
Chapter 13
A Short Survey on Dislocated Metric Spaces
via Fixed-Point Theory

Erdal Karapınar

Abstract In this survey, we collect and combine basic notions and results for the
fixed points of certain operators in the frame of dislocated metric (respectively,
b-metric) spaces. By preparing a fundamental source, we shall aim to show that there
are some rooms for researchers in this interesting and applicable research direction.

13.1 Introduction and Preliminaries

The notion of distance is as old as the history of humanity and it was axiomatically
formulated by Fréchet [21] at the beginning of nineteen century. Indeed, after real-
izing the Euclidean distance between two points given by the absolute difference,
Fréchet formulated and generalized the distance concept in an abstract form. It is
an indispensable fact that the formulation of the metric notion opens a new age to
mathematical analysis and hence the related sciences. The notion metric has been
generalized, extended, and improved in different directions by a number of authors,
due to the fundamental roles of it in analytic sciences and their applications. As a
consequence of this trend, the notions fuzzy metric, symmetric, quasi-metric, partial
metric, G-metric, D-metric, b-metric, 2-metric, ultra-metric, dislocated metric, mod-
ular metric, Hausdorff metric, and so on have been appeared in the literature. It is
quite clear that the survey of this trend cannot be collected in a chapter. For this rea-
son, we restrict ourselves on the merging of two interesting notions dislocated metric
and b-metric. On the other hand, the letter N represents the set of positive integers
and N0 = N ∪ {0}. The real numbers will be denoted by R and R

+
0 = [0,∞).
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Definition 13.1 [22] For a nonempty set M , a metric is a function m : M × M →
R

+
0 such that

(M0) m(x, y) ≥ 0 (nonnegativity),
(M1) x = y ⇒ m(x, y) = 0 (self-distance),
(M2) m(x, y) = 0 ⇒ x = y (indistancy),
(M3) m(x, y) = m(y, x) (symmetry), and
(M4) m(x, y) ≤ m(x, z) + m(z, y) (triangularity),

for all x, y, z ∈ M . Here, the ordered pair (M,m) is called a metric space.

One of the interesting extensions of metric space is given by Matthews [35, 36]
who introduce the notion of a partial metric. Roughly speaking, apart from the notion
of metric, the self-distance not necessarily be zero in partial metric.

Definition 13.2 [35, 36] For a nonempty set M , a partial metric is a function p :
M × M → R

+
0 such that

(PM0) p(x, y) ≥ 0 (nonnegativity),
(PM1) p(x, x) ≤ p(x, y) (pseudo-self-distance),
(PM2) p(x, y) = p(x, x) = p(y, y) ⇒ x = y (pseudo-indistancy),
(PM3) p(x, y) = p(y, x) (symmetry), and
(PM4) p(x, y) ≤ p(x, z) + p(z, y) − p(z, z) (pseudo-triangularity),

for all x, y, z ∈ M and the pair (M, p) is called a partial metric space.

As an immediate example, we can consider the maximum of two numbers on the
nonnegative real numbers with a maximum operator, that is, M = R

+
0 and d(x, y) =

max{x, y}.
Although partial metric seems unnatural, it has an unexpectedly wide application

potential in computer science, in particular domain theory. Mainly, the motivation
of partial metric space comes from the question in the context of computer science:
“How we can terminate the computer program in an ‘economic way’?”. By dispose
of the necessity of being self-distance zero, Matthews [35, 36] successfully get some
results in this direction.

The notion of dislocated metric is defined by Hitzler [22]. It is another general-
ization of metric that is originated from the needs of computer science. The concept
of dislocated metric is rediscovered by Amini-Harandi [5] as a “metric-like.” Due
to the historical development process, we prefer to use dislocated metric instead of
metric-like.

Definition 13.3 [22] For a nonempty set M , a dislocated metric is a function ρ :
M × M → R

+
0 such that for all x, y, z ∈ M :

(ρ0) ρ(x, y) ≥ 0 (nonnegativity),
(ρ1) ρ(x, y) = 0 ⇒ x = y. (pseudo-indistancy),
(ρ2) ρ(x, y) = ρ(y, x) (symmetry), and
(ρ3) ρ(x, y) ≤ ρ(x, z) + ρ(z, y), (triangularity).

Moreover, the pair (M, ρ) is said to be dislocated metric space (DbMS).
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It is clear that each partial metric forms a dislocated metric. But the converse is not
true. Notice also that every metric necessarily forms a partial metric and hence a
dislocated metric. For more details for dislocated metric space, we refer e.g., [1, 2,
20, 22, 23, 26, 51, 53, 55–57].

Example 13.1 Let M = {p, q} where p, q ∈ R and {a, b} ⊂ (0,∞) with 2a < b.
Define ρ(x, y) = b if x = y = p, and ρ(x, y) = a otherwise. Then, the ordered pair
(M, ρ) forms a dislocated metric space, but it is not a partial metric space since
ρ(p, p) � ρ(p, q)

Another generalization of metric was introduced by Czerwik [9, 10] (for earlier
considerations see e.g., Bourbaki [15], Bakhtin [8]).

Definition 13.4 ([8, 10]) Let M be a set and let s ≥ 1 be a given real number. A
function b : M × M → R

+
0 is said to be a b-metric if the following conditions are

satisfied:

(bMo) b(x, y) ≥ 0 (nonnegativity),
(bM1) x = y ⇒ b(x, y) = 0 (self-distance),
(bM2) b(x, y) = 0 ⇒ x = y (indistancy),
(bM3) b(x, y) = b(y, x), (symmetry), and
(bM4) b(x, z) ≤ s[b(x, y) + b(y, z)], (weakened triangularity),

for all x, y, z ∈ M . Furthermore, the ordered pair (M, b) is called a b-metric space.

It is expected that each b-metric forms a metric. On the other hand, the converse
is not case. The followings are the standard examples of b-metric spaces, for more
details, see e.g., [6, 7, 16–18, 29, 33, 48].

Example 13.2 LetM = L p[0,1] be the collections of all real functions x(t) such that∫ 1
0 |x(t)|pdt < ∞, where t ∈[0,1] and 0 < p < 1. For the function b : M × M →

R
+
0 defined by

b(x, y) := (

∫ 1

0
|x(t) − y(t)|pdt)1/p, for each x, y ∈ L p[0, 1],

the ordered pair (M, b) forms a b-metric space with s = 21/p.

Example 13.3 Let M = l p(R) be the collection of all real sequences such that

l p(R) := {(xn) ⊂ R|
∞∑

n=1

|xn|p < ∞},

where 0 < p < 1. For the function b : l p(R) × l p(R) → R defined by

b(x, y) := (

∞∑

n=1

|xn − yn|p)1/p,
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is ab-metric spacewith coefficient s = 21/p > 1,where x = (xn), y = (yn) ∈ l p(R).
Notice that the above result holds for the general case l p(E) with 0 < p < 1, where
E is a Banach space.

By merging the notions of b-metric and dislocated metric, we obtain a more
general form that can be called dislocated b-metric space.

