
Chapter 17
Rendezvous in Heterogeneous Cognitive
Radio Networks

Abstract Rendezvous is a fundamental and important process in operating a dis-
tributed system, which can be applied in many distributed applications running on
the system. In this chapter, we introduce the rendezvous process in a special type of
cognitive radio network: Heterogeneous Cognitive Radio Network (HCRN) where
different users have different capabilities to sense the licensed spectrum. Many ele-
gant rendezvous algorithms have been proposed by constructing sequences based
on the channels’ labels [1, 3, 7, 8, 10] or their identifiers (IDs) [2, 4, 5], and ren-
dezvous can be guaranteed in a short time based on the special hopping sequences
constructed. However, they all assume the users have the capability to sense and
access all the licensed channels, which is unrealistic when the number of channels
(N ) is very large and some wireless devices may only operate on a small fraction
of the channels. Therefore, HCRN is proposed, in which the users may have differ-
ent spectrum-sensing capabilities. We introduce the system model and formulate the
problem in Sect. 17.1. Rendezvous algorithms for the fully available spectrum are
presented in Sect. 17.2, and rendezvous algorithms for the partially available spec-
trum are introduced in Sect. 17.3. Finally, we summarize the chapter in Sect. 17.4.
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216 17 Rendezvous in Heterogeneous Cognitive Radio Networks

17.1 Preliminaries

We first introduce the system model of heterogeneous cognitive radio network
(HCRN) and its difference with traditional cognitive radio network. Then, we define
the rendezvous problem in the context ofHCRNand show the challenges of designing
efficient rendezvous algorithms for this kind of CRN.

17.1.1 System Model

The licensed spectrum is assumed to be divided into N non-overlapping channels:

U = {1, 2, . . . , N } (17.1)

Each user (here wemean secondary users) is equipped with a cognitive radio to sense
the licensed spectrum. We say a channel is available for the user if it is not occupied
by any nearby primary users (PUs) who own these licensed channels. Actually, the
users may have different spectrum sensing capabilities and suppose user i can sense
a set of continuous channels:

Ci = {cx , cx+1, . . . , cx+ki−1} ⊆ U (17.2)

which is assumed in [11, 12], where cx is the starting channel and ki = |Ci |, 1 ≤
x ≤ N − ki + 1.

The channels in set Ci are either occupied by nearby PUs or available for the
(secondary) user i . We denote:

Vi ⊆ Ci (17.3)

as the set of all available channels after the spectrum sensing stage.
Time is also assumed to be divided into slots of equal length 2t , where t is sufficient

for establishing a communication link if the users access the same channel at the same
time slot. According to the IEEE 802.22 [9], t is often set to be 10ms. The intuitive
idea of setting each time slot to be 2t is to ensure that an overlap of t exists for link
establishment even when the users do not start their process at aligned time slots (the
idea is similar to the blind rendezvous for CRN in Chap.5; we omit the details here).

Considering two users ua and ub with different spectrum sensing capability sets
Ca,Cb, and the corresponding available channel sets Va, Vb, they can rendezvous on
some common available channel if Va ∩ Vb �= ∅, which implies their capability sets
must intersect.

Here we study two scenarios: fully available spectrum and partially available
spectrum.

http://dx.doi.org/10.1007/978-981-10-3680-4_5
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Fig. 17.1 An example of
different spectrum sensing
capability sets of two users

Fig. 17.2 An example of
different available channel
sets of two users

If all channels in the users’ sensing capability sets are available after the spectrum
sensing stage, we call that the fully available scenario (i.e. Vi = Ci ). But in most
circumstances, some channels are likely occupied (Vi �= Ci ) and we call that the
partially available scenario.

For example, in Fig. 17.1, two users ua and ub have different sets of sensing
capabilities Ca,Cb ⊆ U . If some channels are occupied by some PUs, we label
these channels as white in Fig. 17.2 and the figure shows an example that two users
have different sets of available channels, Va ⊆ Ca and Vb ⊆ Cb respectively.

In Fig. 17.1, all channels in the user’s sensing capability set are available and it is
a fully available scenario, while Fig. 17.2 is a partially available scenario since some
channels are occupied by the PUs [6].

In each time slot, user ui can access an available channel from set Vi and attempt
rendezvous with its potential neighbors. We say rendezvous happens when the users
choose the same channel in the same time slot.

