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Abstract. Constraint Satisfaction Problems (CSP) belongs to this kind
of traditional NP-hard problems with a high impact in both, research and
industrial domains. However, due to the complexity that CSP problems
exhibit, researchers are forced to use heuristic algorithms for solving the
problems in a reasonable time. One of the most famous heuristic algo-
rithms is Ant Colony Optimization (ACO) algorithm. The possible uti-
lization of ACO algorithms to solve CSP problems requires the design of
a decision graph where the ACO is executed. Nevertheless, the classical
approaches build a graph where the nodes represent the variable/value
pairs and the edges connect those nodes whose variables are different.
In order to solve this problem, a novel ACO model have been recently
designed. The goal of this paper is to analyze the performance of this
novelty algorithm when solving Multi-Mode Resource-Constraint Satis-
faction Problems. Experimental results reveals that the new ACO model
provides competitive results whereas the number of pheromones created
in the system is drastically reduced.

Keywords: Ant Colony Optimization · Oblivion Rate · Resource-
Constraint Project Scheduling Problems · Pheromone control

1 Introduction

One of the compounding paradigms within the set of NP-hard problems is related
to as Resource-Constraint Project Scheduling Problem (RCPSP) [14]. This fam-
ily of problems is defined by a set of variables that need to be assigned with
a particular value taking into account a set of restrictions that establish con-
straints among the different values assigned to the variables. Therefore, any
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Constraint Satisfaction Problem (CSP) is represented with a triple (X,D,C)
where X = {x1, x2, . . . xn} represents the set of objects that composes the prob-
lem, D = {d1, d2, . . . dn} is used to describe the domains that contain the differ-
ent values for the objects described in X, and C represents the set of constraints
that relates the objects with their values [3,14].

There is a wide number of complex research and industrial problems that can
be modelled as a CSP, the main techniques, algorithms and methods obtained
from this area have been applied in the last decades to real domains with an
increasing level of complexity (i.e. scheduling and planning problems, energy
optimization, man-power scheduling, travel and car routing optimization, etc. . . )
[1,8,11,12,14].

Due to the inherent complexity of CSP problems, it is common to use Com-
putational Intelligence algorithms (such as Ant Colony Optimization (ACO)) to
solve these problems. In order to use ACO for solving CSP problems, the solu-
tion space must be represented as a graph (called decision graph) over which the
ACO algorithm is executed. The standard approaches for building this decision
graph presents several drawbacks that make it difficult to apply this approach
to CSP instances of moderate to high dimensionality. To solve this problem, a
new CSP-graph based model was proposed in [6], where the reduction in the
size of the decision graph results in a fast growth in the number of pheromones.
In order to control this increase rate of the number of pheromones created in
the model, a new heuristic called Oblivion Rate was included in the model. This
model has been applied to the N-Queens problem [6], the Resource-Constraint
Project Scheduling Problem [7] and the Lemmings Game [9]. The contribution of
this work is the analysis of the performance of the Oblivion Rate heuristic in a
new family of RCPSP problems called, Multi-Mode Resource Constraint Project
Scheduling Problems.

This paper is structured as follows: Sect. 2 contains the description for
the RCPSPs. Section 3 details the implementation of the ACO model used to
RCPSP, including the definition of the new decision graph, the behaviour of the
ants, and the Oblivion Rate heuristic used in this work. The performance of the
selected model is analyzed in Sect. 4 and the conclusions extracted from this
work are outlined in Sect. 5.

2 Resource-Constraint Project Scheduling Problem

This work gravitates on the use of ACO algorithms to the Resource-Constraint
Project Scheduling Problem (RCPSP) [2,4]. The goal of this class of problems
is to find an optimal schedule of the activities that compose a project subject
to the availability and demand of different resources required to undertake these
tasks. In mathematical terms, a project is composed by a set of activities J =
{0, . . . , n + 1}, a set of resource types Q = {1, . . . , q} and a specific number of
resources for each resource type rq∀q ∈ Q. A project composed by n activities
has always n + 2 activities in the set J because activity 0 and n + 1 are dummy
activities explicitly included to represent the start and end of the project and
do not imply any duration nor need for resources.



Quantitative Analysis of ACO Models Applied to Multi-mode RCPSP 147

Each activity can be executed in one or more different modes. If activities can
be executed only in one mode, the problem is labeled as Single-Mode. Likewise,
if activities can be executed in more than one mode, the problem is called Multi-
Mode. The modes of a given activity represent different ways to execute this
activity. For the same activity, modes differ in both the duration needed to
complete the activity and the set of resources required for its accomplishment.
Formally, the set of different modes of the activity j is denoted as Modej , the
duration of activity j executed with mode m is denoted as djm and it requires
rjmq units of the resource q ∈ Q. Moreover, sj denotes the time when activity
j started the execution, and fj denotes the time when such an activity has
finished. Note that fj = sj + djm because the execution of any activity cannot
be interrupted.

