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Abstract. This paper presents the work implemented to improve the
production scheduling of a real life manufacturing plant in Ireland. Since
the scheduling algorithms are integrated in a wider cognitive system,
where human and machine intelligence collaborate, an important con-
straint will be the maximum allowed computational time. This paper
will also demonstrate the impact of using heuristic rules for the genera-
tion of initial solutions and provide a comparison between Hill Climbing,
Harmony Search and Simulated Annealing.
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1 Introduction

This paper presents the work developed and implemented in a tooling design
department of a high-tech manufacturing company in Ireland that designs and
manufactures tooling solutions for the pharmaceutical sector. In this depart-
ment, 28 engineers design the parts that will be later manufactured on site.
Each tooling to manufacture is unique, and the design process is the first step
of the production, followed by the manufacturing, assembly and testing of the
final products. In this paper we will consider a job as the set of 3 operations
with precedence constraints that will ultimately output the list of parts to man-
ufacture. The first operation in the job checks that all necessary information
for the correct completion of the design is available. If something is missing or
badly understood the job will not continue until the necessary information is
corrected, and in this case the job will start again. This pre-check operation is
always assigned a fixed 15 min slot, and is always performed by one of the 4 most
experienced designers in the department. There is an additional constraint in the
number of pre-check operations that any given designer can perform daily. The
second operation is the actual design process, which takes the greatest time to
perform. Here one designer uses a 3D CAD software to produce the blueprints
for the tooling. Finally, the third operation is the checking of the previous design
step, trying to find possible defects or omissions. The main constraint for this
check operation is that the designer performing it must be different from the one
who made the design.
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The assignment of operations to resources is done manually by the depart-
ment manager. Some designers are only permitted to perform a subset of the
operations. This measure is usually taken to ensure that the more junior design-
ers only perform the design operation, or for some very senior designers to per-
form only the checking operation. For the research in this paper we will also
consider that each designer can only perform one operation at any given time,
and that once started, the designer cannot perform any other operation until
the current one is completed.

Usually the design department is overloaded and can cause a bottleneck for
the rest of the production line. To ensure the correct balance of all the line,
each of these design jobs have an internal due date that must be met to avoid
later delays in the manufacturing line. The main constraint of the process is
satisfying the customer demand on time, by (i) minimizing of the number of
jobs missing the due date and (ii) for those jobs that are late minimise the
number of days past the due date. A secondary goal is balancing the workload
of the designers. Workload is quite unbalanced in the original schedule, primarily
due to differences between designers regarding skill and experience. The skill of
an engineer designing a particular piece of machinery is a very important factor
in the quality of the final product. If the design is not correct, the manufacturing
phase can be impossible to do, causing the job to go back to design phase, or
the final customer will return the part due to imperfections or malfunctioning.

The research presented in this paper consists of finding new ways to help the
planning and scheduling department of the company by rescheduling the produc-
tion upon introduction of new constraints by the design department manager.
The optimisation algorithms work as part of a cognitive system where human
and machine intelligence cooperate to find optimal schedules in the event of
unexpected disruption events like resource unavailability or new orders in the
system. In this scenario, an important requirement is the speed of results, nec-
essary to allow a “communication” between user and machine intelligence. In
this research we follow the results of recent studies suggesting that the human
attention timespan is decreasing in last years, from 12 to 8 s in just a 10 years
time span, see [19].

Fig. 1. Design process
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1.1 Ensuring Quality

In many scheduling problems a very important factor that production mangers
need to take into consideration is the quality of the performed work. The final
product quality in the present case is heavily dependent on the skill of the
designers. This issue has been studied in the past, for example in the framework
of the Resource-Constrained Project Schedule Problem. In the literature we find
two main methods to deal with quality issues; the first one modifies the activity
duration depending on the skill of the assigned resource [1], while in other cases
an additional re-work activity is scheduled if the skill of the resource assigned
to the original activity is not high enough for the activity complexity [2]. In
this use case quality was incorporated by the company by developing a job risk
vs resource grade heuristic and by always having a check activity after every
design activity, to ensure that the quality of the work performed by the first
designer was good enough. On top of it, the manager sometimes introduces new
constraints by selecting the designers that are available for the check operation
among those with most experience.