Time to rendezvous (T T R) denotes the number of time slots they take to ren-
dezvous once all users have begun their attempt. Since the users are dispersed in
different places and they may begin the rendezvous process in different time slots,
we focus on designing efficient distributed algorithms for asynchronous users. We
also use Maximum Time to Rendezvous (MTTR) to judge the performance of the
rendezvous algorithms with respect to the worst situation.
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17.1.2 Problem Definition

We formulate the rendezvous problem for the fully available spectrum scenario in
HCRN as follows:

Problem 17.1 For any spectrum sensing capability setCi ⊆ U , design an algorithm
to access channels over different time slots:

t : fCi (t) ∈ Ci (17.4)

such that for any two users ua and ub with sets:

Ca,Cb ⊆ U,Ca ∩ Cb �= ∅ (17.5)

Supposing user ua starts δ ≥ 0 time slots earlier than user ub,

∃Tδ, s.t. fCa (Tδ + δ) = fCb(Tδ) (17.6)

The T T R value is Tδ and the maximum time to rendezvous is defined as:

MTT R = max∀δ
Tδ (17.7)

The goal is to design rendezvous algorithms with bounded MTTR.

Although the fully available spectrum scenario rarely happens in practice, it rep-
resents the best spectrum condition that may happen in designing rendezvous algo-
rithms for HCRN. Formore general situations, we formulate the rendezvous problem
for the partially available spectrum scenario as follows:

Problem 17.2 For any spectrum sensing capability set Ci ⊆ U and available chan-
nel set Vi ⊆ Ci , design an algorithm to access channels over different time slots:

t : fCi ,Vi (t) ∈ Vi (17.8)

such that for any two users ua and ub with:

Ca,Cb ⊆ U, Va ⊆ Ca, Vb ⊆ Cb, Va ∩ Vb �= ∅ (17.9)

Supposing user ua starts δ ≥ 0 time slots earlier than user ub,

∃Tδ, s.t. fCa ,Va (Tδ + δ) = fCb,Vb(Tδ) (17.10)

The T T R value is Tδ and the maximum time to rendezvous is defined as:

MTT R = max∀δ
Tδ (17.11)

The goal is to design rendezvous algorithms with bounded MTTR.
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For example, U = {1, 2, . . . , 100}, and two capabilities sets are:

{
Ca = {2, 3, 4, 5, 6}
Cb = {5, 6, 7}

Suppose that both users ua and ub adopt a simple algorithm by repeating the
channels in their sensing capability set and user ua is 1 time slot earlier than user
ub. As depicted in Fig. 17.3, they rendezvous on channel 5 at time slot 9, and thus
T T R = 14−1 = 13 time slots. In fact, if the users apply the extant algorithms based
on all channels inU , the maximum rendezvous time could be O(N 2) ≈ 10, 000 time
slots, which is unacceptable. This figure is a simple example of the fully available
spectrum scenario. When some channels are occupied, for example:

{
Va = {2, 5, 6}
Vb = {6, 7}

They cannot rendezvous on channel 5 and one more time slot is needed, as illustrated
in Fig. 17.4. This is an example of the partially fully available spectrum scenario.

Fig. 17.3 An example of rendezvous problem in HCRN

Fig. 17.4 An example of rendezvous problem in HCRN when two users have partial available
channels
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Table 17.1 MTT R comparison for fully and partially available scenarios in HCRN

Algorithms Fully available scenario Partially available scenario

HH [12] O(|CA||CB |) −
ICH [11] O(|CA||CB |) O(|CA||CB |)
TP [6] O(max{|CA|, |CB |} log log N ) −
MTP [6] O((max{|VA|, |VB |})2 log log N ) O((max{|VA|, |VB |})2 log log N )

Remarks: (1) “−” means the algorithm is not applicable to the partially available spectrum scenario;
(2)CA,CB ⊆ U represent the capability sets of user A and B respectively; (3) VA ⊆ CA, VB ⊆ CB
represent the available channel sets of users A and B respectively

17.1.3 Challenges

In handling the blind rendezvous problem in HCRN, there are the following three
challenges:

(1) First, different users may have different capabilities to sense the licensed spec-
trum, we should design efficient algorithms under such heterogeneity.

(2) Second, the users may start the rendezvous process at different time slots, and
the rendezvous algorithms should work for both synchronous and asynchronous
users with bounded rendezvous time.

