
Chapter 11
On the Qualitative Behaviors of Nonlinear
Functional Differential Systems of Third
Order

Cemil Tunç

Abstract In this paper, the author gives new sufficient conditions for the bound-
edness and globally asymptotically stability of solutions to certain nonlinear delay
functional differential systemsof third order. The technique of proof involves defining
an appropriate Lyapunov–Krasovskii functional and applying LaSalle’s invariance
principle. The obtained results include and improve the results in literature.

11.1 Introduction

Ordinary and functional differential equations are frequently encountered as mathe-
matical models arisen from a variety of applications including control systems, elec-
trodynamics, mixing liquids, medicine, biomathematics, economics, atomic energy,
information theory, neutron transportation and population models, etc. In addition,
it is well known that ordinary and functional differential equations of third order
play extremely important and useful roles in many scientific areas such as atomic
energy, biology, chemistry, control theory, economy, engineering, information the-
ory, biomathematics,mechanics,medicine, physics, etc. For example, the readers can
find applications such as nonlinear oscillations in Afuwape et al. [8], Andres [11],
Fridedrichs [19], physical applications in Animalu and Ezeilo [12], nonresonant
oscillations in Ezeilo and Onyia [17], prototypical examples of complex dynamical
systems in a high-dimensional phase space, displacement in a mechanical system,
velocity, acceleration in Chlouverakis and Sprott [14], Eichhorn et al. [16] and Linz
[25], the biological model and other models in Cronin- Scanlon [15], electronic the-
ory in Rauch [32], problems in biomathematics in Chlouverakis and Sprott [14] and
Smith [36], etc.

Qualitative properties of solutions of ordinary and functional equations of third
order such as stability, instability, oscillation, boundedness, and periodicity of solu-
tions have been studied by many authors; in this regard, we refer the reader to the
monograph by Reissig et al. [33], and the papers of Adams et al. [1], Ademola and

C. Tunç (B)
Department of Mathematics, Yüzüncü Yıl University, 65080 Van, Turkey
e-mail: cemtunc@yahoo.com

© Springer Nature Singapore Pte Ltd. 2017
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Arawomo [2–5], Ademola et al. [6], Afuwape and Castellanos [7], Afuwape and
Omeike [9], Ahmad and Rao [10], Bai and Guo [13], Ezeilo and Tejumola [18],
Graef et al. [20, 21], Graef and Tunç [22], Kormaz and Tunç [24], Mahmoud and
Tunç [26], Ogundare [27], Ogundare et al. [28], Olutimo [29], Omeike [30], Qian
[31], Remili andOudjedi [34], Sadek [35], Swick [37], Tejumola andTchegnani [38],
Tunç [39]–[57], Tunç and Ates [58], Tunç and Gozen [59], Tunç and Mohammed
[60], Tunç and Tunç [61], Tunç [62, 63], Zhang and Yu [65], Zhu [66], and theirs
references.

However, to the best of our knowledge from the literature, by this time, a lit-
tle attention was given to the investigation of the stability/boundedness/ultimately
boundedness in functional differential systems of third order (see Mahmoud and
Tunç [26], Omeike [30], Tunç [56], Tunç and Mohammed [59]).

Recently, Tunç andMohammed [60],Mahmoud and Tunç [26], and Tunç [56] dis-
cussed the stability and boundedness in nonlinear vector delay differential equation
of third order, respectively:

X ′′′ + Ψ (X ′)X ′′ + BX ′(t − τ1) + cX (t − τ1) = P(t), (11.1)

X ′′′ + AX ′′ + G(X ′) + H(X (t − τ)) = P(t), (11.2)

and

X ′′′ + H(X ′)X ′′ + G(X ′(t − τ)) + cX (t − τ) = F(t, X, X ′, X ′′). (11.3)

In addition, very recently Omeike [30] investigated the stability and boundedness
in a nonlinear differential system of third order with variable delay, τ(t):

X ′′′ + AX ′′ + BX ′ + H(X (t − τ(t)) = P(t). (11.4)

In this paper, instead of these delay differential equations, we consider vector
delay differential equation of third order

X ′′′ + H(X ′)X ′′ + G(X ′(t − τ)) + Φ(X (t − τ)) = E(t, X, X ′, X ′′), (11.5)

where τ > 0 is the fixed constant delay, G : �n → �n and Φ : �n → �n are con-
tinuous differentiable functions with G(0) = Φ(0) = 0 and H is an n × n− contin-
uous differentiable symmetric matrix function. In addition, throughout this paper,
we assume that the Jacobian matrices JH (X ′), JG(X ′), and JΦ(X) exist and are
symmetric and continuous, that is,

JH (X ′) =
(

∂hik
∂x ′

j

)
, JG(X ′) =

(
∂gi
∂x ′

j

)
, JΦ(X) =

(
∂φi

∂x j

)
, (i, j, k = 1, 2, ..., n),
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where (x1, x2, ..., xn), (x ′
1, x

′
2, ..., x

′
n), (hik), (gi ), and (φi ) are components of X,X ′,

H ,G, andΦ, respectively; E : �+ × �n × �n × �n → �n is a continuous function,
�+ = [0,∞), and the primes in Eq. (11.5) indicate differentiation with respect to t ,
t ≥ t0 ≥ 0.