The skill of a designer is an indicator of the experience that he has had in the
past designing a particular tooling. This experience will not only have a positive
impact on the time required to perform the operation, but will also decrease the
number of non conformities or errors found by customers in the final product,
as an unskilled designer is more prone to make errors in the design (faulty
product), and as such is a very important key performance indicator (KPI) for
the plant managers. Obviously it would be preferable if we could always assign
each operation to the designer with highest skill in it, but the constraints on the
availability of resources means this would often have negative consequences in
the balance of workload.

The system implemented in the use case company to ensure the best possible
quality in the jobs is based around two different values. The first one is a ‘risk
value’ assigned to each job, depending on several factors including similarity
with past jobs, type of tool, the machine where the tool will be installed, etc.
Against this risk we map another value known as ‘grade’, which is manually
assigned to each designer by the design department manager as an indication
of his seniority and capacity to take on difficult jobs. There are currently four
grades in use.

The system works as follows:

1. First, for each operation the available designers are selected based on the risk
of the job and on their grade. In other words, we find the subset of designers
with grade equal or greater than the minimum required for the job’s risk
value.

2. Second, from this first subset we filter out those designers without any skill
in the operation.

3. In the case that there’s no element in this final subset (i.e., no one has the
necessary grade and experience for the operation), we will default to the
subset of designers with the highest grade.
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2 The Algorithms

In this section we will review the two metaheuristics used in this research.
A metaheuristic is an algorithm that uses other algorithms iteratively, to search
for the global optimum of a function across all the search space. Every meta-
heuristic starts exploring the search space in one particular point (in the case
of single solution metaheuristics) or in several starting ones (population based).
Though the standard approach is using a random initial solution(s), another
approach is to use some heuristic to create the initial solution. Another impor-
tant consideration in all metaheuristics is how to handle the constraints. In this
section we will see how the research tackles these two issues, and also an intro-
duction to the two metaheuristics used.

2.1 Representation

The encoding of the harmonies is always an important decision when designing
the HS algorithm. In this paper we apply the Random Keys encoding, which was
first described by James C. Bean in [9]. The main reason for using this representa-
tion is to use a representation that maintains the feasibility of any solution under
any permutation, and also avoids the eventually increased computational load
that specialized repair methods or solution discarding approaches would require.
Under this representation the resource where an operation is to be processed and
the sequence of the operation in that specific resource are jointly described by a
single real number. The integer part is used to identify the resource, while the
fractional part provides the sequencing of operations in every resource. Thus,
taking a simple example with two resources and four operations, the following
harmony

[1.05][2.86][1.87][2.19]

corresponds to the schedule

Resource 1: [Operation 1] - [Operation 3],
Resource 2: [Operation 4] - [Operation 2],

2.2 Initial Solution

Metaheuristic optimisation methods aim at effectively and efficiently exploring
the solution domain of a combinatorial optimisation problem so as to refine
the search directions and focus on domain areas characterised by better per-
forming solutions, that is areas where the optimum solution is expected to lie.
When dealing with the problem of identifying the initial search point across
the entire solution space, two main approaches are generally considered. The
ancestor, that is the initial solution, can either consist of a randomly generated
solution or, alternatively, problem specific logics can be used to generate one. In
the latter case, the ancestor is expected to perform better than the randomly
generated ancestor as it corresponds to a heuristic solution to the problem. As a
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result, using the logical ancestor, the metaheuristic approach starts from a bet-
ter solution, however, the likelihood of terminating the search at local optima
increases.

