
Zhaoquan Gu
Yuexuan Wang
Qiang-Sheng Hua
Francis C.M. Lau

Rendezvous
in Distributed
Systems
Theory, Algorithms and Applications

Rendezvous in Distributed Systems

Zhaoquan Gu • Yuexuan Wang
Qiang-Sheng Hua • Francis C.M. Lau

Rendezvous in Distributed
Systems
Theory, Algorithms and Applications

123

Zhaoquan Gu
Guangzhou University
Guangzhou
China

and

The University of Hong Kong
Hong Kong
China

Yuexuan Wang
Zhejiang University
Hangzhou
China

and

The University of Hong Kong
Hong Kong
China

Qiang-Sheng Hua
Huazhong University of Science
and Technology

Wuhan
China

Francis C.M. Lau
The University of Hong Kong
Hong Kong
China

ISBN 978-981-10-3679-8 ISBN 978-981-10-3680-4 (eBook)
DOI 10.1007/978-981-10-3680-4

Library of Congress Control Number: 2017947849

© Springer Nature Singapore Pte Ltd. 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04GatewayEast, Singapore 189721, Singapore

To my family who have supported me in the
past years.

—Zhaoquan Gu

To my husband and son, Giulio and
Francesco.

—Yuexuan Wang

To my family, especially to my son,
Hua Hua.

—Qiang-Sheng Hua

To all readers who are interested in math and
computer science.

Preface

A distributed system is a collection of autonomous units able to make decisions
locally. Through cooperation, these distributed units can solve global computational
problems together. This book is dedicated to one of the most fundamental processes
in operating a distributed system, referred to as the rendezvous process. Rendezvous
takes place when the external ports belonging to two neighboring units become
connected, and they can communicate and exchange information through this
connection.

There are five dimensions in which to define an instance of rendezvous. First of
all, the autonomous units can run an algorithm that is symmetric or one that is
asymmetric. In some distributed systems, the autonomous units all play different
roles and so they may run different algorithms, which are also called asymmetric
algorithms, while in other systems, all units are of the same type and run the same
symmetric algorithm. Second, the distributed units may or may not start at the same
time, which correspond to the synchronous or asynchronous scenario, respectively.
Third, some of the external ports in a unit may be occupied by services unrelated to
rendezvous, and so different units may have different sets of available ports. It is the
symmetric port setting if all units have the same set of available ports, otherwise
asymmetric port setting. Fourth, the distributed units are anonymous if they appear
to be indistinguishable, or non-anonymous if they can be distinguished by their
labels or identifiers. Labeling applies to external ports also. In some distributed
systems, the external ports have the same labels across all units, which is referred to
as non-oblivious port labeling. These global labels of the ports simplify the ren-
dezvous problem as one can easily capitalize on these labels in designing the
rendezvous solution. Alternatively, oblivious port labeling assumes there is no
global labeling rule, and the units label their external ports locally. Obviously,
rendezvous is harder to achieve when using the latter labeling which however is
more practical. In this book, we present rendezvous algorithms for all the combi-
nations of these five dimensions.

This book is divided into five parts, which are further broken into 20 chapters.
We start with an introduction of distributed rendezvous theory, which includes
distributed system preliminaries, distributed computing, and rendezvous theory.

vii

Next, we present different kinds of rendezvous algorithms for the blind rendezvous
problem in Part II, where the autonomous units’ ports have the same labels, i.e.,
non-oblivious port labeling. Then, in Part III, we introduce the oblivious blind
rendezvous problem where the ports are labeled locally by the units and we present
distributed rendezvous algorithms for a range of rendezvous settings. In Part IV, we
introduce several rendezvous applications and discuss the method of extending the
rendezvous algorithms for distributed systems to these applications. Finally, we
summarize the rendezvous results and mention some future work in Part V.

This book can be treated as a handbook of solutions to the rendezvous problem
in distributed systems. Rendezvous as a fundamental process underpins the con-
struction of many important functions in distributed systems and networks. Other
than theories and algorithms, this book also covers applications in which ren-
dezvous has a valuable role to play. These applications are just a small sample of
many potential applications that can benefit from an efficient rendezvous process.
This book offers in particular an in-depth treatment of the blind rendezvous and
oblivious blind rendezvous problems and their solutions. Rendezvous should be of
interest to readers from other research fields such as robotics, wireless sensor
networks, and game theory as the need for rendezvous arises naturally in many
scenarios in these different fields.

“If I had my life to live over, I’d have fewer meetings and more rendezvous”
(Robert Breault). Indeed, rendezvous is more than just a usual meeting which might
not amount to anything; there is a purpose behind every rendezvous which is to
enable the parties involved to establish a relationship and engage in an activity that
will benefit both. Rendezvous makes things happen!

Should you have any questions or suggestions, please contact the authors via
e-mail to zqgu@hku.hk, amywang@zju.edu.cn, qshua@hust.edu.cn, or fcmlau@cs.
hku.hk.

Beijing, China Zhaoquan Gu
March 2017 Yuexuan Wang

Qiang-Sheng Hua
Francis C.M. Lau

viii Preface

Acknowledgements

The authors would like to express their gratitude to all individuals who have helped
us during the revision of the manuscript, in correcting mistakes and suggesting new
examples. We are indebted to Editor Xiaolan Yao who provided plenty of useful
information during the entire preparation. This research was supported in part by
the Hong Kong Scholars Program.

ix

Contents

Part I Distributed Rendezvous Theory

1 Distributed Systems . 3
1.1 What Is Distributed System?. 3
1.2 Local Area Networks . 4
1.3 Email . 7
1.4 Wireless Sensor Networks . 7
1.5 Cognitive Radio Networks . 9
1.6 Telephone Networks . 11
References. 12

2 Distributed Computing . 15
2.1 What Is Distributed Computing?. 15
2.2 Communication Model . 17
2.3 Information Incompleteness . 19
2.4 Timing and Synchrony . 20
References. 22

3 Rendezvous Theory . 23
3.1 What Is the Rendezvous Problem? . 23
3.2 Rendezvous in Multichannel Wireless Networks 24
3.3 Rendezvous in Cognitive Radio Networks 25
3.4 Rendezvous in Distributed Systems . 27
3.5 Distributed Rendezvous Algorithms . 28

3.5.1 Distributed Telephone Coordination Algorithms 28
3.5.2 Distributed Rendezvous Algorithms

for Multichannel Networks . 30
3.5.3 Distributed Rendezvous Algorithms for Cognitive

Radio Networks. 32
References. 35

xi

4 Rendezvous Categories . 39
4.1 Symmetric and Asymmetric Algorithms 39
4.2 Synchronous and Asynchronous . 40
4.3 Symmetric and Asymmetric Port Settings. 43
4.4 Anonymous and Non-anonymous Entities 44
4.5 Oblivious and Non-oblivious Port Labeling 45
4.6 Rendezvous Categories . 47
References. 50

Part II Blind Rendezvous in Distributed Systems

5 Blind Rendezvous Problem . 53
5.1 System Model. 54
5.2 Metrics . 56
5.3 Problem Definition . 57
5.4 Challenges . 59
5.5 Chapter Summary . 60
References. 60

6 Asymmetric Blind Rendezvous Algorithms . 61
6.1 Synchronous and Port-Symmetric Rendezvous 61

6.1.1 Smallest Port Accessing Algorithm 62
6.1.2 Quorum-Based Channel Hopping 62

6.2 Asynchronous and Port-Symmetric Rendezvous 64
6.2.1 Asynchronous Quorum-Based Channel Hopping 64
6.2.2 Sequential Accessing Algorithm 66

6.3 Synchronous and Port-Asymmetric Rendezvous 67
6.3.1 Modified Sequential Accessing Algorithm. 68

6.4 Asynchronous and Port-Asymmetric Rendezvous 68
6.4.1 Sequential Access and Temporary Wait

for Rendezvous . 69
6.5 Chapter Summary . 70
References. 72

7 Synchronous Blind Rendezvous Algorithms 73
7.1 Expanded Sequential Accessing Algorithm. 73
7.2 Chapter Summary . 75

8 Asynchronous Blind Rendezvous Algorithms for Anonymous
Users . 77
8.1 Generated Orthogonal Sequence (GOS) 78
8.2 Deterministic Rendezvous Sequence (DRSEQ). 79
8.3 Channel Rendezvous Sequence (CRSEQ) Algorithm 80
8.4 Jump Stay Algorithm . 81

xii Contents

8.5 Disjoint Relaxed Different Set (DRDS) Based Rendezvous
Algorithm . 83
8.5.1 Global Sequence (GS) . 83
8.5.2 Disjoint Relaxed Difference Set (DRDS) 84
8.5.3 Equivalence of DRDS and Good GS. 85
8.5.4 DRDS Construction. 86
8.5.5 DRDS Based Rendezvous Algorithm 91
8.5.6 Improved DRDS Based Rendezvous Algorithm 93

8.6 Lower Bound for GS Based Rendezvous Algorithms 95
8.7 Chapter Summary . 100
References. 101

9 Local Sequence (LS) Based Rendezvous Algorithms. 103
9.1 Local Sequence (LS) . 104
9.2 Ring Walk Algorithm . 104
9.3 Alternate Hop-and-Wait (AHW) Algorithm 105
9.4 A Simple LS Based Rendezvous Algorithm 107
9.5 A Modified LS Based Rendezvous Algorithm 114
9.6 Chapter Summary . 120
References. 121

10 Blind Rendezvous for Multi-users Multihop System 123
10.1 Algorithm Description . 123
10.2 Correctness and Complexity . 124
10.3 Discussions . 125
10.4 Chapter Summary . 126
References. 127

Part III Oblivious Blind Rendezvous in Distributed Systems

11 Oblivious Blind Rendezvous . 131
11.1 System Model. 132
11.2 Metrics . 134
11.3 Problem Definition . 134
11.4 Examples of Oblivious Blind Rendezvous 136
11.5 Chapter Summary . 138
References. 139

12 Asymmetric Oblivious Blind Rendezvous Algorithms 141
12.1 Port-Symmetric Rendezvous . 141
12.2 Synchronous and Port-Asymmetric Rendezvous 143
12.3 Asynchronous and Port-Asymmetric Rendezvous 146
12.4 Chapter Summary . 148

Contents xiii

13 Oblivious Blind Rendezvous for Non-anonymous Users 149
13.1 Synchronous Oblivious Blind Rendezvous 149

13.1.1 Synchronous Check and Hop Algorithm 150
13.1.2 Correctness and Complexity . 152

13.2 Asynchronous Oblivious Blind Rendezvous 156
13.2.1 ID Hopping Algorithm . 156
13.2.2 Multi-step Port Hopping Algorithm. 160

13.3 Lower Bound for Oblivious Blind Rendezvous 165
13.3.1 Adversary Assignment Graph . 166
13.3.2 A Loose Lower Bound . 168
13.3.3 A Refined Lower Bound . 170

13.4 Chapter Summary . 172
Reference . 173

14 Fully Distributed Rendezvous Algorithm for Non-anonymous
Users . 175
14.1 Conversion Based Hopping Algorithm . 175
14.2 Correctness and Complexity . 177
14.3 Chapter Summary . 183
Reference . 183

15 Oblivious Blind Rendezvous for Anonymous Users 185
15.1 Hardness of Anonymity . 185
15.2 Port-Symmetric Rendezvous . 187

15.2.1 Intuitive Ideas . 188
15.2.2 Stay or Random Selection Algorithm 190
15.2.3 Synchronous Users Scenario . 191
15.2.4 Asynchronous Users Scenario . 195

15.3 Port-Asymmetric Rendezvous . 204
15.3.1 Random Picking Algorithm . 204
15.3.2 Random Prime Selection and Sequential Accessing

Algorithm . 206
15.4 Chapter Summary . 207
References. 208

16 Oblivious Blind Rendezvous for Multi-user Multihop CRN 209
16.1 Algorithm Description . 209
16.2 Correctness and Complexity . 210
16.3 Chapter Summary . 211
References. 211

xiv Contents

Part IV Distributed Rendezvous Applications

17 Rendezvous in Heterogeneous Cognitive Radio Networks 215
17.1 Preliminaries . 216

17.1.1 System Model . 216
17.1.2 Problem Definition . 218
17.1.3 Challenges . 220

17.2 Rendezvous for Fully Available Spectrum 220
17.2.1 Rendezvous Scheme for Two Available Channels. 221
17.2.2 Traversing Pointer Algorithm . 225
17.2.3 Correctness and Complexity . 226

17.3 Rendezvous for Partially Available Spectrum 228
17.3.1 Moving Traversing Pointer Algorithm. 228
17.3.2 Correctness and Complexity . 230

17.4 Chapter Summary . 231
References. 231

18 Rendezvous Search in a Graph . 233
18.1 Symmetry of Rendezvous Search . 233
18.2 Rendezvous Search Along a Cycle . 235
18.3 Rendezvous Search Algorithms . 237
18.4 Chapter Summary . 240
Reference . 241

19 Neighbor Discovery in Wireless Sensor Networks. 243
19.1 Motivational Example. 244
19.2 Problem Definition . 245
19.3 Brute Force Algorithm . 247
19.4 Relax Difference Set Based Algorithm . 248
19.5 Co-Prime Algorithm . 249
19.6 Chapter Summary . 251

Part V Conclusions and Future Works

20 Conclusions and Future Works . 255
20.1 Conclusions . 255
20.2 Future Works . 260
References. 262

Contents xv

Acronyms

AAG Adversary assignment graph
AHW Alternate hop-and-wait
Alg Algorithm
A-QCH Asynchronous quorum-based channel hopping
ARPANet Advanced Research Projects Agency Network
BR Blind rendezvous
BRP Blind rendezvous problem
CBH Conversion-based hopping
CCC Common control channel
CH Channel hopping
CHAT Channel hopping multiple access with packet trains
CHMA Channel hopping multiple access
CR Cognitive radio
CRN Cognitive radio network
CRSEQ Channel rendezvous sequence
CTS Clear-to-send
DC Distributed computing
DCA Dynamic channel allocation
DCA-PC Dynamic channel allocation with power control
DPC Dynamic private channel
DRDS Disjoint relaxed difference set
DRSEQ Deterministic rendezvous sequence
DS Distributed system
DSA Dynamic spectrum access
DT Distributed theory
EJS Enhanced Jump Stay
ESA Expanded sequential accessing
ETTR Expected time to rendezvous
FPA Fixed port accessing
FTP File transfer protocol

xvii

GOS Generated orthogonal sequence
GS Global sequence
HCRN Heterogeneous cognitive radio network
HH Heterogeneous hopping
ID Identifier
IDH ID hopping
IEEE Institute of Electrical and Electronics Engineers
ISM Industrial, Scientific, and Medical
JS Jump stay
LAN Local area network
LB Lower bound
LS Local sequence
MAC Media Access Control
MAP Multichannel access protocol
MC Modular clock
McMAC Multichannel MAC
MLS Modified local sequence
MMC Modified modular clock
MPM Message passing model
MSA Modified sequential accessing
MSH Multistep port hopping
MTP Moving traversing pointer
MTTR Maximum time to rendezvous
MWN Multichannel wireless network
ND Neighbor Discovery
NP Non-deterministic polynomial
NPC Non-deterministic polynomial complete
OBR Oblivious blind rendezvous
OSA Oblivious sequential accessing
PSTN Public switched telephone network
PU Primary user
QCH Quorum-based channel hopping
QS Quorum system
RDS Relaxed difference set
RS Rendezvous setting
RSp Rendezvous search problem
RW Ring-walk
SA Sequential accessing
SAA Sequential accessing algorithm
SCH Synchronous check and hop
SDS Singer difference set
SMM Shared memory model
SPA Smallest port accessing
SRS Stay or random selection
SSCH Slotted seeded channel hopping

xviii Acronyms

SU Secondary user
TP Traversing pointer
TTR Time to rendezvous
TV Television
TWA Temporary wait algorithm
UHF Ultra-high frequency
VHF Very high frequency
w.l.o.g Without loss of generality
WAN Wide area network
WSN Wireless sensor network
WWW World Wide Web

Acronyms xix

Part I
Distributed Rendezvous Theory

Chapter 1
Distributed Systems

Abstract Distributed systems as an implementation choice have become dominant
in both scientific research and practical applications. As a collection of autonomous
units which can make decisions locally, distributed systems are capable to solve
many complex computational problems through appropriate cooperations among
the units. In this chapter, we introduce distributed systems and describe some of
their properties. There are many examples of distributed systems in our daily life;
we mention some of them for a better understanding of the concepts of distributed
systems. In Sect. 1.1, we introduce the concept of distributed systems and some
important properties of a distributed system. Then, we highlight several real-life
examples of distributed system in Sects. 1.2–1.6, including local area networks, email
network systems, wireless sensor networks, cognitive radio networks, and telephone
networks.

1.1 What is Distributed System?

A distributed system is a distributed collection of computing units that can make
decisions locally. Different from a centralized system, which is usually composed of
many units that are attached to a single controlling unit, distributed systems make
possible carrying out a global task collectively by the distributed units without any
centralized control.

Originally, distributed systems refer to computer networks where the computers
are physically distributed. The term is used in a much wider sense nowadays, such
as wireless sensor networks where the distributedly located sensors are connected as
a network, networks composed of robots that are dispatched to carry out some tasks,
and ad-hoc networks of mobile phones that happen to be in the same locality. While
there is no standard definition of a distributed system that would fit all situations, the
following properties are commonly considered and found in a distributed system:

(1) The entities in the system can be any computational unit or node, such as a
computer, a mobile phone, a robot, or even people;

(2) the entities are autonomous, that is, each entity can make decisions by itself;

© Springer Nature Singapore Pte Ltd. 2017
Z. Gu et al., Rendezvous in Distributed Systems,
DOI 10.1007/978-981-10-3680-4_1

3

4 1 Distributed Systems

(3) the entities in the system can be connected as a network, but there exists no
oracle (such as a centralized unit or an overall controlling unit) informing the
entities of the network’s information;

(4) the entities may communicate with each other to exchange their information.

Having these properties, distributed systems can be more than just comprising
computers that are physically located. Actually, any computational node can be a
component of the distributed system, whether it is a simple electronic device or a
person who operates according to his own will. The second property says that each
entity in a distributed system can make decisions or execute some actions based
on local information, which gives the component the autonomous label. The third
property is themain difference between a centralized system and a distributed system.
In a centralized system, an oracle, which can be a central controlling unit in the case
of computers or a leader in a community, can tell the entities in the system what to
do, or how to make a decision. Distributed systems, by contrast, allow more degrees
of freedom and the entities are not bound to any oracle. As a connected system, the
entities can communicate with others to expand their view of the network, which
facilitates better decisions.

1.2 Local Area Networks

A local area network (LAN) is a computer network that interconnects computers in a
limited geographical area, such as a school, an office, a factory or a building [4, 10].
A LAN can communicate with other remote LANs (or computers) through dedicated
data circuits and such connected LANs form a wide area network (WAN).

In a LAN, each computer can execute computation tasks by itself and no central
controlling unit dominates the network. A LAN is normally of the closed type and it
can be composed of minimally two computers at home, or thousands of computers
in an enterprise. In a LAN, the connected computers can achieve many common
functions through the interconnection network, such as sharing files, sending emails,
etc.

LANs are ubiquitous in our daily life, due to their scalability, high flexibility, ease
of use, and low cost. The main characteristics are:

(1) The LAN covers a small geographical area, or a relatively independent scope;
(2) data can be transferred at a high rate, since LAN can use special transmission

media for connection;
(3) the latency is reasonably short, and it has high reliability.

The computers in a LAN are connected directly through cables or bywireless con-
nections. There are many different types of network topology for the interconnection
of nodes.

1.2 Local Area Networks 5

Fig. 1.1 An example of star topology in LANs

As shown in Fig. 1.1, in the star topology, the computers are connected to a central
node (a computer or a server) directly through cables (the solid lines) or via wireless
connections (the dotted lines). Any two computers can communicate with each other
through the central node and it takes two steps for data transmission. This type of
network is easy tomanage and the transmission delay is very low.However, thewhole
network can easily go down if the central node becomes defective or is compromised.
Moreover, relying on a central node to relay every single transmission is not preferred
in a distributed system.

In Fig. 1.2, in the ring topology, all computers are connected in a ring and any two
computers can communicate through the interconnected nodes (computers) along
the ring. This kind of network is relatively simple, but it is hard to expand and the
data transmission rate is relatively low depending on the size of the ring. When
any one computer fails, the ring is broken and reconnection is necessary for further
communications. The transmission delay is larger than that of the star topology on

Fig. 1.2 An example of ring topology in LANs

6 1 Distributed Systems

Fig. 1.3 An example of tree topology in LANs

average, because two computers may need up to n/2 steps to transmit a message
(n is the number of computers).

Figure1.3 shows a tree topology, which is a kind of hierarchical network. There
is no loop between any two nodes (computers) and it is easy to expand the network.
This kind of networks is generally quite flexible and the failure of the leaf nodes
would not affect the whole network.

1.3 Email

Email is another example of distributed systems. Before theARPANet or the Internet,
email had already appeared and used by people. In the very early days, email was
implemented as file directories, and one user can put a message in another user’s
directory. It is similar to leaving a note or a file on a person’s desk.

Before the Internet was invented, email could only be used to send messages to
other users of the same computer. In 1969, messages could be transmitted between
two computers, which represented a huge improvement in email systems. However,
when computers could be connected to each other through a common network, there
needed to be a way to figure out which computer an email should go to. Therefore,
email addresses were invented for the email to be accurately sent to its recipient
through the network.

In 1971, Ray Tomlison sent the world’s first ever email across a network; and
he initiated the use of the @ sign to separate the name of the user and the user’s
computer. He then succeeded also at sending messages among different users in
different computers. This work was quickly adapted to the ARPANet, which started

1.3 Email 7

the long and glorious history of emails [34]. By 1974, several hundreds of military
users were using email through the ARPANet and it soon became the most popular
application among network users.

In 1978, Shiva Ayyadurai took on the challenge of creating a full-scale electronic
version of the interoffice paper mail system, and this prototype was officially called
“email”. In the following year, this email system was adopted by the University of
Medicine and Dentistry of New Jersey (UMDNJ), which included Inbox, Outbox,
Folder, Attachments, etc. More users, doctors and secretaries were subsequently
added to the system. In 1982, Shiva Ayyadurai received the United States copyright
for “email”.

By 1990s, email systems had grown exponentially in numbers.Microsoft released
Outlook in 1992; and launched Hotmail in 1996, which soon became the most used
Internet based system. Following suit, Yahoo, Google and many industrial compa-
nies created and released their email systems, which benefited millions of people.
Nowadays, email is one of the most important tools in our life, which helps us to
connect to even our friends who live far away. This is one of the most successful
applications of distributed systems.

1.4 Wireless Sensor Networks

Wireless sensor networks (WSNs) have received a lot of attention from both aca-
demic scientists and industrial engineers. As sensors are designed to detect events
and changes in the environment, they have been used in many industrial and con-
sumer applications, such as environmental monitoring, health monitoring, battlefield
surveillance, intrusion detection, crowd control, etc. [20, 23, 35, 37]. With the abil-
ity of transferring data through wireless connections, sensors can send the detected
data to a computer or other devices. Wireless sensor networks are composed of such
spatially distributed autonomous sensors and these sensors can communicate with
nearby nodes (sensors or other devices).

Each sensor in the network may have the following parts:

(1) Radio transceiver, which is used to connect the external antenna;
(2) micro-controller, which controls the sensor itself and decides which tasks to

carry out;
(3) battery, which powers the sensor for monitoring, computation and communica-

tion.

Some types of sensors may have other specific components, such as a motion part,
which enables the sensor to move by itself. With these components, the sensors in a
monitored area form a network for data transmission as well as other collaborative
functions, which is another example of a distributed system.

Generally speaking, each sensor has a limited communication range since its
battery is limited, and two sensors are connected if they arewithin the communication

8 1 Distributed Systems

Fig. 1.4 An example of wireless sensor network

range. As illustrated in Fig. 1.4, the dispatched sensors can form a network and
they can pass the sensed information to some sink node through multi-hop data
transmissions. As shown in the figure, the solid cycle represents a sensor deployed
in the environment, and each sensor has a communication range (the dotted cycle
centered at sensor a). Any sensor that lies in the range is sensor a’s neighbor and
they can exchange messages. The network constructed can be used to gather sensed
data in the monitored area via information aggregation by the sensors to the base
station, or to any nearby mobile sink.

1.5 Cognitive Radio Networks

The wireless spectrum has become a scarce resource due to the rapid advances of
wireless technologies and burgeoning growth of wireless handsets. More and more
wireless devices, such as laptop computers, mobile phones and various intelligent
devices, with increased appetite for wireless bandwidth have been produced.

According to the ABI Research [1], there are more than 10 billion wireless con-
nected devices in 2013 and the number of such devices will exceed 40 billion in
2020. At the same time, new wireless services and demands are making the wireless
spectrum even more overcrowded; such services include fast downloading services
over wireless frequency bands and high quality video streaming (for webcasting for
example) through wireless channels. As a result, wireless spectrum as a resource
is in great demand in order to accommodate the billions of wireless devices and
increasing number and variety of wireless services.

However, the available wireless spectrum is very limited because the radio spec-
trumonly spans from3 kHz to 300GHz [29].Most of the spectrumhas been allocated
to license holders or services in advance. The unallocated portion that is free for the
billions of wireless devices is becoming very overcrowded, which is known as the
spectrum scarcity problem. In this book, we call the spectrum that has already been

1.5 Cognitive Radio Networks 9

allocated as the licensed spectrum and the unallocated portion the unlicensed spec-
trum.

According to many research results [2, 13–17, 21, 25, 26, 30, 36, 38], the unli-
censed spectrum is facing overcrowding due to the increasing numbers of wireless
devices and the large number of wireless services, while the utilization of the licensed
spectrum continues to remain low. Take for example, the Industrial, Scientific and
Medical (ISM) bands which are reserved for industrial, scientific and medical pur-
poses. In recent years, more short-range, low-power communication systems, such as
bluetooth devices,mobile phones andwireless computer networks, all use these bands
for communication, which causes overcrowding in the ISM bands, and interference
problems in these bands become serious and need to be resolved [17]. On the other
hand, it is not uncommon that some licensed spectrum is constantly underutilized.
For example, the frequencies from 470–698 MHz are allocated to TV broadcasting
in the United States, but the utilization of these bands hovers between 15 and 85%
[12]. The same phenomenon also occurs in Germany [36], Singapore [21], China [7]
and so on.

In order to alleviate the spectrum scarcity problem, a new technique called
Dynamic Spectrum Access (DSA) was proposed whereby the wireless devices can
exploit the licensed spectrum opportunistically by using cognitive radios [2, 3]. The
concept of cognitive radio was initially proposed in [27, 28] and it has been regarded
as an efficient method to improve the utilization of the spectrum [18]. Cognitive radio
can be thought of as an intelligent wireless system which can change its parameters
based on the interaction with the environment, and it has two distinctive features:
cognitive capability and reconfigurability [6, 18, 22, 31]. Cognitive capability means
the radio can sense the spectrum to capture the current occupation information about
the spectrum, and reconfigurability refers to the ability to sense and access different
frequency bands [5]. Through these capabilities, cognitive radios can discover the
unused licensed frequency bands that can be used by the wireless devices, which is
referred to as spectrum sensing.

There aremany spectrumsensing techniques, such as energydetection, covariance-
based detection, and cooperative spectrum sensing schemes [7–9, 11, 19, 24, 41]
and the ultimate objective is to enable the usage of temporally unoccupied spectrum
that is referred to as spectrum hole or white space [18, 40].

As illustrated in Fig. 1.5, the x-axis represents different frequency bands and the
y-axis represents the time from 0 to 24h. The solid rectangles with label 1 in the figure
represent the frequency bands that are occupied by the licensed users, while the areas
with label 2 mean the bands are not occupied all day and the empty rectangles with
label 3 stand for the licensed bands that are not in use temporarily. Those areas with
label 2 and 3 are called spectrum holes or white space, and wireless devices equiped
with intelligent cognitive radios should be able to discover them.

By adopting the DSA technique, cognitive radio networks (CRNs) can be formed
to effectively share the licensed spectrum by a large number of unlicensed devices
and services. This type of networks can potentially alleviate the spectrum scarcity
problem [32, 33, 39].

10 1 Distributed Systems

Fig. 1.5 Spectrum holes:
solid rectangles with label 1
represent the frequency
bands that are occupied;
areas with label 2 mean the
unused bands; empty
rectangles are the frequency
bands that are not used
temporally

Similar to the division betweeen licensed spectrum and unlicensed spectrum, there
are two types of users coexisting in the network, primary users (PUs), i.e. licensed
userswhoown the licensed spectrum, and secondaryusers (SUs), i.e. unlicensedusers
that are equipped with cognitive radios to sense and access the licensed spectrum
opportunistically.

As depicted in Fig. 1.6, both PUs and SUs are present in the network, and the SUs
can detect the licensed spectrum, and utilize the unoccupied licensed spectrum to
communicate with each other. The figure depicts a network consisting of five SUs

Fig. 1.6 An example of cognitive radio network

1.5 Cognitive Radio Networks 11

and four PUs that are distributed in a small geographical area. As illustrated in the
figure, the dotted cycle of each PU represents the PU’s interference range and any
SU within the range thus cannot access the channels occupied by the PU.

The SUs have the ability to discover the unused licensed spectrum and to com-
municate with other wireless devices through it. As soon as the PUs need to use the
spectrum again, the SUs have to stop the communication process and their cognitive
radios may seek some other unoccupied frequency bands to continue the communi-
cation. This new paradigm can improve a spectrum’s utilization by sharing it with
unlicensed devices while guaranteeing high priority access to the frequency bands
by the licensed users. Therefore, real efforts have been made to promote the devel-
opment of CRN. For example, IEEE 802.22 [8] and IEEE 802.11 a f [1] are two
ongoing standards in spectrum sharing; the United States is extending the TV white
space into the 3550–3700MHzUSNavy radar band, while Europe has been pursuing
an authorized shared access licensing model [29].

1.6 Telephone Networks

A telephone network is a telecommunication network which benefits two or more
parties making a telephone call. There are two common types of telephone networks:

(1) The public switched telephone network (PSTN), which is a landline network
and the telephones are connected by wires;

(2) wireless networks where the telephones are mobile and they can communicate
through wireless media.

The public switched telephone network consists of telephone lines that connect
telephones, fiber optic cables for data transmission, microwave transmission links,

Fig. 1.7 An example of telephone network

12 1 Distributed Systems

undersea cables for long-haul connection, and switching centers. These components
enable the telephones to communicate with each other.

The wireless network is usually composed of mobile telephones and they may
transmit communication data through the wireless spectrum. Nowadays, the number
of mobile phones is increasing so rapidly that the wireless spectrum space for their
communication is becoming extremely crowded. Thesemobile phones equippedwith
intelligence can make decisions locally and they constitute a distributed system.

As illustrated in Fig. 1.7, both mobile phones and landline telephones are fully
connected in the network, and any two telephones can reach each other through the
network.When we dial a number, the network will find the target terminal phone and
pick a communication path through the inter-connected components. This process
is similar to emails, which like emails is also an important and frequently used
application in our daily lives.

References

1. ABI Research. https://www.abiresearch.com.
2. Akyildiz, I. F., Altunbasak, Y., Fekri, F., & Sivakumar, R. (2004). Adaptnet: adaptive protocol

suite for next generation wireless internet. IEEE Communications Magazine, 42(3), 128–138.
3. Akyildiz, I. F., Lee, W., Vuran, M., &Mohanty, S. (2006). Next generation//dynamic spectrum

access//cognitive radio wireless networks: a survey. Computer Networks, 50(13), 2127–2159.
4. Andrews, G. R.(2000) foundations of multithreaded, parallel, and distributed pragramming.

Addison-Wesley.
5. Bahl, P., Chandra, R., Moscibroda, T., Murty, R., &Welsh, M. (2009). White space networking

with wi-fi like connectivity. In SIGCOMM.
6. Chen, K.-C., Peng, Y.-J., Prasad, N., Liang, Y.-C. & Sun, S. (2008). Cognitive radio network

architecture: part I - general structure. In International Conference on Ubiquitous Information
Management and Communication (ICUIMC).

7. Chen, D., Yin, S., Zhang, Q., Liu, M., & Li, S. (2009). Mining spectrum usage data: A large-
scale spectrummeasurement study. InProceedings of the 15thAnnual InternationalConference
on Mobile Computing and Networking.

8. Chen, Y., Zhao, Q., & Swami, A. (2009). Distributed spectrum sensing and access in cognitive
radio networks with energy constraint. IEEE Transactions on Signal Processing, 57(2), 783–
797.

9. Chen, Z. & Qiu, R. C.(2010). Prediction of channel state for cognitive radio using higher-order
hidden Markov model. In Proceedings of IEEE Southeast Con.

10. Clark, D. D., Pogran, K. T. & Reed, D. P.(1978). An introduction to local area networks. In
Proceedings of the IEEE.

11. Datla, D., Rajbanshi, R., Wyglinski, A. M., & Minden, G. J. (2009). An adaptive spectrum
sensing architecture for dynamic spectrum access networks. IEEE Transactions on Wireless
Communications, 8(8), 4211–4219.

12. ETSI. EN 301 598 White Space Devices (WSD); Wireless Access Systems Operating in the
470 MHz to 790 MHz Frequency Band, 2012.

13. Federal Communications Commission. FCC Spectrum Policy Task Force Report ET Docket
No. 02–155, November, 2002.

14. Federal Communications Commission. FCC Notice of proposal rulemaking and order, ET
Docket No. 03-322, 2003.

15. Federal Communications Commission. (FCC) manages and regulates all domestic non-federal
spectrum use (47 USC 301), 2004.

https://www.abiresearch.com

References 13

16. Flores, A. B., Guerra, R. E. & Kightly, E. W.(2013) IEEE 802.11af: A standard for tv white
space spectrum sharing. In IEEE Communications Magazine.

17. Fragkiadakis, A. G., Tragos, E. Z., & Askoxylakis, I. G. (2013). A survey on security threats
and detection techniques in cognitive radio networks.Communications Survey Tutorials, 15(1),
428–455.

18. Haykin, S. (2005). Cognitive radio: Brain-empoweredwireless communications. IEEE Journal
on Selected Areas in Communications, 23(2), 201–220.

19. Haykin, S., Thomson, D. J., & Reed, J. H. (2009). Spectrum sensing for cognitive radio.
Proceedings of the IEEE, 97(5), 849–877.

20. Hart, J. K., & Martinez, K. (2006). Environmental sensor networks: a revolution in the earth
system science? Earth-Science Reviews, 78, 177–191.

21. Islam,M.H.,Koh,C. L.,Oh, S.W.,Qing,X., Lai, Y.Y.,Wang,C., Liang,Y.-C., Toh,B. E., Chin,
F., Tan, G. L., & Toh, W.(2008) Spectrum survey in Singapore: 180 Occupancy measurements
and analyses. In Proceedings of 3rd International Conference on Cognitive Radio Oriented
Wireless Networks and Communications.

22. Jondral, F. K.(2005) Software-defined radio-basic and evolution to cognitive radio. EURASIP
Journal on Wireless Communication and Networking.

23. Ma, Y., Richards, M., Ghanem, M., Guo, Y., & Hassard, J. (2008). Air pollution monitoring
and mining based on sensor grid in London. Sensors, 8(6), 3601–3623.

24. Ma, J., Li, G. Y., & Juang, B. H. (2009). Signal processing in cognitive radio. Proceedings of
the IEEE, 97(5), 805–823.

25. McHenry, M. A. (2005). NSF spectrum occupancy measurements project summary. Technical
Report: Shared Spectrum Company.

26. McHenry, M. A., Tenhula, P. A., McCloskey, D., Roberson, D. A., & Hood, C. S.(2006).
Chicago spectrum occupancy measurements & analysis and a longterm studies proposal. In
Proceedings of the First International Workshop on Technology and Policy for Accessing Spec-
trum.

27. Mitola, J, I. III&Maguire,G.Q. (1999).Cognitive radio:making software radiosmorepersonal.
IEEE Personal Communications, 6(4), 13–18.

28. J.Mitola III (2000). Cognitive radio: an integrated agent architecture for software defined radio.
Ph.D. Thesis, KTH Royal institute of technology.

29. Spectrum Management. http://en.wikipedia.org/wiki/Spectrum_management.
30. Stevenson, C. R., Chouinard, G., Lei, Z., Hu, W., Shellhammer, S. J., & Caldwell, W. (2009).

IEEE 802.22: The first cognitive radio wireless regional area network standard. IEEE Commu-
nications Magazine, 47(1), 130–138.

31. Thomas, R.W., DaSilva, L.A.,MacKenzie, A.B.,(2005). Cognitive networks. In IEEEDySPAN.
32. Thomas, R.W., Friend, D. H., DaSilva, L. A., &MacKenzie, A. B. (2007). Cognitive networks:

adaptation and learning to achieve end-to-end performance objectives. IEEE Communications
Magazine, 44(12), 51–57.

33. Thomas, R. W.,(2007) Cognitive networks. Ph.D. dissertation, Virginia Polytechnic Institute
and State University.

34. Tomlinson, R.(2014). The first network Email. http://openmap.bbn.com.
35. Vasilescu, I., Kotay, K., Rus, D., Dunbabin,M.,&Corke, P.(2005). Data collection, storage, and

retrieval with an underwater sensor network. InProceedings of the 3rd international conference
on Embedded networked sensor systems (SenSys) New York, NY, USA.

36. Wellens, M., Riihijarvi, J., & Mahonen, P. (2008) Evaluation of spectrum occupancy using
approximate and multiscale entropy metrics. In Proceedings of 5th IEEE annual communica-
tions society conference on sensor, mesh and ad hoc communications and networks workshops.

37. Willkomm, D., Machiraju, S., Bolot, J. Wolisz, A.(2008). Primary users in cellular networks:
A large-scale measurement study. In Proceedings of 3rd IEEE Symposium on New Frontiers
in Dynamic Spectrum Access Networks.

38. Werner-Allen, G., Lorincz, K., Welsh, M., Marcillo, O., Johnson, J., Ruiz, M., et al. (2006).
Deploying a wireless sensor network on an active volcano. IEEE Internet Computing, 10(2),
18–25.

http://en.wikipedia.org/wiki/Spectrum_management
http://openmap.bbn.com

14 1 Distributed Systems

39. Wyglinski,A.M.,Nekovee,M.,Hou,T. (2010).Cognitive radio communications andnetworks:
principles and practice. Academic Press, 2010.

40. Yuan, Y., Bahl, P., Chandra, R., Chou, P. A., Ferrel, J. I., Moscibroda, T., Narlanka, S. & Wu,
Y. (2007). KNOWS: Kognitiv networing over white spaces. In DySpan.

41. Zhao, Q., & Sadler, B. M. (2007) A Survey of Dynamic Spectrum Acess (signalprocessing,
networking and regulatory policy). IEEE Signal Processing Magazine.

Chapter 2
Distributed Computing

Abstract Distributed computing studies the theory and methods to solve compu-
tational problems in distributed systems. There are many interesting and important
problems that can be solved efficiently in distributed systems, such as data gather-
ing in wireless sensor networks, computing graph properties, and leader election in
a distributed system. In this chapter, we introduce the elementary concepts about
distributed computing and some of the important components of distributed comput-
ing. In Sect. 2.1, we introduce the concept of distributed computing and present an
example to illustrate it. Then, we present the communication models that are com-
monly utilized in Sect. 2.2, show the incompleteness of information in Sect. 2.3, and
discuss the aspect of timing which plays an important role in distributed computing
in Sect. 2.4.

2.1 What is Distributed Computing?

Distributed computing studies how to solve computational problems in distributed
systems or environments. Generally speaking, an entity in a distributed system can
compute its tasks completely locally against its “individual” goals. An analogywould
be that each individual has his own will and sentiments about certain public events.
However, these entities can also cooperate to solve global computational problems
which are tough or impossible for a single entity to handle, even though they may
not know the others’ information. For example, all individuals can contribute their
strength in crowdsourcing to provide some common needed services or to achieve
some common goal [1, 2, 6].

We use a simple example of wireless sensor networks to explain distributed com-
puting. As illustrated in Fig. 2.1, 9 sensors are deployed in the environment to detect
the temperature. The goal is to find out the highest temperature in the area at the
base station through the sensors. As shown in the figure, the sensors form a wireless
network where any two sensors are supposed to be connected if they are within each
other’s range of communication. Each sensor node can detect the temperature locally
and then share this local data by communicating with nearby neighboring sensors.
The 9 sensors can sense different temperature data and after receiving the others’ data

© Springer Nature Singapore Pte Ltd. 2017
Z. Gu et al., Rendezvous in Distributed Systems,
DOI 10.1007/978-981-10-3680-4_2

15

16 2 Distributed Computing

Fig. 2.1 An example of computing the maximum temperature in a wireless sensor network

Fig. 2.2 An example of update dating when we are to compute the maximum temperature through
the wireless sensor network

(the temperature data), each sensor can compute which temperature is the highest
among all neighbors and then update the data.

In Fig. 2.2, sensor 4 will update the local highest temperature data to 42 since
it can collect four values {19, 31, 38, 42}. Similarly, sensor 5 will update the local
temperature to 39 and sensor 9 to 41. However, having updated its data, a sensor
would communicate its updated data with the neighbors again. For example, when
sensor 4 has updated its max value to 42, it will also send the data to sensor 5, which
would also update the local highest temperature data to 42. After sensor 5 has updated
to 42, it will then send the information to sensor 9 which will finally send the data
to the base station. In this fashion, all sensors can cooperate to compute the highest
temperature and inform the base station.

Distributed computing is quite different from centralized computing where all
entities know the global information ahead of time. Considering the above example,
if all nodes know the others’ temperature data in advance, they (including sensor 9)

2.1 What is Distributed Computing? 17

can easily find out the global highest temperature. In distributed computing, although
each entity focuses on its private computation tasks, through reasonable communi-
cation (data transmission), the private computations of the entities can be combined
to realize a global computational task, which should produce the same result as
centralized computing, but with the extra cost of longer elapsed time.

Distributed computing has the following three traits. The first one is the commu-
nication model, which dictates how data are to be transferred between two entities;
the second one is the incompleteness of information, which reveals to what extent an
entity can know about thewhole system; the third one is synchrony and timing, which
indicates when the entity starts its computation and how the computation should be
paced.

2.2 Communication Model

In a distributed system, two connected entities can exchange and share their infor-
mation. There are two commonly used communication models:

(1) Message passing model (MPM): an entity can send data to its neighbors through
the connecting edges;

(2) sharedmemorymodel (SMM): the entities can use somekindof commonmemory
to perform data transmission.

In the message passing model, the communications between two entities are
explicit. When one entity wants to share information, it can transmit the data through
the edges connecting the neighboring entities. A large number of message passing
models have been proposed in the past; here, we describe two of them.

One type of message passing model is called point-to-point communication,
which allows direct information transmission between a specific pair of entities. For
example, in Fig. 2.3, the edges with both start and end arrows represent bidi-
rectional communication connections (or channels) between two entities, where
bidirectional communication means one node (entity) can both send and receive
information to/from the other node of the edge. In the figure, nodes a and b can both
share informationwith the other (the red rectangle represents themessage). However,
some systems may use just unidirectional communication connections, i.e. one node
can only send or receive from the other node. We use an edge with only one arrow
in the figure to represent a unidirectional connection. As shown in the figure, node c
has a directed edge to node a, which means node c can send its message to node a,
but node a cannot share its information with node c. Edges from node d to c, node e
to node d, node e to node g, and node h to node f are likewise unidirectional edges.

From the figure, node a can get node b’s and node c’s data through the edges, but
it cannot receive both pieces of data at the same time. Point-to-point communication
means that the data transmission process happens between a pair of neighbors, but one
node cannot receive data frommultiple senders simultaneously. Through continuous
communication, node b can also receive node c’s information through node a, but

18 2 Distributed Computing

Fig. 2.3 An example of message passing model

Fig. 2.4 An illustration of message passing model with external ports for connection

it takes longer time and we say the information is delayed. However, node c cannot
get node b’s information through the depicted topology.

Another type of message passing model is called broadcast, where one node
can send its information to all the neighbors simultaneously. Its main difference
from the point-to-point communication model, where a message can be only sent
to one receiver at a time, is that it allows multiple recipients at the same time. For
example, in Fig. 2.3, node d can broadcast its message and nodes b, c, g can receive
this message simultaneously. This broadcast model hasmany important applications,
such as flooding in network construction [4, 5], and fast message propagation [7].

The first type of communication model is widely adopted since it reveals the con-
nection patterns directly. However, there is a more refined model of communication,
as shown in Fig. 2.4. The edges in the graph (Fig. 2.4) represent direct connections
between two nodes, which alsomeans the two nodes are relatively close to each other;
but they still need to rely on a connection channel for communication. Suppose each
node has a number of ports, i.e. external connection points, and every communica-
tion channel connects two ports of two connected nodes. When node a tries to send
a message to node b, it should load the data onto an appropriate port, such as port
1; when the message arrives at node b, it will be stored in b’s local buffer. However,

2.2 Communication Model 19

if node b does not choose port 1 or the connection channel between the two ports
cannot be established, node b cannot receive the message. This book focuses on the
rendezvous problem in distributed systems, which is the process of establishing a
common communication link (connection) between two connected external ports of
the communicating entities.

2.3 Information Incompleteness

In executing computational tasks in a networked system, centralization helps solve
the problems from a global view where each node in the system has full knowledge
of all relevant information about the tasks. Therefore, each node will achieve the
same result with the full knowledge (we do not consider randomized algorithms
here, which may lead to different results even with same input). The completeness of
information is equivalent to a full input to any problem in such a centralized setting.

However, centralized setting is hard to implement is real distributed systems. For
example, there are more and more mobile phones becoming active nowadays, and
it is costly to construct a static network and inform all users about the new phones’
information and the constructed topology. In distributed systems, every entity needs
to cope with the fact that only partial information of the system is available. This
is equivalent to the situation where only partial input to a problem is available,
and the user has to execute its task with its stored or information obtainable from
the surrounding. Moreover, each entity may not even be aware of who the other
participating entities are, where the computation begins, and which stage of the
computation the others are currently at. These uncertainties lead to difficulties in
coordinating the joint computation of the entities of a common task.

In some practical applications or computational tasks, the entity of a distributed
system may not need to have the full knowledge about the system. For example, if
each entity should compute the number of connected neighbors dynamically (since
some entities may join in or leave the system at any time), it only needs to find out
the active entities within its communication range. Actually, full system information
does not help perform such a task. Therefore, the entity may not need to know all
the outsiders’ information, and collectively the entities can also work well with only
local information in solving many computational problems.

There are a variety of models that govern concern the topological knowledge.
One typical model is known as anonymous system, where all entities (or nodes) are
indistinguishable and they have no identification labels. Moreover, each node knows
nothing about the topology of the network. This model is at the extreme end of the
spectrum, which makes distributed computing difficult. For example, it is hard for
a node to find out whether it has sent a message to all neighbors in a point-to-point
communication model, since it cannot tell whether two “different” end-points are
the same node. A more realistic model assumes that each node is assigned an unique
identifer and the node knows the identities of its neighbors. For example, a computer
or a mobile phone has a unique MAC address, which can be discovered by others.

20 2 Distributed Computing

Some models assume a node know even more about the system. For example, each
node may know the k-hop network topology, which means it is able to find out the
nodes that are reachable within k hops. This subnetwork information can help solve
some problems to a certain extent. When k becomes larger, more information can be
obtained by each node. The most powerful model assumes each node can have the
complete topological knowledge of the system, which degenerates to the centralized
setting; centralized setting is impractical and hard to implement.

2.4 Timing and Synchrony

In distributed computing, timing is a subtle concept that deals with when the entities
may execute their tasks or computational steps [3]. In our normal living, we have a
global clock that tells the time and all the entire world agrees to the same rules for
defining time. However, in a distributed system, timing is hard to coordinate and a
global clock is hard to implement if it is to to be used by all distributed entities.

We mention two models that have to do with timing: synchronous model and
asynchronous model.

In the synchronousmodel, all entities in the distributed system share a global clock,
which indicates the exact times of the events in the system. Time can be considered
as divided into slots of equal length (the analogy is that we use “second” as the
elementary unit in physical clocks), and each entity should execute the following
three steps in each slot:

(1) Receive messages from (some of) the neighbors;
(2) execute local computation based on its local status and the received messages;
(3) send messages to (some of) the neighbors.

The time cost of local computation on each entity is assumed to negligible com-
pared to the message transmissions. Therefore, in the model, an entity only needs
to wait for its message and then send out a computed message. This model satisfies
an important property: if entity a sends a message to entity b in slot t , the message
must be received by entity b before or in slot t + 1. Thus, all entities’ activities can
be regarded as driven by a global clock.

However, in the asynchronous model, messages are not guaranteed to be trans-
mitted to the other entity timely. All entities do not access the global clock and they
have to decide on their own actions. Generally speaking, messages sent from one
entity to another will arrive within some finite but unpredictable time. Therefore,
one cannot rely on the elapsed time to deduce whether a message was sent from a
neighbor or not. Thus, the algorithms for this model are always event driven, i.e. the
entity will execute its local computations when a message is received, or when some
local memory has changed. Therefore, the execution steps are as follows:

2.4 Timing and Synchrony 21

Fig. 2.5 An example of distributed computing upon received messages

(1) Wait for an event, where the event could be receiving messages from (some of)
the neighbors, or the local memory has changed;

(2) execute local computations based on its localmemory and the receivedmessages;
(3) trigger an event, such as sending messages to (some of) the neighbors, or change

the local memory.

