
Chapter 6
Asymmetric Blind Rendezvous Algorithms

Abstract In this chapter,we present asymmetric algorithms for the blind rendezvous
problem. In the settings, we fix Alg as:

RS =< Alg – AS, T ime, Port, I D, Non – Obli > (6.1)

where T ime ∈ {Syn, Asyn}, Port ∈ {Port − S, Port − AS}, and I D ∈
{Non − Anon, Anon}. Although there are eight different rendezvous settings when
Alg is fixed as asymmetric and Label fixed as non-oblivious, in designing asym-
metric algorithms, users’ ID do not matter much. This is because the users’ IDs are
typically used to break symmetry in distributed computing, but we already assume
the users can be distinguishable and they execute different algorithms. Therefore,
we present how to design efficient algorithms for the four rendezvous settings (syn-
chronous and port-symmetric, asynchronous and port-symmetric, synchronous and
port-asymmetric, asynchronous and port-asymmetric), no matter the choice of I D
from {Non − Anon, Anon}. In Sect. 6.1, we present two different types of ren-
dezvous algorithms for the synchronous and port-symmetric rendezvous setting, and
these algorithms are extended for the asynchronous and port-symmetric rendezvous
setting in Sect. 6.2. In Sects. 6.3 and 6.4, we introduce efficient algorithms for the syn-
chronous, port-asymmetric and asynchronous, port-asymmetric rendezvous settings.
Finally, we summarize the chapter in Sect. 6.5.

6.1 Synchronous and Port-Symmetric Rendezvous

Consider two users ui and u j , suppose their available port sets are Ci , C j ⊆ U
respectively. In the following settings:

RS =< Alg – AS, Syn, Port-S, I D, Non – Obli > (6.2)

two users have the same start time and both available port sets are the same:Ci = C j .

© Springer Nature Singapore Pte Ltd. 2017
Z. Gu et al., Rendezvous in Distributed Systems,
DOI 10.1007/978-981-10-3680-4_6

61

62 6 Asymmetric Blind Rendezvous Algorithms

6.1.1 Smallest Port Accessing Algorithm

Algorithm 6. 1 Smallest Port Accessing Algorithm
1: Denote the set of available ports as C ⊆ U ;
2: Find the smallest label s ∈ C and access port s all the time;

This setting is the simplest one and two users can adopt the Smallest Port Access-
ing (SPA) algorithm (as shown in Algorithm 6.1) to achieve rendezvous. In the
algorithm, the user chooses the port with the smallest label all the time. It is obvious
that two users with symmetric port situations will rendezvous in their first attempt.

6.1.2 Quorum-Based Channel Hopping

Quorum-based Channel Hopping (QCH) [1, 2] generates the hopping sequencebased
on the quorum system which is defined in [1]:

Definition 6.1 Given a finite universal set U = {0, 1, . . . , n − 1} of n elements, a
quorum system S under U is a collection of non-empty subsets of U , which satisfies
the intersection property:

p
⋂

q �= ∅,∀p, q ∈ S (6.3)

Each p ∈ S (which is a subset of U) is called a quorum.

There are several ways of constructing a quorum system under set U and we will
introduce a simple method called cyclic quorum systems, which is first introduced
in [4]. To begin with, we introduce relaxed cyclic difference set.

Definition 6.2 A set D = {d1, d2, . . . , dk} ⊆ U is called a relaxed cyclic (n, k)-
difference set if for every d �= 0 mod n, there exists at least one ordered pair (di , d j)

where di , d j ∈ D, such that di − d j ≡ d (mod n).

For example, ifn = 7, k = 3, set D = {0, 1, 3} is a relaxed cyclic (7, 3)-difference
set under Z7, where Zn = {0, 1, . . . , n −1}. Clearly, for any value d ∈ {1, 2, . . . , 6},
there exist two elements in D that suit the equation. We define the cyclic quorum
system as follows.

Definition 6.3 A group of sets Bi = {d1 + i, d2 + i, . . . , dk + i} mod n, where
i ∈ {0, 1, . . . , n−1} is a cyclic quorum system if and only if set D = {d1, d2, . . . , dk}
is a relaxed cyclic (n, k)-difference set.