Definition 13.5 Let M be a set and let s ≥ 1 be a given real number. A function
d : M × M → R

+
0 is said to be a dislocated b-metric if the following conditions are

satisfied:

(DbM0) d(x, y) ≥ 0 (nonnegativity),
(DbM1) d(x, y) = 0 ⇒ x = y (indistancy),
(DbM2) d(x, y) = b(y, x), (symmetry), and
(DbM3) d(x, z) ≤ s[d(x, y) + d(y, z)] (weakened triangularity),

for all x, y, z ∈ M . Furthermore, the ordered pair (M, d) is called a dislocated b-
metric space, in short, DbMS.

Example 13.4 Let M = R
+
0 and d(x, y) = |x − y|2 + max{x, y}. It is clear that

(M, d) forms a dislocated b-metric space with s = 2.

Example 13.5 Let M = {a, b, c} and d(x, y) =
{
3 if x = y = a,

1 otherwise.
It is easy to see that (M, d) forms a dislocated b-metric space with s = 2.

Example 13.6 Let M = {p, q} where p, q ∈ R. Define d(x, y) = 3 if x = y = p,
and d(x, y) = 1 otherwise. Then, the ordered pair (M, d) forms a dislocated b-
metric space with s = 3

2 . It is clear that it is neither metric (fails in triangle inequality
property) nor b-metric (fails in the self-distance property). Notice also that it is not
a partial metric since d(p, p) � d(p, q).

Example 13.7 Let (M, ρ) be a dislocated metric space. Define a function d :
M × M → R

+
0 such that d(x, y) = (ρ(x, y))p, where p > 1. Then, (M, d) forms a

dislocated b-metric space with s = 2p−1.

Remark 13.1 One can easily derive the “quasi” formof the notions above by omitting
the property “symmetry” in definitions above. In this short survey, we skip this case
to avoid to increase the number of pages so much. We should also mention that
G-metric was proposed by Mustafa and Sims [38] to correct the notion of D-metric
and to cover the inconsistency. Recently, it was realized thatG-metric coincides with
quasi-metric and almost all fixed-point results in G-metric can be derived from the
existence results in the context of metric space in the literature. For more details, see
e.g., [25, 50].

The topology of dislocated b-metric spaces as well as the basic topological prop-
erties (convergence, completeness, etc.) can be obtained by regarding the analogy
of the standard metric space topology. Let us recall some essential notions together
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with the basic observations. Each dislocated b-metric d on a nonempty set M has a
topology τd that was generated by the family of open balls

Bd(x, ε) = {y ∈ M : |d(x, y) − d(x, x)| < ε}, for all x ∈ M and ε > 0.

In the frame of the dislocated b-metric (M, d), a given sequence {xn} converges
to a point x ∈ M if the following limit exists (and finite):

lim
n→∞ d(xn, x) = d(x, x).

As it is expected, a sequence {xn} is said to be Cauchy if the following limit

L = lim
n→∞ d(xn, xm), (13.1)

exists and is finite. Additionally, if L = 0 in (13.1), then we say that {xn} is a
0−Cauchy sequence. Furthermore, a pair (M, d) is called complete DbMS if for
each Cauchy sequence {xn}, there is some x ∈ M such that

M = lim
n→∞ d(xn, x) = d(x, x) = lim

n→∞ d(xn, xm). (13.2)

Moreover, a pair (M, d) is said to be 0−complete DbMS if for each 0−Cauchy
sequence {xn}, converges to a point x ∈ M so that M = 0 in (13.2). Remark that
every 0-Cauchy sequence in (M, d) is a Cauchy sequence in (M, d), and that every
complete dislocated b-metric space is 0-complete (see e.g., [44, 45]). On the other
hand, the converse is not the case.

Let (M, d1) and (K , d2) be DbMSs. A mapping T : M → K is called continuous
if

lim
n→∞ d1(xn, x) = d(x, x) = lim

n,m→∞ d1(xn, xm),

then we have

lim
n→∞ d2(T xn, T x) = d2(T x, T x) = lim

n,m→∞ d2(T xn, T xm).

Definition 13.6 Let (M, d) be a DbMS and S be a subset of M . We say S is open
subset of M , if for all x ∈ M there exists r > 0 such that Bd(x, r) ⊆ S.Also, F ⊆ X
is a closed subset of M if (M\F) is a open subset of M .

The proofs of the assertions in the following are straightforward, and hence we omit
them.

Lemma 13.1 For a DbMS (M, ρ), we have the following observations:

(A) If d(x, y) = 0 then d(x, x) = d(y, y) = 0.
(B) For a sequence {xn} with limn→∞ d(xn, xn+1) = 0, we have
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lim
n→∞ d(xn, xn) = lim

n→∞ d(xn+1, xn+1) = 0.

(C) If x �= y then d(x, y) > 0.
(D) Let V be a closed subset of M and {xn} be a sequence in V . If xn → x as

n → ∞, then x ∈ V .

13.1.1 (c)-Comparison Functions

A mapping ϕ : [0,∞) → [0,∞) is called a comparison function if it is increasing
and ϕn(t) → 0, n → ∞, for any t ∈ [0,∞). We denote by �, the class of the com-
parison function ϕ : [0,∞) → [0,∞). For more details and examples, see e.g., [12,
47]. Among them, we recall the following essential result.

Lemma 13.2 ([12, 47]) If ϕ : [0,∞) → [0,∞) is a comparison function, then

(1) each iterate ϕk of ϕ, k ≥ 1, is also a comparison function;
(2) ϕ is continuous at 0; and
(3) ϕ(t) < t , for any t > 0.

Later, Berinde [12] introduced the concept of (c)-comparison function in the follow-
ing way.

Definition 13.7 ([12]) A function ϕ : [0,∞) → [0,∞) is said to be a (c)-
comparison function if

(c1) ϕ is increasing,
(c2) there exists k0 ∈ N, a ∈ (0, 1) and a convergent series of nonnegative terms

∞∑

k=1

vk such that ϕk+1(t) ≤ aϕk(t) + vk , for k ≥ k0 and any t ∈ [0,∞).

The collection of all (c)-comparison functions will be denoted by Ψ .

13.1.2 (b)-Comparison Functions

Definition 13.8 [14] Let s ≥ 1 be a real number. A mapping ϕ : [0,∞) → [0,∞)

is called a (b)-comparison function if the following conditions are fulfilled

(1) ϕ is monotone increasing;

(2) there exist k0 ∈ N,a ∈ (0, 1) and a convergent series of nonnegative terms
∞∑

k=1

vk

such that sk+1ϕk+1(t) ≤ askϕk(t) + vk , for k ≥ k0 and any t ∈ [0,∞).

We denote by Ψb for the class of (b)-comparison function ϕ : [0,∞) → [0,∞).
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Lemma 13.3 [13] Let s ≥ 1 be a real number. If ϕ : [0,∞) → [0,∞) is a (b)-
comparison function, then we have the following:

(1) the series
∞∑

k=0

skϕk(t) converges for any t ∈ R+;

(2) the function Sb : [0,∞) → [0,∞) defined by Sb(t) =
∞∑

k=0

skϕk(t), t ∈ [0,∞),

is increasing and continuous at 0.