Clearly, the entities’ computations could be affected by the messages’ arrival
times. However, it is impossible to rely on the ordering of the arrived messages for
executing local computations.

For example, in Fig. 2.5, node a and node b are connected to node c. The tasks
for node a and node b are to send its local value to node c, and then terminate.
Meanwhile, the task of node c is to add the received values and update its local
value; and then, it will terminate. In the asynchronous model, the messages could be
delayed by different reasons. Suppose node a sends the value to node c earlier than
node b, if the messages can arrive at node c timely and sequentially, node c will get
node a’s value and update its local value to 3+4 = 7. However, in the asynchronous
system, node b’s message may arrive earlier at node c and it will update the value to
5+ 4 = 9, which leads to different results.

Therefore, timing plays an important role in distributed computing. Some asyn-
chronousmodels assume the entities start the algorithm in different time slots, but the
messages are guaranteed to be received in the next time slot. Therefore, in the above
figure, if one node sends its local value earlier than the other, for example, node a
sends the data Δ > 0 time slots earlier than node b, node c will update the value to
3 + 4 = 7 timely, and then terminate. In this book, we design efficient distributed
algorithms for both synchronous and asynchronous scenarios; we use exactly this
type of asynchronous model which we will introduce later.

22 2 Distributed Computing

References

1. Doan, A., Ramakrishnan, R., &Halevy, A. Y. (2011). Crowdsourcing systems on the world-wide
web. Communications of the ACM 54(4).

2. Huberman, B. A., Romero, D. M. & Wu, F. (2009). Crowdsoucring, attention and productivity.
Journal of Information Science, 35(6).

3. Lamport, L.(1978). Time, clocks, and the ordering of events in a distributed system. Operating
System.

4. Lim, H. & Kim, C. (2001). Flooding in wireless ad hoc networks. Computer Networks, 24(3–4).
5. Liu, H., Jia, X., Wan, P.-J., Liu, X., & Yao, F. F. (2001). A distributed and efficient flooding

scheme using 1-hop information in mobile ad hoc networks. IEEE Transactions on Parallel and
Distributed Systems, 18(5).

6. Morschheuser, B., Hamari, J., Koivisto, J. (2016). Gamification in crowdsourcing: A Review.
In 49th Annual Hawaii International Conference on System Sciences (HICSS)

7. Ye, S., Wu, S. F. (2010). Measuring message propagation and social influence on twitter. In
International Conference on Social Informatics, Springer, Berlin

Chapter 3
Rendezvous Theory

Abstract In distributed computing, the entities of the system are assumed to be able
to communicate with each other and predominantly they adopt the message passing
model (point-to-point model, broadcast model or others) for communication. How-
ever, many works abstracted away the detailed communication scheme and assume
that two entities can transmit messages to each other if they are connected in the net-
work. Actually, each entity has many external ports for communication as described
in Chap.2, and two neighbors can only communicate with each other if indeed a
communication link can be constructed between the ports they choose. Rendezvous
is referred to as the process of two entities choosing the connected ports for link
establishment and data transmission. In this chapter, we introduce the rendezvous
problem, how it is applied in distributed computing, and in which areas. In Sect. 3.1,
we give the definition of the rendezvous problem, present rendezvous examples in
distributed systems including multichannel wireless networks and cognitive radio
networks in Sects. 3.2 and 3.3. Afterwards, we define rendezvous in distributed sys-
tem in Sect. 3.4 and present some simple distributed algorithms in Sect. 3.5.

3.1 What is the Rendezvous Problem?

To begin with, consider the following scenario: two young people want to meet
each other at some place (such as a supermarket or a large park), but they cannot
find each other since it is a huge area and they do not have the specific location
to meet. Rendezvous, which means getting together at exactly the same place, asks
how they can meet quickly. Obviously, each person can choose between waiting
in a fixed place or looking for the other person by searching the different places;
obviously, if they both wait, they will never rendezvous. The objective is to design
efficient strategies for them to achieve rendezvous as quickly as possible under the
assumption that neither one knows the other person’s strategy and they do not make
any plans beforehand.

This rendezvous problem was first officially introduced in [1] and the continuous
version of the problem was formalized in [2]. Following the pioneering work, the
rendezvous problem has been studied and applied in many research areas such as

© Springer Nature Singapore Pte Ltd. 2017
Z. Gu et al., Rendezvous in Distributed Systems,
DOI 10.1007/978-981-10-3680-4_3

23

http://dx.doi.org/10.1007/978-981-10-3680-4_2

24 3 Rendezvous Theory

Fig. 3.1 An example of
telephone coordination
problem

graph theory [3, 4, 6, 18, 33], control theory [16, 39], and mobile robots [19, 28,
38]. In recent years, the rendezvous problem has been applied to wireless networks
in designing efficient multichannel MAC protocols, where the wireless devices can
access multiple orthogonal channels for communication in order to increase capacity
and throughput [34, 35]. In addition, the rendezvous problem for Cognitive Radio
Networks (CRNs) has been drawing a lot of attention in the last decade, since CRNs
are the most typical multichannel wireless networks and they are the most promising
prototype for the next generation wireless networks.

We first introduce a simple example of the rendezvous problem, which is known
as the telephone coordination problem [1]. As depicted in Fig. 3.1, two people (Alice
and Bob) are isolated in two rooms and they can only communicate through the
telephones placed in each room. However, they do not know how these telephones
are connected and neither person knows when the other will pick which telephone. If
both users pick telephone 1 at the same time by luck, they can hear from each other
and we call that a rendezvous. However, if Alice happens to pick telephone 2 while
Bob picks telephone k �= 4, they will not hear anything from the other room and
they have to choose between holding the telephone or picking another one, which is
similar to the starting scenario in this section.

3.2 Rendezvous in Multichannel Wireless Networks

In multichannel wireless networks (MWN), as in Fig. 3.2, the wireless device is
like the person in the example of telephone coordination problem (Fig. 3.1), and the
telephones placed in the rooms correspond to the wireless channels that the devices

3.2 Rendezvous in Multichannel Wireless Networks 25

Fig. 3.2 Rendezvous for
multichannel wireless
networks

can use for communication, and the connection patterns between the telephones
can be thought of as the real physical connections among the channels. Similar to
telephone coordination, if both devices choose the same channel at the same time,
rendezvous is achieved and they can communicate with each other. The difference
between telephone coordination and multichannel wireless networks is that the wire-
less devices have the same labels as the wireless channels and rendezvous protocols
can be designed based on the shared labels.

3.3 Rendezvous in Cognitive Radio Networks

Cognitive Radio Network (CRN) has been hailed as a promising network scheme
for solving the spectrum scarcity problem, and rendezvous for CRNs is defined as
“the process of one smart or cognitive radio finding another in the spectrum band
of interest” [41]. some works also refer to the problem as neighbor discovery [7,
9, 52]. In [7, 31], rendezvous is regarded as “the process of two or more radios of
users to meet and establish a link on a common channel”, which is more formal and
intuitive. Actually, establishing a communication link on a channel involves many
detailed implementation steps, such as beaconing and handshaking [41]; we refer
to rendezvous process as the process of choosing the same common channel at the
same time. Although CRN is one special type of multichannel wireless networks, the
rendezvous problem in CRN is quite different from both the telephone coordination
problem and rendezvous in multichannel wireless networks.

Take Fig. 3.3 as an example, and assume there are six licensed channels {1, 2, 3, 4,
5, 6} for both primary users (PUs), i.e. the users who own the licensed spectrum, and
secondary users (SUs), i.e. the users who can only use the unlicensed spectrum; PU
1 occupies channels {3, 4}, PU 2 occupies channels {6}, PU 3 occupies channels
{1, 2}, and PU 4 occupies channels {2, 3}, and then the network can be thought of
as in Fig. 3.3. Due to the PUs’ occupancy of the licensed channels, not all channels
are available for the SUs and this is a huge difference from both the telephone
coordination problem and multichannel wireless networks. As shown in the figure,

26 3 Rendezvous Theory

Fig. 3.3 Rendezvous example for cognitive radio network

users A and B can rendezvous on channel 5, users B and C can rendezvous on
channels {3, 4, 5}, users B and D can rendezvous on channels {4, 5}, and users
D and E can rendezvous on channels {1, 4, 5, 6}. The objective of rendezvous is
to design channel accessing algorithms such that every pair of neighboring users
(SUs) can access the same available licensed channel at the same time as quickly as
possible. Compared with the traditional rendezvous problem, rendezvous in CRN is
more challenging for the following reasons:

(1) The wireless devices (SUs) can only access the unused licensed frequency bands
(channels) after the spectrum sensing stage, which means not all channels are
available to choose from;

(2) traditional multichannel wireless networks assume each frequency band has
a fixed label that all SUs are aware of. However, different entities or service
providers may have different labels even for the same frequency band in CRN
and is no standard for everyone to subscribe to;

(3) different wireless devices may have different capabilities to sense the licensed
spectrum, which means the SUs can only sense a portion of the spectrum and
they may have only a small common fraction of the total spectrum available for
communication;

(4) the status of the licensed spectrum may vary according to the licensed users’
(PUs’) activities,which implies the sensed available channels can change dynam-
ically.

3.3 Rendezvous in Cognitive Radio Networks 27

The first challenge comes from the fact that different SUs may have different
available channels to use, which makes the rendezvous problem harder. For example,
if both SUs choose channel 1 in Fig. 3.2, they cannot rendezvous if the channel is
occupied by nearby PUs, which implies they do not have the chance to use the
channel.

The second challenge is due to frequency bands being labeled differently or locally
by different SUs. For example, the SUs in Fig. 3.2 cannot rendezvous on channel 1 if
they represent different frequency bands. Many extant works assume the labels are
fixed and all devices share the same information. The study of a practical problem
called oblivious blind rendezvous was proposed in [5, 23] where the SUs have no
common labels of the channels.

The third challenge arises from the different sensing capabilities of different SUs,
and they constitute the so called Heterogeneous Cognitive Radio Network (HCRN)
[37, 49, 50].

The forth challenge reflects the impact of PUs on the SUs; whenever the PUs
occupy the spectrum, the SUs have to release it and exploit new opportunities for
rendezvous. Therefore, the status of the licensed channels varies temporally and
rendezvous needs to be achieved in a dynamic way.

3.4 Rendezvous in Distributed Systems

From the above examples of the rendezvous problem, we now have the essential
meaning of rendezvous in distributed systems: to construct a communication link
from the entities’ connected ports (or chosen channels) for message transmission.

Considering twoneighboring entities in a distributed system, suppose each one has
N external ports (which corresponds to N telephones in the telephone coordination
problem). Suppose these external ports are labeled with distinguishable identifiers,
and some external ports between two neighbors are connected. For example, Fig. 2.4
shows the connections between the neighbors. For node a and b, they can only
transmit data to each other when they choose the connected ports, even if they are
connected in the network.

Rendezvous in distributed systems is similar to the problem in cognitive radio
networks, where each entity (node) does not know the other’s information, such as
how many ports are connected, how the ports are labeled, etc. All entities have to
find out their connections with neighbors on the basis of its local information, i.e.
the external ports and perhaps some distinguishable identifiers (such as ID, MAC
address, etc.).

Clearly, rendezvous plays an important and fundamental role in distributed sys-
tems, which reveals the underlying communication principles. This process can be
adopted to construct wireless networks, discover neighbors for autonomous robots,
find the existence of other sensor nodes in sensor networks, etc. In this book, we
focus on introducing some basic principles and elementary methods of designing
efficient rendezvous algorithms, and presenting some elegant results for the field.

http://dx.doi.org/10.1007/978-981-10-3680-4_2

28 3 Rendezvous Theory

3.5 Distributed Rendezvous Algorithms

As very few works have studied the rendezvous process of choosing the connected
ports in distributed systems, we mainly highlight some results of rendezvous in some
specific systems. Combining these results, we then introduce how to design efficient
rendezvous algorithms in distributed systems.

3.5.1 Distributed Telephone Coordination Algorithms

The telephone coordination problem seeks to minimize the elapsed time until two
isolated individuals can pick the pair of connected telephones.We formally introduce
the problem as follows:

Twopersons (Alice andBob) are isolated in two rooms, and there are N telephones
in each room. These N telephones are pairwise connected but no one knows how
they are connected. Alice and Bob can only communicate with each other by picking
up the connected telephones at the same time. Suppose they try round after round,
where each person can choose one telephone in each round. If their chosen telephones
are connected, rendezvous is achieved and they can communicate. Each person does
not know the other person’s information (such as identifiers, or telephone chosen
strategy); the problem seeks to minimize the expected time (i.e. number of rounds)
to achieve rendezvous.

For simplicity, assume the telephones of each person is labeled as {1, 2, . . . , N }
randomly, and telephone i of Alice is connected to certain telephone j of Bob (which
is not known to the two users). A naïve but reasonable strategy is to pick the telephone
randomly in each round. We show that such an algorithm uses expected N rounds
for two people to rendezvous.

Lemma 3.1 Random picking strategy has expected time to rendezvous ET T R = N
for two people.

Proof Let rt be the event that Alice and Bob pick a pair of connected telephones in
the t-th round. Since each person chooses the telephone randomly,

Pr(rt) = 1

N
(3.1)

which computes the probability of event rt happening. Let r ′
t be the event that the

users can rendezvous in the t-th round for the first time, then

Pr(r ′
t) = Pr(r1

⋂
r2

⋂
. . .

⋂
rt−1

⋂
rt) =

(
1 − 1

N

)(t−1)

· 1
n

(3.2)

3.5 Distributed Rendezvous Algorithms 29

Thus, we derive the expected time to rendezvous as:

ET T R =
∞∑

t=1

t · Pr(r ′
t)

=
∞∑

t=1

t ·
(
1 − 1

N

)(t−1)

· 1

N

= N

Following this expected rendezvous time, we can conclude that the users can
achieve rendezvous within O(N log N) rounds with high probability.

Lemma 3.2 Randompicking strategy guarantees rendezvous in O(N log N) rounds
for two people with high probability.

Proof As shown in Lemma15.2, the probability to rendezvous in each round t is
Pr(rt) = 1

N . Since both persons select their telephones randomly in each round,
rt , r ′

t are independent for any t �= t ′. Therefore, the probability that they do not
rendezvous in cN log N (c is a constant) rounds is bounded by:

Pr(r1
⋂

r2
⋂

. . .
⋂

rcN log N) =
(
1 − 1

N

)cN log N

(3.3)

When N → ∞,

Pr(r1
⋂

r2
⋂

. . .
⋂

rcN log N) = e−c log N = 1

Nc
(3.4)

and thus rendezvous happens in O(N log N) time slots with high probability 1− 1
Nc .

The randompicking strategy is simple.Abetter algorithm is proposed in [6],which
is called the Anderson-Weber (AW) strategy. This algorithm works as follows:

(1) Choose a random value i ∈ [1, N] and pick the telephone with label i in the first
round;

(2) choose a constant value p ∈ [0, 1] and pick the telephonewith label i for the next
N −1 rounds with probability p, or pick the telephones in the next N −1 rounds
according to a random permutation of label set {1, 2, . . . , i − 1, i + 1, . . . , N }
(with probability 1 − p);

(3) If rendezvous does not happen, repeat the second step.

In [6], the AW strategy is proved to be better than random picking strategy and
the expected time to rendezvous (ET T R) is about 0.829N . We will introduce the
details in Chap.15.

http://dx.doi.org/10.1007/978-981-10-3680-4_15
http://dx.doi.org/10.1007/978-981-10-3680-4_15

30 3 Rendezvous Theory

Fig. 3.4 Dedicated Common Control Channel based rendezvous protocol

3.5.2 Distributed Rendezvous Algorithms for Multichannel
Networks

In traditional wireless networks, there are mainly two types of multichannel MAC
protocols for rendezvous: dedicated common control channel (CCC) based ren-
dezvous [25, 47, 48] and channel hopping based rendezvous [8, 13, 42, 43, 45].

The intuitive idea of dedicated CCC based rendezvous protocols is to schedule
the requests of establishing a link for communication in a dedicated fixed channel.
As depicted in Fig. 3.4, channel 1 is the control channel via which the users make an
agreement for rendezvous.

For example, one device (we denote it as user A for simplicity) wants to transmit
data to user B on channel 2; it sends a request-to-send (RTS) packet on channel 1 and
user B responses with a clear-to-send (CTS) packet if it is ready for communication.
Then the users utilize channel 2 for communication and no other users can occupy the
channel until they finish the transmission. Dynamic Channel Allocation (DCA) [47],
Dynamic Channel Allocation with Power Control (DCA-PC) [48], and Dynamic
Private Channel (DPC) [25] are some typical examples of this method.

The main advantage of the approach is that it can ensure all users be aware of
the status of each channel through communication on the dedicated control channel.
Moreover, time synchronization is not needed, which means the users can always
achieve rendezvous via the control channel nomatterwhen theywant to communicate
with others. However, there are several disadvantages:

(1) If the number of channels that can be used is small, the efficiency of utilizing
the channels for communications decreases since the dedicated control channel
cannot be used for transmission between two specific users;

(2) the dedicated control channel can be easily congested if the number of users is
large;

(3) once an attacker finds out the frequency of the dedicated control channel, it can
attack and block the channel, which results in no more rendezvous subsequently.

In order to overcome the first disadvantage, a new method called split phase was
proposed, where time is divided into a sequence of control phase and data (transmis-

3.5 Distributed Rendezvous Algorithms 31

Fig. 3.5 Split phase method

sion) phase. All users utilize the dedicated control channel to make an agreement on
the schedule of the channels during the control phase, and they communicate through
the scheduled channels in the data transmission phase.

As depicted in Fig. 3.5, time is divided into a sequence of two phases (control
phase and data phase) and the users can send RTS or CTS (denoted as R and C
in the figure) messages during the control phase on the dedicated common control
channel (channel 1 in the figure); then two pairs of users utilize different channels
(channels 1 and 3 for the first data phase in the figure) for communication in the data
transmission phase.Multichannel Access Protocol (MAP) [13] is one example of this
method. Obviously, this method could increase the efficiency of using all channels,
but the users need to be synchronized, i.e. they should start the process at the same
time.

In view of the disadvantages surrounding the common control channel, many
rendezvous protocols not based on a dedicated CCC were proposed and there are
mainly two approaches: common hopping and parallel rendezvous [8, 35, 43, 45,
46].

The intuitive idea of common hopping is: all users hop through all channels syn-
chronously. If a pair of devices (users) want to communicate with each other, they
stop hopping and use the current channel. Once they finish, they rejoin the common
hopping pattern just like the other users.

For example, there are five wireless channels as depicted in Fig. 3.6 and all users
hop through the channels with the pattern 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, If one device
(called user A) wants to communicate with user B, it sends an RTS on the current
hopping channel (for example, channel 5), and then user B responses with a CTS
message on channel 5 if it is ready. Then both users stop hopping and use channel
5 for communication. Once the communication finishes, they rejoin the other users
and continue hopping through the channels.

Channel Hopping Multiple Access (CHMA) [45] and Channel Hopping multiple
Access with packet Trains (CHAT) [46] are two examples of this approach. The
main advantage of this approach is that it uses all channels for communication,

32 3 Rendezvous Theory

Fig. 3.6 Common hopping rendezvous protocol

which improves the efficiency of channels’ usage. However, there are also some
disadvantages:

(1) All users have to be synchronized, which means they have to start the process at
the same time. This is a serious limitation in reality;

(2) once two users have occupied a channel for communication, the others may
also still hop onto this channel. Clearly, this should be forbidden. Some works
use carrier sensing to determine if the channel is busy, but this is costly in
implementation [51].

The intuitive idea of parallel rendezvous is: the users can make an agreement on
different channels by hopping through the channels according to different patterns.
Slotted Seeded Channel Hopping (SSCH) [8] and Multi-channel MAC (McMAC)
[43] are two examples of this method, where the users hop through the channels
according to many different pseudorandom sequences that are decided by some
seeds. The users can achieve rendezvous on different channels once the user is aware
of the other user’s seed and rendezvous happens on different channels.

3.5.3 Distributed Rendezvous Algorithms for Cognitive Radio
Networks

However, these proposed rendezvous protocols are not applicable to cognitive radio
networks (CRNs). There are two general types of rendezvous algorithms for CRN:
centralized algorithms and decentralized algorithms.

Similar to the dedicated CCC method in traditional multichannel MAC proto-
cols, centralized rendezvous algorithms for CRNs assume a central controller or the
existence of a dedicated Common Control Channel (CCC) [1, 3, 32]. It is clear that
the users can make an agreement through the central controller or the CCC, which
simplifies the rendezvous process.

3.5 Distributed Rendezvous Algorithms 33

Although the centralized system is simple to implement and it can provide strong
controllability of the channels, it is not flexible or scalable. There are several disad-
vantages.

(1) First, the central controller or the dedicated CCC can easily get congested as
the number of users increases.

(2) Second, the centralized system is vulnerable to adversary attacks since the
central controller or the CCC is vital for all rendezvous and for all the users in the
network.

(3) Third, the cost to maintain the controller or the CCC is high because it needs to
detect the channels’ statuses, and to schedule the requests for communication from
large quantities of wireless devices.

Therefore, failure or overloading of the central controller or the CCC could lead
to dire consequences, and thus centralized algorithms are generally not practical.

Decentralized rendezvous algorithms without such central units have been pro-
posed to avoid the drawbacks of centralized algorithms. There are mainly two cate-
gories depending on whether CCC is required.

Some decentralized algorithms establish local CCCs through which a user can
contact their neighbors [2, 5]. These algorithms however incur substantial overhead
in establishing and maintaining local CCCs.

Since central unit or the dedicated CCC has its inherent limitations, some
researchers turned to decentralized algorithms without CCC, which are called blind
rendezvous algorithms [1–4, 7, 8, 10–12, 17, 20, 26, 27, 36, 53]. Cognitive radios
are autonomous and they are able to sense the licensed spectrum and access the
available frequency bands on their own. Therefore, it is reasonable that the cognitive
radios can communicate with others without relying on some other infrastructure
such as some central unit or the CCC. Therefore, blind rendezvous algorithms are
more practical and applicable for such intelligent cognitive radios, and large-scale
CRNs can be constructed.

The existing blind rendezvous algorithms are divided into two classes: Global
Sequence (GS) based rendezvous algorithms [7, 8, 21, 30, 40, 44] and Local
Sequence (LS) based rendezvous algorithms [14, 15, 22, 24, 29].

The intuitive idea ofGlobal Sequence (GS) based rendezvous algorithm is similar
to that of the common hopping approach in traditional multichannel rendezvous
protocols. According to the number of licensed channels and their labels, a sequence
containing all these channels (labels of the channels) is constructed and all users
(SUs) hop through the channels by repeating the sequence, which is called theGlobal
Sequence.

For example, we can construct a sequence of length 15 on the basis of 3 channels
{1, 2, 3}, as follows:

GS = {1, 1, 2, 1, 3, 3, 3, 1, 2, 2, 3, 2, 1, 2, 3} (3.5)

Then two users can hop through the channels by repeating the sequence and they
can achieve rendezvous at the same time no matter when they start. Suppose time is
divided into slots of equal length and the user accesses a channel in each time slot

34 3 Rendezvous Theory

Fig. 3.7 An example of Global Sequence based rendezvous

Fig. 3.8 An example of Global Sequence based rendezvous: replacement happens when some
channel is not available

according to the sequence. As depicted in Fig. 3.7, two users can achieve rendezvous
on all the three channels even if they are asynchronous, i.e. they do not start at the
same time.

However, a user may not need to access all licensed channels according to the
sequence since some of them may be occupied by the licensed users (PUs); then
the user chooses another available channel randomly to continue. For example, in
Fig. 3.8, channel 1 is not available for user A and it has to replace it by any available
one from {2, 3} (the channels in red represent the replaced ones). Similarly, channel
3 is not available for user B and so a replacement is also needed. Subsequently, the
two users rendezvous on channel 2, as shown in the figure.

The first rendezvous happens since user A chooses a random available channel
(2) to replace channel 1 in the sequence, and the other two rendezvous situations are
generated according to the original channel hopping sequence.

Actually, if the constructed GS has some good properties, rendezvous can always
be guaranteed once two users share at least one common available channel, no matter
howmany channels are available for each user and when do they start the process [3].
We call these GS based rendezvous algorithms and the technique to hop through the
licensed channels according to some pre-defined sequences is called Channel Hop-
ping (CH) [1, 2, 7, 8, 10, 11]. Jump-Stay (JS) algorithm [7], Channel Rendezvous
Sequence (CRSEQ) [8] and Disjoint Relaxed Difference Set (DRDS) based ren-
dezvous algorithm [21] are some state-of-the-art GS based rendezvous algorithms.
We will introduce these algorithms in Chap.8.

http://dx.doi.org/10.1007/978-981-10-3680-4_8

3.5 Distributed Rendezvous Algorithms 35

Fig. 3.9 An example of Local Sequence based rendezvous

The other type of blind rendezvous algorithm is Local Sequence (LS) based ren-
dezvous algorithms, which is firstly defined in [4].

GS based rendezvous algorithms construct a fixed length sequence for all users
and it is inefficient when the number of available channels accounts for a small
fraction of all licensed channels. LS based algorithms can accelerate the rendezvous
process and the intuitive idea is to construct different sequences for different users
based on the local information.

In order to design different sequences,mostworks assume each user in the network
has a distinct identifier (ID) and different sequences can be constructed on the basis
of the user’s ID and its sensed available channels. As depicted in Fig. 3.9, user A
hops through its available channels {2, 3} by repeating the sequence {2, 3}, while
user B accesses the available channels {1, 2} according to the sequence {1, 1, 2, 2},
rendezvous happens on channel 2 in a shorter time compared with Fig. 3.8.

The first algorithm belonging to this type is the Ring-Walk (RW) rendezvous
algorithm [5]. Following that, Alternate Hop-and-Wait (AHW) [2], Local Sequence
(LS) based rendezvous algorithm, and Modified Local Sequence (MLS) based ren-
dezvous algorithm were proposed, where the the user’s ID plays an important role in
sequence construction. There are also some works that establish different sequences
without the users’ ID [1], which we will introduce later in this book.

References

1. Alpern, S. (1976). Hide and seek game. In Seminar at the Institute für Höhere Studien, Vienna.
2. Alpern, S. (1995). The rendezvous search problem. SIAM Journal of Control and Optimization,

33(3).
3. Alpern, S., Baston, V. J., & Essegaier, S. (1999). Rendezvous search on a graph. Journal of

Applied Probability, 36(1), 223–231.
4. Alpern, S., & Beck, A. (1999). Asymmetric rendezvous on the line is a double linear search

problem. Mathematics of Operations Research, 24(3), 604–618.
5. Alpern, S., & Pikounis, M. (2000). The telephone coordination game.Game Theory and Appli-

cations, 5, 1–10.
6. Anderson, E. J., &Weber, R. R. (1990). The rendezvous problem on discrete locations. Journal

of Applied Probability, 28, 839–851.

36 3 Rendezvous Theory

7. Arachchige, C. J. L., Venkatesan, S. &Mittal, N. (2008). An asynchronous neighbor discovery
algorithm for cognitive radio networks. In DySPAN.

8. Bahl, P.,Chandra,R.,&Dunagan, J. (2004). SSCH:Slotted seeded channel hopping for capacity
improvement in IEEE 802.11 Ad Hoc wireless networks. In MobiCom.

9. Balachandran, K., & Kang, J. H. (2006). Neighbor discovery with dynamic spectrum access
in adhoc networks. In Vehicular Technology Conference.

10. Bian, K., Park, J.-M., & Chen, R. (2009). A quorum-based framework for establishing control
channels in dynamic spectrum access networks. InMobicom.

11. Bian, K., & Park, J.-M. (2011). asynchronous channel hopping for establishing rendezvous in
cognitive radio networks. In IEEE INFOCOM.

12. Bian, K., Park, J.-M., & Chen, R. (2011). Control channel establishment in cognitive radio
networks using channel hopping. IEEE Journal on Selected Areas in Communications, 29(4),
689–703.

13. Chen, J., Sheu, S., & Yang, C. (2003). A new multichannel access protocol for IEEE 802.11 ad
hoc wireless LANs. In Proceeding of 14th IEEE International Symposium on Personal, Indoor
and Mobile Radio Communications (PIMRC).

14. Chen, S., Russell, A., Samanta, A. & Sundaram, R. (2014). Deterministic blind rendezvous in
cognitive radio networks. In ICDCS.

15. Chuang, I., Wu, H.-Y., Lee, K.-R., & Kuo, Y.-H. (2013). Alternate hop-and-wait channel
rendezvous method for cognitive radio networks. In INFOCOM.

16. Conte, G., & Pennesi, P. (2010). The rendezvous problem with discontinuous control policies.
IEEE Transaction on Automatic Control, 55(1), 279–283.

17. Dai, Y.,Wu, J., &Xin, C. (2013). Virtual BackboneConstruction for Cognitive RadioNetworks
without Common Control Channel. In INFOCOM.

18. Dessmark, A., Fraigniaud, P., & Pelc, A. (2003). Deterministic rendezvous in graphs. In ESA.
19. Dudek, G., & Roy, N. (1997). Multi-robot rendezvous in unknown environments. In AAAI.
20. Gandhi, R., Wang, C.-C.. & Hu, Y.C. (2012). Fast rendezvous for multiple clients for cognitive

radiso using coordinated channel hopping. In SECON.
21. Gu, Z., Hua, Q.-S., Wang, Y., & Lau, F. C. M. (2013). Nearly optimal asynchronous blind

rendezvous algorithm for cognitive radio networks. In SECON.
22. Gu, Z.,Hua,Q.-S.,&Dai,W. (2014). Local sequence based rendezvous algorithms for cognitive

radio networks. In SECON.
23. Gu, Z., Hua, Q.-S., Wang, Y. & Lau, F. C. M. (2014). Oblivious rendezvous in cognitive radio

networks. In SIROCCO.
24. Gu, Z., Hua, Q.-S., & Dai, W. (2014). Fully distributed algorithms for blind rendezvous in

cognitive radio networks. InMOBIHOC.
25. Hung, W.-C., Law, K. L. E., & Leon-Garcia, A. (2002). A dynamic multi-channel MAC for ad

hoc LAN. In Proceeding of 21st Biennial Symposium on Communications.
26. Kondareddy, Y., Agrawal, P., & Sivalingam, K. (2008) Cognitive radio network setup without

a common control channel. In MILCOM.
27. Lazos, L., Liu, S.,&Krunz,M. (2009). Spectrumopportunity-based control channel assignment

in cognitive radio networks. In SECON.
28. Lin, Z., Francis, B., &Maggiore, M. (2009). Getting mobile autonomous robots to rendezvous.

Control of uncertain systems, pp. 119–137.
29. Lin, Z., Liu, H., Chu, X., & Leung, Y.-W. (2012). Ring-walk rendezvous algorithms for cog-

nitive radio networks. Ad Hoc & Sensor Wireless Networks.
30. Liu, H., Lin, Z., Chu, X., &Leung, Y.-W. (2012). Jump-stay rendezvous algorithm for cognitive

radio networks. IEEE Transactions on Parallel and Distributed Systems, 23(10), 1867–1881.
31. Liu, H., Lin, Z., Chu, X. & Leung, Y.-W. (2012). Taxonomy and challenges of rendezvous

algorithms in cognitive radio networks. In ICNC.
32. Lo, B. F. (2011). A survey of common control channel design in cognitive radio networks.

Physical Communication, 4, 26–39.
33. Marco, G. D., Gargano, L., Kranakis, E., & Krizanc, D. (2006). Asynchronous deterministic

rendezvous in graphs. Theoretical Computer Science, 355, 315–326.

References 37

34. Mo, J., So, H.-S. W., & Walrand, J. (2005). Comparison of multi-channel MAC protocols. In
MSWiM.

35. Mo, J., So, H.-S. W., &Walrand, J. (2008). comparison of multichannel MAC protocols. IEEE
Transaction on Mobile Computing, 7(1), 50–65.

36. Perez-Romero, J., Salient, O., Agusti, R., &Giupponi, L. (2007). A novel on-demand cognitive
pilot channel enabling dynamic spectrum allocation. In DySPAN.

37. Romaszko, S. (2013). A rendezvous protocol with the heterogeneous spectrum availability
analysis for cognitive radio ad hoc networks. Journal of Electrical and Computer Engineering.

38. Roy, N., & Dudek, G. (2001). Collaborative robot exploration and rendezvous: Algorithms,
performance bounds and observations. Autonomous Robots, 11, 117–136.

39. Schenato, L., & Zampieri, S. (2006). Optimal rendezvous control for randomized communi-
cation topologies. In CDC.

40. Shin, J., Yang, D., & Kim, C. (2010). A channel rendezvous scheme for cognitive radio net-
works. IEEE Communications Letters, 14(10), 954–956.

41. Silvius, M. D., MacKenzie, A. B., & Bostian, C. W. (2007). A survey of neighbor discovery
protocols in modern wireless systems and their application to the design and implementation of
“rendezvous” algorithms in smart and cognitive radios. InVirginia Tech Symposium onWireless
Personal Communications.

42. So, J. & Vaidya, N. (2004). Multi-channel MAC for ad hoc networks: Handling multi-channel
hidden terminals using a single transceiver. InMobiHoc.

43. So, H.W., Walrand, J., & Mo, J. (2007). McMAC: A multi-channel MAC proposal for ad
hoc wireless networks. In Proceeding of IEEE Wireless Communications and Networking
Conference (WCNC).

44. Theis, N. C., Thomas, R. W., & DaSilva, L. A. (2011). Rendezvous for cognitive radios. IEEE
Transactions on Mobile Computing, 10(2), 216–227.

45. Tzamaloukas, A., & Garcia-Luna-Aceves, J. J. (2000). Channel-hopping multiple access. In
ICC.

46. Tzamaloukas, A., & Garcia-Luna-Aceves, J. (2000). Channel-hopping multiple access with
packet trains for ad hoc networks. In Proceeding of IEEE Device Multimedia Communications
(MoMuC).

47. Wu, S.-L., Lin, Y., Tseng, Y.-C., & Sheu, J.-P. (2000). A new multi-channel MAC protocol
with on-demand channel assignment for mobile ad hoc networks. Algorithms and Networks
(ISPAN). In Proceeding of International Symposium on Parallel Architectures.

48. Wu, S.-L., Lin, C.-Y., Tseng, Y.-C., Lin, C.-Y., & Sheu, J.-P. (2002). A multi-channel MAC
protocol with power control for multi-hop mobile ad hoc networks. The Computer Journal,
45(1), 101–110.

49. Wu, C.-C., &Wu, S.-H. (2013). On bridging the gap between homogeneous and heterogeneous
rendezvous schemes for cognitive radios. In MobiHoc.

50. Wu, S.-H., & Wu, C.-C., Hon, W.-K., & Shin, K. G. (2014). Rendezvous for heterogeneous
spectrum-agile devices. In INFOCOM.

51. Zannoth, M., Ruhlicke, T., & Klepser, B.-U. (2004). A highly integrated dual-band multimode
wireless LAN transceiver. IEEE Journal of Solid-State Circuits, 39(7), 1191–1195.

52. Zhang, D., He, T., Ye, F., Ganti, R. & Lei, H. (2012). EQS: Neighbor discovery and rendezvous
maintenance with extended quorum system for mobile sensing applications. In ICDCS.

53. Zhao, J., Zheng, H., & Yang, G.-H. (2005). Distributed coordination in dynamic spectrum
allocation networks. In DySPAN.

Chapter 4
Rendezvous Categories

Abstract There are many kinds of rendezvous settings and we present their differ-
ences in this chapter. For simplicity, assume there are M entities (or users) in the
distributed system, and each entity has N external ports (or channels) for rendezvous
attempt. Due to environmental noise or the temporary port occupancy by others (such
as other devices or services), some ports may not be usable for a long time. We dif-
ferentiate between different rendezvous categories according to different settings. In
Sect. 4.1, the entities may run the same or different algorithms, which are referred
to as symmetric or asymmetric algorithms. In Sect. 4.2, we introduce synchronous
and asynchronous settings, where the entities start the algorithms at the same time
or at different times. In Sect. 4.3, the entities may have the same or different sets of
available ports that are not occupied, and are called symmetric or asymmetric port
setting. In Sect. 4.5, we introduce a special scenario called oblivious port labeling
where the entities could label the ports locally. In contrast, all entities see the same
labels of the ports in non-oblivious port labeling, which limits the power of a dis-
tributed system. Finally, we introduce different rendezvous categories in Sect. 4.6
according to different settings that are introduced above.

4.1 Symmetric and Asymmetric Algorithms

In a distributed system, all entities have the same role and they do not know the
others’ information or status. Therefore, all users (or entities) in the network should
execute the same rendezvous algorithm, which is called symmetric algorithm. For
example, a rendezvous strategy is to access each port round after round in a sequential
order, and all users have to run the same strategy, which unfortunately may lead to
infinite waiting for rendezvous.

Considering two users a and b, denote user a’s labels of the ports as {a1, a2,

. . . , aN }, and the ports’ labels of user b as {b1, b2, . . . , bN }. If the ports between two
users are connected as follows:

port ai ↔ port bi, 1 ≤ i ≤ N (4.1)

© Springer Nature Singapore Pte Ltd. 2017
Z. Gu et al., Rendezvous in Distributed Systems,
DOI 10.1007/978-981-10-3680-4_4

39

40 4 Rendezvous Categories

They will choose the connected ports ai, bi all the time as time goes on. However,
suppose the ports between two users are connected as follows:

{
port ai ↔ port bi+1, 1 ≤ i ≤ N − 1
port aN ↔ port b1

(4.2)

Suppose the two users run the same algorithm by accessing the ports sequentially
at the same time; they will choose the ports with same label ai, bi all the time, and
rendezvous can never happen.

In some rendezvous settings, the users are allowed to run different algorithms,
which are called asymmetric algorithms. This is because there are two types of
roles in the users’ communication: transmitter who sends the data to the neighbor,
and receiver who receives the message. In addition, some users may dominate their
neighbors and they could have different roles. Therefore, some works assume the
users can perform asymmetric algorithms to guarantee rendezvous.

Considering the above example where port ai is connected to port bi+1, if two
users are able to run asymmetric algorithms, rendezvous can be guaranteed within
finite time.

Suppose user a chooses a fixed port a1 (for example), while user b adheres to
the above strategy, by choosing the ports sequentially, i.e. {b1, b2, . . . , bN , b1, b2,

. . . , bN }. Clearly, two users can achieve rendezvous when user b chooses the port b2.
Nevertheless, asymmetric algorithms are not preferable in distributed systems,

because it is hard to assign different roles to or distinguish among the entities when
there are a large number of entities in the network. Therefore, many works have
focused on symmetric algorithm design and this is also our focus in this book.

4.2 Synchronous and Asynchronous

Timing is a crucial element in distributed computing. In synchronous settings, all
users in the system can access a global clock and the time can be considered as
divided into slots of equal length, and all users start the distributed algorithms from
the same time slot. This assumption simplifies the rendezvous problem since we do
not need to distinguish between the two users as one user may otherwise start the
rendezvous search while the other is still asleep.

In asynchronous settings, any user in the network can start the rendezvous process
at any time, which is more practical since the entities in a distributed system are not
usually aware of the others’ information, including what the other entities do and
when they start. Therefore, most works study asynchronous settings in distributed
computing, including the rendezvous problem. The challenge of designing asynchro-
nous algorithms is: a user in the network may start the algorithm at any global time,
and the asynchronous algorithm has to be robust enough so that all users can finish
their computational tasks efficiently regardless of when they start the algorithm.

4.2 Synchronous and Asynchronous 41

We define these two settings in a more formal way. Suppose there are M users in
the distributed system, which for simplicity we denote as

{u1, u2, . . . , uM}.

Actually, the users in a distributed system may not have such identifiers, but we use
the notation to distinguish them from a global view. Suppose the users are to solve
a computational problem P and the proposed algorithm is denoted as F (if the users
choose a symmetric algorithm as discussed in the above section; we would denote
the adopted algorithms for each user as {F1,F2, . . . ,FM} in the asymmetric case).

Suppose there is a global clock which records the detailed time, but the users may
not be able to access the clock. Denote the start time of the users according to the
global clock as

{t1, t2, . . . , tM}.

However, for each user in the network, its local time is just 0 when it starts computing
the problem.

In synchronous setting, all users start the computation at the same time, which
implies:

t1 = t2 = . . . = tM . (4.3)

The users may finish the computational task with different times according to their
own resources and local memory. It is easy to define when the distributed system
finishes solving the problem, i.e. the time at which the last user finishes computing.

In asynchronous setting, the users may start the computation with no time refer-
ence, which may result in different start-up times from the global clock view, i.e. ti
could be equal to, smaller or larger than tj for any i, j ∈ [1,M]. Similar to synchro-
nous setting, the users may spend different times to finish their computations and it
is harder to define the time complexity of solving a problem in such a distributed
system.

Suppose the finish times of all users are

{d1, d2, . . . , dM}

respectively, where ti < di,∀i ∈ [1,M]. A simple way of defining the rendezvous
time complexity is to compute the elapsed time from when the first user starts the
algorithm to the time when the last user finishes; the time complexity is defined as:

Complexity = max
1≤i≤M

di − min
1≤i≤M

ti. (4.4)

However, this definition may not be reasonable, since some user in the distributed
system may start the computation very late and it will result in a very large time
computational complexity. Moreover, the message delivered in the system may have
unbounded time, which makes the time complexity hard to compute. In order to

42 4 Rendezvous Categories

Fig. 4.1 An example of
computing time complexity
in a distributed system

eliminate the effect of message delay, many works assume that the message delay
has a finite bound.

One reasonable way is to compute the time cost by each user and the largest cost
among all users’ costs is the regarded as the time of the asynchronous algorithm in
the distributed system. We define the time complexity as:

Complexity = max
1≤i≤M

(di − ti). (4.5)

However, this method may not work well under some conditions, especially when
one user’s computation is based on another’s information.

For example, in Fig. 4.1, suppose each sensor detects a value of the environment
and all sensors have to compute the local maximum value among all neighbors.
Assume sensor 1 starts at a very early time, while its neighbor sensor 2 starts very
late. Even after sensor 1 receives messages from both sensors 3 and 4, it cannot
terminate until sensor 2 starts the algorithm by sending the value to it. Therefore, the
delay of sensor 2 increases the time complexity of the algorithm significantly.

There is another way to compute the time complexity of an asynchronous algo-
rithm. Since the distributed system is composed of all M users, and we define the
start time of the system as the time when the last user starts the computation, i.e.

tDS = max
1≤i≤M

ti (4.6)

is the system start time. Using a similar idea, we define the finish time of the distrib-
uted system as the time when all users have finished their computation, i.e.

dDS = max
1≤i≤M

di (4.7)

is the system finish time.

4.2 Synchronous and Asynchronous 43

Then, we define the time complexity that the distributed system finishes the com-
putation as the elapsed time between the system start time and the system finish time,
i.e.

Complexity = dDS − tDS = max
1≤i≤M

di − max
1≤i≤M

ti.

This definition computes the elapsed time with the assumption that the network
is a unified system. We only consider when all users have started the computation
and when all users have finished the computation. The definition could resolve the
ambiguity that some sole user in the system may affect and increase the computation
time. In this book, we will adopt this definition when computing time complexity to
rendezvous in asynchronous settings.

4.3 Symmetric and Asymmetric Port Settings

In a cognitive radio network, although there may be N licensed channels that can
be detected and sensed by the secondary users (such as mobile phones, computers,
etc.), some licensed channels may be occupied by nearby licensed users who paid
and owned the licensed channels. Due to the different occupancies of the licensed
channels by different licensed users, different secondary users could have different
available licensed channels for further use. Recall Fig. 3.3 as an example, user A can
sense three available licensed channels {1, 2, 5} but user B can sense three available
channels {3, 4, 5}. Then, two users have to attempt to find the common available
channel 5 through their designed distributed algorithms. Hence, the secondary users
may find different sets of available channels, which is called an asymmetric situation.

Similarly, suppose each user has N external ports for connection, but not all of
them are available for a certain specific user. As shown in Fig. 4.2, node a and node b
are two neighbors and they may try to communicate with each other by constructing

Fig. 4.2 An example of port occupancy in rendezvous settings

http://dx.doi.org/10.1007/978-981-10-3680-4_3

44 4 Rendezvous Categories

a connection link. However, some external ports of node a may be used for some
other services, or some ports are not available for data transmission. The ports that
have already been occupied are blocked with a red rectangle in the figure.

Therefore, node a may get a set of available ports as set Pa. Similarly, node b
can get a set of available ports as set Pb. For simplicity, we assume the nodes have
the same labels for N external ports, and port i of node a is connected to port i of
node b. If two nodes share the same set of available ports, rendezvous is easier to
achieve and we call this situation the symmetric port setting. Alternatively, in the
asymmetric port setting, Pa �= Pb between two nodes. This makes rendezvous more
difficult because if node a accesses some channel i in set Pa but not in set Pb, there
is no chance for the two users to rendezvous, no matter which port node b chooses.
For example, if node a uses port 4 in the figure, but it is blocked for user b, then the
two users can never rendezvous for communication if node a does not change ports.

Symmetric setting is a special case of port setting and it can verify how the
designed algorithms perform with a relatively “good” setting. Some works also study
a more restricted setting, where all ports are available, i.e. Pi = {1, 2, . . . ,N} and
this can be used to verify the “good part” of any distributed rendezvous algorithm.

However, symmetric setting is rare in practical due to uncontrollable environmen-
tal noise and undecidable port occupancy. Most works study the asymmetric setting
and design distributed algorithms that work efficiently under both symmetric and
asymmetric port settings. There exists an extreme situation in asymmetric setting,
where two nodes have only 1 common available port, i.e. |P1

⋂
P2| = 1; there is still

chance to rendezvous, but it is the most difficult situation to handle for any distributed
rendezvous algorithm. This extreme setting can be used to test the efficiency of any
distributed rendezvous algorithm in the worst situation.

4.4 Anonymous and Non-anonymous Entities

In a distributed system, the entities are distributed with no pre-defined rules and the
whole system should be regarded as an empty input to any entity. Considering any
entity, even if it has several neighbors, it is hard to tell the difference between any
two neighbors. This is because all entities in the system are indistinguishable.

In this book, we study two scenarios: anonymous entities and non-anonymous
entities. In the former scenario, all users have no distinguishable identifiers and any
two nodes cannot be labeled or recognized easily by other users. Figure 4.3 shows
an example that node a has two neighbors, node b and node c, but it cannot tell
them apart since they have the same information (including the number of neighbors
or some local memory). Therefore, anonymity increases the difficulty in designing
distributed algorithms.

In many practical scenarios, there do exist distinguishable identifiers in a distrib-
uted system. For example, the different MAC addresses of the computers, the IDs
of sensor nodes, etc. Therefore, the users in Fig. 4.4 can be distinguished by their
identifiers (IDs) and that makes many problems easier to solve.

4.4 Anonymous and Non-anonymous Entities 45

Fig. 4.3 An example of anonymous network where node a cannot distinguish node b and node c

For example, if node a wants to collect data from its neighbors in Fig. 4.4. If
the two neighbors are anonymous as shown in the figure, after receiving two exact
values 3, node a cannot decide whether to terminate or to wait for more data, since
these two values may come from the same neighboring node b or node c (we assume
node b and node c will both send their value continuously until node a terminates).
However, if the nodes are non-anonymous, node a could use the identifier of each
sender to decide whether two neighbors have already sent their values.

In a rendezvous problem, users’ identifiers may not play an important role in
designing efficient algorithm, but they do matter in certain types of rendezvous. We
will introduce rendezvous for both the anonymous and the non-anonymous settings.

4.5 Oblivious and Non-oblivious Port Labeling

In wireless networks, channels are always labeled by some pre-defined rules. There-
fore, all the channels (spectrum) share the same global labeling for all users in the
network. However, when two entities try to construct a communication link through
their external ports in a distributed system, these ports may not share the same labels,
and insisting on connecting ports with the same label will amount to trouble. There-
fore, we need to address the significance of port labeling.

46 4 Rendezvous Categories

Fig. 4.4 An example of non-anonymous network

In some distributed systems, for example Cognitive Radio Networks (CRNs), the
secondary users can communicate with others through available licensed channels.
These licensed channels correspond to the external ports in our studied rendezvous
problem. Moreover, these licensed channels are always assumed to be assigned with
identifiers (IDs) and the channel IDs are known to all secondary users. This assump-
tion makes rendezvous easier since two secondary users can design rendezvous algo-
rithms based on the channel IDs. Considering the simple algorithm:

* The user chooses channel (i − 1)%N + 1 in the i-round.

Here N represents the number of all channels and the users make decisions round by
round.

In the simplest version, two users start the algorithm at the same time, and they
will always choose the same channel in each round. Even if some channels are not
accessible to secondary users due to the licensed users’ occupancy, they can achieve
rendezvous definitely if they share some common available channels. Moreover, the
time to rendezvous is very small (no larger than N rounds).

However, a global labeling could not simplify the rendezvous problem much. We
can use the above simple algorithm as the example again. If two users are asyn-
chronous, i.e. they start the rendezvous attempt in different rounds, they may never
rendezvous even all channels are available for both users. This is easy to check, since

4.5 Oblivious and Non-oblivious Port Labeling 47

when one user chooses channel i, the other one will choose channel (i+�−1)%N+1
where � means how many rounds the other one is late by. Obviously, if �%N �= 0,
these two channels have different labels, and they can never rendezvous.

In a distributed system, it is hard to make all users share the same labels. For
example, in a cognitive radio network, the ‘TV white space’ that could be sensed
by the users has operating frequencies ranging from 470–790 MHz in Europe [1, 3],
but it is located in the VHF (i.e. very high frequency) (54–216 MHz) and UHF (i.e.
ultra high frequency) (470–698 MHz) bands in the United States [2]. Obviously, the
labeling of this space could vary and the same frequency band (channel) may be
assigned different labels under different administrations.