6.1 Synchronous and Port-Symmetric Rendezvous 63

We also use set D = {0, 1, 3} as an example. We construct the cyclic quorum
system as:

S = {{0, 1, 3}, {1, 2, 4}, {2, 3, 5}, {3, 4, 6}, {4, 5, 0}, {5, 6, 1}, {6, 0, 2}} (6.4)

It is easy to check that any two elements in the quorum system S intersect. The
QCH algorithm constructs different sequences on the basis of different quorums.
Suppose there are N ports {1, 2, . . . , N } and there exists a cyclic quorum system
S = {B0, B1, . . . , Bn−1} under Zn . The QCH algorithm constructs sequence Si for
each quorum Bi as follows.

(1) Step 1: Denote Bi = {d1, d2, . . . , dk};
(2) Step 2: For each port 1 ≤ j ≤ N , construct a frame of N time slots

{u0, u1, . . . , un−1} as:
ul =

{
j if l ∈ Bi

∗ otherwise
(6.5)

where ∗ can be any port in set {1, 2, . . . , N }.
(3) Step 3: The constructed sequence Si is composed of such N frames and each

frame consists of n elements.

For example, there are three ports {1, 2, 3} and we can construct a cyclic quorum
system under Z3 as:

S = {{0, 1}, {1, 2}, {2, 0}} (6.6)

For each quorum in set S, we construct the corresponding sequences. For quorum
{0, 1}, we construct the sequence as:

S1 = {11 ∗ |22 ∗ |33∗} (6.7)

where the symbol | separates different frames and ∗ is any port in {1, 2, . . . , N }.
Similarly, we can construct the other two sequences as:

S2 = {∗11| ∗ 22| ∗ 33}
S3 = {1 ∗ 1|2 ∗ 2|3 ∗ 3} (6.8)

For two different users ua and ub, they can choose different quorums in the
constructed cyclic quorum system and they would choose the ports for rendezvous
attempt according to the corresponding sequence. For example, user ua chooses
the constructed sequence S1 to access the port periodically while user ub chooses
sequence S2 for rendezvous. According to the definition of cyclic quorum system, it
is easy to see that the corresponding quorums should intersect and the corresponding
choice in the sequence should be the same port, which implies rendezvous. Therefore,
the QCH algorithm can guarantee rendezvous for two synchronous users.

64 6 Asymmetric Blind Rendezvous Algorithms

Notice that, the QCH algorithm is designed for the special situation that all port
are available. By a small modification, it can be applied to the scenario that two users
have symmetric available ports.

Suppose the available ports for the symmetric users are C = {p1, p2, . . . , pn} ⊆
U , which implies there are n available ports for the users. We reconstruct set C ′ =
{1, 2, . . . , n} to apply the QCH algorithm. When we need to choose port i in set C ′,
we replace it with port pi in set C , which can be used to guarantee rendezvous in the
port symmetric situation.

6.2 Asynchronous and Port-Symmetric Rendezvous

Consider two users ui and u j , suppose their available port sets are Ci , C j ⊆ U . In
the following settings:

RS =< Alg – AS, Asyn, Port-S, I D, Non – Obli > (6.9)

two users start the rendezvous process in different time slots and both sets are the
same, i.e. Ci = C j .

6.2.1 Asynchronous Quorum-Based Channel Hopping

Asynchronous QCH (A-QCH) [3] is modified for asynchronous users, but only
applicable to two available channels. We describe the A-QCH algorithm briefly and
readers may refer to [3] for more details.

The QCH algorithm in Sect. 6.1.2 cannot be applied to two asynchronous users,
because two users choosing different quorums p, q in a quorum system have clock
skew; we can consider the situation as one user is adopting the rotated quorum by
some bias, such as rotate(q, k), which means each element in quorum q rotates k
numbers. Then, quorum p and rotate(q, k) may not intersect. The modification in
A-QCH uses two cyclic quorum systems to construct such port accessing sequence,
but it only works for two available ports.