Lemma 13.4 [39]We note that any (b)-comparison function is a comparison func-
tion.

13.1.3 Admissible Mappings

Samet et al. [49] proposed the following auxiliary function:

Definition 13.9 [49] Let M be a nonempty set and α : M × M → [0,∞) be map-
ping. A self-mapping T : M → M is called an α-admissible if the following impli-
cation holds:

α(x, y) ≥ 1 =⇒ α(T x, T y) ≥ 1 for all x, y ∈ M. (13.3)

Definition 13.10 [28] An α-admissible T is said to be a triangular-α-admissible if

α(x, y) ≥ 1 and α(y, z) =⇒ α(x, z) ≥ 1, for all x, y, z ∈ M. (13.4)

These notions are refined by Popescu [40] who introduce the concepts ofα-orbital
admissible mappings and triangular α-orbital admissible mappings:

Definition 13.11 [40] Let T : M → M be a mapping and α : X × X → [0,∞) be
a function. We say that T is an α-orbital admissible if

α(x, T x) ≥ 1 ⇒ α(T x, T 2x) ≥ 1.

Furthermore, T is called a triangular α-orbital admissible if T isα-orbital admissible
and

α(x, y) ≥ 1 and α(y, T y) ≥ 1 ⇒ α(x, T y) ≥ 1.

It is clear that each α-admissible (respectively, triangular α-admissible) mapping is
an α-orbital admissible (respectively, triangular α-orbital admissible) mapping. For
more details and distinctive examples, see e.g., [3, 27, 30, 34, 40, 48].
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13.1.4 Simulation Functions

Definition 13.12 (See [31]) A function ζ : [0,∞) × [0,∞) → R is said to be sim-
ulation if it satisfies the following conditions:

(ζ1) ζ(0, 0) = 0;
(ζ2) ζ(t, s) < s − t for all t, s > 0;
(ζ3) if {tn}, {sn} are sequences in (0,∞) such that lim

n→∞ tn = lim
n→∞ sn > 0, then

lim sup
n→∞

ζ(tn, sn) < 0. (13.5)

The family of all simulation functions ζ : [0,∞) × [0,∞) → R will be denoted by
Z . On account of (ζ2), we observe that

ζ(t, t) < 0 for all t > 0, ζ ∈ Z . (13.6)

Example 13.8 (See e.g., [4, 31, 37, 43]) Let ζi : [0,∞) × [0,∞) → R, i ∈ {1, 2,
3}, be mappings defined by

(i) ζ1(t, s) = ψ(s) − φ(t) for all t, s ∈ [0,∞), where φ,ψ : [0,∞) → [0,∞)

are two continuous functions such that ψ(t) = φ(t) = 0 if, and only if, t = 0,
and ψ(t) < t ≤ φ(t) for all t > 0.

(ii) ζ2(t, s) = s − f (t, s)

g(t, s)
t for all t, s ∈ [0,∞), where f, g : [0,∞) → (0,∞)

are two continuous functions with respect to each variable such that f (t, s) >

g(t, s) for all t, s > 0.
(iii) ζ3(t, s) = s − ϕ(s) − t for all t, s ∈ [0,∞), where ϕ : [0,∞) → [0,∞) is a

continuous function such that ϕ(t) = 0 if, and only if, t = 0.
(iv) If ϕ : [0,∞) → [0, 1) is a function such that lim sup

t→r+
ϕ(t) < 1 for all r > 0,

and we define

ζT (t, s) = sϕ(s) − t for all s, t ∈ [0,∞),

then ζT is a simulation function.
(v) If η : [0,∞) → [0,∞) is an upper semi-continuousmapping such that η(t) < t

for all t > 0 and η(0) = 0, and we define

ζBW (t, s) = η(s) − t for all s, t ∈ [0,∞),

then ζBW is a simulation function.



13 A Short Survey on Dislocated Metric Spaces via Fixed-Point Theory 465

(vi) If φ : [0,∞) → [0,∞) is a function such that
∫ ε

0 φ(u)du exists and
∫ ε

0 φ(u)

du > ε, for each ε > 0, and we define

ζK (t, s) = s −
∫ t

0
φ(u)du for all s, t ∈ [0,∞),

then ζK is a simulation function.

13.2 Fixed Point of α-ψ Contractive Mapping
on Dislocated b-Metric Spaces

One can find more interesting examples of simulation functions in [4, 31, 43].

Definition 13.13 (cf. [31]) Suppose (M, d) is an either dislocated b-metric space or
dislocated b-metric space. Suppose also that T is a self-mapping on M and ζ ∈ Z .
A mapping T is a Zb-contraction with respect to ζ if there exists ψ ∈ Ψb and
α : X × X → [0,∞) such that

ζ(α(x, y)d(T x, T y),ψ(d(x, y))) ≥ 0 for all x, y ∈ M.

Since (ζ2) holds, we have the following inequality:

x �= y =⇒ d(T x, T y) �= d(x, y).

Thus, we conclude that T cannot be an isometry whenever T is a Z -contraction.
In other words, if a Z -contraction T in a metric space has a fixed point, then it is
necessarily unique.

We can now state the main result of this paper.

Theorem 13.1 Let (M, d)be adislocated b-completemetric space and let T : M →
M be an α-admissible Zb-contraction with respect to ζ. Suppose that

(i) T is α-orbital admissible;
(ii) there exists x0 ∈ M such that α(x0, T x0) ≥ 1;
(iii) T is continuous.

Then there exists u ∈ M such that T u = u.

Proof On account of (i i), we have x0 ∈ M such that α(x0, T x0) ≥ 1. Starting from
this point x0 ∈ M we shall construct an iterative sequence {xn} inM by letting xn+1 =
T xn for all n ∈ N0. Throughout the proof, we shall assume that d(xn, xn+1) > 0 and
hence xn �= xn+1 for all n. Indeed, if there exists an n0 such that d(xn0 , xn0+1) =
0, then by Lemma 13.1 (A), we find u = xn0 = xn0+1 = T xn0 = Tu. Hence, xn0
becomes a fixed point of T that terminate the proof.
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As a result, we have

d(xn, xn+1) > 0, for all n ∈ N0. (13.7)

Taking the fact that T is α-admissible into account, we obtain that

α(x0, x1) = α(x0, T x0) ≥ 1 ⇒ α(T x0, T x1) = α(x1, x2) ≥ 1.