(3) Third, traditional rendezvous algorithms have maximum time to rendezvous
(MTT R) as MTT R = O(N 2), which is large when the user can only sense a
small fraction of the channels. Thus, we should reduce the MTT R value and
guarantee fast rendezvous even for the worst situations see the comparison in
Table17.1.

17.2 Rendezvous for Fully Available Spectrum

In this section,we propose a newmethod called theTraversingPointer (TP) algorithm
for the users that have fully available channels. The intuitive idea is to accelerate the
rendezvous process by accessing two channels at the same time, where one channel
is fixed to be the first channel in the capability set, and the other is generated by
hopping among the channels in the capability set. The method of generating such
hopping sequence is similar to the method of time division in Chap. 7.

In the first place, we present a special construction for two available channels
such that rendezvous can be guaranteed in O(log log N ) time slots if both users have
only two available channels. Then, we introduce the TP algorithm on the basis of
the special construction, which guarantees rendezvous for the two users with a fully
available spectrum in a short time.

http://dx.doi.org/10.1007/978-981-10-3680-4_7
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17.2.1 Rendezvous Scheme for Two Available Channels

Suppose each user has only two available channels, i.e. |Va| = |Vb| = 2, and
there exists at least one common channel, i.e. Va ∩ Vb �= ∅. We present a special
rendezvous scheme for the special scenario, which constructs a sequence of length
T2 = 16(�log log n + 1). The construction is based on three Disjoint Relaxed
Difference Sets (DRDSs).

Supposing the available channel set of the user is:

V = {v1, v2} ⊆ U, where v1 < v2 (17.12)

the method is described in Algorithm17.1.

Algorithm 17.1 Rendezvous Scheme for Two Channels
1: l1 = �log N + 1, l2 = �log l1 + 1;
2: Find the smallest number c ∈ [1, l1] such that the c-th bit of v2 is 1 and the c-th bit of v1 is 0;
3: Let

−→
D = {∗, cl2 , cl2−1, . . . , c1} where (cl2 , cl2−1, . . . , c1) is the binary representation of c;

4: Denote the rendezvous sequence S = ∅;
5: for r = 1 : l2 + 1 do
6: If

−→
D (r) = ∗, add S∗ = (v1, v1, v2, v1, v1, v2, v2, v2) twice to S;

7: If
−→
D (r) = 0, add S0 = (v1, v1, v2, v1, v2, v1, v2, v2) twice to S;

8: If
−→
D (r) = 1, add S1 = (v1, v1, v2, v1, v2, v2, v2, v1) twice to S;

9: end for
10: Repeat the rendezvous sequence S until rendezvous;

Algorithm17.1 finds the smallest number c ∈ [1, l1] such that the c-th bit of v2 is
1 but the c-th bit of v1 is 0, where l1 = �log N+ 1. Since v1 < v2, c must exist. It is
obvious that c can be represented by l2 = �log log N + 1 binary bits. We construct
vector

−→
D by adding a special symbol ∗ to the binary representation as in Line 3,

and we construct the rendezvous sequence in l2 + 1 rounds. In each round, different
sequences S∗, S0, S1 are added twice to S and the intuitive idea of designing these
sequences comes from the good properties of DRDS (see Definition8.3 in Chap.8).

We define three sets as:
⎧⎨
⎩

D∗ = {{1, 2, 4, 5}, {3, 6, 7, 8}}
D0 = {{1, 2, 4, 6}, {3, 5, 7, 8}}
D1 = {{1, 2, 4, 8}, {3, 5, 6, 7}}

It is easy to check that they are three DRDS under Z8. S∗, S0 and S1 are then
constructed on the basis of D∗, D0, D1 respectively. We show the construction of
sequences S0, S1, S∗ in Figs. 17.5, 17.6 and 17.7.

In each round, sequence S∗, S0 or S1 is added twice to the rendezvous sequence
because the users can start the algorithm asynchronously. We first derive a useful
lemma, as follows.

http://dx.doi.org/10.1007/978-981-10-3680-4_8
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Fig. 17.5 Construction of
sequence S∗ on the basis
of D∗

Fig. 17.6 Construction of
sequence S0 on the basis
of D0

Fig. 17.7 Construction of
sequence S1 on the basis
of D1

Lemma 17.1 Every 8 continuous time slots in each round corresponds to a DRDS.