In studying a more general rendezvous problem in a distributed system, we may
need to observe the fact that the external ports are oblivious, which means they have
no global labels and the other nodes cannot tell the difference of these ports. This
assumption makes us dig deep into the core of rendezvous in distributed systems and
the solutions then derived can be applied to many interesting applications.

4.6 Rendezvous Categories

According to the five dimensions of rendezvous described earlier, we denote a specific
rendezvous setting by a five element array:

RS =< Alg,Time,Port, ID,Label > (4.8)

where each element has two options:

(1) Alg: Asymmetric or Symmetric algorithms as in Sect. 4.1 (we use Alg-AS and
Alg-S for short);

(2) Time: Synchronous or Asynchronous system as in Sect. 4.2 (we use Syn and Asyn
for short);

(3) Port: Symmetric or Asymmetric of available ports as in Sect. 4.3 (we use Port-S
and Port-AS for short);

(4) ID: Non-Anonymous or Anonymous entities as in Sect. 4.4 (we use Non-Anon
and Anon for short);

(5) Label: Non-oblivious or Oblivious port labeling as in Sect. 4.5 (we use Non-Obli
and Obli for short).

Clearly, there are 25 = 32 different types of rendezvous settings which we will
introduce in this book. Notice that, the easiest rendezvous setting should be

RSe =< Alg − AS, Syn,Port − S,Non − Anon,Non − Obli > (4.9)

while the most difficult setting should be

RSh =< Alg − S,Asyn,Port − AS,Anon,Obli > (4.10)

48 4 Rendezvous Categories

For two different settings RSi,RSj, we define RSi � RSj if RSi is not more dif-
ficult than RSj. We introduce the following property about the hardness of different
rendezvous settings.

Proposition 4.1 Considering two settings:

RSa =< Alg − AS,Time,Port, ID,Label >

RSb =< Alg − S,Time,Port, ID,Label >

we have RSa � RSb.

For any fixed setting of Time,Port, ID,Label, designing an asymmetric ren-
dezvous algorithm is not more difficult than designing a symmetric algorithm. This
is because the entities could also adopt the same algorithm in asymmetric algorithm
setting. Actually, for the distributed rendezvous problem, the entities running sym-
metric algorithms are much harder to achieve rendezvous than running asymmetric
algorithms. We will show some examples in the following chapters.

Proposition 4.2 Considering two settings:

RSa =< Alg, Syn,Port, ID,Label >

RSb =< Alg,Asyn,Port, ID,Label >

we have RSa � RSb.

For any fixed setting of Alg,Port, ID,Label, designing an asynchronous algo-
rithm is not easier than designing a synchronous algorithm. This is because asyn-
chronous setting contains the situation of synchronous setting when the entities start
at the same time. In some settings, designing efficient synchronous algorithms could
be as hard as designing efficient asynchronous algorithms, and we will introduce
some of them in Part III.

Proposition 4.3 Considering two settings:

RSa =< Alg,Time,Port − S, ID,Label >

RSb =< Alg,Time,Port − AS, ID,Label >

we have RSa � RSb.

4.6 Rendezvous Categories 49

For any fixed setting of Alg,Time, ID,Label, it is not easier to handle when the
ports are asymmetric than the symmetric port situations. When the entities have
symmetric ports, each attempted port for rendezvous could match the other port, but
it may not happen when the ports are asymmetric.

Proposition 4.4 Considering two settings:

RSa =< Alg,Time,Port,Non − Anon,Label >

RSb =< Alg,Time,Port,Anon,Label >

we have RSa � RSb.

For any fixed setting of Alg,Time,Port,Label, the entities with distinguishable
identifiers could achieve rendezvous easier or not more difficult than when they are
anonymous. This is obvious but under most conditions, entities’ IDs do not play a
vital role in achieving rendezvous.

Proposition 4.5 Considering two settings:

RSa =< Alg,Time,Port, ID,Non − Obli >

RSb =< Alg,Time,Port, ID,Obli >

we have RSa � RSb.

For any fixed setting of Alg,Time,Port, ID, if the ports are labeled with some pre-
defined rules, the rendezvous problem would become much easier. This is because
many rendezvous algorithms utilize the ports’ labels to design hopping sequences
and the global information could help guarantee rendezvous. If the ports have no
common labels, the entities could do less to walk out the difficult position, even if
they could do labeling on their own.

Among the five fundamental elements of any rendezvous setting, the labeling of
ports plays the most important role and there is a big difference when the ports are
oblivious. In the chapters that follow, we divide and treat rendezvous algorithms in
two parts on the basis of port labeling settings.

In Part II, we assume all entities have the same labels of all the ports, which
is also the assumption by most extant works in multichannel wireless networks,
cognitive radio networks, etc. We present different types of rendezvous algorithms
for the 24 = 16 settings when the ports are non-oblivious. In Part III, all ports are
assumed to be oblivious, i.e. there is no common or global labeling of the ports, and
we introduce rendezvous algorithms for the other 24 = 16 settings.

50 4 Rendezvous Categories

References

1. ETSI. (2012). EN 301 598 White Space Devices (WSD); Wireless Access Systems Operating
in the 470 MHz to 790 MHz Frequency Band.

2. Flores, A. B., Guerra, R. E., & Kightly, E. W. (2013). IEEE 802.11af: A standard for TV white
space spectrum sharing. IEEE Communications Magazine.

3. Ofcom. (2013). Regulatory requirements for white space devices in the UHF TV band. http://
www.cept.org/Documents/se-43/6161/.

http://www.cept.org/Documents/se-43/6161/
http://www.cept.org/Documents/se-43/6161/

Part II
Blind Rendezvous in Distributed Systems

Chapter 5
Blind Rendezvous Problem

Abstract Rendezvous is the fundamental process to establish a communication link
between a pair of neighboring entities. In traditional multichannel wireless networks
and cognitive radio networks, rendezvous is the prerequisite for communication, via
which the users try to choose the same channel for data transmission. Here, we intro-
duce the blind rendezvous problem, where blind means the entities or the users in
the system do not know the others’ information and they have to make decisions
completely locally. This definition makes a distinction away from centralized ren-
dezvous where a central unit is used to provide the port or channel information to the
users [1, 3], or some local common control channel is established and maintained
to control and simplify the rendezvous process [2, 5]. Blind rendezvous draws a
lot of attention from both academic and industrial areas due to its scalability, flex-
ibility and robustness in implementing large scale distributed systems. We depict
the blind rendezvous problem in Figs. 5.1 and 5.2. Consider a cognitive radio net-
work which is composed of several secondary users (SUs) and several primary users
(PUs). Because of the PUs’ occupancy on the licensed channels, the SUs can only
have opportunistically a portion of the licensed spectrum. Suppose user A has three
channels {1, 2, 6} that are not used by the PUs, while user B can access channels
{3, 5, 6} after spectrum sensing. If they try to communicate with each other, they
should choose an available channel for their communication attempt. However, nei-
ther of them knows the other SU’s information about the licensed channels, so they
have to apply rendezvous strategies in a distributed “blind” way. Consider a simple
algorithm: each SU accesses the available licensed channels in a round robin way,
i.e. user A accesses channels by repeating the sequence {1, 2, 6}:

{1, 2, 6, 1, 2, 6, 1, 2, 6, 1, 2, 6, . . .} (5.1)

and user B accesses channels by repeating the sequence {3, 5, 6}:

{3, 5, 6, 3, 5, 6, 3, 5, 6, 3, 5, 6, . . .} (5.2)

© Springer Nature Singapore Pte Ltd. 2017
Z. Gu et al., Rendezvous in Distributed Systems,
DOI 10.1007/978-981-10-3680-4_5

53

54 5 Blind Rendezvous Problem

Fig. 5.1 Blind rendezvous example for two synchronous users

Fig. 5.2 Blind rendezvous example for two asynchronous users

As shown in Fig. 5.1, users A and B can rendezvous on channel 5 at time 3 if they
start at the same time, which is the synchronous setting. However, if user A is two
time slots earlier than user B, which is the asynchronous setting, as shown in Fig. 5.2,
they will never rendezvous. In this chapter, we first present the systemmodel of blind
rendezvous in Sect. 5.1, and then we introduce two important metrics: expected time
to rendezvous and maximum time to rendezvous in Sect. 5.2. The problem definition
is given in Sect. 5.3 and the challenges are discussed in Sect. 5.4. Finally, Sect. 5.5
summarizes the chapter.

5.1 System Model

In this part, we present the rendezvous algorithms for different types of rendezvous
settings, on the basis that the ports are non-oblivious, i.e. all entities apply the same
labeling rules. Therefore, the rendezvous settings can be represented as:

RSblind =< Alg,Time,Port, ID,Non – Obli > (5.3)

where Alg ∈ {Alg−AS,Alg−S}, Time ∈ {Syn,Asyn}, Port ∈ {Port−S,Port−AS},
and ID ∈ {Non − Anon,Anon}.

We suppose there areM(M ≥ 2) users in a distributed system, and each user has
N(N ≥ 1) external ports. In the RSblind setting, the ports have the same labels from
{1, 2, . . . ,N} and for any two neighboring users, the ports with the same label are
connected.

5.1 System Model 55

Fig. 5.3 Transform
non-aligned slots to aligned
ones

Denote all users as {u1, u2, . . . , uM} and suppose their adopted rendezvous algo-
rithms are {F1,F2, . . . ,FM} respectively (i.e. user ui runs algorithm Fi).

(1) In Alg − AS setting, for any two users ui, uj, i �= j, Fi and Fj could be different
(we use Fi �= Fj to denote that they are different);

(2) In Alg − S setting, all users run the same algorithm, i.e. ∀i, j ∈ [1,M], Fi = Fj.

Assume time is divided into slots of equal length 2t, where t is sufficient for
establishing a communication link between two users if they access the ports with
the same label. In wireless networks, according to IEEE 802.22 [4], t = 10 ms
and thus each time slot has a duration of 20 ms. Actually, the system may not be
slot-aligned, which means the time clock of two users are not aligned. We show the
method of transforming these situations to the slot-aligned scenario. For example,
in Fig. 5.3, slot i + 2 of the upper row intersects slot i of the lower row and the
intersection length is no less than t. Therefore, we transform it to the slot-aligned
scenario since an overlap of t time length exists for establishing a communication
link if they achieve rendezvous. In Fig. 5.4, we present another situation that the slots
may not be aligned and the transformation is easy to see. Therefore, the slot length
2t is essential in designing rendezvous algorithms for asynchronous users and we
can then consider the system as slot-aligned with this setting.

Denote the start time of the users as {t1, t2, . . . , tM} respectively (i.e. the start time
of user ui is ti).

(1) In Syn setting, all users have the same start time, i.e. ∀i, j ∈ [1,M], ti = tj;
(2) In Asyn setting, for any two users ui, uj, i �= j, ti and tj could be different, i.e.

ti �= tj.

Due to occupancy by other services, each user could use only a portion of the
external ports. We say a port is available if it is not occupied by other services and
the user can choose it for communication. Denote the set of all external ports as
U = {1, 2, . . . ,N}. For any user ui, denote the set of available ports as Ci ⊆ U .

(1) In Port − S setting, all users have the same available ports, i.e. ∀i, j ∈ [1,M],
Ci = Cj;

56 5 Blind Rendezvous Problem

Fig. 5.4 Another
transformation from
non-aligned slots to aligned
ones

(2) In Port−AS setting, for any two users ui, uj, i �= j, Ci and Cj could be different,
i.e. Ci �= Cj.

In the Port−AS setting, in order to guarantee rendezvous, two neighboring users
must have at least one common available port, i.e. Ci

⋂
Cj �= ∅.

Considering all users in the system, some works assume they have distinct iden-
tifiers (IDs). We define the two settings as follows:

(1) In Anon setting, all users are anonymous and they have no distinct identifiers;
(2) In Non − Anon setting, each user has a distinct identifier (ID). Denote user ui’s

ID as Ii. For any two users ui, uj, i �= j, Ii and Ij are different, i.e. Ii �= Ij.

5.2 Metrics

We use Time to Rendezvous (TTR) to measure the efficiency of rendezvous algo-
rithms. As introduced in the model, the start time of user ui is denoted as ti. Suppose
the finish time of user ui is di, where di > ti. Notice that finish time means the
user finishes achieving rendezvous. For any two neighboring users ui and uj, if they
achieve rendezvous, both users will finish the process at the moment of rendezvous,
and thus di = dj.

We define the time to rendezvous between two users as follows.

Definition 5.1 For two neighboring users ui and uj, suppose their start times are
ti, tj respectively, and their finish times are di, dj where di = dj = d. The time to
rendezvous is defined as:

TTR = d − max{ti, tj} (5.4)

We denote the rendezvous time as the time the user who starts later spends in the
process. Then, we define the time to rendezvous among allM users as follows.

5.2 Metrics 57

Definition 5.2 Considering all users u1, u2, . . . , uM in the system, denote their start
times and finish times as t1, t2, . . . , tM and d1, d2, . . . , dM respectively. The time to
rendezvous is defined as:

TTR = max
1≤i≤M

di − max
1≤i≤M

ti (5.5)

Since we consider different settings of rendezvous, different initial configurations
(such as different number of available ports and different IDs) may lead to different
times to rendezvous. Therefore, we use two metrics for evaluation:

(1) Maximum Time to Rendezvous (MTTR) represents the maximum time used to
rendezvous among all different configurations;

(2) Expected Time to Rendezvous (ETTR) represents the expected time used to ren-
dezvous among all different configurations.

MTTR reveals the performance of the rendezvous algorithm under the worst sit-
uation, while ETTR indicates how the algorithm performs on average.

5.3 Problem Definition

As described in the System Model, there are M users and their available ports are
C1,C2, . . . ,CM respectively. If rendezvous happens for all users, denote the common
available port set as G = ⋂M

i=1 Ci �= ∅. Before we define the rendezvous problem
for multiple users in the system, we first formulate the rendezvous problem between
two users.

Considering two users ui and uj, the set of available ports are Ci,Cj, and the
IDs are Ii, Ij respectively. We formulate the Blind Rendezvous Problem between Two
Users as follows.

Problem 5.1 Given a set Ci ⊆ U , design a port access algorithm fi for different
time slots fi(t) ∈ Ci such that: ∀Ci,Cj ⊆ U,∀δt :

∃T s.t. fi(T + δt) = fj(T) (5.6)

The MTTR value of algorithms fi, fj is MTTRfi,fj = max∀δt T . The objective is
to find algorithms minimizing the MTTR value among all algorithms: MTTR =
min∀fi,fjMTTRf .

Remark 5.1 If userA starts later than userB, δt < 0 in the description of Problem5.1.

Notice that, if we are aiming at symmetric algorithms, both users ui and uj should
adopt the same algorithm, i.e. fi = fj.

For example, U = {1, 2, 3, 4, 5, 6, 7, 8},Ci = {1, 2, 5},Cj = {3, 4, 5, 6}, and
user ui accesses the ports at different time slots, as follows:

58 5 Blind Rendezvous Problem

Fig. 5.5 An example of rendezvous between two synchronous users: users ui and uj start at time
0 simultaneously; and rendezvous can be achieved at time 8

Fig. 5.6 An example of rendezvous between two asynchronous users: user uj starts at time 0 while
user ui starts at time 4; then rendezvous is achieved at time 6

fi(t) =
⎧
⎨

⎩

1 When t ≡ 0 mod 3
2 When t ≡ 1 mod 3
5 When t ≡ 2 mod 3

(5.7)

whereas user uj accesses the ports by repeating the sequence:

{3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6} (5.8)

If they start at the same time, TTR = 9 when they both access port 5, as shown in
Fig. 5.5. However, TTR = 6 when user uj starts the process at time slot 0 but user ui
starts at time slot 4, as shown in Fig. 5.6.

In the example, two users adopt different algorithms and they are in the Alg−AS
setting.But it is impractical to design different strategies for different users, especially
where the number of usersM is large. Therefore, generally, symmetric algorithms for
the rendezvous problem are preferred. In the example,Ci �= Cj is thePort−AS setting
and it would be the Port − S setting if Ci = Cj. Both scenarios should be considered
in order to guarantee rendezvous. Figure5.5 shows the rendezvous between two
synchronous users while Fig. 5.6 shows the rendezvous between two asynchronous
users. Both scenarios should also be considered to guarantee rendezvous.

Based on the problem definition for two users, we formulate theBlind Rendezvous
Problem for Multiple Users in the Multihop system as follows.

Problem 5.2 Considering M users u1, u2, . . . , uM , suppose their sets of available
ports are C1,C2, . . . ,CM , their IDs are I1, I2, . . . , IM , and their start times are

5.3 Problem Definition 59

t1, t2, . . . , tM respectively. Assume the diameter of the system is D, i.e. the mini-
mum number of hops between any two users is no larger thanD. For any set Ci ⊆ U ,
design a channel access algorithm for different time slots fi(t) ∈ Ci such that: for
any two neighboring users ui, uj, ∀δt :

∃T s.t. fi(T + δt) = fj(T) (5.9)

Each user ui adopting algorithm fi will finish the algorithmafter achieving rendezvous
with all neighbors by choosing a common port inG = ⋂M

j=1 Cj as the others. Suppose
the finish time of user ui is di. The time to rendezvous for the system is defined as:

TTRδt = max
i∈[1,M] di − max

i∈[1,M] ti (5.10)

The MTTR value of these algorithms is defined as:

MTTRf1,f2,...,fM = max∀δt
TTRδt (5.11)

The objective is to find algorithms f1, f2, . . . , fM minimizing theMTTR value among
all strategies.

5.4 Challenges

In designing efficient distributed rendezvous algorithms, the most difficult ren-
dezvous setting should be:

RS =< Alg − S,Asyn,Port − As,Anon,Non − Obli > (5.12)

where the ports are defined to be non-oblivious, the rendezvous algorithms should
be symmetric for the asynchronous users, with asymmetric port situations, and the
users are anonymous.

Inmost situations, the users are not aware of which type of rendezvous setting they
are in, and the designed general algorithm should work for all 16 different settings.
We face the following challenges:

(1) Blind rendezvous algorithms should be efficient for both port-symmetric and
port-asymmetric users;

(2) blind rendezvous algorithms should be applicable to both synchronous and asyn-
chronous users;

(3) blind rendezvous algorithms prefer not using the users’ IDs as input;
(4) blind rendezvous algorithms prefer symmetric algorithms for all users.

60 5 Blind Rendezvous Problem

5.5 Chapter Summary

In this chapter, we introduce the blind rendezvous problem (BRP) in distributed
systems. We describe the system model of blind rendezvous when the labels of the
ports are non-oblivious, i.e. the external ports are labeled by a universal labeling
rule. Then, we introduce two commonly used metrics for evaluating the rendezvous
algorithms: expected time to rendezvous (ETTR) and maximum time to rendezvous
(MTTR), which measure the average and worst case performance of the proposed
algorithms respectively. We also give simple examples to illustrate the rendezvous
between twousers and list the challenges in designing efficient distributed rendezvous
algorithms.

We have focused on the rendezvous problem between two users (Problem 5.1).
We will then present algorithms for solving the Alg − AS setting, in Chap.6, where
the users are allowed to run different algorithms. Then, we introduce rendezvous
algorithms for the Syn setting in Chap.7, where the users have to run symmetric
algorithms and they start the rendezvous process at the same time. For the more
general situations where the users can start the rendezvous process in different time
slots, we first introduce algorithms for the Anon setting in Chap.8 where the users
have no distinguishable identifiers, and present rendezvous algorithms in Chap. 9 for
theNon−Anon setting, where the users have distinguishable labels. Finally, we show
the method of extending rendezvous algorithms for two users to solving rendezvous
among multiple users (Problem 5.2) in Chap.10.

References

1. Kondareddy, Y., Agrawal, P., & Sivalingam, K. (2008). Cognitive radio network setup without
a common control channel. In MILCOM.

2. Lazos, L., Liu, S.,&Krunz,M. (2009). Spectrumopportunity-based control channel assignment
in cognitive radio networks. In SECON.

3. Perez-Romero, J., Salient, O., Agusti, R., &Giupponi, L. (2007). A novel on-demand cognitive
pilot channel enabling dynamic spectrum allocation. In DySPAN.

4. Stevenson, C. R., Chouinard, G., Lei, Z., Hu, W., Shellhammer, S. J., & Caldwell, W. (2009).
IEEE 802.22: The first cognitive radio wireless regional area network standard. IEEE Commu-
nications Magazine, 47(1), 130–138.

5. Zhao, J., Zheng, H., & Yang, G.-H. (2005). Distributed coordination in dynamic spectrum
allocation networks. In DySPAN.

http://dx.doi.org/10.1007/978-981-10-3680-4_6
http://dx.doi.org/10.1007/978-981-10-3680-4_7
http://dx.doi.org/10.1007/978-981-10-3680-4_8
http://dx.doi.org/10.1007/978-981-10-3680-4_9
http://dx.doi.org/10.1007/978-981-10-3680-4_10

Chapter 6
Asymmetric Blind Rendezvous Algorithms

Abstract In this chapter,we present asymmetric algorithms for the blind rendezvous
problem. In the settings, we fix Alg as:

RS =< Alg – AS, T ime, Port, I D, Non – Obli > (6.1)

where T ime ∈ {Syn, Asyn}, Port ∈ {Port − S, Port − AS}, and I D ∈
{Non − Anon, Anon}. Although there are eight different rendezvous settings when
Alg is fixed as asymmetric and Label fixed as non-oblivious, in designing asym-
metric algorithms, users’ ID do not matter much. This is because the users’ IDs are
typically used to break symmetry in distributed computing, but we already assume
the users can be distinguishable and they execute different algorithms. Therefore,
we present how to design efficient algorithms for the four rendezvous settings (syn-
chronous and port-symmetric, asynchronous and port-symmetric, synchronous and
port-asymmetric, asynchronous and port-asymmetric), no matter the choice of I D
from {Non − Anon, Anon}. In Sect. 6.1, we present two different types of ren-
dezvous algorithms for the synchronous and port-symmetric rendezvous setting, and
these algorithms are extended for the asynchronous and port-symmetric rendezvous
setting in Sect. 6.2. In Sects. 6.3 and 6.4, we introduce efficient algorithms for the syn-
chronous, port-asymmetric and asynchronous, port-asymmetric rendezvous settings.
Finally, we summarize the chapter in Sect. 6.5.

6.1 Synchronous and Port-Symmetric Rendezvous

Consider two users ui and u j , suppose their available port sets are Ci , C j ⊆ U
respectively. In the following settings:

RS =< Alg – AS, Syn, Port-S, I D, Non – Obli > (6.2)

two users have the same start time and both available port sets are the same:Ci = C j .

© Springer Nature Singapore Pte Ltd. 2017
Z. Gu et al., Rendezvous in Distributed Systems,
DOI 10.1007/978-981-10-3680-4_6

61

62 6 Asymmetric Blind Rendezvous Algorithms

6.1.1 Smallest Port Accessing Algorithm

Algorithm 6. 1 Smallest Port Accessing Algorithm
1: Denote the set of available ports as C ⊆ U ;
2: Find the smallest label s ∈ C and access port s all the time;

This setting is the simplest one and two users can adopt the Smallest Port Access-
ing (SPA) algorithm (as shown in Algorithm 6.1) to achieve rendezvous. In the
algorithm, the user chooses the port with the smallest label all the time. It is obvious
that two users with symmetric port situations will rendezvous in their first attempt.

6.1.2 Quorum-Based Channel Hopping

Quorum-based Channel Hopping (QCH) [1, 2] generates the hopping sequencebased
on the quorum system which is defined in [1]:

Definition 6.1 Given a finite universal set U = {0, 1, . . . , n − 1} of n elements, a
quorum system S under U is a collection of non-empty subsets of U , which satisfies
the intersection property:

p
⋂

q �= ∅,∀p, q ∈ S (6.3)

Each p ∈ S (which is a subset of U) is called a quorum.

There are several ways of constructing a quorum system under set U and we will
introduce a simple method called cyclic quorum systems, which is first introduced
in [4]. To begin with, we introduce relaxed cyclic difference set.

Definition 6.2 A set D = {d1, d2, . . . , dk} ⊆ U is called a relaxed cyclic (n, k)-
difference set if for every d �= 0 mod n, there exists at least one ordered pair (di , d j)

where di , d j ∈ D, such that di − d j ≡ d (mod n).

For example, ifn = 7, k = 3, set D = {0, 1, 3} is a relaxed cyclic (7, 3)-difference
set under Z7, where Zn = {0, 1, . . . , n −1}. Clearly, for any value d ∈ {1, 2, . . . , 6},
there exist two elements in D that suit the equation. We define the cyclic quorum
system as follows.

Definition 6.3 A group of sets Bi = {d1 + i, d2 + i, . . . , dk + i} mod n, where
i ∈ {0, 1, . . . , n−1} is a cyclic quorum system if and only if set D = {d1, d2, . . . , dk}
is a relaxed cyclic (n, k)-difference set.

6.1 Synchronous and Port-Symmetric Rendezvous 63

We also use set D = {0, 1, 3} as an example. We construct the cyclic quorum
system as:

S = {{0, 1, 3}, {1, 2, 4}, {2, 3, 5}, {3, 4, 6}, {4, 5, 0}, {5, 6, 1}, {6, 0, 2}} (6.4)

It is easy to check that any two elements in the quorum system S intersect. The
QCH algorithm constructs different sequences on the basis of different quorums.
Suppose there are N ports {1, 2, . . . , N } and there exists a cyclic quorum system
S = {B0, B1, . . . , Bn−1} under Zn . The QCH algorithm constructs sequence Si for
each quorum Bi as follows.

(1) Step 1: Denote Bi = {d1, d2, . . . , dk};
(2) Step 2: For each port 1 ≤ j ≤ N , construct a frame of N time slots

{u0, u1, . . . , un−1} as:
ul =

{
j if l ∈ Bi

∗ otherwise
(6.5)

where ∗ can be any port in set {1, 2, . . . , N }.
(3) Step 3: The constructed sequence Si is composed of such N frames and each

frame consists of n elements.

For example, there are three ports {1, 2, 3} and we can construct a cyclic quorum
system under Z3 as:

S = {{0, 1}, {1, 2}, {2, 0}} (6.6)

For each quorum in set S, we construct the corresponding sequences. For quorum
{0, 1}, we construct the sequence as:

S1 = {11 ∗ |22 ∗ |33∗} (6.7)

where the symbol | separates different frames and ∗ is any port in {1, 2, . . . , N }.
Similarly, we can construct the other two sequences as:

S2 = {∗11| ∗ 22| ∗ 33}
S3 = {1 ∗ 1|2 ∗ 2|3 ∗ 3} (6.8)

For two different users ua and ub, they can choose different quorums in the
constructed cyclic quorum system and they would choose the ports for rendezvous
attempt according to the corresponding sequence. For example, user ua chooses
the constructed sequence S1 to access the port periodically while user ub chooses
sequence S2 for rendezvous. According to the definition of cyclic quorum system, it
is easy to see that the corresponding quorums should intersect and the corresponding
choice in the sequence should be the same port, which implies rendezvous. Therefore,
the QCH algorithm can guarantee rendezvous for two synchronous users.

64 6 Asymmetric Blind Rendezvous Algorithms

Notice that, the QCH algorithm is designed for the special situation that all port
are available. By a small modification, it can be applied to the scenario that two users
have symmetric available ports.

Suppose the available ports for the symmetric users are C = {p1, p2, . . . , pn} ⊆
U , which implies there are n available ports for the users. We reconstruct set C ′ =
{1, 2, . . . , n} to apply the QCH algorithm. When we need to choose port i in set C ′,
we replace it with port pi in set C , which can be used to guarantee rendezvous in the
port symmetric situation.

6.2 Asynchronous and Port-Symmetric Rendezvous

Consider two users ui and u j , suppose their available port sets are Ci , C j ⊆ U . In
the following settings:

RS =< Alg – AS, Asyn, Port-S, I D, Non – Obli > (6.9)

two users start the rendezvous process in different time slots and both sets are the
same, i.e. Ci = C j .

6.2.1 Asynchronous Quorum-Based Channel Hopping

Asynchronous QCH (A-QCH) [3] is modified for asynchronous users, but only
applicable to two available channels. We describe the A-QCH algorithm briefly and
readers may refer to [3] for more details.

The QCH algorithm in Sect. 6.1.2 cannot be applied to two asynchronous users,
because two users choosing different quorums p, q in a quorum system have clock
skew; we can consider the situation as one user is adopting the rotated quorum by
some bias, such as rotate(q, k), which means each element in quorum q rotates k
numbers. Then, quorum p and rotate(q, k) may not intersect. The modification in
A-QCH uses two cyclic quorum systems to construct such port accessing sequence,
but it only works for two available ports.

Denote two available port as P = {p0, p1}, and suppose there are n time slots in
each constructed frame. The algorithm works as follows:

(1) Denote the set Zn as {0, 1, . . . , n − 1};
(2) Find a minimal (n, k) cyclic difference set D = {d1, d2, . . . , dk} under Zn such

that k < n
2 ;

(3) Construct the minimal cyclic quorum system S = {Bi |Bi = {d1 + i, d2 +
i, . . . , dk + i} mod n where i ∈ [0, n − 1];

(4) Find a relaxed (n, k ′) cyclic different set D′ = {d ′
1, d ′

2, . . . d ′
k ′ } under Zn where

k ′ = � n+1
2 �) and D′ ⋂ D = ∅;

6.2 Asynchronous and Port-Symmetric Rendezvous 65

Fig. 6.1 An example of the
A-QCH algorithm

(5) Construct the cyclic quorum system S′ = {B ′
i |B ′

i = {d ′
1 + i, d ′

2 + i, . . . , d ′
k ′ + i}

mod n where i ∈ [0, n − 1];
(6) Construct the sequence with n frames and each frame contains n elements;
(7) For the j th frame, the i th element, we assign the port as:

s ji =
⎧
⎨

⎩

p0 if i ∈ B j

p1 if i ∈ B ′
j

∗ otherwise
(6.10)

where ∗ can be any port.
(8) The user accesses the port according to the constructed sequence periodically.

Themethod of constructingminimal (n, k) cyclic difference set and relaxed (n, k ′)
cyclic different set can be found in [12] and we do not introduce the details. For
example, if n = 9, and we construct set D = {0, 1, 2, 4} and set D′ = {3, 5, 6, 7, 8}.
It is easy to check that both sets are relaxed cyclic difference set and D

⋂
D′ = ∅.

Then, we can construct the sequence as in Fig. 6.1, where there are 9 frames and each
frame contains 9 elements.

Two different users compute different relaxed difference sets and the constructed
sequences are different. However, by involving two quorum systems, two different
users can always achieve rendezvous on the port p0 or p1 (notice that two symmetric
users should have at least two available ports p0, p1 to execute the algorithm).

66 6 Asymmetric Blind Rendezvous Algorithms

6.2.2 Sequential Accessing Algorithm

We propose the Sequential Accessing Algorithm in Algorithm 6.2. In the algorithm,
we first count the number of elements in the available port set as n. In each time
slot t , we compute the x th element in set C where x is t’s modulus under n. This
is similar to accessing the available ports sequentially from the 1th label to the nth
label. When t is larger than n, we repeat the sequential accessing.

Algorithm 6. 2 Sequential Accessing Algorithm
1: Denote time t := 1, the user’s port set as C ⊆ U ;
2: Denote the cardinality as n := |C |;
3: while Not rendezvous do
4: Let x := (t − 1)%n + 1;
5: Let pid be the x th number in set C ;
6: Access port pid in time t ;
7: t := t + 1;
8: end while

If two users are port-symmetric, but asynchronous, suppose one user ui runs
Algorithm6.2 while user u j runs a simple algorithm modified from Algorithm 6.1:
user u j chooses a label in set C j and access the port all the time. It is easy to show
that two users can rendezvous within O(n) time slots.

Theorem 6.1 Two port-symmetric, asynchronous users running Algorithm6.2 and
modified Algorithm 6.1 can rendezvous in O(|C |) time slots, where C is the set of
available ports.

Proof Suppose user ui starts Algorithm6.2 later than user u j . Suppose user u j

chooses the kth label in its available port set C j , where 1 ≤ k ≤ |C j |. Obviously,
when user ui starts the algorithm, it can achieve rendezvous in k time slots, from
user ui ’s clock.

Supposing user ui starts earlier than user u j , when user u j starts accessing the
kth port, it may not achieve rendezvous with user ui quickly. However, since user ui

repeats accessing the ports sequentially, it will definitely access the kth port within
|Ci | time slots.

Combining these two aspects, the theorem holds.

As illustrated in Fig. 6.2, the available port sets for two users are {1, 2, 7}; user
ui runs Algorithm6.2 while user u j runs the modified Algorithm 6.1 by accessing
port 7. As shown in the figure, when user ui starts earlier (as Fig. 6.2a) or later (as
Fig. 6.2b) than user u j , they can all achieve rendezvous in 3 time slots.

6.2 Asynchronous and Port-Symmetric Rendezvous 67

(a) (b)

Fig. 6.2 Rendezvous examples when user ui runs Algorithm6.2 while user u j runs the modified
Algorithm 6.1

Actually, if both users are aware of the port-symmetric situation, they can also
run a symmetric algorithm for rendezvous. Suppose both users adopt Algorithm 6.1
designed for synchronous andport-symmetric rendezvous.Without loss of generality,
suppose user ui starts Δ > 0 time slots earlier than user u j . When user u j starts the
rendezvous process at time Δ + 1 (from user ui ’s clock), it will access port s (the
smallest port) in the first time slot (from user u j ’s clock). As user ui will always
access port s, they could rendezvous in their first rendezvous attempt. Thus, the time
to rendezvous is 1, where T T R is defined as the cost time to rendezvous for the user
who starts latter in Problem 5.1.

Although port-symmetry is a easy situation to handle, the users are not aware
of the situation and whether they are symmetric or not. Therefore, Algorithm 6.1
cannot work if two users have asymmetric ports. Therefore, we hope to design effi-
cient algorithms that work for the asymmetric port situation, while it also has good
performance when the ports are symmetric. We will introduce such algorithms in the
following sections.

6.3 Synchronous and Port-Asymmetric Rendezvous

Consider two users ui and u j , and suppose their available port sets are Ci , C j ⊆ U .
In the following settings:

RS =< Alg – AS, Syn, Port-AS, I D, Non – Obli > (6.11)

where two users start the rendezvous process at the same time but the sets of available
ports may be different, i.e. Ci �= C j .

http://dx.doi.org/10.1007/978-981-10-3680-4_5

68 6 Asymmetric Blind Rendezvous Algorithms

Algorithm 6. 3Modified Sequential Accessing Algorithm
1: Denote time t := 1, the user’s port set as C ⊆ U ;
2: while Not rendezvous do
3: Let pid := (t − 1)%N + 1;
4: if pid ∈ C then
5: Access port pid in time t ;
6: else
7: Choose pid randomly from C ;
8: Access port pid in time t ;
9: end if
10: t := t + 1;
11: end while

6.3.1 Modified Sequential Accessing Algorithm

We present the Modified Sequential Accessing (MSA) Algorithm as described as
Algorithm 6.3. First of all, the user computes the port with id pid corresponding to
the current time slot t as pid = (t − 1)%N + 1. Clearly, it is similar to accessing
the ports by repeating the sequence {1, 2, . . . , N }. However, due to occupancy by
other services, some ports are not available for the user. Thus, it needs to select
another available port randomly from set C . We show that, users ui and u j running
Algorithm6.2 can always achieve rendezvous within N time slots.

Theorem 6.2 The synchronous users ui and u j can achieve rendezvous within N
time slots, by running Algorithm6.2 at the same time.

Proof For the two neighboring users ui and u j , their sets of available ports must
intersect to ensure at least one common available port exists. ThereforeCi

⋂
C j �= ∅.

Denote the smallest number in set Ci
⋂

C j as s, clearly, 1 ≤ s ≤ N .
When two users run the algorithm at the same time, when t = s, port s is available

for user ui since s ∈ Ci , and thus user ui should access port s. Similarly, user u j

will access port s since it is available. Therefore, two users can access the connected
ports and they rendezvous in time slot s. So the theorem holds.

6.4 Asynchronous and Port-Asymmetric Rendezvous

Consider two users ui and u j , and suppose their available port sets are Ci , C j ⊆ U .
In the following settings:

RS =< Alg – AS, ASyn, Port-AS, I D, Non – Obli > (6.12)

6.4 Asynchronous and Port-Asymmetric Rendezvous 69

where two users start the rendezvous process in different time slots and the sets of
available ports may be different, i.e. Ci �= C j . This situation is the most difficult one
in this chapter and we present some elegant results.

6.4.1 Sequential Access and Temporary Wait for Rendezvous

We present the TemporaryWait algorithm as in Algorithm 6.4. This algorithm works
in this fashion: for each time slot t , compute the corresponding value x within range
[1, 2N 2] as x := (t−1)%2N 2+1.We can think of this operation as repeating the time
every 2N 2 time slots. Following that, we divide the 2N 2 time slots into N frames and
each framecontains 2N time slots. This iswhywecompute pid := �(x−1)/(2N)�+1
(pid corresponds to the frame that time slot t belongs to). Similar to the Modified
Sequential AccessingAlgorithm, if port pid is not available, wewill choose a random
available port as a replacement. This process continues until rendezvous.

Algorithm 6. 4 Temporary Wait Algorithm
1: Denote time t := 1, the user’s port set as C ⊆ U ;
2: while Not rendezvous do
3: Let x := (t − 1)%2N 2 + 1;
4: Let pid := �(x − 1)/(2N)� + 1;
5: if pid does not belong to set C then
6: Choose pid as a random value from C ;
7: end if
8: Access port pid for rendezvous attempt;
9: t := t + 1;
10: end while

We present a clear illustration in Fig. 6.3. The algorithm will access a fixed port
for 2N time slots (if we do not consider the situation that it is not available and should
be replaced). Then, after every 2N time slots, the algorithm will choose the next port
for waiting (also over 2N time slots). And this is the reason we call it the Temporary
Wait Algorithm. As shown in the figure, the user accesses a fixed port for 2N time
slots, and the replacement happens if some port is not available. For example, port k
replaces port 2 in the figure, if port 2 is not in the user’s available port set.

For two users ui and u j , suppose one user (without loss of generality, ui) adopts
the Modified Sequential Accessing Algorithm (Algorithm 6.3) while the other user
u j runs the Temporary Wait Algorithm (Algorithm 6.4). We show that they can
achieve rendezvous within 2N 2 time slots.

Theorem 6.3 Two users, adopting Algorithms 6.3 and 6.4 respectively, can achieve
rendezvous within MT T R = 2N 2 = O(N 2) time slots.

70 6 Asymmetric Blind Rendezvous Algorithms

Fig. 6.3 The illustration of the Temporary Wait Algorithm

Proof For two neighboring users ui and u j , their sets of available portsmust intersect
to ensure at least one common available port exists. Therefore Ci

⋂
C j �= ∅. Denote

the smallest number in set Ci
⋂

C j as s, clearly, 1 ≤ s ≤ N .
First, we show that, supposing user u j waits on port s for 2N time slots from t +1

to t + 2N , if user ui has begun Algorithm 6.3 no later than t + N , they can always
achieve rendezvous. Actually, if user ui starts the algorithm at time ti ≤ t +N , during
the time slots from ti to ti + N − 1, user u j will wait on port s, while user ui will
access port {1, 2, . . . , s, . . . , N } sequentially (notice that user ui does not access the
unavailable ports, but it does affect the analysis since s is available). Therefore, they
must rendezvous within these N time slots.

Then, we analyze the impact of asynchronous start. If user ui starts the algorithm
earlier than user u j , it is clear that they can achieve rendezvous when user u j waits
on choosing port s, thus T T R ≤ s ∗ 2N ≤ 2N 2. If user ui starts later, the worst
situation would happen when user u j is finishing waiting on port s but ui just starts.
Considering any 2N time slots that user u j waits on port s, denote them as t + 1 to
t + 2N . If user ui starts at time t + 2N − s + 1, user ui will choose port s at time
t + 2N + 1 but user u j has just moved to the next port for waiting. However, after
2N ∗ (N −1) time slots, i.e. from t + N 2 +1 to t + N 2 +2N , user u j will also access
port s and they will rendezvous in the first N time slots. Then, we can conclude that
time to rendezvous is also bounded by 2N 2 time slots if user ui starts later.

Combining these, two users running asymmetric algorithms can achieve ren-
dezvous within 2N 2 = O(N 2) time slots.

6.5 Chapter Summary

In this chapter, we present different types of rendezvous algorithms when the users
can run asymmetric algorithms. In practical applications, the users in the distributed
system may have different roles in the communications. For example, if one node
in the system tries to broadcast a message to all neighboring nodes, it may play
the role of “sender”, while the other nodes who do not send messages are regarded
as “receiver”. For example, wireless sensor network (WSN) is a typical distributed

6.5 Chapter Summary 71

Table 6.1 Rendezvous algorithms for different rendezvous settings

Algorithms Synchronous Asynchronous

Port-symmetric SPA, QCH A-QCH, SAA

Port-asymmetric MSA TWA

system where the sensors can have different roles in constructing communication
links. Normally, each sensor node can send or receive signals through radio (bidirec-
tional or unidirectional radios). Suppose all sensor nodes are deployed in amonitoring
area where they can sense environmental data. Further suppose there exists a mobile
sink (it can be a moving vehicle which carries sensors or communication units)
that travels through the monitoring area; when it is close to some deployed sensor
nodes, it can send signals to activate these sensors and then collect data from them.
In this case, the mobile sink can be regarded as the “sender”, while the deployed
sensors are “receivers”. Therefore, they can execute different algorithms to establish
communication links.

In this chapter, we mainly introduce algorithms for four different rendezvous
settings: synchronous and port-symmetric, asynchronous and port-symmetric, syn-
chronous and port-asymmetric, and asynchronous and port-asymmetric. Since the
users’ IDs are used to break symmetry among the users, we do not consider the
impact of users’ IDs in the chapter.

For the synchronous and port-symmetric setting, we present two rendezvous algo-
rithms that can performwell. The first one (Smallest Port Accessing algorithm, SPA)
simply accesses the port with smallest label, while the second one (quorum-based
channel hopping, QCH) adopts a quorum system to design efficient port accessing
strategy. The SPA algorithm can be used in very limited situations, but the QCH
algorithm can be applied in many rendezvous settings.

For the asynchronous and port-asymmetric setting, we present the method of
extending the QCH algorithm to two asynchronous users. The asynchronous QCH
(A-QCH) algorithm designs special rendezvous sequences on the basis of two dis-
joint quorum systems and this method can also be applied in designing symmetric
algorithms for the users. Another algorithm is called the Sequential Accessing Algo-
rithm (SAA), which accesses the ports in a sequential manner. But this algorithm
has limited extensions.

For the synchronous and port-asymmetric setting, we propose the Modified
Sequential Accessing (MSA) algorithm which operates on the basis of the SAA
algorithm. When one user adopts the MSA algorithm while the other one runs the
SPA algorithm, they can rendezvous in a short time.

For the asynchronous and port-asymmetric setting, one user adopts the MSA
algorithm while the other user adopts the Temporary Wait Algorithm (TWA), and
they can achieve rendezvous quickly. The intuitive idea is one user keeps accessing
the ports dynamically, while the other one moves slowly enough such that the first
user can peruse all the ports during the “slow” moves of the other user.

72 6 Asymmetric Blind Rendezvous Algorithms

From these rendezvous algorithms, the main idea in designing asymmetric algo-
rithms is to make one user wait on a fixed port for a sufficient amount of time,
while the other user keep accessing the ports dynamically. The described algorithms
are listed in Table6.1 and readers who are interested in asymmetric algorithms can
design some other algorithms for rendezvous.

References

1. Bian, K., Park, J.-M., & Chen, R. (2009). A quorum-based framework for establishing control
channels in dynamic spectrum access networks. In Mobicom.

2. Bian, K., Park, J.-M., & Chen, R. (2011). Control channel establishment in cognitive radio
networks using channel hopping. IEEE Journal on Selected Areas in Communications, 29(4),
689–703.

3. Bian, K., & Park, J.-M. (2013). Maximizing Rendezvous diversity in rendezvous protocols
for decentralized cognitive radio networks. IEEE Transactions on Mobile Computing, 12(7),
1294–1307.

4. Luk, W. S., & Wong, T. T. (1997). Two new quorum based algorithms for distributed mutual
exclusion. In ICDCS.

Chapter 7
Synchronous Blind Rendezvous Algorithms

Abstract In this chapter, we present symmetric algorithms for the blind rendezvous
problem of two synchronous users. In the settings, we fix Alg and T ime as:

RS =< Alg-S, Syn, Port, I D, Non-Obli > (7.1)

where Port ∈ {Port − S, Port − AS} and I D ∈ {Non− Anon, Anon}. As shown
in the previous chapter, designing asymmetric rendezvous algorithms for synchro-
nous users is relatively simple. In this chapter, we show that designing symmetric
rendezvous algorithms for synchronous users is also not that difficult, regardless
of whether they are port-symmetric or port-asymmetric, and anonymous or non-
anonymous. In Sect. 7.2, we present a rendezvous algorithm called the expanded
sequential accessing algorithm, which can work efficiently for synchronous users
who run symmetric algorithms. Although this algorithm can only work for syn-
chronous users, the intuitive idea behind can be used in many other situations. We
summarize the chapter in Sect. 7.2.

7.1 Expanded Sequential Accessing Algorithm

It is easy to see that there are four different rendezvous settings when Alg is fixed
as symmetric, T ime is fixed as synchronous, and Label is fixed as non-oblivious.
Recall the proposed algorithms in Chap.6 that althoughwe are designing asymmetric
algorithms, it is much easier for two synchronous users to rendezvous. In addition,
the time complexity of such rendezvous algorithms for synchronous users is low
(O(N) time slots).

In this section, we introduce some special constructions for synchronous users
and we omit the impact of users’ IDs. The Expanded Sequential Accessing (ESA)
Algorithm is described in Algorithm 7.1. We design the algorithm on the basis of
the Modified Sequential Accessing Algorithm presented in the previous chapter,
where each user accesses the ports in a sequential order from 1 to N . Different from
that, we repeat the rendezvous process every 2N time slots. We can consider the
operation as expanding each time slot of the Sequential Accessing algorithm into

© Springer Nature Singapore Pte Ltd. 2017
Z. Gu et al., Rendezvous in Distributed Systems,
DOI 10.1007/978-981-10-3680-4_7

73

http://dx.doi.org/10.1007/978-981-10-3680-4_6

74 7 Synchronous Blind Rendezvous Algorithms

Algorithm 7.1 Expanded Sequential Accessing Algorithm
1: Denote time t := 1, the user’s port set as C ⊆ U ;
2: Choose the smallest label is C as s;
3: while Not rendezvous do
4: if t%2 == 1 then
5: Let fid := s;
6: else
7: Let pid := (t/2 − 1)%N + 1;
8: if pid does not belong to set C then
9: Let pid be a random number from set C ;
10: end if
11: end if
12: Access port pid in time t ;
13: t := t + 1;
14: end while

Fig. 7.1 The illustration of the Expanded Sequential Accessing Algorithm

two slots, where the first slot is for waiting on a fixed port s, the smallest port,
and the second slot is for keeping to the same rule as before, accessing the ports
sequentially, {1, 2, . . . , N }. We illustrate the construction in Fig. 7.1. Similar to the
introduced rendezvous algorithms for asymmetric users, if some port is not available,
we replace it by a random available one.

The advantage of the Expanded Sequential Accessing algorithm is that it guaran-
tees fast rendezvous between two synchronous users, no matter whether the scenario
is port-symmetric or port-asymmetric. We do not consider the users’ IDs here since
the time complexity is already low. We derive the time complexity of the Modified
Sequential Accessing algorithm for both the Port − S and Port − AS settings.

Theorem 7.1 Two users running the Expanded Sequential Accessing algorithm
(Algorithm7.1) canachieve rendezvous in the first time slot if they are port-symmetric,
i.e. RS =<Alg-S,Syn,Port-S, I D,Non-Obli> , where I D can be Anon or
Non − Anon.

Proof Considering two users ui and u j , denote their available port sets as Ci ,C j

respectively. In the synchronous setting, both users start the rendezvous algorithm at
the same time. When two users are port-symmetric, i.e. Ci = C j , we show that they
can rendezvous very quickly.

7.1 Expanded Sequential Accessing Algorithm 75

According to Algorithm 7.1, user ui will choose the smallest port in setCi (denote
it as si) in the first time slot, while user u j will also choose the smallest port in set C j

(denote it as s j). Since Ci = C j , si = s j , they can rendezvous in the first time slot.

Theorem 7.2 Two users running the Expanded Sequential Accessing algorithm
(Algorithm 7.1) can achieve rendezvous in T T R ≤ 2N = O(N) time slots if they
are port-asymmetric, i.e. RS =< Alg-S,Syn,Port-AS, I D,Non-Obli >, where I D
can be Anon or Non − Anon.

Proof Considering two users ui and u j , denote their available port sets as Ci ,C j

respectively. In the synchronous setting, both users start the rendezvous algorithm
at the same time. When two users are port-asymmetric, i.e. Ci �= C j , we show that
they can rendezvous in O(N) time slots.

Denote the smallest port of Ci as si and the smallest port of C j as s j . Since
Ci �= C j , these two ports may be different, i.e. si �= s j . Therefore, when the time
slot is an odd number, two users may not achieve rendezvous. However, when the
time slot t is an even number in [2, 2N], they can rendezvous. Denote G = Ci

⋂
C j

and the smallest port in G as sg . Clearly, in time slot 2sg , both users ui and u j

will choose port sg according to the algorithm. Thus, they can rendezvous within
T T R = 2sg ≤ 2N = O(N) time slots.