Recursively, one can conclude that

α(xn, xn+1) ≥ 1, for all n ∈ N0. (13.8)

Combining (13.17) and (13.8), we derive that

0 ≤ ζ(α(xn, xn−1)d(T xn, T xn−1),ψ(d(xn, xn−1)))

= ζ(α(xn, xn−1)d(xn+1, xn),ψ(d(xn, xn−1)))

< ψ(d(xn, xn−1)) − α(xn, xn−1)d(xn+1, xn),
(13.9)

for all n ≥ 1. Accordingly, we find that

d(xn, xn+1) ≤ α(xn, xn−1)d(xn, xn+1) < ψ(d(xn, xn−1)) for all n ∈ N. (13.10)

Inductively, we derive that

d(xn, xn+1) ≤ ψn(d(x0, x1)), for all n ∈ N0. (13.11)

The modified triangle inequality together with the inequality (13.11) yield, for all
p ≥ 1, that

d(xn, xn+p) ≤ sd(xn, xn+1) + s2d(xn+1, xn+2) + · · · + s p−2d(xn+p−3, xn+p−2)

+s p−1d(xn+p−2, xn+p−1) + s p−1d(xn+p−1, xn+p)

≤ sψn(d(x0, x1)) + s2ψn+1(d(x0, x1)) + · · · + s p−2ψn+p−3(d(x0, x1))

+s p−1ψn+p−2(d(x0, x1)) + s p−1ψn+p−1(d(x0, x1))

= 1

sn−1 [snψn(d(x0, x1)) + · · · + sn+p−2ψn+p−2(d(x0, x1))

+sn+p−1ψn+p−1(d(x0, x1))].

Denoting Ln =
n∑

k=0

skψk(d(x0, x1)), n ≥ 1 we obtain

d(xn, xn+p) ≤ 1

sn−1
[Ln+p−1 − Ln−1], n ≥ 1, p ≥ 1. (13.12)
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On the account of (13.7) together with Lemma 13.3, we deduce that the series
n∑

k=0

skψk(d(x0, x1)) is convergent. So, there exists L = lim
n→∞ Ln ∈ [0,∞). Taking

s ≥ 1 into account, the estimation (13.12) yields that the sequence {xn}n≥0 is 0-
Cauchy in dislocated b-metric space (M, d).

lim
n→∞ d(xn, xm) = 0. (13.13)

Since (M, d) is complete, there exists x∗ ∈ M such that xn → x∗ as n → ∞, that
is,

lim
n→∞ d(xn, x

∗) = 0 = lim
n→∞ d(xn, xm). (13.14)

From the continuity of f , it follows that xn+1 = T (xn) → T (x∗) as n → ∞:

lim
n→∞ d(xn+1, T x

∗) = lim
n→∞ d(T xn , T x∗) = lim

n,m→∞ d(T xn , T xm ) = lim
n→∞ d(xn+1, xm+1) = 0.

By the uniqueness of the limit, we get x∗ = T (x∗), that is, x∗ is a fixed point
of T . �

Theorem 13.2 Let (M, d)be a complete dislocated b-metric space and let T : M →
M be an α-admissible Z -contraction with respect to ζ. Suppose that

(i) T is triangular α-orbital admissible;
(ii) there exists x0 ∈ M such that α(x0, T x0) ≥ 1;
(iii) if {xn} is a sequence in M such that α(xn, xn+1) ≥ 1 for all n and xn →

x ∈ M as n → ∞, then there exists a subsequence {xn(k)} of {xn} such that
α(xn(k), x) ≥ 1 for all k.

Then there exists u ∈ M such that T u = u.

Proof Following the lines in the proof of Theorem 13.1, we find that the sequence
{xn} defined by xn+1 = T xn for all n ≥ 0, converges for some u ∈ M . From (13.8)
and condition (iii), there exists a subsequence {xn(k)} of {xn} such thatα(xn(k), u) ≥ 1
for all k. Applying (13.17), for all k, we get that

0 ≤ ζ(α(xn(k), u)d(T xn(k), Tu),ψ(d(xn(k), u)))

= ζ(α(xn(k), u)d(xn(k)+1, Tu),ψ(d(xn(k), u)))

< ψ(d(xn(k), u)) − α(xn(k), u)d(xn(k)+1, Tu),

(13.15)

which is equivalent to

d(xn(k)+1, Tu) = d(T xn(k), Tu) ≤ α(xn(k), u)d(T xn(k), Tu) < ψ(d(xn(k), u)).

(13.16)
By keeping Lemmas 13.2 and 13.4 in the mind, we derive that by letting k → ∞ in
the above equality. Hence, we get that u = Tu. �
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For the uniqueness of a fixed point of a α-admissibleZ -contraction with respect to
ζ, we shall suggest the following hypothesis.

(U1) For all x, y ∈ Fix(T ), we have α(x, y) ≥ 1.

Here, Fix(T ) denotes the set of fixed points of T .

Theorem 13.3 Adding condition (U1) to the hypotheses of Theorem 13.1 (resp.
Theorem 13.2), we obtain that u is the unique fixed point of T .

We skip the proof of Theorem 13.3 which is a direct consequence of the property
(ζ2).

13.3 Consequences

In this section, we give a short list of consequences of the main results in the previous
section. By regarding the condition (ζ2) and combining Theorems 13.1 and 13.2, we
find the first corollary.

Corollary 13.1 (See [18]) Let (M, d) be a dislocated b-complete metric space and
let T : M → M satisfy

α(x, y)d(T x, T y) ≤ ψ(d(x, y)) for all x, y ∈ M,

where ψ ∈ Ψb. Suppose that

(i) T is α-orbital admissible;
(ii) there exists x0 ∈ M such that α(x0, T x0) ≥ 1;
(iii) either, T is continuous, or,
(iii)’ if {xn} is a sequence in M such that α(xn, xn+1) ≥ 1 for all n and xn →

x ∈ M as n → ∞, then there exists a subsequence {xn(k)} of {xn} such that
α(xn(k), x) ≥ 1 for all k.

Then there exists u ∈ M such that T u = u.

On account of the condition (ζ2) and taking α(x, y) = 1 in Theorem 13.3, we get
the following result:

Corollary 13.2 Let (M, d) be a dislocated b-complete metric space and let T :
M → M satisfy

d(T x, T y) ≤ ψ(d(x, y)) for all x, y ∈ M,

where ψ ∈ Ψb. Then there exists unique u ∈ M such that T u = u.

In particular, by taking ψ(t) = kt , k ∈ [0, 1) in the corollary above, we derive the
following consequence:
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Corollary 13.3 Let (M, d) be a dislocated b-complete metric space and let T :
M → M satisfy

d(T x, T y) ≤ kd(x, y) for all x, y ∈ M,

where k ∈ [0, 1). Then there exists unique u ∈ M such that T u = u.

13.3.1 Fixed-Point Theorems on Dislocated b-Metric Spaces
Endowed with a Partial Order

The research topic “existence of fixed point on metric spaces endowed with partial
orders” was initiated by Turinici [54] and continued by Ran and Reurings in [42]
with many others.

Definition 13.14 Let (X,
) be a partially ordered set and T : X → X be a given
mapping. We say that T is nondecreasing with respect to 
 if

x, y ∈ X, x 
 y =⇒ T x 
 T y.

Definition 13.15 Let (X,
) be a partially ordered set. A sequence {xn} ⊂ X is said
to be nondecreasing with respect to 
 if xn 
 xn+1 for all n.

Definition 13.16 Let (X,
) be a partially ordered set and d be a metric on X . We
say that (X,
, d) is regular if for every nondecreasing sequence {xn} ⊂ X such
that xn → x ∈ X as n → ∞, there exists a subsequence {xn(k)} of {xn} such that
xn(k) 
 x for all k.