Proof Consider the round containing two S0 sequenceswhere S0 is constructed based
on the DRDS D0. Every 8 continuous time slots [i, i + 7] where 1 ≤ i ≤ 9 can be
seen as rotating S0 by i − 1 time slots. From the definition of Relaxed Difference
Set (RDS) in Chap.8, the rotation of an RDS is also an RDS. Thus the rotation of S0
also corresponds to a DRDS. For example, when i = 3, the 8 continuous time slots
are:

{v2, v1, v2, v1, v2, v2, v1, v1} (17.13)

and they correspond to the DRDS:

{{2, 4, 7, 8}, {1, 3, 5, 6}} (17.14)

We can also derive the same result for the other two sequences S1, S∗, and thus
the lemma holds.

Consider two users ua and ub with available channel sets:

{
Va = {a1, a2}
Vb = {b1, b2}

http://dx.doi.org/10.1007/978-981-10-3680-4_8
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Suppose the chosen numbers in Line 2 are ca, cb respectively. We show the correct-
ness of Algorithm17.1 based on different relationships between ca, cb:

(1) If ca = cb, rendezvous is guaranteed in 16 time slots as in Lemma17.2.
(2) If ca �= cb, rendezvous is guaranteed in 16(�log log N + 1) time slots as in

Lemma17.3.

Lemma 17.2 Algorithm17.1 guarantees rendezvous in 16 time slots if ca = cb.

Proof When ca = cb, we claim that:

a1 �= b2 and a2 �= b1 (17.15)

If a1 = b2, we can derive:
b1 < b2 = a1 < a2 (17.16)

From Line 2, the cb-th bit of b2 is 1 and the ca-th bit of a1 is 0, but ca = cb, which
leads to a contradiction. Thus a1 �= b2. Similarly, a2 �= b1.

Since the users have at least one common channel, that is:

a1 = b1 or a2 = b2 (17.17)

We show that both pairs (a1, b1), (a2, b2) appear in the constructed sequences when
two users have begun their process.

Denote the constructed sequences for the users as Sa and Sb respectively, and they
are composed of l2 + 1 rounds. We say the i-th round of user ua (denoted as r(a, i))
overlaps with the j-th round of user ub (r(b, j)) if their intersection length is at least
8 (time slots).

Without loss of generality, suppose user ua is δ time slots earlier than user ub. We
show the lemma from two situations:

(1) If r(b, 1) overlaps with r(a, 1) and there are at least 8 overlapping time slots. By
Lemma17.1, the continuous 8 time slots correspond to two DRDSs for users ua
and ub. From the definition of the DRDS, we can check that (a1, b1) and (a2, b2)
both exist in the 8 time slots, and thus they rendezvous in the first round of user
ub.

(2) If r(b, 1) overlaps with r(a, i) where 1 < i ≤ l2 + 1 and there are at least
8 overlapping time slots. If (a1, b1) does not exist in the intersecting 8 slots,
channel b1 meets a2 in four time slots and b2 also has to meet a1 in four time
slots. However, the sequence added in r(b, 1) is different from the sequence in
r(a, i). Actually, S∗ is added twice in r(b, 1) while S0 or S1 is added in r(a, i),
and this situation cannot happen. Thus, (a1, b1) exists in the first round of user
ub. Similarly, we can prove that (a2, b2) exists. Thus they can rendezvous in 16
time slots.
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Fig. 17.8 An example of r(b, 1) overlapping with r(a, 1) in Algorithm17.1

Fig. 17.9 An example of r(b, 1) overlapping with r(a, i) where 1 < i ≤ l2 + 1 in Algorithm17.1

As depicted in Fig. 17.8, r(b, 1) overlaps with r(a, 1) and the first 8 overlapping
time slots form two DRDSs are:

{ {{2, 3, 7, 8}, {1, 4, 5, 6}} for user ua
{{1, 2, 4, 5}, {3, 6, 7, 8}} for user ub

Then we can check that (a1, b1) exists in the 2-nd time slot and (a2, b2) happens
in the 6-th time slot. Similarly, Fig. 17.9 shows the example that r(b, 1) overlaps with
r(a, i) where 1 < i ≤ l2 + 1, and both pairs (a1, b1) and (a2, b2) exist in the first
overlapping 8 time slots. Therefore, the lemma holds.

