
Chapter 8
Asynchronous Blind Rendezvous
Algorithms for Anonymous Users

Abstract In this chapter, we present symmetric algorithms for the blind rendezvous
problem between two asynchronous, anonymous users. In the rendezvous setting,
we fix Alg, T ime, and I D as follows:

RS =< Alg-S,Asyn, Port,Anon,Non-Obli > (8.1)

where Port ∈ {Port − S, Port − AS}, which implies that we will design efficient
algorithms that have good performance for both symmetric and asymmetric port sit-
uations. In this chapter, we will introduce a commonly used technique in designing
rendezvous algorithms for cognitive radio networks, which is called Channel Hop-
ping (CH) [1, 2, 11, 13, 14]. The intuitive idea is: in order to guarantee rendezvous
for asynchronous users, the rule to access the licensed channels (in the network)
should be periodic. Thus, we should construct a sequence of fixed length, such as
S = {s0, s1, . . . , sT−1} where si is an available channel and the user hops among the
channels by repeating the sequence, i.e. they access st mod T at time t . Rendezvous
in the distributed system is similar to rendezvous in the cognitive radio networks,
and we can use the Channel Hopping technique to design efficient algorithms. In a
distributed system, the available port sets for asymmetric users could be different,
and different users may construct different hopping sequences. Therefore, it is diffi-
cult to design efficient algorithms (or short hopping sequences) that are suitable for
all users. Moreover, the lower bound of such sequence cannot be derived directly
when the sequences for different users vary, which is important for evaluating and
verifying the efficiency of any proposed rendezvous algorithm. Therefore, we intro-
duce Global Sequence (GS) based rendezvous algorithms to alleviate the impact of
asymmetry in the ports’ occupancy; the intuitive idea is: design a fixed sequence
S = {s0, s1, . . . , sT−1} for all users based on the full port setU = {1, 2, . . . , N } and
each user hops among the ports by repeating the sequence (modification on the
sequence may exist when some ports are not available for communication). Specifi-
cally, the GS based rendezvous algorithms work in two phases:

Phase 1: Assume all users have the same available port set U and design the GS
on the basis of U ;

© Springer Nature Singapore Pte Ltd. 2017
Z. Gu et al., Rendezvous in Distributed Systems,
DOI 10.1007/978-981-10-3680-4_8

77

78 8 Asynchronous Blind Rendezvous Algorithms for Anonymous Users

Phase 2: Each user modifies the sequence according to its own available port
set, i.e. when the user should access an unavailable port by the original hopping
sequence, replace it with an available one that is picked randomly or by some
pre-defined rules.

In this chapter, we introduce efficient GS based algorithms which can guaran-
tee rendezvous for both symmetric and asymmetric users in a short time. To begin
with, we introduce two simple algorithms for two asynchronous users that are port-
symmetric in Sects. 8.1 and 8.2. Then, we introduce three GS based algorithms that
have good performance for both port-symmetric and port-asymmetric scenarios. We
introduce the Channel Rendezvous Sequence (CRSEQ) algorithm in Sect. 8.3, the
Jump Stay (JS) algorithm in Sect. 8.4, and the Disjoint Relax Different Set (DRDS)
based algorithm in Sect. 8.5. We also show the lower bound of such a GS based
rendezvous algorithm in Sect. 8.6. We summarize the chapter in Sect. 8.7.

8.1 Generated Orthogonal Sequence (GOS)

Generated Orthogonal Sequence (GOS) [5] is considered pioneering work in cog-
nitive radio networks, which generates a hopping sequence of length N (N + 1) on
the basis of a random permutation of the set {1, 2, . . . , N }. Technically, a random
permutation of {1, 2, . . . , N } is chosen from the N ! permutations. Then the GOS is
constructed as follows:

(1) Denote the random permutation of {1, 2, . . . , N } as {k1, k2, . . . , kN };
(2) the GOS consists of N phases where each phase contains N + 1 elements;
(3) for phase i , construct the phase as {ki , k1, k2, . . . , kN };

We can regard this process as embedding the permutation N times within a super-
sequence of the permutation. Figure8.1 depicts the example of the construction,
where a permutation {2, 4, 1, 3} is selected when N = 4, and the GOS sequence is

Fig. 8.1 An example of the Generated Orthogonal Sequence

8.1 Generated Orthogonal Sequence (GOS) 79

constructed by the steps introduced.However, this algorithm is limited to the situation
that all channels are available. We show the correctness of GOS briefly.

First, if two users repeat the same GOS at the same time, rendezvous happens in
the first time slot. So we only need to consider two asynchronous users hopping with
the same GOS. Without loss of generality, assume user ui is δ time slots earlier than
user u j , and then there are two situations according to different δ values:

(1) δ%(N + 1) = 0. It is easy to check that in the first phase of user u j , it runs the
same sequence of length N except the first number because they all use the same
permutation {k1, k2, . . . , kN } after ki for the i-th phase;

(2) δ%(N + 1) �= 0. The first number of the N phases of user u j will meet every
number in the permutation {k1, k2, . . . , kN } and thus rendezvous is guaranteed.

Combining these two situations, the GOS can guarantee rendezvous between two
users if all channels are available.

8.2 Deterministic Rendezvous Sequence (DRSEQ)

GOS can guarantee rendezvous between two asynchronous users under the situa-
tion that the all ports are available (it is easy to extend the algorithm to a distrib-
uted system), which is a very special port-symmetric situation. Following this work,
Deterministic Rendezvous Sequence (DRSEQ) of length 2N + 1 is proposed in [15],
which works better under the situation that all ports are available. The main idea of
the algorithm is to construct a simple sequence as:

{1, 2, . . . , N , e, N , N − 1, . . . , 1} (8.2)

where emeans the user can choose no (or any) port at this moment. Figure8.2 shows
an example of the rendezvous situations when N = 4. Supposing user ui starts at
time 0, the constructed sequence is:

{1, 2, 3, 4, e, 4, 3, 2, 1} (8.3)

When user u j starts the algorithm, we suppose it is δ time slots later than user ui .
When δ ∈ [0, 8], we list the rendezvous situations in the figure.

The correctness can be verified. Denote the constructed sequence as {a0, a1, . . . ,
a2N } and each element in the sequence is constructed by the following equations:

ai =
⎧
⎨

⎩

i + 1 when 0 ≤ i < N
e when i = N
2N + 1 − i when N + 1 ≤ i ≤ 2N + 1

(8.4)

Therefore, when one user is δ time slots earlier than the other, we can use the
equations to compute the rendezvous port easily. For example, when δ = 1, suppose

80 8 Asynchronous Blind Rendezvous Algorithms for Anonymous Users

Fig. 8.2 An example of Deterministic Rendezvous Sequence when N = 4

rendezvous happens at time t . If 0 ≤ t ≤ N , we can check that at �= at+1. If N +
1 ≤ i ≤ 2N , at �= at+1 since N + 1 ≤ t + 1 ≤ 2N + 1. Then when t = 2N + 1,
at = 1 and at+1 = a1 = 1. Therefore, rendezvous happens on port 1 and the time to
rendezvous is 2N + 1.