The continuity of the functions H , G, Φ, and E is a sufficient condition for
existence of the solutions of Eq. (11.5). In addition, we assume that the functions H ,
G, Φ and E satisfy a Lipschitz condition on their respective arguments, like X , X ′,
and X ′′. In this case, the uniqueness of solutions of Eq. (11.5) is guaranteed.

We can write equation as the system

X ′
1 = X2,

X ′
2 = X3,

X ′
3 = −H(X2)X3 − G(X2) − Φ(X1) +

∫ t

t−τ

JG(X2(s))X3(s)ds

+
∫ t

t−τ

JΦ(X1(s))X2(s)ds + E(t, X1, X2, X3), (11.6)

which were obtained by setting X = X1, X ′ = X2, X ′′ = X3 from Eq. (11.5).
It should be noted any investigation of the stability and boundedness in vector

functional differential equations of third order, using the Lyapunov–Krasovskii func-
tional method, first requires the definition or construction of a suitable Lyapunov–
Krasovskii functional, which gives meaningful results. In reality, this case can be
an arduous task. The situation becomes more difficult when we replace an ordinary
differential equation with a functional vector differential equation. However, once a
viable Lyapunov–Krasovskii functional has been defined or constructed, researchers
may end up with working with it for a long time, deriving more information about
stability. To arrive at the objective of this paper, we define a new suitable Lyapunov–
Krasovskii functional.

The motivation of this paper is inspired by the results established in Graef
and Tunç [22], Omeike [30], Mahmoud and Tunç [26], Tunç [56], Tunç and
Mohammed [60], Zhang and Yu [65], Zhu [66], the mentioned papers and theirs
references. The aim of this paper is to obtain some new globally asymptotically
stability/boundedness/ultimately boundedness results in Eq. (11.5). In verification
of our main results the Lyapunov–Krasovskii functional approach is used. By this
paper, we will extend and improve the results of Graef and Tunç [22], Omeike [30],
Mahmoud and Tunç [26], Tunç [56], Tunç and Mohammed [60], Zhang and Yu
[65], and Zhu [66]. It is clear that Eq. (11.5) includes Eqs. (11.1), (11.2), (11.3), and
(11.4) when τ(t) = τ (constant). In addition, this paper may be useful for researchers
working on the qualitative properties of solutions of functional differential equations.
These cases show the novelty and originality of the present paper.

One tool to be used here is the LaSalle’s invariance principle.
Consider delay differential system

ẋ = F(xt ), xt = x(t + θ), −r ≤ θ ≤ 0, t ≥ 0.
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We takeC = C([−r, 0],�n) to be the space of continuous function from [−r, 0] into
�n and ask that F : C → �n be continuous. We say that V : C → � is a Lyapunov
function on a set G ⊂ C relative to F if V is continuous on Ḡ, the closure of G,
V ≥ 0, V is positive definite, V̇ is defined on G, and V̇ ≤ 0 on G.

The following form of the LaSalle’s invariance principle can be found reference
in Smith [36].

Theorem 11.1 If V is a Lyapunov function on G and xt (φ) is a bounded solution
such that xt (φ) ∈ G for t ≥ 0, then ω(φ) 
= 0 is contained in the largest invariant
subset of E ≡ {ψ ∈ Ḡ : V̇ (ψ) = 0}, ω denotes the omega limit set of a solution.

The following lemmas are needed in the proofs of main results.

Lemma 11.1 (Hale [23]) Suppose F(0) = 0. Let V be a continuous functional
defined on CH = C with V (0) = 0, and let u(s) be a function, nonnegative and
continuous for 0 ≤ s < ∞, u(s) → ∞ as u → ∞ with u(0) = 0. If for all φ ∈ C,
u(|φ(0)|) ≤ V (φ), V (φ) ≥ 0, V̇ (φ) ≤ 0, then the zero solution of ẋ = F(xt ) is sta-
ble.

