
Chapter 15
Oblivious Blind Rendezvous for Anonymous
Users

Abstract In this chapter, we present symmetric algorithms for the blind rendezvous
problem between two anonymous users. In the setting, we fix Alg and ID as:

RS =< Alg − S,Time,Port,Anon,Obli > (15.1)

where Port ∈ {Port − S,Port − AS} and Time ∈ {Syn,Asyn}. It is easy to see that
there are 4 different rendezvous settings when Alg is fixed as symmetric, ID is fixed
as anonymous, and Label is fixed as oblivious. Different from Chaps. 13 and 14,
we assume the users have no distinct identifiers to break symmetry in distributed
computing. This anonymous setting makes the oblivious blind rendezvous problem
difficult. In Sect. 15.1, we show the hardness due to such anonymity which gives
rise to the result that no deterministic algorithm could exist for the oblivious blind
rendezvous problem. Then, we present in Sect. 15.2 an efficient randomized algo-
rithm for two port-symmetric users no matter whether they are synchronous or asyn-
chronous, which achieves short expected time to rendezvous. For the most difficult
setting, where the users are port-asymmetric, we present randomized algorithms that
work well for both synchronous and asynchronous users. Finally, we summarize the
chapter in Sect. 15.4.

15.1 Hardness of Anonymity

In this section, we show that there is no deterministic distributed algorithm for the
OBR problem between two anonymous users, i.e. the users do not have unique
identifiers (IDs) or distinguishable information.

Theorem 15.1 There is no deterministic distributed algorithm for the OBR problem
between two anonymous users.

Proof Suppose there exists such a deterministic algorithm:

F : f �→ [1,N] (15.2)
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for the OBR problem between two anonymous users. Consider two users A and B
with two available port sets CA,CB satisfying

ka = kb = �N/2� + 1 (15.3)

where ka = |CA|, kb = |CB| represent the number of available ports for each user;
we set:

∀i, ca(i) �= cb(i) (15.4)

where ca(i) and cb(i) represent the ports that are labeled as i locally by users A and
B respectively.

Since ka + kb > N , at least one common available port exists between setsCA and
CB, which is the elementary condition that the users could rendezvous. However, we
show that the algorithm F cannot guarantee rendezvous.

Let δ = 0, i.e. two users start the rendezvous algorithm F at the same time, and
denote at, bt as the labels of the ports to access in time slot t respectively; thus:

at = f (a1, a2, . . . , at−1, ka,N)

bt = f (b1, b2, . . . , bt−1, kb,N)

since the chosen port in time slot t is only related to the user’s local information:
the local labels of the ports, the number of available ports, the number of all ports N
(notice that, N may not be known in advance, but we show the theorem even when
this value is available for the users).

We prove that usersA andBwill choose the ports with the same local label at = bt
in time slot t through the inductive method.

(1) When both users start the rendezvous algorithm, they only find out that there are
�N/2� + 1 available ports and they are indistinguishable from each other. Thus
they will make the same choice and access the port with the same local label in
the first time slot, i.e. a0 = b0;

(2) Suppose ai = bi when 0 ≤ i ≤ t − 1. Then user A should access port at as:

at = f (a1, a2, . . . , at−1, ka,N) (15.5)

while user B should access port bt with label:

bt = f (b1, b2, . . . , bt−1, kb,N) (15.6)

Since ai = bi when 0 ≤ i ≤ t − 1, ka = kb, both users have the same input to the
deterministic algorithm F and the outputs of the algorithm should be the same,
i.e. at = bt .

Combining the two aspects, both users A and B choose the ports with the same
local label at = bt for any time slot t. Since:



15.1 Hardness of Anonymity 187

ca(i) �= cb(i),∀i ∈ [1, �N/2� + 1] (15.7)

(obviously, this setting can be easy fulfilled). Rendezvous never happens even for
two synchronous users. Therefore, no deterministic algorithm exists for the OBR
problem between two anonymous users.

15.2 Port-Symmetric Rendezvous

In this section, we handle the port-symmetric rendezvous where two users have the
same set of available ports. For simplicity, we assume all ports are available and it is
easy to extend the algorithm to the general port-symmetric setting.

Recall the telephone coordination problem [1] (introduced in Sect. 1): two users
A and B are isolated in two rooms and there are N telephones in each of them.
The telephones are pairwise connected in some unknown fashion. For simplicity,
assuming the telephones are labeled {1, 2, . . .N} randomly (locally) for each user,
and telephone i ∈ [1,N] of user A is connected to a certain telephone j of user B,
but they do not know the connection pattern. Time is also assumed to be divided
into slots of equal length and the user can select one telephone in each time slot by
sending a “hello” message. If they pick a pair of connected telephones in the same
time slot, they can hear from each other and it is called rendezvous (all time slots are
regarded as aligned). Time to rendezvous (TTR) denotes the time cost when all users
have begun the selection process and the objective is to minimize the expected time
to rendezvous (ETTR).

When all the ports are available for the two anonymous users, it is similar to the
telephone coordination problem. One simple and intuitive idea is random selection,
where each user selects a random port to attempt rendezvous. This method has
expected time to rendezvous (ETTR) as N time slots and it seems to be the best
solution.