We have the following result.

Corollary 13.4 Let (X,
) be a partially ordered set and d be a dislocated b-metric
on X such that (X, d) is complete. Let T : X → X be a nondecreasing mapping with
respect to 
. Suppose that there exists a function ψ ∈ Ψb such that

d(T x, T y) ≤ ψ(d(x, y)),

for all x, y ∈ X with x � y. Suppose also that the following conditions hold:

(i) there exists x0 ∈ X such that x0 
 T x0;
(ii) T is continuous or (X,
, d) is regular.

Then T has a fixed point. Moreover, if for all x, y ∈ X there exists z ∈ X such that
x 
 z and y 
 z, we have uniqueness of the fixed point.
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Proof Let α : X × X → [0,∞) be defined as

α(x, y) =
{
1 if x 
 y or x � y,
0 otherwise.

Clearly, T is a generalized α − ψ contractive mapping, that is,

α(x, y)d(T x, T y) ≤ ψ(d(x, y)),

for all x, y ∈ X . From condition (i), we have α(x0, T x0) ≥ 1. Moreover, for all
x, y ∈ X , from the monotone property of T , we have

α(x, y) ≥ 1 =⇒ x � y or x 
 y =⇒ T x � T y or T x 
 T y =⇒ α(T x, T y) ≥ 1.

Thus T isα-admissible. Now, if T is continuous, the existence of a fixed point follows
from Theorem 13.1. Suppose now that (X,
, d) is regular. Let {xn} be a sequence
in X such that α(xn, xn+1) ≥ 1 for all n and xn → x ∈ X as n → ∞. From the
regularity hypothesis, there exists a subsequence {xn(k)} of {xn} such that xn(k) 
 x
for all k. This implies from the definition of α that α(xn(k), x) ≥ 1 for all k. In this
case, the existence of a fixed point follows from Theorem 13.2. The uniqueness
follows from Theorem 13.3. �

13.3.2 Fixed-Point Theorems for Cyclic Contractive
Mappings

An interesting concept, cyclic contraction, was introduced by Kirk, Srinivasan and
Veeramani [32]. After then, this notion has been studied by several authors. In this
subsection, we shall prove our setup and able to get several fixed-point theorems for
cyclic contractive mappings.

Corollary 13.5 Let {Ai }2i=1 be nonempty, closed subsets of a complete dislocated
b-metric space (M, d) and T : Y → Y be a given mapping, where Y = A1 ∪ A2.
Suppose that the following conditions hold:

(I) T (A1) ⊆ A2 and T (A2) ⊆ A1;
(II) there exists a function ψ ∈ Ψb such that

d(T x, T y) ≤ ψ(d(x, y)), for all (x, y) ∈ A1 × A2.

Then T has a unique fixed point that belongs to A1 ∩ A2.

Proof Since A1 and A2 are closed subsets of the complete dislocated b-metric space
(M, d), then (Y, d) is complete. Define the mapping α : Y × Y → [0,∞) by
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α(x, y) =
{
1 if (x, y) ∈ (A1 × A2) ∪ (A2 × A1),

0 otherwise.

From (II) and the definition of α, we can write

α(x, y)d(T x, T y) ≤ ψ(M(x, y)),

for all x, y ∈ Y . Thus T is a generalized α − ψ contractive mapping.
Let (x, y) ∈ Y × Y such that α(x, y) ≥ 1. If (x, y) ∈ A1 × A2, from (I),

(T x, T y) ∈ A2 × A1, which implies thatα(T x, T y) ≥ 1. If (x, y) ∈ A2 × A1, from
(I), (T x, T y) ∈ A1 × A2, which implies that α(T x, T y) ≥ 1. Thus in all cases, we
have α(T x, T y) ≥ 1. This implies that T is α-admissible.

Also, from (I), for any a ∈ A1, we have (a, Ta) ∈ A1 × A2, which implies that
α(a, Ta) ≥ 1.

Now, let {xn} be a sequence in X such that α(xn, xn+1) ≥ 1 for all n and xn →
x ∈ X as n → ∞. This implies from the definition of α that

(xn, xn+1) ∈ (A1 × A2) ∪ (A2 × A1), for all n.

Since (A1 × A2) ∪ (A2 × A1) is a closed set with respect to the Euclidean metric,
we get that

(x, x) ∈ (A1 × A2) ∪ (A2 × A1),

which implies that x ∈ A1 ∩ A2. Thus we get immediately from the definition of α
that α(xn, x) ≥ 1 for all n.

Now, all the hypotheses ofCorollary 13.1 are satisfied. Consequently,we conclude
that T has a unique fixed point that belongs to A1 ∩ A2 (from (I)). �

13.3.3 Consequences on Standard b-Metric Spaces

Corollary 13.6 Let (M, b) be a b-complete metric space and let T : M → M be
an α-admissible Zb-contraction with respect to ζ. Suppose that

(i) T is α-orbital admissible;
(ii) there exists x0 ∈ M such that α(x0, T x0) ≥ 1;
(iii) either, T is continuous, or
(iii)’ if {xn} is a sequence in M such that α(xn, xn+1) ≥ 1 for all n and xn →

x ∈ M as n → ∞, then there exists a subsequence {xn(k)} of {xn} such that
α(xn(k), x) ≥ 1 for all k.

Then there exists u ∈ M such that T u = u.

Corollary 13.7 Adding condition (U1) to the hypotheses of Corollary 13.6, we
obtain that u is the unique fixed point of T .
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By taking (ζ2) into consideration in Corollary 13.7, we conclude that

Corollary 13.8 Let (M, b) be a b-completemetric space and let T : M → M satisfy

α(x, y)b(T x, T y) ≤ ψ(b(x, y)) for all x, y ∈ M,

where ψ ∈ Ψb. Suppose that

(i) T is α-orbital admissible;
(ii) there exists x0 ∈ M such that α(x0, T x0) ≥ 1;
(iii) either, T is continuous, or,
(iii)’ if {xn} is a sequence in M such that α(xn, xn+1) ≥ 1 for all n and xn →

x ∈ M as n → ∞, then there exists a subsequence {xn(k)} of {xn} such that
α(xn(k), x) ≥ 1 for all k.

(iv) the condition (U1) is fulfilled.

Then there exists a unique u ∈ M such that T u = u.

By letting α(x, y) = 1 for all x, y ∈ M in Corollary 13.8, we get that

Corollary 13.9 Let (M, b) be a b-completemetric space and let T : M → M satisfy

b(T x, T y) ≤ ψ(b(x, y)) for all x, y ∈ M,

where ψ ∈ Ψb. Then there exists unique u ∈ M such that T u = u.

In particular, by taking ψ(t) = kt , k ∈ [0, 1) in the corollary above, we have

Corollary 13.10 Let (M, b) be a b-complete metric space and let T : M → M
satisfy

b(T x, T y) ≤ kb(x, y) for all x, y ∈ M,

where k ∈ [0, 1). Then there exists unique u ∈ M such that T u = u.