If we define Z = {φ ∈ CH : V̇ (φ) = 0}, then the zero solution of ẋ = F(xt ) is
asymptotically stable, provided that the largest invariant set in Z is Q = {0}.
Lemma 11.2 Let A be a real symmetric n × n-matrix. Then for any X1 ∈ �n

δa ‖X1‖2 ≤ 〈AX1, X1〉 ≤ Δa ‖X1‖2 ,

where δa and Δa are, respectively, the least and greatest eigenvalues of the matrix
A.

11.2 Stability

Our first result is for the case where E(.) ≡ 0.
Assume that there are positive constants ε, α, a0, a1, b0, b1, c0, and c such that

for all X1, X2 ∈ �n the following conditions hold:

(C1) a0b0c − c20 > 0, 1 − αa0 > 0, G(0) = 0, n × n-symmetric matrices JG and
H commute with each other, and

b0 ≤ λi (JG(X2)) ≤ b1, 2a0 + ε ≤ λi (H(X2)) ≤ a1;

(C2) Φ(0) = 0, c ≤ λi (JΦ(X1)) ≤ c0.
Let

�5 = 2(a0b0 − c0) − αa0b0[a0 + c−1(b1 − b0)
2] > 0

and
�6 = 2ε[1 − αa0b0c

−1(a1 − a0)
2] > 0.
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Theorem 11.2 Assume that E(.) ≡ 0 and conditions (C1) and (C2) hold. If

τ < min

{
αa0b0c

Δ1
,

�5

Δ2
,
2�6
Δ3

}
,

then all solutions of Eq. (11.5) are bounded and the zero solution of Eq. (11.5) is
globally asymptotically stable, where Δ1, Δ2, and Δ3 are some positive constants
to be determined later in the proof.

Proof We define a Lyapunov–Krasovskii functional V0 = V0(t) = V0(X1(t), X2(t),
X3(t)) given by

2V0 = 2a0

∫ 1

0
〈Φ(σ X1), X1〉 dσ + 2a0

∫ 1

0
〈σH(σ X2)X2, X2〉 dσ

+αa0b
2
0〈X1, X1〉 + 2

∫ 1

0
〈G(σ X2), X2〉 dσ

+〈X3, X3〉 + 2αa20b0〈X1, X2〉 + 2αa0b0〈X1, X3〉
+2a0〈X2, X3〉 + 2〈Φ(X1), X2〉 − αa0b0〈X2, X2〉
+2λ

∫ 0

−τ

∫ t

t+s
‖X2(θ)‖2 dθds + 2η

∫ 0

−τ

∫ t

t+s
‖X3(θ)‖2 dθds, (11.7)

where

0 < α < min

{
1

a0
,
a0
b0

,
a0b0 − c0

a0b0[a0 + c−1(b1 − b0)2] ,
c

a0b0(a1 − a0)2

}
,

a1 > a0, b1 
= b0, and λ and η are positive constants that will be determined later in
the proof.

It is clear that
V0(0, 0, 0) = 0.

From

Φ(0) = 0,
∂

∂σ
Φ(σ X1) = JΦ(σ X1)X1,

G(0) = 0,
∂

∂σ
G(σ X2) = JG(σ X2)X2,

and (C2), it follows that

2a0

∫ 1

0
〈Φ(σ X1), X1〉 dσ = 2

∫ 1

0

∫ 1

0
σ1 〈JΦ(σ1σ2X1)X1, X1〉 dσ1dσ2

≥ a0c ‖X1‖2
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and ∫ 1

0
〈G(σ X2), X2〉 dσ =

∫ 1

0

∫ 1

0
σ1 〈JG(σ1σ2X2)X2, X2〉 dσ1dσ2.

Then, from (11.7), we obtain

2V0 ≥ a0b0
∥∥∥a− 1

2
0 X2 + a

− 1
2

0 b−1
0 Φ(X1)

∥∥∥2
+ ‖X3 + a0X2 + αa0b0X1‖2

+2a0

∫ 1

0
〈σH(σ X2)X2, X2〉 dσ − 2a20 ‖X2‖2 + a0(a0 − αb0) ‖X2‖2

+2
∫ 1

0

∫ 1

0
σ1 〈JG(σ1σ2X2)X2, X2〉 dσ1dσ2 − b0 ‖X2‖2

+αa0b
2
0(1 − αa0) ‖X1‖2 + a0c 〈X1, X1〉 − b−1

0 〈Φ(X1),Φ(X1)〉
+2λ

∫ 0

−τ

∫ t

t+s
‖X2(θ)‖2 dθds + 2η

∫ 0

−τ

∫ t

t+s
‖X3(θ)‖2 dθds. (11.8)

From

Φ(0) = 0,
∂

∂σ1
Φ(σ1X1) = JΦ(σ1X1)X1,

it follows that

∂

∂σ1
〈Φ(σ1X1),Φ(σ1X1)〉 = 2 〈JΦ(σ1X1)X1, Φ(σ1X1)〉 .