Lemma 17.3 Algorithm17.1 guarantees rendezvous in T2 = 16(�log log N + 1)
time slots if ca �= cb.

Proof When ca �= cb, there are four possible combinations of rendezvous situations:

⎧⎪⎪⎨
⎪⎪⎩

a1 = b1
a1 = b2
a2 = b1
a2 = b2

Thus the two users’ overlapping sequences must contain the four pairs (a1, b1),
(a1, b2), (a2, b1), (a2, b2). We show the lemma from two situations.
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(1) If r(b, 1) overlaps with r(a, 1), (a1, b1), (a2, b2) exists in the overlapping part
by Lemma17.2. Since ca �= cb, without loss of generality, suppose ca < cb and
there exists 1 ≤ i ≤ l2 such that the i-th bit of ca is 0 but the i-th bit of cb is 1 (such
i must exist). When r(b, i + 1) overlaps with r(a, i + 1), we claim that (a1, b2)
and (a2, b1) exist in the overlapping part. If (a1, b2) does not happen, a1 has to
meet b1 four times and a2 has to meet b2 four times; however, r(a, i + 1) and
r(b, i + 1) use different sequences (S0 and S1) and this situation cannot happen.
Thus (a1, b2) appears at least once during the intersecting part. Similarly, (a2, b1)
also exists. Therefore, rendezvous can be guaranteed in 16(i+1) ≤ T2 time slots.

(2) If r(b, 1) intersects with r(a, i) where 1 < i ≤ l2 + 1, the pairs (a1, b1) and
(a2, b2) both exist by Lemma17.2. Using the similar technique as the first situ-
ation, we can check that (a1, b2) and (a2, b1) exist in the first round of user ub.

Combining the two situations, rendezvous can be guaranteed in T2 time slots, and
the lemma holds.

By Lemmas17.2 and 17.3, we conclude the theorem:

Theorem 17.1 Algorithm17.1 guarantees rendezvous in T2 = 16(�log log n + 1)
time slots for the special situation that each user has two available channels.

17.2.2 Traversing Pointer Algorithm

For the fully available spectrum scenario, we propose the Traversing Pointer (TP)
algorithm based on the rendezvous scheme for two channels. Consider two users
ua and ub with spectrum sensing capability sets Ca,Cb ⊆ U , the TP algorithm is
described as Algorithm17.2.

Algorithm 17.2 Traversing Pointer Algorithm
1: t := 1, r := 1, L := 2T2;
2: f p := cx , mp := cx+ki−1;
3: while not rendezvous do
4: r := �t/L� + 1, p := (t − 1)%L + 1;
5: r ′ := (r − 1)%(2(ki − 1));
6: if 0 ≤ r ′ < ki − 1 then
7: mp := cx+ki−1−r ′ ;
8: else
9: mp := cx+r ′%(ki−1);
10: end if
11: Invoke Algorithm17.1 with available channels { f p,mp} and repeat the output twice to

construct the rendezvous sequence RSr = {s1, s2, . . . , sL };
12: Access the p-th channel of the sequence sp ∈ RSr ;
13: t := t + 1;
14: end while
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Fig. 17.10 An illustration of
Algorithm17.2. f p is fixed
at the first channel in all
rounds, while mp traverses
the channels back and forth
and round by round

To begin with, suppose user i has the spectrum sensing capability set as:

Ci = {cx , cx+1, . . . , cx+ki−1} ⊆ U (17.18)

where ki = |Ci |, 1 ≤ x ≤ N − ki + 1 and ∀c j ∈ Ci , channel c j is available.
The TP algorithm works on the basis of the rendezvous scheme for two available

channels. There are two constructed ‘pointers’ where f p, i.e. fixed pointer, is fixed
at the first channel cx and mp is a moving pointer that traverses the capability set
back and forth. We divide the time into rounds where each round contains L = 2T2
time slots (we repeat the constructed sequence from Algorithm17.1 twice to tackle
the asynchronous situation). f p is fixed butmp changes in each round. As illustrated
in Fig. 17.10, mp moves from the last channel cx+ki−1 to the first one cx in the first
ki − 1 rounds, and then from the first one to the last one in the next ki − 1 rounds.
The user continues the process until rendezvous.