The algorithm can guarantee rendezvous between two asynchronous users no
matter what value δ is equal to. The readers could derive the time to rendezvous of
various δ values.

8.3 Channel Rendezvous Sequence (CRSEQ) Algorithm

Channel Rendezvous Sequence (CRSEQ) [13] is the first algorithm guaranteeing
rendezvous in a bounded time when only a portion of the channels are available
in a cognitive radio network. The main technique is to design a global sequence
based on the triangle number. There are P periods in constructing the CRSEQ,
where P is the smallest prime number suiting P > N and each period consists of

8.3 Channel Rendezvous Sequence (CRSEQ) Algorithm 81

Table 8.1 MTTR Comparison for GS based rendezvous algorithms

Algorithms Symmetric Asymmetric

GOS [5] N (N + 1) = O(N 2) −
DRSEQ [15] 2N + 1 = O(N) −
CRSEQ [13] P(3P − 1) = O(N 2) P(3P − 1) = O(N 2)

Jump-Stay [11] 3P = O(N) 3N P(P − G) = O(N 3)

EJS [10] O(N) O(N 2)

DRDS [6] 3P = O(N) 3P2 + 2P = O(N 2)

Remarks: (1) “−” means DRSEQ and GOS are inapplicable to asymmetric users; (2) P is the
smallest prime number no less than N , P = O(N)

3P − 1 number. For the i-th period where i ∈ [1, P], denote the triangle number as
Ti = i(i+1)

2 and the constructed period as {ai,0, ai,1, . . . , ai,3P−2}, the period can be
constructed according to the following equations:

ai, j =
{
Ti + j mod P + 1 when 0 ≤ j < 2P − 1
� i
3P−1� mod P + 1 when N + 1 ≤ i ≤ 2N + 1

(8.5)

CRSEQ can guarantee rendezvous for two users in 3P2 time slots when the users
share some common available channels. However, it works badly when the users are
symmetric as shown in Table8.1. We omit the proof of the correctness and the reader
may refer to [13] for more details.

8.4 Jump Stay Algorithm

Jump-Stay (JS) [11] is another efficient algorithm which guarantees fast rendezvous
between symmetric users in cognitive radio networks. The main idea is similar to
CRSEQ, which generates the global sequence of P periods and each period contains
two jump frames and one stay frame (each frame contains P numbers, where P is
the smallest prime number larger than the number of all licensed channels N).

We describe the two types of frames as follows. Denote the starting index as i and
the step length as r . In the jump frame, the j-th number (denote as a j) is computed by:

a j = (i + r ∗ j − 1) mod P + 1 (8.6)

and each frame contains P numbers. In the stay frame, the users stays at channel i
for P time slots.

82 8 Asynchronous Blind Rendezvous Algorithms for Anonymous Users

Fig. 8.3 Jump Stay Algorithm

We describe the JS algorithm as follows:

(1) Compute P as the smallest prime number larger than the number of all channels
N ;

(2) denote the initiate starting channel as i0 ∈ [1, N] and initiate step length r0 ∈
[1, p);

(3) the sequence is composed of N rounds, and the starting index is i0 + k in the
k-th round;

(4) in the first round, the starting index keeps at channel i0 and there are N loops
inside each round;

(5) in the i-th loop, the step length is r0 + i and three frames are constructed as
Jump, Jump, Stay on the basis of starting index and step length;

(6) if the chosen channel is larger than N , i.e. (N , P], map these values to [1, N]
by modular operation;

(7) If the chosen channel is not available, replace it by a random available channel.

From the construction, each frame contains P numbers, each loop contains 3
frames, i.e. 3P numbers, and each round contains N loops, i.e. 3N P numbers. There-
fore, the constructed sequence consists of N rounds with 3N 2P numbers. Figure8.3
illustrates the construction (in [11], M represents the number of all channels). The
construction can guarantee rendezvous between two (synchronous or asynchronous)
(symmetric or asymmetric) users within 3N 2P time slots. We omit the details and
reader may refer to [11] for details.

As shown inTable 8.1, although JSguarantees rendezvous between two symmetric
users in a short time (O(N) time slots), the MTTR value for two asymmetric users
could be as large as O(N 3) which is inacceptable.

Enhanced Jump Stay (EJS) [10] is a modified version such that rendezvous can be
achieved in O(N 2) time slots for two asymmetric users, but the main idea does not
change. We would not introduce the modification and the readers who are interested
in the JS algorithm could suggest some modifications that can reduce the rendezvous
time.

8.5 Disjoint Relaxed Different Set (DRDS) Based Rendezvous Algorithm 83

8.5 Disjoint Relaxed Different Set (DRDS) Based
Rendezvous Algorithm

We present an efficient rendezvous algorithm that has the best performance for both
symmetric and asymmetric users [6]. The DRDS method guarantees rendezvous for
two symmetric users in O(N) time slots, and in O(N 2) time slots for two asym-
metric users. This method also can be modified such that two symmetric users can
rendezvous in O(1) time slots. We introduce the method in details in this section.

8.5.1 Global Sequence (GS)

We define the Global Sequence (GS) as follow:

Definition 8.1 We call S = {s0, s1, . . . , sT−1} a Global Sequence (GS) where ∀si ∈
S, it is chosen from the full port set U = {1, 2, . . . , N }.

Generally, the GS should contain every port (the label of the port) in U since
the users are not aware of the available ports in U beforehand. We call the hopping
sequence a good GS if the following two properties are satisfied.

Property 8.1 The constructed GS has a fixed length T .

Property 8.2 For a GS S′ = {s0, s1, . . . , sT−1}, ∀δt ≥ 0 and ∀i ∈ C, there exists
t ≤ T such that st mod T = i and s(t+δt) mod T = i .

The first property guarantees that the users can repeat the sequence periodically
since they can start the rendezvous process in different time slots. This is the main
difference between two synchronous or asynchronous users. The second property
guarantees rendezvous for any two port-asymmetric, asynchronous users once they
begin to share some common available ports. Formally, we derive the result in the
following theorem.

Theorem 8.1 Two (port-symmetric or port-asymmetric, synchronous or asynchro-
nous) users can rendezvous in T time slots if they both adopt a good GS of length T .

Proof Without loss of generality, supposing the available port sets for the two users
ui and u j are Ci ,C j respectively, one user is δ ≥ 0 time slots earlier than the other;
denote the good GS as S = {s0, s1, . . . , sT−1} where si ∈ U, 0 ≤ i < T .

For any common available port k ∈ Ci
⋂

C j , according to Property 8.2, there
exists t ≤ T such that: {

st mod T = k
s(t+δ) mod T = k

(8.7)

Since the user who starts earlier (no later than the other) accesses port st+δ while
the other user accesses port st , rendezvous is achieved on port k in t ≤ T time slots,
which concludes the theorem.