The performance of the two approaches applied to the problem investigated
here is compared in this section. The random initial solution is generated by
assigning random feasible resources to each operation while taking all applicable
constraints into account. On the other hand, the heuristic based solution is
constructed using the Earliest Finish (EF) concept [20]. In the EF heuristics, jobs
are first ordered by increasing due date. Then, the heuristic considers one job at a
time and tentatively assigns the corresponding operations to eligible resources;
the operations are considered one at a time following precedence constraints.
The resource able to complete the operation at the earliest time is chosen and
its availability is updated accordingly. In order to correctly calculate completion
times of an operation, all events limiting the resource availability are considered;
these events include previously assigned operations, time dedicated to other
tasks, such as training or management meetings, and holidays. A non pre-emptive
approach is used to calculate completion times in the sense that an operation
cannot be interrupted by another operation; however, operations can be split
across non consecutive available time slots to accommodate for non-production
related tasks and holidays. This assignment logic is exemplified in Fig. 1 where
the operation marked in dark blue (i.e. operation X) is tentatively assigned to
resource A, B and C, respectively, whose schedule is partially built. Resource A
can complete operation X at time 25; the slot between time 9 and 13 is too short
to complete the operation and is bounded by another two operations; hence,
operation X is moved to the next available time slot. Resource B can complete
operation X at time 20; in this case, the operation is interrupted at time 13 to
allow resource B to complete a non-productive task and is resumed soon after.
As regards resource C, the operation cannot be interrupted at time 14 since
the non-productive task starting at time 14 is followed by a previously assigned
operation; hence, the pre-emption assumption would be violated. As a result,
resource B is chosen for assignment (Fig. 2).

Fig. 2. Tentative assignment of an operation to eligible resources

The assignment algorithm described here can be implemented by using arrays
of ordered available time slots for each resource and scanning through them
until sufficient cumulative duration is found. When an operation is assigned to
a resource, the time slot corresponding to the operation processing is deducted
from the array [1].
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2.3 Constraint Handling

In cognitive systems, where humans and automated agents share the responsibil-
ity of control, system observability and usability are two major concerns. One of
the most important characteristics that a system like this must have to overcome
those issues is responsiveness. To be able to cooperate, the automated system,
must present a solution to a new input from the user in a short time. From an
algorithmic point of view, this responsiveness represents a main constraint: the
maximum allowed running time before a solution is presented to the user.

As mentioned in the introduction, the time to perform computations is lim-
ited by the user attention timespan. In this study we refrain from using constraint
handling alternatives that might generate a great number of infeasible solutions,
since this would require the evaluation of many invalid solutions. As a result,
we won’t use penalty functions or repair algorithms, but will rely on in specific
operators that will generate only feasible solutions.

Using these operators ensures that every solution evaluated in the simulation
represents a feasible schedule, see [3].

In the case of Simulated Annealing the only operator we need is the muta-
tion. The standard mutation operator of genetic algorithms and other similar
metaheuristics act by modifying a single value of the solution. In Boolean repre-
sentations it changes one boolean value, while in real-valued encodings it modifies
the value by a small random value.

1. For each chromosome, randomly select one gene to change.
2. For the selected gene, find the subset of designers that are valid.
3. Select a random designer from the subset.

In Harmony Search, to provide a more meaningful comparison, we will use
the same mutation operator as Random operator.

2.4 Simulated Annealing

Simulated Annealing was developed by various researchers, in particular
Kirkpatrick et al. [4] and V. Černỳ [6], for combinatorial optimization problems,
though it has been later extended for its use in continuous optimization.

Mathematically SA is derived from the Metropolis algorithm, developed by
Nicholas Metropolis et al. [7]. The main characteristic of Simulated Annealing is
that sometimes, in the process of improving the candidate solution, it will accept
a successor S with a worse fitness than its parent R, with probability

P (t, R, S) = e
fitness(R)−fitness(s)

t , (1)

where t represents the temperature in the physical process, and acts as a tunable
parameter. When t is high, the probability of accepting a worse solution than
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its parent is close to 1, while the probability is almost 0 when t approaches 0.
When t is set at a high value at the start of the algorithm, and then allowed to
decrease with every iteration, the algorithm will exhibit a explorative behaviour
at the start and an exploitative one at the end. An important caveat with SA is
that, as we decrease the value of t, the algorithm is more exploitative and more
similar to a hill-climbing procedure. This is important in our case, as the limited
amount of time to perform computations does not allow for a highly explorative
search.

2.5 Harmony Search

Where SA only uses a single solution that evolves over time, Harmony Search
[8] uses a set (called harmony memory) of solutions.

Harmony Search has been shown to outperform other meta-heuristic solvers
in a wide range of application scenarios such as ground water engineering [10],
localization [11], structural optimization [12], radar [13], telecommunications
[14], music composition [15], power saving in manufacturing machines [16] and
artificial vision [17], among many others. A thorough survey on applications of
the HS algorithm can be found in [18].