However, a better algorithmcalled theAnderson-Weber strategy (AW) is proposed
in [2]; for two synchronous users and it works as follows:

(1) Choose a random value i ∈ [1,N] and pick the i-th telephone in the first time
slot;

(2) choose a constant p ∈ [0, 1] and the user picks the i-th telephone for the next
N − 1 time slot with probability p, or picks the telephones in the nextN − 1 time
slots according to a random permutation of set {1, 2, . . . , i − 1, i + 1, . . . ,N}
(with probability 1 − p);

(3) if rendezvous does not happen, repeat the second step.

It has been proved that the AW strategy is optimal whenN = 2, p = 1
2 (this is also

shown in [3]) and N = 3, p = 1
3 [1, 4, 5, 7]. It has also been conjectured that AW is

asymptotically optimal whenN ≥ 4 (specifically,ETTR = 0.8289N and p = 0.2475
when N → ∞). In [6], it is proved that the AW strategy is not optimal when N = 4
and to find an optimal algorithm even for two synchronous users is still an open
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problem. In addition, the AW strategy does not work for asynchronous users. In this
section, we present a randomized algorithm which works well for both synchronous
and asynchronous users.

Before we describe the algorithm, we present some useful results from probability
theory.

Let A be an event, Pr(A) denote the probability event A happens and Pr(A) =
1 − Pr(A) the probability that event A does not happen. Let {B1,B2, . . . ,Bn} be a
set of disjoint events whose union is the entire sample space; then according to the
law of total probability:

Pr(A) =
n∑

i=1

Pr(A
⋂

Bi) =
n∑

i=1

Pr(A|Bi) · Pr(Bi) (15.8)

Suppose X is a random variable and denote E(X) as the expectation of X. If events
{B1,B2, . . . ,Bn} are mutually exclusive and exhaustive, according to the law of total
expectation:

E(X) =
n∑

i=1

E(X|Bi) · Pr(Bi) (15.9)

Let [N] denote the set {1, 2, . . . ,N}, and Ak
N be the number of methods selecting

k elements out of [N]:

Ak
N = N(N − 1) · · · (N − k + 1) (15.10)

15.2.1 Intuitive Ideas

To begin, we show a lower bound of the expected time to rendezvous (ETTR) when
two users are allowed to use asymmetric strategies (i.e. different algorithms). Then
we derive ETTR = N for the random selection algorithm. Combining the two results,
we then describe the intuitive ideas in designing the proposed randomized distributed
algorithm.

Lemma 15.1 For any distributed algorithm solving the OBR problem between two
anonymous users, the expected time to rendezvous satisfies:

ETTR ≥ N + 1

2
(15.11)

even when the users are allowed to use asymmetric algorithms.

Proof This lemma can be derived as in [2]. Let rt be the event that two users select
the same universal port (the local labels of the port may be different) in the t-th time
slot. Without loss of generality, suppose user A starts later than user B; t is the time
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stamp of user A since time to rendezvous (TTR) records the time cost when two users
have both begun the process.

Since the users do not know the other’s labels of the ports, we have:

Pr(rt) = 1

N
(15.12)

Note that, rt means they can rendezvous in the t-th time slot, but not necessarily for
the first time. Thus the probability two users rendezvous in the first t time slots can
be bounded as:

Pr(r1
⋃

r2
⋃

. . .
⋃

rt) ≤ min

{
1,

t∑

i=1

Pr(ri)

}
= min{1, t

N
} (15.13)

The bound on the right side of the inequality is achieved by the strategy S :

* One user accesses a fixed port all the time, while the other user hops through the
ports according to a random permutation of [N].

Obviously, we can derive the expected time to rendezvous for this strategy as:

ETTR =
∑n

i=1 i

N
= N + 1

2
(15.14)

and thus the lemma holds.

Although the strategyS can guarantee fast rendezvous for two anonymous users,
it is inapplicable to the OBR-2 problem since two anonymous users cannot decide
which role to take.

When it comes to the situation in which two asynchronous users should run a
symmetric algorithm, random selection seems to be reasonable,which can be denoted
as R:

* Each user accesses a port randomly in each time slot.

We derive the expected time to rendezvous and show the efficiency of the strategy.

Lemma 15.2 R has expected time to rendezvous ETTR = N for two asynchronous
users.

Proof Let rt be the event that the users access the same universal port (the local labels
may be different) in the t-th time slot. Since both users access the port randomly, we
can derive:

Pr(rt) = 1

N
(15.15)

Let r′
t be the event that the users can rendezvous in the t-th time slot for the first time;

then we have:
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Pr(r′
t) = Pr(r1

⋂
r2

⋂
. . .

⋂
rt−1

⋂
rt) =

(
1 − 1

N

)(t−1)

· 1

N
(15.16)

Therefore, we can compute the ETTR value as:

ETTR =
∞∑

t=1

t · Pr(r′
t) =

∞∑

t=1

t ·
(
1 − 1

N

)(t−1)

· 1

N
= N (15.17)

So the lemma holds.

Lemma 15.3 R guarantees rendezvous in O(N logN) time slots for two asynchro-
nous users with high probability.

Proof As shown in Lemma 15.2, the probability to rendezvous in each time slot t is
Pr(rt) = 1

N . Since strategyR accesses the ports randomly for every time slot, events
rt, r′

t are independent for any t �= t′. So the probability that they do not rendezvous
in cN logN (c is a constant) time slots is bounded by:

Pr(r1
⋂

r2
⋂

. . .
⋂

rcN logN ) =
(
1 − 1

N

)cN logN

(15.18)

When N → ∞, we derive that:

Pr(r1
⋂

r2
⋂

. . .
⋂

rcN logN ) = e−c logN = 1

Nc
(15.19)

Therefore, rendezvous happens in O(N logN) time slots with high probability 1 −
1
Nc , which concludes the lemma.

