
Chapter 14
Fully Distributed Rendezvous Algorithm
for Non-anonymous Users

Abstract In Chap.13, we present efficient distributed algorithms for both
synchronous and asynchronous users that are non-anonymous. These algorithms
utilize global information such as the number of the external ports N and the number
of users M (or the maximum value for the users’ identifier (ID)). In practical large
scale networks, it is difficult for the users to know these information beforehand.
For example, in cognitive radio networks, no general standard exists dividing the
total licensed spectrum into N channels, such as the IEEE 802.11 standard which
only concerns frequencies ranging 470–710 MHz [1], and so it is impractical for the
users to know the value of N . Moreover, all users are physically dispersed in the
system and they may join or leave freely, and hence they cannot know the number of
users in advance as there is no central controller. Therefore, it is desirable to design a
fully distributed algorithmwhere only the users’ local information would be utilized.
Actually, in a general distributed system, this kind of local information is limited to
the user’s ID and the number of the user’s available ports since there exists no global
labels for the ports. In Sect. 14.1, we present the first fully distributed algorithm
called the Conversion Based Hopping (CBH) algorithm, which guarantees oblivious
blind rendezvous in a short time. The correctness and complexity are analyzed in
Sect. 14.2. We summarize the chapter in Sect. 14.3.

14.1 Conversion Based Hopping Algorithm

The SCH algorithm in the preceding chapter cannot work for two asynchronous
users because the synchronous check stage could not work when the users start at
different time slots. However,we can use the intuitive idea of the hop stage of the SCH
algorithm to design distributed algorithms for two asynchronous users.Moreover, the
SCH algorithm assumes each user has an estimation of N but the proposed algorithm
in this chapter (we called Conversion Based Hopping Algorithm, or CBH for short)
only uses the user’s local information: the ID and the number of available ports.

Suppose the user’s ID is I and the available port set is C . The CBH algorithm
is described in Algorithm 14.1. With local input (I,C), Algorithm 14.1 finds the
smallest prime number p ≥ max{k, 3} where k = |C | and invokes ID Conversion
(I, p − 1) to get the results d. The ID Conversion is described in Algorithm 13.1.

© Springer Nature Singapore Pte Ltd. 2017
Z. Gu et al., Rendezvous in Distributed Systems,
DOI 10.1007/978-981-10-3680-4_14

175

http://dx.doi.org/10.1007/978-981-10-3680-4_13

176 14 Fully Distributed Rendezvous Algorithm for Non-anonymous Users

Algorithm 14.1 Conversion Based Hopping Algorithm
1: Input: I,C ;
2: k := |C |;
3: Find the smallest prime numbers p ≥ max{k, 3};
4: l := �logp−1 I�;
5: Invoke ID Conversion (I, p − 1) and the output is d;
6: if (l + 2) mod 2 = 0 then
7: l p := l + 2; D := {0, d0 + 1, d1 + 1, . . . , dl + 1}
8: else
9: l p := l + 3, D := {0, 1, d0 + 1, d1 + 1, . . . , dl + 1}
10: end if
11: T := 2l p · p2, FL := 2l p · p, SL = 2p;
12: while Not rendezvous do
13: t ′ := t mod T ;
14: x := �t ′/FL�, x ′ = t ′ mod FL;
15: y1 := �x ′/SL�, y2 = x ′ mod SL;
16: z := x + D(y1) · y2 mod p + 1;
17: z′ := (z − 1) mod k + 1, access port c(z′) ∈ C ;
18: t = t + 1;
19: end while

Then we construct the array D containing l p numbers as in Lines 6–10, where l p is
defined to be an even number, which is different from Algorithm 13.2. Following
the preprocessing, Algorithm 14.1 generates a sequence of length T = 2l p · p2 as in
Lines 13–16. This sequence consists of p frames of equal length FL = 2l p · p, where
each frame contains l p segments of length SL = 2p. In Line 17 of the algorithm,
the sequence is mapped from [1, p] to [1, k] and the corresponding port is accessed
by the user.

We illustrate the construction of the sequence in Fig. 14.1. It consists of p frames:

{F0, F1, . . . , Fp−1} (14.1)

Fig. 14.1 The construction of the T = 2l p · p2 sequence in CBH (Algorithm 14.1)

14.1 Conversion Based Hopping Algorithm 177

and each frame has l p segments:

{S0, S1, . . . , Slp−1} (14.2)

The way to generate segment Sj of frame Fi is to construct 2p numbers, starting
with i and the hopping step is D(j); then the k-th number is constructed as such:

(i + kD(j)) mod p + 1 (14.3)

Each segment contains 2p numbers and this is to eliminate the asynchronous situation
through doubling the length, which is similar to themethod of transforming time slots
into slot-aligned scenario.

