency.
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The abstract of talk by Prof. Graeme Fairweather, Mathematical Reviews, Amer-
ican Mathematical Society, Ann Arbor, Michigan U.S.A. entitled, “Sixty Years of
Alternating Direction Implicit (ADI) Methods” is given below.

It is sixty years since the publication of the landmark paper byD.W. Peaceman and
H. H. Rachford in which ADI methods were first introduced, in the context of finite
difference methods, for parabolic and elliptic problems in two space variables. The
attraction of the ADI approach is that it replaces the solution of a multidimensional
problem by sequences of one-dimensional problems in the coordinate directions.
ADI methods in conjunction with various types of spatial discretizations continue to
be studied extensively today, especially for the numerical solution of time-dependent
problems. In this talk, we present a brief overview of the history of ADI methods,
followed by a discussion of such methods developed recently for parabolic partial
integro-differential equations, Schrodinger systems, and nonlinear reaction-diffusion
systems.

One of his collaborators, Santosh Kumar Bhal, presented a joint research paper
with him entitled, “Some Observations of Orthogonal Spline Collocation Methods
for the two-dimensional Helmholtz equation with discontinuous coefficients”. An
abstract of this paper is given below.

In this paper, we use orthogonal spline collocation method (OSCM) for two-
dimensional Helmholtz equation with discontinuous coefficients. Monomial cubic
basis functions are used in X direction and piecewise cubic Hermite basis functions
are used in Y direction to approximate the solution.We use thematrix decomposition
algorithms (MDA) to find the approximate solution effectively with minimum oper-
ations count. Finally, we perform several numerical experiments with different wave
numbers and using grid refinement analysis, we compute the order of convergence
of the numerical scheme.

Professor Govindan Rangarajan, IISc, Bangalore, presented a talk on “Applica-
tions of Granger Causality to Neuroscience”. An abstract of his talk is given below.

Detecting connectivity patterns in a brain network is crucial to the subsequent
analysis of the network structure. Once these connectivity patterns are detected,
there is also tremendous interest in determining how these patterns change with
time. This is important since changes in connectivity patterns can serve as functional
biomarkers for the onset of diseases or can be used to detect changes in the underlying
states. Granger causality is a tool that can be used to detect and quantify connectivity
patterns. We propose extensions of Granger causality that enable it to be applied
to a much wider variety of complex systems. We also demonstrate how changes in
connectivity patterns can be measured using these extensions. If time permits, we
will consider block coherence, a new tool that we have proposed to study connectivity
patterns.

Professor A. Adimurthi of TIFR CAM, Bangalore, presented his contribution
on the Hyperbolic conservation law one space dimension with discontinuous flux.
Under suitable hypothesis on the flux, the existence of an optimal control given at
any time T > 0 is proved and a numerical scheme proposed.

Dr. Venky Krishnan, TIFR CAM, Bangalore, presented his work in an emerging
area namely, “Inversion of restricted ray transforms of symmetric rankm tensor fields
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in n-dimensional Euclidean space”, which is joint work with Rohit Kumar Mishra.
An abstract of his talk is given below.

We consider the integral geometry problemof recovering rankm symmetric tensor
fields from its Euclidean ray transform, that is, from its integrals along lines in n
dimensional space. We focus on ray transforms restricted to lines passing through a
fixed smooth curve. Under such conditions on the curve, we will present microlocal
inversion results for the recovery of a component of the symmetric tensor field from
its ray transform.

Professor Samares Pal, University of Kalyani, Kalyani, discussed his research
work on the topic “Effects of macroalgal toxicity and overfishing on the resilience
of coral reefs”. An abstract of this paper is given below:

Macroalgae and corals compete for the available space in coral reef ecosystem.
While herbivorous reef-fishplay abeneficial role in decreasing the growthofmacroal-
gae in coral reef ecosystem. Abundance ofmacroalgae changes the community struc-
ture towards macroalgae dominated reef ecosystem.We investigate coral-macroalgal
phase shifts by means of a continuous time model in a food chain. It is observed that
in presence of macroalgal toxicity and overfishing the system exhibits hysteresis
through saddle-node bifurcation and transcritical bifurcation. We also examine the
effects of time lags in the liberation of toxin by macroalgae and recovery of algal
turf in response to grazing of herbivores on macroalgae.