It easy to get somemore consequences by repeating the similar arguments inSects. 3.1
and 3.2.

13.3.4 Consequences on Standard Metric Spaces

It is clear that all results in the previous section can be repeated in the context of
standard metric by letting s = 1. Regarding the analogy, we skip the details. On
the other hand, we should underline that the analog of Corollary 13.10 is nothing
but well-known Banach Contraction Mapping principle [11]. Moreover, the tech-
niques used in Sect. 3.1 imply the famous results of Ran and Reuring [42]. On the
other hand, Sect. 3.2 yields the initial fixed-point results in cyclic mapping due to
Kirk et al. [32].

http://dx.doi.org/10.1007/978-981-10-3722-1_3
http://dx.doi.org/10.1007/978-981-10-3722-1_3
http://dx.doi.org/10.1007/978-981-10-3722-1_3
http://dx.doi.org/10.1007/978-981-10-3722-1_3
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13.3.5 Consequences on Standard Dislocated Metric Spaces

Corollary 13.11 Let (M, ρ) be a complete dislocatedmetric space and let T : M →
M be an α-admissible Zb-contraction with respect to ζ. Suppose that

(i) T is α-orbital admissible;
(ii) there exists x0 ∈ M such that α(x0, T x0) ≥ 1;
(iii) either, T is continuous, or
(iii)’ if {xn} is a sequence in M such that α(xn, xn+1) ≥ 1 for all n and xn →

x ∈ M as n → ∞, then there exists a subsequence {xn(k)} of {xn} such that
α(xn(k), x) ≥ 1 for all k.

Then there exists u ∈ M such that T u = u.

Corollary 13.12 Adding condition (U1) to the hypotheses of Corollary 13.11, we
obtain that u is the unique fixed point of T .

By taking (ζ2) into consideration in Corollary 13.12, we conclude that

Corollary 13.13 Let (M, ρ) be a complete dislocatedmetric space and let T : M →
M satisfy

α(x, y)ρ(T x, T y) ≤ ψ(ρ(x, y)) for all x, y ∈ M,

where ψ ∈ Ψb. Suppose that

(i) T is α-orbital admissible;
(ii) there exists x0 ∈ M such that α(x0, T x0) ≥ 1;
(iii) either, T is continuous, or,
(iii)’ if {xn} is a sequence in M such that α(xn, xn+1) ≥ 1 for all n and xn →

x ∈ M as n → ∞, then there exists a subsequence {xn(k)} of {xn} such that
α(xn(k), x) ≥ 1 for all k.

(iv) the condition (U1) is fulfilled.

Then there exists a unique u ∈ M such that T u = u.

By letting α(x, y) = 1 for all x, y ∈ M in Corollary 13.13, we get that

Corollary 13.14 Let (M, ρ) be a complete dislocatedmetric space and let T : M →
M satisfy

ρ(T x, T y) ≤ ψ(ρ(x, y) for all x, y ∈ M,

where ψ ∈ Ψb. Then there exists unique u ∈ M such that T u = u.

In particular, by taking ψ(t) = kt , k ∈ [0, 1) in the corollary above, we have
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Corollary 13.15 Let (M, ρ) be a complete dislocatedmetric space and let T : M →
M satisfy

ρ(T x, T y) ≤ kρ(x, y) for all x, y ∈ M,

where k ∈ [0, 1). Then there exists unique u ∈ M such that T u = u.

As it is expected, it is possible to list more consequences. For example, all theorems
in this subsection can be re-built in the frames of “partially ordered metric spaces”
or “cyclic contractions” as in Sects. 3.1 and 3.2.

Remark 13.2 Since each partial metric space is dislocated spaces, all results in
Sect. 3.5 can be reformulated in the context of partial metric spaces. Notice also
that the analog of Corollary 13.19 in the frame of partial metric space yields the
fixed-point result of Matthews [35, 36].

Corollary 13.16 [35, 36] Let (M, p) be a complete partial metric space and let
T : M → M satisfy

p(T x, T y) ≤ kp(x, y) for all x, y ∈ M,

where k ∈ [0, 1). Then there exists unique u ∈ M such that T u = u.

13.4 Generalized α-Admissible Z -Contraction

In this section, we shall prove fixed-point theorems in the setting of dislocated metric
space. Not surprisingly, the topology of dislocated space was produced by the family
of open balls

Bρ(x, ε) = {y ∈ M : |ρ(x, y) − ρ(x, x)| < ε}, for all x ∈ M and ε > 0.

Furthermore, the basic topological tools (convergence, completeness, etc.) can be
observed in a similar way in standard metric theory. Here, we collect some important
properties of this space.

Lemma 13.5 [26] For a DMS (M, ρ), we have the following observations:

(A) If ρ(x, y) = 0 then ρ(x, x) = ρ(y, y) = 0.
(B) For a sequence {xn} with limn→∞ ρ(xn, xn+1) = 0, we have

lim
n→∞ ρ(xn, xn) = lim

n→∞ ρ(xn+1, xn+1) = 0.

(C) If x �= y then ρ(x, y) > 0.
(D) ρ(x, x) ≤ 2

n

∑i=n
i=1 ρ(x, xi ) holds for all xi , x ∈ M where 1 ≤ i ≤ n.

(E) Let V be a closed subset of M and {xn} be a sequence in V . If xn → x as
n → ∞, then x ∈ V .

http://dx.doi.org/10.1007/978-981-10-3722-1_3
http://dx.doi.org/10.1007/978-981-10-3722-1_3
http://dx.doi.org/10.1007/978-981-10-3722-1_3
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(F) For a sequence {xn} in M such that xn → x as n → ∞ with ρ(x, x) = 0, then
limn→∞ ρ(xn, y) = ρ(x, y) for all y ∈ M.

Definition 13.17 Let T be a self-mapping defined on a dislocated metric space
(M, ρ). Suppose that there exist functions ζ ∈ Z , ψ ∈ Ψ and α : X × X → [0,∞)

such that

ζ(α(x, y)ρ(T x, T y),ψ(P(x, y))) ≥ 0 for all x, y ∈ M, (13.17)

where P(x, y) = max

{

ρ(x, y), ρ(x, T x), ρ(y, T y),
ρ(x, T y) + ρ(y, T x)

4

}

. Then

we say that T is a generalized α-admissibleZ -contraction of type (I ) with respect
to ζ.

In what follows we recall the following lemma for determining whether the given
sequence is Cauchy.

Lemma 13.6 (cf. [41]) Let (M, ρ) be a dislocated metric space and let {xn} be a
sequence in M such that d(xn+1, xn) is nonincreasing and that limn→∞ ρ(xn+1, xn) =
0. If {xn} is not a Cauchy sequence, then there exist an ε > 0 and two sequences
{mk} and {nk} of positive integers such that the following four sequences tend to ε
when k → ∞:

ρ(xmk , xnk ), ρ(xmk+1, xnk+1), ρ(xmk−1, xnk ), ρ(xmk , xnk−1)

We skip the proof of the lemma above since it is the verbatim of the proof of the
corresponding lemma in [41]. Now, we shall state the main results of this chapter.