Integrations of the last two estimates, from σ1 = 0 to σ1 = 1, respectively, imply

Φ(X1) =
∫ 1

0
JΦ(σ1X1)X1dσ1

and

〈Φ(X1),Φ(X1)〉 = 2
∫ 1

0
〈JΦ(σ1X1)X1, Φ(σ1X1)〉 dσ1.

Further, it is clear that

∂

∂σ2
〈Φ(σ1σ2X1), JΦ(σ1X1)X1〉 = 〈σ1 JΦ(σ1X1)X1, JΦ(σ1X1)X1〉 .

Integration of the both sides of the last equality, from σ2 = 0 to σ2 = 1, implies

〈Φ(σ1X1), JΦ(σ1X1)X1〉 =
∫ 1

0
〈σ1 JΦ(σ1X1)X1, JΦ(σ1X1)X1〉 dσ2.
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From these estimates and assumptions (C1) and (C2), we have

〈Φ(X1),Φ(X1)〉 = 2
∫ 1

0

∫ 1

0
〈σ1 JΦ(σ1X1)X1, JΦ(σ1X1)X1〉 dσ1dσ2 ≤ c20 ‖X1‖2 ,

a0c 〈X1, X1〉 − b−1
0 〈Φ(X1),Φ(X1)〉 ≥ (a0c − b−1

0 c20) ‖X1‖2 ≥ 0,

2
∫ 1

0
〈G(σ X2), X2〉 dσ = 2

∫ 1

0

∫ 1

0
σ1 〈JG(σ1σ2X2)X2, X2〉 dσ1dσ2 ≥ δb ‖X2‖2 ,

2a0

∫ 1

0
〈σH(σ X2)X2, X2〉 dσ − 2a20 ‖X2‖2

= 2a0

∫ 1

0

∫ 1

0
σ1 〈JH (σ1σ2X2)X2, X2〉 dσ1dσ2 − 2a20 ‖X2‖2 ≥ εa0 ‖X2‖2 ,

2
∫ 1

0

∫ 1

0
σ1 〈JG(σ1σ2X2)X2, X2〉 dσ1dσ2 − b0 ‖X2‖2 ≥ 0,

αa0b
2
0(1 − αa0) ‖X1‖2 = μ1 ‖X1‖2 , μ1 = αa0b

2
0(1 − αa0) > 0,

(a0c − b−1
0 c20) ‖X1‖2 = μ2 ‖X1‖2 , μ2 = (a0c − b−1

0 c20) > 0,

a0(a0 − αb0) ‖X2‖2 = μ3 ‖X2‖2 , μ3 = a0(a0 − αb0) > 0.

Combining these estimates into (11.8), it follows that

V0 ≥ 1

2
a0b0

∥∥∥a− 1
2

0 X2 + a
− 1

2
0 b−1

0 Φ(X1)

∥∥∥2

+1

2
‖X3 + a0X2 + αa0b0X1‖2

+1

2
(μ1 + μ2) ‖X1‖2 + 1

2
(a0ε + μ3) ‖X2‖2

+2λ
∫ 0

−τ

∫ t

t+s
‖X2(θ)‖2 dθds + 2η

∫ 0

−τ

∫ t

t+s
‖X3(θ)‖2 dθds. (11.9)

It can be obtained from the first four terms of (11.9) that there exist sufficiently small
positive constants �i , (i = 1, 2, 3), such that

V0 ≥ �1 ‖X1‖2 + �2 ‖X2‖2 + �3 ‖X3‖2 .
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Let
�4 = min{�1, �2, �3}.

Then
V0 ≥ �4(‖X1‖2 + ‖X2‖2 + ‖X3‖2).

Therefore, we can conclude that the Lyapunov–Krasovskii functional V0 is positive
definite.