84 8 Asynchronous Blind Rendezvous Algorithms for Anonymous Users

Fig. 8.4 An example of good GS

For example, we design a good GS for two ports as {1, 2, 2, 1, 2, 1} which is
of length 6; Fig. 8.4 shows that the sequence suits Property 8.2 since rendezvous is
achieved on both ports {1, 2} when one sequence is 0 ≤ δ < 6 time slots earlier than
the other.

Remark 8.1 Notice that any GS that guarantees rendezvous for two users should
be a good GS, since the available ports are not known by the users beforehand
and rendezvous has to be guaranteed on every port in U = {1, 2, . . . , N } no matter
when the users start the rendezvous algorithm. Actually, Property 8.2 reveals the
requirement to achieve rendezvous.

8.5.2 Disjoint Relaxed Difference Set (DRDS)

Before we show the method of constructing a good GS, we introduce some useful
mathematical tools.

Relaxed difference set (RDS) is an efficient tool to construct cyclic quorumsystems
[8, 12]. We first introduce some definitions.

Definition 8.2 A set D = {a1, a2, . . . , ak} ⊆ Zn (the set of all nonnegative integers
less than n) is called a Relaxed Difference Set (RDS) if for every d �= 0 (mod n),
there exists at least one ordered pair (ai , a j) such that ai − a j ≡ d (mod n), where
ai , a j ∈ D.

RDS is a variation of the (n, k, λ)-Difference Set [4, 12] where exactly λ ordered
pairs (ai , a j) satisfying ai − a j ≡ d (mod n) are required. Given any n, it is proved
that any difference set D must have cardinality |D| ≥ √

n [12]. The minimal D
whose size approximates the lower bound can be found when n = k2 + k + 1 and
k is a prime power. Such a difference set is called a Singer Difference Set (SDS)
[4]. For example, D = {1, 2, 4} is both an SDS and an RDS under Z7, but the set
D is an RDS, not an SDS under Z6. More information about difference sets can be

8.5 Disjoint Relaxed Different Set (DRDS) Based Rendezvous Algorithm 85

found in the references and the readers may refer to them to find out more interesting
properties.

In this section, we introduce one useful property which is the following.

Lemma 8.1 If D is an RDS under Zn, then Dk = {(ai + k) mod n|ai ∈ D} is also
an RDS under Zn.

Proof From Definition 8.2, for every d �= 0 (mod n), there exists at least one
ordered pair (ai , a j) where ai , a j ∈ D satisfy ai − a j ≡ d (mod n). Consider-
ing the set Dk = {(ai + k) mod n|ai ∈ D}, denote ak,i = ai + k,∀ai ∈ D, then
Dk = {ak,1, ak,2, . . . , ak,|D|}. For any d �= 0 (mod n), we choose ak,i , ak, j ∈ Dk such
that the corresponding values ai , a j ∈ D satisfy ai − a j ≡ d (mod n); then:

ak,i − ak, j ≡ (ai + k) − (a j + k) mod n

≡ ai − a j ≡ d mod n
(8.8)

Therefore, the set Dk is also an RDS under Zn from the definition.

Based on the definition of relaxed difference set, we introduce another important
notation called Disjoint Relaxed Difference Set, as follows.

Definition 8.3 A set S = {D1, D2, . . . , Dh} is called a Disjoint Relaxed Difference
Set (DRDS) under Zn if ∀Di ∈ S, Di is an RDS under Zn and ∀Di , Dj ∈ S, i �= j ,
Di

⋂
Dj = ∅.

For example, S = {{1, 2, 4}, {0, 3, 5}} is a DRDS under Z6. Such a DRDS can be
used to design GS based rendezvous algorithms and we will present the details later.

For any given integer n, there are many DRDSs under Zn . Define Maximum
DRDS Sn to be the set with the largest cardinality, and it is hard to find the maximum
DRDS (see Lemma 8.5 in Sect. 8.6).

8.5.3 Equivalence of DRDS and Good GS

Before we present the method of achieving efficient rendezvous based on the intro-
duced notations (DRDS and good GS), we first show their equivalence.

86 8 Asynchronous Blind Rendezvous Algorithms for Anonymous Users

Fig. 8.5 An example of the equivalence between good GS and DRDS

Lemma 8.2 Any DRDS corresponds to a good GS.

Proof Consider a DRDS S = {D0, D1, . . . , Dh−1} under Zn; we can construct a
sequence S′ = {s0, s1, . . . , sn−1}, as follows.
* If there exists Dj such that i ∈ Dj , let si = j + 1. Otherwise, assign any value in

[1, h] to si .
We claim that S′ satisfies Properties 8.1–8.2. Obviously, Property 8.1 is satisfied

since the sequence has length n. Then we show the satisfaction of Property 8.2.
Without loss of generality, suppose one user starts δt time slots later. If δt ≡ 0 (mod
n), Property 8.2 is satisfied apparently. Letd ′ = δ + t modn; thus 1 ≤ d ′ < n, and for
any i ∈ C where C = {1, 2, . . . , h}, there exists a pair (a j , ak) where a j , ak ∈ Di−1

and a j − ak ≡ d ′ (mod n). Therefore, the property suits. Combining the two aspects,
S′ is a good GS.

Lemma 8.3 Any good GS corresponds to a DRDS.

Proof Consider a good GS S′ = {s0, s1, . . . , sT−1} on port set C = {1, 2, . . . , N };
we construct the DRDS S = {D0, D1, . . . , DN−1} under ZT as follows:

* Di = { j : s j = i + 1, s j ∈ S′}.
From Property 8.2, it is easy to check S is a DRDS.

For example, the DRDS {{0, 3, 5}, {1, 2, 4}} corresponds to a good GS {1, 2, 2, 1,
2, 1} as Fig. 8.5.

Based on Lemmas 8.2 and 8.3, we can construct a goodGS for the users to achieve
rendezvous if we can design the corresponding DRDS efficiently. Moreover, if there
exists some efficient method to construct such good GS, we can solve some DRDS
based problems.

8.5.4 DRDS Construction

To begin with, we present a DRDS construction method under Zn in linear time
where n = 3P2 (P > 3 and P is a prime number).

8.5 Disjoint Relaxed Different Set (DRDS) Based Rendezvous Algorithm 87

Algorithm 8.1 DRDS Construction of Zn when n = 3P2

1: S := ∅;
2: for i = 0 to P − 1 do
3: Di := (Z(3Pi+P) \ Z3Pi);
4: for j = 0 to P − 1 do
5: q j := j2, pi j := (i−q j)(P+1)

2 mod P;
6: t j0 := 3P j + P + pi j ;
7: t j1 := 3P j + 2P + pi j ;
8: Di := Di

⋃{t j0, t j1};
9: end for
10: S := S

⋃{Di };
11: end for

Algorithm 1 constructs a DRDS S = {D0, D1, . . . , DP−1} as follows: divide Zn

into P disjoint subsets

Zn = U0

⋃
U1

⋃
· · ·

⋃
UP−1 (8.9)

where Uj = Z3P(j+1) \ Z3P· j . Let

Di = Ti0
⋃

Ti1
⋃

· · ·
⋃

Ti,P−1 (8.10)

where Ti j ⊆ Uj .