There are two intuitive ideas in designing the CBH algorithm. The first one comes
from the SCH algorithm when the corresponding prime numbers of the two users
in Line 3 satisfy pa �= pb, and each user repeating its own ports can guarantee ren-
dezvous. When pa = pb, distinct IDs have different representations through the ID
conversion, thus accessing the ports with these hopping stepsmay assure rendezvous.
The proposed CBH algorithm combines these two principles and it has good perfor-
mance as analyzed in the next section.

14.2 Correctness and Complexity

Assume two asynchronous users (ua and ub) run Algorithm 14.1 with inputs (Ia,Ca)

and (Ib,Cb) where Ca
⋂

Cb �= ∅, Ia �= Ib (Ia, Ib ∈ [1, M]). Without loss of gener-
ality, suppose user ub is δ ≥ 0 time slots later. Denote the variables used for two
users in Algorithm 14.1 as:

{
(ka, pa, la, l pa , Da, Ta, FLa, SLa, ta)

(kb, pb, lb, l pb , Db, Tb, FLb, SLb, tb)

Since Ca
⋂

Cb �= ∅, there exists a port with global label u′ ∈ Ca
⋂

Cb and there
exist 1 ≤ i ≤ ka , 1 ≤ j ≤ kb such that

{
ca(i) = u′

cb(j) = u′

We derive the time complexity to achieve rendezvous based on the following three
situations:

(1) pa = pb = p and l pa = l pb = l p;
(2) pa = pb = p but l pa �= l pb ;
(3) pa �= pb;

178 14 Fully Distributed Rendezvous Algorithm for Non-anonymous Users

Lemma 14.1 If pa = pb = p and lpa = l pb = l p, rendezvous between users ua and
ub can be guaranteed in T = 2l p · p2 time slots.
Proof If 0 ≤ δ mod 2p < p, there exists x∗ ≥ 0, 0 ≤ y∗

1 < l p, 0 ≤ y∗
2 < p such

that:
δ = x∗ · (2plp) + y∗

1 · (2p) + y∗
2 (14.4)

Suppose users ua and ub can achieve rendezvous on port u′ at time ta, tb respec-
tively, and there exists x(a), x(b) > 0, 0 ≤ y1(a), y1(b) < l p, 0 ≤ y2(a) < 2p, 0 ≤
y2(b) < p such that:

ta = x(a) · (2plp) + y1(a) · (2p) + y2(a) (14.5)

tb = x(b) · (2plp) + y1(b) · (2p) + y2(b) (14.6)

From Lines 13–16 of Algorithm 14.1, the corresponding z values for two users could
be generated to be i, j , thus:

x(a) + Da(y1(a)) · y2(a) mod p + 1 = i (14.7)

x(b) + Db(y1(b)) · y2(b) mod p + 1 = j (14.8)

Since user ub is δ time slots later, we rewrite it as:

ta = tb + δ (14.9)

Plug Eqs. (14.4)–(14.6), we can get:

[x(a) − x(b) − x∗] · (2pl) + [y1(a) − y1(b) − y∗
1] · (2p)

+[y2(a) − y2(b) − y∗
2] = 0

(14.10)

Since y2(b) ∈ [0, p), y2(a) − y2(b) − y∗
2 = 0. Combining this with Eqs. (14.7)–

(14.8), we can derive:

[Da(y1(a)) − Db(y1(b))] · y2(b) + Da(y1(a)) · y∗
2 =

i − x(a) − (j − x(b)) mod p (14.11)

If we can find values y1(a), y1(b) satisfying:

{
D(y1(a)) − D(y1(b)) �= 0

y1(a) − y1(b) − y∗
1 mod l p = 0

Equation (14.11) can be solved under the constraint Eq. (14.10). We compute
y1(a), y1(b) as follows:

14.2 Correctness and Complexity 179

{
y1(a) = y1(b) = k If y∗

1 = 0
y1(a) = y∗

1 , y1(b) = 0 If 0 < y∗
1 ≤ l p − 1

(14.12)

If y∗
1 = 0, there exist 1 ≤ k ≤ l p − 1 such that Da(k) �= Db(k) from ID conversion.

If 0 < y∗
1 ≤ l p − 1, Da(y1(a)) − Db(y1(b)) = Da(y∗

1) > 0. Thus such y1(a), y1(b)
exist and y1(a) − y1(b) − y∗

1 = 0.
Since Da(y1(a)) − Db(y1(b)) �= 0, y2(b) can be computed from Eq. (14.11) as

follows. We plug in equation:

x(a) − x(b) = x∗ (14.13)

from the constraint Eq. (14.10). Then, we compute:

x(b) = j − 1 − Db(y1(b)) · y2(b) mod p (14.14)

and thus x(b) ∈ [0, p). So the time to rendezvous is:

TTR = tb = x(b) · (2plp) + y1(b) · (2p) + y2(b) (14.15)

and it is bounded by 2l p · p2.
For example, users ua and ub have inputs Ia = 5, |Ca| = 4, Ib = 20, |Cb| = 5 and

ca(2) = cb(4) is their only common available port. Thus pa = pb = 5, la = lb = 4
and Da = {0, 1, 2, 2}, Db = {0, 2, 2, 0}.