Though strategy S designs asymmetric algorithms for two users, the idea that
one user waits while the other user hops through all ports provides an important
foundation for designing efficient randomized algorithms. The strategyR seems to be
the best randomized algorithmwhereweuse pure randomization inmakingdecisions.
However, if we could combine both intuitions to design randomized algorithms, we
may achieve better results.

15.2.2 Stay or Random Selection Algorithm

In the section, we introduce a simple randomized distributed algorithm called Stay
or Random Selection (SRS) that achieves rendezvous faster than random selection
(R).

As shown in Algorithm 15.1, the user makes a choice at the beginning of each
block, which is defined as N consecutive time slots. If the chosen random value
p′ ≤ p (p is a constant we need to compute and define), the user accesses a random
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port and waits at it for a block of time slots; otherwise a random permutation of [N]
is generated and the user accesses the corresponding port in the permutation for each
time slot of the block. We denote the first choice as the stay pattern and the second
one as the jump pattern. The user keeps this process until rendezvous.

Algorithm 15.1 Stay or Random Selection Algorithm
1: p is a pre-defined constant in [0, 1];
2: while Not rendezvous do
3: Select a random value p′ ∈ [0, 1];
4: if p′ ≤ p then
5: Select a random number in [N] and access the corresponding port for the following N time

slots;
6: else
7: Generate a random permutation of [N] and access the corresponding ports in the following

N time slots according to the permutation;
8: end if
9: end while

The intuitive ideas of S and R are combined in our algorithm. Although the
description of the algorithm is simple, finding the optimal value of p that minimizes
the ETTR is very difficult. Compared with the AW strategy for the telephone coordi-
nation problem, our algorithm also works for two asynchronous users, which is not
treated in existing works.

15.2.3 Synchronous Users Scenario

The SRS algorithm is applicable for both synchronous and asynchronous users. In
this section, we analyze the rendezvous efficiency for two synchronous users and
compute the appropriate p value in Algorithm 15.1.

In the synchronous situation, two users start the algorithm at the same time. As
shown in Algorithm 15.1, time is divided into blocks of length N . At the beginning
of each block, the user decides to be in the stay or jump pattern. Denote r(S, J) as
the event that user A is in the stay pattern and user B is in the jump pattern. The other
three events are denoted as r(S, S), r(J, S), r(J, J) similarly. Denote the expected
time to rendezvous (ETTR) for synchronous users as Ts which can be formulated as:

Ts = E(S, J)Pr(S, J) + E(J, S)Pr(J, S) + E(S, S)Pr(S, S) + E(J, J)Pr(J, J) (15.20)

where Pr(S, J) is the probability that event r(S, J) happens, Pr(J, S) the probability
that event r(J, S) happens, Pr(S, S) the probability that event r(S, S) happens and
Pr(J, J) the probability that event r(J, J) happens. Similarly, E(S, J) is the expected
time to rendezvous if user A is in the stay pattern and user B is in the jump pattern;
E(J, S) is the expected time to rendezvous if user A is in the jump pattern and user
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B in the stay pattern; E(S, S) is the expected time to rendezvous if user A is in the
stay pattern and user B is in the stay pattern; and E(J, J) is the expected time to
rendezvous if user A is in the jump pattern and user B is in the jump pattern.

We first analyze the ETTR values for the four events respectively.

(1) Event r(S, S):
When both users choose the stay pattern, the only chance to rendezvous is that
the ports they select represent the same global port. Thus the probability to
rendezvous is:

Pr(S, S) = 1

N
(15.21)

and 1 time slot is needed when rendezvous happens. Therefore

E(S, S) = 1

N
· 1 +

(
1 − 1

N

)
(N + Ts) (15.22)

(2) Event r(S, J) and r(J, S):
When one user chooses the stay pattern while the other one is in the jump pattern,
rendezvous happens for certain:

Pr(S, J) = Pr(J, S) = 1 (15.23)

and the expected time to rendezvous is:

E(S, J) = E(J, S) = N + 1

2
(15.24)

(3) Event r(J, J):
When two users are both in the jump pattern, the expected rendezvous time is
formulated as in Lemma 15.4.

Lemma 15.4 If two users are both in the jump pattern, the expected rendezvous time
is:

E(J, J) = (N + 1)(1 − p(N + 1, 0) − p(N, 0)) + p(N, 0)(N + Ts) (15.25)

where p(N, 0) is the probability that the users cannot rendezvous according to two
random permutations of [N] they generate respectively.
Proof Let J1, J2 be the permutations of [N] that the users generate respectively when
they are in the jump pattern. Let variable m be the first time they meet on a specific
position. Supposing J1, J2 rendezvous exactly x ≥ 1 times, then:

Pr(m ≤ i) =
(N+1−i

x

)
(N
x

) ,∀1 ≤ i ≤ N − x + 1. (15.26)
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For any given N and fixed value 1 ≤ x ≤ N , denote the expected time to rendezvous
as E(m, x) which can be formulated as:

E(m, x) =
N−x+1∑

i=1

i · Pr(m = i)

=
N−x+1∑

i=1

Pr(m ≤ i)

=
N−x+1∑

i=1

(N+1−i
x

)
(N
x

)

= N + 1

x + 1

(15.27)

We accumulate the expectations for all possible N and x to derive:

E(J, J) =
N∑

x=0

p(N, x) · E(m, x)

=
N∑

x=1

p(N, x) · E(m, x) + p(N, 0)(N + Ts)

(15.28)

here p(N, x) is the probability that J1, J2 rendezvous exactly x ≥ 1 times.On the basis
that x rendezvous points exist between J1, J2, the remaining part cannot rendezvous
and the probability is denoted as p(N − x, 0). As the x rendezvous points have x!
different permutations, we derive:

p(N, x) = p(N − x, 0)

x! (15.29)

Combining Eq. (15.27), we get

N∑

x=1

p(N, x) · E(m, x) =
n∑

x=1

E(m, x) · p(N − x, 0)

x!