For each Uj , let q j = j2 and pi j = (i−q j)(P+1)
2 mod P . Choose the (P + pi j)-th

and (2P + pi j)-th number of Uj to compose Ti j . They are t j0 and t j1 (Lines 6,7).
Then Ti j is constructed as:

{
Ti j ={t j0, t j1} when j �= i

{t j0, t j1} ⋃
(Z(3Pi+P) \ Z3Pi) when j = i

As the illustration in Fig. 8.6, Zn is divided into P frames and each frame contains
three segments of equal length. In constructing each set Di , pick two numbers from
the last two segments of each frame according to the above equations. In addition,
all numbers in the first segment of the i-th frame are plugged into the set.

The intuitive idea of the construction is:

(1) In order to have some ordered pairs (a j , ak) satisfying a j − ak ≡ d (mod n)
when d is small from 1 to P , we choose the first P numbers in set Ui , i.e.
Z(3Pi+P) \ Z3Pi ;

(2) when d becomes much larger, we choose two numbers from each set Uj (the
last two segments of each frame) at some appropriate positions according to the
modular operations in Line 5.

88 8 Asynchronous Blind Rendezvous Algorithms for Anonymous Users

Fig. 8.6 Illustration of DRDS construction

We present a simple example when n = 27:

D0 = {0, 1, 2, 3, 6, 13, 16, 22, 25};
D1 = {5, 8, 9, 10, 11, 12, 15, 21, 24};
D2 = {4, 7, 14, 17, 18, 19, 20, 23, 26}.

It is easy to verify that D0, D1, D2 can compose a DRDS. We prove Algorithm 1
can indeed construct a DRDS formally.

Lemma 8.4 Each set Di constructed in Algorithm 8.1 is a RDS.

Proof From the definition ofRDS,weneed to prove that: for anyd �= 0 (modn), there
exists at least one ordered pair (a j , ak) satisfying a j − ak ≡ d (mod n). Consider the
following four cases:

(1) When 0 < d < P: From Line 3 of Algorithm 1, P consecutive numbers are
chosen, i.e. 3Pi, 3Pi + 1, . . . , 3Pi + P − 1 ∈ Di ; thus we can find (3Pi +
d, 3Pi) to meet the requirement;

(2) When P ≤ d < 3P2 and 0 ≤ d (mod 3P) < P: Assume d = 3P j1 + b1, 0 <

j1 < P, 0 ≤ b1 < P; we try to find one pair (a j , ak) such that

a j = 3P j2 + b2 mod n

ak = 3P j3 + b3 mod n

where P ≤ b3 < 2P . If a j − ak ≡ d (mod n), we can deduce 3P j2 + b2 ≡
3P(j1 + j3) + b1 + b3 (mod n), and thus P ≤ b2 < 3P and both b2, b3 satisfy
the equality from Lines 6, 7 of Algorithm 1. Therefore:

b2 ≡ (i − j22)(P + 1)

2
mod P

b3 ≡ (i − j23)(P + 1)

2
mod P

8.5 Disjoint Relaxed Different Set (DRDS) Based Rendezvous Algorithm 89

Thus we have:
⎧
⎨

⎩

j2 ≡ (j1 + j3) mod P
(i − j22)(P + 1)

2
≡ (i − j23)(P + 1)

2
+ b1 mod P

Combining these equations to derive:

2 j1 j3 ≡ −(2b1 + j21) mod P (8.11)

Since P is a prime number and j1, b1 are constant values when d is fixed, j3 has
one unique solution in ZP [4] and we write the solution as j∗. Plugging j∗ into
the above equalities, we can compute the values of a j and ak .
For example, P = 3, n = 27, when d = 11 = 3P j1 + b1, then j1 = 1, b1 = 2.

Consider set D1 and plug j1, b1 into Eq. (8.11):

2 j3 ≡ −5 ≡ 1 mod 3 (8.12)

So j3 = 2 and thus j2 = 0, b3 ≡ 0 (mod 3). Since 3 ≤ b3 < 6, b3 = 3 and then
b2 = 5. Therefore, a j = 3P j2 + b2 = 5 and ak = 3P j3 + b3 = 21. When d =
11, we can find such a pair (5, 21) from D1 to meet the requirement;

(3) When P ≤ d < 3P2 and P ≤ d (mod 3P) < 2P . Assume d = 3P j1 + b1, 0 ≤
j1 < P, P ≤ b1 < 2P; let c = (i−(i+ j1)2)(P+1)

2 mod P , b = b1 mod P (both
c, b ∈ [0, P)), and we find the pair (a j , ak) as:

a j =
{
3P(i + j1) + P + c mod n if c ≥ b

3P(i + j1) + 2P + c mod n if c < b

ak =
{
3Pi + c − b if c ≥ b

3Pi + P + c − b if c < b

It can be checked that a j , ak ∈ Di and a j − ak ≡ d (mod n).
(4) When P ≤ d < 3P2 and 2P ≤ d (mod 3P) < 3P . Assume d = 3P j1 + b1,

0 ≤ j1 < P, 2P ≤ b1 < 3P . Find (a j , ak) as in the second case:

a j = 3P j2 + b2 mod n

ak = 3P j3 + b3 mod n

The difference from the second case is 2P ≤ b3 < 3P; then P ≤ b2 < 3P and
we can find out the appropriate j2, j3 values. Then apply the above equalities to
derive a j and ak .

Based on the four cases above, ∀d �= 0 (mod n), we can find at least one ordered
pair (a j , ak) such that a j − ak ≡ d (mod n). Therefore, each set Di constructed in
the algorithm is a RDS.

90 8 Asynchronous Blind Rendezvous Algorithms for Anonymous Users

Based on Lemma 8.4, we show that the constructed set of Algorithm 1 is a DRDS
formally.

Theorem 8.2 The set S = {D0, D1, . . . , DP−1} constructed in Algorithm 1 is a
DRDS.

Proof From the definition of DRDS (Definition 8.3), we prove the theorem from two
aspects:

(1) Each set Di ∈ S is an RDS;
(2) ∀Di , Dj ∈ S, i �= j , Di

⋂
Dj = ∅.

From Lemma 8.4, we can check that each set Di ∈ S is an RDS. Then, we only
need to prove that ∀Di , Dj ∈ S, i �= j , Di

⋂
Dj = ∅.