The algorithm works iteratively by evolving an initial population in the fol-
lowing steps: (1) an initial population of size HMS (Harmony Memory Size)
is created by adding random solutions; (2) following a procedure involving the
application of three different operators, a new solution is created and evaluated;
(3) if this new solution possess a better fitness than the worst solution in the
HM, the new solution substitutes the worst one in the population (in this way
the population size never changes). The pseudo-code is presented next:

Algorithm 1. Harmony Search pseudocode
1: Initialize the harmony memory with HMS randomly generated solutions
2: while termination criteria not met do
3: create a new solution
4: if rnd < HMCR then
5: use a value of one of the solutions in the harmony memory (selected uni-

formly at random)
6: if rnd < PAR then
7: change this value slightly
8: end if
9: else

10: Generate a random note
11: end if
12: if new solution is better than the worst solution in the harmony memory then
13: replace the worst solution by the new one
14: end if
15: end while
16: Return the best solution in the harmony memory.



128 C.A. Garcia-Santiago et al.

The main parameters directing the creation of new solutions are usually
only three: the harmony memory size, the Harmony Memory Considering Rate
(HMCR) and the Pitch Adjustment Rate (PAR).

The Harmony Memory Considering Rate controls how much information
from the harmony memory is used for the generation of a new solution. As
such, it controls the rate of convergence of the algorithm. It does that by setting
the probability ϕ ∈ [0, 1] that the new value for a certain note is taken uniformly
at random from the values of this same note in all the other solutions in the HM.
In case that (with a probability 1−ϕ) the memory consideration step is not per-
formed, the new value will be randomly chosen from their alphabet (the set of
feasible values).

In the case that HMCR is performed, the probability ϑ ∈ [0, 1] will control the
application of the Pitch Adjusting Rate. This operator controls the frequency of
adjustment of the note selected, by replacing the note by a neighbouring value.
In the present paper, this operator acts by swapping the operation in the same
resource with one of its neighbours.

2.6 Fitness Function

Three objectives are considered in the fitness function, and we use a weighted
sum approach in order to prioritise them. The objectives are (i) the number of
late jobs (ii), the summation of all the late days and (iii), the amount of idle
time in all resources during the next 7 days, with respective weights of 5, 5 and
1 selected by the users.

Each objective is normalised by using a minimum and a maximum value for
each one. In the case of late jobs, the minimum is the number of currently late
jobs, while the maximum is taken as the total number of jobs to schedule. The
minimum value of late days is taken as the current that each late job is already
passed its due date, while the maximum was selected after running multiple
simulations and taking the worst value. As for idle time, the minimum value was
0, while the maximum value is the total idle time after removing the length of
the current in progress ops (given them time to be finished) and all the time
that the designer will be doing other tasks during the next 7 days like holidays,
training etc.

3 Computational Results

In this section we will present the results obtained in the computational experi-
ments. These have been carried out in an Intel Core i7-5600 CPU @2.6 GHz, with
12 GB RAM, using only 1 core. All the experiments have been implemented in
.NET framework. First we will look at the initialisation approaches, followed by
the preliminary tests to find out the best possible parameters for each algorithm
in the current scenario. Then we will compare the performance of SA and HS
versus a hill climbing procedure.
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The assumptions for all the tests are the following:

– Each test will run for 10 s, for the reasons explained in the introduction.
– Each test will be performed 30 times.
– Each run is independent. In particular, a new random seed is used for each

run for the random number generator.
– First, for SA we will find the best temperature, by running the tests for dif-

ferent temperatures. Then we will run SA with both a random initial solution
and an EF one.

– For HS we will experimentally find good values for HMS, HMCR and PAR.

The data we will use for the experiments is taken directly from the company’s
ERP1 system, and represents a normal workload for the design department.
The design department team is composed of 28 resources with varying levels of
expertise. The work ready to schedule is composed by a total of 409 operations,
belonging to 206 jobs. Of these jobs, 76 were already late as the due date was
previous to the time the data snapshot was taken, for a total of 468 current days
late. There were 23 constraints set by the manager on different operations, of
which 6 set a starting time for operations, 1 modifies the run time of an operation
and the rest are holidays and training times for the designers.

First we will look at the impact of using a good heuristic to find an initial
solution for the algorithms. Table 1 shows the results obtained when using the
two initialisation approaches applied to a problem instance; the random solu-
tion values are averaged across 100 repetitions. As expected, the EF approach
provides a much better solution than a randomly generated ancestor with no
significant increase in computational times. In particular, the effect on idle time
is very noticeable.