Differentiating the Lyapunov–Krasovskii functional V0(t) along any solution
(X1(t), X2(t), X3(t)) of (11.6), it follows from (11.7) and (11.6) that

V̇0(t) = −αa0b0 〈Φ(X1), X1〉 − a0 〈G(X2), X2〉 + 〈JΦ(X1)X2, X2〉
+αa20b0 ‖X2‖2 − αa0b0 〈X1, H(X2)X3〉 + αa20b0 〈X1, X3〉
− 〈H(X2)X3, X3〉 + a0 ‖X3‖2 − αa0b0 〈X1,G(X2)〉
+αa0b

2
0 〈X1, X2〉 +

〈
X3,

∫ t

t−τ

JG(X2(s))X3(s)ds

〉

+
〈
X3,

∫ t

t−τ

JΦ(X1(s))X2(s)ds

〉
+ αa0b0

〈
X1,

∫ t

t−τ

JG(X2(s)X3(s)ds

〉

+αa0b0

〈
X1,

∫ t

t−τ

JΦ(X1(s))X2(s)ds

〉
+ a0

〈
X2,

∫ t

t−τ

JG(X2(s))X3(s)ds

〉

+a0

〈
X2,

∫ t

t−τ

JΦ(X1(s))X2(s)ds

〉
+ λτ ‖X2‖2 + ητ ‖X3‖2

−λ

∫ t

t−τ

‖X2(θ)‖2 dθ − η

∫ t

t−τ

‖X3(θ)‖2 dθ.

From (C1) and (C2), we find

−αa0b0 〈Φ(X1), X1〉 = −αa0b0

∫ 1

0
〈JΦ(σ1X1)X1, X1〉 dσ1

≤ −αa0b0c ‖X1‖2

and
〈JΦ(X1)X2, X2〉 ≤ c0 ‖X2‖2 .

Then
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V̇0(t) ≤ −1

2
αa0b0c ‖X1‖2 − 〈a0G(X2), X2〉

+ 〈
(c0 I + αa20b0 I )X2, X2

〉 − 〈(H(X2) − a0 I )X3, X3〉
−1

4
αa0b0

∥∥∥c 1
2 X1 + 2c− 1

2 (H(X2) − a0 I )X3

∥∥∥2

+1

4
αa0b0

∥∥∥2c− 1
2 (H(X2) − a0 I )X3

∥∥∥2

−1

4
αa0b0

∥∥∥c 1
2 X1 + 2c− 1

2 (G(X2)X2 − b0X2)

∥∥∥2

+1

4
αa0b0

∥∥∥2c− 1
2 (G(X2)X2 − b0X2)

∥∥∥2

+
〈
X3,

∫ t

t−τ

JG(X2(s))X3(s)ds

〉
+

〈
X3,

∫ t

t−τ

JΦ(X1(s))X2(s)ds

〉

+αa0b0

〈
X1,

∫ t

t−τ

JG(X2(s)X3(s)ds

〉

+αa0b0

〈
X1,

∫ t

t−τ

JΦ(X1(s))X2(s)ds

〉

+a0

〈
X2,

∫ t

t−τ

JG(X2(s))X3(s)ds

〉

+a0

〈
X2,

∫ t

t−τ

JΦ(X1(s))X2(s)ds

〉
+ λτ ‖X2‖2 + ητ ‖X3‖2

−λ

∫ t

t−τ

‖X2(θ)‖2 dθ − η

∫ t

t−τ

‖X3(θ)‖2 dθ. (11.10)

Assumptions (C1) and (C2), imply that

〈a0G(X2), X2〉 =
∫ 1

0
〈a0 JG(σ X2)X2, X2〉 dσ

≥ a0b0 ‖X2‖2 ,

〈a0G(X2), X2〉 − 〈
(c0 I + αa20b0 I )X2, X2

〉
≥ (a0b0 − c0 − αa20b0) ‖X2‖2 ,
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〈
X3,