Each project may also contain precedence constraints that establish rela-
tions of time interdependence between the different activities that compose the
project. If a given activity j has a precedence constraint with activity i, activity
i cannot be executed until activity j has finished (i.e. si ≥ fj). By considering
these constraints each activity can be assigned two lists, namely, Pj and Sj ,
which contain its direct predecessors and successors. It is relevant to note that
activity 0 is the only start activity and hence has no predecessors. Likewise,
activity n + 1 is the only end activity and consequently, has no successors.

A solution for a RCPSP is schedule for the different activities that compose
the project. This schedule is composed by the start time for all the activities that
compose the project, S = {sx | ∀x ∈ J } and the different execution modes for
the activities. For a given schedule, the start time is the initial time for activity
0 (s0) and the finish time is the time for activity n+1 (fn+1). The best solution
is those with a minimum makespan [13], i.e. the difference between its finishing
and starting times (fn+1 − s0). A schedule will be declared feasible if it satisfies
the following constraints:

– All the activities are scheduled, and each of them is executed once.
– Any activity must not be started before all its predecessors have finished.

si ≥ fj | ∀j ∈ Pi, i ∈ J .
– At any time t, the sum of resources required for the activities in execution

must not exceed the resource capacities of the project.

3 The Selected ACO Model for Constraint Satisfaction
Problems

This section describes the model (first proposed in [6]) that allows a significant
reduction in the size of the decision graph. The goal of this model is to create
smaller graphs than the ones created in the literature. This section provides a
detailed description of the different components that defines the model which are:

– A new decision graph, which is smaller than the ones created in the classical
approaches.
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– The new ants’ behaviour: the reduction in the size of the graph yields a slightly
more complex behaviour of the ants.

– The new heuristic called Oblivion Rate needed to control the number of
pheromones created in the system.

The classical procedure to model any CSP as a graph is by creating as many
nodes as pairs <variable, value> available in the problem, and connecting those
nodes whose variables are different. More formally, the resulting graph is defined
as G = (V,E) where:

V = {〈Xi, v〉|Xi ∈ X and v ∈ D(Xi)}
E =

{
(〈Xi, v〉 , 〈Xj , w〉) ∈ V 2|Xi �= Xj

}
(1)

where nodes V represent the pairs <variable, value>, and E represents edges
connecting those nodes whose associated variables X are different from each
other.

There are several pitfalls regarding this representation but the most important
are related to the size of the resulting graph and the type of CSPs that can be
represented. In this sense, if the problem has N variables and each of them can
take M different values, the resulting graph will contain N ·M nodes. As the graph
is almost fully connected, the number of edges is (N · M) · (M · (N − 1)) = N2 ·
M2 − N · M2 ∼= N2 · M2. This observation implies that problems composed by
many variables or by variables that could take on a high number of different values
would become really difficult to model and almost computationally prohibitive to
handle due to the size of their underlying graph.

The CSP graph representation selected in this paper was initially proposed
in [6]. This representation focuses on the reduction of the graph size resulting
from the modeling of the CSP as a graph. In this approach, the size of the
resulting graph is drastically reduced because each variable in the problem is
represented only by one node, independently of the number of values that can
be assigned to this variable (as it is traditionally represented in CSP solvers).
Therefore, given any problem composed by N variables whose value can be drawn
from a set of M different values, the resulting graph will have only N nodes,
instead of N · M nodes created in classical graph models. This representation
was applied to the N-Queens Problem, though it can be used in other CSP-like
problems such as video games [5].

The restrictions of the problem are represented in the edges of the graph.
Two nodes will be connected if there is at least one restriction that involves
the variables represented by the nodes. For example, given the nodes N1 (that
represent the variable x1) and N2 (correspondingly, variable x2) there will be
an edge connecting both nodes if there is at least one constraint involving the
values of x1 with the values of x2. Using this representation, the number of edges
is drastically reduced due to the decrease of the number of nodes.

This simplification in the graph size entails a change in the behavior of the
ants. In classical ACO approaches ants have to select the next node to visit,
because the node itself contains the value assignment. Ants only deposit a small
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Algorithm 1. Ants’ behavior needed in the selected graph representation.
1: EvalValList ← getEvaluatedValues(currentNode)
2: PherList ← getPheromoneInformation()
3: selectedVal ← selectValue(EvalValList,PherList)
4: updatePersonalAssignment(selectedVal)
5: D ← getPossibleNodes(currentNode)
6: if (D �= null) then
7: node ← selectNextNode(D)
8: currentNode ← node
9: else

10: resetAnt()
11: end if

quantity of pheromone on the graph and repeat the process until they finish their
execution. When adopting the new representation the ant behavior becomes
more complex because ants are in charge of selecting a specific value for the
variable encoded in the node (see Algorithm1).