From Algorithm 1:

Di = Ti0
⋃

Ti1
⋃

· · ·
⋃

Ti,P−1

Dj = Tj0

⋃
Tj1

⋃
· · ·

⋃
Tj,P−1

It is clear that:
∀k1 �= k2, Ti,k1

⋂
Tj,k2 = ∅ (8.13)

Therefore, we need to show:

∀0 ≤ k < P, Tik
⋂

Tjk = ∅ (8.14)

There are two situations:

(1) If k �= i, k �= j , twonumbers fromUk are chosen for Tik, Tjk respectively accord-
ing to pik and p jk . From Lines 6, 7 of Algorithm 1:

pik = (i − qk)(P + 1)

2
mod P

p jk = (j − qk)(P + 1)

2
mod P

When 0 ≤ i, j < P, i �= j andwe can conclude pik �= p jk . Thus Tik
⋂

Tjk = ∅.
(2) If k = i or k = j , the first P numbers of Uk will be chosen, while the other two

numbers 3Pk + P + pik and 3Pk + 2P + pik do not intersect with the first P
numbers, and thus Tik

⋂
Tjk = ∅.

Combining in these two situations,

∀k1, k2, Ti,k1
⋂

Tj,k2 = ∅ (8.15)

8.5 Disjoint Relaxed Different Set (DRDS) Based Rendezvous Algorithm 91

and it implies
Di

⋂
Dj = ∅ (8.16)

Combining the two aspects, S = {D0, D1, . . . , DP−1} is a DRDS.
It is obvious that Algorithm 8.1 constructs the DRDS with cardinality

√
n
3 and the

algorithm runs in O(n) time. The algorithm runs efficiently and it can be applied in
designing efficient rendezvous algorithms.

8.5.5 DRDS Based Rendezvous Algorithm

Based on the DRDS construction of the special situation n = 3P2 where P is a prime
number,1 we present the DRDS based rendezvous algorithm as follows.

Algorithm 8.2 DRDS Based Rendezvous Algorithm
1: Find the smallest prime P such that P ≥ N ;
2: if P = 2 then
3: T := 6, t := 0;
4: S = {D0, D1}, D0 = {0, 1, 3}, D1 = {2, 4, 5};
5: else
6: T := 3P2, t := 0;
7: Construct the DRDS S = {D0, D1, . . . , DP−1} under ZT as Algorithm 8.1;
8: end if
9: while Not rendezvous do
10: if 0 ≤ t < 2P then
11: Access the port with smallest label in C ′;
12: else
13: d := (t − 2P) mod T ;
14: Find Di ∈ S such that d ∈ Di ;
15: if Port (i + 1) ∈ C ′ then
16: Access port (i + 1);
17: else
18: Access an available port in C ′ randomly;
19: end if
20: end if
21: t := t + 1;
22: end while

Assume that the available port set for the user isC ′ ⊆ U and the DRDS algorithm
is described in Algorithm 8.2.

The first 2P time slots for the user is to access a fixed port, which resembles the
listening period when a user wakes up in many asynchronous protocols; we call this
the Listening Stage.

1Bertrand-Chebyshev Theorem: ∀N > 1, at least one prime P exists such that N < P < 2N .

92 8 Asynchronous Blind Rendezvous Algorithms for Anonymous Users

Fig. 8.7 An example of DRDS based rendezvous algorithm (Algorithm 8.2)

Afterwards, it is theAccessing Stagewhich repeats a GS of length T = 3P2 based
on the DRDS construction under ZT from Algorithm 1 (if P = 2, the GS length is 6
and the DRDS is given as Line 2). Given any time t , compute d = (t − 2P) mod T
and find the RDS Di that contains d. The user accesses port (i + 1) if it is available;
otherwise, it accesses a randomly picked available port.

Figure8.7 is an example when N = 2 and C ′ = {1, 2}. The first four time slots
form the listening stage, and in the accessing stage, the user repeats the sequence
{1, 1, 2, 1, 2, 2} of length T = 6.

We show the correctness and efficiency of Algorithm 8.2 formally.

Theorem 8.3 For twousers ui andu j with available port setsCi ,C j ⊆ U,whenever
they startAlgorithm8.2, rendezvous canbeguaranteedwithin MTTR = 3P = O(N)

time slots if Ci = C j , and MTTR = 3P2 + 2P = O(N 2) time slots if Ci �= C j .

Proof It is easy to check thatwhen N ≤ 2, the theoremholds. For any N ≥ 3,without
loss of generality, suppose user ui starts earlier at time 0 and user u j starts at time
δt ≥ 0. We derive the theorem from two situations:.

(1) If Ci = C j , the best scenario for rendezvous is 0 ≤ δt < 2P because they are
both in the listening stage accessing the same port. If 0 ≤ (δt − P) (mod 3P)
< 2P , rendezvous occurs in the first 2P time slots when user u j is listening,
while userui isaccessing. If 2P ≤ (δt − P) (mod3P)< 3P , useru j can achieve
rendezvous in time [2P, 3P) while keeping accessing some fixed port and the
P numbers in [δt + 2P, δt + 3P) for user ui are in P different RDSs; so they
achieve rendezvous in the accessing stage. Therefore, the maximum time to
rendezvous is bounded in 3P time slots, i.e. MTTR ≤ 3P .

(2) IfCi �= C j ,we claim that rendezvous is guaranteed inT + 2P time slots. Letd =
δt (mod T). They may not achieve rendezvous in the listening stage even when
δt < P . For any common available port i ∈ Ci

⋂
C j , we can find an ordered

pair (a j , ak) from RDS Di−1 such that a j − ak ≡ d (mod T) (Definition 8.2).
So when user u j ’s time ticks ak + P , they both access port i , which implies
rendezvous is guaranteed within P + ak ≤ T + 2P time slots.

Combining the two aspects, the theorem holds.

8.5 Disjoint Relaxed Different Set (DRDS) Based Rendezvous Algorithm 93

8.5.6 Improved DRDS Based Rendezvous Algorithm

Although the DRDS based rendezvous algorithm (Algorithm 2) guarantees fast ren-
dezvous for both symmetric and asymmetric users, we can improve it such that ren-
dezvous can be achieved in O(1) time slots for two symmetric users, which matches
the state-of-the-art result [3] for the cognitive radio network.

Algorithm 8.3 Improved DRDS Based Rendezvous Algorithm
1: Find the smallest prime P such that P ≥ N ;
2: Denote the port with smallest label in C ′ as cm and the label as m;
3: if P = 2 then
4: T1 := 6, t := 0;
5: S = {D0, D1}, D0 = {0, 1, 3}, D1 = {2, 4, 5};
6: else
7: T1 := 3P2, t := 0;
8: Construct the DRDS S = {D0, D1, . . . , DP−1} under ZT as Algorithm 8.1;
9: end if
10: T := 6T1;
11: while Not rendezvous do
12: f := �t/6�, d := t%6;
13: if d = 0 or 1 or 3 then
14: Find Di ∈ S such that f ∈ Di ;
15: else
16: i := m − 1;
17: end if
18: if Port (i + 1) ∈ C ′ then
19: Access port (i + 1);
20: else
21: Access an available port in C ′ randomly;
22: end if
23: t := t + 1;
24: end while

Similar to Algorithm 8.2, assuming the available port set for the user is C ′ and
denote the port with the smallest label as cm wherem is the label. Then Algorithm 8.3
constructs a DRDS S1 similar to Algorithm 8.2. In order to guarantee fast rendezvous
for two symmetric users, we expand each time slot into 6 slots where the 0, 1, 3-th
numbers are the correspondingRDS in S (as Line 14)while the 2, 4, 5-th numbers are
the smallest labels among all available ports. The time division method is introduced
in Chap.7. Figure8.8 shows a simple example when there are only two available
ports (we use m to be the smallest label in the figure other than 1).