Remark 7.1 The method of dividing a time slot into multiple time slots can help
design efficient rendezvous algorithms. In this chapter,weonly show the timedivision
method for rendezvous between two synchronous users. We will show some other
constructions, such as rendezvous for asynchronous users.

7.2 Chapter Summary

In this chapter, we start to handle the blind rendezvous problem if the users have to run
symmetric algorithms.Different from theprevious chapter, all nodes in the distributed
system do not have special roles and they have to run a symmetric algorithm.

In order to understand the idea of designing symmetric rendezvous algorithms,
we study the simplest setting where the users start the rendezvous process at the same
time. No matter whether the users have symmetric or asymmetric available ports, we
introduce a time division method where one slot is designed for regular rendezvous
attempt, while the other slot can handle some special rendezvous construction. In
our designed Expanded Sequential Accessing algorithm, if the users have symmetric
ports, they can achieve rendezvous in the first time slot; if the users have asymmetric
ports, they can also rendezvous in O(N) time slots. This time division method serves
as a good technique for rendezvous.

76 7 Synchronous Blind Rendezvous Algorithms

Notice that, in the previous chapter, we design different rendezvous algorithms for
different rendezvous settings, and one particular algorithm cannot be applied to the
other settings. However, in this chapter, our designed algorithm is applicable to all the
four rendezvous settings, and this is a major improvement over the previous chapter.
In the following chapters, we will show how to design such unified rendezvous
algorithms that can work for many rendezvous settings.

Chapter 8
Asynchronous Blind Rendezvous
Algorithms for Anonymous Users

Abstract In this chapter, we present symmetric algorithms for the blind rendezvous
problem between two asynchronous, anonymous users. In the rendezvous setting,
we fix Alg, T ime, and I D as follows:

RS =< Alg-S,Asyn, Port,Anon,Non-Obli > (8.1)

where Port ∈ {Port − S, Port − AS}, which implies that we will design efficient
algorithms that have good performance for both symmetric and asymmetric port sit-
uations. In this chapter, we will introduce a commonly used technique in designing
rendezvous algorithms for cognitive radio networks, which is called Channel Hop-
ping (CH) [1, 2, 11, 13, 14]. The intuitive idea is: in order to guarantee rendezvous
for asynchronous users, the rule to access the licensed channels (in the network)
should be periodic. Thus, we should construct a sequence of fixed length, such as
S = {s0, s1, . . . , sT−1} where si is an available channel and the user hops among the
channels by repeating the sequence, i.e. they access st mod T at time t . Rendezvous
in the distributed system is similar to rendezvous in the cognitive radio networks,
and we can use the Channel Hopping technique to design efficient algorithms. In a
distributed system, the available port sets for asymmetric users could be different,
and different users may construct different hopping sequences. Therefore, it is diffi-
cult to design efficient algorithms (or short hopping sequences) that are suitable for
all users. Moreover, the lower bound of such sequence cannot be derived directly
when the sequences for different users vary, which is important for evaluating and
verifying the efficiency of any proposed rendezvous algorithm. Therefore, we intro-
duce Global Sequence (GS) based rendezvous algorithms to alleviate the impact of
asymmetry in the ports’ occupancy; the intuitive idea is: design a fixed sequence
S = {s0, s1, . . . , sT−1} for all users based on the full port setU = {1, 2, . . . , N } and
each user hops among the ports by repeating the sequence (modification on the
sequence may exist when some ports are not available for communication). Specifi-
cally, the GS based rendezvous algorithms work in two phases:

Phase 1: Assume all users have the same available port set U and design the GS
on the basis of U ;

© Springer Nature Singapore Pte Ltd. 2017
Z. Gu et al., Rendezvous in Distributed Systems,
DOI 10.1007/978-981-10-3680-4_8

77

78 8 Asynchronous Blind Rendezvous Algorithms for Anonymous Users

Phase 2: Each user modifies the sequence according to its own available port
set, i.e. when the user should access an unavailable port by the original hopping
sequence, replace it with an available one that is picked randomly or by some
pre-defined rules.

In this chapter, we introduce efficient GS based algorithms which can guaran-
tee rendezvous for both symmetric and asymmetric users in a short time. To begin
with, we introduce two simple algorithms for two asynchronous users that are port-
symmetric in Sects. 8.1 and 8.2. Then, we introduce three GS based algorithms that
have good performance for both port-symmetric and port-asymmetric scenarios. We
introduce the Channel Rendezvous Sequence (CRSEQ) algorithm in Sect. 8.3, the
Jump Stay (JS) algorithm in Sect. 8.4, and the Disjoint Relax Different Set (DRDS)
based algorithm in Sect. 8.5. We also show the lower bound of such a GS based
rendezvous algorithm in Sect. 8.6. We summarize the chapter in Sect. 8.7.

8.1 Generated Orthogonal Sequence (GOS)

Generated Orthogonal Sequence (GOS) [5] is considered pioneering work in cog-
nitive radio networks, which generates a hopping sequence of length N (N + 1) on
the basis of a random permutation of the set {1, 2, . . . , N }. Technically, a random
permutation of {1, 2, . . . , N } is chosen from the N ! permutations. Then the GOS is
constructed as follows:

(1) Denote the random permutation of {1, 2, . . . , N } as {k1, k2, . . . , kN };
(2) the GOS consists of N phases where each phase contains N + 1 elements;
(3) for phase i , construct the phase as {ki , k1, k2, . . . , kN };

We can regard this process as embedding the permutation N times within a super-
sequence of the permutation. Figure8.1 depicts the example of the construction,
where a permutation {2, 4, 1, 3} is selected when N = 4, and the GOS sequence is

Fig. 8.1 An example of the Generated Orthogonal Sequence

8.1 Generated Orthogonal Sequence (GOS) 79

constructed by the steps introduced.However, this algorithm is limited to the situation
that all channels are available. We show the correctness of GOS briefly.

First, if two users repeat the same GOS at the same time, rendezvous happens in
the first time slot. So we only need to consider two asynchronous users hopping with
the same GOS. Without loss of generality, assume user ui is δ time slots earlier than
user u j , and then there are two situations according to different δ values:

(1) δ%(N + 1) = 0. It is easy to check that in the first phase of user u j , it runs the
same sequence of length N except the first number because they all use the same
permutation {k1, k2, . . . , kN } after ki for the i-th phase;

(2) δ%(N + 1) �= 0. The first number of the N phases of user u j will meet every
number in the permutation {k1, k2, . . . , kN } and thus rendezvous is guaranteed.

Combining these two situations, the GOS can guarantee rendezvous between two
users if all channels are available.

8.2 Deterministic Rendezvous Sequence (DRSEQ)

GOS can guarantee rendezvous between two asynchronous users under the situa-
tion that the all ports are available (it is easy to extend the algorithm to a distrib-
uted system), which is a very special port-symmetric situation. Following this work,
Deterministic Rendezvous Sequence (DRSEQ) of length 2N + 1 is proposed in [15],
which works better under the situation that all ports are available. The main idea of
the algorithm is to construct a simple sequence as:

{1, 2, . . . , N , e, N , N − 1, . . . , 1} (8.2)

where emeans the user can choose no (or any) port at this moment. Figure8.2 shows
an example of the rendezvous situations when N = 4. Supposing user ui starts at
time 0, the constructed sequence is:

{1, 2, 3, 4, e, 4, 3, 2, 1} (8.3)

When user u j starts the algorithm, we suppose it is δ time slots later than user ui .
When δ ∈ [0, 8], we list the rendezvous situations in the figure.

The correctness can be verified. Denote the constructed sequence as {a0, a1, . . . ,
a2N } and each element in the sequence is constructed by the following equations:

ai =
⎧
⎨

⎩

i + 1 when 0 ≤ i < N
e when i = N
2N + 1 − i when N + 1 ≤ i ≤ 2N + 1

(8.4)

Therefore, when one user is δ time slots earlier than the other, we can use the
equations to compute the rendezvous port easily. For example, when δ = 1, suppose

80 8 Asynchronous Blind Rendezvous Algorithms for Anonymous Users

Fig. 8.2 An example of Deterministic Rendezvous Sequence when N = 4

rendezvous happens at time t . If 0 ≤ t ≤ N , we can check that at �= at+1. If N +
1 ≤ i ≤ 2N , at �= at+1 since N + 1 ≤ t + 1 ≤ 2N + 1. Then when t = 2N + 1,
at = 1 and at+1 = a1 = 1. Therefore, rendezvous happens on port 1 and the time to
rendezvous is 2N + 1.

The algorithm can guarantee rendezvous between two asynchronous users no
matter what value δ is equal to. The readers could derive the time to rendezvous of
various δ values.

8.3 Channel Rendezvous Sequence (CRSEQ) Algorithm

Channel Rendezvous Sequence (CRSEQ) [13] is the first algorithm guaranteeing
rendezvous in a bounded time when only a portion of the channels are available
in a cognitive radio network. The main technique is to design a global sequence
based on the triangle number. There are P periods in constructing the CRSEQ,
where P is the smallest prime number suiting P > N and each period consists of

8.3 Channel Rendezvous Sequence (CRSEQ) Algorithm 81

Table 8.1 MTTR Comparison for GS based rendezvous algorithms

Algorithms Symmetric Asymmetric

GOS [5] N (N + 1) = O(N 2) −
DRSEQ [15] 2N + 1 = O(N) −
CRSEQ [13] P(3P − 1) = O(N 2) P(3P − 1) = O(N 2)

Jump-Stay [11] 3P = O(N) 3N P(P − G) = O(N 3)

EJS [10] O(N) O(N 2)

DRDS [6] 3P = O(N) 3P2 + 2P = O(N 2)

Remarks: (1) “−” means DRSEQ and GOS are inapplicable to asymmetric users; (2) P is the
smallest prime number no less than N , P = O(N)

3P − 1 number. For the i-th period where i ∈ [1, P], denote the triangle number as
Ti = i(i+1)

2 and the constructed period as {ai,0, ai,1, . . . , ai,3P−2}, the period can be
constructed according to the following equations:

ai, j =
{
Ti + j mod P + 1 when 0 ≤ j < 2P − 1
� i
3P−1� mod P + 1 when N + 1 ≤ i ≤ 2N + 1

(8.5)

CRSEQ can guarantee rendezvous for two users in 3P2 time slots when the users
share some common available channels. However, it works badly when the users are
symmetric as shown in Table8.1. We omit the proof of the correctness and the reader
may refer to [13] for more details.

8.4 Jump Stay Algorithm

Jump-Stay (JS) [11] is another efficient algorithm which guarantees fast rendezvous
between symmetric users in cognitive radio networks. The main idea is similar to
CRSEQ, which generates the global sequence of P periods and each period contains
two jump frames and one stay frame (each frame contains P numbers, where P is
the smallest prime number larger than the number of all licensed channels N).

We describe the two types of frames as follows. Denote the starting index as i and
the step length as r . In the jump frame, the j-th number (denote as a j) is computed by:

a j = (i + r ∗ j − 1) mod P + 1 (8.6)

and each frame contains P numbers. In the stay frame, the users stays at channel i
for P time slots.

82 8 Asynchronous Blind Rendezvous Algorithms for Anonymous Users

Fig. 8.3 Jump Stay Algorithm

We describe the JS algorithm as follows:

(1) Compute P as the smallest prime number larger than the number of all channels
N ;

(2) denote the initiate starting channel as i0 ∈ [1, N] and initiate step length r0 ∈
[1, p);

(3) the sequence is composed of N rounds, and the starting index is i0 + k in the
k-th round;

(4) in the first round, the starting index keeps at channel i0 and there are N loops
inside each round;

(5) in the i-th loop, the step length is r0 + i and three frames are constructed as
Jump, Jump, Stay on the basis of starting index and step length;

(6) if the chosen channel is larger than N , i.e. (N , P], map these values to [1, N]
by modular operation;

(7) If the chosen channel is not available, replace it by a random available channel.

From the construction, each frame contains P numbers, each loop contains 3
frames, i.e. 3P numbers, and each round contains N loops, i.e. 3N P numbers. There-
fore, the constructed sequence consists of N rounds with 3N 2P numbers. Figure8.3
illustrates the construction (in [11], M represents the number of all channels). The
construction can guarantee rendezvous between two (synchronous or asynchronous)
(symmetric or asymmetric) users within 3N 2P time slots. We omit the details and
reader may refer to [11] for details.

As shown inTable 8.1, although JSguarantees rendezvous between two symmetric
users in a short time (O(N) time slots), the MTTR value for two asymmetric users
could be as large as O(N 3) which is inacceptable.

Enhanced Jump Stay (EJS) [10] is a modified version such that rendezvous can be
achieved in O(N 2) time slots for two asymmetric users, but the main idea does not
change. We would not introduce the modification and the readers who are interested
in the JS algorithm could suggest some modifications that can reduce the rendezvous
time.

8.5 Disjoint Relaxed Different Set (DRDS) Based Rendezvous Algorithm 83

8.5 Disjoint Relaxed Different Set (DRDS) Based
Rendezvous Algorithm

We present an efficient rendezvous algorithm that has the best performance for both
symmetric and asymmetric users [6]. The DRDS method guarantees rendezvous for
two symmetric users in O(N) time slots, and in O(N 2) time slots for two asym-
metric users. This method also can be modified such that two symmetric users can
rendezvous in O(1) time slots. We introduce the method in details in this section.

8.5.1 Global Sequence (GS)

We define the Global Sequence (GS) as follow:

Definition 8.1 We call S = {s0, s1, . . . , sT−1} a Global Sequence (GS) where ∀si ∈
S, it is chosen from the full port set U = {1, 2, . . . , N }.

Generally, the GS should contain every port (the label of the port) in U since
the users are not aware of the available ports in U beforehand. We call the hopping
sequence a good GS if the following two properties are satisfied.

Property 8.1 The constructed GS has a fixed length T .

Property 8.2 For a GS S′ = {s0, s1, . . . , sT−1}, ∀δt ≥ 0 and ∀i ∈ C, there exists
t ≤ T such that st mod T = i and s(t+δt) mod T = i .

The first property guarantees that the users can repeat the sequence periodically
since they can start the rendezvous process in different time slots. This is the main
difference between two synchronous or asynchronous users. The second property
guarantees rendezvous for any two port-asymmetric, asynchronous users once they
begin to share some common available ports. Formally, we derive the result in the
following theorem.

Theorem 8.1 Two (port-symmetric or port-asymmetric, synchronous or asynchro-
nous) users can rendezvous in T time slots if they both adopt a good GS of length T .

Proof Without loss of generality, supposing the available port sets for the two users
ui and u j are Ci ,C j respectively, one user is δ ≥ 0 time slots earlier than the other;
denote the good GS as S = {s0, s1, . . . , sT−1} where si ∈ U, 0 ≤ i < T .

For any common available port k ∈ Ci
⋂

C j , according to Property 8.2, there
exists t ≤ T such that: {

st mod T = k
s(t+δ) mod T = k

(8.7)

Since the user who starts earlier (no later than the other) accesses port st+δ while
the other user accesses port st , rendezvous is achieved on port k in t ≤ T time slots,
which concludes the theorem.

84 8 Asynchronous Blind Rendezvous Algorithms for Anonymous Users

Fig. 8.4 An example of good GS

For example, we design a good GS for two ports as {1, 2, 2, 1, 2, 1} which is
of length 6; Fig. 8.4 shows that the sequence suits Property 8.2 since rendezvous is
achieved on both ports {1, 2} when one sequence is 0 ≤ δ < 6 time slots earlier than
the other.

Remark 8.1 Notice that any GS that guarantees rendezvous for two users should
be a good GS, since the available ports are not known by the users beforehand
and rendezvous has to be guaranteed on every port in U = {1, 2, . . . , N } no matter
when the users start the rendezvous algorithm. Actually, Property 8.2 reveals the
requirement to achieve rendezvous.

8.5.2 Disjoint Relaxed Difference Set (DRDS)

Before we show the method of constructing a good GS, we introduce some useful
mathematical tools.

Relaxed difference set (RDS) is an efficient tool to construct cyclic quorumsystems
[8, 12]. We first introduce some definitions.

Definition 8.2 A set D = {a1, a2, . . . , ak} ⊆ Zn (the set of all nonnegative integers
less than n) is called a Relaxed Difference Set (RDS) if for every d �= 0 (mod n),
there exists at least one ordered pair (ai , a j) such that ai − a j ≡ d (mod n), where
ai , a j ∈ D.

RDS is a variation of the (n, k, λ)-Difference Set [4, 12] where exactly λ ordered
pairs (ai , a j) satisfying ai − a j ≡ d (mod n) are required. Given any n, it is proved
that any difference set D must have cardinality |D| ≥ √

n [12]. The minimal D
whose size approximates the lower bound can be found when n = k2 + k + 1 and
k is a prime power. Such a difference set is called a Singer Difference Set (SDS)
[4]. For example, D = {1, 2, 4} is both an SDS and an RDS under Z7, but the set
D is an RDS, not an SDS under Z6. More information about difference sets can be

8.5 Disjoint Relaxed Different Set (DRDS) Based Rendezvous Algorithm 85

found in the references and the readers may refer to them to find out more interesting
properties.

In this section, we introduce one useful property which is the following.

Lemma 8.1 If D is an RDS under Zn, then Dk = {(ai + k) mod n|ai ∈ D} is also
an RDS under Zn.

Proof From Definition 8.2, for every d �= 0 (mod n), there exists at least one
ordered pair (ai , a j) where ai , a j ∈ D satisfy ai − a j ≡ d (mod n). Consider-
ing the set Dk = {(ai + k) mod n|ai ∈ D}, denote ak,i = ai + k,∀ai ∈ D, then
Dk = {ak,1, ak,2, . . . , ak,|D|}. For any d �= 0 (mod n), we choose ak,i , ak, j ∈ Dk such
that the corresponding values ai , a j ∈ D satisfy ai − a j ≡ d (mod n); then:

ak,i − ak, j ≡ (ai + k) − (a j + k) mod n

≡ ai − a j ≡ d mod n
(8.8)

Therefore, the set Dk is also an RDS under Zn from the definition.

Based on the definition of relaxed difference set, we introduce another important
notation called Disjoint Relaxed Difference Set, as follows.

Definition 8.3 A set S = {D1, D2, . . . , Dh} is called a Disjoint Relaxed Difference
Set (DRDS) under Zn if ∀Di ∈ S, Di is an RDS under Zn and ∀Di , Dj ∈ S, i �= j ,
Di

⋂
Dj = ∅.

For example, S = {{1, 2, 4}, {0, 3, 5}} is a DRDS under Z6. Such a DRDS can be
used to design GS based rendezvous algorithms and we will present the details later.

For any given integer n, there are many DRDSs under Zn . Define Maximum
DRDS Sn to be the set with the largest cardinality, and it is hard to find the maximum
DRDS (see Lemma 8.5 in Sect. 8.6).

8.5.3 Equivalence of DRDS and Good GS

Before we present the method of achieving efficient rendezvous based on the intro-
duced notations (DRDS and good GS), we first show their equivalence.

86 8 Asynchronous Blind Rendezvous Algorithms for Anonymous Users

Fig. 8.5 An example of the equivalence between good GS and DRDS

Lemma 8.2 Any DRDS corresponds to a good GS.

Proof Consider a DRDS S = {D0, D1, . . . , Dh−1} under Zn; we can construct a
sequence S′ = {s0, s1, . . . , sn−1}, as follows.
* If there exists Dj such that i ∈ Dj , let si = j + 1. Otherwise, assign any value in

[1, h] to si .
We claim that S′ satisfies Properties 8.1–8.2. Obviously, Property 8.1 is satisfied

since the sequence has length n. Then we show the satisfaction of Property 8.2.
Without loss of generality, suppose one user starts δt time slots later. If δt ≡ 0 (mod
n), Property 8.2 is satisfied apparently. Letd ′ = δ + t modn; thus 1 ≤ d ′ < n, and for
any i ∈ C where C = {1, 2, . . . , h}, there exists a pair (a j , ak) where a j , ak ∈ Di−1

and a j − ak ≡ d ′ (mod n). Therefore, the property suits. Combining the two aspects,
S′ is a good GS.

Lemma 8.3 Any good GS corresponds to a DRDS.

Proof Consider a good GS S′ = {s0, s1, . . . , sT−1} on port set C = {1, 2, . . . , N };
we construct the DRDS S = {D0, D1, . . . , DN−1} under ZT as follows:

* Di = { j : s j = i + 1, s j ∈ S′}.
From Property 8.2, it is easy to check S is a DRDS.

For example, the DRDS {{0, 3, 5}, {1, 2, 4}} corresponds to a good GS {1, 2, 2, 1,
2, 1} as Fig. 8.5.

Based on Lemmas 8.2 and 8.3, we can construct a goodGS for the users to achieve
rendezvous if we can design the corresponding DRDS efficiently. Moreover, if there
exists some efficient method to construct such good GS, we can solve some DRDS
based problems.

8.5.4 DRDS Construction

To begin with, we present a DRDS construction method under Zn in linear time
where n = 3P2 (P > 3 and P is a prime number).

8.5 Disjoint Relaxed Different Set (DRDS) Based Rendezvous Algorithm 87

Algorithm 8.1 DRDS Construction of Zn when n = 3P2

1: S := ∅;
2: for i = 0 to P − 1 do
3: Di := (Z(3Pi+P) \ Z3Pi);
4: for j = 0 to P − 1 do
5: q j := j2, pi j := (i−q j)(P+1)

2 mod P;
6: t j0 := 3P j + P + pi j ;
7: t j1 := 3P j + 2P + pi j ;
8: Di := Di

⋃{t j0, t j1};
9: end for
10: S := S

⋃{Di };
11: end for

Algorithm 1 constructs a DRDS S = {D0, D1, . . . , DP−1} as follows: divide Zn

into P disjoint subsets

Zn = U0

⋃
U1

⋃
· · ·

⋃
UP−1 (8.9)

where Uj = Z3P(j+1) \ Z3P· j . Let

Di = Ti0
⋃

Ti1
⋃

· · ·
⋃

Ti,P−1 (8.10)

where Ti j ⊆ Uj .

For each Uj , let q j = j2 and pi j = (i−q j)(P+1)
2 mod P . Choose the (P + pi j)-th

and (2P + pi j)-th number of Uj to compose Ti j . They are t j0 and t j1 (Lines 6,7).
Then Ti j is constructed as:

{
Ti j ={t j0, t j1} when j �= i

{t j0, t j1} ⋃
(Z(3Pi+P) \ Z3Pi) when j = i

As the illustration in Fig. 8.6, Zn is divided into P frames and each frame contains
three segments of equal length. In constructing each set Di , pick two numbers from
the last two segments of each frame according to the above equations. In addition,
all numbers in the first segment of the i-th frame are plugged into the set.

The intuitive idea of the construction is:

(1) In order to have some ordered pairs (a j , ak) satisfying a j − ak ≡ d (mod n)
when d is small from 1 to P , we choose the first P numbers in set Ui , i.e.
Z(3Pi+P) \ Z3Pi ;

(2) when d becomes much larger, we choose two numbers from each set Uj (the
last two segments of each frame) at some appropriate positions according to the
modular operations in Line 5.

88 8 Asynchronous Blind Rendezvous Algorithms for Anonymous Users

Fig. 8.6 Illustration of DRDS construction

We present a simple example when n = 27:

D0 = {0, 1, 2, 3, 6, 13, 16, 22, 25};
D1 = {5, 8, 9, 10, 11, 12, 15, 21, 24};
D2 = {4, 7, 14, 17, 18, 19, 20, 23, 26}.

It is easy to verify that D0, D1, D2 can compose a DRDS. We prove Algorithm 1
can indeed construct a DRDS formally.

Lemma 8.4 Each set Di constructed in Algorithm 8.1 is a RDS.

Proof From the definition ofRDS,weneed to prove that: for anyd �= 0 (modn), there
exists at least one ordered pair (a j , ak) satisfying a j − ak ≡ d (mod n). Consider the
following four cases:

(1) When 0 < d < P: From Line 3 of Algorithm 1, P consecutive numbers are
chosen, i.e. 3Pi, 3Pi + 1, . . . , 3Pi + P − 1 ∈ Di ; thus we can find (3Pi +
d, 3Pi) to meet the requirement;

(2) When P ≤ d < 3P2 and 0 ≤ d (mod 3P) < P: Assume d = 3P j1 + b1, 0 <

j1 < P, 0 ≤ b1 < P; we try to find one pair (a j , ak) such that

a j = 3P j2 + b2 mod n

ak = 3P j3 + b3 mod n

where P ≤ b3 < 2P . If a j − ak ≡ d (mod n), we can deduce 3P j2 + b2 ≡
3P(j1 + j3) + b1 + b3 (mod n), and thus P ≤ b2 < 3P and both b2, b3 satisfy
the equality from Lines 6, 7 of Algorithm 1. Therefore:

b2 ≡ (i − j22)(P + 1)

2
mod P

b3 ≡ (i − j23)(P + 1)

2
mod P

8.5 Disjoint Relaxed Different Set (DRDS) Based Rendezvous Algorithm 89

Thus we have:
⎧
⎨

⎩

j2 ≡ (j1 + j3) mod P
(i − j22)(P + 1)

2
≡ (i − j23)(P + 1)

2
+ b1 mod P

Combining these equations to derive:

2 j1 j3 ≡ −(2b1 + j21) mod P (8.11)

Since P is a prime number and j1, b1 are constant values when d is fixed, j3 has
one unique solution in ZP [4] and we write the solution as j∗. Plugging j∗ into
the above equalities, we can compute the values of a j and ak .
For example, P = 3, n = 27, when d = 11 = 3P j1 + b1, then j1 = 1, b1 = 2.

Consider set D1 and plug j1, b1 into Eq. (8.11):

2 j3 ≡ −5 ≡ 1 mod 3 (8.12)

So j3 = 2 and thus j2 = 0, b3 ≡ 0 (mod 3). Since 3 ≤ b3 < 6, b3 = 3 and then
b2 = 5. Therefore, a j = 3P j2 + b2 = 5 and ak = 3P j3 + b3 = 21. When d =
11, we can find such a pair (5, 21) from D1 to meet the requirement;

(3) When P ≤ d < 3P2 and P ≤ d (mod 3P) < 2P . Assume d = 3P j1 + b1, 0 ≤
j1 < P, P ≤ b1 < 2P; let c = (i−(i+ j1)2)(P+1)

2 mod P , b = b1 mod P (both
c, b ∈ [0, P)), and we find the pair (a j , ak) as:

a j =
{
3P(i + j1) + P + c mod n if c ≥ b

3P(i + j1) + 2P + c mod n if c < b

ak =
{
3Pi + c − b if c ≥ b

3Pi + P + c − b if c < b

It can be checked that a j , ak ∈ Di and a j − ak ≡ d (mod n).
(4) When P ≤ d < 3P2 and 2P ≤ d (mod 3P) < 3P . Assume d = 3P j1 + b1,

0 ≤ j1 < P, 2P ≤ b1 < 3P . Find (a j , ak) as in the second case:

a j = 3P j2 + b2 mod n

ak = 3P j3 + b3 mod n

The difference from the second case is 2P ≤ b3 < 3P; then P ≤ b2 < 3P and
we can find out the appropriate j2, j3 values. Then apply the above equalities to
derive a j and ak .

Based on the four cases above, ∀d �= 0 (mod n), we can find at least one ordered
pair (a j , ak) such that a j − ak ≡ d (mod n). Therefore, each set Di constructed in
the algorithm is a RDS.

90 8 Asynchronous Blind Rendezvous Algorithms for Anonymous Users

Based on Lemma 8.4, we show that the constructed set of Algorithm 1 is a DRDS
formally.

Theorem 8.2 The set S = {D0, D1, . . . , DP−1} constructed in Algorithm 1 is a
DRDS.

Proof From the definition of DRDS (Definition 8.3), we prove the theorem from two
aspects:

(1) Each set Di ∈ S is an RDS;
(2) ∀Di , Dj ∈ S, i �= j , Di

⋂
Dj = ∅.

From Lemma 8.4, we can check that each set Di ∈ S is an RDS. Then, we only
need to prove that ∀Di , Dj ∈ S, i �= j , Di

⋂
Dj = ∅.

From Algorithm 1:

Di = Ti0
⋃

Ti1
⋃

· · ·
⋃

Ti,P−1

Dj = Tj0

⋃
Tj1

⋃
· · ·

⋃
Tj,P−1

It is clear that:
∀k1 �= k2, Ti,k1

⋂
Tj,k2 = ∅ (8.13)

Therefore, we need to show:

∀0 ≤ k < P, Tik
⋂

Tjk = ∅ (8.14)

There are two situations:

(1) If k �= i, k �= j , twonumbers fromUk are chosen for Tik, Tjk respectively accord-
ing to pik and p jk . From Lines 6, 7 of Algorithm 1:

pik = (i − qk)(P + 1)

2
mod P

p jk = (j − qk)(P + 1)

2
mod P

When 0 ≤ i, j < P, i �= j andwe can conclude pik �= p jk . Thus Tik
⋂

Tjk = ∅.
(2) If k = i or k = j , the first P numbers of Uk will be chosen, while the other two

numbers 3Pk + P + pik and 3Pk + 2P + pik do not intersect with the first P
numbers, and thus Tik

⋂
Tjk = ∅.

Combining in these two situations,

∀k1, k2, Ti,k1
⋂

Tj,k2 = ∅ (8.15)

8.5 Disjoint Relaxed Different Set (DRDS) Based Rendezvous Algorithm 91

and it implies
Di

⋂
Dj = ∅ (8.16)

Combining the two aspects, S = {D0, D1, . . . , DP−1} is a DRDS.
It is obvious that Algorithm 8.1 constructs the DRDS with cardinality

√
n
3 and the

algorithm runs in O(n) time. The algorithm runs efficiently and it can be applied in
designing efficient rendezvous algorithms.

8.5.5 DRDS Based Rendezvous Algorithm

Based on the DRDS construction of the special situation n = 3P2 where P is a prime
number,1 we present the DRDS based rendezvous algorithm as follows.

Algorithm 8.2 DRDS Based Rendezvous Algorithm
1: Find the smallest prime P such that P ≥ N ;
2: if P = 2 then
3: T := 6, t := 0;
4: S = {D0, D1}, D0 = {0, 1, 3}, D1 = {2, 4, 5};
5: else
6: T := 3P2, t := 0;
7: Construct the DRDS S = {D0, D1, . . . , DP−1} under ZT as Algorithm 8.1;
8: end if
9: while Not rendezvous do
10: if 0 ≤ t < 2P then
11: Access the port with smallest label in C ′;
12: else
13: d := (t − 2P) mod T ;
14: Find Di ∈ S such that d ∈ Di ;
15: if Port (i + 1) ∈ C ′ then
16: Access port (i + 1);
17: else
18: Access an available port in C ′ randomly;
19: end if
20: end if
21: t := t + 1;
22: end while

Assume that the available port set for the user isC ′ ⊆ U and the DRDS algorithm
is described in Algorithm 8.2.

The first 2P time slots for the user is to access a fixed port, which resembles the
listening period when a user wakes up in many asynchronous protocols; we call this
the Listening Stage.

1Bertrand-Chebyshev Theorem: ∀N > 1, at least one prime P exists such that N < P < 2N .

92 8 Asynchronous Blind Rendezvous Algorithms for Anonymous Users

Fig. 8.7 An example of DRDS based rendezvous algorithm (Algorithm 8.2)

Afterwards, it is theAccessing Stagewhich repeats a GS of length T = 3P2 based
on the DRDS construction under ZT from Algorithm 1 (if P = 2, the GS length is 6
and the DRDS is given as Line 2). Given any time t , compute d = (t − 2P) mod T
and find the RDS Di that contains d. The user accesses port (i + 1) if it is available;
otherwise, it accesses a randomly picked available port.

Figure8.7 is an example when N = 2 and C ′ = {1, 2}. The first four time slots
form the listening stage, and in the accessing stage, the user repeats the sequence
{1, 1, 2, 1, 2, 2} of length T = 6.

We show the correctness and efficiency of Algorithm 8.2 formally.

Theorem 8.3 For twousers ui andu j with available port setsCi ,C j ⊆ U,whenever
they startAlgorithm8.2, rendezvous canbeguaranteedwithin MTTR = 3P = O(N)

time slots if Ci = C j , and MTTR = 3P2 + 2P = O(N 2) time slots if Ci �= C j .

Proof It is easy to check thatwhen N ≤ 2, the theoremholds. For any N ≥ 3,without
loss of generality, suppose user ui starts earlier at time 0 and user u j starts at time
δt ≥ 0. We derive the theorem from two situations:.

(1) If Ci = C j , the best scenario for rendezvous is 0 ≤ δt < 2P because they are
both in the listening stage accessing the same port. If 0 ≤ (δt − P) (mod 3P)
< 2P , rendezvous occurs in the first 2P time slots when user u j is listening,
while userui isaccessing. If 2P ≤ (δt − P) (mod3P)< 3P , useru j can achieve
rendezvous in time [2P, 3P) while keeping accessing some fixed port and the
P numbers in [δt + 2P, δt + 3P) for user ui are in P different RDSs; so they
achieve rendezvous in the accessing stage. Therefore, the maximum time to
rendezvous is bounded in 3P time slots, i.e. MTTR ≤ 3P .

(2) IfCi �= C j ,we claim that rendezvous is guaranteed inT + 2P time slots. Letd =
δt (mod T). They may not achieve rendezvous in the listening stage even when
δt < P . For any common available port i ∈ Ci

⋂
C j , we can find an ordered

pair (a j , ak) from RDS Di−1 such that a j − ak ≡ d (mod T) (Definition 8.2).
So when user u j ’s time ticks ak + P , they both access port i , which implies
rendezvous is guaranteed within P + ak ≤ T + 2P time slots.

Combining the two aspects, the theorem holds.

8.5 Disjoint Relaxed Different Set (DRDS) Based Rendezvous Algorithm 93

8.5.6 Improved DRDS Based Rendezvous Algorithm

Although the DRDS based rendezvous algorithm (Algorithm 2) guarantees fast ren-
dezvous for both symmetric and asymmetric users, we can improve it such that ren-
dezvous can be achieved in O(1) time slots for two symmetric users, which matches
the state-of-the-art result [3] for the cognitive radio network.

Algorithm 8.3 Improved DRDS Based Rendezvous Algorithm
1: Find the smallest prime P such that P ≥ N ;
2: Denote the port with smallest label in C ′ as cm and the label as m;
3: if P = 2 then
4: T1 := 6, t := 0;
5: S = {D0, D1}, D0 = {0, 1, 3}, D1 = {2, 4, 5};
6: else
7: T1 := 3P2, t := 0;
8: Construct the DRDS S = {D0, D1, . . . , DP−1} under ZT as Algorithm 8.1;
9: end if
10: T := 6T1;
11: while Not rendezvous do
12: f := �t/6�, d := t%6;
13: if d = 0 or 1 or 3 then
14: Find Di ∈ S such that f ∈ Di ;
15: else
16: i := m − 1;
17: end if
18: if Port (i + 1) ∈ C ′ then
19: Access port (i + 1);
20: else
21: Access an available port in C ′ randomly;
22: end if
23: t := t + 1;
24: end while

Similar to Algorithm 8.2, assuming the available port set for the user is C ′ and
denote the port with the smallest label as cm wherem is the label. Then Algorithm 8.3
constructs a DRDS S1 similar to Algorithm 8.2. In order to guarantee fast rendezvous
for two symmetric users, we expand each time slot into 6 slots where the 0, 1, 3-th
numbers are the correspondingRDS in S (as Line 14)while the 2, 4, 5-th numbers are
the smallest labels among all available ports. The time division method is introduced
in Chap.7. Figure8.8 shows a simple example when there are only two available
ports (we use m to be the smallest label in the figure other than 1).

We show the correctness and efficiency of Algorithm 8.3 as follows.

Theorem 8.4 For twousers ui andu j with available port setsCi ,C j ⊆ U,whenever
they start Algorithm 8.3, rendezvous can be guaranteed within MTTR = 6 = O(1)
time slots if Ci = C j , and MTTR = 18P2 = O(N 2) time slots if Ci �= C j .

http://dx.doi.org/10.1007/978-981-10-3680-4_7

94 8 Asynchronous Blind Rendezvous Algorithms for Anonymous Users

Fig. 8.8 An example of Improved DRDS based rendezvous algorithm (Algorithm 8.3)

Proof It is easy to check thatwhen N ≤ 2, the theoremholds. For any N ≥ 3,without
loss of generality, suppose user ui starts earlier at time 0 and user u j starts at time
δ ≥ 0. Denote the smallest labels for both users asmA,mB respectively and we prove
the theorem from two situations:

(1) If Ci = C j , the smallest labels of the users are the same, i.e. mA = mB . Denote
x = δ%6 and there are six situations respectively.

(1) If x = 0, both users access the port with the smallest label mA,mB at time
δ + 2, thus T T R = 3;

(2) if x = 1, user ui accesses port mA at time δ + 4 while user u j accesses port
mB , thus T T R = 5;

(3) if x = 2, user ui accesses port mA at time δ + 2 while user u j accesses port
mB , thus T T R = 3;

(4) if x = 3, user ui accesses port mA at time δ + 2 while user u j accesses port
mB , thus T T R = 3;

(5) if x = 4, user ui accesses port mA at time δ + 4 while user u j accesses port
mB , thus T T R = 5;

(6) if x = 5, user ui accesses port mA at time δ + 5 while user u j accesses port
mB , thus T T R = 6;

Thus rendezvous can be guaranteed in MTTR = 6 time slots.

Actually, {{0, 1, 3}, {2, 4, 5}} is a DRDS and the port with the smallest label
occurs at the 2, 4, 5-th time slots when we expand each time slot of the GS
into 6 time slots, and these positions correspond the the second RDS. Therefore,
∀x ∈ [0, 5], the two users’ hopping sequences should intersect at some positions
(of the expanded 6 time slots) so that both users access the port with the smallest
label, and rendezvous can be guaranteed quickly;

(2) IfCi �= C j , similar to the first situation, we can conclude that two users’ hopping
sequences should intersect at some positions (of the expanded 6 time slots) so
that both users access the ports corresponding to the RDS in S as in Line 14.
From the proof of Theorem 8.3, MTTR ≤ 6 ∗ 3P2 time slots.

8.5 Disjoint Relaxed Different Set (DRDS) Based Rendezvous Algorithm 95

Combining the two aspects, the theorem can be concluded.

Remark 8.2 In Chaps. 6 and 7, we present simple algorithms for two port-symmetric
users if they are aware of the symmetric situation. However, they actually cannot
know whether they are symmetric or not. The method introduced in this section is a
good extension by transforming any rendezvous algorithm to a new one which can
guarantee rendezvous in O(1) time slots, if the two users are indeed port-symmetric.
In addition, it would not degrade the time complexity as compared to the original
algorithm if they are port-asymmetric.

Although the improvedDRDSmethod can guarantee rendezvous for two symmet-
ric users in a very short time, it increases the time to rendezvous for two asymmetric
users (by 6 times). In practical situations, the original DRDS algorithm (Algorithm
8.2) is more preferable.

8.6 Lower Bound for GS Based Rendezvous Algorithms

In order to show the efficiency of the DRDS based rendezvous algorithm, we derive
a lower bound for any Global Sequence (GS) based algorithm for two users. In other
words, we should find the smallest length of any good GS based on N external ports,
and any GS that guarantees rendezvous is a good GS (see Remark 8.1).

Since any good GS corresponds to a DRDS, one intuitive method is to find the
DRDS with maximum cardinality under Zn (denote the corresponding DRDS as
maximum DRDS).

Lemma 8.5 Given n, the cardinality of the maximum DRDS under Zn is bounded
by |Sn| ≤ √

n.

This lemma is derived easily from the fact that any RDS D should have cardinality
|D| ≥ √

n [12].
Actually, if there exists some algorithmF that can compute the DRDS of maxi-

mum cardinality under Zn for any given n > 0, we can come up with an algorithm
to derive the smallest length of good GS based on N channels as follows:

1: Invoke F to compute the maximum cardinality of any DRDS under Zn where
n ∈ [N 2, 3P2], where P ≥ N is a prime number;

2: Find the smallest n in the range such that the maximum cardinality is no less
than N .

Here the smallest n is the smallest length of a good GS, i.e. the lower bound. In the
first step, we try to compute the maximum cardinality of any DRDS under Zn when
n ranges from N 2 to 3P2. The value N 2 comes from Lemma 8.5, and the second
value 3P2 comes from the DRDS based algorithm in this chapter. Therefore, the
lower bound of the good GS can be derived precisely if we can compute the DRDS

http://dx.doi.org/10.1007/978-981-10-3680-4_6
http://dx.doi.org/10.1007/978-981-10-3680-4_7

96 8 Asynchronous Blind Rendezvous Algorithms for Anonymous Users

Table 8.2 Relationship
between n and maximum
DRDS |Sn | when 2 ≤ n ≤ 50

The number: n Maximum DRDS: |Sn |
2 ≤ n ≤ 5 1

6 ≤ n ≤ 14 2

15 ≤ n ≤ 23 3

24 ≤ n ≤ 30 4

31 5

32 ≤ n ≤ 34 4

35 ≤ n ≤ 47 5

48 ≤ n ≤ 50 6

with maximum cardinality. However, it is hard to compute the maximum DRDS for
any given n, i.e. it is hard to find the tight bound (Lemma 8.5 is a loose bound).

Actually, for any set D = {D0, D1, . . . , Dh} where Di is an RDS under Zn and
h ≥ √

n, it is hard to compute the maximum DRDS from D since it can be reduced
from the Set Packing Problem2 which is NP-complete [9].When each set |Di | ≥ √

n,
it is equivalent to Maximum

√
n-Set Packing which cannot be efficiently approxi-

mated within a factor of �(
√
n

ln
√
n
) [7].

We compute all RDSs with cardinality in [√n,
√
3n] and use exhaustive search

to find the maximum DRDS when n = 2, 3, . . . , 50. The relationship between n and
the maximum DRDS (denoted as |Sn|) is listed in Table8.2.

Since it is hard to compute the exact lower bound of any good GS, we try then
derive a (loose) lower bound for any good GS based on the equivalence of DRDS
and good GS. We first introduce an important lemma.

Lemma 8.6 Suppose D is an RDS under ZT where T = N (N + 1) and |D| =
N + 1, then N ≤ 3.

Proof Consider all pairs (a j , ak) where a j , ak ∈ D, j �= k, and define d jk = (a j −
ak) mod T which we call a difference value. ∀d ∈ {1, 2, . . . , T − 1}, there exists
at least one difference value d jk = d. Since there are N (N + 1) difference values,
there exist two pairs (a j , ak) and (a′

j , a
′
k) such that d jk = d j ′k ′ and the other difference

values are all distinct. However,

dkj = T − d jk = T − d j ′k ′ = dk ′ j ′ (8.17)

which implies there exists another two pairs (ak, a j), (a′
k, a

′
j) sharing a common

difference value. The situation can happen only when a j = a′
k, ak = a′

j . Then

a j − ak ≡ ak − a j mod T (8.18)

and it means

2Given a finite set U and a list of subsets of U , the problem asks if some k subsets in the list are
pairwise disjoint.

8.6 Lower Bound for GS Based Rendezvous Algorithms 97

a j − ak ≡ T

2
mod T (8.19)

By Lemma 8.1, construct another RDS

D′ = {(a − a j) mod T |a ∈ D} (8.20)

and thus 0, T
2 ∈ D′.

Denote

S1 =
{

0 < a <
T

2
|a ∈ D′

}

S2 =
{
T

2
< a < T |a ∈ D′

}

and let d1 = |S1| and d2 = |S2|. Thus d1 + d2 = |D| − 2 = N − 1.
We count the number in set

S3 =
{

0 < a <
T

2
|a /∈ D′

}

(8.21)

from two sides. First, since

|S1
⋃

S3| = T

2
− 1 (8.22)

It is easy to compute:

d1 + |S3| = T

2
− 1 ⇒ |S3| = T

2
− 1 − d1 (8.23)

From the analysis above, all other pairs satisfy:

(a j , ak) �=
(

0,
T

2

)

or

(
T

2
, 0

)

(8.24)

and hence it should have a distinct difference value. We construct S3 as follows:

(1) ∀a ∈ S1, let a′ = T
2 − a ∈ S3; otherwise (a, 0) and (T2 , a′) share the same dif-

ference value;
(2) ∀a ∈ S2, let T − a ∈ S3 and a − T

2 ∈ S3;
(3) ∀a1 < a2 ∈ S1, define δ = a2 − a1, and let T

2 − δ ∈ S3 and δ ∈ S3; otherwise
we can find two pairs sharing a common difference value;

(4) ∀a1 < a2 ∈ S2, define δ = a2 − a1, 0 < δ < T
2 , and then let

T
2 − δ and δ belong

to S3.
(5) ∀a1 ∈ S1, ∀a2 ∈ S2, define δ = a2 − a1, if δ > T

2 ; rewrite δ = T − δ, and then
let δ ∈ S3 and (T2 − δ) ∈ S3.

98 8 Asynchronous Blind Rendezvous Algorithms for Anonymous Users

It is easy to verify that when we choose one value a or two values {a, T
2 − a} to

compose S3, they cannot belong to S3 before the step. (If a = T
2 − a, we only add

the value once and this special situation happens at most once.) Thus:

|S3| ≥ d1 + 2d2 + 2 · d1(d1 − 1)

2
+ 2 · d2(d2 − 1)

2
+ 2d1d2 − 1 (8.25)

So:
T

2
− 1 − d1 ≥ (d1 + d2)

2 + d2 − 1 (8.26)

Plugging d1 + d2 = N − 1, we derive:

N 2 ≤ 3N ⇒ N ≤ 3 (8.27)

Therefore, the lemma holds.

Then, we derive a lower bound (not tight) for any good GS in Theorem 8.5.

Theorem 8.5 Any good GS S′ = {s0, s1, . . . , sT−1} based on N channels satisfies:

⎧
⎪⎨

⎪⎩

T ≥N 2 + N I f N ≤ 2

N 2 + N + 1 I f N ≥ 3 and N is a prime power

N 2 + 2N Otherwise

Proof When N = 1, it is clear that T ≥ 2. Suppose N ≥ 2; by Lemma 8.3, we can
construct a DRDS as:

S = {D0, D1, . . . , DN−1} (8.28)

under ZT . By Lemma 8.5, we have:

N ≤ √
T ⇒ T ≥ N 2 (8.29)

Let h = minDi∈S |Di |; if h ≤ N , the set Di (where |Di | = h) has exactly h(h − 1)
orderedpairs (a j , ak),which implies atmosth(h − 1) ≤ N (N − 1)difference values
for d exist such that

a j − ak ≡ d mod T (8.30)

When N ≥ 2, we have:

N (N − 1) < N 2 − 1 ≤ T − 1 (8.31)

and Di cannot be an RDS. Thus h ≥ N + 1.
Assume h = N + 1, since

D0

⋃
D1

⋃
· · ·

⋃
DN−1 ⊆ ZT (8.32)

8.6 Lower Bound for GS Based Rendezvous Algorithms 99

we derive:

T ≥
N−1∑

i=0

|Di | ≥ Nh = N (N + 1) (8.33)

There are three cases to be analyzed.

Case 1: If T = N (N + 1), by Lemma 8.6, N ≤ 3. When N = 2, {{0, 1, 3}, {2, 4,
5}} is a DRDS under Z6. However, when N = 3, we cannot find a DRDS with
three disjoint RDS through exhaustive search;
Case 2: If T = N 2 + N + 1, suppose Di suits |Di | = h; since (N + 1)N = T −
1, Di is a (T, h, 1)-Difference Set. In [4], this is called a Singer Difference Set
and it can be constructed only when N is a prime power. Thus when N ≥ 3 and
N is a prime power, T ≥ N 2 + N + 1;
Case 3: If T ≥ N 2 + N + 2 and N is not a prime power, suppose an RDS Di

suits |Di | = h. It is clear that there are at most h(h − 1) ordered pairs (a j , ak) and
the difference values a j − ak ≡ d (mod n) cannot cover {1, 2, . . . , T − 1} since
h(h − 1) = N (N + 1) < N 2 + N + 1 ≤ T − 1, which implies Di is not an RDS
under Zn , and so h ≥ N + 2. From

D0

⋃
D1

⋃
· · ·

⋃
DN−1 ⊆ ZT (8.34)

we can conclude

T ≥
N−1∑

i=0

|Di | ≥ Nh ≥ N (N + 2) (8.35)

Therefore, the theorem holds.

The lower bound is not always tight. Finding the minimum good CCHS length is
(almost) equivalent to finding the maximum DRDS. As discussed above, it is hard to
find themaximumDRDS, and thus it is also hard tofind the tight lower bound forgood
CCHS. FromTable8.2, the lower bound of Theorem 8.5 is tight when N = 1, 2, 5, 6.
However, when N = 3, 4, the lower bound for T is 13, 21 respectively from the
theorem, but the maximum DRDS |Sn| = 2, 3 under Zn , implying the lower bound
is not always tight.

Corollary 8.1 Any GS based rendezvous algorithm cannot guarantee rendezvous
in less than T time slots, where T is the expression in Theorem 8.5.

Corollary 8.2 The DRDS based algorithm (Algorithm 8.2) can achieve constant
approximation as compared with the lower bound of any GS based blind rendezvous
algorithms. Thus, it is a nearly optimal asynchronous rendezvous algorithm.

Remark 8.3 We have not found a general method to construct a DRDS S under any
Zn such that |S| is comparable to the bound in Lemma 8.5. However, if there exists
such DRDS construction for arbitrary Zn , we can transform it to a good rendezvous
algorithm as shown in Lemma 8.2.