Denote two available port as P = {p0, p1}, and suppose there are n time slots in
each constructed frame. The algorithm works as follows:

(1) Denote the set Zn as {0, 1, . . . , n − 1};
(2) Find a minimal (n, k) cyclic difference set D = {d1, d2, . . . , dk} under Zn such

that k < n
2 ;

(3) Construct the minimal cyclic quorum system S = {Bi |Bi = {d1 + i, d2 +
i, . . . , dk + i} mod n where i ∈ [0, n − 1];

(4) Find a relaxed (n, k ′) cyclic different set D′ = {d ′
1, d ′

2, . . . d ′
k ′ } under Zn where

k ′ = � n+1
2 �) and D′ ⋂ D = ∅;

6.2 Asynchronous and Port-Symmetric Rendezvous 65

Fig. 6.1 An example of the
A-QCH algorithm

(5) Construct the cyclic quorum system S′ = {B ′
i |B ′

i = {d ′
1 + i, d ′

2 + i, . . . , d ′
k ′ + i}

mod n where i ∈ [0, n − 1];
(6) Construct the sequence with n frames and each frame contains n elements;
(7) For the j th frame, the i th element, we assign the port as:

s ji =
⎧
⎨

⎩

p0 if i ∈ B j

p1 if i ∈ B ′
j

∗ otherwise
(6.10)

where ∗ can be any port.
(8) The user accesses the port according to the constructed sequence periodically.

Themethod of constructingminimal (n, k) cyclic difference set and relaxed (n, k ′)
cyclic different set can be found in [12] and we do not introduce the details. For
example, if n = 9, and we construct set D = {0, 1, 2, 4} and set D′ = {3, 5, 6, 7, 8}.
It is easy to check that both sets are relaxed cyclic difference set and D

⋂
D′ = ∅.

Then, we can construct the sequence as in Fig. 6.1, where there are 9 frames and each
frame contains 9 elements.

Two different users compute different relaxed difference sets and the constructed
sequences are different. However, by involving two quorum systems, two different
users can always achieve rendezvous on the port p0 or p1 (notice that two symmetric
users should have at least two available ports p0, p1 to execute the algorithm).

66 6 Asymmetric Blind Rendezvous Algorithms

6.2.2 Sequential Accessing Algorithm

We propose the Sequential Accessing Algorithm in Algorithm 6.2. In the algorithm,
we first count the number of elements in the available port set as n. In each time
slot t , we compute the x th element in set C where x is t’s modulus under n. This
is similar to accessing the available ports sequentially from the 1th label to the nth
label. When t is larger than n, we repeat the sequential accessing.

Algorithm 6. 2 Sequential Accessing Algorithm
1: Denote time t := 1, the user’s port set as C ⊆ U ;
2: Denote the cardinality as n := |C |;
3: while Not rendezvous do
4: Let x := (t − 1)%n + 1;
5: Let pid be the x th number in set C ;
6: Access port pid in time t ;
7: t := t + 1;
8: end while

If two users are port-symmetric, but asynchronous, suppose one user ui runs
Algorithm6.2 while user u j runs a simple algorithm modified from Algorithm 6.1:
user u j chooses a label in set C j and access the port all the time. It is easy to show
that two users can rendezvous within O(n) time slots.

Theorem 6.1 Two port-symmetric, asynchronous users running Algorithm6.2 and
modified Algorithm 6.1 can rendezvous in O(|C |) time slots, where C is the set of
available ports.

Proof Suppose user ui starts Algorithm6.2 later than user u j . Suppose user u j

chooses the kth label in its available port set C j , where 1 ≤ k ≤ |C j |. Obviously,
when user ui starts the algorithm, it can achieve rendezvous in k time slots, from
user ui ’s clock.

Supposing user ui starts earlier than user u j , when user u j starts accessing the
kth port, it may not achieve rendezvous with user ui quickly. However, since user ui

repeats accessing the ports sequentially, it will definitely access the kth port within
|Ci | time slots.

Combining these two aspects, the theorem holds.

As illustrated in Fig. 6.2, the available port sets for two users are {1, 2, 7}; user
ui runs Algorithm6.2 while user u j runs the modified Algorithm 6.1 by accessing
port 7. As shown in the figure, when user ui starts earlier (as Fig. 6.2a) or later (as
Fig. 6.2b) than user u j , they can all achieve rendezvous in 3 time slots.