Theorem 13.4 Let (M, ρ) be a complete dislocated metric space and let T : M →
M be generalized α-admissibleZ -contraction of type (I) with respect to ζ. Suppose
that

(i) T is triangular α-orbital admissible;
(ii) there exists x0 ∈ M such that α(x0, T x0) ≥ 1; and
(iii) T is continuous.

Then there exists z ∈ M such that T z = z.

Proof On account of the assumption (i i), we have x0 ∈ M such thatα(x0, T x0) ≥ 1.
By taking initial values as x0, we shall construct an iterative sequence {xn} inM where
xn = T xn−1 for all n ∈ N.

Notice that if ρ(xn0 , xn0+1) = 0 for some n0 ∈ N0, then u = xn0 turns to be a fixed
point of T . Consequently, we shall assume that xn �= xn+1 for all n ∈ N0, thus

ρ(xn, xn+1) > 0, for all n ∈ N0.
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On the other hand, α-admissibility of the mapping T yields that

α(x0, x1) = α(x0, T x0) ≥ 1 ⇒ α(T x0, T x1) = α(x1, x2) ≥ 1.

By repeating the observation above, we find that

α(xn, xn+1) ≥ 1, n ∈ N0, (13.18)

Notice also that triangular α-orbital admissibility of the mapping T implies that

α(xn, xm) ≥ 1, n,m ∈ N0, n �= m. (13.19)

From (13.17) and (13.18), it follows that for all n ≥ 1, we have

0 ≤ ζ(α(xn, xn−1)ρ(T xn, T xn−1),ψ(P(xn, xn−1)))

= ζ(α(xn, xn−1)ρ(xn+1, xn),ψ(P(xn, xn−1)))

< ψ(P(xn, xn−1)) − α(xn, xn−1)ρ(xn+1, xn).

(13.20)

By combining the obtained inequality above together with Lemmas 13.2 and 13.4,
we derive that

d(xn, xn+1) ≤ α(xn−1, xn)ρ(xn, xn+1) < ψ(P(xn, xn−1)) < P(xn−1, xn), n ∈ N.

(13.21)
Let us analyze the terms of P(x, y):

P(xn−1, xn) = max

{

ρ(xn−1, xn), ρ(xn−1, xn), d(xn, xn+1),
ρ(xn−1, xn+1) + ρ(xn, xn)

4

}

= max

{

ρ(xn−1, xn),
ρ(xn−1, xn) + ρ(xn, xn+1)

2

}

,

Under the observation above with the inequality with (13.21), we deduce that
P(xn−1, xn) = ρ(xn−1, xn). Hence, the sequence {ρ(xn, xn+1)} is monotonically
decreasing and bounded below by zero. Thus, it is convergent, that is, there is a
L ≥ 0 such that lim

n→∞ρ(xn, xn+1) = L . Notice that, from (13.21), lim
n→∞α(xn−1, xn)d

(xn, xn+1) = L . We aim to show that L = 0. Suppose, on the contrary, that L > 0.
Then, due to (ζ3), we have

lim sup ζ(α(xn−1, xn)ρ(xn, xn+1), ρ(xn, xn+1)) < 0,

a contradiction since we have the condition (13.17). Consequently, we derive that

lim
n→∞ρ(xn, xn+1) = 0.
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Next phase is to prove that the sequence {xn} is Cauchy. Suppose, on the contrary,
that the constructed sequence {xn} is not Cauchy. Accordingly, there exist ε > 0 such
that, for any k ∈ N, there exist mk > nk > k and d(xnk , xmk ) ≥ ε with an additional
condition that mk is the smallest possible.

Due to Lemma 13.6, we have lim
n→∞ρ(xnk , xmk+1) = lim

n→∞ρ(xnk+1, xmk ) = ε.

lim
n→∞ρ(xnk+1, xmk+1) = lim

n→∞α(xnk , xmk )ρ(xnk+1, xmk+1) = ε.

Taking the observations above into account together with (13.5), we find

lim sup
n→∞

ζ(α(xnk , xmk )d(xnk+1, xmk+1), d(xnk , xmk )) < 0,

which contradicts the condition (13.17). By reductio ad absurdum, we conclude that
{xn} is a 0-Cauchy sequence.

Since (X, d) is a complete dislocated metric space, there exist x∗ ∈ M so that the
sequence {xn} converges to x∗. The continuity of T implies T x∗ = x∗. �

Theorem 13.5 Let (M, ρ) be a complete dislocated metric space and let T : M →
M be a generalizedα-admissibleZ -contraction of type (I) with respect to ζ. Suppose
that

(i) T is triangular α-orbital admissible;
(ii) there exists x0 ∈ M such that α(x0, T x0) ≥ 1;
(iii) if {xn} is a sequence in M such that α(xn, xn+1) ≥ 1 for all n and xn → x ∈ M

asn → ∞, then there exists a subsequence {xnk } of {xn} such thatα(xnk , x) ≥ 1
for all k.

Then there exists x∗ ∈ M such that T x∗ = x∗.

Proof By following the lines in the proof of Theorem 13.1, we find a sequence {xn}
converges to some x∗ ∈ M , that is, ρ(xnk , x

∗) = 0. From (13.8) and condition (i i i),
there exists a subsequence {xnk } of {xn} such that α(xnk , x

∗) ≥ 1, k ∈ N. Applying
(13.17), for all k ∈ N, we get that

0 ≤ ζ(α(xnk , x
∗)ρ(T xnk , T x

∗),ψ(P(xnk , x
∗)))

= ζ(α(xnk , x
∗)d(xnk+1, T z),ψ(P(xnk , x

∗)))
< ψ(P(xnk , x

∗)) − α(xnk , x
∗)ρ(xnk+1, T x∗),

for

P(xnk , x
∗) = max

{

ρ(xnk , x
∗), ρ(xnk , xnk+1), ρ(x∗, T x∗),

d(xnk , T z) + ρ(xnk+1, z)

4

}

.
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Hence, we have

0 ≤ ρ(xnk+1, T x
∗) ≤ α(xnk , x

∗)ρ(xnk+1, T x
∗) < ψ(P(xnk , x

∗)) < P(xnk , x
∗).

Letting k → ∞, we have ρ(x∗, T x∗) = 0, i.e., T x∗ = x∗. �

The uniqueness for the fixed point determined in Theorems 13.4 and 13.5, the
condition (U1) is not sufficient. For this reason, we prefer to revise the contraction
condition as follows.

Definition 13.18 Let T be a self-mapping defined on a dislocated metric space
(M, d). If there exist ζ ∈ Z and α : M × M → [0,∞) such that

ζ(α(x, y)ρ(T x, T y),ψ(Q(x, y))) ≥ 0 for all x, y ∈ X, (13.22)

where ψ ∈ Ψ and

Q(x, y) = max

{

ρ(x, y),
ρ(x, T x) + ρ(y, T y)

4
,
ρ(x, T y) + ρ(y, T x)

4

}

. (13.23)

Then, we say that T is a generalized α-admissible Z -contraction of type (II) with
respect to ζ.