Dr. L. M. Saha, Shiv Nadar University, presented a paper entitled, “Nonlinear
Dynamics, Chaos And Complexities” based on joint work with Prof. M. K. Das and
Prof. Rashmi Bhardwaj (GGSIP University, New Delhi). An abstract of this paper is
given below.

Almost all evolving real systems emerging around us are nonlinear in nature
and their dynamics are not as simple as in cases of linear systems. Principle of
superposition is no more applicable to real system and, to study them, one must
apply the recent rules and methodology suggested in nonlinear dynamics. Because
of nonlinearity in nature, real systems show complexities in behavior while evolving
and chaos is one such complexity. Principles of nonlinear dynamics can only help to
understand complex and chaotic behaviors observed in any nonlinear system.Various
tools which have been discovered due to growing researches in this area are helpful
to understand phenomena of evolutions in real systems. In addition to the basic
tools (e.g., time series and phase plane graphs), some tools have been suggested
recently which help to understand better the complexities and chaotic motion in
a dynamical system, such as Lyapunov exponents (LCEs), topological entropies,
correlation dimension, Poincarémap, etc. To distinguish regular and chaotic motion,
some recent tools have to be discussed with their working limitations.

The present talk aims to explain evolutionary dynamics of nonlinear systems and
to explain about complexities observed during that processes. Some specific models
proposed for real systems would be discussed and calculations of LCEs, topolog-
ical entropies, correlation dimensions have been obtained as a part of complexity
measure. Numerically calculated results are displayed graphically with complete
interpretation.
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Vikram Sharma, D.A.V. College, Amritsar, presented a paper entitled, “Nonuni-
form wave packet frames in L2(R)” based on joint work with Prof. Pammy Man-
chanda. An abstract of this paper reads as.

“Wave packet systems are generated by the combined action of translations,modu-
lations, and dilations on a finite family of functions.We construct wave packet frames
in L2(R) over a translation setΛ, which is not necessarily a group.We call it nonuni-
form wave packet frame and present necessary and sufficient condition for the wave
packet system {D(2N ) j TλEcmψ} j,m∈Z,λ∈Λ to be a frame for L2(R)”.

Pooja, GNDU, Amritsar, presented a paper on “Solving Variational Problems
using HaarWavelet” based on joint work with Prof. PammyManchanda. An abstract
of this paper is given below.

Haar wavelets are used for approximating solution of variational problem of cal-
culus of variations. The variational problem is converted into differential equation
using Euler Lagrange’s equation and thenHaar collocationmethod is applied to solve
this differential equation. We present the numerical solution to some of the problems
of calculus of variation.

Mamta Rani, GNDU,Amritsar, presented a paper on “NonUniformHaarWavelet
Matrix Method for Numerical Solution of Ordinary Differential Equations” based
on joint work with Prof. Pammy Manchanda. An abstract of this paper is presented
below.

Wavelet based algorithms have become an important tool in numerical analy-
sis for solving differential equations. Uniform Haar wavelet matrix methods have
been used to find the numerical solution of ordinary differential equations. We have
applied the non uniform Haar wavelet matrix method to find the numerical solution
of the ordinary differential equations and presented error estimation comparison for
uniform and non uniform Haar wavelet matrix methods.

Abdullah, Zakir Husain College, New Delhi, presented his result on “Characteri-
zation of Scaling Functions AssociatedWithNonuniformMultiresolutionAnalysis”.
Prof. Renu Chugh and Mandeep Kumari from MDU, Rohtak presented a research
paper. In this paper, common zeros of a finite family of m-accretive operators based
on modified proximal point algorithm in Hadamard manifolds are investigated and
applications are studied. Santosh Kumar, AMU, Aligarh, presented a paper entitled,
“An efficient PDE-basedmodel for image restoration” based on joint work with Prof.
M. K. Ahmad. An abstract of this paper is given below.