Table 1. Comparison of initialization methods

Late jobs Late days Total idle time (h)

Random 137 1124 264.7

EF 123 700 76.9

Next we present the results of the analysis on the impact of the most impor-
tant parameters of the presented metaheuristics. In the case of SA, initial tem-
perature in the solution fitness when constraint the computation time to 10 s.
In Fig. 3 it is clear that the initial temperature must stay very small in order
to perform well. Since the initial temperature is so small, we should expect that
SA will perform quite similar to a plain hill climbing algorithm.

As for HS, we begin by performing a set of initial experiments to find a range
of good parameters for the harmony search when applied to the current data set.
1 Enterprise Resource Planning, the information system that manages production,

sales, customers etc.
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Fig. 3. Effect of SA initial temperature on fitness

In Table 3 the population is set to 10, with 7 random solutions and 3 EF
solutions found by the heuristic described in Sect. 2.2. This table shows the
relation between HMCR and PAR parameters.

The effect of the harmony memory size is studied in Fig. 4. This figure shows
that smaller populations are preferable. The other consequence of varying the
HMS is the number of iterations that the algorithm can go through in the fixed
span of time, since the larger the population the more solutions need to be
evaluated. This relation is shown in Table 2 (Fig. 5).

Fig. 4. Harmony memory size
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Table 2. HMS vs. iterations

HMS 5 10 15 20 30 40 50

Fitness 2.37 2.37 2.39 2.4 2.45 2.46 2.47

Iterations 351 172 114 86 55 41 33

Table 3. HMCR vs. PAR

PAR 0.003 0.03 0.1 0.2 0.3

0.999 2.39 2.38 2.46 2.49 2.54

0.99 2.46 2.45 2.51 2.56 2.58

0.9 2.75 2.76 2.76 2.76 2.76

Fig. 5. HMCR vs. PAR

After these initial experiments, the parameters are thus set to:

– Simulated Annealing: temperature = 0.0005
– Harmony Search

• HMS = 10
• HMCR = 0.999
• PAR = 0.03

With these parameters set, we run each algorithm 30 times, each time running
for 10 s. The results in Table 4 are those obtained when running each algorithm
with a Earliest Finish initial solution (3 EF solutions were used together with
7 random ones in case of the HS memory size), and Table 5 shows the results
when the initial solution is a random one (100% random initial solutions in the
HS memory).

As expected, the performance of simulated annealing when initial temper-
ature is set to a very small value is very similar to that of the hill climbing
procedure. Such initial temperature does not allow for a wide exploration of the
solution space, and instead the algorithm mostly exploits the initial solution.
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Table 4. EF initial solution

Avg. fitness Avg. late jobs Avg. late days Avg. idle time (h)

HC 2.22 117 692 107.1

SA 2.24 117 693 107.8

HS 2.38 118 695 142.1

Table 5. Random initial solution

Avg. fitness Avg. late jobs Avg. late days Avg. idle time (h)

HC 2.98 118 792 131.7

SA 3.05 118 799 142.3

HS 4.44 133 927 213.5

A follow-on experiment was performed, where 30 runs of simulated annealing
were run with the stopping criterion of reaching a solution with the same fitness
as that of the average hill climbing (2.22), in order to have an order of magnitude
of the necessary time for SA. After 30 runs of SA, the average running time for
reaching such fitness was 14.3 s (43% greater than the necessary time for the hill
climbing).

4 Conclusions

The research presented in this paper aims at improving the quality of the pro-
duction scheduling in real-life manufacturing scenarios. In those cases, where
decision support systems need to react to unseen changes and in particular pro-
vide quick feedback to human users, the computational time becomes a limited
resource. The experiments presented here show how an appropriate use of a good
initialisation heuristic, like the earliest Finish approach presented in this paper,
followed by an exploitation of the initial solution using simple hill climbing out-
performs the use of more complex metaheuristics like Simulated Annealing or
Harmony Search.

A following extension of this research will be the study of different local search
strategies to work in conjunction with the initialisation heuristic to improve the
quality of the solutions, always in scenarios where the time allowed for compu-
tations is limited by real-life user experience factors.
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