Let δ = 2014 and it can be rewritten as:

δ = 50 · 40 + 1 · 10 + 4 (14.16)

Thus we compute the values according to Eq. (14.4) as:

x∗ = 50, y∗
1 = 1, y∗

2 = 4 (14.17)

Since y∗
1 = 1, from Eq. (14.12), we know:

y1(a) = y∗
1 = 1

y1(b) = 0

x(a) − x(b) = x∗ = 50

From Eq. (14.11), y2(b) = 4 and x(b) = 3. Thus

tb = 3 ∗ 40 + 4 = 124

ta = tb + δ = 2138

We can check that user ua accesses port ca(2) and ub accesses port cb(4) at the same
time.

180 14 Fully Distributed Rendezvous Algorithm for Non-anonymous Users

If p ≤ δ mod 2p < 2p, the TTR value is also bounded by 2l p · p2 time slots
using the same technique above. We omit the details and the readers may deduce this
situation. Therefore, the lemma holds.

Lemma 14.2 If pa = pb = p but lpa �= l pb , rendezvous between users ua and ub
can be guaranteed in T = 2min{l pa , l pb } · p2 time slots.
Proof If 0 ≤ δ mod 2p < p, there exists x∗ ≥ 0, 0 ≤ y∗

1 < l pa , 0 ≤ y∗
2 < p such

that:
δ = x∗ · (2plpa) + y∗

1 · (2p) + y∗
2 (14.18)

Suppose two users can rendezvous on port u′ at time ta, tb respectively, we have:

ta = x(a) · (2plpa) + y1(a) · (2p) + y2(a)

tb = x(b) · (2plpb) + y2(b) · (2p) + y2(b)

where x(a), x(b) > 0, 0 ≤ y1(a) < l pa , 0 ≤ y1(b) < l pb , 0 ≤ y2(a) < 2p, 0 ≤
y2(b) < p. Combining these with ta = tb + δ to derive:

[l pa x(a) − l pb x(b) − l pa x
∗ + y1(a) − y1(b) − y∗

1] · 2p
+y2(a) − y2(b) − y∗

2 = 0

Similarly, we have:

{
l pa · x(a) − l pb · x(b) − l pa · x∗ + y1(a) − y1(b) − y∗

1 = 0
y2(a) − y2(b) − y∗

2 = 0
(14.19)

We can also formulate Eqs. (14.7)–(14.8). If l pa > l pb , we let:

{
y1(a) = 0

y1(b) = k �= 0

From Eq. (14.7), we can derive:

x(a) = (i − 1) mod p (14.20)

Plugging this into Eq. (14.19), we have:

l pb x(b) = [l pa x(a) − l pa x
∗ − y1(b) − y∗

1] mod p (14.21)

Since l pb is an even number, x(b) ∈ [0, p) can be computed obviously. Then from
Eq. (14.8), y2(b) ∈ [0, p) can be derived. Therefore, the T T R value is:

tb = x(b) · (2plpb) + y1(b) · (2p) + y2(b) ≤ 2p2l pb (14.22)

14.2 Correctness and Complexity 181

If l pa < l pb , we can bound the time to rendezvous as:

TTR = ta − δ = (x(a) − x∗) · (2plpa) + (y1(a) − y∗
1) · (2p) + (y2(a) − y∗

2) ≤ 2p2l pa
(14.23)

Thus, MTTR ≤ 2min{l pa , l pb }p2.
If p ≤ δ mod 2p < 2p, the TTR value is also bounded by:

T = 2min{l pa , l pb } · p2 (14.24)

time slots using the same technique above. Thus the lemma holds.

Lemma 14.3 If pa �= pb, rendezvous between users ua and ub can be guaranteed in
T = 2l p · p2 time slots, where p = max{pa, pb} and lp is the corresponding value
from {l pa , l pb }.
Proof This lemma can be concluded similarly. Suppose pa < pb, we can derive the
following equations:

x(a) + Da(y1(a)) · y2(a) mod pa + 1 = i

x(b) + Db(y1(b)) · y2(b) mod pb + 1 = j

Let y1(b) = 0, then:
x(b) = (j − 1) mod pb (14.25)

and y2(b) ∈ [0, 2pb). Suppose:

x(a) = i ′ mod pa (14.26)

and y1(a) �= 0, then y2(a) exists. Since ta = tb + δ and we know:

ta = x(a) · (2palpa) + y1(a) · (2pa) + y2(a)

tb = x(b) · (2pblpb) + y2(b) · (2pb) + y2(b)