“In this paper, we propose new time dependent model for solving total variation
(TV) minimization problem in image restoration. The main idea is to apply a priori
smoothness on the solution image. The total variation of the image is minimized
subject to constraints involving the point spread function (PSF) of the blurring process
and the statistics of the noise. The blurring operator provides useful information
in restoration. The constraints are implemented using Lagrange’s multipliers. The
solution is obtained using the gradient-projection method of Rosen. Proof of the
existence, uniqueness and stability of the viscosity solution of our model. The results
of ourmodel using explicit numerical schemes are comparedwith other known image
restoration models”.
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Deepti Gupta, Jamia Millia Islamia, New Delhi, presented a paper entitled, “Sup-
port Vector Machine: A Classification Technique”. Puneet Kaur investigated the
Rayleigh–Bénard convection under sinusoidally varying temperatures of the hori-
zontal rigid-planes bounding a laterally infinite fluid layer for the bicritical states.
The coexistence of both the harmonic and subharmonic behavior in response to the
excitation applied in some parametric space is called as bicritical state. The problem
is analogous to the well-studied Faraday-instability and Rayleigh-Bénard convection
under gravity modulation. Under modulation, the neutral instability curve is found to
alternate between the conventional harmonic and subharmonic tongues in the space
of the dimensionless wave number of disturbance and the control parameter. The
transition between harmonic and subharmonic critical instability responses is found
to occur via a bicritical state, where the two instability responses coexist with differ-
ent wave numbers. These bicritical states are found to depend upon the modulation
parameters and the Prandtl number.

Mazibar Rahman presented a paper entitled, “Fluctuating free convective flow and
heat Transfer along an infinite vertical porous plate”. The free convective flow and
heat transfer along an infinite vertical porous plate are investigated when a transverse
sinusoidal suction velocity distribution fluctuating with time is applied. Due to this
transverse velocity the flow of the fluid is three-dimensional. A series expansion
method is applied to get the solution of the governing equations and the expressions
for velocity and temperature fields are obtained. The skin friction and the rate of heat
transfer at the plate are discussed in detail.

Javed Miya, UTU, Dehradun, presented a paper entitled, “Threshold Based Seg-
mentation and Analysis Of Medical Image Compression” based on joint work with
Dr. M. A. Ansari. An abstract of this paper states.

Medical environment is moving toward computerisation, digitization and central-
ization, resulting in prohibitive amounts of digital medical image data. Compression
techniques are, therefore, essential in archival and communication of medical image.
Although lossy compression has much higher compression rates, the medical com-
munity has relied on lossless compression for legal and clinical reasons. In this paper,
we have done a region-based segmentation and image analysis with application to
medical image. Image segmentation is important for object and its boundary detec-
tions. It is also important for a variety of image analysis and visualization tasks both
inside and outside the medical image domain. With the help of Sobel filter we con-
sider different edges of the medical image, which is useful for image compression
algorithm for effective compression of medical image.

Ashok Kumar Sahoo, Sharda University, Greater Noida, presented a paper enti-
tled, “Computer Recognition of Isolated Numeral Signs of Indian Sign Language”
based on joint work with Gouri Sankar Mishra. An abstract of this paper reads as.

Sign language recognition is helpful in communication to exchange ideas and
information among hearing impaired community andwith peoplewith normal speak-
ing capability. In India, the official sign language is known as Indian Sign Language
(or ISL). For the purpose of automating the process of ISL recognition, a system is
developed. A comprehensive set of ISL signs are captured by the help of a digital
camera and are used in experiments. In this research, a system for computer–human
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interface for ISL recognition is proposed. The paper describes a system for automatic
recognition of ISL of static numeral signs. The system is capable of recognizing iso-
lated numeral signs. A set of 5000 images are created for ISL numeral signs (0–9).
Structural, pixel and histogram features are extracted from these ISL signs and are
used as training and testing samples the recognition system. After feature extraction
phase; k-Nearest Neighbor (kNN), Naïve Bayes, decision tree and neural network
classifiers are used to test the performance of the proposed system. The recognition
results obtained are with maximum accuracy rate of 97.17%.

Dr. Shelly Arora and Amandeep Kaur, Punjabi University, Patiala, presented a
paper entitled, “Solution of Burger’s Equation Using Orthogonal Collocation Tech-
nique With Lagrangian Basis”. An abstract of this paper is presented below.

Burger equation is a stiff nonlinear equation of parabolic type. It is the class
of few nonlinear problems possessing the analytic solution forming a base for the
comparison of numerical results obtained. Technique of orthogonal collocation with
Lagrangian basis have been proposed to solve the Burger’s equation numerically.
Zeros of Chebyshev polynomials have been taken as collocation points. The number
of interior collocation points varied from 3 to 12. Numerical values have been pre-
sented graphically in the form of 2D and 3D graphs. Comparison of numerical and
analytic values is presented in tabular form.