100 8 Asynchronous Blind Rendezvous Algorithms for Anonymous Users

8.7 Chapter Summary

In this chapter, we study the blind rendezvous problem for two users by designing
a good global sequence (GS) that is independent of the user’s set of available ports.
The intuitive idea is to hop through the external ports by repeating the GS for the
users, and rendezvous can be guaranteed on some common available port if the GS
satisfies some good properties.

In order to design a good GS for the users, we introduce an efficient mathematical
tool called Disjoint Relaxed Difference Set (DRDS) which is shown to be equivalent
to a good GS. Therefore, every algorithm that constructs a DRDS under the set Zn

in an efficient way can be adopted to construct a GS (of length n). In the chapter,
we present a special construction of the DRDS under Zn when n = 3P2 where P
is a prime number, and a good GS of length 3P2 = O(N 2) can be reconstructed
correspondingly, where N is the number of all ports and P ≥ N is a prime number.
Therefore, blind rendezvous between two users is guaranteed in O(N 2) time slots,
which is the state-of-the-art result for GS based method.

Since the users in the network can start the rendezvous process freely and they
may have different sets of available ports, the DRDS based rendezvous algorithm
works under all the situations:

(1) Port-Symmetric and Port-Asymmetric: two symmetric users have the same set
of available ports, while the sets for asymmetric users could be different;

(2) Synchronous and Asynchronous: two synchronous users start at the same time
while asynchronous users are free to start the rendezvous process.

The DRDS based rendezvous algorithm guarantees fast rendezvous for two sym-
metric users by adding a listening stage, where the user accesses the available port
with the smallest label for a sufficient long time. Moreover, the algorithm works for
two asynchronous users because the GS satisfies the elegant property (Property 8.2)
and it guarantees rendezvous in a very short time when the users are synchronous.
The results for the four combinations are listed in Table8.3.

Although the DRDS based rendezvous algorithm has good performance, we are
eager to explore a generalmethod to construct DRDSunder Zn where n is an arbitrary
integer and to design a GS based algorithm which generates a good GS of length
shorter than 3P2.

Table 8.3 MTTR values for the DRDS based rendezvous algorithm

DRDS Symmetric Asymmetric

Synchronous 1 2P = O(N)

Asynchronous 3P = O(N) P(3P − 1) = O(N 2)

Remarks: 1) ImprovedDRDSalgorithmguarantees rendezvous inO(1) time slots for two symmetric
users

8.7 Chapter Summary 101

References

1. Bian, K., Park, J.-M. & Chen, R. (2009). A quorum-based framework for establishing control
channels in dynamic spectrum access networks. InMobicom.

2. Bian, K., Park, J.-M., & Chen, R. (2011). Control channel establishment in cognitive radio
networks using channel hopping. IEEE Journal on Selected Areas in Communications, 29(4),
689–703.

3. Chen, S., Russell, A., Samanta, A., & Sundaram, R. (2014). Deterministic blind rendezvous in
cognitive radio networks. In ICDCS.

4. Colbourn, C. J., & Dintiz, J. H. (2006). Handbook of Combinatorial Designs. Boca Raton:
CRC Press.

5. DaSilva, L., Guerreiro, I. (2008). Sequence-based rendezvous for dynamic spectrum access.
In DySPAN.

6. Gu, Z., Hua, Q.-S., Wang, Y., Lau, F. C. M. (2013). Nearly optimal asynchronous blind ren-
dezvous algorithm for cognitive radio networks. In SECON.

7. Hazan, E., Safra, S., & Schwartz, O. (2006). On the complexity of approximating k-set packing.
Computational Complexity, 15(1), 20–39.

8. Jiang, J.R., Tseng,Y.C.,&Lai, T. (2005).Quorum-based asynchronous power-savingprotocols
for IEEE 802.11 ad hoc network.ACM Journal onMobile Networks and Applications, 10(1–2),
169–181.

9. Karp, R. M. (1972). Reducibility among combinatorial problems. Complexity of Computer
Computations, 85–103.

10. Lin, Z., Liu, H., Chu, X., & Leung, Y.-W. (2013). Enhanced jump-stay rendezvous algorithm
for cognitive radio networks. IEEE Communications Letters, 17(9), 1742–1745.

11. Liu, H., Lin, Z., Chu, X., &Leung, Y.-W. (2012). Jump-stay rendezvous algorithm for cognitive
radio networks. IEEE Transactions on Parallel and Distributed Systems, 23(10), 1867–1881.

12. Luk, W. S., & Wong, T. T. (1997). Two new quorum based algorithms for distributed mutual
exclusion. In ICDCS.

13. Shin, J., Yang, D., & Kim, C. (2010). A channel rendezvous scheme for cognitive radio net-
works. IEEE Communications Letters, 14(10), 954–956.

14. Theis, N. C., Thomas, R. W., & DaSilva, L. A. (2011). Rendezvous for cognitive radios. IEEE
Transactions on Mobile Computing, 10(2), 216–227.

15. Yang, D., Shin, J., & Kim, C. (2010). Deterministic rendezvous scheme in multichannel access
networks. Electronics Letters, 46(20), 1402–1404.

Chapter 9
Local Sequence (LS) Based Rendezvous
Algorithms

Abstract In this chapter, we present symmetric algorithms for the blind rendezvous
problem between two asynchronous, non-anonymous users. In the rendezvous set-
ting, we fix Alg, Time, and ID as follows:

RS =< Alg-S,Asyn, Port,Non-Anon,Non-Obli > (9.1)

where Port ∈ {Port − S, Port − AS}, which implies that we design efficient algo-
rithms that have good performance for both symmetric and asymmetric port situ-
ations. In designing Global Sequence (GS) based rendezvous algorithms for two
anonymous users, many time slots are wasted since the user has to access a random
available port if the pre-defined port in the sequence is not available. Since the users
have no distinguishable identifiers, they have to obey the global sequence, which is
verified to be an efficientmethod.However, if the users have identifiers (IDs), they are
non-anonymous and they can decide on different hopping sequences based on its local
information. GS based rendezvous algorithms construct a sequence of fixed length
for all users and it is inefficient when the number of available ports accounts for only
a small fraction of all external ports. Thus, we propose Local Sequence (LS) based
rendezvous algorithms which construct different sequences on the basis of the local
information for different users. In this chapter, we introduce LS based rendezvous
algorithms where different users hop among their available ports according to differ-
ent sequences, which are different from GS based algorithms in terms of intuition.
By adopting the LS based rendezvous algorithms, the users may achieve rendezvous
in a shorter time comparing with the GS based algorithms when the available ports
are only a small fraction of all external ports. In Sect. 9.1, we give the motivation
for constructing LS and present a simple example to illustrate. We first present the
Ring Walk algorithm in Sect. 9.2, which constructs different sequences on the basis
of the user’s ID. Then, we present the Alternate Hop-and-Wait (AHW) algorithm in
Sect. 9.3, which combines the hop and wait strategies. Two efficient LS based ren-
dezvous algorithms are provided in Sects. 9.4 and 9.5 respectively, where the first one
guarantees rendezvous in O(N) and O(N 2) time slots for two port-symmetric and
port-asymmetric users respectively, and the latter guarantees rendezvous in O(|Ci |)
and O((max{|Ci |, |C j |})2) time slots for two port-symmetric and port-asymmetric
users respectively, whereCi ,C j represent the available port sets of two users. Finally,
we summarize the chapter in Sect. 9.6.

© Springer Nature Singapore Pte Ltd. 2017
Z. Gu et al., Rendezvous in Distributed Systems,
DOI 10.1007/978-981-10-3680-4_9

103

104 9 Local Sequence (LS) Based Rendezvous Algorithms

Fig. 9.1 An example of global sequence based algorithm (DRDS [3])

9.1 Local Sequence (LS)

Although Global Sequence (GS) based algorithms can guarantee rendezvous for two
users efficiently, much redundant information exists in achieving rendezvous. Tech-
nically, GS based algorithms construct a fixed sequence for all users and when the
sequence comes to an unavailable port, the user has to replace it with a random avail-
able one or by some pre-defined rule. However, this (random) replacement always
contains redundant information in rendezvous.

For example, let U = {1, 2, 3}, Ci = {1, 2} and C j = {2, 3} for two users ui and
u j respectively. Suppose user u j is δ = 1 time slot later than user ui . As illustrated
in Fig. 9.1, if both users run the GS based algorithm (for example, the DRDS based
algorithm in Sect. 8.5.2) and user ui replaces port 3 in the sequence by port 1 or 2
randomly, while user B replaces port 1 by port 2 or 3 (the replaced ports are labeled
red in the figure). They can achieve rendezvous on the common port 2 in time slots
9, 10, 11. However, port 3 in the GS is useless for user ui and port 1 is useless for
user u j . Thus we try to handle this problem by constructing different sequences for
different users on the basis of local available ports, which we call Local Sequence
(LS) based rendezvous algorithms.

In designing LS based rendezvous algorithms, we use the assumption in [2] that
each user has a distinct identifier (ID). Different from [2], we assume the users’ ID
could be non-continuous in the range [1, M], where M is the maximum value for the
ID (the algorithm also works when M is a value larger than the number of users; in
this book we use M for simplicity to denote the maximum ID value).

9.2 Ring Walk Algorithm

Ring Walk [5, 6] is the first LS based rendezvous algorithm for cognitive radio net-
works, where different sequences are constructed on the basis of the users’ identifiers
(IDs). The basic idea of Ring Walk is to represent each channel as a node in a ring
and the construction of the hopping sequence is equivalent to visiting all these nodes
in the ring.

Assume each user has a distinct ID in the range [1, M] where M is the maximum
value for the user’s ID (in some settings, the maximum ID value can be larger than

http://dx.doi.org/10.1007/978-981-10-3680-4_8

9.2 Ring Walk Algorithm 105

the number of users) and the users can generate hopping sequences by walking along
the ring with a pre-assigned velocity, which corresponds to the value of the user’s ID.

For example, the user with ID 1 generates the hopping sequence as:

{1, 2, 3, . . . , N , 1, 2, 3, . . . , N , . . .} (9.2)

and the user with ID N − 1 generates the hopping sequence as:

{1, N , N − 1, N − 2, . . . , 2, 1, N , N − 1, . . .} (9.3)

Since different users have different velocities, i.e. different values of the IDs, they
may meet in the ring according to the Chinese Remainder Theorem:

Theorem 9.1 Chinese Remainder Theorem: For two numbers n1, n2 that are
coprimes and two values a1, a2, there exists an integer x solving both equalities:
(1) x ≡ a1 (mod n1), (2) x ≡ a2 (mod n2).

This method can guarantee rendezvous between two asynchronous users, but it is
inefficient, especially when the value of ID is large.

9.3 Alternate Hop-and-Wait (AHW) Algorithm

Alternate Hop-and-Wait (AHW)[2] also generates different sequences by assuming
that each user has a unique ID. Different from the Ring Walk algorithm, AHW first
scales the user’s ID into a binary string of length logM and then designs different
patterns for different bits. In the design of AHW, each pattern contains three modes
and each mode contains P numbers. There are two types of modes: WAIT mode and
HOP mode, where the WAIT model is similar to the stay frame of the JS algorithm
(see Sect. 8.4), while the HOP mode is similar to the jump frame of the JS algorithm.
By designing different patterns for different binary bits (there are three different bits
including a special bit added to represent the starting symbol of the binary string),
rendezvous can be guaranteed in O(N 2 log N) time slots (it is assumed that M = N
in [2]) for two asymmetric users, and in O(N log N) time slots for two symmetric
users.

The AHW algorithm operates as follows. In the first place, the user’s ID is rep-
resented by binary bits. For example, ID 10 is represented as {0, 0, 1, 0, 1, 0} if we
use 6 bits to represent the users’ ID. Then, the algorithm adds a special bit 2 as the
head of the string. Fig. 9.2 shows the construction.

Fig. 9.2 An example of
modifying bit string

http://dx.doi.org/10.1007/978-981-10-3680-4_8

106 9 Local Sequence (LS) Based Rendezvous Algorithms

Fig. 9.3 An example of
different patterns
corresponding to different
bits

The two modes are constructed in a similar way to the JS algorithm, where the
starting channel i ∈ [1, N], and the step length r ∈ [1, P) are utilized, where P is
the smallest prime number larger than N . In the HOPmode, P different numbers are
constructed:

a j = (i + r ∗ j − 1) mod P + 1 (9.4)

where a j represents the j-th number. In theWAITmode, the P numbers are the same
as the starting channel i , i.e. a j = i .

According to the bit strings of the user’s ID, the AHW algorithm gives different
patterns, as in Fig. 9.3. When the bit is 0, it corresponds to the three modes of WAIT
HOP HOP; when the bit is 1, it corresponds HOP HOP HOP; when the bit is 2, it
corresponds to WAIT WAIT HOP.

The AHW algorithm can be described formally as follows.

Step 1: Denote the binary strings of the user’s ID as I = {i1, i2, . . . , ik};
Step 2: Modify the binary string as I ′ = {2, i1, i2, . . . , ik};
Step 3: Find the smallest prime number P ≥ N ; choose the starting channel as i0 ∈

[1, N] and the step length as r ∈ [1, P);
Step 4: Construct the sequence with N rounds, where the starting channels of the

j-th round is i j = (i0 + i − 1) mod N + 1;
Step 5: In the j-th round, there are k + 1 frames and each frame contains 3 modes;

on the basis of I ′, the 3modes in each frame are constructed correspondingly
(different patterns of modes, and the construction of HOP or WAIT mode is
as above).

From the description, the constructed sequence contains N ∗ (k + 1) ∗ 3P time
slots, where k is the number of the bit strings that represent the user’s ID. In each
round, the starting channel will increase by 1 under modulo N while the step length
remains the same. For example, for N = 3 channels and the user’s ID that can be
represented as {0, 1}, we construct the sequence as in Fig. 9.4.

Although both Ring Walk and AHW are LS based algorithms, they all use the
labels of all licensed channels to construct the hopping sequences. In this chapter, we
propose two distributed algorithms called Local Sequence (LS) based rendezvous
and Modified Local Sequence (MLS) based rendezvous that only use the labels of
the available channels and the user’s ID. More details are provided in the following
sections. Meanwhile, an elegant result has been proposed in [1] which constructs
different sequences that are only based on the user’s set of available channels (the
user’s ID is not utilized). The main technique adopted is graph coloring and the

9.3 Alternate Hop-and-Wait (AHW) Algorithm 107

Fig. 9.4 An example of AHW algorithm

Table 9.1 MTTR Comparisons for LS based rendezvous algorithms

Algorithms Symmetric Asymmetric

Ring Walk [5] O(MN) O(M2N)

AHW [2] 3P logM = O(N log N) 3P2 logM = O(N 2 log N)

[1] O(1) O(|CA||CB | log log N)

LS [4] 2(l + 1)P = O(N) 2(l + 1)P2 = O(N 2)

MLS [4] O(lA|CA|) O(max{|CA|, |CB |}2)
Remarks: (1) The comparisons are based on the rendezvous process between two users; (2)P is the
smallest prime number P ≥ N , P = O(N); (3) CA,CB represent the sets of available channels for
two users respectively; 4) l, lA are some constants defined in Algorithm 9.1 and Algorithm 9.2 in
Chap.9

algorithm guarantees rendezvous in MTT R = O(|CA||CB | log log N) time slots,
whereCA,CB represent the available channel sets for two users A and B respectively.
There results are listed in Table9.1.

9.4 A Simple LS Based Rendezvous Algorithm

In this section, we present a simple LS based rendezvous algorithm for a distrib-
uted system, which is different from both the Ring Walk algorithm and the AHW
algorithm.

Suppose the user’s identifier (ID) is I ∈ [1, M] (M = Nc, c is a constant) and
denote the available port set asC ′ ⊆ U . The intuitive idea of the method is to convert
the user’s ID to a certain fixed base number and construct different sequences based
on the converted numbers (bits). Since different IDs have different representations,
the constructed sequences could be different.

In the first place, the user’s ID is scaled into l = �logP−1 M	 + 1 bits as shown
in Algorithm 9.1, where P is the smallest prime number P ≥ N . From the scaling
steps, it is obvious that:

∀i ∈ [0, l), 1 ≤ d(i) < P (9.5)

and different IDs have different scaled representations.

http://dx.doi.org/10.1007/978-981-10-3680-4_9

108 9 Local Sequence (LS) Based Rendezvous Algorithms

For example, when N = 4, M = 16, I = 1 is scaled as:

−→
d = {1, 1, 2} (9.6)

while I = 16 is scaled as: −→
d = {2, 1, 1} (9.7)

Another preprocessing step is to expand the set of available ports into a vector−→e , which consists of P numbers. For example, N = 6 and the available port set is
C ′ = {2, 4, 5}, it is expanded as:

−→e = {2, 2, 2, 4, 5, 5, 5} (9.8)

Building on the preprocessing step, Algorithm 9.1 designs a sequence of length
T = 2(l + 1)P2 for the user. The construction can be thought of as constructing P
periods of length L = 2(l + 1)P .

Algorithm 9.1 Local Sequence Based Algorithm
1: Find the smallest prime number P ≥ max{N , 3};
2: l := �logP−1 M	 + 1;

3: ID Scale on I to get
−→
d = {d(0), d(1), · · · , d(l − 1)};

4: Expansion on C ′ to get −→e = {e(0), e(1), · · · , e(P − 1)};
5: T := 2(l + 1)P2, t := 0, L := 2(l + 1)P;
6: while Not rendezvous do
7: t ′ := t mod T ;
8: x := �t ′/L	, y := t ′ mod L;
9: if y < 2P then
10: z := x ;
11: else
12: y1 := �(y − 2P)/(2P)	, y2 := (y − 2P) mod 2P;
13: z := (x + y2 · d(y1)) mod P;
14: end if
15: Access port e(z);
16: t := t + 1;
17: end while
ID Scale on I
1: for i = l − 1 to 0 do
2: d(i) := I mod (P − 1) + 1;
3: I := �I/(P − 1)	;
4: end for
Expansion on C ′
1: Order the ports in C ′ as c1 < c2 < · · · < c|C ′ |;
2: Construct −→e = {e(0), e(1), · · · , e(P − 1)};
3: e(j) := c1, ∀0 ≤ j ≤ c2 − 2;
4: for i = 2 to |C ′| − 1 do
5: e(j) := ci , ∀ci − 1 ≤ j ≤ ci+1 − 2;
6: end for
7: e(j) := c|C ′ |, ∀c|C ′ | − 1 ≤ j ≤ P − 1;

9.4 A Simple LS Based Rendezvous Algorithm 109

Fig. 9.5 An example of local sequence based algorithm

In each period, there is a base number x as in Line 8. For example the i-th period
has base number x = i and it stays the same for the first 2P time slots, which is the
base stage. The following 2l P numbers are generated on the basis of the ID’s scaled
bits and it is the hop stage. The hop stage consists of l frames of length 2P and each
frame relates to the scaled bit.

For example, the j-th frame is generated as

(i + k · d(j)) mod P,∀0 ≤ k < 2P (9.9)

where d(j) is called the hopping step. Then the corresponding port can be accessed
as in Line 15 based on the expansion of set C ′.

In order to guarantee rendezvous for two asynchronous users, each frame contains
2P numbers, which come from the idea of transforming non-aligned time slots into
aligned ones (almost the same as Figs. 5.3 and 5.4). Moreover, the base stage is
designed to accelerate the algorithm.

For example, for N = 3, M = 9, I = 5, the converted numbers are
−→
d = {1, 2, 1,

2} and three periods are constructed as in Fig. 9.5. Then the corresponding ports can
be accessed according to the expansion of the available port set.

In order to derive the rendezvous time of the LS based algorithm,wefirst introduce
an important lemma.

Lemma 9.1 Every P continuous time slots in the same frame of the hop stage
correspond to P different z values (Line 13 of Algorithm9.1), i.e. these corresponding
z values compose a permutation of {0, 1, . . . , P − 1}.
Proof Consider the j-th frame of period i , the 2P numbers are generated as:

zk = i + k · d(j) mod P∀0 ≤ k < 2P (9.10)

For any values 0 ≤ k1, k2 < 2P satisfying:

|k1 − k2| < P (9.11)

http://dx.doi.org/10.1007/978-981-10-3680-4_5
http://dx.doi.org/10.1007/978-981-10-3680-4_5

110 9 Local Sequence (LS) Based Rendezvous Algorithms

we derive:
zk1 − zk2 = (k1 − k2) · d(j)
= 0 mod P (9.12)

since k1 − k2
= 0 mod P and 0 < d(j) < P .
Thus every P continuous z values generated in the same frame of the hop stage

are different from each other and they compose a permutation of {0, 1, . . . , P − 1}.
Consider two users A and B with CA

⋂
CB
= ∅, IA
= IB , and denote the vari-

ables used in Algorithm 9.1 for user A as:

(
−→
dA,

−→eA , tA, x(A), y1(A), y2(A)) (9.13)

and the variables used for user B as:

(
−→
dB ,

−→eB , tB, x(B), y1(B), y2(B)) (9.14)

We derive the time complexity to achieve rendezvous for two symmetric users in
the following Theorem.

Theorem 9.2 LS algorithm (Algorithm 9.1) guarantees rendezvous in MT T R =
2(l + 1)P = O(N) time slots for two port-symmetric users.

Proof Two symmetric users (A and B) implies CA = CB , and thus
−→eA = −→eB can be

verified easily. Since IA
= IB , there exists 0 ≤ i < l such that:

dA(i)
= dB(i) (9.15)

Without loss of generality, suppose user B is δ ≥ 0 time slot later than user A.
We define:

δT = δ mod T (9.16)

and define:
δL = δ mod L (9.17)

According to different δ values, we show the theorem by examining six cases.

Case 1: 0 ≤ δL < 2P and 0 ≤ δT < 2P . User B can achieve rendezvouswith user A
in the first time slot as shown in Fig. 9.6a, since user A is accessing port eA(0)
in the base stage of Period 0 and user B’s first attempt is eB(0) = eA(0).

Case 2: 0 ≤ δL < P and δT ≥ 2P . Different from case 1, this situation means
although user A is in the base stage when user B starts the algorithm, user A
is accessing eA(k)
= eB(0), k > 0, and thus they do not rendezvous during
this stage.
Since there exists 0 ≤ i < l such that dA(i)
= dB(i), they can achieve ren-
dezvous in the i-th frame of the hop stage as Fig. 9.6b. Considering the time
for user B suits:

9.4 A Simple LS Based Rendezvous Algorithm 111

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 9.6 Illustrations of Theorem 9.2’s proof. The blocks labeled gray represent the base stages of
each period and the dotted lines represent the situations that rendezvous happens

tB ∈ [2(i + 1)P, (2i + 3)P) (9.18)

from Line 8 and Line 12 of Algorithm 9.1, we can derive:

⎧
⎨

⎩

x(B) = 0

y1(B) = i

y2(B) ∈ [0, P)

The corresponding z values are generated as in Line 13:

zt (B) = [0 + y2(B) · dB(i)] mod P (9.19)

For user A, tA = tB + δ, and from Line 8 and Line 12 of Algorithm 9.1, we
derive:

⎧
⎨

⎩

x(A) = �(tB + δ)/L	 = �δT /L	
y1(A) = i

y2(A) = y2(B) + δL ∈ [0, 2P)

112 9 Local Sequence (LS) Based Rendezvous Algorithms

Then, the corresponding z values are generated as:

zt (A) = [x(A) + y2(A) · dA(i)] mod P (9.20)

Let zt (A) = zt (B) i.e. they access the same port, we can derive:

[dB(i) − dA(i)] · y2(B) = x(A) + δL · dA(i) mod P (9.21)

As dB(i)
= dA(i), such y2(B) exists and rendezvous is guaranteed in time:

tB ≤ (2i + 3)P ≤ (2l + 1)P (9.22)

time slots;
Case 3: P ≤ δL < 2P and δT ≥ 2P . Similar to case 2, user B cannot achieve ren-

dezvous with user A when they are both in the hop stage. However, it is
obvious that when tB ∈ [2P − δL , 3P − δL), user B is in the base stage
accessing port eB(0), while user A is in the 0-th frame of the hop stage
(in some period). It is easy to check that rendezvous can be guaranteed in
tB ≤ 2P time slots when zA = 0 and user A accesses port eA(0) = eB(0),
as in Fig. 9.6c.

Case 4: There exists i ′ ∈ [0, l) such that (2i ′ + 2)P ≤ δL < (2i ′ + 3)P . As illus-
trated in Fig. 9.6d, user B accesses port eB(0) for the first P time slots, while
user A is in the same frame of the hop stage. Thus from the analysis of case
3, they can achieve rendezvous in tB ≤ P time slots.

Case 5: There exists i ′ ∈ [0, l − 1) such that (2i ′ + 3)P ≤ δL < (2i ′ + 4)P . Dif-
ferent from case 4, when tB ∈ [0, P), user A is not in the same frame, but
rendezvous can be achieved when tB ∈ [P, 2P), as shown in Fig. 9.6e (the
corresponding P time slots tA are in the same frame).

Case 6: 2l P ≤ δL < (1 + 2l)P . The situation is different from case 5 because when
tB ∈ [P, 2P), user A is in the base stage and rendezvous may not happen.
It is akin to case 2 that they can achieve rendezvous in the i-th frame where
dA(i)
= dB(i) in tB ≤ 2(l + 1)P time slots, as in Fig. 9.6f.

Combining the six situations, rendezvous for port-symmetric users canbe achieved
in 2(l + 1)P = O(N) time slots.

Similarly, we derive the time complexity to achieve rendezvous for two asymmet-
ric users as follows.

Theorem 9.3 LS algorithm (Algorithm 9.1) guarantees rendezvous in MT T R =
2(l + 1)P2 = O(N 2) time slots for two port-asymmetric users.

Proof Since two users A and B are asymmetric, CA
= CB, IA
= IB . After the ID
Scale and Expansion steps, the representations of the two users are different, i.e. we
have different vectors: −→

dA
= −→
dB (9.23)

9.4 A Simple LS Based Rendezvous Algorithm 113

and different expansions: −→eA
= −→eB (9.24)

So there exists 0 ≤ i < l such that:

dA(i)
= dB(i) (9.25)

As the two users share at least one common available port, there exists 0 ≤ j < P
such that:

eA(j) = eB(j) (9.26)

The theorem can be proved based on the six cases in the symmetric scenario.

Case 1: 0 ≤ δL < 2P and0 ≤ δT < 2P .Different fromsymmetric users, eA(0)may
not be equal to eB(0), and thus rendezvous is not guaranteed in the base stage
of the 0-th period. However, when time counts to the j-th period, it is clear
that when tB ∈ [2(l + 1)P · j, 2(l + 1)P · +P), user A and B are both in
the base stage, accessing eA(j) = eB(j). Thus MTT R = tB ≤ 2(l + 1)P2

time slots.
Case 2: 0 ≤ δL < P and δT ≥ 2P . When tB ∈ [k · L + 2(i + 1)P, k · L + (2i +

3)P), user B is in the i-th frame of the k-th period (0 ≤ k < P), and thus
the corresponding zt (B) can be generated from Line 13:

zt (B) = [k + y2(B) · dB(i)] mod P (9.27)

From tA = tB + δ, we can derive the zt (A) values as:

zt (A) = [x(A) + k + y2(A) · dA(i)] mod P (9.28)

where x(A) = �δT /L	 is similar to case 2 of Theorem 9.2. Let zt (A) =
zt (B) to conclude the same result as Eq. (9.21). Denote:

{
θ = dB(i) − dA(i)

λ = x(A) + δL · dA(i)

we can figure out:
y2(B) = λ · θ−1 (9.29)

where
θ−1 · θ = 1 mod P (9.30)

Plugging y2(B) into Eq. (9.27), the corresponding zt (B) is computed. As k
ranges in [0, P), it is obvious that there exists 0 ≤ k∗ < P such that:

k∗ + y2(B) · dB(i) = j mod P (9.31)

114 9 Local Sequence (LS) Based Rendezvous Algorithms

which implies users A and B both access port eB(j) = eA(j) at the same
time. Thus rendezvous is guaranteed in tB ≤ 2(l + 1)P2 time slots.

Case 3: The other four cases discussed in Theorem9.2 also can be proved in a similar
way to case 1 or case 2. The readers who are interested in this part can derive
the other four situations for a better understanding of the algorithm.

Combining these situations, we can conclude that rendezvous for two port-
asymmetric users is bounded by 2(l + 1)P2 = O(N 2) time slots.

From Theorems 9.2 and 9.3, the LS based algorithm matches the best known
results of Global Sequence based algorithms as shown in Table8.1.

9.5 A Modified LS Based Rendezvous Algorithm

Although Algorithm 9.1 guarantees rendezvous for two users in a short time, it
seems to be inefficient as the length of each frame is fixed as 2P . When the number
of available ports n is small, we could convert the specific user’s ID to a new base
numberwhere the base and the length of each frame relate to n directly. The challenge
is that different IDsmay have the same representations in different base systems, such
as (12)6 = 8 but (12)4 = 6 (here (12)6 means 12 under base 6). Thus refinements
should be made; we present the Modified Local Sequence (MLS) based algorithm
as described in Algorithm 9.2.

Different from Algorithms 9.1, and 9.2 counts the number of available ports as
n = |C ′| and finds the smallest prime number p ≥ n. The preprocessing step of ID
Scale is similar to Algorithm 9.1, but the ID is scaled by p − 1 where p relates to
the number of available ports. Different users may have different p values, and thus
the number of scaled bits for different users may be different since:

l := �logp−1 M	 + 1 (9.32)

For example, N = 5, M = 25, suppose one user with ID I = 5 has n = 3 avail-
able ports, the ID is scaled as:

−→
d = {1, 1, 2, 1, 2} (9.33)

For another user with ID I = 5 who has n = 4 available ports, the ID is scaled as:

−→
d = {1, 2, 2} (9.34)

Clearly, the first user has 5 scaled bits while the second user has only 3 scaled bits.
Another preprocessing step is extraction on the available port set C ′, which is

different from the expansion procedure in Algorithm 9.1. The extraction procedure
constructs a vector −→e with p numbers by ordering the available ports as

http://dx.doi.org/10.1007/978-981-10-3680-4_8

9.5 A Modified LS Based Rendezvous Algorithm 115

Algorithm 9.2Modified Local Sequence Based Algorithm
1: Count the number of available ports n = |C ′|;
2: Find the smallest prime number p ≥ max{n, 3};
3: l := �logp−1 M	 + 1;

4: ID Scale on I to get
−→
d = {d(0), d(1), · · · , d(l − 1)};

5: Extraction on C ′ to get −→e = {e(0), e(1), · · · , e(p − 1)};
6: T := 2(l + 1)p2, t := 0, L := 2(l + 1)p;
7: while Not rendezvous do
8: t ′ := t mod T ;
9: x := �t ′/L	, y := t ′ mod L;
10: if y < 2p then
11: z := x ;
12: else
13: y1 := �(y − 2p)/(2p)	, y2 := (y − 2p) mod 2p;
14: z := (x + y2 · d(y1)) mod p;
15: end if
16: Access port e(z);
17: t := t + 1;
18: end while
ID Scale on I
1: for i = l − 1 to 0 do
2: d(i) := I mod (p − 1) + 1;
3: I := �I/(p − 1)	;
4: end for
Extraction on C ′
1: Order the ports in C ′ as c1 < c2 < · · · < cn ;
2: Construct −→e = {e(0), e(1), · · · , e(p − 1)};
3: for j = 0 to p − 1 do
4: i := j mod n + 1;
5: e(i) := ci ;
6: end for

c1 < c2 < · · · < cn (9.35)

For example, for N = 7 and the available port set is C ′ = {1, 2, 4, 7}, the extrac-
tion result is: −→e = {1, 2, 4, 7, 1} (9.36)

The number of vector −→e is related to the number of available ports n (actually, it is
the smallest prime number that is no smaller than n), not all ports N .

Building on the preprocessing steps, Algorithm 9.2 constructs a sequence of
length:

T = 2(l + 1)p2 (9.37)

which also can be thought of as constructing p periods of length:

L = 2(l + 1)p (9.38)

116 9 Local Sequence (LS) Based Rendezvous Algorithms

Similar to Algorithm 9.1, there are also two stages in each period. The base stage
consists of 2p base values x = i for the i-th period as in Line 9, and the hop stage
contains p frames. The 2p numbers of the j-th frame in the hop stage are generated
as:

z = (i + k · d(j)) mod p,∀0 ≤ k < 2p (9.39)

Then the corresponding port e(z) is accessed as in Line 14. Algorithm 9.2 is a
modified version of Algorithm 9.1, but it could be more efficient as the length of
each user’s sequence may be different. When the user has fewer available ports, the
corresponding sequence is shorter.

Considering two users A and B with CA
⋂

CB
= ∅ and IA
= IB , denote the
number of available ports for the twousers as nA = |CA|, nB = |CB | as in the first line
of Algorithm 9.2. Similarly, denote the other variables used for user A in Algorithm
9.2 as:

(pA, lA,
−→
dA,

−→eA , TA, L A, tA, x(A), y1(A), y2(A), zt (A)) (9.40)

and the variables for user B as:

(pB, lB,
−→
dB ,

−→eB , TB, LB, tB, x(B), y1(B), y2(B), zt (B)) (9.41)

We first derive the time complexity to achieve rendezvous for two symmetric users
when they adopt the MLS algorithm.

Theorem 9.4 The MLS algorithm (Algorithm 9.2) guarantees rendezvous in
MT T R = 2(lA + 1)pA = O(lAnA) time slots for two port-symmetric users.

Proof Two symmetric users (CA = CB) implies:

nA = nB, pA = pB, lA = lB,
−→eA = −→eB (9.42)

From the scaling step on ID, there exists 0 ≤ i < lA, such that:

dA(i)
= dB(i) (9.43)

The lengths of the two sequences are the same (TA = TB) and from the proof details
of Theorem 9.2, the theorem can be concluded similarly.

When the number of available ports is small, the MLS algorithm performs much
better than the LS algorithm. It is clear that lA = O(log N/ log nA) and thus the
MTT R value could be small. For example, we derive the time complexity for dif-
ferent nA values as:

nA = O(1), MTT R = O(log N)

nA = O(log N), MTT R = O(log2 N/ log log N)

nA = O(N ε)(0 < ε < 1), MTT R = O(N ε)

9.5 A Modified LS Based Rendezvous Algorithm 117

When it comes to asymmetric users, the situation is much more complicated.
Before we derive the rendezvous time for two asymmetric users, we prove two
important lemmas.

Lemma 9.2 For two port-asymmetric users (CA
= CB), rendezvous is guaranteed
in MT T R = 2(lB + 1)p2B = O(lBn2B) time slots if pA = pB.

Proof Two asymmetric users CA
= CB implies −→eA
= −→eB . Since pA = pB , IA
= IB ,
the number of scaled bits lA = lB , and there exists 0 ≤ i < lA such that dA(i)
=
dB(i).

From CA
⋂

CB
= ∅, there exist 0 ≤ j1, j2 < pA that suit:

eA(j1) = eB(j2) (9.44)

The situation is similar to Theorem9.3. For cases 1, 3, 4, 5 in the proof of Theorem
9.2, user B can achieve rendezvous in the base stage by accessing port eB(j2) during:

tB ∈ [2(1 + lB)pB · j2, 2(1 + lB)pB · j2 + 2pB) (9.45)

For the other two cases, rendezvous happens in the users’ hop stage. The difference
is: in Eqs. (9.27) and (9.28), we define:

{
zt (A) = j1
zt (B) = j2

and it can be verified similarly that such tB < 2(lB + 1)p2B exists.We omit the details
and the readers can deduce the rendezvous time complexity according to the sketch.

Without loss of generality, suppose pB > pA; we derive the following lemmas.

Lemma 9.3 Rendezvous is guaranteed within MT T R = 2(lB + 1)p2B = O(lBn2B)

time slots if pB ≥ 2pA.

Proof Since CA
⋂

CB
= ∅, we know:

∃0 ≤ j1 < pA, 0 ≤ j2 < pB, such that eA(j1) = eB(j2) (9.46)

No matter which user starts the algorithm first, user B can achieve rendezvous in
the base stage with period j2. This is because the base stage contains 2pB > 4pA

numbers,which is large enough to cover pA continuous numbers from the same frame
as user A’s hop stage. Figure9.7 illustrates the situation. Therefore, such j1 ∈ [0, pA)

exists and the MTT R value is bounded by 2(1B + 1)p2B time slots.

118 9 Local Sequence (LS) Based Rendezvous Algorithms

Fig. 9.7 An example of Lemma 9.3 when pB ≥ 2pA. The blocks labeled gray represent the base
stages of the users

Fig. 9.8 An example of Lemma 9.4 when pA < pB < 2pA. The blocks labeled gray represent the
base stages of the users

Lemma 9.4 Rendezvous is guaranteed within MT T R = 2(lB + 1)p2B pA = O(lB
n2BnA) time slots if pA < pB < 2pA.

Proof Different from Lemma 9.3, as there are 2pB numbers in the base stage, while
there are 4pA numbers in the hop stage of user A, any base stage of user B cannot
cover a complete hop stage of user A. Thus, their rendezvous may not be guaranteed
like that in Lemma 9.3. We analyze the worst situation for two users.

Since two users must have at least one common available port, we have:

∃0 ≤ j1 < pA, 0 ≤ j2 < pB, such that eA(j1) = eB(j2) (9.47)

Consider the base stage of the j2-th period of user B, where:

tB ∈ [δB, δB + 2pB), δB = 2(lB + 1)pB · j2 (9.48)

Denote the corresponding time for user A as δA. As illustrated in Fig. 9.8, the only
situation that user B cannot rendezvous in the base stage with user A is:

{
L A − pA < (δA mod L A) < L A

0 < (δA + 2pB mod L A) < pA
(9.49)

9.5 A Modified LS Based Rendezvous Algorithm 119

Only when the two conditions are satisfied, user B may not achieve rendezvous
in the base stage. Then user B repeats the sequence and we can determine how many
time slots are needed to rendezvous. Denote:

ε = TB mod L A (9.50)

It is clear that ε
= 0. Only when ε ∈ (0, pA) or ε ∈ (L A − pA, L A), they may not
rendezvous as user B repeats the sequence for the second time. However, if ε ∈
(0, pA), after at most pA

ε
times, we have:

(
δA + pA

ε
· TB

)
mod L A ∈ [0, P) (9.51)

and rendezvous happens. If ε ∈ (L A − pA, L A), rendezvous is also guaranteed after
pA

L A−ε
times. Thus MTT R = 2(lB + 1)p2B pA time slots and the lemma holds.

Lemma 9.4 reveals an extreme situation for the MTT R value, which rarely hap-
pens.We show theMTT R values on the basis of nA, nB for most cases in Tables9.2–
9.3. From Lemmas 9.2, 9.3 and 9.4, we have:

Theorem 9.5 The MLS algorithm (Algorithm 9.2) guarantees rendezvous in
MTTR = O(lBn2B) time slots if pB ≥ 2pA or pB = pA and in MTTR = O(lBn2BnA)

time slots if pA < pB < 2pA.

Combining Theorems 9.4 and 9.5, theMLS based algorithm is significantly better
than the best known results in Table8.1 when the number of available ports is small.
Specifically, the MLS based algorithm can guarantee rendezvous in O(lAnA) time
slots for two symmetric users, which is much smaller than O(N) when nA = o(N).
It also guarantees rendezvous for two asymmetric users in less than O(N 2) time slots
for most combinations in Tables9.2, 9.3.

Table 9.2 MTTR Comparisons with state-of-the-art rendezvous algorithms for different number
of available ports (symmetric scenario)

nA, nB O(1) O(log N) O(N ε) O(N)

Algori thm

JS [7] O(N) O(N) O(N) O(N)

DRDS [3] O(N) O(N) O(N) O(N)

AHW [2] O(N log N) O(N log N) O(N log N) O(N log N)

MLS [4] O(log N) O(
log2 N
log log N) O(N ε) O(N)

Remarks: (1) The comparisons are based on the rendezvous process between two symmetric users;
(2) nA and nB represent the number of available ports for user A and B respectively; (3) ε is a
constant in (0, 1); 4)nA = nB when they are symmetric

http://dx.doi.org/10.1007/978-981-10-3680-4_8

120 9 Local Sequence (LS) Based Rendezvous Algorithms

Table 9.3 MTTR Comparisons with state-of-the-art rendezvous algorithms for different number
of available ports (asymmetric scenario)

nB O(1) O(log N) O(N ε) O(N)

nA

O(1) JS [7] O(N 3) O(N 3) O(N 3) O(N 3)

DRDS [3] O(N 2) O(N 2) O(N 2) O(N 2)

AHW [2] O(N log N) O(N log2N) O(N 1+ε log N) O(N 2 log N)

MLS [4] O(log N) O(
log3N

log log N) O(N 2ε) O(N 2)

O(log N) JS O(N 3) O(N 3) O(N 3) O(N 3)

DRDS O(N 2) O(N 2) O(N 2) O(N 2)

AHW O(N log2 N) O(N log2N) O(N 1+ε log N) O(N 2 log N)

MLS O(
log3 N
log log N) O(

log3 N
log log N) O(N 2ε) O(N 2)

O(N ε) JS O(N 3) O(N 3) O(N 3) O(N 3)

DRDS O(N 2) O(N 2) O(N 2) O(N 2)

AHW O(N 1+ε log N) O(N 1+ε log N) O(N 1+ε log N) O(N 2 log N)

MLS O(N 2ε) O(N 2ε) O(N 2ε) O(N 2)

O(N) JS O(N 3) O(N 3) O(N 3) O(N 3)

DRDS O(N 2) O(N 2) O(N 2) O(N 2)

AHW O(N 2 log N) O(N 2 log N) O(N 2 log N) O(N 2 log N)

MLS O(N 2) O(N 2) O(N 2) O(N 2)

Remarks: (1) The comparisons are based on the rendezvous process between two asymmetric users;
(2) nA and nB represent the number of available ports for users A and B respectively; (3) ε is a
constant in (0, 1)

9.6 Chapter Summary

In this chapter, we study the blind rendezvous problem for two users and design local
sequence (LS) based on local information: the identifier (ID) and the set of available
ports. Although Global Sequence (GS) based algorithms can guarantee rendezvous
in a short time, when the number of available ports accounts for only a small fraction
of all the external ports, they are inefficient and many attempts have been wasted.
Therefore, we propose LS based rendezvous algorithms to accelerate the rendezvous
process, which work efficiently for both symmetric and asymmetric users, where two
symmetric (or asymmetric) users have the same (or different) set of available ports.

Different from GS based rendezvous algorithms, each user is assumed to have
a distinct ID to facilitate the designing of LS. Channel hopping and ID scaling
are two important techniques used in the chapter (channel hopping is always used
in designing rendezvous algorithms for cognitive radio networks), where channel
hopping means the user hops through the ports with increasing labels by a fixed
value which is called the hopping step, and ID scaling means the user’s ID is scaled
to some new number under another base and the scaled bits are used as the hopping
steps in the LS.

9.6 Chapter Summary 121

In the chapter, several LS based rendezvous algorithms are introduced. The
LS algorithm and the MLS algorithm work best among them. The LS algo-
rithm scales the user’s ID under base P where P ≥ N is a prime number, and
then the hopping sequence is constructed with length 2(l + 1)P2 = O(N 2) where
l = �logP−1M	 + 1 (in most situations, l = O(1)). Although the algorithm guaran-
tees rendezvous for two symmetric users in O(N) time slots and two asymmetric
users in O(N 2) time slots, it does not achieve significant improvement with respect
to GS based algorithms. Therefore, we introduce a modified LS based rendezvous
algorithm (MLS for short), which scales the user’s ID under base pwhere p ≥ |C | (C
is the user’s set of available ports), and then the hopping sequence is constructed with
length 2(l + 1)p2 where l = �logp−1 M	 + 1 in a similar way. The MLS algorithm
guarantees rendezvous for two symmetric users in O(lA|CA|) time slots where lA is
the number of scaled bits, and for two asymmetric users in O((max{|CA|, |CB |})2)
time slots formost situations. Through comparisonwith the state-of-the-art GS based
algorithms in Table9.3, theMLS algorithm is shown to have better performance espe-
cially when the number of available ports is small.

References

1. Chen, S., Russell, A., Samanta, A., & Sundaram, R. (2014). Deterministic blind rendezvous in
cognitive radio networks. In ICDCS.

2. Chuang, I., Wu, H.-Y., Lee, K.-R., & Kuo, Y.-H. (2013). Alternate hop-and-wait channel ren-
dezvous method for cognitive radio networks. In INFOCOM.

3. Gu, Z., Hua, Q.-S., Wang, Y., & Lau, F. C. M. (2013). Nearly optimal asynchronous blind
rendezvous algorithm for cognitive radio networks. In SECON.

4. Gu, Z., Hua, Q.-S., &Dai,W. (2014). Local sequence based rendezvous algorithms for cognitive
radio networks. In SECON.

5. Lin, Z., Liu, H., Chu, X., &Leung, Y.-W. (2012). Ring-walk rendezvous algorithms for cognitive
radio networks. Ad Hoc and Sensor Wireless Networks.

6. Liu, H., Lin, Z., Chu, X., & Leung, Y.-W. (2010). Ring-walk based channel-hopping algorithms
with guaranteed rendezvous for cognitive radio networks. In GreenCom-CPSCom.

7. Liu, H., Lin, Z., Chu, X., & Leung, Y.-W. (2012). Jump-stay rendezvous algorithm for cognitive
radio networks. IEEE Transactions on Parallel and Distributed Systems, 23(10), 1867–1881.

Chapter 10
Blind Rendezvous for Multi-users
Multihop System

Abstract In the previous chapters of Part II, we introduce rendezvous algorithms
between two users of different settings. As we know, typical distributed systems have
a large number of entities, and two users wanting to communicate may not be able
to that directly. Therefore, we extend the blind rendezvous algorithms between two
users to multiple users in a multi-hop system in this chapter. Actually, the idea for the
extension is not hard to follow. We take the Disjoint Relaxed Difference Set (DRDS)
based rendezvous algorithm (please refer to Chap.8) as an example. As described in
Problem 5.2, the system consists of M users with available set Ci for user ui and the
common available port set G = ⋂m

i=1 Ci �= ∅. Suppose the diameter of the system
is D, which implies any two users are connected within D hops. Notice that, if the
system is not a connected component, no information can be exchanged between
any disconnected components, and each separated disconnected component could
run the rendezvous algorithm independently and the result would not affect the other
components. We propose a distributed blind rendezvous algorithm that guarantees
rendezvous for all users in O(N 2D) time slots in Sect. 10.1. The correctness and time
complexity are derived in Sect. 10.2. We discuss about the rendezvous problem in a
general multi-hop system in Sect. 10.3 and we summary the chapter in Sect. 10.4.

10.1 Algorithm Description

We adopt the intuitive idea in [1–3] to extend the DRDS algorithm for Problem 5.1
to the multiple users version: once every two users rendezvous on some common
available port successfully, they can exchange the information about the set of avail-
able ports and they can synchronize their parameters (the set of available ports) such
that they would generate the same hopping sequence afterwards.

Assume the available port set to be C ⊆ U , and we describe the algorithm as in
Algorithm 10.1. The user runs the DRDS based rendezvous algorithm based on its
own port set C . Once rendezvous happens with another user who has available port
setC ′ ⊆ U , they can exchange their information about the available ports and update
C = C

⋂
C ′, and then continue the rendezvous process. It is easy to see that two

users would generate the same hopping sequence until another rendezvous happens.
The correctness and time complexity are analyzed in Theorem 10.1.

© Springer Nature Singapore Pte Ltd. 2017
Z. Gu et al., Rendezvous in Distributed Systems,
DOI 10.1007/978-981-10-3680-4_10

123

http://dx.doi.org/10.1007/978-981-10-3680-4_8
http://dx.doi.org/10.1007/978-981-10-3680-4_5
http://dx.doi.org/10.1007/978-981-10-3680-4_5

124 10 Blind Rendezvous for Multi-users Multihop System

Algorithm 10.1 Blind Rendezvous Algorithm for Multiuser Multihop System
1: Input: C ⊆ U ;
2: while Not terminated do
3: Run the DRDS based rendezvous algorithm (Algorithm 8.2 in Chap.8) based on available port

set C ;
4: if Rendezvous with the user that has the available port set C ′ ⊆ U then
5: C := C

⋂
C ′;

6: end if
7: end while

10.2 Correctness and Complexity

Theorem 10.1 Algorithm 10.1 guarantees that all users can achieve rendezvous in
MT T R = O(N 2D) time slots, where D is the diameter of the network.

Proof The theorem can be proved as follows. Since every two users ui , u j are con-
nected within D hops, denote all the users along the shortest path connecting two
users as:

{ul0 , ul1 , ul2 , . . . , ulk } (10.1)

where k ≤ D, ul0 = ui , ulk = u j . We show that user ulh can update the set of
available ports (denoted as C ′

lh
) as a subset of Ci

⋂
Clh in O(N 2h) time slots.

We apply the inductive method on lh where 0 ≤ h ≤ k:

(1) When h = 0, ui = ul0 and thus the theorem holds;
(2) suppose when h ≤ h′ < k, user ulh can update the set of available ports as:

C ′
lh ⊆ Ci

⋂
Clh (10.2)

in O(N 2h) time slots. Since user ulh′+1
can rendezvous with user ul ′h in O(N 2)

time slots and they would update (synchronize) their sets of available ports, thus
we have:

C ′
lh′+1

= C ′
lh

⋂
Clh′+1

⊆ Ci

⋂
Clh′+1

(10.3)

and the time is bounded by O(N 2(h + 1)).