6.2 Asynchronous and Port-Symmetric Rendezvous 67

(a) (b)

Fig. 6.2 Rendezvous examples when user ui runs Algorithm6.2 while user u j runs the modified
Algorithm 6.1

Actually, if both users are aware of the port-symmetric situation, they can also
run a symmetric algorithm for rendezvous. Suppose both users adopt Algorithm 6.1
designed for synchronous andport-symmetric rendezvous.Without loss of generality,
suppose user ui starts Δ > 0 time slots earlier than user u j . When user u j starts the
rendezvous process at time Δ + 1 (from user ui ’s clock), it will access port s (the
smallest port) in the first time slot (from user u j ’s clock). As user ui will always
access port s, they could rendezvous in their first rendezvous attempt. Thus, the time
to rendezvous is 1, where T T R is defined as the cost time to rendezvous for the user
who starts latter in Problem 5.1.

Although port-symmetry is a easy situation to handle, the users are not aware
of the situation and whether they are symmetric or not. Therefore, Algorithm 6.1
cannot work if two users have asymmetric ports. Therefore, we hope to design effi-
cient algorithms that work for the asymmetric port situation, while it also has good
performance when the ports are symmetric. We will introduce such algorithms in the
following sections.

6.3 Synchronous and Port-Asymmetric Rendezvous

Consider two users ui and u j , and suppose their available port sets are Ci , C j ⊆ U .
In the following settings:

RS =< Alg – AS, Syn, Port-AS, I D, Non – Obli > (6.11)

where two users start the rendezvous process at the same time but the sets of available
ports may be different, i.e. Ci �= C j .

http://dx.doi.org/10.1007/978-981-10-3680-4_5

68 6 Asymmetric Blind Rendezvous Algorithms

Algorithm 6. 3Modified Sequential Accessing Algorithm
1: Denote time t := 1, the user’s port set as C ⊆ U ;
2: while Not rendezvous do
3: Let pid := (t − 1)%N + 1;
4: if pid ∈ C then
5: Access port pid in time t ;
6: else
7: Choose pid randomly from C ;
8: Access port pid in time t ;
9: end if
10: t := t + 1;
11: end while

6.3.1 Modified Sequential Accessing Algorithm

We present the Modified Sequential Accessing (MSA) Algorithm as described as
Algorithm 6.3. First of all, the user computes the port with id pid corresponding to
the current time slot t as pid = (t − 1)%N + 1. Clearly, it is similar to accessing
the ports by repeating the sequence {1, 2, . . . , N }. However, due to occupancy by
other services, some ports are not available for the user. Thus, it needs to select
another available port randomly from set C . We show that, users ui and u j running
Algorithm6.2 can always achieve rendezvous within N time slots.

Theorem 6.2 The synchronous users ui and u j can achieve rendezvous within N
time slots, by running Algorithm6.2 at the same time.

Proof For the two neighboring users ui and u j , their sets of available ports must
intersect to ensure at least one common available port exists. ThereforeCi

⋂
C j �= ∅.

Denote the smallest number in set Ci
⋂

C j as s, clearly, 1 ≤ s ≤ N .
When two users run the algorithm at the same time, when t = s, port s is available

for user ui since s ∈ Ci , and thus user ui should access port s. Similarly, user u j

will access port s since it is available. Therefore, two users can access the connected
ports and they rendezvous in time slot s. So the theorem holds.

6.4 Asynchronous and Port-Asymmetric Rendezvous

Consider two users ui and u j , and suppose their available port sets are Ci , C j ⊆ U .
In the following settings:

RS =< Alg – AS, ASyn, Port-AS, I D, Non – Obli > (6.12)

6.4 Asynchronous and Port-Asymmetric Rendezvous 69

where two users start the rendezvous process in different time slots and the sets of
available ports may be different, i.e. Ci �= C j . This situation is the most difficult one
in this chapter and we present some elegant results.

6.4.1 Sequential Access and Temporary Wait for Rendezvous

We present the TemporaryWait algorithm as in Algorithm 6.4. This algorithm works
in this fashion: for each time slot t , compute the corresponding value x within range
[1, 2N 2] as x := (t−1)%2N 2+1.We can think of this operation as repeating the time
every 2N 2 time slots. Following that, we divide the 2N 2 time slots into N frames and
each framecontains 2N time slots. This iswhywecompute pid := �(x−1)/(2N)�+1
(pid corresponds to the frame that time slot t belongs to). Similar to the Modified
Sequential AccessingAlgorithm, if port pid is not available, wewill choose a random
available port as a replacement. This process continues until rendezvous.