17.2.3 Correctness and Complexity

Consider any two users ua and ub with spectrum sensing capability sets:

{
Ca = {cx , cx+1, . . . , cx+ka−1}
Cb = {cy, cy+1, . . . , cy+kb−1}

where 1 ≤ x ≤ N −ka +1, 1 ≤ y ≤ N −kb +1. Ca ∩Cb �= ∅ implies the following
situation must happen:

cx ∈ Cb or cy ∈ Ca (17.19)

Therefore, the constructed two pointers can help guarantee rendezvous when one
user’s moving pointer coincides with the other’s fixed pointer. We derive the time
complexity to achieve rendezvous in Theorem17.2.

Theorem 17.2 The TP algorithm (Algorithm17.2) guarantees rendezvous for the
fully available spectrum scenario in O(max{|Ca|, |Cb|} log log N ) time slots.

Proof Since the channels in the capability sets Ca and Cb are continuous and Ca ∩
Cb �= ∅, the first channel of Ca is in Cb (i.e. cx ∈ Cb) or the first channel of Cb is in
Ca (i.e. cy ∈ Ca). Without loss of generality, suppose cx ∈ Cb.
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Denote the consecutive L time slots constructed in Line 11 as a round, and the cho-
sen available channels in the r -th roundof twousers are { f pa,r ,mpa,r }, { f pb,r ,mpb,r }
respectively.

We say the i-th round of user ua (denoted as ra,i ) overlaps with the j-th round
of user ub (rb, j ) if their intersection part contains at least L/2 time slots. From
Theorem17.1, if ra,i overlaps with rb, j and { f pa,i ,mpa,i }∩ { f pb, j ,mpb, j } �= ∅, two
users can achieve rendezvous in L = 32(�log log N + 1) time slots. There are two
different situations according to the start time of two users:

(1) If user ua starts earlier (no later) than user ub, suppose the i-th round of user ua
overlaps with the first round of user ub. We can find that, after r = y + kb −
1− x rounds, ra,i+r overlaps with rb,1+r where user ub’s moving pointer chooses
channel:

mpb,1+r = cy+kb−(1+r) = cx = f pa,i+r (17.20)

thus, rendezvous is guaranteed in (r + 1)L ≤ |Cb|L time slots.
(2) If user ub starts earlier than user ua , suppose the i-th round of user ub overlaps

with the first round of user ua , there are two situations according to the moving
direction of user ub’s moving pointer (mp). It is easy to check that user ub’s
moving pointer chooses channel cx within 2kb rounds no matter which direction
it is heading. We omit the details and the reader may deduce the complexity of
the situation. Therefore, rendezvous is guaranteed in 2|Cb|L time slots.

Similarly, when cy ∈ Ca , rendezvous is also guaranteed in 2|Ca|L time slots.
Therefore, the TP algorithm (Algorithm17.2) guarantees rendezvous in
2max{|Ca|, |Cb|}L = O(max{|Ca|, |Cb|} log log N ) time slots when the spectrum
is fully available.

In order to show the efficiency of the TP algorithm, we show a constructive lower
bound in Theorem17.3.

Theorem 17.3 max{|Ca|, |Cb|} time slots are needed to guarantee rendezvous for
the fully available spectrum condition.

Proof Suppose user ua can sense only 1 channel (i.e. |Ca| = 1) which belongs toCb.
In order to discover the channel for rendezvous, user ub has to traverse all channels
in Cb at least once and thus (at least) max{|Ca|, |Cb|} time slots are needed, which
concludes the theorem.

It is clear that the lower bound still holds if two users are synchronous, and the TP
algorithm is nearly optimal with only an additional O(log log N ) factor. Compared
with the state-of-the-art result O(|Ca||Cb|) in [12], the TP algorithm removes an
O(min{|Ca|, |Cb|}) factor and it works more efficiently.
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17.3 Rendezvous for Partially Available Spectrum

In this section, we propose the Moving Traversing Pointer (MTP) algorithm for the
users that have partially available channels. The intuitive idea is also to accelerate
the rendezvous process by accessing two channels at the same time, and the time
to rendezvous is only impacted by an O(log log N ) factor. When it comes to the
partially available scenario, the TP algorithm cannot work because the channel they
rendezvous on may be unavailable. Therefore, we propose this modified algorithm
where the ‘fixed pointer’ can also move after the ‘moving pointer’ has already tra-
versed all channels in the capability set. Through such a modification, the MTP
algorithm can guarantee rendezvous in O((max{|Va|, |Vb|})2 log log N ) time slots.