In Algorithm 1 ants evaluate the different values that can be assigned to the
variable encoded in the corresponding node (Line 1). This evaluation is per-
formed by using the heuristic function defined for the specific problem. Then
the pheromone information deposited in the graph is used in Line 2. Once the
pheromone and the heuristic values are obtained, ants select one value for the
variable encoded in the node (Line 3). Every ant updates its personal assign-
ments, i.e. its local solution, and compute the possible nodes to visit taking into
account their local solution built so far. If there is at least one possible destina-
tion, the ant selects one of them to visit in the next time step. Otherwise, the
ant finishes its execution and goes back to the nest updating, at the same time,
the pheromone information that has deposited through the graph (Line 10).

Another consequence of the graph reduction is the increase of the number of
pheromones deposited in the graph. Pheromones are placed in the edges of the
graph because the validity of a specific value in a node depends on the given
values to the rest of variables in the other nodes. Thereby, the edge connecting
nodes i and j stores all pheromones related to the variables and values for these
nodes. Depending on the complexity of the problem being solved, the number of
pheromones stored in the graph might saturate the system. The total number of
different pheromones in an edge is proportional to the size of the domains of the
variables involved in the constraint represented by the edge. That is, if |D(vars)|
denotes the different values that the source variable can take, and |D(vard)|
represents different values for the destination variable, the edge connecting source
and destination node could store, a maximum of |D(vars)| · |D(vard)| different
pheromones.

In order to reduce the number of pheromones stored in the graph an Oblivion
Rate heuristic is incorporated to the system. This heuristic removes a subset of
pheromones from the network. It is important to note that this heuristic must
be carefully designed, because it affects directly on the system performance.
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Consequently, the design of this heuristic depends on the problem being
addressed. In this work, the selected Oblivion Rate is a dynamic function that
depends on the number of pheromones created in the system to compute the
number of pheromones that will be removed. This heuristic applied at step t is
defined as:

R(t) = 1 − 1
tS(t)

, (2)

where S(t) represents the number of pheromones created in the graph at step
t. Equation 3 defines this function, that depends on the number of pheromones
created (P (t)) and the maximum number of pheromones that can be created
(MaxPher), yielding

S(t) =
P(t)

MaxPher
. (3)

In order to compute the maximum number of pheromones, Expression 4 pro-
vides an upper bound value using the classical graph-based representation pre-
viously described. This upper bound is computed by estimating the number of
nodes and edges that the graph would contain by using the classical representa-
tion, i.e.

MaxPher(j,m) = j · m · (j − 1) · m = j · m2 · (j − 1). (4)

4 Experimental Results

The main goal of the experimental results discussed in this section is to analyze
the performance of the described ACO model when tackling RCPSP problems.
Performance will be measured as the quality of the solutions found by the ACO
model, as well as the number of pheromones stored in the system. The dataset
used in this work has been extracted from the PSPLIB library [10] by selecting
those problems where the number of execution modes are greater than 1, i.e.
selecting the Multi-Mode problems (a description about the characteristics for
the selected problems can be found in Table 1).

The configuration for the ACO algorithms carried out in this work is the same
for all the experiments. The colony is composed by 100 ants that are executed
during 100 steps. The evaporation rate is fixed to ρ = 0.05 whereas the values
for α and β are 1 and 2 respectively.

The first experiment carried in this work analyzes the reduction in the num-
ber of pheromones created in the system. In order to do that, the different prob-
lems have been solved using the selected ACO model without Oblivion (Normal
ACO) and using the Dynamic Oblivion. The number of pheromones created by
both ACO models and the corresponding reduction percentage are shown in
Table 2.

As it can be observed in this table, there is an important reduction in the
number of pheromones of, at least, 94%. This is an important reduction because
each pheromone is a structure stored in the memory of the system and it could
be saturated. Nevertheless, pheromones are used to guide the colony to the
optimal solutions. Thus, this reduction could affect to the quality of the solutions
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Table 1. Description of the different problems available in the RCPSP dataset.

Problem #Instances #Activities #Modes

j10.mm 536 10 3

j12.mm 547 12

j14.mm 551 14

j16.mm 550 16

j18.mm 552 18

j20.mm 554 20

j30.mm 640 30

m2.mm 481 16 2

m4.mm 555 4

m5.mm 558 5

Table 2. This table shows the maximum number of pheromones created in the system
using the Dynamic Oblivion Rate, and without the Oblivion Rate (Normal ACO).