We show the correctness and efficiency of Algorithm 8.3 as follows.

Theorem 8.4 For twousers ui andu j with available port setsCi ,C j ⊆ U,whenever
they start Algorithm 8.3, rendezvous can be guaranteed within MTTR = 6 = O(1)
time slots if Ci = C j , and MTTR = 18P2 = O(N 2) time slots if Ci �= C j .

http://dx.doi.org/10.1007/978-981-10-3680-4_7

94 8 Asynchronous Blind Rendezvous Algorithms for Anonymous Users

Fig. 8.8 An example of Improved DRDS based rendezvous algorithm (Algorithm 8.3)

Proof It is easy to check thatwhen N ≤ 2, the theoremholds. For any N ≥ 3,without
loss of generality, suppose user ui starts earlier at time 0 and user u j starts at time
δ ≥ 0. Denote the smallest labels for both users asmA,mB respectively and we prove
the theorem from two situations:

(1) If Ci = C j , the smallest labels of the users are the same, i.e. mA = mB . Denote
x = δ%6 and there are six situations respectively.

(1) If x = 0, both users access the port with the smallest label mA,mB at time
δ + 2, thus T T R = 3;

(2) if x = 1, user ui accesses port mA at time δ + 4 while user u j accesses port
mB , thus T T R = 5;

(3) if x = 2, user ui accesses port mA at time δ + 2 while user u j accesses port
mB , thus T T R = 3;

(4) if x = 3, user ui accesses port mA at time δ + 2 while user u j accesses port
mB , thus T T R = 3;

(5) if x = 4, user ui accesses port mA at time δ + 4 while user u j accesses port
mB , thus T T R = 5;

(6) if x = 5, user ui accesses port mA at time δ + 5 while user u j accesses port
mB , thus T T R = 6;

Thus rendezvous can be guaranteed in MTTR = 6 time slots.

Actually, {{0, 1, 3}, {2, 4, 5}} is a DRDS and the port with the smallest label
occurs at the 2, 4, 5-th time slots when we expand each time slot of the GS
into 6 time slots, and these positions correspond the the second RDS. Therefore,
∀x ∈ [0, 5], the two users’ hopping sequences should intersect at some positions
(of the expanded 6 time slots) so that both users access the port with the smallest
label, and rendezvous can be guaranteed quickly;

(2) IfCi �= C j , similar to the first situation, we can conclude that two users’ hopping
sequences should intersect at some positions (of the expanded 6 time slots) so
that both users access the ports corresponding to the RDS in S as in Line 14.
From the proof of Theorem 8.3, MTTR ≤ 6 ∗ 3P2 time slots.

8.5 Disjoint Relaxed Different Set (DRDS) Based Rendezvous Algorithm 95

Combining the two aspects, the theorem can be concluded.

Remark 8.2 In Chaps. 6 and 7, we present simple algorithms for two port-symmetric
users if they are aware of the symmetric situation. However, they actually cannot
know whether they are symmetric or not. The method introduced in this section is a
good extension by transforming any rendezvous algorithm to a new one which can
guarantee rendezvous in O(1) time slots, if the two users are indeed port-symmetric.
In addition, it would not degrade the time complexity as compared to the original
algorithm if they are port-asymmetric.

Although the improvedDRDSmethod can guarantee rendezvous for two symmet-
ric users in a very short time, it increases the time to rendezvous for two asymmetric
users (by 6 times). In practical situations, the original DRDS algorithm (Algorithm
8.2) is more preferable.

8.6 Lower Bound for GS Based Rendezvous Algorithms

In order to show the efficiency of the DRDS based rendezvous algorithm, we derive
a lower bound for any Global Sequence (GS) based algorithm for two users. In other
words, we should find the smallest length of any good GS based on N external ports,
and any GS that guarantees rendezvous is a good GS (see Remark 8.1).

Since any good GS corresponds to a DRDS, one intuitive method is to find the
DRDS with maximum cardinality under Zn (denote the corresponding DRDS as
maximum DRDS).

Lemma 8.5 Given n, the cardinality of the maximum DRDS under Zn is bounded
by |Sn| ≤ √

n.

This lemma is derived easily from the fact that any RDS D should have cardinality
|D| ≥ √

n [12].
Actually, if there exists some algorithmF that can compute the DRDS of maxi-

mum cardinality under Zn for any given n > 0, we can come up with an algorithm
to derive the smallest length of good GS based on N channels as follows:

1: Invoke F to compute the maximum cardinality of any DRDS under Zn where
n ∈ [N 2, 3P2], where P ≥ N is a prime number;

2: Find the smallest n in the range such that the maximum cardinality is no less
than N .

Here the smallest n is the smallest length of a good GS, i.e. the lower bound. In the
first step, we try to compute the maximum cardinality of any DRDS under Zn when
n ranges from N 2 to 3P2. The value N 2 comes from Lemma 8.5, and the second
value 3P2 comes from the DRDS based algorithm in this chapter. Therefore, the
lower bound of the good GS can be derived precisely if we can compute the DRDS

http://dx.doi.org/10.1007/978-981-10-3680-4_6
http://dx.doi.org/10.1007/978-981-10-3680-4_7

96 8 Asynchronous Blind Rendezvous Algorithms for Anonymous Users

Table 8.2 Relationship
between n and maximum
DRDS |Sn | when 2 ≤ n ≤ 50

The number: n Maximum DRDS: |Sn |
2 ≤ n ≤ 5 1

6 ≤ n ≤ 14 2

15 ≤ n ≤ 23 3

24 ≤ n ≤ 30 4

31 5

32 ≤ n ≤ 34 4

35 ≤ n ≤ 47 5

48 ≤ n ≤ 50 6

with maximum cardinality. However, it is hard to compute the maximum DRDS for
any given n, i.e. it is hard to find the tight bound (Lemma 8.5 is a loose bound).

Actually, for any set D = {D0, D1, . . . , Dh} where Di is an RDS under Zn and
h ≥ √

n, it is hard to compute the maximum DRDS from D since it can be reduced
from the Set Packing Problem2 which is NP-complete [9].When each set |Di | ≥ √

n,
it is equivalent to Maximum

√
n-Set Packing which cannot be efficiently approxi-

mated within a factor of �(
√
n

ln
√
n
) [7].

We compute all RDSs with cardinality in [√n,
√
3n] and use exhaustive search

to find the maximum DRDS when n = 2, 3, . . . , 50. The relationship between n and
the maximum DRDS (denoted as |Sn|) is listed in Table8.2.