Theorem 13.6 Let (M, ρ) be a complete dislocated metric space and let T : M →
M be a generalized α-admissibleZ -contraction of type (II) with respect to ζ. Sup-
pose that

(i) T is triangular α-orbital admissible;
(ii) there exists x0 ∈ M such that α(x0, T x0) ≥ 1;
(iii) either T is continuous, or
(iii)’ if {xn} is a sequence in M such thatα(xn, xn+1) ≥ 1 for all n and xn → x ∈ M

as n → ∞, then there exists a subsequence {xnk } of {xn} such that α(xnk , x) ≥
1 for all k.

Then there exists x∗ ∈ M such that T x∗ = x∗.

Now, by adding the hypothesis (U1), we can the uniqueness of the existing fixed
point of T .

Theorem 13.7 Adding condition (U1) to the hypotheses of Theorem 13.6, we obtain
that z is the unique fixed point of T .

Proof Following the lines in the proof of Theorem 13.6, we guarantee the existence
fixed point of T . We claim that the obtained fixed point of T in Theorem 13.6 is
unique. Suppose, on the contrary, that both y, z ∈ M are distinct fixed points of T :

d(z, y) ≤ α(z, y)d(z, y) < ψ(Q(z, y)) = ψ(max {d(z, y)}) < d(z, y),
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a contradiction. Hence, the constructed fixed point of T in Theorem 13.6 is
unique. �

13.4.1 More Consequences on Dislocated Metric Spaces

By taking (ζ2) into consideration in Corollary 13.7, we conclude that

Corollary 13.17 Let (M, ρ) be a complete dislocatedmetric space and let T : M →
M satisfy

α(x, y)ρ(T x, T y) ≤ ψ(Q(x, y)) for all x, y ∈ M,

where ψ ∈ Ψb and Q(x, y) is defined as in (13.23). Suppose that

(i) T is α-orbital admissible;
(ii) there exists x0 ∈ M such that α(x0, T x0) ≥ 1;
(iii) either, T is continuous, or,
(iii)’ if {xn} is a sequence in M such that α(xn, xn+1) ≥ 1 for all n and xn →

x ∈ M as n → ∞, then there exists a subsequence {xn(k)} of {xn} such that
α(xn(k), x) ≥ 1 for all k.

(iv) the condition (U1) is fulfilled.

Then there exists a unique u ∈ M such that T u = u.

By letting α(x, y) = 1 for all x, y ∈ M in Corollary 13.17, we get that

Corollary 13.18 Let (M, ρ) be a complete dislocatedmetric space and let T : M →
M satisfy

ρ(T x, T y) ≤ ψ(Q(x, y)) for all x, y ∈ M,

where ψ ∈ Ψb and Q(x, y) is defined as in (13.23). Then there exists unique u ∈ M
such that T u = u.

In particular, by taking ψ(t) = kt , k ∈ [0, 1) in the corollary above, we have

Corollary 13.19 Let (M, ρ) be a complete dislocatedmetric space and let T : M →
M satisfy

ρ(T x, T y) ≤ kQ(x, y) for all x, y ∈ M,

where k ∈ [0, 1) and Q(x, y) is defined as in (13.23). Then there exists unique u ∈ M
such that T u = u.
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13.4.2 Consequences on Standard Partial Metric Spaces

Here, we list immediate consequences in the setting of partial metric spaces.

Corollary 13.20 Let (M, p) be a complete partial metric space and T : M → M be
a self-mapping. Suppose that there exist functions ζ ∈ Z , ψ ∈ Ψ and α : X × X →
[0,∞) such that

ζ(α(x, y)p(T x, T y),ψ(P(x, y))) ≥ 0 f or all x, y ∈ M, (13.24)

where

P(x, y) = max

{

p(x, y), p(x, T x), p(y, T y),
p(x, T y) + p(y, T x)

4

}

. (13.25)

Suppose that

(i) T is α-orbital admissible;
(ii) there exists x0 ∈ M such that α(x0, T x0) ≥ 1;
(iii) either, T is continuous, or,
(iii)’ if {xn} is a sequence in M such that α(xn, xn+1) ≥ 1 for all n and xn →

x ∈ M as n → ∞, then there exists a subsequence {xn(k)} of {xn} such that
α(xn(k), x) ≥ 1 for all k.

Then there exists u ∈ M such that T u = u.

Corollary 13.21 Adding condition (U1) to the hypotheses of Corollary 13.20, we
obtain that u is the unique fixed point of T .

Proof The existence fixed point of T is concluded from Corollary 13.20. We shall
indicate that the existence fixed point of T in Corollary 13.20 is unique. Sup-
pose, on the contrary, that both y, z ∈ M are distinct fixed points of T . Since
max{p(z, z), p(y, y)} ≤ p(z, y), then we have

p(z, y) ≤ α(z, y)p(z, y) < ψ(P(z, y)) = ψ(max {p(z, y)}) < p(z, y),

a contradiction. Hence, guaranteed fixed point of T in Corollary 13.20 is unique. �

By taking (ζ2) into consideration in Corollary 13.21, we conclude that

Corollary 13.22 Let (M, p) be a complete partial metric space and let T : M → M
satisfy

α(x, y)p(T x, T y) ≤ ψ(P(x, y)) for all x, y ∈ M,

where ψ ∈ Ψb and P(x, y) is defined as in (13.25). Suppose that

(i) T is α-orbital admissible;
(ii) there exists x0 ∈ M such that α(x0, T x0) ≥ 1;
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(iii) either, T is continuous, or,
(iii)’ if {xn} is a sequence in M such that α(xn, xn+1) ≥ 1 for all n and xn →

x ∈ M as n → ∞, then there exists a subsequence {xn(k)} of {xn} such that
α(xn(k), x) ≥ 1 for all k.

(iv) the condition (U1) is fulfilled.

Then there exists a unique u ∈ M such that T u = u.

By letting α(x, y) = 1 for all x, y ∈ M in Corollary 13.22, we get that

Corollary 13.23 Let (M, p) be a b-complete metric space and let T : M → M
satisfy

p(T x, T y) ≤ ψ(P(x, y)) for all x, y ∈ M,

where ψ ∈ Ψb and P(x, y) is defined as in (13.25). Then there exists unique u ∈ M
such that T u = u.

In particular, by taking ψ(t) = kt , k ∈ [0, 1) in the corollary above, we have

Corollary 13.24 Let (M, p) be a complete partial metric space and let T : M → M
satisfy

p(T x, T y) ≤ kP(x, y) for all x, y ∈ M,

where k ∈ [0, 1) and P(x, y) is defined as in (13.25). Then there exists unique u ∈ M
such that T u = u.

It is quite easy to extend the list of consequences of the given theorems. For
instance, all results in this subsection can be reformulated in the setting of “cyclic
contractions” or “partially ordered set” as in Sects. 3.1 and 3.2. Furthermore, taking
Example 13.8 into account, we can deduce more consequences of the given theorems
involving simulation function.
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