Algorithm 6. 4 Temporary Wait Algorithm
1: Denote time t := 1, the user’s port set as C ⊆ U ;
2: while Not rendezvous do
3: Let x := (t − 1)%2N 2 + 1;
4: Let pid := �(x − 1)/(2N)� + 1;
5: if pid does not belong to set C then
6: Choose pid as a random value from C ;
7: end if
8: Access port pid for rendezvous attempt;
9: t := t + 1;
10: end while

We present a clear illustration in Fig. 6.3. The algorithm will access a fixed port
for 2N time slots (if we do not consider the situation that it is not available and should
be replaced). Then, after every 2N time slots, the algorithm will choose the next port
for waiting (also over 2N time slots). And this is the reason we call it the Temporary
Wait Algorithm. As shown in the figure, the user accesses a fixed port for 2N time
slots, and the replacement happens if some port is not available. For example, port k
replaces port 2 in the figure, if port 2 is not in the user’s available port set.

For two users ui and u j , suppose one user (without loss of generality, ui) adopts
the Modified Sequential Accessing Algorithm (Algorithm 6.3) while the other user
u j runs the Temporary Wait Algorithm (Algorithm 6.4). We show that they can
achieve rendezvous within 2N 2 time slots.

Theorem 6.3 Two users, adopting Algorithms 6.3 and 6.4 respectively, can achieve
rendezvous within MT T R = 2N 2 = O(N 2) time slots.

70 6 Asymmetric Blind Rendezvous Algorithms

Fig. 6.3 The illustration of the Temporary Wait Algorithm

Proof For two neighboring users ui and u j , their sets of available portsmust intersect
to ensure at least one common available port exists. Therefore Ci

⋂
C j �= ∅. Denote

the smallest number in set Ci
⋂

C j as s, clearly, 1 ≤ s ≤ N .
First, we show that, supposing user u j waits on port s for 2N time slots from t +1

to t + 2N , if user ui has begun Algorithm 6.3 no later than t + N , they can always
achieve rendezvous. Actually, if user ui starts the algorithm at time ti ≤ t +N , during
the time slots from ti to ti + N − 1, user u j will wait on port s, while user ui will
access port {1, 2, . . . , s, . . . , N } sequentially (notice that user ui does not access the
unavailable ports, but it does affect the analysis since s is available). Therefore, they
must rendezvous within these N time slots.

Then, we analyze the impact of asynchronous start. If user ui starts the algorithm
earlier than user u j , it is clear that they can achieve rendezvous when user u j waits
on choosing port s, thus T T R ≤ s ∗ 2N ≤ 2N 2. If user ui starts later, the worst
situation would happen when user u j is finishing waiting on port s but ui just starts.
Considering any 2N time slots that user u j waits on port s, denote them as t + 1 to
t + 2N . If user ui starts at time t + 2N − s + 1, user ui will choose port s at time
t + 2N + 1 but user u j has just moved to the next port for waiting. However, after
2N ∗ (N −1) time slots, i.e. from t + N 2 +1 to t + N 2 +2N , user u j will also access
port s and they will rendezvous in the first N time slots. Then, we can conclude that
time to rendezvous is also bounded by 2N 2 time slots if user ui starts later.

Combining these, two users running asymmetric algorithms can achieve ren-
dezvous within 2N 2 = O(N 2) time slots.

6.5 Chapter Summary

In this chapter, we present different types of rendezvous algorithms when the users
can run asymmetric algorithms. In practical applications, the users in the distributed
system may have different roles in the communications. For example, if one node
in the system tries to broadcast a message to all neighboring nodes, it may play
the role of “sender”, while the other nodes who do not send messages are regarded
as “receiver”. For example, wireless sensor network (WSN) is a typical distributed

6.5 Chapter Summary 71

Table 6.1 Rendezvous algorithms for different rendezvous settings

Algorithms Synchronous Asynchronous

Port-symmetric SPA, QCH A-QCH, SAA

Port-asymmetric MSA TWA

system where the sensors can have different roles in constructing communication
links. Normally, each sensor node can send or receive signals through radio (bidirec-
tional or unidirectional radios). Suppose all sensor nodes are deployed in amonitoring
area where they can sense environmental data. Further suppose there exists a mobile
sink (it can be a moving vehicle which carries sensors or communication units)
that travels through the monitoring area; when it is close to some deployed sensor
nodes, it can send signals to activate these sensors and then collect data from them.
In this case, the mobile sink can be regarded as the “sender”, while the deployed
sensors are “receivers”. Therefore, they can execute different algorithms to establish
communication links.