= (N + 1) ·
n∑

x=1

p(N − x, 0)

(x + 1)!

= (N + 1) ·
n∑

x=1

p(N + 1, x + 1)

= (N + 1)(1 − p(N, 0) − p(N + 1, 0))

(15.30)

Plugging this into the formulation of E(J, J), the lemma holds.
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Then we need to calculate p(N, 0) which denotes the probability that J1, J2 do
not rendezvous. Assuming J1 is the permutation generated by user A, we count the
number of permutations (J2) that do not rendezvous with J1 (denote the number as
DN ), which can be computed as in Lemma 15.5.

Lemma 15.5 DN = N ! · ∑N
k=0(−1)k · 1

k! . When N is large enough, DN = N !
e �

Proof Consider two permutations J1, J2 of [N] generated by user A and user B
respectively. Let J1(i), J2(i) be the labels of the i-th position. Since no rendezvous
happens, J1(N) does not represent the same universal port as J2(N). Suppose J2(N)

and J1(i), 1 ≤ i < N represent the same universal port while J1(N) and J2(j), 1 ≤
j < N represent the same universal port.

(1) If i = j, rendezvous cannot happen for all other N − 2 positions and the number
of such permutations is DN−2;

(2) if i �= j, the number of such permutations is DN−1.

Therefore, we can compute:

DN = (N − 1)(DN−1 + DN−2) (15.31)

It is easy to see D1 = 0,D2 = 1 and p(N, 0) = DN
N ! . Plugging these into the equation

we get:

N !p(N, 0) = (N − 1)((N − 1)!p(N − 1, 0) + (N − 2)!p(N − 2, 0))

After the transformation we get:

N !p(N, 0) − N !p(N − 1, 0) = −(N − 1)!p(N − 1, 0) + (N − 1)!p(N − 2, 0)
(15.32)

Let w(N) = N !p(N, 0) − N !p(N − 1, 0), we can solve the above equation as:

w(N) = −w(N − 1) = (−1)N−1w(1) = (−1)(N−1)

Then, we have:

p(N, 0) − p(N − 1, 0) = 1

N ! (−1)N (15.33)

and we can solve the equation as:

p(N, 0) = 1

N !
N∑

i=0

(−1)i
1

i! (15.34)

Therefore, DN is computed as:

DN = N ! · p(N, 0) = N ! ·
N∑

k=0

(−1)k · 1

k! (15.35)
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Fig. 15.1 An example of the
overlapping between two
random permutations

When N → ∞, p(N, 0) is the Taylor expansion of e−1, and thus DN = N !
e �. So

the lemma holds.

Since p(N, 0) = DN
N ! , we can combine Eqs. (15.20)–(15.25) to derive the expected

time to rendezvous as in Theorem 15.2.

Theorem 15.2 The expected time to rendezvous (ETTR) of the SRS algorithm (Algo-
rithm 15.1) for two synchronous and port-symmetric users can be formulated as:

Ts = T1 + T2 + T3
1 − p2(1 − 1

N ) − (1 − p)2p(N, 0)
(15.36)

where:

T1 = p(1 − p)(N + 1)

T2 = (1 − p)2[(N + 1)(1 − p(N, 0) − p(N + 1, 0)) + p(N, 0) · N]
T3 = [p2( 1

N
+ N − 1)]

(15.37)

In order to find out the optimal p that minimizes Ts, let
dTs
dp = 0, and we can com-

pute the value of p. When N → ∞, p ≈ 0.2475 and Ts ≈ 0.8289N , which matches
the state-of-the-art results [2].

15.2.4 Asynchronous Users Scenario

In order to analyze the algorithm for two asynchronous users, we present a method
to derive the ETTR value for a general situation, i.e. an arbitrary N value. Similar
to the analysis for two synchronous users, we first consider the scenario where two
users are both in the jump pattern and are in the asynchronous situation.

Suppose sequences J1, J2 are two random permutations of [N] generated by users
A and B respectively. Let r(N, k) denote the event that two users rendezvous in the
overlapping fragment of length k (as in Fig. 15.1) andR(N, k) denote the correspond-
ing variable. Let p(N, k, j) be the probability that they rendezvous exactly j times in
the overlapping part; it is obvious that:

Pr(r(N, k)) = p(N, k, 0) (15.38)
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We introduce Lemmas 15.6–15.8 to compute p(N, k, j) and E(R(N, k)). To begin
with, we introduce the inclusion-exclusion principle.