Since it is hard to compute the exact lower bound of any good GS, we try then
derive a (loose) lower bound for any good GS based on the equivalence of DRDS
and good GS. We first introduce an important lemma.

Lemma 8.6 Suppose D is an RDS under ZT where T = N (N + 1) and |D| =
N + 1, then N ≤ 3.

Proof Consider all pairs (a j , ak) where a j , ak ∈ D, j �= k, and define d jk = (a j −
ak) mod T which we call a difference value. ∀d ∈ {1, 2, . . . , T − 1}, there exists
at least one difference value d jk = d. Since there are N (N + 1) difference values,
there exist two pairs (a j , ak) and (a′

j , a
′
k) such that d jk = d j ′k ′ and the other difference

values are all distinct. However,

dkj = T − d jk = T − d j ′k ′ = dk ′ j ′ (8.17)

which implies there exists another two pairs (ak, a j), (a′
k, a

′
j) sharing a common

difference value. The situation can happen only when a j = a′
k, ak = a′

j . Then

a j − ak ≡ ak − a j mod T (8.18)

and it means

2Given a finite set U and a list of subsets of U , the problem asks if some k subsets in the list are
pairwise disjoint.

8.6 Lower Bound for GS Based Rendezvous Algorithms 97

a j − ak ≡ T

2
mod T (8.19)

By Lemma 8.1, construct another RDS

D′ = {(a − a j) mod T |a ∈ D} (8.20)

and thus 0, T
2 ∈ D′.

Denote

S1 =
{

0 < a <
T

2
|a ∈ D′

}

S2 =
{
T

2
< a < T |a ∈ D′

}

and let d1 = |S1| and d2 = |S2|. Thus d1 + d2 = |D| − 2 = N − 1.
We count the number in set

S3 =
{

0 < a <
T

2
|a /∈ D′

}

(8.21)

from two sides. First, since

|S1
⋃

S3| = T

2
− 1 (8.22)

It is easy to compute:

d1 + |S3| = T

2
− 1 ⇒ |S3| = T

2
− 1 − d1 (8.23)

From the analysis above, all other pairs satisfy:

(a j , ak) �=
(

0,
T

2

)

or

(
T

2
, 0

)

(8.24)

and hence it should have a distinct difference value. We construct S3 as follows:

(1) ∀a ∈ S1, let a′ = T
2 − a ∈ S3; otherwise (a, 0) and (T2 , a′) share the same dif-

ference value;
(2) ∀a ∈ S2, let T − a ∈ S3 and a − T

2 ∈ S3;
(3) ∀a1 < a2 ∈ S1, define δ = a2 − a1, and let T

2 − δ ∈ S3 and δ ∈ S3; otherwise
we can find two pairs sharing a common difference value;

(4) ∀a1 < a2 ∈ S2, define δ = a2 − a1, 0 < δ < T
2 , and then let

T
2 − δ and δ belong

to S3.
(5) ∀a1 ∈ S1, ∀a2 ∈ S2, define δ = a2 − a1, if δ > T

2 ; rewrite δ = T − δ, and then
let δ ∈ S3 and (T2 − δ) ∈ S3.

98 8 Asynchronous Blind Rendezvous Algorithms for Anonymous Users

It is easy to verify that when we choose one value a or two values {a, T
2 − a} to

compose S3, they cannot belong to S3 before the step. (If a = T
2 − a, we only add

the value once and this special situation happens at most once.) Thus:

|S3| ≥ d1 + 2d2 + 2 · d1(d1 − 1)

2
+ 2 · d2(d2 − 1)

2
+ 2d1d2 − 1 (8.25)

So:
T

2
− 1 − d1 ≥ (d1 + d2)

2 + d2 − 1 (8.26)

Plugging d1 + d2 = N − 1, we derive:

N 2 ≤ 3N ⇒ N ≤ 3 (8.27)

Therefore, the lemma holds.

Then, we derive a lower bound (not tight) for any good GS in Theorem 8.5.

Theorem 8.5 Any good GS S′ = {s0, s1, . . . , sT−1} based on N channels satisfies:

⎧
⎪⎨

⎪⎩

T ≥N 2 + N I f N ≤ 2

N 2 + N + 1 I f N ≥ 3 and N is a prime power

N 2 + 2N Otherwise

Proof When N = 1, it is clear that T ≥ 2. Suppose N ≥ 2; by Lemma 8.3, we can
construct a DRDS as:

S = {D0, D1, . . . , DN−1} (8.28)

under ZT . By Lemma 8.5, we have:

N ≤ √
T ⇒ T ≥ N 2 (8.29)

Let h = minDi∈S |Di |; if h ≤ N , the set Di (where |Di | = h) has exactly h(h − 1)
orderedpairs (a j , ak),which implies atmosth(h − 1) ≤ N (N − 1)difference values
for d exist such that

a j − ak ≡ d mod T (8.30)

When N ≥ 2, we have:

N (N − 1) < N 2 − 1 ≤ T − 1 (8.31)

and Di cannot be an RDS. Thus h ≥ N + 1.
Assume h = N + 1, since

D0

⋃
D1

⋃
· · ·

⋃
DN−1 ⊆ ZT (8.32)

8.6 Lower Bound for GS Based Rendezvous Algorithms 99

we derive:

T ≥
N−1∑

i=0

|Di | ≥ Nh = N (N + 1) (8.33)

There are three cases to be analyzed.

Case 1: If T = N (N + 1), by Lemma 8.6, N ≤ 3. When N = 2, {{0, 1, 3}, {2, 4,
5}} is a DRDS under Z6. However, when N = 3, we cannot find a DRDS with
three disjoint RDS through exhaustive search;
Case 2: If T = N 2 + N + 1, suppose Di suits |Di | = h; since (N + 1)N = T −
1, Di is a (T, h, 1)-Difference Set. In [4], this is called a Singer Difference Set
and it can be constructed only when N is a prime power. Thus when N ≥ 3 and
N is a prime power, T ≥ N 2 + N + 1;
Case 3: If T ≥ N 2 + N + 2 and N is not a prime power, suppose an RDS Di

suits |Di | = h. It is clear that there are at most h(h − 1) ordered pairs (a j , ak) and
the difference values a j − ak ≡ d (mod n) cannot cover {1, 2, . . . , T − 1} since
h(h − 1) = N (N + 1) < N 2 + N + 1 ≤ T − 1, which implies Di is not an RDS
under Zn , and so h ≥ N + 2. From

D0

⋃
D1

⋃
· · ·

⋃
DN−1 ⊆ ZT (8.34)

we can conclude

T ≥
N−1∑

i=0

|Di | ≥ Nh ≥ N (N + 2) (8.35)

Therefore, the theorem holds.