∫ t

t−τ

JG(X2(s))X3(s)ds

〉
≤ ‖X3‖

∫ t

t−τ

‖JG(X2(s))‖ ‖X3(s)‖ ds

≤ √
nb1 ‖X3‖

∫ t

t−τ

‖X3(s)‖ ds

≤ 1

2

√
nb1

∫ t

t−τ

{‖X3(t)‖2 + ‖X3(s)‖2}ds

= 1

2

√
nb1τ ‖X3‖2 + 1

2

√
nb1

∫ t

t−τ

‖X3(s)‖2 ds,

〈
X3,

∫ t

t−τ

JΦ(X1(s))X2(s)ds

〉
≤ ‖X3‖

∫ t

t−τ

JΦ(X1(s)) ‖X2(s)‖ ds

≤ √
nc0 ‖X3‖

∫ t

t−τ

‖X2(s)‖ ds

≤ 1

2

√
nc0τ ‖X3‖2 + 1

2

√
nc0

∫ t

t−τ

‖X2(s)‖2 ds,

αa0b0

〈
X1,

∫ t

t−τ

JG(X2(s)X3(s)ds

〉
≤ αa0b0 ‖X1‖

∫ t

t−τ

‖JG(X2(s))‖ ‖X3(s)‖ ds

≤ 1

2
αa0b0b1

√
n

∫ t

t−τ

{‖X1(t)‖2 + ‖X3(s)‖2}ds

= 1

2
αa0b0b1τ

√
n ‖X1‖2

+1

2
αa0b0b1

√
n

∫ t

t−τ

‖X3(s)‖2 ds,

αa0b0

〈
X1,

∫ t

t−τ

JΦ(X1(s))X2(s)ds

〉
≤ αa0b0c0

√
n ‖X1‖

∫ t

t−τ

‖X2(s)‖ ds

≤ 1

2
αa0b0c0τ

√
n ‖X1‖2

+1

2
αa0b0c0

√
n

∫ t

t−τ

‖X2(s)‖2 ds,
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a0

〈
X2,

∫ t

t−τ

JG(X2(s))X3(s)ds

〉

≤ a0b1 ‖X2‖
∫ t

t−τ

‖JG(X2(s))‖ ‖X3(s)‖ ds

≤ 1

2
a0b1τ

√
n ‖X2‖2 + 1

2
a0b1

√
n

∫ t

t−τ

‖X3(s)‖2 ds,

a0

〈
X2,

∫ t

t−τ
JΦ(X1(s))X2(s)ds

〉
≤ a0c0

√
n ‖X2‖

∫ t

t−τ
‖X2(s)‖ ds

≤ 1

2
a0c0

√
n

∫ t

t−τ
{‖X2(t)‖2 + ‖X2(s)‖2}ds

= 1

2
a0c0τ

√
n ‖X2‖2 + 1

2
a0c0

√
n

∫ t

t−τ
‖X2(s)‖2 ds.

Gathering all these estimates into (11.10) and rearranging we deduce that

V̇0(t) ≤ −1

2
αa0b0c ‖X1‖2 − (a0b0 − c0 − αa20b0) ‖X2‖2

−〈(H(X2) − a0 I )X3, X3〉
−1

4
αa0b0

∥∥∥c 1
2 X1 + 2c− 1

2 (H(X2) − a0 I )X3

∥∥∥2

+1

4
αa0b0

∥∥∥2c− 1
2 (H(X2) − a0 I )X3

∥∥∥2

−1

4
αa0b0

∥∥∥c 1
2 X1 + 2c− 1

2 (G(X2) − b0 I )X2

∥∥∥2

+1

4
αa0b0

∥∥∥2c− 1
2 (G(X2) − b0 I )X2

∥∥∥2

+1

2
αa0b0b1τ

√
n ‖X1‖2 + 1

2
αa0b0c0τ

√
n ‖X1‖2

+1

2
a0b1τ

√
n ‖X2‖2 + 1

2
a0c0τ

√
n ‖X2‖2

+1

2
b1τ

√
n ‖X3‖2 + 1

2
c0τ

√
n ‖X3‖2 + λτ ‖X2‖ 2 + ητ ‖X3‖2

−{λ − 1

2
(a0 + αa0b0 + 1)c0

√
n}

∫ t

t−τ

‖X2(s)‖2 ds

−{η − (1 + a0 + 1

2
αa0b0)b1

√
n}

∫ t

t−τ

‖X3(s)‖2 ds.

Let

λ = 1

2
(a0 + αa0b0 + 1)c0

√
n and η = (1 + a0 + 1

2
αa0b0)b1

√
n.
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Hence, we obtain

V̇0(t) ≤ −1

2
αa0b0c ‖X1‖2 − (a0b0 − c0 − αa20b0) ‖X2‖2

−〈(H(X2) − a0 I )X3, X3〉
+1

4
αa0b0

∥∥∥2c− 1
2 (H(X2) − a0 I )X3

∥∥∥2

+1

4
αa0b0

∥∥∥2c− 1
2 (G(X2) − b0 I )X2

∥∥∥2

+1

2
(αa0b0b1 + αa0b0c0)τ

√
n ‖X1‖2

+1

2
(a0b1 + a0c0)τ

√
n ‖X2‖2

+1

2
(a0 + αa0b0 + 1)c0

√
nτ ‖X2‖2

+1

2
b1τ

√
n ‖X3‖2 + 1

2
c0τ

√
n ‖X3‖2

+(1 + a0 + 1

2
αa0b0)b1

√
nτ ‖X3‖2 .