In this chapter, we mainly introduce algorithms for four different rendezvous
settings: synchronous and port-symmetric, asynchronous and port-symmetric, syn-
chronous and port-asymmetric, and asynchronous and port-asymmetric. Since the
users’ IDs are used to break symmetry among the users, we do not consider the
impact of users’ IDs in the chapter.

For the synchronous and port-symmetric setting, we present two rendezvous algo-
rithms that can performwell. The first one (Smallest Port Accessing algorithm, SPA)
simply accesses the port with smallest label, while the second one (quorum-based
channel hopping, QCH) adopts a quorum system to design efficient port accessing
strategy. The SPA algorithm can be used in very limited situations, but the QCH
algorithm can be applied in many rendezvous settings.

For the asynchronous and port-asymmetric setting, we present the method of
extending the QCH algorithm to two asynchronous users. The asynchronous QCH
(A-QCH) algorithm designs special rendezvous sequences on the basis of two dis-
joint quorum systems and this method can also be applied in designing symmetric
algorithms for the users. Another algorithm is called the Sequential Accessing Algo-
rithm (SAA), which accesses the ports in a sequential manner. But this algorithm
has limited extensions.

For the synchronous and port-asymmetric setting, we propose the Modified
Sequential Accessing (MSA) algorithm which operates on the basis of the SAA
algorithm. When one user adopts the MSA algorithm while the other one runs the
SPA algorithm, they can rendezvous in a short time.

For the asynchronous and port-asymmetric setting, one user adopts the MSA
algorithm while the other user adopts the Temporary Wait Algorithm (TWA), and
they can achieve rendezvous quickly. The intuitive idea is one user keeps accessing
the ports dynamically, while the other one moves slowly enough such that the first
user can peruse all the ports during the “slow” moves of the other user.

72 6 Asymmetric Blind Rendezvous Algorithms

From these rendezvous algorithms, the main idea in designing asymmetric algo-
rithms is to make one user wait on a fixed port for a sufficient amount of time,
while the other user keep accessing the ports dynamically. The described algorithms
are listed in Table6.1 and readers who are interested in asymmetric algorithms can
design some other algorithms for rendezvous.

References

1. Bian, K., Park, J.-M., & Chen, R. (2009). A quorum-based framework for establishing control
channels in dynamic spectrum access networks. In Mobicom.

2. Bian, K., Park, J.-M., & Chen, R. (2011). Control channel establishment in cognitive radio
networks using channel hopping. IEEE Journal on Selected Areas in Communications, 29(4),
689–703.

3. Bian, K., & Park, J.-M. (2013). Maximizing Rendezvous diversity in rendezvous protocols
for decentralized cognitive radio networks. IEEE Transactions on Mobile Computing, 12(7),
1294–1307.

4. Luk, W. S., & Wong, T. T. (1997). Two new quorum based algorithms for distributed mutual
exclusion. In ICDCS.

	6 Asymmetric Blind Rendezvous Algorithms
	6.1 Synchronous and Port-Symmetric Rendezvous
	6.1.1 Smallest Port Accessing Algorithm
	6.1.2 Quorum-Based Channel Hopping

	6.2 Asynchronous and Port-Symmetric Rendezvous
	6.2.1 Asynchronous Quorum-Based Channel Hopping
	6.2.2 Sequential Accessing Algorithm

	6.3 Synchronous and Port-Asymmetric Rendezvous
	6.3.1 Modified Sequential Accessing Algorithm

	6.4 Asynchronous and Port-Asymmetric Rendezvous
	6.4.1 Sequential Access and Temporary Wait for Rendezvous

	6.5 Chapter Summary
	References