17.3.1 Moving Traversing Pointer Algorithm

In practical situations, the sensed available channels may be only a fraction of the
spectrum sensing capability set. For two users ua and ub with capability setsCa,Cb ⊆
U and available channel sets Va ⊆ Ca, Vb ⊆ Cb, the TP algorithmmay not guarantee
rendezvous.

For example, suppose the first channel of user ua (cx ) belongs to user ub’s capa-
bility set (cx ∈ Cb), cx is available for user ua (cx ∈ Va), but it is not available for
user ub (cx /∈ Vb). The fixed pointer of user ua stays at channel cx all the time but
user ub cannot access cx , and thus rendezvous may not happen. In order to overcome
the disadvantage, we modify the TP algorithm and the intuitive idea is to move the
‘fixed pointer’ after the ‘moving pointer’ has already traversed the channels.

Similar to the assumption in the TP algorithm, suppose user i has the spectrum
sensing capability set as:

Ci = {cx , cx+1, . . . , cx+ki−1} ⊆ U (17.21)

where ki = |Ci | and 1 ≤ x ≤ n − ki + 1, and the available channel set is denoted as
Vi ⊆ Ci . Order the available channels by increasing order and denote:

Vi = {ci,1, ci,2, . . . , ci,mi } (17.22)

where mi = |Vi | and the equation:

∀1 ≤ j1 < j2 ≤ mi , ci, j1 < ci, j2 (17.23)

holds. The MTP algorithm is presented in Algorithm17.3.
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Algorithm 17.3 Moving Traversing Pointers Algorithm
1: t := 1, r := 1, mi = |Vi |;
2: L := 2T2, P := 2(mi − 1)L;
3: f p := ci,1, mp := ci,mi ;
4: while Not rendezvous do
5: l := �t/P� + 1, p1 = (t − 1)%P + 1;
6: r := �p1/L� + 1, p2 := (p1 − 1)%L + 1;
7: l ′ := (l − 1)%mi + 1, f p := ci,l ′ ;
8: r ′ := (r − 1)%(2(mi − 1)) + 1;
9: if 0 < r ′ < mi then
10: mp := ci,mi+1−r ′ ;
11: else
12: mp := ci,r ′%(mi−1);
13: end if
14: Invoke Algorithm17.1 with available channels { f p,mp} and repeat the output twice to con-

struct the rendezvous sequence RSl,r = {s1, s2, . . . , sL };
15: Access the p2-th channel as sp2 ∈ RSl,r ;
16: t := t + 1;
17: end while

TheMTP algorithm (Algorithm17.3) is different from the TP algorithmwhere the
‘fixed pointer’ does not always stay at the same channel. Assume time is divided into
loops of length P = 2(mi − 1)L time slots and each loop contains 2(mi − 1) rounds
of length L=2T2=32(�log log N+1). The pointer f p stays at a fixed available
channel in each loop and it moves to the next available one every P time slots as in
Line 7. Similar to the TP algorithm, the ‘moving pointer’ stays at a fixed channel in
each round and traverses the available channels back and forth round by round. As
illustrated in Fig. 17.11, f p is fixed at channel ci,1 for the first P time slots and mp
traverses from the last available channel ci,mi to the first one ci,1, and then back to the
last one every L time slots. In the next loop of P time slots, fpmoves to channel ci,2
as Fig. 17.12 and mp repeats the traversal. This process continues until rendezvous.

Fig. 17.11 mp traverses the
channels back and forth and
round by round, while f p
moves to the next available
channel every 2(mi − 1)
rounds

Fig. 17.12 mp traverses the
channels back and forth and
round by round, while f p
moves to the next available
channel every 2(mi − 1)
rounds
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17.3.2 Correctness and Complexity

Consider users ua and ub with capability sets Ca,Cb ⊆ U and available channel sets
Va ⊆ Ca, Vb ⊆ Cb where Ca ∩ Cb �= ∅. Denote:

{
Va = {ca,1, ca,2, . . . , ca,ma }
Vb = {cb,1, cb,2, . . . , cb,mb }

where ma = |Va|,mb = |Vb|. We show the correctness and the efficiency in the
following theorem.

Theorem 17.4 The MTP algorithm (Algorithm17.3) guarantees rendezvous for the
partially available spectrum scenario in O((max{|Va|, |Vb|})2 log log N ) time slots.