For two sets A,B, the cardinality of set A
⋃

B can be computed as:

|A
⋃

B| = |A| + |B| − |A
⋂

B| (15.39)

When there are multiple sets A1,A2, . . . ,An, we can compute the cardinality of set⋃n
i=1 Ai as:

|
n⋃

i=1

| =
n∑

i=1

Ai −
∑

1≤i<j≤n

|Ai

⋂
Aj| +

∑

1≤i<j<k≤n

|Ai

⋂
Aj

⋂
Ak|

+ · · · + (−1)n−1|A1

⋂
A2

⋂
. . .

⋂
An|

=
n∑

k=1

(−1)k+1

⎛

⎝
∑

1≤i1<...<ik≤n

|Ai1

⋂
· · ·

⋂
Aik |

⎞

⎠

(15.40)

Lemma 15.6 p(N, k, 0) = ∑k
i=0(−1)i · (ki)

Ai
N
.

Proof This lemma can be derived easily. Denote q(N, k, i) as the probability that
two users rendezvous at least i times in the overlapping fragment which has length
k; when 1 ≤ i ≤ k, we have:

q(N, k, i) =
(k
i

) · (N − i)!
N ! =

(k
i

)

Ai
N

(15.41)

Applying the inclusion-exclusion principle,

p(N, k, 0) = 1 − q(N, k, 1) + q(N, k, 2) + · · · + (−1)iq(N, k, i) =
k∑

i=0

(−1)i ·
(k
i
)

AiN
(15.42)

so the lemma holds.

Lemma 15.7 p(N, k, j) = p(N − j, k − j, 0) · (kj)
Aj
N

.

Proof Let D(N, k, j) denote the number of permutations when J1, J2 have overlap-
ping length k and exactly j rendezvous points. It is obvious that:

D(N, k, j) = N ! · N ! · p(N, k, j) (15.43)

Similarly, we compute:

D(N − j, k − j, 0) = (N − j)! · (N − j)! · p(N − j, k − j, 0) (15.44)
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For any instance of theD(N − j, k − j, 0) situations, it can be transformed into some
instance in the D(N, k, j) situations. Clearly, there are

(N
j

)
numbers (rendezvous

points) that can be chosen, and there are k − j + 1 positions to place the first number,
k − j + 2 positions for the second one, until k − j + j positions for the j-th number.
Thus, we derive:

D(N, k, j) = D(N − j, k − j, 0) ·
(
N

j

)
· k!
(k − j)! (15.45)

Combining the relationships of D(N, k, j), p(N, k, j) and D(N − j, k − j, 0),
p(N − j, k − j, 0), we get:

p(N, k, j) = D(N, k, j)

N ! · N ! = D(N − j, k − j, 0) · (N
j

) · k!
(k−j)!

N ! · N !
= p(N − j, k − j, 0) · (N − j)! · (N − j)!

N ! · N ! ·
(
N

j

)
· k!
(k − j)!

= p(N − j, k − j, 0) ·
(k
j

)

Aj
N

(15.46)

Thus the lemma holds.

Similar to Lemma 15.4, we bound the ETTR of R(N, k) in Lemma 15.8.

Lemma 15.8 E(R(N, k)) = (N + 1)(1 − p(N + 1, k + 1, 0)) − (k + 1)
p(N, k, 0).

Proof When j > k, p(N, k, j) = 0 and we accumulate the probabilities when j =
0, 1, . . . , k as:

k∑

j=0

p(N, k, j) = p(N, k, 0) + p(N, k, 1) + · · · + p(N, k, k) = 1. (15.47)

Supposing two users rendezvous exactly j times in the overlapping part of length
k (denote the event as r(N, k, j)). Let rk,j,1 be the time when they first rendezvous
and let qi be the probability that rk,j,1 is no more than i, thus:

qi = Pr(rk,j,1 ≤ i | r(N, k, j)) =
(k+1−i

j

)

(k
i

) (15.48)

where i ≤ k + 1 − j. When i > k + 1 − j, qi = 0. We can formulate the expected
time of the first rendezvous as:
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E(rk,j,1 | r(N, k, j)) =
k+1−j∑

i=1

i · Pr(rk,j,1 = i | r(N, k, j))

=
k+1−j∑

i=1

Pr(rk,j,1 ≤ i | r(N, k, j))

=
k+1−j∑

i=1

qi =
∑k+1−j

i=1

(k+1−i
j

)

(k
j

)

= k + 1

j + 1

(15.49)

Thus we accumulate all the expectations when j = 1, 2, . . . , k as:

E(R(N, k)) =
k∑

j=1

p(N, k, j) · E(rk,j,1 | r(N, k, j))

=
k∑

j=1

p(N − j, k − j, 0) ·
(k
j

)

Aj
N

· k + 1

j + 1

= (N + 1) ·
k∑

j=1

p(N − j, k − j, 0)

(k+1
j+1

)

Aj+1
N+1

= (N + 1) ·
k∑

j=1

p(N + 1, k + 1, j + 1)

= (N + 1)(1 − p(N + 1, k + 1, 0)) − (k + 1)p(N, k, 0)

(15.50)

We use Lemma 15.7 and plug in Eq. (15.47) to derive Eq. (15.50), and thus the lemma
holds.

Without loss of generality, suppose user B starts the algorithm δ time slots later
than user A. Since each user makes a choice every N time slots independently, we
consider the situation as user B starts:

d = δ mod N (15.51)

time slots later than user A. Let T1 be the ETTR value when user A is in the stay
pattern, and T2 be the ETTR value when user A is in the jump pattern. Then we derive
the ETTR value for the asynchronous scenario as follows.