The lower bound is not always tight. Finding the minimum good CCHS length is
(almost) equivalent to finding the maximum DRDS. As discussed above, it is hard to
find themaximumDRDS, and thus it is also hard tofind the tight lower bound forgood
CCHS. FromTable8.2, the lower bound of Theorem 8.5 is tight when N = 1, 2, 5, 6.
However, when N = 3, 4, the lower bound for T is 13, 21 respectively from the
theorem, but the maximum DRDS |Sn| = 2, 3 under Zn , implying the lower bound
is not always tight.

Corollary 8.1 Any GS based rendezvous algorithm cannot guarantee rendezvous
in less than T time slots, where T is the expression in Theorem 8.5.

Corollary 8.2 The DRDS based algorithm (Algorithm 8.2) can achieve constant
approximation as compared with the lower bound of any GS based blind rendezvous
algorithms. Thus, it is a nearly optimal asynchronous rendezvous algorithm.

Remark 8.3 We have not found a general method to construct a DRDS S under any
Zn such that |S| is comparable to the bound in Lemma 8.5. However, if there exists
such DRDS construction for arbitrary Zn , we can transform it to a good rendezvous
algorithm as shown in Lemma 8.2.

100 8 Asynchronous Blind Rendezvous Algorithms for Anonymous Users

8.7 Chapter Summary

In this chapter, we study the blind rendezvous problem for two users by designing
a good global sequence (GS) that is independent of the user’s set of available ports.
The intuitive idea is to hop through the external ports by repeating the GS for the
users, and rendezvous can be guaranteed on some common available port if the GS
satisfies some good properties.

In order to design a good GS for the users, we introduce an efficient mathematical
tool called Disjoint Relaxed Difference Set (DRDS) which is shown to be equivalent
to a good GS. Therefore, every algorithm that constructs a DRDS under the set Zn

in an efficient way can be adopted to construct a GS (of length n). In the chapter,
we present a special construction of the DRDS under Zn when n = 3P2 where P
is a prime number, and a good GS of length 3P2 = O(N 2) can be reconstructed
correspondingly, where N is the number of all ports and P ≥ N is a prime number.
Therefore, blind rendezvous between two users is guaranteed in O(N 2) time slots,
which is the state-of-the-art result for GS based method.

Since the users in the network can start the rendezvous process freely and they
may have different sets of available ports, the DRDS based rendezvous algorithm
works under all the situations:

(1) Port-Symmetric and Port-Asymmetric: two symmetric users have the same set
of available ports, while the sets for asymmetric users could be different;

(2) Synchronous and Asynchronous: two synchronous users start at the same time
while asynchronous users are free to start the rendezvous process.

The DRDS based rendezvous algorithm guarantees fast rendezvous for two sym-
metric users by adding a listening stage, where the user accesses the available port
with the smallest label for a sufficient long time. Moreover, the algorithm works for
two asynchronous users because the GS satisfies the elegant property (Property 8.2)
and it guarantees rendezvous in a very short time when the users are synchronous.
The results for the four combinations are listed in Table8.3.

Although the DRDS based rendezvous algorithm has good performance, we are
eager to explore a generalmethod to construct DRDSunder Zn where n is an arbitrary
integer and to design a GS based algorithm which generates a good GS of length
shorter than 3P2.

Table 8.3 MTTR values for the DRDS based rendezvous algorithm

DRDS Symmetric Asymmetric

Synchronous 1 2P = O(N)

Asynchronous 3P = O(N) P(3P − 1) = O(N 2)

Remarks: 1) ImprovedDRDSalgorithmguarantees rendezvous inO(1) time slots for two symmetric
users

8.7 Chapter Summary 101

References

1. Bian, K., Park, J.-M. & Chen, R. (2009). A quorum-based framework for establishing control
channels in dynamic spectrum access networks. InMobicom.

2. Bian, K., Park, J.-M., & Chen, R. (2011). Control channel establishment in cognitive radio
networks using channel hopping. IEEE Journal on Selected Areas in Communications, 29(4),
689–703.

3. Chen, S., Russell, A., Samanta, A., & Sundaram, R. (2014). Deterministic blind rendezvous in
cognitive radio networks. In ICDCS.

4. Colbourn, C. J., & Dintiz, J. H. (2006). Handbook of Combinatorial Designs. Boca Raton:
CRC Press.

5. DaSilva, L., Guerreiro, I. (2008). Sequence-based rendezvous for dynamic spectrum access.
In DySPAN.

6. Gu, Z., Hua, Q.-S., Wang, Y., Lau, F. C. M. (2013). Nearly optimal asynchronous blind ren-
dezvous algorithm for cognitive radio networks. In SECON.

7. Hazan, E., Safra, S., & Schwartz, O. (2006). On the complexity of approximating k-set packing.
Computational Complexity, 15(1), 20–39.

8. Jiang, J.R., Tseng,Y.C.,&Lai, T. (2005).Quorum-based asynchronous power-savingprotocols
for IEEE 802.11 ad hoc network.ACM Journal onMobile Networks and Applications, 10(1–2),
169–181.

9. Karp, R. M. (1972). Reducibility among combinatorial problems. Complexity of Computer
Computations, 85–103.

10. Lin, Z., Liu, H., Chu, X., & Leung, Y.-W. (2013). Enhanced jump-stay rendezvous algorithm
for cognitive radio networks. IEEE Communications Letters, 17(9), 1742–1745.

11. Liu, H., Lin, Z., Chu, X., &Leung, Y.-W. (2012). Jump-stay rendezvous algorithm for cognitive
radio networks. IEEE Transactions on Parallel and Distributed Systems, 23(10), 1867–1881.

12. Luk, W. S., & Wong, T. T. (1997). Two new quorum based algorithms for distributed mutual
exclusion. In ICDCS.

13. Shin, J., Yang, D., & Kim, C. (2010). A channel rendezvous scheme for cognitive radio net-
works. IEEE Communications Letters, 14(10), 954–956.

14. Theis, N. C., Thomas, R. W., & DaSilva, L. A. (2011). Rendezvous for cognitive radios. IEEE
Transactions on Mobile Computing, 10(2), 216–227.

15. Yang, D., Shin, J., & Kim, C. (2010). Deterministic rendezvous scheme in multichannel access
networks. Electronics Letters, 46(20), 1402–1404.

	8 Asynchronous Blind Rendezvous Algorithms for Anonymous Users
	8.1 Generated Orthogonal Sequence (GOS)
	8.2 Deterministic Rendezvous Sequence (DRSEQ)
	8.3 Channel Rendezvous Sequence (CRSEQ) Algorithm
	8.4 Jump Stay Algorithm
	8.5 Disjoint Relaxed Different Set (DRDS) Based Rendezvous Algorithm
	8.5.1 Global Sequence (GS)
	8.5.2 Disjoint Relaxed Difference Set (DRDS)
	8.5.3 Equivalence of DRDS and Good GS
	8.5.4 DRDS Construction
	8.5.5 DRDS Based Rendezvous Algorithm
	8.5.6 Improved DRDS Based Rendezvous Algorithm

	8.6 Lower Bound for GS Based Rendezvous Algorithms
	8.7 Chapter Summary
	References