Problem Normal ACO Dynamic Oblivion Reduction pct.

j10.mm 2023 68 96.63%

j12.mm 2695 83 96.92%

j14.mm 3246 101 96.88%

j16.mm 3841 120 96.87%

j18.mm 4315 142 96.71%

j20.mm 4865 168 96.54%

j30.mm 5922 276 95.33%

m2.mm 2092 112 94.64%

m4.mm 4891 268 94.52%

m5.mm 5645 121 97.85%

found by the ACO model. In order to measure whether this reduction affects to
the quality of the solutions found, we have computed the average minimum
makespan obtained by the different ACO algorithms and compared it against
the average best makespan published by the research community.

Table 3 shows the average minimum makespan published by the research
community and the average minimum makespan obtained by the selected model:
without using the Oblivion Rate (Normal) and using the Dynamic Oblivion
Rate for the Multi-Mode problems of the PSPLib dataset. As it can be seen in
this table, the average minimum makespan obtained by our approach is really
similar when the model is not using the Oblivion Rate, and when the Dynamic
Oblivion Rate is used. These results are really promising if we take into account
the strong reduction in the number of pheromones created in the system when
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Table 3. This table shows the average minimum makespan published by the research
community, the average minimum makespan obtained by the selected model without
using the Oblivion Rate (Normal) and using the Dynamic Oblivion Rate for the Multi-
Mode problems belonging to PSPLib.

Dataset MinPubl. Normal ACO Dynamic Oblivion

m2.mm 30.16 ± 6.87 31.04 ± 7.42 31.04 ± 7.4

m4.mm 22.71 ± 7.3 26.69 ± 8.61 26.68 ± 8.51

m5.mm 21.16 ± 8.14 25.73 ± 9.4 25.76 ± 9.31

j10.mm 19.04 ± 6.21 19.69 ± 6.46 19.68 ± 6.46

j12.mm 21.34 ± 6.48 22.36 ± 6.63 22.25 ± 6.54

j14.mm 23.18 ± 6.14 25.23 ± 6.73 25.31 ± 6.79

j16.mm 24.93 ± 6.02 27.67 ± 7.03 27.76 ± 7.07

j18.mm 26.57 ± 6.47 29.99 ± 7.66 30.09 ± 7.54

j20.mm 27.71 ± 6.99 32.08 ± 8.62 32.08 ± 8.76

j30.mm 28.79 ± 7.44 36.16 ± 17.39 36.16 ± 17.44

the Oblivion Rate is used. The utilization of the Dynamic Oblivion Rate reduces
at least the 94% of the pheromones for Multi-Mode problems, building solutions
really close to the ones obtained by the system without controlling the number of
pheromones, and thus having more information about the past of the algorithm.
Finally, all these makespan values obtained by our approach are really close to
the optimal makespan obtained by the research community. For previous reasons,
we can conclude that the Oblivion Rate heuristic and the selected ACO model
are a good approach for solving RCPSP problems because the system obtains
solutions close to the optimal, and the number of pheromones created in the
system has been extremely reduced.

5 Concluding Remarks

Constraint Satisfaction Problems (CSP) belongs to this kind of traditional NP-
hard problems with a high impact in both, research and industrial domains.
There are several problems that can be modelled as a CSP such as planning,
scheduling, travel and car routing problems, videogames or energy, among others.

However, due to the complexity that CSP problems exhibits, researchers are
forced to use heuristic algorithms for solving the problems in a reasonable time.
One of the most famous heuristic algorithms is Ant Colony Optimization (ACO)
algorithm, but the classical utilization of ACO algorithms build a decision graph
composed by the same number of nodes as pairs <variable, value> available in
the problem. Therefore the size of the resulting graph could be unmanageable
depending on the number of variables and values of the selected problem.

In order to solve this problem, a new ACO model was proposed in [6]. This
model is characterized by the utilization of a reduced decision graph and by
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the usage of a Oblivion Rate heuristic for controlling the number of pheromones
created in the system. This paper studies the applicability of the novel approach
to solve Multi-Mode Resource Constraint Satisfaction Problem. For evaluating
the ACO model, we have selected the Multi-Mode instances belonging to the
PSPLib dataset. The experimental results reveals that the ACO model is able
to remove, at least, the 94% of the pheromones of the system without affecting to
the quality of the solutions built by the ACO algorithm. This result reveals that
the ACO algorithm is a good approach for solving RCPSP problems because it
is able to guide ants to optimal, or sub-optimal solutions, maintaining in the
system those pheromones created by the best solutions.
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