Theorem 15.3 For an arbitrary N, the optimal p of Algorithm 15.1 can be deter-
mined numerically and the minimized ETTR is computed as:

ETTR = p · T1 + (1 − p) · T2 (15.52)
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Fig. 15.2 Different
situations of asynchronous
rendezvous scenario when
computing T1

Proof In order to compute T1,T2, there are 4 situations respectively as shown in
Figs. 15.2 and 15.3.

Since we treat every N time slots as a block, user B’s first block intersects with
user A’s two consecutive blocks. Let B1 denote user B’s first block’s pattern, and
A1,A2 denote user A’s two intersecting blocks’ patterns. For simplicity, we write
B1 = S for the stay pattern and B1 = J for the jump pattern. Thus:

T1 = ETTR(A1 = S)

T2 = ETTR(A1 = J)
(15.53)

Denote A1
⋂

B1 and A2
⋂

B1 as the overlapping fragment, and thus:

|A1

⋂
B1| = N − d

|A2

⋂
B1| = d

(15.54)

here |.| represents the length of the overlapping part. The situations of the overlapping
fragments are also illustrated in Figs. 15.2 and 15.3.

As depicted in Fig. 15.2, we denote
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Fig. 15.3 Different
situations of asynchronous
rendezvous scenario when
computing T2

T11 = ETTR(B1 = S,A2 = S | A1 = S)

T12 = ETTR(B1 = S,A2 = J | A1 = S)

T13 = ETTR(B1 = J,A2 = S | A1 = S)

T14 = ETTR(B1 = J,A2 = J | A1 = S)

(15.55)

and we can get the formulation of T1:

T1 = p2 · T11 + p(1 − p) · T12 + (1 − p)p · T13 + (1 − p)2 · T14 (15.56)

Similarly, from Fig. 15.3, we derive Eq. (15.57) for T2:

T2 = p2 · T21 + p(1 − p) · T22 + (1 − p)p · T23 + (1 − p)2 · T24 (15.57)

where:
T21 = ETTR(B1 = S,A2 = S | A1 = J)

T22 = ETTR(B1 = S,A2 = J | A1 = J)

T23 = ETTR(B1 = J,A2 = S | A1 = J)

T24 = ETTR(B1 = J,A2 = J | A1 = J)

(15.58)
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Now we present the method to produce the expressions of T11,T12,T13,T14 and
T21,T22,T23,T24.

Let r1(Tij) and r2(Tij) be the events that the users rendezvous in A1
⋂

B1,
A2

⋂
B1, respectively, and R1(Tij), R2(Tij) be the corresponding variables, where

1 ≤ i ≤ 2, 1 ≤ j ≤ 4. We derive the formulation of Tij as:

Tij =Pr(r1(Tij))[(N − d) + Pr(r2(Tij)) · E(R2(Tij)) + Pr(r2(Tij)) · (d + Tδ)

+ Pr(r1(Tij)) · E(R1(Tij))
(15.59)

where δ = (j − 1) mod 2 + 1 (i.e. δ = 1 when j = 1, 3; otherwise δ = 2). Thus we
can plug in the following probabilities and expectations to generate Eqs. (15.60) and
(15.61).

For event r1(T11), we compute:

{
Pr(r1(T11)) = 1

N

E(R1(T11)) = 1

For event r2(T11), we compute:

{
Pr(r2(T11)) = 1

N

E(R2(T11)) = 1

For event r1(T12), we compute:

{
Pr(r1(T12)) = 1

N

E(R1(T12)) = 1

For event r2(T12), we compute:

{
Pr(r2(T12)) = d

N

E(R2(T12)) = d+1
2

For event r1(T13), we compute:

{
Pr(r1(T13)) = N−d

N

E(R1(T13)) = N−d+1
2

For event r2(T13), we compute:

{
Pr(r2(T13)) = d

N

E(R2(T13)) = d+1
2
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For event r1(T14), we compute:

{
Pr(r1(T14)) = N−d

N

E(R1(T14)) = N−d+1
2

For event r2(T14), we compute:

{
Pr(r2(T14)) = p(N, d, 0)

Pr(r2(T14)) · E(R2(T11)) = E(R(N, d))

For event r1(T21), we compute:

{
Pr(r1(T21)) = N−d

N

E(R1(T21)) = N−d+1
2

For event r2(T21), we compute:

{
Pr(r2(T21)) = 1

N

E(R2(T21)) = 1

For event r1(T22), we compute:

{
Pr(r1(T22)) = N−d

N

E(R1(T21)) = N−d+1
2

For event r2(T22), we compute:

{
Pr(r2(T22)) = d

N

E(R2(T22)) = d+1
2

For event r1(T23), we compute:

{
Pr(r1(T23)) = p(N,N − d, 0)

Pr(r1(T23)) · E(R1(T23)) = E(R(N,N − d))

For event r2(T23), we compute:

{
Pr(r2(T23)) = d

N

E(R2(T23)) = d+1
2

For event r1(T24), we compute:
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Table 15.1 Optimal p and minimized ETTR values in Algorithm 15.1

N Optimal p ETTR ETTR/N

3 0.302 2.887 0.9624

5 0.280 4.749 0.9499

10 0.233 9.332 0.9332

50 0.206 45.765 0.9159

100 0.203 91.354 0.9135

200 0.202 182.467 0.9123

500 0.201 455.806 0.9116

1000 0.200 911.369 0.9113

2000 0.200 1822.432 0.9112

10000 0.200 911.149 0.9111

N → ∞ 0.200 0.9111N 0.9111

{
Pr(r1(T24)) = p(N,N − d, 0)