Dr. S. Prabhakaran and Prof. L. Jones T. Doss, Anna University, Chennai, pre-
sented a paper entitled, “Total variation diminishing scheme for multi dimensional
multi-species transport with first order reaction network”. An abstract of this paper
is given below.

A total variation diminishing (TVD) scheme for multi-species transport with first
order reaction network in multidimensional space is discussed in this article. The
partial differential equations which describe this multi-species transport with chain
reactions scenario are in a form of a coupled system. This system is solved by total
variation diminishing scheme with various flux limiters. The numerical diffusion
controlled by the flux limiters is explained in detail both theoretically and numeri-
cally. An attempt is made to use radial basis functions as flux limiters. The stability
and consistency conditions of the TVD scheme are also derived. The explicit relation
between the flux limiters and mesh parameters is obtained from this work.

Vivek Kumar and Prof. Bhola Ishwar, B. R. A. Bihar University, presented a paper
entitled, “Normalization of Hamiltonian in photogravitational elliptic restricted three
body problem with Poynting-Robertson drag”. An abstract of this paper is given
below.

In this paper, we have taken bigger primary as radiating and smaller as an oblate
spheroid. We include Poynting–Robertson drag also. We have performed second
order normalization in our problem. We have used Birkhoff’s normalization of the
Hamiltonian. For this, we have utilized Henrard’s method and expanded the coordi-
nates of the infinitesimal mass in double D’Alembert series. Finally we obtained the
third order part H3 of the Hamiltonian in term of l1/21 , l1/21 . We conclude that H3 is
zero.



25 Resume of Some Invited and Contributed Talks 357

Noor e Zahra, Sharda University, Greater Noida, presented a paper entitled,
“Tumor Detection Using Wavelet and its Variants”, based on joint work with
Aakarshna. An abstract of this paper is given below.

A tumor, or neoplasm, is referred to an abnormal growth of tissue that may be
solid, or fluid-filled. There are various kinds of tumors and their names reflect their
shape and the type of tissue they appear in. To put it simply, it is a kind of swelling
or lump. If a patient is suffering from brain tumor, his/her cells grow and multiply
uncontrollably. If the growth becomes more than 50%, then the patient is not able
to recover. Hence, the detection of brain tumor needs to be very fast and accurate.
The paper objective is to provide an efficient algorithm to detect the edges of a brain
tumor. The first step starts with the acquisition of the MRI image of the brain and
then imaging techniques, wavelet and its variants are applied to find out the exact
location of the tumor.

Ruchira Aneja presented a paper entitled, “Image Compression Using Alpha-
Molecules” based on joint work with Prof. A.H Siddiqi. The paper describes a sim-
ple and efficient method of image compression using alpha molecules and Huffman
coding technique. Image compression using wavelet transform, curvelet transform
and contourlet transform followed by Huffman coding exists in the literature. In this
paper we propose it using Shearlet transform which has not been done yet. Various
biomedical images of MRI of different parts of body such as lungs, shoulder, cardiac
and brain are compressed using transform-based coding. Wavelet and its variants
such as curvelet, contourlet and Shearlet are used for transformation. The approx-
imation and detail coefficients being extracted are processed for coding followed
by decoding and inverse transformation. A comparative analysis is drawn between
various transforms on the basis of various quantitative measures such as peak signal
to noise ratio, mean square error, average difference, normalized absolute error, etc.

Mijanur Rehman of AMU, Aligarh, presented a paper “Existence Results for
Strong Mixed Vector Equilibrium Problem for Multivalve Mappings”. His results
generalize, improve, extend, and unify some existence results proved earlier.

Nagma Irfan presented a paper based on joint work with her supervisor Prof. A.H.
Siddiqi on application of sine-cosine wavelets to Radon transform and atmospheric
tomography.NitendraKumar presented his results based on jointworkwith his super-
visor Dr. Khursheed and co-supervisor Prof. A.H. Siddiqi, devoted to applications of
wavelet method to classification of EEG signal, denoising of Raman spectroscopy
and classification of EEG applying ANN and SVM. Padmesh Tripathi presented a
paper based on his joint work with his supervisor, Prof. A.H. Siddiqi related to Noise
removal in EEG signal.

Krishan Kumar and Dr. M.A. Ansari, Gautam Buddha University, Greater Noida
presented a paper on “Distributed Energy Resources and Microgrid Systems chal-
lenges and Scope”.
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