In view the facts

1

4
αa0b0

∥∥∥2c− 1
2 (G(X2) − b0 I )X2

∥∥∥2

= αa0b0
〈
c−1(G(X2) − b0 I )X2, (G(X2) − b0 I )X2

〉
and

1

4
αa0b0

∥∥∥2c− 1
2 (H(X2) − a0 I )X3

∥∥∥2

= αa0b0
〈
c−1(H(X2) − a0 I )X3, (H(X2) − a0 I )X3

〉
,

it follows that

V̇0(t) ≤ −1

2
αa0b0c ‖X1‖2 − (a0b0 − c0 − αa20b0) ‖X2‖2

−〈(H(X2) − a0 I )X3, X3〉
+αa0b0

〈
c−1(H(X2) − a0 I )X3, (H(X2) − a0 I )X3

〉
+αa0b0

〈
c−1(G(X2) − b0 I )X2, (G(X2) − b0 I )X2

〉
+1

2
(αa0b0b1 + αa0b0c0)

√
nτ ‖X1‖2

+1

2
(a0b1 + a0c0)

√
nτ ‖X2‖2
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+1

2
(a0 + αa0b0 + 1)c0

√
nτ ‖X2‖2

+(
3

2
+ a0 + c0

2b1
+ 1

2
αa0b0)b1

√
nτ ‖X3‖2 .

By Lemma 11.2 and (C1) and (C2), we can obtain

V̇0(t) ≤ −1

2
{αa0b0c − (αa0b0b1 + αa0b0c0)

√
nτ } ‖X1‖2

− 〈{(a0b0 − c0) − αa0b0[a0 I + c−1(G(X2) − b0 I )
2]}X2, X2

〉
+1

2
(a0b1 + 2a0c0 + αa0b0c0 + c0)

√
nτ ‖X2‖2

− 〈{(H(X2) − a0 I )[I − αa0b0c
−1(H(X2) − a0 I )]}X3, X3

〉
+(

3

2
+ a0 + c0

2b1
+ 1

2
αa0b0)b1

√
nτ ‖X3‖2

≤ −1

2
{αa0b0c − (αa0b0b1 + αa0b0c0)

√
nτ } ‖X1‖2

−{(a0b0 − c0) − αa0b0[a0 + c−1(b1 − b0)
2]} ‖X2‖2

+1

2
(a0b1 + 2a0c0 + αa0b0c0 + c0)

√
nτ ‖X2‖2

−ε[1 − αa0b0c
−1(a1 − a0)

2] ‖X3‖2

+(
3

2
+ a0 + c0

2b1
+ 1

2
αa0b0)b1

√
nτ ‖X3‖2 .

Let
�5 = 2(a0b0 − c0) − αa0b0[a0 + c−1(b1 − b0)

2] > 0

and
�6 = 2ε[1 − αa0b0c

−1(a1 − a0)
2] > 0.

Hence,

V̇0(t) ≤ −1

2
{αa0b0c − (αa0b0b1 + αa0b0c0)

√
nτ } ‖X1‖2

−1

2
{�5 − [((a0b1 + 2a0c0 + αa0b0c0 + c0)]√nτ } ‖X2‖2

−1

2
{�6 − (

3

2
+ a0 + c0

2b1
+ 1

2
αa0b0)b1

√
nτ } ‖X3‖2 .

If

τ < min

{
αa0b0c

Δ1
,

�5

Δ2
,
2�6
Δ3

}
,
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then, for some positive constants �7, �8, and �9,

V̇0(t) ≤ −�7 ‖X1‖2 − �8 ‖X2‖2 − �9 ‖X3‖2 ≤ 0,

where

Δ1 = αa0b0(b1 + c0)
√
n, Δ2 = (a0b1 + 2a0c0 + αa0b0c0 + c0)]√n,

Δ3 = (3b1 + 2a0b1 + c0 + αa0b0b1)
√
n.

In addition, we can conclude that

V0(X1, X2, X3) → ∞ as ‖X1‖2 + ‖X2‖2 + ‖X3‖2 → ∞.

Consider the set defined by

Ω ≡ {(X1, X2, X3) : V̇0(X1, X2, X3) = 0}.

If we apply the LaSalle’s invariance principle, then (X1, X2, X3) ∈ Ω implies
that X1 = X2 = X3 = 0. Clearly, this result implies that the largest invariant set
contained in Ω is (0, 0, 0) ∈ Ω . By Lemma 11.2, we conclude that the zero solution
of (11.6) is globally asymptotically stable. Hence, all solutions of Eq. (11.5) are
bounded and the zero solution of Eq. (11.5) is globally asymptotically stable. This
proves Theorem 11.2. �

11.3 Boundedness

Our second result is for the case where E(.) 
= 0.
Assume that the following condition holds:

(C3) ‖E(t, X1, X2, X3)‖ ≤ e(t) for all t ≥ 0, max e(t) < ∞ and e ∈ L1(0,∞),

where L1(0,∞) denotes the space of Lebesgue integrable functions.