Proof Since Va ∩ Vb �= ∅, there exist 1 ≤ x ≤ ma, 1 ≤ y ≤ mb such that one
common available channel exists:

ca,x = cb,y (17.24)

Denote the consecutive L time slots constructed in Line 14 as a round and every
2(mi − 1) rounds as a loop (i = a or b). Denote the r -th round of l-th loop for users
ua and ub as ra(l, r) and rb(l, r), and the chosen available channels in the round as
{ f pa(l, r),mpa(l, r)} and { f pb(l, r),mpb(l, r)} respectively.

Similar to the analysis of Theorem17.2, we say round ra(la, ra) overlaps with
round rb(lb, rb) if their intersection part contains at least L/2 time slots. From
Theorem17.1, if ra(la, ra) overlaps with rb(lb, rb) and the chosen channels satisfy:

{ f pa(l, r),mpa(l, r)} ∩ { f pb(l, r),mpb(l, r)} �= ∅ (17.25)

rendezvous can be achieved in the intersection part.
Without loss of generality, assuming ma = |Va| ≤ |Vb| = mb and we show the

theorem from two aspects.

(1) If user ua starts the algorithm earlier than user ub, suppose ra(la, ra) overlaps
with the first round of user ub (rb(1, 1)). After (y − 1) · 2(mb − 1) rounds,
user ub’s fixed pointer ( f p) stays at channel cb,y for the next 2(mb − 1) rounds.
Since 2(mb − 1) ≥ 2(ma − 1), user ua’s moving pointer (mp) has enough time
(rounds) to traverse all available channels including ca,x = cb,y , and therefore
the chosen channels overlap in 2(ma − 1) rounds and rendezvous is guaranteed
in [2(mb − 1) · (y − 1) + 2(ma − 1)] · L ≤ 2(mb − 1)mbL time slots.

(2) If user ub starts the algorithm earlier than user ua , suppose rb(lb, rb) overlaps
with the first round of user ua (ra(1, 1)). Obviously, user ub can get to the loop
where the fixed pointer ( f p) stays at channel cb,y in no more than mb − 1 loops
(i.e. (mb − 1) · 2(mb − 1) rounds). By the same analysis, rendezvous can be
guaranteed in the following 2(ma − 1) rounds, which implies the maximum
rendezvous time can be bounded by:
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[(mb − 1) · 2(mb − 1) + 2(ma − 1)] · L ≤ 2(mb − 1)mbL (17.26)

time slots.

Similarly, ifma ≥ mb, we also can show that rendezvous is guaranteed in 2(ma −
1)maL time slots. Therefore, Algorithm17.3 guarantees rendezvous in:

2(max{ma,mb})2 ·32(�log log N+1) = O((max{|Va|, |Vb|})2 log log N ) (17.27)

time slots. Thus, the theorem holds.

17.4 Chapter Summary

The rendezvous problem has been widely studied in Cognitive Radio Networks
(CRNs) since the unlicensed spectrum is overcrowded due to the increasing num-
ber of wireless devices, while the licensed spectrum is often underutilized. In this
chapter, we introduce rendezvous processes in dealing with a special type of CRN
where the users (such as the mobile phones or other wireless devices) can only detect
a fraction of all channels. The different capabilities of detecting the licensed chan-
nels of the users create a heterogeneous network and this kind of network is called
Heterogeneous Cognitive Radio Network (HCRN).

In the chapter, we study the simplest version ofmodeling the users’ heterogeneous
capabilities to detect the licensed channels, where each user can only sense a set of
continuous channels. We mainly consider two scenarios, all channels in the users’
sensing range are available, or part of them are available.

For the first situation, we introduce the Traversing Pointer (TP) algorithm, where
two pointers exist to traverse the channels that the user can detect. This idea originates
from the method of traversing the elements in an array, but it cannot work if the
users’ capability set is not continuous. For the second situation, we modify the
TP algorithm and the proposed Moving Traversing Pointer (MTP) algorithm can
traverse all channels in the users’ capability set, while it keeps moving slowly to all
available channels.

Rendezvous in an arbitrary HCRN can be more difficult if the users’ capability
set is discontinuous. The proposed “pointer” works well in the continuous capability
set since we can regard it as an array, but we need to find out other efficient ways to
handle more general heterogeneous capabilities.
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