We can find value:
x(a) = i ′ + v(a)pa (14.27)

satisfying δb(vb) + δ − δa(va) ∈ [2pa − 2pb, Ta) where Ta = 2p2al pa is define as
above, where:

δb(vb) = (2pblpb) · (j − 1 + v(b)pb)

δa(va) = (2palpa) · x(a)

Obviously, we can compute:

δb(0) mod Ta ≥ 2pa − 2pb (14.28)

182 14 Fully Distributed Rendezvous Algorithm for Non-anonymous Users

We let:

v(b) = 0

v(a) = �(δb(0) + δ)/Ta�
i ′ = �(δb(0) + δ − v(a)Ta)/FLa�

where FL = 2palpa ; then variables y1(a), y2(a), y2(b) can be determined. Thus, the
time to rendezvous can be computed as:

TTR = tb = x(b) · (2pblpb) + y1(b) · (2pb) + y2(b) ≤ 2p2bl pb (14.29)

If pa > pb, we can derive the time complexity using a similar technique:

TTR ≤ 2p2al pa (14.30)

Therefore, the lemma holds.

Combining Lemmas 14.1–14.3, we can conclude:

Theorem 14.1 Two users running the CBH algorithm (Algorithm 14.1) can achieve
rendezvous in MTTR = 2l p · p2 time slots where p = max{pa, pb} and lp is the
corresponding value from {l pa , l pb }.

This theorem reveals that: the CBH algorithm can guarantee oblivious blind ren-
dezvous between two users in a short time and it is comparable to the lower bound in
Theorem 13.5 for most cases. More precisely,MTTR = 2l p · p2 = O(k2) time slots
if l p is a constant, which implies the corresponding ID is a polynomial function of
p, where k = max{ka, kb}.

For example, if ka > kb (which implies pa ≥ pb), and Ia is bounded by Ia ≤ pca
where c can be an arbitrary large constant, MTTR = 2l pa · p2a = O(k2a). If kb =
�(ka) and kg = o(ka), theMTTR value is comparable with the lower bound in The-
orem 13.5 (see Chap.13.3).

Remark 14.1 In Lemma 14.3, the MTTR value can be bounded by 2l p p2 time slots
where p = min{pa, pb} for most cases: when pa < pb, if

(2pala j) mod Tb ≥ 2(pb − pa) (14.31)

or
Ta mod Tb = Ω(pb) (14.32)

theMTTR value could be very small.

http://dx.doi.org/10.1007/978-981-10-3680-4_13
http://dx.doi.org/10.1007/978-981-10-3680-4_13

14.3 Chapter Summary 183

14.3 Chapter Summary

In this chapter,we present the first fully distributed rendezvous algorithm for twonon-
anonymous users, called Conversion Based Hopping (CBH). The CBH algorithm
only utilizes the user’s local information: the ID and the number of available ports
and it is independent of the global parameters: the number of all ports N and the
maximum value for the users’ ID M .

The CBH algorithm combines the intuitive idea of theMLS algorithm (in Chap. 9)
and the SCH/MSH algorithm (in Chap. 13): the user’s ID is first scaled (converted)
to a new number given the base value that is related to the number of available ports;
then the algorithm constructs hopping sequences by different hopping steps. The
CBH algorithm guarantees rendezvous in O((max{|Ca|, |Cb|})2) time slots under
most circumstances where Ca,Cb represent the sets of two users’ available ports.
When the number of available ports is small, the CBH algorithm outperforms some
state-of-the-art global sequence based rendezvous algorithms.

The CBH algorithm has many advantages when compared with traditional non-
oblivious blind rendezvous algorithms:

(1) The CBH algorithm uses very little information. Only the user’s ID and the
number of available ports are used in designing the CBH algorithm. It does
not require global information, such as the number of ports, the maximum ID
value, the labels of the ports. Some traditional non-oblivious blind rendezvous
algorithm may not utilize the user’s ID either, but they may need the value of all
ports, or the labels of these ports.

(2) The CBH algorithm is also suitable for non-oblivious setting, where the external
ports have global labels. Compared with the state-of-the-art rendezvous algo-
rithms, the CBH algorithm has good performance when the users’ number of
available ports is small.

Reference

1. A. B. Flores, R. E. Guerra, and E. W. Kightly. IEEE 802.11af: A Standard for TV White Space
Spectrum Sharing. IEEE Communications Magazine, 2013.

http://dx.doi.org/10.1007/978-981-10-3680-4_9
http://dx.doi.org/10.1007/978-981-10-3680-4_13

	14 Fully Distributed Rendezvous Algorithm for Non-anonymous Users
	14.1 Conversion Based Hopping Algorithm
	14.2 Correctness and Complexity
	14.3 Chapter Summary
	Reference