Combining the two cases, u j can update the set of available ports asC ′
j ⊆ Ci

⋂
C j

in O(N 2D) time slots. Therefore, for any user u j and any other user ui in the network,
the synchronized port set would be C ′

j ⊆ C j
⋂

Ci after O(N 2D) time slots. Thus,
the final available port set for user u j should be

⋂m
i=1 Ci if all users have begun the

rendezvous process for O(N 2D) time slots. Thus, all users hop through the available
ports according to the same sequence generated by the DRDS based rendezvous
algorithm. The theorem holds.

http://dx.doi.org/10.1007/978-981-10-3680-4_8

10.3 Discussions 125

10.3 Discussions

In practice, the rendezvous process among multiple users in a multihop system could
be more complicated. In this book, we make the assumption as in [3] that all users
in the system share at least one common channel (the assumption is to suit cognitive
radio networks, but should also apply to many distributed systems). This assumption
is meaningful in some specific applications, such as file sharing where the system
would dedicate a common external port, and message broadcasting which must be
conducted on a common channel. A system is fully connected for communication
if every two neighboring users share some common available port, which does not
have be made known to all users.

Considering a Cognitive radio network where five SUs coexist with four PUs
as depicted in Fig. 3.3 and they share the common available channel 5. When PU4
occupies channel 5, rendezvous between every pair of neighboring users can still
happen. As illustrated in Fig. 10.1, (secondary) user A can rendezvous with user
B on channel 5, user B can rendezvous with user C on channel 3, 4 or 5, user B
can rendezvous with user D on channel 4 when channel 5 becomes unavailable for
user D, and user D can rendezvous with user E on channel 1, 4 or 6. Although the
five users do not share a single common available channel, rendezvous can happen
between every pair of neighboring users, and thus the rendezvous process to cover
the entire network can still be fulfilled.

This mode of communication takes place in many distributed systems, when the
external ports are occupied by some unpredicted services or events. For example, in

Fig. 10.1 An example of rendezvous among multiple users in a multihop CRN

http://dx.doi.org/10.1007/978-981-10-3680-4_3

126 10 Blind Rendezvous for Multi-users Multihop System

Fig. 10.2 An example of rendezvous among multiple entities in a distributed system

Fig. 10.2, node a can be connected to three neighbors and they have different sets of
available ports. Node a and node b can achieve rendezvous on common port 4 or 6,
nodea andnoded can rendezvous on commonport 1 or 6,while nodea andnode c can
only rendezvous on commonport 2.Although there exists no commonport among the
four nodes, they can construct communication link between every pair of neighbors.
If node b wants to send a message to node c, it can first send the message to node
a through port 4 or 6; after receiving the message, node a can re-transmit it to node
c through port 2. Therefore, communication over the entire system is maintained.
Therefore, we aim to design efficient algorithms to construct a distributed system
based on the rendezvous process between every pair of neighboring users in the
future.

10.4 Chapter Summary

In this chapter, we study the blind rendezvous problem for multiple users in a multi-
hop distributed system. The intuitive idea is to generate the rendezvous sequence
according to different local parameters. For example, according to the users’ identi-
fier (ID) and the available ports set, the user can establish afixed rendezvous sequence.
For every two neighboring nodes in the system, if they rendezvous on some common
available port, they can synchronize their local parameters and then they can access
the ports by the same rendezvous sequence. This extension could help solve the
rendezvous problem in a multi-hop distributed system and they can finally compute

10.4 Chapter Summary 127

the common available port among all the users. This can be useful in some applica-
tions, such as one node tries to broadcast a message to all nodes through a common
available port.

Inmanypractical applications, theremaynot exist a common available port among
all users but they can construct communication link between every two neighbor-
ing users. Therefore, it is a practical and good topic to design efficient rendezvous
algorithms for a pair of neighboring users with short rendezvous time.

References

1. Chuang, I., Wu, H.-Y., Lee, K.-R., & Kuo, Y.-H. (2013). Alternate hop-and-wait channel ren-
dezvous method for cognitive radio networks. In INFOCOM.

2. Gu, Z., Hua, Q.-S., Wang, Y., & Lau, F. C. M. (2013). Nearly optimal asynchronous blind
rendezvous algorithm for cognitive radio networks. In SECON.

3. Liu, H., Lin, Z., Chu, X., & Leung, Y.-W. (2012). Jump-stay rendezvous algorithm for cognitive
radio networks. IEEE Transactions on Parallel and Distributed Systems, 23(10), 1867–1881.

Part III
Oblivious Blind Rendezvous in Distributed

Systems

Chapter 11
Oblivious Blind Rendezvous

Abstract Time is divided into slots of equal length and each user can access an
available channel in each time slot. Rendezvous is achieved only when the users
access the same channel in the same time slot. All the extant blind rendezvous
algorithms assume they know the global parameter N and the labels of these N
channels, and some works [1] also assume each user knows the number of users
in the network. In this part, we introduce the oblivious blind rendezvous problem,
where oblivious means the entities’ ports are labeled locally. As introduced in Part
II, most blind rendezvous algorithms assume that all entities can see the same labels
of the connected ports. However, this assumption is impractical in many distributed
systems. For example, in cognitive radio networks, many works assume the licensed
spectrum is divided into N non-overlapping channels with fixed labels {1, 2, . . . , N },
and each user can access the channel not occupied by any nearby PUs as an available
channel. However, this assumption may not align with the reality when designing
blind rendezvous algorithms. Actually, all users may not see the same labels for the
licensed channels. For example, the ‘TV white space’ that could be sensed by the
users has operating frequencies ranging from 470–790MHz in Europe [2, 4], but it is
located in the VHF (i.e. very high frequency) (54–216MHz) and UHF (i.e. ultra high
frequency) (470–698MHz) bands in the United States [3]. Obviously, the labeling of
this space could be different and the same frequency band (channel) may be assigned
different labels under different administrations. In a general distributed system, each
user has N external ports and it can label these ports locally from {1, 2, . . . , N } in
order to distinguish them. Any port k of user ui may not be connected with port k of
user u j since both users may only use k to identify the different ports. In some special
applications, the ports may be labeled according to a global rule. For example, the
FTP service uses port 21 of the computers, and the default port for WWW service
is 80. We study a more general situation where the users do not have a common
labeling rule, and this can be used in many general applications. In this chapter,
we first present the system model for the oblivious blind rendezvous problem, in
Sect. 11.1; then we introduce the commonly used metrics for evaluation in Sect. 11.2.
The problem definition is provided in Sect. 11.3 and we give examples of oblivious
blind rendezvous for better understanding in Sect. 11.4. Finally, we summarize the
chapter in Sect. 11.5.

© Springer Nature Singapore Pte Ltd. 2017
Z. Gu et al., Rendezvous in Distributed Systems,
DOI 10.1007/978-981-10-3680-4_11

131

132 11 Oblivious Blind Rendezvous

11.1 System Model

In this part, we present the rendezvous algorithms for different types of rendezvous
settings, on the basis that the ports are oblivious, i.e. all entities do not apply the
same labeling rules. Therefore, the rendezvous settings can be represented as:

RSoblivous =< Alg, T ime, Port, I D,Obli > (11.1)

where Alg ∈ {Alg − AS, Alg − S}, T ime ∈ {Syn, Asyn}, Port ∈ {Port − S,

Port − AS}, and I D ∈ {Non − Anon, Anon}.
Technically speaking, suppose there are M(M ≥ 2) users in a distributed system,

and each user has N (N ≥ 1) external ports. In the RSoblivous setting, the ports of
each user can be labeled freely by the user itself. Denote all users as:

{u1, u2, . . . , uM } (11.2)

For simplicity, we assume that each external port have a universal label which is not
seen by the users. Denote the set of ports with universal labels as:

U = {u1, u2, . . . , uN } (11.3)

For any user ui , suppose the user labels the N ports locally as:

{pi (1), pi (2), . . . , pi (N)} (11.4)

For any two users ui , u j , the ports pi (k) and p j (k) may not be connected after the
local labeling.

Suppose the adopted rendezvous algorithms of the users are:

{F1, F2, . . . , FM} (11.5)

respectively (we suppose user ui runs algorithm Fi).

(1) In the Alg − AS setting, for any two users ui , u j , i �= j , Fi and Fj could be
different (we use Fi �= Fj to indicate that they are different).

(2) In the Alg − S setting, all users share the same algorithm, i.e. ∀i, j ∈ [1, M],
Fi = Fj .

Similar to blind rendezvous in the distributed systems, time is also assumed to be
divided into slots of equal length 2t , where t is the sufficient time for establishing
a communication link between two connected ports. Suppose the system is slot-
aligned and each user can choose a port for rendezvous attempt in each time slot. If
two users’ time slots are not aligned, we can also transfer it to slot-aligned scenario
as in Fig. 5.3 in Chap.5.

Denote the start time of the users as:

http://dx.doi.org/10.1007/978-981-10-3680-4_5

11.1 System Model 133

{t1, t2, . . . , tM} (11.6)

respectively, where the start time of user ui is ti .

(1) In the Syn setting, all users have the same start time, i.e. ∀i, j ∈ [1, M], ti = t j .
(2) In the Asyn setting, for any two users ui , u j , i �= j , ti and t j could be different,

i.e. ti �= t j .

Similar to the blind rendezvous problem, some ports of each usermay be occupied
by other services, and the user could use only a fraction of the N external ports. We
say a port is available if it is not occupied by others and the user can choose it
for communication. For any user ui , it can sense an available port set as Ci ⊆ U .
Although user ui may have already labelled the ports locally, it can also label the
available ports as

Ci = {ci (1), ci (2), . . . , ci (ki)} (11.7)

where ki = |Ci | represents the number of available ports. Actually, we can regard
each available port ci (j) as a port with global label ul .

(1) In the Port − S setting, all users have the same global available ports, i.e. for
each user ui and user u j , ki = k j , and ∀li ∈ [1, ki], there exists l j ∈ [1, k j] such
that port ci (li) and port c j (l j) correspond to the same global label (they are
connected).

(2) In the Port − AS setting, all users may not have the same available ports, i.e.
for each user ui and user u j , ∃li ∈ [1, ki] such that port ci (li) is not connected
to any available port in C j .

In the Port − AS setting, in order to guarantee rendezvous, two neighboring users
must have at least one common available port, i.e. for any two neighboring users
ui , u j , there exists li ∈ [1, ki] and l j ∈ [1, k j] such that ci (li) and c j (l j) correspond
to the same global port, which indicates they are connected. For simplicity, we denote
Ci

⋂
C j �= ∅.

In designing oblivious blind rendezvous algorithms, the users’ identifiers (IDs)
play an important role. Therefore, we define the settings as follows:

(1) In the Anon setting, all users are anonymous and they have no distinct identifiers.
(2) In the Non − Anon setting, each user has a distinct identifier (ID). Denote user

ui ’s ID as Ii . For any two users ui , u j , i �= j , Ii and I j are different, i.e. Ii �= I j .

Actually, as there are M users in all and we suppose the a user’s ID is a distinct
number in the range [1, M̂], where M̂ means the maximum ID value for the users.
Some works assume M̂ = M , which means the user could only have continuous IDs
in the range [1]. In this book, we assume M̂ could be larger than M , but we assume it
is bounded as M̂ ≤ Nc where c could be any arbitrary large constant. For simplicity,
we re-use notation M to denote M̂ in the following chapters.

134 11 Oblivious Blind Rendezvous

11.2 Metrics

We use Time to Rendezvous (T T R) to measure the efficiency of rendezvous algo-
rithms. As introduced in the model, the start time of user ui is denoted as ti . Suppose
the finish time of user ui is di , where di > ti . For any two neighboring users ui and
u j , both users will finish the process at the same time if they achieve rendezvous,
thus di = d j .

We define the time to rendezvous between two users in oblivious blind rendezvous
as:

Definition 11.1 For two neighboring users ui and u j , suppose their start time are
ti , t j respectively, and their finish time are di , d j where di = d j = d. The time to
rendezvous is defined as:

T T R = d − max{ti , t j } (11.8)

We also denote the rendezvous time as the elapsed time of the user who starts the
rendezvous process later. We define the time to rendezvous among all M users as:

Definition 11.2 Considering all user {u1, u2, . . . , uM } in the system, denote their
start time and finish time as {t1, t2, . . . , tM} and {d1, d2, . . . , dM } respectively. The
time to rendezvous is defined as:

T T R = max
1≤i≤M

di − max
1≤i≤M

ti (11.9)

We also use two important metrics to evaluate the proposed rendezvous algo-
rithms:

(1) Maximum Time to Rendezvous (MTT R) represents the maximum time used to
rendezvous in all different situations, such as different available ports, different
start times, etc.

(2) Expected Time to Rendezvous (ET T R) represents the expected time used to
rendezvous in all different situations.

MTT R reveals the performance of the rendezvous algorithm in the worst situa-
tion, while ET T R reveals the average performance.

11.3 Problem Definition

As described in the System Model, there are M users and their available ports can
be denoted as:

{C1,C2, . . . ,CM} (11.10)

11.3 Problem Definition 135

If rendezvous happens for all users, denote the common available port set as:

G =
M⋂

i=1

Ci �= ∅ (11.11)

which are the common available ports (with global labels). Before we define the
rendezvous problem for multiple users in the system, we first formulate the oblivious
blind rendezvous (OBR) problem between two users, as follows:

Problem 11.1 OBR-2:Given an available channel setC ⊆ U and the ID I ∈ [1, M],
design an algorithm to access global ports over different time slots t : fC,I (t) ∈ C
such that for any two users ui and u j with Ci ,C j ⊆ U,Ci

⋂
C j �= ∅ and ID Ii , I j ∈

[1, M], Ii �= I j respectively,

∀δ, ∃Tδ, s.t. f iCi ,Ii (Tδ + δ) = f j
C j ,I j

(Tδ). (11.12)

The T T R value is Tδ when user u j starts the rendezvous process δ time slots later
than user ui . The MTT R value of the algorithms is defined as:

MTT R f i , f j = max∀δ
Tδ (11.13)

The objective is to design rendezvous algorithms with bounded MTT R value to
guarantee rendezvous between two users. Notice that, f i represents the algorithm
user ui adopts. If we are to design symmetric algorithms for the users, both users ui
and u j should adopt the same algorithm, i.e. f i = f j .

Remark 11.1 When user u j starts the rendezvous process earlier than user ui , δ < 0
in Eq. (11.12).

Based on the rendezvous problem definition of two users, we formulate theObliv-
ious Blind Rendezvous Problem forMultiple Users in theMultihop system as follows:

Problem 11.2 Consider a multihop system with M(M ≥ 2) users where each user
has a distinct ID I ∈ [1, M]. Denote the available port set for user ui as:

Ci = {ci (1), ci (2), . . . , ci (ki)} (11.14)

where ki = |Ci |. Let G = ⋂
i Ci and G �= ∅. Design distributed algorithms for the

users such that all users are guaranteed to rendezvous on the sameport inG, regardless
of the different times when the users begin the process.

136 11 Oblivious Blind Rendezvous

11.4 Examples of Oblivious Blind Rendezvous

Figure11.1 is an example for OBR-2. Assume there are 5 external ports:

U = {u1, u2, u3, u4, u5} (11.15)

of which u1, u3 are available for user ua with ID Ia = 1:

Ca = {ca(1), ca(2)} (11.16)

and the ports are labeled locally as:
{
ca(1) = u1
ca(2) = u3

Meanwhile, u1, u2, u4, u5 are available for user ub with ID Ib = 2:

Cb = {cb(1), cb(2), cb(3), cb(4)} (11.17)

and the ports are labeled locally as:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

cb(1) = u5
cb(2) = u4
cb(3) = u2
cb(4) = u1

Consider a simple algorithm: user ua repeats accessing the ports according to the
sequence:

{ca(1), ca(1), ca(2), ca(2)} (11.18)

while user ub accesses ports according to the sequence:

Fig. 11.1 An example of OBR-2

11.4 Examples of Oblivious Blind Rendezvous 137

Fig. 11.2 An example of OBR-2 when the users adopt a symmetric algorithm and δ = 1

Fig. 11.3 An example of OBR-2 when the users adopt a symmetric algorithm and δ = 2

{cb(1), cb(2), cb(3), cb(4)} (11.19)

When user ub starts the process δ = 2 time slots later, rendezvous can be achieved
on port u1 with T T R = 4 when ca(1) = cb(4) = u1, as illustrated in Fig. 11.1.

However, it is easy to check that the above simple algorithm cannot guarantee
rendezvous for all scenarios such as δ = 0.

In Fig. 11.1, two users run different strategies to achieve rendezvous, which is
impossible in practice since all users should run the same algorithm, i.e. symmetric
algorithm. Figures11.2 and 11.3 show another example of OBR-2 where the users
share the same strategy. Similar to the above, user ua and user ub have the same
available port sets, as in Fig. 11.1, i.e. user ua has two available ports, and the available
port set is:

Ca = {ca(1), ca(2)} (11.20)

and user ua has four and the set is:

Cb = {cb(1), cb(2), cb(3), cb(4)} (11.21)

but only one common available port exists:

ca(1) = cb(4) = u1 (11.22)

Different from Fig. 11.1, both users run a same simple algorithm: each user accesses
the ports by repeating the sequence:

138 11 Oblivious Blind Rendezvous

{1, 2, . . . , k} (11.23)

which are of local labels, where k is the number of available ports. Thus user ua
repeats accessing the ports:

{ca(1), ca(2), ca(1), ca(2), . . .} (11.24)

until rendezvous, and similarly for user ub.
For the asynchronous scenario, supposing user ub starts the attempt δ = 1 time

slot later, rendezvous is achieved as depicted in Fig. 11.2 at time slot 5 since ca(1) =
cb(4). However, it is easy to see that the above simple algorithm cannot guarantee
rendezvous for all scenarios such as when δ = 2, as illustrated in Fig.11.3.

Combining the two examples, we aim to design efficient distributed algorithms
with bounded T T R values for different types of rendezvous settings.

11.5 Chapter Summary

In this part, we propose the oblivious blind rendezvous problem and present different
types of rendezvous algorithms.Oblivious blind rendezvous assumes that the external
ports are not labeled by a universal rule, and the users have to label the ports them-
selves locally. In Chap.12, we design asymmetric algorithms for the users, which is
similar to the blind rendezvous problem. In Chap.13, we study symmetric algorithms
for the users in a distributed system. We first assume the users are non-anonymous
and they can design algorithms on the basis of the distinguishable identifiers. The
method of designing fully distributed rendezvous algorithms is then presented in
Chap.14 where no global information is utilized in rendezvous, such as the number
of external ports, the number of users in the system, and the maximum identifiers for
the users. We study oblivious blind rendezvous for anonymous users in Chap.15 and
we introduce several randomized algorithms. Finally, we extend the oblivious blind
rendezvous between two users to the rendezvous problem among multiple users in a
multi-hop system in Chap.16.

To begin with, we introduce the oblivious blind rendezvous problem, with exam-
ples. Different from blind rendezvous, the external ports are not labeled globally
and the users may see different “local” labels of a pair of connected ports. In this
chapter, we introduce the system model including several aspects in a rendezvous
setting: Algori thm, T ime, Port and I D. We will present algorithms for differ-
ent rendezvous settings. We also use Maximum Time to Rendezvous (MTT R) and
ExpectedTime toRendezvous (ET T R) to evaluate the rendezvous algorithms. These
two metrics are used to evaluate the performance of the worst situation and the aver-
age performance respectively. We also provide some examples of oblivious blind
rendezvous to demonstrate the differences with blind rendezvous.

http://dx.doi.org/10.1007/978-981-10-3680-4_12
http://dx.doi.org/10.1007/978-981-10-3680-4_13
http://dx.doi.org/10.1007/978-981-10-3680-4_14
http://dx.doi.org/10.1007/978-981-10-3680-4_15
http://dx.doi.org/10.1007/978-981-10-3680-4_16

References 139

References

1. Chuang, I., Wu, H.-Y., Lee, K.-R., & Kuo, Y.-H. (2013). Alternate hop-and-wait channel ren-
dezvous method for cognitive radio networks. In INFOCOM.

2. ETSI. (2012). EN 301 598 white space devices (WSD); wireless access systems operating in
the 470 MHz to 790 MHz frequency band.

3. Flores, R.E. Guerra, A.B., & Kightly, E.W. (2013). IEEE 802.11af: A standard for TV white
space spectrum sharing. IEEE Communications Magazine, 62, 92–100.

4. Ofcom. (2013). Regulatory Requirements for White Space Devices in the UHF TV band. http://
www.cept.org/Documents/se-43/6161/.

http://www.cept.org/Documents/se-43/6161/
http://www.cept.org/Documents/se-43/6161/

Chapter 12
Asymmetric Oblivious Blind
Rendezvous Algorithms

Abstract In this chapter, we present asymmetric algorithms for the oblivious blind
rendezvous problem. In the setting, we fix Alg as:

RS =< Alg-AS,Time, Port, ID,Obli > (12.1)

whereTime ∈ {Syn, Asyn}, Port ∈ {Port − S,Port-AS}, and I D ∈ {Non-Anon, Anon}.
Similar to designing asymmetric algorithms for the blind rendezvous problem in
Chap.6, the users’ identifiers (IDs) could be used to break symmetric situations in dis-
tributed rendezvous algorithms, but they do not play the vital role, since many works
do not assume the existence of distinct IDs. Therefore, we design rendezvous algo-
rithms for 4 different rendezvous setting: Synchronous and Port-Symmetric, Asyn-
chronous and Port-Symmetric, Synchronous and Port-Asymmetric, and Asynchro-
nous and Port-Asymmetric, regardless of the choice of I D from {Non-Anon, Anon}.
In Sect. 12.1, we present efficient algorithms for port-symmetric scenarios, where the
users could start synchronously or asynchronously. In Sect. 12.2, we handle the syn-
chronous andport-asymmetric situation, and the rendezvous algorithms for asynchro-
nous and port-asymmetric situation are provided in Sect. 12.3. Finally, we summarize
the chapter in Sect. 12.4.

12.1 Port-Symmetric Rendezvous

Consider two users ua and ub, and suppose their available port sets are Ca,Cb ⊆ U
respectively.We introduce rendezvous algorithms for port-symmetric rendezvous for
both synchronous users and asynchronous users, in the following setting:

RS =< Alg-AS,Time, Port-S, ID,Non-Obli > (12.2)

where Time can be either Syn or Asyn.

© Springer Nature Singapore Pte Ltd. 2017
Z. Gu et al., Rendezvous in Distributed Systems,
DOI 10.1007/978-981-10-3680-4_12

141

http://dx.doi.org/10.1007/978-981-10-3680-4_6

142 12 Asymmetric Oblivious Blind Rendezvous Algorithms

Algorithm 12.1 Fixed Port Accessing Algorithm
1: Denote set of available ports as C = {c(1), c(2), . . . , c(k)} where k = |C |;
2: Choose a random number s ∈ [1, k];
3: Access port c(s) all the time;

Algorithm 12.2 Oblivious Sequential Accessing Algorithm
1: Denote time t := 1, the user’s port set as C ⊆ U ;
2: Denote k := |C |, and C = {c(1), c(2), . . . , c(k)}
3: while Not rendezvous do
4: Let x := (t − 1)%k + 1;
5: Access port c(x) in time t ;
6: t := t + 1;
7: end while

We introduce two different algorithms. The first one is called the Fixed Port
Accessing (FPA) algorithm, which is described in Algorithm12.1. In the algorithm,
the user labels the available channels as:

C = {c(1), c(2), . . . , c(k)} (12.3)

and it chooses a random number s in the range [1, k], where k is the number of all
available ports. Then, it will access port c(s) all the time.

The second algorithm is called the Oblivious Sequential Accessing (OSA) algo-
rithm which is described in Algorithm 12.2. In the algorithm, the user accesses the
ports in a sequential way just like the Sequential Accessing Algorithm in Chap.6.
The difference is: the user does not know the global label of each port, and it has to
access the port sequentially by its local labels.

Consider two users ua and ub, and suppose user ua runs Algorithm12.1 while
user ub runs Algorithm12.2. We show that they can rendezvous quickly if they start
at the same time.

Theorem 12.1 Two synchronous, port-symmetric users can achieve rendezvous
within k time slots, where k is the number of the available ports, if they adopt
Algorithms12.1 and 12.2 respectively.

Proof Denote the available port sets for user ua and ub as:{
Ca = {ca(1), ca(2), . . . , ca(k)}
Cb = {cb(1), cb(2), . . . , cb(k)}

where k represents the number of available ports.

http://dx.doi.org/10.1007/978-981-10-3680-4_6

12.1 Port-Symmetric Rendezvous 143

From the definition of port-symmetric in oblivious blind rendezvous (see
Chap.11), for any port ca(la) ∈ Ca , there exists lb ∈ [1, k] for user ub such that
port cb(lb) in the available port set Cb is connected to ca(la), i.e. they correspond to
a common port with the same global label.

Without loss of generality, suppose user ua adopts Algorithm12.1 and the chosen
port is always ca(la). Clearly, there exits lb ∈ [1, k] such that cb(lb) is connected with
ca(la). Since two users start at the same time, user u j will access port cb(lb) in the lbth
time slot, which causes the rendezvous to happen. Therefore, the time complexity is
bounded as:

T T R = lb ≤ k (12.4)

Therefore, the theorem holds.

When two users are asynchronous, one user may start its algorithm earlier. Under
this situation, rendezvous can also be guaranteed in a short time. We derive the time
complexity of rendezvous in the following theorem.

Theorem 12.2 Two asynchronous, port-symmetric users can achieve rendezvous
within k time slots, k is the number of available ports, if they adopt Algorithms12.1
and 12.2 respectively.

Proof Similar to the proof of Theorem 12.1, we suppose user ua chooses port ca(la)
which is connected to user ub’s port cb(lb). We show the theorem from two aspects.

Suppose user ua starts � time slots earlier than user ub. When user ub starts
Algorithm12.2, it will spend lb time slots to access port cb(lb) from its clock. Since
user ua accesses port ca(la) all the time, they can rendezvous in time slot lb after user
ub starts.

Suppose user ub starts � time slots earlier than user ua . Obviously, when user ua
starts Algorithm12.1, it will access port ca(la) all the time. For the first time of user
ua , user ub is accessing port cb(�%k + 1). If �%k + 1 ≤ lb, after lb − (�%k) time
slots, userubwill access port cb(lb),whichmakes them rendezvous. If�%k + 1 > lb,
after k + lb − (�%k) ≤ k time slots, user ub will access port cb(lb). Therefore, they
can rendezvous within k time slots if user ub starts � time slots earlier.

Combining the two aspects, rendezvous between two asynchronous users can be
achieved within k time slots.

For example, suppose two symmetric users have three available ports and port
ca(2) is connected to port cb(3). As shown in Fig. 12.1, if they start at the same time,
rendezvous happens at time slot 3; they can also achieve rendezvous in 3 time slots
if one user starts later, which is shown in Fig. 12.2.

12.2 Synchronous and Port-Asymmetric Rendezvous

Consider two users ua and ub, and suppose their available port sets are Ca,Cb ⊆ U
respectively. In the following setting,

http://dx.doi.org/10.1007/978-981-10-3680-4_11

144 12 Asymmetric Oblivious Blind Rendezvous Algorithms

Fig. 12.1 An example of
oblivious blind rendezvous
between two synchronous
users

Fig. 12.2 An example of
oblivious blind rendezvous
between two asynchronous
users

RS =< Alg-AS, Syn,Port-AS, ID,Obli > (12.5)

two users start the rendezvous process at the same time and the users may have
different available port sets.

Suppose user ua labels the N external ports as:

{pa(1), pa(2), . . . , pa(N)} (12.6)

while user ub labels the N ports as:

{pb(1), pb(2), . . . , pb(N)} (12.7)

We use the local labels of the users to design asymmetric algorithms.
We introduce two asymmetric algorithms. The first one is the Modified Oblivious

Sequential Accessing Algorithm, which is described in Algorithm12.3. The algo-
rithm is a modified version of Algorithm12.2 for port-symmetric users. The intuitive
idea is also to access the ports sequentially, but the difference is: the user accesses
the ports by the local labels of N channels, i.e. repeating accessing the ports by
sequence:

{pa(1), pa(2), . . . , pa(N)} (12.8)

for user ua . Obviously, when some port p(x) is not available, we also choose a
random available one for replacement.

12.2 Synchronous and Port-Asymmetric Rendezvous 145

Algorithm 12.3 Modified Oblivious Sequential Accessing Algorithm
1: Denote time t := 1, the user’s port set as C ⊆ U ;
2: while Not rendezvous do
3: Let x := (t − 1)%N + 1;
4: if Port p(x) is available then
5: Access port p(x) in time t ;
6: else
7: Choose port p(x) randomly from C ;
8: Access port p(x) in time t ;
9: end if
10: t := t + 1;
11: end while

The other algorithm is called the Oblivious Temporary Wait Algorithm, which
is described in Algorithm12.4. The algorithm is based on Algorithm6.4 in Chap.6.
In the algorithm, the user accesses a fixed port for N time slots, and it will access
the next port for the next N time slots. We illustrate the method of constructing the
rendezvous sequence in Fig. 12.3. If the chosen port is not available, it will choose a
random one for replacement.

Algorithm 12.4 Oblivious Temporary Wait Algorithm
1: Denote time t := 1, the user’s port set as C ⊆ U ;
2: while Not rendezvous do
3: Let t ′ := (t − 1)%N 2 + 1;
4: Let x := �(t ′ − 1)/N� + 1;
5: if Port p(x) does not belong to set C then
6: Choose p(x) randomly from C ;
7: end if
8: Access port p(x) for rendezvous attempt;
9: t := t + 1;
10: end while

Without loss of generality, suppose user ua runs Algorithm12.3 and user ub runs
Algorithm12.4. We show the correctness and derive the complexity of rendezvous
in the following theorem.

Fig. 12.3 The illustration of
the oblivious temporary wait
algorithm

http://dx.doi.org/10.1007/978-981-10-3680-4_6

146 12 Asymmetric Oblivious Blind Rendezvous Algorithms

Theorem 12.3 Two synchronous, port-asymmetric users can achieve rendezvous
within N 2 time slots, if they adopt Algorithms12.3 and 12.4 respectively.

Proof Since user ua and user nb have at least one common available port, i.e.
Ca

⋂
Cb �= ∅, suppose port pa(la) is connected to pb(lb), where pa(la) ∈ Ca, pb(lb)

∈ Cb, 1 ≤ la, lb ≤ N .
Since two users start the algorithm at the same time, after (lb − 1) ∗ N time

slots, user ub will access port pb(lb) for the next N time slots, from Line 4 of
Algorithm 12.4. It is easy to see that userua will access ports {pa(1), pa(2), . . . , pa(N)}
in the following N time slots. Notice that, if some port pa(i) is not available, it will
replace it with a random available port. Therefore, when user ua accesses port pa(la)
in time slot (lb − 1) ∗ N + la , rendezvous happens. Therefore, rendezvous is guar-
anteed within (lb − 1) ∗ N + la ≤ N 2 time slots.

12.3 Asynchronous and Port-Asymmetric Rendezvous

Consider two users ua and ub, and suppose their available port sets are Ca,Cb ⊆ U .
In the following settings,

RS =< Alg-AS,Asyn,Port-AS, ID,Obli > (12.9)

two users start rendezvous process in different time slots, and the users may have
different available port sets.

Suppose user ua labels the N external ports as:

{pa(1), pa(2), . . . , pa(N)} (12.10)

while user ub labels the N ports as:

{pb(1), pb(2), . . . , pb(N)} (12.11)

We design a modified algorithm to achieve rendezvous on the basis of the users’
local labels.

Suppose user ua also adopts the Modified Oblivious Sequential Accessing Algo-
rithm (Algorithm12.3), but user ub adopts the Modified Oblivious Temporary Wait
Algorithm as described Algorithm12.5. The difference between Algorithm12.4 is
that the user has to access a fixed port for 2N time slots, instead of N time slots. This
modification can help guarantee rendezvous between two asynchronous users.

12.3 Asynchronous and Port-Asymmetric Rendezvous 147

Algorithm 12.5 Modified Oblivious Temporary Wait Algorithm
1: Denote time t := 1, the user’s port set as C ⊆ U ;
2: while Not rendezvous do
3: Let t ′ := (t − 1)%2N 2 + 1;
4: Let x := �(t ′ − 1)/2N� + 1;
5: if Port p(x) does not belong to set C then
6: Choose p(x) randomly from C ;
7: end if
8: Access port p(x) for rendezvous attempt;
9: t := t + 1;
10: end while

Theorem 12.4 Two asynchronous, port-asymmetric users can achieve rendezvous
within 2N 2 time slots, if they adopt Algorithms12.3 and 12.5 respectively.

Proof Since user ua and user nb have at least one common available port, i.e.
Ca

⋂
Cb �= ∅, suppose port pa(la) is connected to pb(lb), where pa(la) ∈ Ca, pb(lb)

∈ Cb, 1 ≤ la, lb ≤ N . We derive the theorem from two aspects.
Suppose user ua starts earlier than user ub. When user ub starts the rendezvous

algorithm, it will access port pb(lb) for 2N time slots, after (lb − 1) ∗ 2N time slots
have elapsed. No matter by how many slots user ua is earlier than user ub, there
must exists N time slots such that user ua accesses ports {pa(1), pa(2), . . . , pa(N)}
sequentially (when some port is not available, we replace it by any available one),
while user ub keeps accessing port pb(lb). Therefore, rendezvous can be guaranteed
in lb ∗ 2N ≤ 2N 2 time slots.

Suppose user ua starts � time slots later than user ub. Since the period of user
ub’s accessing algorithm is 2N 2, it is also 2N times of user ua’s repeating period.
We only need to consider the situation 0 ≤ Delta < 2N 2, since the other � values
can be thought of as repeating the rendezvous sequence.

(1) If ��/2N� < lb, from user ub’s clock, ub will access port pb(lb) from time
(pb − 1) ∗ 2N + 1 to pb ∗ 2N , while user ua will repeat accessing the external
ports sequentially, which implies rendezvous must happen as discussed above.

(2) If ��/2N� > lb, in the next repeat when user ub accesses port pb(lb) for 2N
time slots, rendezvous is also guaranteed. Therefore, the time complexity from
user ua’s clock is bounded within 2N (N − (��/2N� − lb)) ≤ 2N 2.

(3) If ��/2N� = lb: if�%2N <= N , user ua will access N continuous ports while
user ub will access pb(lb) during the period. This is similar as the first situation,
and rendezvous happens within 2N time slots; if �%2N > N , they must ren-
dezvous when user ub accesses port pb(lb) in the next repeat, which is similar
to the second situation. The time is also bounded by 2N 2 time slots.

Combining these aspects, two asynchronous users can achieve rendezvous within
2N 2 time slots, by adopting two asymmetric algorithms.

148 12 Asymmetric Oblivious Blind Rendezvous Algorithms

12.4 Chapter Summary

In this chapter, we design asymmetric algorithms for the users to achieve oblivious
blind rendezvous. When the users are allowed to run different algorithms, we may
not use the user’s identifier to break symmetry. Therefore, we mainly handle four
different rendezvous settings: Synchronous and Port-Symmetric, Asynchronous and
Port-Symmetric, Synchronous and Port-Asymmetric, and Asynchronous and Port-
Asymmetric.

Actually, when the users are port-symmetric, we can handle both the synchro-
nous and the asynchronous scenarios. Notice that, symmetric ports have different
meanings comparedwith blind rendezvous. In traditional blind rendezvous, two port-
symmetric users mean their available ports are the same, while two port-symmetric
users in oblivious blind rendezvous mean each available port must be connected
to one available port of the other user. We present two different algorithms called
the Fixed Port Accessing (FPA) algorithm and the Oblivious Sequential Accessing
(OSA) algorithm, where the first one keeps accessing one available port, while the
other one accesses the port sequentially. Two users running two proposed algorithms
respectively can achieve rendezvous within k time slots, where k is the number of
available ports.

For the synchronous and port-asymmetric setting, we modify the OSA algorithm
and design the oblivious version of the Temporal Wait Algorithm in Chap. 6. The
intuitive idea is: one userwaits for a sufficiently long timewhile the other accesses the
ports sequentially. Themethod is also similar to designing asymmetric algorithms for
the blind rendezvous problem. For the asynchronous and port-asymmetric settings,
we also modify the Oblivious Temporary Wait algorithm and it can work well for
two neighboring asynchronous and port-asymmetric users.

This chapter presents the intuitive idea of designing asymmetric algorithms for
oblivious blind rendezvous, and we will introduce more symmetric algorithms for
the other types of rendezvous settings.

http://dx.doi.org/10.1007/978-981-10-3680-4_6

Chapter 13
Oblivious Blind Rendezvous
for Non-anonymous Users

Abstract In this chapter, we present symmetric algorithms for the blind rendezvous
problem between two non-anonymous users. In the setting, we fix Alg and I D as:

RS =< Alg-S, T ime, Port, Non-Anon, Obli > (13.1)

where Port ∈ {Port − S, Port − AS} and T ime ∈ {Syn, Asyn}. It is easy to see
that there are 4 different rendezvous settings when Alg is fixed as symmetric, I D is
fixed as non-anonymous, and Label is fixed as oblivious. The most difficult part in
designing symmetric algorithms is to break symmetry among the indistinguishable
users, such that the users in the system can perform differently from each other. In
this chapter, we assume each user has distinct identifiers (IDs) and this informa-
tion can help break symmetry in the distributed system. In Sect. 13.1, we present a
rendezvous algorithm for two synchronous users when they start the oblivious ren-
dezvous algorithm at the same time. This algorithm is not that efficient compared
with the blind rendezvous algorithm for two synchronous users where the users share
the same labels of the external ports. We then present two distributed algorithms for
asynchronous users in Sect. 13.2. The intuitive idea is to design hopping sequences
based on the differences in the users’ IDs. The first algorithm (ID Hopping) utilizes
the user’s ID directly while the other one (Multi-Step channel Hopping) uses the con-
verted bits of the user’s ID, which is similar to the idea of designing local sequence
based algorithms in Chap. 9. In order to show the efficiency of the proposed algo-
rithms, we present the lower bounds for oblivious blind rendezvous when the users
are non-anonymous in Sect. 13.3. Finally, we summarize the chapter in Sect. 13.4.

13.1 Synchronous Oblivious Blind Rendezvous

Consider two users ua and ub, and suppose their available port sets are Ca,Cb ⊆ U
respectively. For the following setting,

RS =< Alg-S, Syn,Port,Non-Anon,Obli > (13.2)

© Springer Nature Singapore Pte Ltd. 2017
Z. Gu et al., Rendezvous in Distributed Systems,
DOI 10.1007/978-981-10-3680-4_13

149

http://dx.doi.org/10.1007/978-981-10-3680-4_9

150 13 Oblivious Blind Rendezvous for Non-anonymous Users

where two users have the same start time, we introduce efficient rendezvous algo-
rithms that work well for both port-symmetric and port-asymmetric scenarios.

13.1.1 Synchronous Check and Hop Algorithm

In the first place, we introduce a simple ID conversion algorithm, Algorithm 13.1,
with input identifier (ID) I and base value b. The output consists of l + 1 bits where
each bit ranges in [0, b). Algorithm 13.1 converts the user’s ID to a new number
under base b.

For example, input (8, 2) corresponds to the output (1, 0, 0, 0), which can be
thought of as the common binary representation.

Algorithm 13.1 ID Conversion (I, b)
1: Input: I, b;
2: Output: d = {d0, d1, · · · , dl };
3: l := �logb I�, i := l;
4: while i ≥ 0 do
5: di := I mod b;
6: I := �I/b�;
7: i := i − 1;
8: end while

We present the Synchronous Check and Hop (SCH) algorithm in Algorithm 13.2.
Suppose each user has a unique ID I ∈ [1, M], available channel setC , and an upper
bound estimation of the number of total external ports ˜N = O(N). Notice that, in
many practical applications, the user may not know the exact number of all external
ports (N of them), and the proposed algorithm also works when the user is only
aware of an estimation of value N .

The SCH algorithm consists of two stages: Synchronous Check Stage and Hop
Stage. The Synchronous Check Stage generates CT = p˜P numbers, as shown in
Lines 9–10, where p is the smallest prime number p ≥ max{k, 3}, k = |C | and ˜P is
the smallest prime number no less than the estimation ˜N . From Line 10, this stage
repeats the sequence: −→z = {1, 2, . . . , p} (13.3)

for ˜P times, which is then mapped as:

−→
z′ = {1, 2, . . . , k, 1, 2, . . . , p − k} (13.4)

as in Line 16 of the algorithm since only k ports are available. Figure13.1 shows the
process of the construction.

13.1 Synchronous Oblivious Blind Rendezvous 151

Algorithm 13.2 Synchronous Check & Hop Algorithm
1: Input: I,C , an estimation ˜N ;
2: k := |C |;
3: Find the smallest prime numbers p ≥ max{k, 3}, ˜P ≥ ˜N ;
4: l := �logp−1 I�;
5: Invoke ID Conversion (I, p − 1) and the output is d;
6: D := {d0 + 1, d1 + 1, . . . , dl + 1, 0};
7: CT := p˜P , HT = p2(l + 2), FL = p2, t := 0;
8: while Not rendezvous and t < CT + HT do
9: if t < CT then
10: z = t mod p + 1;
11: else
12: x = �(t − CT)/FL�, y = (t − CT) mod FL;
13: y1 = �y/p�, y2 = y mod p;
14: z = (y1 + y2 · D(x)) mod p + 1;
15: end if
16: z′ = (z − 1) mod k + 1, access port c(z′) ∈ C ;
17: t = t + 1;
18: end while

Fig. 13.1 The construction of the synchronous check stage

The Hop Stage generates HT = p2(l + 2) numbers in Lines 12–14, where l =
�logp−1 I�. It consists of l + 2 frames and the length of each frame is FL = p2. In
the i-th frame, the construction of first p numbers can be thought of the user hops in
a circle of p nodes with labels {1, 2, . . . , p}:

1 → 1 + D(i) → (2D(i)) mod p + 1 → (3(D(i)) mod p + 1 → · · · (13.5)

from Lines 13–14 of the algorithm. We call D(i) the hopping step as the difference
between two consecutive numbers. Then the next p numbers are constructed the
same way as increasing the first number to 2 and holding the same hopping step
D(i). Thus the Hop Stage can be constructed iteratively.

152 13 Oblivious Blind Rendezvous for Non-anonymous Users

For example, when D(i) = 0, the corresponding sequence is:

−→z = {1, 1, . . . , 1
︸ ︷︷ ︸

p

, 2, 2, . . . , 2
︸ ︷︷ ︸

p

, . . . , p, p, . . . , p
︸ ︷︷ ︸

p

} (13.6)

and when D(i) = 1, the corresponding sequence is:

−→z = {1, 2, . . . , p
︸ ︷︷ ︸

p

, 2, 3, . . . , p, 1
︸ ︷︷ ︸

p

, . . . , p, 1, 2, . . . , p − 1
︸ ︷︷ ︸

p

} (13.7)

13.1.2 Correctness and Complexity

The intuitive idea of constructing the Synchronous Check Stage originates from the
following lemma.

Lemma 13.1 Considering two vectors X = {x1, x2, . . . , xm}, Y = {y1, y2, . . . , yn},
if their greatest common divisor gcd(m, n) = 1, let:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

X̂ = [XX · · · X
︸ ︷︷ ︸

n

]

ŷ = [YY · · · Y
︸ ︷︷ ︸

m

]

∀i ∈ [1,m], j ∈ [1, n], there exists k such that

{

X̂(k) = xi
Ŷ (k) = y j

Proof From the construction of X̂ and Ŷ , when:

{

kx = i + mθx , θx ∈ [0, n)

ky = j + nθy, θy ∈ [0,m)

we have:
{

X̂(kx) = xi
Ŷ (ky) = y j

Let kx = ky , we get:
i + mθx = j + nθy (13.8)

13.1 Synchronous Oblivious Blind Rendezvous 153

Take modular operation on both sides to derive:

{

i = j + nθy mod m

i + mθx = j mod n

Since gcd(m, n) = 1, there exist m−1, n−1 such that:

{

m · m−1 = 1 mod n

n · n−1 = 1 mod m

Therefore, we compute:

{

θx = (j − i) · m−1 mod n

θy = (i − j) · n−1 mod m

Thus k = kx = ky exists such that X̂(k) = xi and Ŷ (k) = y j .

From this lemma, for any two users with (Ia,Ca) and (Ib,Cb), if the correspond-
ing prime numbers in Line 3 of Algorithm 13.2 satisfy pa
= pb, which implies
gcd(pa, pb) = 1, then rendezvous is guaranteed in the Synchronous Check Stage.

Lemma 13.2 For two synchronous users with (Ia,Ca) and (Ib,Cb) running
Algorithm 13.2, if pa
= pb, they can achieve rendezvous in T = min{CTa,CTb} =
min{pa, pb}˜P time slots, where CTa = pa ˜P,CTb = pb ˜P as in Line 7.

The lemma can be verified directly from Lemma 13.1. However, when pa = pb,
the users may not rendezvous on a common port in the Synchronous Check Stage.
Thus we design the Hop Stage to guarantee rendezvous under this specific situation.

We derive the time complexity to achieve rendezvous when the parameters pa =
pb, as follows.

Lemma 13.3 For two synchronous users with (Ia,Ca) and (Ib,Cb) running
Algorithm 13.2, if pa=pb = p, rendezvous is guaranteed in T = CTa +
min{HTa, HTb} = p˜P + (min{la, lb} + 2) · p2 time slots, where la = �logp−1 Ia�,
lb = �logp−1 Ib�.
Proof From Line 7 of Algorithm 13.2, we denote:

{

HTa = p2a(la + 2)

HTb = p2b(lb + 2)

Denote ID Conversion output of (Ia, p) and (Ib, p) in Algorithm 13.1 as:

{

da = {da,0, da,1, . . . , da,la }
db = {db,0, db,1, . . . , db,lb }

154 13 Oblivious Blind Rendezvous for Non-anonymous Users

When two users run Algorithm 13.2, we denote the variables in Line 6 as Da, Db

respectively.
In the first place, we show following the claim.

Claim There exists λ ≤ min{la, lb} + 1 such that Da(λ)
= Db(λ).

From the construction of Da, Db as in Line 6,

Da(la + 1) = Db(lb + 1) = 0 (13.9)

and we have:

∀i ∈ [0, la],∀ j ∈ [0, lb], 0 < Da(i) < p, 0 < Db(j) < p (13.10)

If la
= lb, without loss of generality, suppose la < lb; let λ = la + 1, and then:

{

Da(λ) = 0

Db(λ) = db,la + 1 ≥ 1

and thus the claim is proved.
When la = lb, we can check that there exists 0 ≤ λ ≤ la such that da,λ
= db,λ.
In Algorithm 13.1, since two users must have different identifiers, i.e. Ia
= Ib,

thus:
Da(λ) = da,λ + 1
= db,λ + 1 = Db(λ) (13.11)

Since two users have at least one common available port, i.e. Ca
⋂

Cb
= ∅, for
any port u′ ∈ Ca

⋂

Cb, there exists 1 ≤ i ≤ ka, 1 ≤ j ≤ kb such that:

{

ca(i) = u′

cb(j) = u′

Since two users begin the algorithm at the same time with pa = pb = p, we assume
that they do not rendezvous in the first T = CT + λ · p2 time slots.

Consider the p2 numbers in the λ-th frame of the Hop Stage. For T < t < T +
p2, let:

{

y1 = �(t − T)/p�
y2 = (t − T) mod p

the goal is to find time t such that:

{

(y1 + y2 · Da(λ)) mod p + 1 = i
(y1 + y2 · Db(λ)) mod p + 1 = j

(13.12)

13.1 Synchronous Oblivious Blind Rendezvous 155

Combining the two equations, we derive:

y2 · [Da(λ) − Db(λ)] = i − j mod p (13.13)

Since Da(λ)
= Db(λ), the modular reverse [Da(λ) − Db(λ)]−1 exists which suits:

[Da(λ) − Db(λ)] · [Da(λ) − Db(λ)]−1 = 1 mod p (13.14)

thus we can derive:

y2 = (i − j) · [Da(λ) − Db(λ)]−1 mod p (13.15)

We plug this into Eq. (13.12) to compute y1, and thus t = T + y1 p + y2.
Then rendezvous is guaranteed in:

CT + (λ + 1) · p2 = p˜P + (min{la, lb} + 2) · p2 (13.16)

time slots.
Combining Lemmas 13.2 and 13.3, we can conclude the theorem as follows.

Theorem 13.1 For two synchronous users with (Ia,Ca), (Ib,Cb), if Ca
⋂

Cb
= ∅,
rendezvous can be guaranteed in T = min{pa, pb} · ˜P + (min{la, lb} + 2) ·
min{pa, pb}2 = O(min{ka, kb} · N) time slots if Ia, Ib are polynomial functions of
pa, pb, respectively.

The SCH algorithm has two main advantages. First of all, the time complexity to
achieve rendezvous is very small, especially when ka = O(1) or kb = O(1), the time
could be merely T = O(N) time slots, which is comparable to the blind rendezvous
problem for synchronous users (as described in Chap.7). Moreover, Algorithm 13.2
can terminate automatically and decide whether a common available port exists
between Ca and Cb. If no rendezvous happens in either the Synchronous Check
Stage or the Hop Stage, the user can claim that it does not share a common available
port with the potential neighboring user.