Theorem 11.3 Assume that E(.) 
= 0 and conditions (C1), (C2), and (C3) hold. If

τ < min

{
αa0b0c

Δ1
,

�5

Δ2
,
2�6
Δ3

}
,

then there exists a constant K > 0 such that any solution (X1(t), X2(t), X3(t)) of
(11.6) determined by

X1(0) = X10, X2(0) = X20, X3(0) = X30
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satisfies
‖X1(t)‖ ≤ K , ‖X2(t)‖ ≤ K , ‖X3(t)‖ ≤ K

for all t ∈ �+.

Proof Let E(.) = E(t, X1, X2, X3) 
= 0. If assumptions (C1), (C2), and (C3) hold,
then we can obtain

V̇0(t) ≤ −1

2
{αa0b0c − (αa0b0b1 + αa0b0c0)

√
nτ } ‖X1‖2

−1

2
{�5 − [((a0b1 + 2a0c0 + αa0b0c0 + c0)]

√
nτ } ‖X2‖2

−1

2
{�6 − (

3

2
+ a0 + c0

2b1
+ 1

2
αa0b0)b1

√
nτ } ‖X3‖2

+〈X3, E(.)〉 + αa0b0 〈X1, E(.)〉 + a0 〈X2, E(.)〉
≤ −�7 ‖X1‖2 − �8 ‖X2‖2 − �9 ‖X3‖2

+(αa0b0 ‖X1‖ + a0 ‖X2‖ + ‖X3‖) ‖E(.)‖
≤ �(‖X1‖ + ‖X2‖ + ‖X3‖) ‖E(.)‖
≤ �(3 + ‖X1‖2 + ‖X2‖2 + ‖X3‖2)e(t),

where
� = max{αa0b0, a0, 1}.

It is obvious that
‖X1‖2 + ‖X2‖2 + ‖X3‖2 ≤ �−1

4 V0.

Then
V̇0(t) ≤ 3�e(t) + ��−1

4 V0(t)e(t).

Integrating both sides of the last estimate from 0 to t (t ≥ 0), we have

V0(t) ≤ V0(0) + 3�
∫ t

0
e(s)ds + ��−1

4

∫ t

0
V0(s)e(s)ds.

Let

M = V0(0) + 3�
∫ ∞

0
e(s)ds.

Then

V0(t) ≤ M + ��−1
4

∫ ∞

0
V0(s)e(s)ds.

From the Gronwall-Bellman inequality, we can get
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V0(t) ≤ M exp(��−1
4

∫ ∞

0
e(s)ds).

In view of ‖X1‖2 + ‖X2‖2 + ‖X3‖2 ≤ �−1
4 V0 and the assumption e ∈ L1(0,∞), we

can conclude that all solutions of (11.6) are bounded. The proof of Theorem 11.3 is
complete. �

11.4 Ultimately Boundedness

Our last result is for the case where E(.) 
= 0.
Assume that the following condition holds:

(C4) ‖E(t, X1, X2, X3)‖ ≤ Δ for all t ≥ 0, where Δ is a positive constant.

Theorem 11.4 Assume that E(.) 
= 0 and conditions (C1), (C2), and (C4) hold. If

τ < min

{
αa0b0c

Δ1
,

�5

Δ2
,
2�6
Δ3

}
,

then there exists a constant K1 > 0 such that any solution (X1(t), X2(t), X3(t)) of
(11.6) determined by

X1(0) = X10, X2(0) = X20, X3(0) = X30

ultimately satisfies

‖X1(t)‖2 + ‖X2(t)‖2 + ‖X3(t)‖2 ≤ K1

for all t ∈ �+.

Proof Let E(.) = E(t, X1, X2, X3) 
= 0. If assumptions (C1), (C2), and (C4) hold,
then we can arrive at

V̇0(t) ≤ −�7 ‖X1‖2 − �8 ‖X2‖2 − �9 ‖X3‖2
+(αa0b0 ‖X1‖ + a0 ‖X2‖ + ‖X3‖) ‖E(.)‖

≤ −�7 ‖X1‖2 − �8 ‖X2‖2 − �9 ‖X3‖2
+(αa0b0δ0 ‖X1‖ + a0δ0 ‖X2‖ + δ0 ‖X3‖).

The remaining of the proof can be completed by following a similar procedure as
shown in Omeike [30]. Therefore, we omit the details of the proof. �
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Conclusion
A class of nonlinear vector functional differential equations of third order with a
constant delay has been considered. Qualitative properties of solutions like globally
asymptotically stability/boundedness/ultimately boundedness of solutions have been
investigated. The technique of proofs involves defining an appropriate Lyapunov–
Krasovskii functional. Our results include and improve some recent results in the
literature.
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