Pr(r1(T24)) · E(R1(T24)) = E(R(N,N − d))

For event r2(T24), we compute:

{
Pr(r2(T24)) = p(N, d, 0)

Pr(r2(T24)) · E(R2(T24)) = E(R(N, d))

Combining these equations, we can derive the expressions of T11,T12,T13,T14,
as follows:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

T11 = 1
N · 1 + N−1

N · 1
N · (N − d + 1) + (N−1

N )2 · (N + T1)

T12 = 1
N · 1 + N−1

N · d
N · (N − d + d+1

2 ) + N−1
N · N−d

N · (N + T2)

T13 = N−d
N · N−d+1

2 + d
N · d

N · (N − d + d+1
2 ) + d

N · N−d
N · (N + T1)

T14 = N−d
N · N−d+1

2 + d
N · (N − d + E(R(N, d))) + d

N · p(N, d, 0) · (d + T2)
(15.60)

Similarly, we derive the expression of T21,T22,T23,T24:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T21 = N−d
N · N−d+1

2 + d
N · 1

N · (N − d + 1) + d
N · N−1

N · (N + T1)

T22 = N−d
N · N−d+1

2 + d
N · d

N · (N − d + d+1
2 ) + d

N · N−d
N · (N + T2)

T23 = E(R(N,N − d)) + p(N,N − d, 0) · d
N · (N − d + d+1

2 )

+p(N,N − d, 0) · N−d
N · (N + T1)

T24 = E(R(N,N − d)) + p(N,N − d, 0)(N − d + E(R(N, d)))

+p(N,N − d, 0)p(N, d, 0)(d + T2)

(15.61)
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Combining Eqs. (15.52)–(15.61), p is optimized numerically for arbitrary N and the
minimized ETTR of our algorithm can be computed as Eq. (15.52). Table15.1 lists
some results derived through this numerical method.

15.3 Port-Asymmetric Rendezvous

In Sect. 15.2, we introduce a good method that works better than picking a random
port for rendezvouswhen the users have symmetric available ports. In this section, we
handle the port-asymmetric situations and present several randomized algorithms.

15.3.1 Random Picking Algorithm

One trivial way to handle the oblivious blind rendezvous between two anonymous,
port-asymmetric users is to pick the available port for rendezvous randomly. We
describe such an algorithm in Algorithm 15.2.

Algorithm 15.2 Random Picking Algorithm
1: Denote the set of the user’s available port set as C;
2: Denote C = {c(1), c(2), . . . , c(k)} where k = |C|;
3: t := 0;
4: while Not terminated do
5: Pick a random number i ∈ [1, k] and access port c(i) in time t;
6: t := t + 1;
7: end while

As depicted in the algorithm, the user has k available ports and it labels these
ports locally as:

{c(1), c(2), . . . , c(l)} (15.62)

where each port c(i) corresponds to a global port, but the user does not know the
relationship between them. We derive the time complexity of achieving rendezvous
with high probability.

Consider any two neighboring users ua and ub, and suppose the corresponding
available ports sets are

Ca = {ca(1), ca(2), . . . , ca(ka)}
Cb = {cb(1), cb(2), . . . , cb(kb)} (15.63)
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respectively, where ka = |Ca| and kb = |Cb| record the number of available ports.
Since we study rendezvous between two port-asymmetric users, sets Ca,Cb can be
different.

Denote Cg = Ca
⋂

Cb, which represents the set of common available ports
between user ua and user ub. Notice that, two users have at least one common avail-
able port and |Cg| ≥ 1. We derive below the expected time to rendezvous of the
random picking algorithm.

Lemma 15.9 The expected time to rendezvous of the random picking algorithm is
ETTR = |Ca||Cb|

|Cg | for two port-asymmetric users.

Proof Let rt be the event when both users access the same universal port (the local
labelsmaybedifferent) in the t-th time slot. Since both users access the port randomly,
we analyze the probability as follows.

User ua accesses each available port randomly, and the probability of accessing
each port ca(i) is:

Pra(i) = 1

|Ca| (15.64)

Similarly, the probability of user ub accessing each port cb(j) is:

Prb(j) = 1

|Cb| (15.65)

Therefore, the probability of user ua accessing port ca(i) and user ub accessing port
cb(j) at the same time is:

Pr(uaaccessesca(i), ubaccessescb(j)) = 1

|Ca||Cb| (15.66)

As there are |Cg| common available ports for both users, for each port cg(l) ∈ Cg ,
there exist i, j such that: {

ca(i) = cg(l)

cb(j) = cg(l)

here “=” means they correspond to the same universal port. Therefore, there are |Cg|
situations where they may access the same port and the probability is:

Pr(rt) = |Cg|
|Ca||Cb| (15.67)

Since both users make decisions randomly and independently in each time slot,
we can compute the ETTR value as:
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ETTR = ∑∞
t=1 t · Pr(rt)

= ∑∞
t=1 t ·

(
1 − |Cg |

|Ca||Cb|
)(t−1) · |Cg |

|Ca||Cb|
= |Ca||Cb|

|Cg |

(15.68)

Therefore, the lemma holds.