However, there are also several disadvantages for the SCH algorithm. First, SCH
cannot be applied to asynchronous users because a user does not know when the
others start the algorithm, and thus it is incorrect to terminate after CT + HT time
slots. Second, if both users have a large number of available ports, the SCH algorithm
works worse than the blind rendezvous algorithm for synchronous users. This is
because the uncertainty of the external ports increases the hardness of designing
efficient algorithms.

http://dx.doi.org/10.1007/978-981-10-3680-4_7

156 13 Oblivious Blind Rendezvous for Non-anonymous Users

13.2 Asynchronous Oblivious Blind Rendezvous

Consider two users ua and ub, and suppose their available port sets are Ca,Cb ⊆ U
respectively. In the following setting,

RS =< Alg-S,Asyn,Port,Non-Anon,Obli > (13.17)

twousersmay start the rendezvous algorithmat different times.We introduce efficient
rendezvous algorithms that work well for both port-symmetric and port-asymmetric
scenarios.

13.2.1 ID Hopping Algorithm

In this section, we present a deterministic distributed algorithm called ID Hopping
(IDH) for the OBR-2 problemwhen the users are asynchronous. Assuming each user
has a distinct identifier (ID), the hopping sequence is generated on the basis of the
ID and the number of available ports. Moreover, the IDH algorithm is influenced by
the two global parameters: the number of all the ports N and the maximum value of
the users’ ID M .

13.2.1.1 Algorithm Description

Denote the user’s identifier (ID) as I ∈ [1, M] and the available port set asC . The IDH
algorithm is described as in Algorithm 13.3, where a sequence of length T = 2NP̂ is
generated, and it is composed of N frames where each frame contains 2 P̂ numbers,
P̂ being the smallest prime number larger than both N and M .

Algorithm 13.3 ID Hopping Algorithm

1: Find the smallest prime P̂ such that P̂ > max{N , M};
2: T := 2NP̂ , t := 0, n = |C |;
3: while Not rendezvous do
4: t ′ := t mod T ;
5: x := � t ′

2 P̂
�, y := t ′ mod 2 P̂;

6: z = (x + y I) mod P̂ + 1;
7: z′ = (z − 1) mod n + 1, access port c(z′) in C ;
8: t := t + 1;
9: end while

For the i-th frame (0 ≤ i < N), the 2 P̂ numbers are constructed as in Lines (5–6).
We set i + 1 to the 0-th number and the j-th number is constructed as:

13.2 Asynchronous Oblivious Blind Rendezvous 157

Fig. 13.2 An example of IDH (Algorithm 13.3)

(i + j · I) mod P̂ + 1 (13.18)

This procedure can be regarded as picking numbers from a cycle with labels
{0, 1, . . . , P̂ − 1}, where the first number (the 0-th number) is i + 1 and the sec-
ond one is I steps larger under the modular operation. We refer to this number as the
hopping step. In Algorithm 13.3, the user’s ID (I) is the hopping step. Since there
are only n available ports, generated numbers in [n + 1, P̂] are mapped to [1, n] to
accelerate the process, which is described in Line 7.

An example of this construction is depicted in Fig. 13.2. Supposing N = 4, M =
3 and the user with identifier I = 2 has three available ports (n = |C | = 3), the
sequence is constructed accordingly as shown in the figure and the ports to access in
each time slot are also shown. Notice that, each frame has 2P̂ = 10 time slots and
we only show the first two frames in the figure.

13.2.1.2 Correctness and Complexity

For users ua and ub, suppose the available port sets areCa,Cb and their IDs are Ia, Ib
respectively. Denote the sequences generated in Algorithm 13.3 (as Line 6 before
mapping) as

{

Sa = {a0, a1, . . . , aT−1}
Sb = {b0, b1, . . . , bT−1}

where T = 2NP̂ . Without loss of generality, suppose user ub is δ ≥ 0 time slots later
than user ua . We first derive an important lemma.

158 13 Oblivious Blind Rendezvous for Non-anonymous Users

Lemma 13.4 For sequences Sa, Sb: ∀δ ≥ 0 and ∀i, j ∈ [1, P̂], there exists t < T
such that

a(δ+t) mod T = i and bt = j. (13.19)

Proof The users repeat the generated sequence every T time slots, and thus we only
need to consider the situation 0 ≤ δ < T . Let:

{

x1 = � δ

2 P̂
�

y1 = δmod2 P̂

Two situations should be considered on the basis of y1:

Case 1: 0 ≤ y1 < P̂ . Consider time:

t = x2 · 2 P̂ + y2 (13.20)

where 0 ≤ x2 < N , 0 ≤ y2 < P̂ . Let:

x2 + y2 Ib + 1 ≡ j mod P̂ (13.21)

and we can compute:

y2 = (j − x2 − 1)I−1
b mod P̂ . (13.22)

Here I−1
b exists such that Ib I

−1
b ≡ 1 mod P̂ since Ib and P̂ are co-primes.

We enumerate x2 from 0 to N − 1; y2 can be computed from Eq. (13.22)
correspondingly and we denote the value as yh2 when x2 = h. Then these
N values comprise the set:

Y = {y02 , y12 , . . . , yN−1
2 } (13.23)

Denote the set of corresponding time slots as:

TB = {t0, t1, . . . , tN−1} (13.24)

where th is computed as:

th = h · 2 P̂ + yh2 (13.25)

It is clear that ∀th ∈ TB , 0 ≤ h < N , we have:

{

th < T

bth = j

13.2 Asynchronous Oblivious Blind Rendezvous 159

Denote:
TA = {t ′0, t ′1, . . . , t ′N−1} (13.26)

where t ′h = (th + δ) mod T . We show that there exists g ∈ [0, N) such
that at ′g = i .
Considering any two time slots t ′g, t ′h ∈ TA where user ua accesses different
ports:

at ′g = (x1 + g) + (y1 + yg2)Ia mod P̂ + 1

at ′h = (x1 + h) + (y1 + yh2)Ia mod P̂ + 1

Plugging in the expression of yg2 , y
h
2 in Eq. (13.22), we can derive:

at ′g − at ′h ≡ (g − h)(Ia I
−1
b − 1)
= 0 mod P̂ . (13.27)

Here Ia
= Ib, Ia, Ib < P̂ implies Ia I
−1
b
= 1. So at ′g
= at ′h .

Since |TA| = |TB | = N , there are N different values for the N time slots in
TB , and thus there exists t ′g such that at ′g = i , which concludes the lemma.

Case 2: P̂ ≤ y1 < 2 P̂ . Consider time:

t = x2 · 2 P̂ + y2 (13.28)

where 0 ≤ x2 < N and P̂ ≤ b2 < 2 P̂ . Using the same technique as in
Case 1, we can find t < T such that:

a(δ+t) mod T = i and bt = j (13.29)

From the two aspects, the lemma holds.

Based on the lemma, we derive the time complexity to achieve rendezvous in
Theorem 13.2.

Theorem 13.2 Algorithm 13.3 guarantees rendezvous between two asynchronous
users of the OBR-2 problem inMTTR = 2NP̂ time slots, where P̂ ≤ 2max{N , M}.
Proof SinceCa ∩ Cb
= ∅, for any common available port c∗ ∈ Ca ∩ Cb, there exists
i ∈ [1, na] and j ∈ [1, nb] such that:

{

ai = c∗

b j = c∗

where na = |Ca|, nb = |Cb|.
Without loss of generality, supposing user ub is δ time slots later than user ua .

From Lemma 13.4, there exists t < T such that they both access port c∗, and thus
rendezvous can be guaranteed in T = 2NP̂ time slots no matter when they start the
process.

160 13 Oblivious Blind Rendezvous for Non-anonymous Users

Remark 13.1 P is shown to be P̂ ≤ 2max{M, N } and thus MTTR = O(N max
{N , M}). If M = O(N) in Algorithm 13.3, MTTR = O(N 2).

13.2.2 Multi-step Port Hopping Algorithm

The IDH algorithm works well when M = O(N). However, when the number of
users increases, this algorithm becomes inefficient (for example, when M = N 3).
The reason is that the user’s ID is used as the hopping step and it increases the time
complexity to achieve rendezvous when M is large. Therefore, we propose a new
algorithm calledMulti-Step port Hopping (MSH)which is more efficient for systems
with a large number of users. Two techniques are utilized in the algorithm: ID scaling
and hopping with different steps (similar to the SCH algorithm).

13.2.2.1 Algorithm Description

Suppose the user’s ID is I ∈ [1, M] and the available port set isC , theMSHalgorithm
is described in Algorithms 13.4 and 13.5. First, the ID is scaled to �logN M� + 1 bits
and each bit ranges from 1 to N .1 The process is similar to the ID conversion of the
SCH algorithm.

Algorithm 13.4 ID Scale Function
1: Input: I ;
2: Output: d = {d(1), d(2), . . . , d(l)};
3: l := �logN M� + 1, i := 1, cur(0) := I ;
4: while i ≤ l do
5: d(i) := cur(i − 1) mod N + 1;
6: cur(i) := �cur(i − 1)/N�
7: i := i + 1;
8: end while

For example, for N = 8, M = 100, I = 30, the scaled values are:

d = {7, 4, 1} (13.30)

The scale function plays a key role in the rendezvous algorithm design and the scaled
values are used as the hopping steps in Algorithm 13.5.

1Here, each ‘bit’ does not mean 0 or 1, but a value in [1, N].

13.2 Asynchronous Oblivious Blind Rendezvous 161

Algorithm 13.5 Multi-Step Port Hopping Algorithm
1: Find the smallest prime P such that P > N ;
2: T := 2N P , t := 0, n = |C |, l := �logN M� + 1;
3: Invoke Algorithm 13.4 on the user’s ID and get the output d = {d(1), d(2), . . . , d(l)};
4: while Not rendezvous do
5: if t < T then
6: z := �t/2P� + 1;
7: else
8: t ′ := (t − T) mod (2lT);
9: x := �t ′/2T � + 1, y := t ′ mod 2T ;
10: y1 := y mod (2P), y2 := (�y/(2P)� mod N + 1;
11: z := (y2 + y1 · d(x) − 1) mod P + 1;
12: end if
13: z′ := (z − 1) mod n + 1, access port c(z′) in C ;
14: t := t + 1;
15: end while

Algorithm 13.5 can be thought of as generating two types of sequences. The first
one is called Scale Sequence (SS) which is composed of 0 and repetitions of l scaled
values. Since two users can start the rendezvous process asynchronously, bit 0 is
added as a special flag to represent the start of the user. We represent this type of
sequence as:

SS = {0, d(1), d(2) . . . , d(l)
︸ ︷︷ ︸

l

, d(1), d(2), . . . , d(l)
︸ ︷︷ ︸

l

,} (13.31)

The other one is called Port Hopping Sequence which is composed of different
frames based on SS, as shown in Fig. 13.3. Actually, there are N + 1 different types
of frames:

F(0), F(1), . . . , F(N) (13.32)

and each type is composed of N segments.
For example, F(i) has N segments and each segment contains 2P numbers. The

0-th number of the j-th segment is constructed as j and the k-th number is:

(j + k ∗ i − 1) mod P + 1 (13.33)

We can find that, the construction of each segment of F(i) can be seen as accessing
a port in [1, P] by hopping i steps.

For example, F(0) and F(1) are constructed as follows:

F(0) = 1, 1, . . . , 1
︸ ︷︷ ︸

2P

, 2, 2, . . . , 2
︸ ︷︷ ︸

2P

, . . . , N , N , . . . , N
︸ ︷︷ ︸

2P

(13.34)

F(1) = 1, 2, . . . , P
︸ ︷︷ ︸

2P

, 2, 3, . . . , P, 1
︸ ︷︷ ︸

2P

, . . . , N , N + 1, . . . , N − 1
︸ ︷︷ ︸

2P

(13.35)

162 13 Oblivious Blind Rendezvous for Non-anonymous Users

Fig. 13.3 Construction of
port hopping sequence

As shown in Fig. 13.3, the first number 0 is a special symbol because it does not
appear in other positions of SS and it corresponds to F(0) only once, while the other
numbers in SS correspond to each type of frames twice.

13.2.2.2 Correctness and Complexity

Supposing users ua and ub run the MSH algorithm (Algorithm 13.5) with their
local information (Ca, Ia) and (Cb, Ib) where Ca ∩ Cb
= ∅, Ia
= Ib, and let na =
|Ca|, nb = |Cb|, we denote:

{

da = {da(1), da(2), . . . , da(l)}
db = {db(1), db(2), . . . , db(l)}

as the outputs of ID Scale function, denote SSa , SSb as the scale sequences that are
constructed as in the above, and denote:

{

Sa = {a0, a1, . . . , at , . . .}
Sb = {b0, b1, . . . , bt , . . .}

as the Port Hopping Sequences.
Without loss of generality, suppose user ub starts the process δ ≥ 0 time slots later

than user ua . we show the following Lemmas 13.6, 13.7 and 13.8.

Lemma 13.5 There exists 1 ≤ i ≤ l such that da(i)
= db(i).

The lemma can be derived easily since the IDs for two users are different.

Lemma 13.6 Consider SSa, SSb: ∀δ′ ∈ Z, there exists i ≥ 0, i + δ′ ≥ 0 such that:

SSa(i)
= SSb(i + δ) (13.36)

Proof There are three cases according to different δ values:

13.2 Asynchronous Oblivious Blind Rendezvous 163

Fig. 13.4 Example of
Lemma 13.7. The block
labeled gray represents the
intersection part between
two users

…

…

…

…

Case 1: δ > 0. Let i = 0, SSa(0) = 0 but SSb(δ)
= 0. From Line 5 of Algo-
rithm 13.4, each bit of SSb(i) ranges from 1 to N when i > 0, and thus
SSa(0)
= SSb(δ).

Case 2: δ < 0. Let i = −δ > 0, similar to the first case, we have: SSa(−δ)
=
SSb(0).

Case 3: δ = 0. Since SSa(0) = SSb(0) = 0, the first two cases do not work here.
In Lines 5,6 of Algorithm 13.4, these variables are kept as:

{da(i), db(i), cura(i), curb(i)} (13.37)

respectively.Without loss of generality, suppose Ia > Ib. Find the smallest
value j such that curb(j) = 0. ∀1 ≤ i ≤ j , the conditions da(i) = db(i)
and cura = curb cannot happen, otherwise we can conclude Ia = Ib from
the construction of cur(i), d(i) values. Thus, if there exists 1 ≤ i ≤ j
such that da(i)
= db(i), the lemma holds; if ∀1 ≤ i ≤ j , da(i) = db(i),
cura(j)
= curb(j) implies da(j + 1)
= db(j + 1).

Combining the three situations, the lemma holds.

Lemma 13.7 Consider Sa, Sb; for any pair (i, j) where 1 ≤ i ≤ na, 1 ≤ j ≤ nb, if
0 ≤ δ < T ,

∃t ≤ 2lT s.t. a(δ+t) = i and bt = j. (13.38)

Proof From Lemma 13.5, there exists 1 ≤ i ≤ l such that

da(i)
= db(i) (13.39)

From the construction of Sa, Sb as shown in Fig. 13.3, we show that rendezvous is
guaranteed in the (2i)-th frame (i.e., the first F(db(i))) of Sb, as depicted in Fig. 13.4.

Since δ < T , the first frame F(0) of sequence Sb intersects with frame F(0)
of Sa , and thus the 2i-th frame (the first F(db(i)) in Fig. 13.4) intersects with two
F(da(i)) frames in Sa . From the construction of each F(da(i)) and each F(db(i)),
their hopping steps are da(i), db(i) respectively, and thus it is similar to the sequences
of Algorithm 13.3 where the input IDs are da(i)
= db(i) and δ < T .

Therefore we can conclude that: from Theorem 13.2, rendezvous can be guar-
anteed in 2N P = T time slots if we consider the start time of user ub to be in the
beginning of F(db(i)); then rendezvous is guaranteed in:

164 13 Oblivious Blind Rendezvous for Non-anonymous Users

MTTR ≤ (1 + 2(i − 1))T + T ≤ 2lT (13.40)

time slots. So the lemma holds.

Lemma 13.8 Consider Sa, Sb, for any pair (i, j) where 1 ≤ i ≤ na, 1 ≤ j ≤ nb, if
δ ≥ T ,

∃t ≤ T s.t. a(δ+t) = i and bt = j. (13.41)

Proof Suppose the constructed Scale Sequence for user ua is:

SSa = {0, da(1), da(2), . . . , da(l), . . .} (13.42)

Let:
x = �δ/T � + 1 (13.43)

y = (δ − T) mod T (13.44)

There are four cases to be analyzed.

Case 1: 0 ≤ y < T − 2 j P . We show that there exists such time t ≤ T and a(δ+t)

belongs to x-th Frame of Sa .
From the construction of frame F(0) in Sb, ∀t ∈ [2(j − 1)P, 2 j P), we
have:

bt = j (13.45)

Let:
t ′ = δ + t (13.46)

�t ′/T � + 1 = x (13.47)

the 2P numbers at ′ belong to the x-th frame of sequence Sa . From the
construction of each frame except F(0), every 2P consecutive numbers
contain every number in [1, P] at least once, and thus we can find time
t ∈ [2(j − 1)P, 2 j P) such that:

{

bt = j

a(δ+t) = i

Case 2: T − 2 j P ≤ y < T − (2 j − 1)P . Consider last P numbers of the x-th
frame of Sa : it is clear that each number in [1, P] appears once including
i . When we consider:

xT − P ≤ δ + t < xT (13.48)

13.2 Asynchronous Oblivious Blind Rendezvous 165

t ∈ [2(j − 1)P, 2 j P) implies bt = j , and thus there exists such t <

2 j P ≤ T satisfying the lemma.
Case 3: T − (2 j − 1)P ≤ y < T − 2(j − 1)P . Consider the first P numbers of

the (x + 1)-th frame of Sa ; similar toCase 2, the corresponding P numbers
in Sb are always j , and thus such t < T exists.

Case 4: y ≥ T − 2(j − 1)P .∀t ∈ [2(j − 1)P, 2 j P), bt = j and the 2P numbers
a(δ+t) belong to the (x + 1)-th frame of Sa . Similar to Case 1, such t can
be found with a(δ+t) = i .

Combining the four cases, the lemma can be concluded.

We derive the time complexity of the algorithm in the following theorem.

Theorem 13.3 The MSH algorithm (Algorithm 13.5) guarantees oblivious ren-
dezvous for two asynchronous users in MTTR = 4lNP = O(N2 logN M) time slots,
where P ≤ 2N.

Proof As assumed, G = Ca ∩ Cb
= ∅, and suppose c∗ ∈ G. There exists 1 ≤ i ≤
na , 1 ≤ j ≤ nb such that:

{

ca(i) = c∗

cb(j) = c∗

Without loss of generality, suppose user ub starts the process δ time slots later. If
δ < T , from Lemma 13.7, rendezvous is guaranteed in 2lT time slots; if δ ≥ T ,
rendezvous is guaranteed in T time slots, and thus we derive the maximum time to
rendezvous which is bounded by:

MTTR ≤ 2lT = 4lN P = O(N 2 logN M) (13.49)

time slots. Then, the theorem holds.

Generally speaking, if value M is bounded by a polynomial function of the total
number of external ports N , the length of scaled bits is a constant and two users
can be guaranteed to rendezvous in O(N 2) time slots. Moreover, this result is also
comparable to even state-of-the-art non-oblivious rendezvous algorithms, as shown
in Table8.1.

Remark 13.2 When M = O(N), Algorithm 13.3 works better than Algorithm 13.5.
However, when the number of users increases substantially, where M can be much
larger than N , Algorithm 13.5 then works much better than Algorithm 13.3. In
general, if M = poly(N) and Algorithm 13.5 can guarantee rendezvous within
MTTR = O(N 2) time slots.

13.3 Lower Bound for Oblivious Blind Rendezvous

As presented in Sects. 13.1 and 13.2, distributed algorithms can be designed for
oblivious blind rendezvous between two users. In this chapter, we derive the lower

http://dx.doi.org/10.1007/978-981-10-3680-4_8

166 13 Oblivious Blind Rendezvous for Non-anonymous Users

bound on any oblivious rendezvous algorithm for two non-anonymous users to show
the efficiency of the proposed algorithms. In this section, we introduce the Adversary
Assignment Graph (AAG)[1] where an adversary can assign the universal ports to
any local labeled port freely. We will use the AAG to derive the lower bounds on any
rendezvous algorithm for the oblivious blind rendezvous problem.

13.3.1 Adversary Assignment Graph

Since the users do not know the label of each port in the universal port set:

U = {u1, u2, . . . , uN } (13.50)

they have to label the available ports locally and two (even non-anonymous) users
cannot know the other’s labels. Therefore, we assume an adversary exists in the
system who can assign the universal port to any port with local labels for the users.
Rendezvous is achieved in the worst scenario when two users can rendezvous on
some common available port for every port assignment by the adversary.

Suppose two users (ua and ub) have distinct identifiers Ia, Ib(Ia
= Ib) and avail-
able port sets Ca,Cb respectively. Denote ka = |Ca|, kb = |Cb|, and denote:

{

Ca = {ca(1), ca(2), . . . ca(ka)}
Cb = {cb(1), cb(2), . . . , cb(kb)}

Assume both users run the same deterministic algorithm F and denote at , bt as
the outputs of both users at time slot t . Then we introduce the construction of the
Adversary Assignment Graph (AAG) as follows: (for simplicity, suppose both users
startF at the same time):

(1) Initially, there are two rows of nodes in the graph and the upper row contains
kA separated nodes while the lower row contains kB separated nodes. The nodes
in the upper row represent the available ports of user ua , while the nodes in the
lower row represent the available ports of user ub;

(2) for each time slot t , after the users run the rendezvous algorithmF with outputs
at ∈ [1, ka], bt ∈ [1, kb], connect the at -th node of the upper row to the bt -th
node of the lower row;

(3) the adversary can assign any universal ports to Ca,Cb satisfying:

{

∀1 ≤ i, j ≤ ka, ca(i)
= ca(j)

∀1 ≤ i, j ≤ kb, cb(i)
= cb(j)

13.3 Lower Bound for Oblivious Blind Rendezvous 167

Fig. 13.5 An example of
adversary assignment graph:
rendezvous is not achieved

Fig. 13.6 An example of
adversary assignment graph:
rendezvous is achieved

(4) if for every assignment in the third step, there exists a common universal port
that is connected in the graph, rendezvous is achieved, otherwise continue the
process from the second step.

For example, given five universal ports:

U = {u1, u2, u3, u4, u5} (13.51)

and user ua and ub have 5 and 2 available ports respectively.
As depicted in Fig. 13.5, there are two rows of nodes in the graph and the upper

row has 5 nodes while the lower row has only 2. For the first time slot, if the outputs
of the rendezvous algorithm for both users are:

{

a0 = 1

b0 = 2

connect the first node in the upper row to the second node in the lower node as
in the figure. Suppose at some time slot t , there are 6 pairs of nodes connected as
depicted in the figure. We say rendezvous is achieved if for every assignment by
the adversary, at least one common available port is connected. However, Fig. 13.5
shows the port assignment in which no common available port is connected, which
implies rendezvous does not happen under this situation.

Suppose another pair of node is connected where:

168 13 Oblivious Blind Rendezvous for Non-anonymous Users

{

at+1 = 2

bt+1 = 2

as seen as the red line in Fig. 13.6; we can check that for every port assignment by
the adversary, at least one common port is connected, which implies rendezvous
must happen. Therefore, we can use the AAG to derive the lower bound on oblivious
rendezvous algorithms for two non-anonymous users, by finding the smallest t such
that rendezvous happens in every adversary port assignment.

13.3.2 A Loose Lower Bound

In this section, we drive a loose lower bound to show how the adversary assignment
graph can be applied.

Theorem 13.4 For any deterministic distributed algorithm solving OBR-2 for non-
anonymous users, there exist Ca,Cb,Ca ∩ Cb
= ∅ such that the MTTR value is
Ω(N 2).

Proof For any deterministic distributed algorithmF and based on the set of available
port set C and the identifier I , we have:

f �→ [1, n] (13.52)

where n = |C |
Suppose users ua and ub have different IDs Ia
= Ib. We let:

|Ca| = |Cb| = �N/2�, |Ca ∩ Cb| = 1 (13.53)

Equivalently, denote the only common port between the users as c∗, and there
exists 1 ≤ i, j ≤ �N/2� such that:

ca(i) = cb(j) = c∗ (13.54)

We construct the Adversary Assignment Graph (AAG) as in Fig. 13.7 where two
rows of nodes exist in the graph and the number of nodes in each row is exactly
n = �N/2�. The upper row represents user ua’s local labels of the available ports
with indices {1, 2, . . . , n} and the lower row represents user ub’s labels.

Let at , bt be the outputs of the algorithm for users ua and ub at time slot t respec-
tively; we know that:

at = f (a1, a2, . . . , at−1, n, Ia)

bt = f (b1, b2, . . . , bt−1, n, Ib)

13.3 Lower Bound for Oblivious Blind Rendezvous 169

Fig. 13.7 Adversary assignment graph for Theorem 13.4

Without loss of generality, suppose user ub begins δ slots later; accordingly, we
connect node at+δ in the upper row with bt in the lower row with an edge having the
label t . Notice that, if the two nodes are already connected, then we just update the
label on the edge.

For example, (1, 1) is connected in t0 as depicted in Fig. 13.7 and (2, n), (1, 3),
(3, 2), (n − 1, n − 1) are also connected.

Suppose there exists an adversary who can assign global ports from the set:

U = {u1, u2, . . . , uN } (13.55)

to Ca and Cb; rendezvous will not be achieved if the common port c∗ in the upper
row is not connected to c∗ in the lower row. Since the inputs to the algorithmF are
fixed, where the inputs for user ua are Ia and |Ca|, and the inputs for user ub are Ib
and |Cb|. Clearly, the lower bound on the maximum time to rendezvous (MTTR) is
the smallest value T such that (c∗, c∗) is connected in every adversary assignment.

Let δa be the smallest degree among all the upper nodes. Obviously, if δa < n, the
adversary can find a node i in the upper row and j in the lower row such that (i, j)
is not connected, and then assigns c∗ to both of them, which implies rendezvous
is not achieved. After the assignment of port c∗, it is easy to assign the other non-
intersecting ports to other nodes. We can verify that δa < n exists if T < n2, which
can be deduced easily. Thus, Ca and Cb can be constructed by the adversary such
that rendezvous does not happen. Therefore, the lower bound on the maximum time
to rendezvous can be deduced as:

MTTR = n2 = Ω(N 2) (13.56)

Then, the theorem holds.

170 13 Oblivious Blind Rendezvous for Non-anonymous Users

13.3.3 A Refined Lower Bound

The bound in Theorem 13.4 is loose. In this section, we derive a refined lower bound
based on the users’ available port sets. Since the users have distinct IDs, different
sequencesmay be generated by different users to access the ports, which implies good
algorithms could be made with a smallMTTR value. However, we demonstrate that
the MTTR value for any algorithms could be Ω((ka − kg) · (kb − kg)) for the worst
case situation, where ka , kb are the number of available ports for two asynchronous
users and kg is the number of common available ports they share.

Theorem 13.5 For any deterministic algorithm solving the oblivious rendezvous
problembetween twouserswith (Ia,Ca), (Ib,Cb),Ca

⋂

Cb
= ∅, Ia
= Ib, there exist
mappings:

fa : Ca �→ Ua ⊆ U

fb : Cb �→ Ub ⊆ U

such that the maximum time to rendezvous is:

Ω((ka − kg) · (kb − kg)) (13.57)

where ka = |Ca|, kb = |Cb|, kg = |Ca
⋂

Cb|.
Proof For any deterministic algorithm F , let at , bt be the ports to access in time
slot t when the users run the algorithm with inputs (Ia,Ca), (Ib,Cb), respectively.
It’s obvious that:

at = F (a0, a1, . . . , at−1, Ia,Ca)

bt = F (b0, b1, . . . , bt−1, Ib,Cb)

Consider the scenario when two users (ua and ub) start F at the same time;
without loss of generality, let:

Ug = {u1, u2, . . . , ug} (13.58)

be the common available ports they share.
We also use the Adversary Assignment Graph (AAG) to derive the lower bound.

There are two rows of nodes in the graph. The number of the nodes in the upper row
is ka while the other row’s number of nodes is kb; each row represents the available
ports of each user. For each time slot t , connect (at , bt) in the graph if they are not
connected, where at corresponds to the node in the upper row and bt is in the lower
row. As shown in Fig. 13.8,

(ca(1), cb(1)), (ca(1), cb(3)), (ca(2), cb(2)), (ca(2), cb(3)), (ca(3), cb(2)), . . .
(13.59)

13.3 Lower Bound for Oblivious Blind Rendezvous 171

Fig. 13.8 Adversary assignment graph for Theorem 13.5

are connected and at most one edge is added to the graph in each time slot.
Assume there exists an adversary who can assign any port ca(i) ∈ Ca or cb(j) ∈

Cb to any port with global label u′ ∈ U at any time slot t . As shown in Fig. 13.8, the
adversary maps every port in Ca as:

fa : ca(i) �→ u(i) (13.60)

and maps every port in Cb as:

fb : cb(i) �→ u(kb + 1 − i) (13.61)

Rendezvous is not achieved if there exists an assignment such that ∀u′ ∈ Ug , u′ in
the upper row is not connected to u′ in the lower row. Thus the lower bound of the
MTTR value is the smallest t such that for every adversary assignment, there exists
u′ ∈ Ug where (u′, u′) is connected in the graph.

We demonstrate that rendezvous cannot be guaranteed in

t < (ka − kg)(kb − kg) (13.62)

time slots. Denote sets:

At = {a1, a2, . . . , at }
Bt = {b1, b2, . . . , bt }

and we construct the AAG as described above. Let δa(i) be the degree of node ca(i)
and we sort these nodes of the upper row in ascending order:

ca(1
′), ca(2′), . . . , ca(k ′

a) (13.63)

172 13 Oblivious Blind Rendezvous for Non-anonymous Users

where
δa(1

′) ≤ δa(2
′) ≤ · · · ≤ δa(k

′
a) (13.64)

We can verify that:
δa(i

′) ≤ (kb − kg),∀1 ≤ i ≤ kg (13.65)

from the Pigeonhole Principle. Then, we assign these kg nodes to the ports inUg as:

fa : ca(i ′) �→ ui ∈ Ug,∀1 ≤ i ≤ kg. (13.66)

Considering i increases from 1 to kg , find a node cb(î) from the lower row corre-
sponding to node ca(i ′) such that (ca(i ′), cb(î)) is not connected in the graph. Since
δa(i ′) ≤ kb − kg , there are at least kg nodes not connected to node ca(i ′). However,
at most i − 1 < kg nodes of the lower row are assigned, and thus such a node exists.
We assign this node as:

fb : cb(î) �→ ui ∈ Ug,∀1 ≤ i ≤ kg. (13.67)

Finally, assign all other nodes to U \Ug as:

fa : ca(i ′) �→ u′ ∈ U ′
a,∀kg < i ≤ ka (13.68)

fa : cb(î) �→ u′ ∈ U ′
b,∀kg < i ≤ kb (13.69)

where cb(î) represents the nodes that have not been assigned and U ′
a,U

′
b ⊆ U \

Ug,U ′
a

⋂

U ′
b = ∅. Thus, such an adversary assignment exists, and it insinuates that

rendezvous is not achieved. Hence, we conclude that theMTTR value for any deter-
ministic algorithm is Ω((ka − kg) · (kb − kg)), which concludes the theorem.

Remark 13.3 The IDH and MSH algorithms are comparable with the derived lower
bound inTheorem13.4whenM = O(N) andM is boundedbyapolynomial function
of N .

13.4 Chapter Summary

In this chapter, we study the oblivious blind rendezvous problem between two non-
anonymous users where the users are assumed to have been assigned unique identi-
fiers (IDs). Different from the previous chapter, we design symmetric algorithms for
non-anonymous users, where they have to run the same rendezvous algorithm. We
introduce rendezvous algorithms for synchronous users and for asynchronous users.

We first handle oblivious blind rendezvous for two synchronous, non-anonymous
users. Assuming each user has a distinguishable ID, we design the Synchronous
Check and Hop (SCH) algorithm, which consists of two stages: the synchronous

13.4 Chapter Summary 173

check stage repeats accessing ports sequentially for a sufficiently long time, and the
hop stage generates rendezvous hopping sequence on the basis of the converted bits
of the user’s ID. The synchronous check stage can guarantee rendezvous between
two users if the numbers of two users’ available ports are much different. The hop
stage is designed for two users whose numbers of available ports are about the same.
Therefore, the algorithm is suitable for two synchronous users no matter how many
available ports they have.

However, the synchronous check stage of the SCH algorithm is inapplicable for
two asynchronous users. Therefore, we handle the oblivious blind rendezvous prob-
lem for two asynchronous users by designing rendezvous sequence on the basis of
the users’ ID. We propose two asynchronous rendezvous algorithms. The first one is
called the IDHopping (IDH) algorithm,which utilizes the user’s ID to design hopping
sequence. Therefore, the algorithm is related to both N (the number of all ports) and
M (the maximum ID value), which guarantees rendezvous within O(N max{N , M})
time slots.

In order to decrease the time complexity to achieve rendezvous, we introduce
another algorithm called the Multi-Step port Hopping (MSH), which guarantees
rendezvous within in O(N 2 logN M) time slots. The idea is to convert the user’s ID
to a string of bits and any two distinguishable IDs correspond to two different strings
of bits. Generally, when M is a polynomial function of N , the MSH algorithm can
guarantee rendezvous within O(N 2) time slots, which is a good result compared
with non-oblivious rendezvous algorithms.

In order to show the efficiency of our described algorithm, we show the method
of deriving lower bounds on oblivious blind rendezvous between two non-oblivious
users. We introduce the adversary assignment graph, where an adversary is assumed
to assign local labels to the available ports. By assigning different local labels, we
derive the maximum time such that any adversary assignment will finally lead to
rendezvous. A loose lower bound shows that Ω(N 2) time slots are needed, and a
refined lower bound requires Ω((ka − kg)(kb − kg)) time slots, where ka, kb repre-
sent two users’ available ports and kg means their common available ports. From
these lower bounds, the proposed algorithms can work efficiently and guarantee
rendezvous between two non-anonymous users in a reasonable time.

Reference

1. Gu, Z., Hua, Q.-S., & Dai, W. (2014). Fully distributed algorithms for blind rendezvous in
cognitive radio networks. InMOBIHOC.

Chapter 14
Fully Distributed Rendezvous Algorithm
for Non-anonymous Users

Abstract In Chap.13, we present efficient distributed algorithms for both
synchronous and asynchronous users that are non-anonymous. These algorithms
utilize global information such as the number of the external ports N and the number
of users M (or the maximum value for the users’ identifier (ID)). In practical large
scale networks, it is difficult for the users to know these information beforehand.
For example, in cognitive radio networks, no general standard exists dividing the
total licensed spectrum into N channels, such as the IEEE 802.11 standard which
only concerns frequencies ranging 470–710 MHz [1], and so it is impractical for the
users to know the value of N . Moreover, all users are physically dispersed in the
system and they may join or leave freely, and hence they cannot know the number of
users in advance as there is no central controller. Therefore, it is desirable to design a
fully distributed algorithmwhere only the users’ local information would be utilized.
Actually, in a general distributed system, this kind of local information is limited to
the user’s ID and the number of the user’s available ports since there exists no global
labels for the ports. In Sect. 14.1, we present the first fully distributed algorithm
called the Conversion Based Hopping (CBH) algorithm, which guarantees oblivious
blind rendezvous in a short time. The correctness and complexity are analyzed in
Sect. 14.2. We summarize the chapter in Sect. 14.3.

14.1 Conversion Based Hopping Algorithm

The SCH algorithm in the preceding chapter cannot work for two asynchronous
users because the synchronous check stage could not work when the users start at
different time slots. However,we can use the intuitive idea of the hop stage of the SCH
algorithm to design distributed algorithms for two asynchronous users.Moreover, the
SCH algorithm assumes each user has an estimation of N but the proposed algorithm
in this chapter (we called Conversion Based Hopping Algorithm, or CBH for short)
only uses the user’s local information: the ID and the number of available ports.

Suppose the user’s ID is I and the available port set is C . The CBH algorithm
is described in Algorithm 14.1. With local input (I,C), Algorithm 14.1 finds the
smallest prime number p ≥ max{k, 3} where k = |C | and invokes ID Conversion
(I, p − 1) to get the results d. The ID Conversion is described in Algorithm 13.1.

© Springer Nature Singapore Pte Ltd. 2017
Z. Gu et al., Rendezvous in Distributed Systems,
DOI 10.1007/978-981-10-3680-4_14

175

http://dx.doi.org/10.1007/978-981-10-3680-4_13

176 14 Fully Distributed Rendezvous Algorithm for Non-anonymous Users

Algorithm 14.1 Conversion Based Hopping Algorithm
1: Input: I,C ;
2: k := |C |;
3: Find the smallest prime numbers p ≥ max{k, 3};
4: l := �logp−1 I�;
5: Invoke ID Conversion (I, p − 1) and the output is d;
6: if (l + 2) mod 2 = 0 then
7: l p := l + 2; D := {0, d0 + 1, d1 + 1, . . . , dl + 1}
8: else
9: l p := l + 3, D := {0, 1, d0 + 1, d1 + 1, . . . , dl + 1}
10: end if
11: T := 2l p · p2, FL := 2l p · p, SL = 2p;
12: while Not rendezvous do
13: t ′ := t mod T ;
14: x := �t ′/FL�, x ′ = t ′ mod FL;
15: y1 := �x ′/SL�, y2 = x ′ mod SL;
16: z := x + D(y1) · y2 mod p + 1;
17: z′ := (z − 1) mod k + 1, access port c(z′) ∈ C ;
18: t = t + 1;
19: end while

Then we construct the array D containing l p numbers as in Lines 6–10, where l p is
defined to be an even number, which is different from Algorithm 13.2. Following
the preprocessing, Algorithm 14.1 generates a sequence of length T = 2l p · p2 as in
Lines 13–16. This sequence consists of p frames of equal length FL = 2l p · p, where
each frame contains l p segments of length SL = 2p. In Line 17 of the algorithm,
the sequence is mapped from [1, p] to [1, k] and the corresponding port is accessed
by the user.

We illustrate the construction of the sequence in Fig. 14.1. It consists of p frames:

{F0, F1, . . . , Fp−1} (14.1)

Fig. 14.1 The construction of the T = 2l p · p2 sequence in CBH (Algorithm 14.1)

14.1 Conversion Based Hopping Algorithm 177

and each frame has l p segments:

{S0, S1, . . . , Slp−1} (14.2)

The way to generate segment Sj of frame Fi is to construct 2p numbers, starting
with i and the hopping step is D(j); then the k-th number is constructed as such:

(i + kD(j)) mod p + 1 (14.3)

Each segment contains 2p numbers and this is to eliminate the asynchronous situation
through doubling the length, which is similar to themethod of transforming time slots
into slot-aligned scenario.

There are two intuitive ideas in designing the CBH algorithm. The first one comes
from the SCH algorithm when the corresponding prime numbers of the two users
in Line 3 satisfy pa �= pb, and each user repeating its own ports can guarantee ren-
dezvous. When pa = pb, distinct IDs have different representations through the ID
conversion, thus accessing the ports with these hopping stepsmay assure rendezvous.
The proposed CBH algorithm combines these two principles and it has good perfor-
mance as analyzed in the next section.

14.2 Correctness and Complexity

Assume two asynchronous users (ua and ub) run Algorithm 14.1 with inputs (Ia,Ca)

and (Ib,Cb) where Ca
⋂

Cb �= ∅, Ia �= Ib (Ia, Ib ∈ [1, M]). Without loss of gener-
ality, suppose user ub is δ ≥ 0 time slots later. Denote the variables used for two
users in Algorithm 14.1 as:

{
(ka, pa, la, l pa , Da, Ta, FLa, SLa, ta)

(kb, pb, lb, l pb , Db, Tb, FLb, SLb, tb)

Since Ca
⋂

Cb �= ∅, there exists a port with global label u′ ∈ Ca
⋂

Cb and there
exist 1 ≤ i ≤ ka , 1 ≤ j ≤ kb such that

{
ca(i) = u′

cb(j) = u′

We derive the time complexity to achieve rendezvous based on the following three
situations:

(1) pa = pb = p and l pa = l pb = l p;
(2) pa = pb = p but l pa �= l pb ;
(3) pa �= pb;

178 14 Fully Distributed Rendezvous Algorithm for Non-anonymous Users

Lemma 14.1 If pa = pb = p and lpa = l pb = l p, rendezvous between users ua and
ub can be guaranteed in T = 2l p · p2 time slots.
Proof If 0 ≤ δ mod 2p < p, there exists x∗ ≥ 0, 0 ≤ y∗

1 < l p, 0 ≤ y∗
2 < p such

that:
δ = x∗ · (2plp) + y∗

1 · (2p) + y∗
2 (14.4)

Suppose users ua and ub can achieve rendezvous on port u′ at time ta, tb respec-
tively, and there exists x(a), x(b) > 0, 0 ≤ y1(a), y1(b) < l p, 0 ≤ y2(a) < 2p, 0 ≤
y2(b) < p such that:

ta = x(a) · (2plp) + y1(a) · (2p) + y2(a) (14.5)

tb = x(b) · (2plp) + y1(b) · (2p) + y2(b) (14.6)

From Lines 13–16 of Algorithm 14.1, the corresponding z values for two users could
be generated to be i, j , thus:

x(a) + Da(y1(a)) · y2(a) mod p + 1 = i (14.7)

x(b) + Db(y1(b)) · y2(b) mod p + 1 = j (14.8)

Since user ub is δ time slots later, we rewrite it as:

ta = tb + δ (14.9)

Plug Eqs. (14.4)–(14.6), we can get:

[x(a) − x(b) − x∗] · (2pl) + [y1(a) − y1(b) − y∗
1] · (2p)

+[y2(a) − y2(b) − y∗
2] = 0

(14.10)

Since y2(b) ∈ [0, p), y2(a) − y2(b) − y∗
2 = 0. Combining this with Eqs. (14.7)–

(14.8), we can derive:

[Da(y1(a)) − Db(y1(b))] · y2(b) + Da(y1(a)) · y∗
2 =

i − x(a) − (j − x(b)) mod p (14.11)

If we can find values y1(a), y1(b) satisfying:

{
D(y1(a)) − D(y1(b)) �= 0

y1(a) − y1(b) − y∗
1 mod l p = 0

Equation (14.11) can be solved under the constraint Eq. (14.10). We compute
y1(a), y1(b) as follows:

14.2 Correctness and Complexity 179

{
y1(a) = y1(b) = k If y∗

1 = 0
y1(a) = y∗

1 , y1(b) = 0 If 0 < y∗
1 ≤ l p − 1

(14.12)

If y∗
1 = 0, there exist 1 ≤ k ≤ l p − 1 such that Da(k) �= Db(k) from ID conversion.

If 0 < y∗
1 ≤ l p − 1, Da(y1(a)) − Db(y1(b)) = Da(y∗

1) > 0. Thus such y1(a), y1(b)
exist and y1(a) − y1(b) − y∗

1 = 0.
Since Da(y1(a)) − Db(y1(b)) �= 0, y2(b) can be computed from Eq. (14.11) as

follows. We plug in equation:

x(a) − x(b) = x∗ (14.13)

from the constraint Eq. (14.10). Then, we compute:

x(b) = j − 1 − Db(y1(b)) · y2(b) mod p (14.14)

and thus x(b) ∈ [0, p). So the time to rendezvous is:

TTR = tb = x(b) · (2plp) + y1(b) · (2p) + y2(b) (14.15)

and it is bounded by 2l p · p2.
For example, users ua and ub have inputs Ia = 5, |Ca| = 4, Ib = 20, |Cb| = 5 and

ca(2) = cb(4) is their only common available port. Thus pa = pb = 5, la = lb = 4
and Da = {0, 1, 2, 2}, Db = {0, 2, 2, 0}.

Let δ = 2014 and it can be rewritten as:

δ = 50 · 40 + 1 · 10 + 4 (14.16)

Thus we compute the values according to Eq. (14.4) as:

x∗ = 50, y∗
1 = 1, y∗

2 = 4 (14.17)

Since y∗
1 = 1, from Eq. (14.12), we know:

y1(a) = y∗
1 = 1

y1(b) = 0

x(a) − x(b) = x∗ = 50

From Eq. (14.11), y2(b) = 4 and x(b) = 3. Thus

tb = 3 ∗ 40 + 4 = 124

ta = tb + δ = 2138

We can check that user ua accesses port ca(2) and ub accesses port cb(4) at the same
time.

180 14 Fully Distributed Rendezvous Algorithm for Non-anonymous Users

If p ≤ δ mod 2p < 2p, the TTR value is also bounded by 2l p · p2 time slots
using the same technique above. We omit the details and the readers may deduce this
situation. Therefore, the lemma holds.

Lemma 14.2 If pa = pb = p but lpa �= l pb , rendezvous between users ua and ub
can be guaranteed in T = 2min{l pa , l pb } · p2 time slots.
Proof If 0 ≤ δ mod 2p < p, there exists x∗ ≥ 0, 0 ≤ y∗

1 < l pa , 0 ≤ y∗
2 < p such

that:
δ = x∗ · (2plpa) + y∗

1 · (2p) + y∗
2 (14.18)

Suppose two users can rendezvous on port u′ at time ta, tb respectively, we have:

ta = x(a) · (2plpa) + y1(a) · (2p) + y2(a)

tb = x(b) · (2plpb) + y2(b) · (2p) + y2(b)

where x(a), x(b) > 0, 0 ≤ y1(a) < l pa , 0 ≤ y1(b) < l pb , 0 ≤ y2(a) < 2p, 0 ≤
y2(b) < p. Combining these with ta = tb + δ to derive:

[l pa x(a) − l pb x(b) − l pa x
∗ + y1(a) − y1(b) − y∗

1] · 2p
+y2(a) − y2(b) − y∗

2 = 0

Similarly, we have:

{
l pa · x(a) − l pb · x(b) − l pa · x∗ + y1(a) − y1(b) − y∗

1 = 0
y2(a) − y2(b) − y∗

2 = 0
(14.19)

We can also formulate Eqs. (14.7)–(14.8). If l pa > l pb , we let:

{
y1(a) = 0

y1(b) = k �= 0

From Eq. (14.7), we can derive:

x(a) = (i − 1) mod p (14.20)

Plugging this into Eq. (14.19), we have:

l pb x(b) = [l pa x(a) − l pa x
∗ − y1(b) − y∗

1] mod p (14.21)

Since l pb is an even number, x(b) ∈ [0, p) can be computed obviously. Then from
Eq. (14.8), y2(b) ∈ [0, p) can be derived. Therefore, the T T R value is:

tb = x(b) · (2plpb) + y1(b) · (2p) + y2(b) ≤ 2p2l pb (14.22)

14.2 Correctness and Complexity 181

If l pa < l pb , we can bound the time to rendezvous as:

TTR = ta − δ = (x(a) − x∗) · (2plpa) + (y1(a) − y∗
1) · (2p) + (y2(a) − y∗

2) ≤ 2p2l pa
(14.23)

Thus, MTTR ≤ 2min{l pa , l pb }p2.
If p ≤ δ mod 2p < 2p, the TTR value is also bounded by:

T = 2min{l pa , l pb } · p2 (14.24)

time slots using the same technique above. Thus the lemma holds.

Lemma 14.3 If pa �= pb, rendezvous between users ua and ub can be guaranteed in
T = 2l p · p2 time slots, where p = max{pa, pb} and lp is the corresponding value
from {l pa , l pb }.
Proof This lemma can be concluded similarly. Suppose pa < pb, we can derive the
following equations:

x(a) + Da(y1(a)) · y2(a) mod pa + 1 = i

x(b) + Db(y1(b)) · y2(b) mod pb + 1 = j

Let y1(b) = 0, then:
x(b) = (j − 1) mod pb (14.25)

and y2(b) ∈ [0, 2pb). Suppose:

x(a) = i ′ mod pa (14.26)

and y1(a) �= 0, then y2(a) exists. Since ta = tb + δ and we know:

ta = x(a) · (2palpa) + y1(a) · (2pa) + y2(a)

tb = x(b) · (2pblpb) + y2(b) · (2pb) + y2(b)

We can find value:
x(a) = i ′ + v(a)pa (14.27)

satisfying δb(vb) + δ − δa(va) ∈ [2pa − 2pb, Ta) where Ta = 2p2al pa is define as
above, where:

δb(vb) = (2pblpb) · (j − 1 + v(b)pb)

δa(va) = (2palpa) · x(a)

Obviously, we can compute:

δb(0) mod Ta ≥ 2pa − 2pb (14.28)

182 14 Fully Distributed Rendezvous Algorithm for Non-anonymous Users

We let:

v(b) = 0

v(a) = �(δb(0) + δ)/Ta�
i ′ = �(δb(0) + δ − v(a)Ta)/FLa�

where FL = 2palpa ; then variables y1(a), y2(a), y2(b) can be determined. Thus, the
time to rendezvous can be computed as:

TTR = tb = x(b) · (2pblpb) + y1(b) · (2pb) + y2(b) ≤ 2p2bl pb (14.29)

If pa > pb, we can derive the time complexity using a similar technique:

TTR ≤ 2p2al pa (14.30)

Therefore, the lemma holds.

Combining Lemmas 14.1–14.3, we can conclude:

Theorem 14.1 Two users running the CBH algorithm (Algorithm 14.1) can achieve
rendezvous in MTTR = 2l p · p2 time slots where p = max{pa, pb} and lp is the
corresponding value from {l pa , l pb }.

This theorem reveals that: the CBH algorithm can guarantee oblivious blind ren-
dezvous between two users in a short time and it is comparable to the lower bound in
Theorem 13.5 for most cases. More precisely,MTTR = 2l p · p2 = O(k2) time slots
if l p is a constant, which implies the corresponding ID is a polynomial function of
p, where k = max{ka, kb}.