15.3.2 Random Prime Selection and Sequential Accessing
Algorithm

Though the random picking algorithm has short expected time to rendezvous, it
cannot guarantee rendezvous within a bounded number of time slots with high prob-
ability. Actually, we can design another algorithm that guarantees rendezvous if a
certain condition is satisfied.

Algorithm 15.3 Random Prime Selection and Sequential Accessing Algorithm
1: Denote the set of the user’s available port set as C;
2: Denote C = {c(1), c(2), . . . , c(k)} where k = |C|;
3: Choose a random prime number p ∈ [k, 3k];
4: t := 0;
5: while Not terminated do
6: x := t mod p;
7: index := (x − 1) mod k + 1;
8: Access port c(index) for rendezvous;
9: t := t + 1;
10: end while

As described in Algorithm 15.3, suppose the user has k available ports and it
chooses a randomprime number p in the range of [k, 3k]. After picking prime number
p, the user accesses port sequentially by its local labels from 1 to p. However, pmay
be larger than k and we map the number in [k + 1, p] to [1, k] as in Line 7. For
example, k = 2 and we choose p = 3, and the user accesses the ports as in Fig. 15.4.

For two users ua and ub, denote their available port sets as:

Ca = {ca(1), ca(2), . . . , ca(ka)}
Cb = {cb(1), cb(2), . . . , cb(kb)} (15.69)

Fig. 15.4 An example of
Algorithm 15.3
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respectively, where ka = |Ca| and kb = |Cb| record the number of available ports.
Denote the chosen prime numbers for two users as pa and pb. We show that they can
rendezvous within papb time slots for sure, if pa �= pb.

Theorem 15.4 Two port-asymmetric users (synchronous or asynchronous) can
achieve rendezvous within papb time slots under the situation that pa �= pb.

Proof Denote the port accessing sequences of user ua and ub as:

Sa = {ca(1), ca(2), . . . , ca(pa), ca(1), ca(2), . . . , ca(pa), . . .} (15.70)

and
Sb = {cb(1), cb(2), . . . , cb(pb), cb(1), cb(2), . . . , cb(pb), . . .} (15.71)

We do not consider the situation where some port in (ca(ka), ca(pa)] may not exist.
Suppose user ua is δ time slots earlier than user ub. Consider one common available
port cg between two users. Suppose it corresponds to port ca(i) of user ua and port
cb(j) of user ub. Suppose both users can rendezvous on port cg after user ub starts t
time slots; then we deduce that:

{
t + δ mod pa ≡ i

t mod pb ≡ j

According to the Chinese Remainder Theorem (see Chap.9, Theorem 9.1), such
value t must exist which satisfies both equations and t ≤ papb. Therefore, two users
can always achieve rendezvous no matter when they start.

However, if both users choose the same prime number, theymay never rendezvous
if they happen to miss the common available port. However, the probability of such
a failure is small.

15.4 Chapter Summary

In this chapter, we study the oblivious blind rendezvous (OBR) problem for two
anonymous users that are indistinguishable from each other.

In the beginning, we show an impossibility result that no deterministic algorithm
can tackle the OBR-2 problem even when the users start the rendezvous process at
the same time (i.e. synchronous users). Then, we propose a randomized distributed
algorithm called Stay or Random Selection (SRS) for a special situation in which all
ports are available for the users, which performs better than randomly accessing all
ports. Finally, we present several randomized algorithms for port-asymmetric users
on the basis of a random picking strategy.

When all N ports are available, two anonymous users adopting the random selec-
tion method have expected time to rendezvous (ETTR) inN time slots. We prove that
the optimal strategy when two users can run asymmetric algorithms, i.e. different

http://dx.doi.org/10.1007/978-981-10-3680-4_9
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strategies, has ETTR = N+1
2 time slots, where one user accesses a fixed port and the

other accesses the ports according to a random permutation of the N ports. The SRS
algorithm combines both ideas: the user accesses a fixed port for N time slots with
probability p or accesses the ports according to a random permutation of the N ports
(with probability 1 − p).

Although the description of SRS is simple, it is difficult to compute the appropriate
p value that minimizes the expected time to rendezvous. In the chapter, we show the
complicated analyses for both synchronous and asynchronous situations:

(1) For two synchronous users, theETTR is derived in Theorem 15.2 and the optimal
value of p can be derived numerically. When N → ∞, p ≈ 0.2475 and ETTR ≈
0.8289N , which matches the state-of-the-art result [2];

(2) For two asynchronous users, the ETTR is derived in Theorem 15.3. Some
detailed parameters are listed in Table15.1 and when N → ∞, p ≈ 0.200,
ETTR = 0.9111N .

Therefore, the SRS algorithm works better than random selection, which is an
elegant and surprising result. However, we cannot claim that SRS is the optimal
algorithm and one future direction is to explore the optimal algorithm when two
users should run a symmetric strategy. Moreover, when not all ports are available for
the users, which should be more practical, we need to design efficient randomized
distributed algorithms that have a good performance in the future.

For the port-asymmetric rendezvous setting, the random picking algorithm can
achieve rendezvous inETTR = |Ca||Cb|

|Cg | time slots, whereCa,Cb represent the number
of available ports of the two users, while Cg denotes the number of common avail-
able ports. We also present another algorithm called the Random Prime Selection
and Sequential Accessing Algorithm, which has good performance and the failure
probability of no rendezvous within papb time slots is very low, where pa, pb are two
chosen prime numbers in the algorithm.
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