For example, if ka > kb (which implies pa ≥ pb), and Ia is bounded by Ia ≤ pca
where c can be an arbitrary large constant, MTTR = 2l pa · p2a = O(k2a). If kb =
�(ka) and kg = o(ka), theMTTR value is comparable with the lower bound in The-
orem 13.5 (see Chap.13.3).

Remark 14.1 In Lemma 14.3, the MTTR value can be bounded by 2l p p2 time slots
where p = min{pa, pb} for most cases: when pa < pb, if

(2pala j) mod Tb ≥ 2(pb − pa) (14.31)

or
Ta mod Tb = Ω(pb) (14.32)

theMTTR value could be very small.

http://dx.doi.org/10.1007/978-981-10-3680-4_13
http://dx.doi.org/10.1007/978-981-10-3680-4_13

14.3 Chapter Summary 183

14.3 Chapter Summary

In this chapter,we present the first fully distributed rendezvous algorithm for twonon-
anonymous users, called Conversion Based Hopping (CBH). The CBH algorithm
only utilizes the user’s local information: the ID and the number of available ports
and it is independent of the global parameters: the number of all ports N and the
maximum value for the users’ ID M .

The CBH algorithm combines the intuitive idea of theMLS algorithm (in Chap. 9)
and the SCH/MSH algorithm (in Chap. 13): the user’s ID is first scaled (converted)
to a new number given the base value that is related to the number of available ports;
then the algorithm constructs hopping sequences by different hopping steps. The
CBH algorithm guarantees rendezvous in O((max{|Ca|, |Cb|})2) time slots under
most circumstances where Ca,Cb represent the sets of two users’ available ports.
When the number of available ports is small, the CBH algorithm outperforms some
state-of-the-art global sequence based rendezvous algorithms.

The CBH algorithm has many advantages when compared with traditional non-
oblivious blind rendezvous algorithms:

(1) The CBH algorithm uses very little information. Only the user’s ID and the
number of available ports are used in designing the CBH algorithm. It does
not require global information, such as the number of ports, the maximum ID
value, the labels of the ports. Some traditional non-oblivious blind rendezvous
algorithm may not utilize the user’s ID either, but they may need the value of all
ports, or the labels of these ports.

(2) The CBH algorithm is also suitable for non-oblivious setting, where the external
ports have global labels. Compared with the state-of-the-art rendezvous algo-
rithms, the CBH algorithm has good performance when the users’ number of
available ports is small.

Reference

1. A. B. Flores, R. E. Guerra, and E. W. Kightly. IEEE 802.11af: A Standard for TV White Space
Spectrum Sharing. IEEE Communications Magazine, 2013.

http://dx.doi.org/10.1007/978-981-10-3680-4_9
http://dx.doi.org/10.1007/978-981-10-3680-4_13

Chapter 15
Oblivious Blind Rendezvous for Anonymous
Users

Abstract In this chapter, we present symmetric algorithms for the blind rendezvous
problem between two anonymous users. In the setting, we fix Alg and ID as:

RS =< Alg − S,Time,Port,Anon,Obli > (15.1)

where Port ∈ {Port − S,Port − AS} and Time ∈ {Syn,Asyn}. It is easy to see that
there are 4 different rendezvous settings when Alg is fixed as symmetric, ID is fixed
as anonymous, and Label is fixed as oblivious. Different from Chaps. 13 and 14,
we assume the users have no distinct identifiers to break symmetry in distributed
computing. This anonymous setting makes the oblivious blind rendezvous problem
difficult. In Sect. 15.1, we show the hardness due to such anonymity which gives
rise to the result that no deterministic algorithm could exist for the oblivious blind
rendezvous problem. Then, we present in Sect. 15.2 an efficient randomized algo-
rithm for two port-symmetric users no matter whether they are synchronous or asyn-
chronous, which achieves short expected time to rendezvous. For the most difficult
setting, where the users are port-asymmetric, we present randomized algorithms that
work well for both synchronous and asynchronous users. Finally, we summarize the
chapter in Sect. 15.4.

15.1 Hardness of Anonymity

In this section, we show that there is no deterministic distributed algorithm for the
OBR problem between two anonymous users, i.e. the users do not have unique
identifiers (IDs) or distinguishable information.

Theorem 15.1 There is no deterministic distributed algorithm for the OBR problem
between two anonymous users.

Proof Suppose there exists such a deterministic algorithm:

F : f �→ [1,N] (15.2)

© Springer Nature Singapore Pte Ltd. 2017
Z. Gu et al., Rendezvous in Distributed Systems,
DOI 10.1007/978-981-10-3680-4_15

185

http://dx.doi.org/10.1007/978-981-10-3680-4_13
http://dx.doi.org/10.1007/978-981-10-3680-4_14

186 15 Oblivious Blind Rendezvous for Anonymous Users

for the OBR problem between two anonymous users. Consider two users A and B
with two available port sets CA,CB satisfying

ka = kb = �N/2� + 1 (15.3)

where ka = |CA|, kb = |CB| represent the number of available ports for each user;
we set:

∀i, ca(i) �= cb(i) (15.4)

where ca(i) and cb(i) represent the ports that are labeled as i locally by users A and
B respectively.

Since ka + kb > N , at least one common available port exists between setsCA and
CB, which is the elementary condition that the users could rendezvous. However, we
show that the algorithm F cannot guarantee rendezvous.

Let δ = 0, i.e. two users start the rendezvous algorithm F at the same time, and
denote at, bt as the labels of the ports to access in time slot t respectively; thus:

at = f (a1, a2, . . . , at−1, ka,N)

bt = f (b1, b2, . . . , bt−1, kb,N)

since the chosen port in time slot t is only related to the user’s local information:
the local labels of the ports, the number of available ports, the number of all ports N
(notice that, N may not be known in advance, but we show the theorem even when
this value is available for the users).

We prove that usersA andBwill choose the ports with the same local label at = bt
in time slot t through the inductive method.

(1) When both users start the rendezvous algorithm, they only find out that there are
�N/2� + 1 available ports and they are indistinguishable from each other. Thus
they will make the same choice and access the port with the same local label in
the first time slot, i.e. a0 = b0;

(2) Suppose ai = bi when 0 ≤ i ≤ t − 1. Then user A should access port at as:

at = f (a1, a2, . . . , at−1, ka,N) (15.5)

while user B should access port bt with label:

bt = f (b1, b2, . . . , bt−1, kb,N) (15.6)

Since ai = bi when 0 ≤ i ≤ t − 1, ka = kb, both users have the same input to the
deterministic algorithm F and the outputs of the algorithm should be the same,
i.e. at = bt .

Combining the two aspects, both users A and B choose the ports with the same
local label at = bt for any time slot t. Since:

15.1 Hardness of Anonymity 187

ca(i) �= cb(i),∀i ∈ [1, �N/2� + 1] (15.7)

(obviously, this setting can be easy fulfilled). Rendezvous never happens even for
two synchronous users. Therefore, no deterministic algorithm exists for the OBR
problem between two anonymous users.

15.2 Port-Symmetric Rendezvous

In this section, we handle the port-symmetric rendezvous where two users have the
same set of available ports. For simplicity, we assume all ports are available and it is
easy to extend the algorithm to the general port-symmetric setting.

Recall the telephone coordination problem [1] (introduced in Sect. 1): two users
A and B are isolated in two rooms and there are N telephones in each of them.
The telephones are pairwise connected in some unknown fashion. For simplicity,
assuming the telephones are labeled {1, 2, . . .N} randomly (locally) for each user,
and telephone i ∈ [1,N] of user A is connected to a certain telephone j of user B,
but they do not know the connection pattern. Time is also assumed to be divided
into slots of equal length and the user can select one telephone in each time slot by
sending a “hello” message. If they pick a pair of connected telephones in the same
time slot, they can hear from each other and it is called rendezvous (all time slots are
regarded as aligned). Time to rendezvous (TTR) denotes the time cost when all users
have begun the selection process and the objective is to minimize the expected time
to rendezvous (ETTR).

When all the ports are available for the two anonymous users, it is similar to the
telephone coordination problem. One simple and intuitive idea is random selection,
where each user selects a random port to attempt rendezvous. This method has
expected time to rendezvous (ETTR) as N time slots and it seems to be the best
solution.

However, a better algorithmcalled theAnderson-Weber strategy (AW) is proposed
in [2]; for two synchronous users and it works as follows:

(1) Choose a random value i ∈ [1,N] and pick the i-th telephone in the first time
slot;

(2) choose a constant p ∈ [0, 1] and the user picks the i-th telephone for the next
N − 1 time slot with probability p, or picks the telephones in the nextN − 1 time
slots according to a random permutation of set {1, 2, . . . , i − 1, i + 1, . . . ,N}
(with probability 1 − p);

(3) if rendezvous does not happen, repeat the second step.

It has been proved that the AW strategy is optimal whenN = 2, p = 1
2 (this is also

shown in [3]) and N = 3, p = 1
3 [1, 4, 5, 7]. It has also been conjectured that AW is

asymptotically optimal whenN ≥ 4 (specifically,ETTR = 0.8289N and p = 0.2475
when N → ∞). In [6], it is proved that the AW strategy is not optimal when N = 4
and to find an optimal algorithm even for two synchronous users is still an open

188 15 Oblivious Blind Rendezvous for Anonymous Users

problem. In addition, the AW strategy does not work for asynchronous users. In this
section, we present a randomized algorithm which works well for both synchronous
and asynchronous users.

Before we describe the algorithm, we present some useful results from probability
theory.

Let A be an event, Pr(A) denote the probability event A happens and Pr(A) =
1 − Pr(A) the probability that event A does not happen. Let {B1,B2, . . . ,Bn} be a
set of disjoint events whose union is the entire sample space; then according to the
law of total probability:

Pr(A) =
n∑

i=1

Pr(A
⋂

Bi) =
n∑

i=1

Pr(A|Bi) · Pr(Bi) (15.8)

Suppose X is a random variable and denote E(X) as the expectation of X. If events
{B1,B2, . . . ,Bn} are mutually exclusive and exhaustive, according to the law of total
expectation:

E(X) =
n∑

i=1

E(X|Bi) · Pr(Bi) (15.9)

Let [N] denote the set {1, 2, . . . ,N}, and Ak
N be the number of methods selecting

k elements out of [N]:

Ak
N = N(N − 1) · · · (N − k + 1) (15.10)

15.2.1 Intuitive Ideas

To begin, we show a lower bound of the expected time to rendezvous (ETTR) when
two users are allowed to use asymmetric strategies (i.e. different algorithms). Then
we derive ETTR = N for the random selection algorithm. Combining the two results,
we then describe the intuitive ideas in designing the proposed randomized distributed
algorithm.

Lemma 15.1 For any distributed algorithm solving the OBR problem between two
anonymous users, the expected time to rendezvous satisfies:

ETTR ≥ N + 1

2
(15.11)

even when the users are allowed to use asymmetric algorithms.

Proof This lemma can be derived as in [2]. Let rt be the event that two users select
the same universal port (the local labels of the port may be different) in the t-th time
slot. Without loss of generality, suppose user A starts later than user B; t is the time

15.2 Port-Symmetric Rendezvous 189

stamp of user A since time to rendezvous (TTR) records the time cost when two users
have both begun the process.

Since the users do not know the other’s labels of the ports, we have:

Pr(rt) = 1

N
(15.12)

Note that, rt means they can rendezvous in the t-th time slot, but not necessarily for
the first time. Thus the probability two users rendezvous in the first t time slots can
be bounded as:

Pr(r1
⋃

r2
⋃

. . .
⋃

rt) ≤ min

{
1,

t∑

i=1

Pr(ri)

}
= min{1, t

N
} (15.13)

The bound on the right side of the inequality is achieved by the strategy S :

* One user accesses a fixed port all the time, while the other user hops through the
ports according to a random permutation of [N].

Obviously, we can derive the expected time to rendezvous for this strategy as:

ETTR =
∑n

i=1 i

N
= N + 1

2
(15.14)

and thus the lemma holds.

Although the strategyS can guarantee fast rendezvous for two anonymous users,
it is inapplicable to the OBR-2 problem since two anonymous users cannot decide
which role to take.

When it comes to the situation in which two asynchronous users should run a
symmetric algorithm, random selection seems to be reasonable,which can be denoted
as R:

* Each user accesses a port randomly in each time slot.

We derive the expected time to rendezvous and show the efficiency of the strategy.

Lemma 15.2 R has expected time to rendezvous ETTR = N for two asynchronous
users.

Proof Let rt be the event that the users access the same universal port (the local labels
may be different) in the t-th time slot. Since both users access the port randomly, we
can derive:

Pr(rt) = 1

N
(15.15)

Let r′
t be the event that the users can rendezvous in the t-th time slot for the first time;

then we have:

190 15 Oblivious Blind Rendezvous for Anonymous Users

Pr(r′
t) = Pr(r1

⋂
r2

⋂
. . .

⋂
rt−1

⋂
rt) =

(
1 − 1

N

)(t−1)

· 1

N
(15.16)

Therefore, we can compute the ETTR value as:

ETTR =
∞∑

t=1

t · Pr(r′
t) =

∞∑

t=1

t ·
(
1 − 1

N

)(t−1)

· 1

N
= N (15.17)

So the lemma holds.

Lemma 15.3 R guarantees rendezvous in O(N logN) time slots for two asynchro-
nous users with high probability.

Proof As shown in Lemma 15.2, the probability to rendezvous in each time slot t is
Pr(rt) = 1

N . Since strategyR accesses the ports randomly for every time slot, events
rt, r′

t are independent for any t �= t′. So the probability that they do not rendezvous
in cN logN (c is a constant) time slots is bounded by:

Pr(r1
⋂

r2
⋂

. . .
⋂

rcN logN) =
(
1 − 1

N

)cN logN

(15.18)

When N → ∞, we derive that:

Pr(r1
⋂

r2
⋂

. . .
⋂

rcN logN) = e−c logN = 1

Nc
(15.19)

Therefore, rendezvous happens in O(N logN) time slots with high probability 1 −
1
Nc , which concludes the lemma.

Though strategy S designs asymmetric algorithms for two users, the idea that
one user waits while the other user hops through all ports provides an important
foundation for designing efficient randomized algorithms. The strategyR seems to be
the best randomized algorithmwhereweuse pure randomization inmakingdecisions.
However, if we could combine both intuitions to design randomized algorithms, we
may achieve better results.

15.2.2 Stay or Random Selection Algorithm

In the section, we introduce a simple randomized distributed algorithm called Stay
or Random Selection (SRS) that achieves rendezvous faster than random selection
(R).

As shown in Algorithm 15.1, the user makes a choice at the beginning of each
block, which is defined as N consecutive time slots. If the chosen random value
p′ ≤ p (p is a constant we need to compute and define), the user accesses a random

15.2 Port-Symmetric Rendezvous 191

port and waits at it for a block of time slots; otherwise a random permutation of [N]
is generated and the user accesses the corresponding port in the permutation for each
time slot of the block. We denote the first choice as the stay pattern and the second
one as the jump pattern. The user keeps this process until rendezvous.

Algorithm 15.1 Stay or Random Selection Algorithm
1: p is a pre-defined constant in [0, 1];
2: while Not rendezvous do
3: Select a random value p′ ∈ [0, 1];
4: if p′ ≤ p then
5: Select a random number in [N] and access the corresponding port for the following N time

slots;
6: else
7: Generate a random permutation of [N] and access the corresponding ports in the following

N time slots according to the permutation;
8: end if
9: end while

The intuitive ideas of S and R are combined in our algorithm. Although the
description of the algorithm is simple, finding the optimal value of p that minimizes
the ETTR is very difficult. Compared with the AW strategy for the telephone coordi-
nation problem, our algorithm also works for two asynchronous users, which is not
treated in existing works.

15.2.3 Synchronous Users Scenario

The SRS algorithm is applicable for both synchronous and asynchronous users. In
this section, we analyze the rendezvous efficiency for two synchronous users and
compute the appropriate p value in Algorithm 15.1.

In the synchronous situation, two users start the algorithm at the same time. As
shown in Algorithm 15.1, time is divided into blocks of length N . At the beginning
of each block, the user decides to be in the stay or jump pattern. Denote r(S, J) as
the event that user A is in the stay pattern and user B is in the jump pattern. The other
three events are denoted as r(S, S), r(J, S), r(J, J) similarly. Denote the expected
time to rendezvous (ETTR) for synchronous users as Ts which can be formulated as:

Ts = E(S, J)Pr(S, J) + E(J, S)Pr(J, S) + E(S, S)Pr(S, S) + E(J, J)Pr(J, J) (15.20)

where Pr(S, J) is the probability that event r(S, J) happens, Pr(J, S) the probability
that event r(J, S) happens, Pr(S, S) the probability that event r(S, S) happens and
Pr(J, J) the probability that event r(J, J) happens. Similarly, E(S, J) is the expected
time to rendezvous if user A is in the stay pattern and user B is in the jump pattern;
E(J, S) is the expected time to rendezvous if user A is in the jump pattern and user

192 15 Oblivious Blind Rendezvous for Anonymous Users

B in the stay pattern; E(S, S) is the expected time to rendezvous if user A is in the
stay pattern and user B is in the stay pattern; and E(J, J) is the expected time to
rendezvous if user A is in the jump pattern and user B is in the jump pattern.

We first analyze the ETTR values for the four events respectively.

(1) Event r(S, S):
When both users choose the stay pattern, the only chance to rendezvous is that
the ports they select represent the same global port. Thus the probability to
rendezvous is:

Pr(S, S) = 1

N
(15.21)

and 1 time slot is needed when rendezvous happens. Therefore

E(S, S) = 1

N
· 1 +

(
1 − 1

N

)
(N + Ts) (15.22)

(2) Event r(S, J) and r(J, S):
When one user chooses the stay pattern while the other one is in the jump pattern,
rendezvous happens for certain:

Pr(S, J) = Pr(J, S) = 1 (15.23)

and the expected time to rendezvous is:

E(S, J) = E(J, S) = N + 1

2
(15.24)

(3) Event r(J, J):
When two users are both in the jump pattern, the expected rendezvous time is
formulated as in Lemma 15.4.

Lemma 15.4 If two users are both in the jump pattern, the expected rendezvous time
is:

E(J, J) = (N + 1)(1 − p(N + 1, 0) − p(N, 0)) + p(N, 0)(N + Ts) (15.25)

where p(N, 0) is the probability that the users cannot rendezvous according to two
random permutations of [N] they generate respectively.
Proof Let J1, J2 be the permutations of [N] that the users generate respectively when
they are in the jump pattern. Let variable m be the first time they meet on a specific
position. Supposing J1, J2 rendezvous exactly x ≥ 1 times, then:

Pr(m ≤ i) =
(N+1−i

x

)
(N
x

) ,∀1 ≤ i ≤ N − x + 1. (15.26)

15.2 Port-Symmetric Rendezvous 193

For any given N and fixed value 1 ≤ x ≤ N , denote the expected time to rendezvous
as E(m, x) which can be formulated as:

E(m, x) =
N−x+1∑

i=1

i · Pr(m = i)

=
N−x+1∑

i=1

Pr(m ≤ i)

=
N−x+1∑

i=1

(N+1−i
x

)
(N
x

)

= N + 1

x + 1

(15.27)

We accumulate the expectations for all possible N and x to derive:

E(J, J) =
N∑

x=0

p(N, x) · E(m, x)

=
N∑

x=1

p(N, x) · E(m, x) + p(N, 0)(N + Ts)

(15.28)

here p(N, x) is the probability that J1, J2 rendezvous exactly x ≥ 1 times.On the basis
that x rendezvous points exist between J1, J2, the remaining part cannot rendezvous
and the probability is denoted as p(N − x, 0). As the x rendezvous points have x!
different permutations, we derive:

p(N, x) = p(N − x, 0)

x! (15.29)

Combining Eq. (15.27), we get

N∑

x=1

p(N, x) · E(m, x) =
n∑

x=1

E(m, x) · p(N − x, 0)

x!

= (N + 1) ·
n∑

x=1

p(N − x, 0)

(x + 1)!

= (N + 1) ·
n∑

x=1

p(N + 1, x + 1)

= (N + 1)(1 − p(N, 0) − p(N + 1, 0))

(15.30)

Plugging this into the formulation of E(J, J), the lemma holds.

194 15 Oblivious Blind Rendezvous for Anonymous Users

Then we need to calculate p(N, 0) which denotes the probability that J1, J2 do
not rendezvous. Assuming J1 is the permutation generated by user A, we count the
number of permutations (J2) that do not rendezvous with J1 (denote the number as
DN), which can be computed as in Lemma 15.5.

Lemma 15.5 DN = N ! · ∑N
k=0(−1)k · 1

k! . When N is large enough, DN =
N !
e �

Proof Consider two permutations J1, J2 of [N] generated by user A and user B
respectively. Let J1(i), J2(i) be the labels of the i-th position. Since no rendezvous
happens, J1(N) does not represent the same universal port as J2(N). Suppose J2(N)

and J1(i), 1 ≤ i < N represent the same universal port while J1(N) and J2(j), 1 ≤
j < N represent the same universal port.

(1) If i = j, rendezvous cannot happen for all other N − 2 positions and the number
of such permutations is DN−2;

(2) if i �= j, the number of such permutations is DN−1.

Therefore, we can compute:

DN = (N − 1)(DN−1 + DN−2) (15.31)

It is easy to see D1 = 0,D2 = 1 and p(N, 0) = DN
N ! . Plugging these into the equation

we get:

N !p(N, 0) = (N − 1)((N − 1)!p(N − 1, 0) + (N − 2)!p(N − 2, 0))

After the transformation we get:

N !p(N, 0) − N !p(N − 1, 0) = −(N − 1)!p(N − 1, 0) + (N − 1)!p(N − 2, 0)
(15.32)

Let w(N) = N !p(N, 0) − N !p(N − 1, 0), we can solve the above equation as:

w(N) = −w(N − 1) = (−1)N−1w(1) = (−1)(N−1)

Then, we have:

p(N, 0) − p(N − 1, 0) = 1

N ! (−1)N (15.33)

and we can solve the equation as:

p(N, 0) = 1

N !
N∑

i=0

(−1)i
1

i! (15.34)

Therefore, DN is computed as:

DN = N ! · p(N, 0) = N ! ·
N∑

k=0

(−1)k · 1

k! (15.35)

15.2 Port-Symmetric Rendezvous 195

Fig. 15.1 An example of the
overlapping between two
random permutations

When N → ∞, p(N, 0) is the Taylor expansion of e−1, and thus DN =
N !
e �. So

the lemma holds.

Since p(N, 0) = DN
N ! , we can combine Eqs. (15.20)–(15.25) to derive the expected

time to rendezvous as in Theorem 15.2.

Theorem 15.2 The expected time to rendezvous (ETTR) of the SRS algorithm (Algo-
rithm 15.1) for two synchronous and port-symmetric users can be formulated as:

Ts = T1 + T2 + T3
1 − p2(1 − 1

N) − (1 − p)2p(N, 0)
(15.36)

where:

T1 = p(1 − p)(N + 1)

T2 = (1 − p)2[(N + 1)(1 − p(N, 0) − p(N + 1, 0)) + p(N, 0) · N]
T3 = [p2(1

N
+ N − 1)]

(15.37)

In order to find out the optimal p that minimizes Ts, let
dTs
dp = 0, and we can com-

pute the value of p. When N → ∞, p ≈ 0.2475 and Ts ≈ 0.8289N , which matches
the state-of-the-art results [2].

15.2.4 Asynchronous Users Scenario

In order to analyze the algorithm for two asynchronous users, we present a method
to derive the ETTR value for a general situation, i.e. an arbitrary N value. Similar
to the analysis for two synchronous users, we first consider the scenario where two
users are both in the jump pattern and are in the asynchronous situation.

Suppose sequences J1, J2 are two random permutations of [N] generated by users
A and B respectively. Let r(N, k) denote the event that two users rendezvous in the
overlapping fragment of length k (as in Fig. 15.1) andR(N, k) denote the correspond-
ing variable. Let p(N, k, j) be the probability that they rendezvous exactly j times in
the overlapping part; it is obvious that:

Pr(r(N, k)) = p(N, k, 0) (15.38)

196 15 Oblivious Blind Rendezvous for Anonymous Users

We introduce Lemmas 15.6–15.8 to compute p(N, k, j) and E(R(N, k)). To begin
with, we introduce the inclusion-exclusion principle.

For two sets A,B, the cardinality of set A
⋃

B can be computed as:

|A
⋃

B| = |A| + |B| − |A
⋂

B| (15.39)

When there are multiple sets A1,A2, . . . ,An, we can compute the cardinality of set⋃n
i=1 Ai as:

|
n⋃

i=1

| =
n∑

i=1

Ai −
∑

1≤i<j≤n

|Ai

⋂
Aj| +

∑

1≤i<j<k≤n

|Ai

⋂
Aj

⋂
Ak|

+ · · · + (−1)n−1|A1

⋂
A2

⋂
. . .

⋂
An|

=
n∑

k=1

(−1)k+1

⎛

⎝
∑

1≤i1<...<ik≤n

|Ai1

⋂
· · ·

⋂
Aik |

⎞

⎠

(15.40)

Lemma 15.6 p(N, k, 0) = ∑k
i=0(−1)i · (ki)

Ai
N
.

Proof This lemma can be derived easily. Denote q(N, k, i) as the probability that
two users rendezvous at least i times in the overlapping fragment which has length
k; when 1 ≤ i ≤ k, we have:

q(N, k, i) =
(k
i

) · (N − i)!
N ! =

(k
i

)

Ai
N

(15.41)

Applying the inclusion-exclusion principle,

p(N, k, 0) = 1 − q(N, k, 1) + q(N, k, 2) + · · · + (−1)iq(N, k, i) =
k∑

i=0

(−1)i ·
(k
i
)

AiN
(15.42)

so the lemma holds.

Lemma 15.7 p(N, k, j) = p(N − j, k − j, 0) · (kj)
Aj
N

.

Proof Let D(N, k, j) denote the number of permutations when J1, J2 have overlap-
ping length k and exactly j rendezvous points. It is obvious that:

D(N, k, j) = N ! · N ! · p(N, k, j) (15.43)

Similarly, we compute:

D(N − j, k − j, 0) = (N − j)! · (N − j)! · p(N − j, k − j, 0) (15.44)

15.2 Port-Symmetric Rendezvous 197

For any instance of theD(N − j, k − j, 0) situations, it can be transformed into some
instance in the D(N, k, j) situations. Clearly, there are

(N
j

)
numbers (rendezvous

points) that can be chosen, and there are k − j + 1 positions to place the first number,
k − j + 2 positions for the second one, until k − j + j positions for the j-th number.
Thus, we derive:

D(N, k, j) = D(N − j, k − j, 0) ·
(
N

j

)
· k!
(k − j)! (15.45)

Combining the relationships of D(N, k, j), p(N, k, j) and D(N − j, k − j, 0),
p(N − j, k − j, 0), we get:

p(N, k, j) = D(N, k, j)

N ! · N ! = D(N − j, k − j, 0) · (N
j

) · k!
(k−j)!

N ! · N !
= p(N − j, k − j, 0) · (N − j)! · (N − j)!

N ! · N ! ·
(
N

j

)
· k!
(k − j)!

= p(N − j, k − j, 0) ·
(k
j

)

Aj
N

(15.46)

Thus the lemma holds.

Similar to Lemma 15.4, we bound the ETTR of R(N, k) in Lemma 15.8.

Lemma 15.8 E(R(N, k)) = (N + 1)(1 − p(N + 1, k + 1, 0)) − (k + 1)
p(N, k, 0).

Proof When j > k, p(N, k, j) = 0 and we accumulate the probabilities when j =
0, 1, . . . , k as:

k∑

j=0

p(N, k, j) = p(N, k, 0) + p(N, k, 1) + · · · + p(N, k, k) = 1. (15.47)

Supposing two users rendezvous exactly j times in the overlapping part of length
k (denote the event as r(N, k, j)). Let rk,j,1 be the time when they first rendezvous
and let qi be the probability that rk,j,1 is no more than i, thus:

qi = Pr(rk,j,1 ≤ i | r(N, k, j)) =
(k+1−i

j

)

(k
i

) (15.48)

where i ≤ k + 1 − j. When i > k + 1 − j, qi = 0. We can formulate the expected
time of the first rendezvous as:

198 15 Oblivious Blind Rendezvous for Anonymous Users

E(rk,j,1 | r(N, k, j)) =
k+1−j∑

i=1

i · Pr(rk,j,1 = i | r(N, k, j))

=
k+1−j∑

i=1

Pr(rk,j,1 ≤ i | r(N, k, j))

=
k+1−j∑

i=1

qi =
∑k+1−j

i=1

(k+1−i
j

)

(k
j

)

= k + 1

j + 1

(15.49)

Thus we accumulate all the expectations when j = 1, 2, . . . , k as:

E(R(N, k)) =
k∑

j=1

p(N, k, j) · E(rk,j,1 | r(N, k, j))

=
k∑

j=1

p(N − j, k − j, 0) ·
(k
j

)

Aj
N

· k + 1

j + 1

= (N + 1) ·
k∑

j=1

p(N − j, k − j, 0)

(k+1
j+1

)

Aj+1
N+1

= (N + 1) ·
k∑

j=1

p(N + 1, k + 1, j + 1)

= (N + 1)(1 − p(N + 1, k + 1, 0)) − (k + 1)p(N, k, 0)

(15.50)

We use Lemma 15.7 and plug in Eq. (15.47) to derive Eq. (15.50), and thus the lemma
holds.

Without loss of generality, suppose user B starts the algorithm δ time slots later
than user A. Since each user makes a choice every N time slots independently, we
consider the situation as user B starts:

d = δ mod N (15.51)

time slots later than user A. Let T1 be the ETTR value when user A is in the stay
pattern, and T2 be the ETTR value when user A is in the jump pattern. Then we derive
the ETTR value for the asynchronous scenario as follows.

Theorem 15.3 For an arbitrary N, the optimal p of Algorithm 15.1 can be deter-
mined numerically and the minimized ETTR is computed as:

ETTR = p · T1 + (1 − p) · T2 (15.52)

15.2 Port-Symmetric Rendezvous 199

Fig. 15.2 Different
situations of asynchronous
rendezvous scenario when
computing T1

Proof In order to compute T1,T2, there are 4 situations respectively as shown in
Figs. 15.2 and 15.3.

Since we treat every N time slots as a block, user B’s first block intersects with
user A’s two consecutive blocks. Let B1 denote user B’s first block’s pattern, and
A1,A2 denote user A’s two intersecting blocks’ patterns. For simplicity, we write
B1 = S for the stay pattern and B1 = J for the jump pattern. Thus:

T1 = ETTR(A1 = S)

T2 = ETTR(A1 = J)
(15.53)

Denote A1
⋂

B1 and A2
⋂

B1 as the overlapping fragment, and thus:

|A1

⋂
B1| = N − d

|A2

⋂
B1| = d

(15.54)

here |.| represents the length of the overlapping part. The situations of the overlapping
fragments are also illustrated in Figs. 15.2 and 15.3.

As depicted in Fig. 15.2, we denote

200 15 Oblivious Blind Rendezvous for Anonymous Users

Fig. 15.3 Different
situations of asynchronous
rendezvous scenario when
computing T2

T11 = ETTR(B1 = S,A2 = S | A1 = S)

T12 = ETTR(B1 = S,A2 = J | A1 = S)

T13 = ETTR(B1 = J,A2 = S | A1 = S)

T14 = ETTR(B1 = J,A2 = J | A1 = S)

(15.55)

and we can get the formulation of T1:

T1 = p2 · T11 + p(1 − p) · T12 + (1 − p)p · T13 + (1 − p)2 · T14 (15.56)

Similarly, from Fig. 15.3, we derive Eq. (15.57) for T2:

T2 = p2 · T21 + p(1 − p) · T22 + (1 − p)p · T23 + (1 − p)2 · T24 (15.57)

where:
T21 = ETTR(B1 = S,A2 = S | A1 = J)

T22 = ETTR(B1 = S,A2 = J | A1 = J)

T23 = ETTR(B1 = J,A2 = S | A1 = J)

T24 = ETTR(B1 = J,A2 = J | A1 = J)

(15.58)

15.2 Port-Symmetric Rendezvous 201

Now we present the method to produce the expressions of T11,T12,T13,T14 and
T21,T22,T23,T24.

Let r1(Tij) and r2(Tij) be the events that the users rendezvous in A1
⋂

B1,
A2

⋂
B1, respectively, and R1(Tij), R2(Tij) be the corresponding variables, where

1 ≤ i ≤ 2, 1 ≤ j ≤ 4. We derive the formulation of Tij as:

Tij =Pr(r1(Tij))[(N − d) + Pr(r2(Tij)) · E(R2(Tij)) + Pr(r2(Tij)) · (d + Tδ)

+ Pr(r1(Tij)) · E(R1(Tij))
(15.59)

where δ = (j − 1) mod 2 + 1 (i.e. δ = 1 when j = 1, 3; otherwise δ = 2). Thus we
can plug in the following probabilities and expectations to generate Eqs. (15.60) and
(15.61).

For event r1(T11), we compute:

{
Pr(r1(T11)) = 1

N

E(R1(T11)) = 1

For event r2(T11), we compute:

{
Pr(r2(T11)) = 1

N

E(R2(T11)) = 1

For event r1(T12), we compute:

{
Pr(r1(T12)) = 1

N

E(R1(T12)) = 1

For event r2(T12), we compute:

{
Pr(r2(T12)) = d

N

E(R2(T12)) = d+1
2

For event r1(T13), we compute:

{
Pr(r1(T13)) = N−d

N

E(R1(T13)) = N−d+1
2

For event r2(T13), we compute:

{
Pr(r2(T13)) = d

N

E(R2(T13)) = d+1
2

202 15 Oblivious Blind Rendezvous for Anonymous Users

For event r1(T14), we compute:

{
Pr(r1(T14)) = N−d

N

E(R1(T14)) = N−d+1
2

For event r2(T14), we compute:

{
Pr(r2(T14)) = p(N, d, 0)

Pr(r2(T14)) · E(R2(T11)) = E(R(N, d))

For event r1(T21), we compute:

{
Pr(r1(T21)) = N−d

N

E(R1(T21)) = N−d+1
2

For event r2(T21), we compute:

{
Pr(r2(T21)) = 1

N

E(R2(T21)) = 1

For event r1(T22), we compute:

{
Pr(r1(T22)) = N−d

N

E(R1(T21)) = N−d+1
2

For event r2(T22), we compute:

{
Pr(r2(T22)) = d

N

E(R2(T22)) = d+1
2

For event r1(T23), we compute:

{
Pr(r1(T23)) = p(N,N − d, 0)

Pr(r1(T23)) · E(R1(T23)) = E(R(N,N − d))

For event r2(T23), we compute:

{
Pr(r2(T23)) = d

N

E(R2(T23)) = d+1
2

For event r1(T24), we compute:

15.2 Port-Symmetric Rendezvous 203

Table 15.1 Optimal p and minimized ETTR values in Algorithm 15.1

N Optimal p ETTR ETTR/N

3 0.302 2.887 0.9624

5 0.280 4.749 0.9499

10 0.233 9.332 0.9332

50 0.206 45.765 0.9159

100 0.203 91.354 0.9135

200 0.202 182.467 0.9123

500 0.201 455.806 0.9116

1000 0.200 911.369 0.9113

2000 0.200 1822.432 0.9112

10000 0.200 911.149 0.9111

N → ∞ 0.200 0.9111N 0.9111

{
Pr(r1(T24)) = p(N,N − d, 0)

Pr(r1(T24)) · E(R1(T24)) = E(R(N,N − d))

For event r2(T24), we compute:

{
Pr(r2(T24)) = p(N, d, 0)

Pr(r2(T24)) · E(R2(T24)) = E(R(N, d))

Combining these equations, we can derive the expressions of T11,T12,T13,T14,
as follows:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

T11 = 1
N · 1 + N−1

N · 1
N · (N − d + 1) + (N−1

N)2 · (N + T1)

T12 = 1
N · 1 + N−1

N · d
N · (N − d + d+1

2) + N−1
N · N−d

N · (N + T2)

T13 = N−d
N · N−d+1

2 + d
N · d

N · (N − d + d+1
2) + d

N · N−d
N · (N + T1)

T14 = N−d
N · N−d+1

2 + d
N · (N − d + E(R(N, d))) + d

N · p(N, d, 0) · (d + T2)
(15.60)

Similarly, we derive the expression of T21,T22,T23,T24:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T21 = N−d
N · N−d+1

2 + d
N · 1

N · (N − d + 1) + d
N · N−1

N · (N + T1)

T22 = N−d
N · N−d+1

2 + d
N · d

N · (N − d + d+1
2) + d

N · N−d
N · (N + T2)

T23 = E(R(N,N − d)) + p(N,N − d, 0) · d
N · (N − d + d+1

2)

+p(N,N − d, 0) · N−d
N · (N + T1)

T24 = E(R(N,N − d)) + p(N,N − d, 0)(N − d + E(R(N, d)))

+p(N,N − d, 0)p(N, d, 0)(d + T2)

(15.61)

204 15 Oblivious Blind Rendezvous for Anonymous Users

Combining Eqs. (15.52)–(15.61), p is optimized numerically for arbitrary N and the
minimized ETTR of our algorithm can be computed as Eq. (15.52). Table15.1 lists
some results derived through this numerical method.

15.3 Port-Asymmetric Rendezvous

In Sect. 15.2, we introduce a good method that works better than picking a random
port for rendezvouswhen the users have symmetric available ports. In this section, we
handle the port-asymmetric situations and present several randomized algorithms.

15.3.1 Random Picking Algorithm

One trivial way to handle the oblivious blind rendezvous between two anonymous,
port-asymmetric users is to pick the available port for rendezvous randomly. We
describe such an algorithm in Algorithm 15.2.

Algorithm 15.2 Random Picking Algorithm
1: Denote the set of the user’s available port set as C;
2: Denote C = {c(1), c(2), . . . , c(k)} where k = |C|;
3: t := 0;
4: while Not terminated do
5: Pick a random number i ∈ [1, k] and access port c(i) in time t;
6: t := t + 1;
7: end while

As depicted in the algorithm, the user has k available ports and it labels these
ports locally as:

{c(1), c(2), . . . , c(l)} (15.62)

where each port c(i) corresponds to a global port, but the user does not know the
relationship between them. We derive the time complexity of achieving rendezvous
with high probability.

Consider any two neighboring users ua and ub, and suppose the corresponding
available ports sets are

Ca = {ca(1), ca(2), . . . , ca(ka)}
Cb = {cb(1), cb(2), . . . , cb(kb)} (15.63)

15.3 Port-Asymmetric Rendezvous 205

respectively, where ka = |Ca| and kb = |Cb| record the number of available ports.
Since we study rendezvous between two port-asymmetric users, sets Ca,Cb can be
different.

Denote Cg = Ca
⋂

Cb, which represents the set of common available ports
between user ua and user ub. Notice that, two users have at least one common avail-
able port and |Cg| ≥ 1. We derive below the expected time to rendezvous of the
random picking algorithm.

Lemma 15.9 The expected time to rendezvous of the random picking algorithm is
ETTR = |Ca||Cb|

|Cg | for two port-asymmetric users.

Proof Let rt be the event when both users access the same universal port (the local
labelsmaybedifferent) in the t-th time slot. Since both users access the port randomly,
we analyze the probability as follows.

User ua accesses each available port randomly, and the probability of accessing
each port ca(i) is:

Pra(i) = 1

|Ca| (15.64)

Similarly, the probability of user ub accessing each port cb(j) is:

Prb(j) = 1

|Cb| (15.65)

Therefore, the probability of user ua accessing port ca(i) and user ub accessing port
cb(j) at the same time is:

Pr(uaaccessesca(i), ubaccessescb(j)) = 1

|Ca||Cb| (15.66)

As there are |Cg| common available ports for both users, for each port cg(l) ∈ Cg ,
there exist i, j such that: {

ca(i) = cg(l)

cb(j) = cg(l)

here “=” means they correspond to the same universal port. Therefore, there are |Cg|
situations where they may access the same port and the probability is:

Pr(rt) = |Cg|
|Ca||Cb| (15.67)

Since both users make decisions randomly and independently in each time slot,
we can compute the ETTR value as:

206 15 Oblivious Blind Rendezvous for Anonymous Users

ETTR = ∑∞
t=1 t · Pr(rt)

= ∑∞
t=1 t ·

(
1 − |Cg |

|Ca||Cb|
)(t−1) · |Cg |

|Ca||Cb|
= |Ca||Cb|

|Cg |

(15.68)

Therefore, the lemma holds.

15.3.2 Random Prime Selection and Sequential Accessing
Algorithm

Though the random picking algorithm has short expected time to rendezvous, it
cannot guarantee rendezvous within a bounded number of time slots with high prob-
ability. Actually, we can design another algorithm that guarantees rendezvous if a
certain condition is satisfied.

Algorithm 15.3 Random Prime Selection and Sequential Accessing Algorithm
1: Denote the set of the user’s available port set as C;
2: Denote C = {c(1), c(2), . . . , c(k)} where k = |C|;
3: Choose a random prime number p ∈ [k, 3k];
4: t := 0;
5: while Not terminated do
6: x := t mod p;
7: index := (x − 1) mod k + 1;
8: Access port c(index) for rendezvous;
9: t := t + 1;
10: end while

As described in Algorithm 15.3, suppose the user has k available ports and it
chooses a randomprime number p in the range of [k, 3k]. After picking prime number
p, the user accesses port sequentially by its local labels from 1 to p. However, pmay
be larger than k and we map the number in [k + 1, p] to [1, k] as in Line 7. For
example, k = 2 and we choose p = 3, and the user accesses the ports as in Fig. 15.4.

For two users ua and ub, denote their available port sets as:

Ca = {ca(1), ca(2), . . . , ca(ka)}
Cb = {cb(1), cb(2), . . . , cb(kb)} (15.69)

Fig. 15.4 An example of
Algorithm 15.3

15.3 Port-Asymmetric Rendezvous 207

respectively, where ka = |Ca| and kb = |Cb| record the number of available ports.
Denote the chosen prime numbers for two users as pa and pb. We show that they can
rendezvous within papb time slots for sure, if pa �= pb.

Theorem 15.4 Two port-asymmetric users (synchronous or asynchronous) can
achieve rendezvous within papb time slots under the situation that pa �= pb.

Proof Denote the port accessing sequences of user ua and ub as:

Sa = {ca(1), ca(2), . . . , ca(pa), ca(1), ca(2), . . . , ca(pa), . . .} (15.70)

and
Sb = {cb(1), cb(2), . . . , cb(pb), cb(1), cb(2), . . . , cb(pb), . . .} (15.71)

We do not consider the situation where some port in (ca(ka), ca(pa)] may not exist.
Suppose user ua is δ time slots earlier than user ub. Consider one common available
port cg between two users. Suppose it corresponds to port ca(i) of user ua and port
cb(j) of user ub. Suppose both users can rendezvous on port cg after user ub starts t
time slots; then we deduce that:

{
t + δ mod pa ≡ i

t mod pb ≡ j

According to the Chinese Remainder Theorem (see Chap.9, Theorem 9.1), such
value t must exist which satisfies both equations and t ≤ papb. Therefore, two users
can always achieve rendezvous no matter when they start.

However, if both users choose the same prime number, theymay never rendezvous
if they happen to miss the common available port. However, the probability of such
a failure is small.

15.4 Chapter Summary

In this chapter, we study the oblivious blind rendezvous (OBR) problem for two
anonymous users that are indistinguishable from each other.

In the beginning, we show an impossibility result that no deterministic algorithm
can tackle the OBR-2 problem even when the users start the rendezvous process at
the same time (i.e. synchronous users). Then, we propose a randomized distributed
algorithm called Stay or Random Selection (SRS) for a special situation in which all
ports are available for the users, which performs better than randomly accessing all
ports. Finally, we present several randomized algorithms for port-asymmetric users
on the basis of a random picking strategy.

When all N ports are available, two anonymous users adopting the random selec-
tion method have expected time to rendezvous (ETTR) inN time slots. We prove that
the optimal strategy when two users can run asymmetric algorithms, i.e. different

http://dx.doi.org/10.1007/978-981-10-3680-4_9

208 15 Oblivious Blind Rendezvous for Anonymous Users

strategies, has ETTR = N+1
2 time slots, where one user accesses a fixed port and the

other accesses the ports according to a random permutation of the N ports. The SRS
algorithm combines both ideas: the user accesses a fixed port for N time slots with
probability p or accesses the ports according to a random permutation of the N ports
(with probability 1 − p).

Although the description of SRS is simple, it is difficult to compute the appropriate
p value that minimizes the expected time to rendezvous. In the chapter, we show the
complicated analyses for both synchronous and asynchronous situations:

(1) For two synchronous users, theETTR is derived in Theorem 15.2 and the optimal
value of p can be derived numerically. When N → ∞, p ≈ 0.2475 and ETTR ≈
0.8289N , which matches the state-of-the-art result [2];

(2) For two asynchronous users, the ETTR is derived in Theorem 15.3. Some
detailed parameters are listed in Table15.1 and when N → ∞, p ≈ 0.200,
ETTR = 0.9111N .

Therefore, the SRS algorithm works better than random selection, which is an
elegant and surprising result. However, we cannot claim that SRS is the optimal
algorithm and one future direction is to explore the optimal algorithm when two
users should run a symmetric strategy. Moreover, when not all ports are available for
the users, which should be more practical, we need to design efficient randomized
distributed algorithms that have a good performance in the future.

For the port-asymmetric rendezvous setting, the random picking algorithm can
achieve rendezvous inETTR = |Ca||Cb|

|Cg | time slots, whereCa,Cb represent the number
of available ports of the two users, while Cg denotes the number of common avail-
able ports. We also present another algorithm called the Random Prime Selection
and Sequential Accessing Algorithm, which has good performance and the failure
probability of no rendezvous within papb time slots is very low, where pa, pb are two
chosen prime numbers in the algorithm.

References

1. Alpern, S., & Pikounis,M. (2000). The telephone coordination game.Game Theory Application,
5, 1–10.

2. Anderson, E. J., & Weber, R. R. (1990). The rendezvous problem on discrete locations. Journal
of Applied Probability, 28, 839–851.

3. Crawford, V. P., & Haller, H. (1990). Learning how to cooperate: Optimal play in repeated
coordination game. Econometrica, 58(3), 571–596.

4. Fan, J. (2009). Symmetric rendezvous problem with overlooking. Ph.D. thesis, University of
Cambridge.

5. Weber, R. R. (2006). The optimal strategy for symmetric rendezvous search on three locations.
arXiv:0906.5447v1.

6. Weber, R. (2009). The Anderson-Weber strategy is not optimal for symmetric rendezvous search
on K4. arXiv:0912.0670.

7. Weber, R. R. (2012). Optimal symmetric rendezvous search on three locations.Mathematics of
Operations Research, 37, 111–122.

http://arxiv.org/abs/0906.5447v1
http://arxiv.org/abs/0912.0670

Chapter 16
Oblivious Blind Rendezvous for Multi-user
Multihop CRN

Abstract In this chapter, we propose the distributed oblivious blind rendezvous
algorithm for multiple users in a multi-hop distributed system. As described in Prob-
lem 11.2, the system consists of M users with distinct identifers (IDs) in [1, M̂],
where M̂ ≥ M and M̂ ≤ Nc for a constant value c (for simplicity, we re-use nota-
tionM to mean M̂). Any two users in the system are connected within D hops, which
implies the network diameter is D. In Sect. 16.1, we describe the algorithm for mul-
tiple users in a multi-hop system, and the correctness is presented in Sect. 16.2. We
summarize the chapter in Sect. 16.3.

16.1 Algorithm Description

We adopt the intuitive idea in [1–3] to extend the algorithms for OBR-2 to multiple
users: once every two users achieve rendezvous on a common port successfully,
they can exchange their local information over the established communication link
such that the input of the OBR-2 algorithms can be synchronized; then they would
generate the same hopping sequence afterwards. Assume there are four parameters
(I,M, N ,C) (I is the user’s ID, M is the maximum value of the ID, N is the number
of all ports, and C is the set of available ports) used for each user and we extend the
MSH algorithm (Algorithm 13.5) in Chap.13 to the multi-user multi-hop scenario.

Algorithm 16.1 Rendezvous Algorithm for Multiuser Multihop Scenario
1: Input: I,M, N ,C ;
2: while Not terminated do
3: Run the MSH algorithm (Alg. 13.5) with input (I,M, N ,C);
4: if Rendezvous with user - (I ′,M, N ,C ′) then
5: I := min(I, I ′);
6: C := C

⋂
C ′;

7: Synchronize labels of the ports in C according to the user with smaller I ;
8: end if
9: end while

© Springer Nature Singapore Pte Ltd. 2017
Z. Gu et al., Rendezvous in Distributed Systems,
DOI 10.1007/978-981-10-3680-4_16

209

http://dx.doi.org/10.1007/978-981-10-3680-4_11
http://dx.doi.org/10.1007/978-981-10-3680-4_13

210 16 Oblivious Blind Rendezvous for Multi-user Multihop CRN

As described in Algorithm 16.1, the user runs theMSH algorithmwith local para-
meters (I,M, N ,C). Once rendezvous is achievedwith another user with parameters
(I ′,M, N ,C ′), they exchange their information and three operations are executed:

(1) Change I to be the smaller value between I, I ′1;
(2) change C to be the intersection of C and C ′;
(3) synchronize the labels for the available ports in C according to the user with

smaller I value such that ∀i ∈ [1, |C |], c(i) = c′(i);

After these three steps, the four parameters of the two users are the same and they
access the ports with the same hopping sequence until the next rendezvous happens.
We derive the correctness and time complexity in Theorem 16.1.

16.2 Correctness and Complexity

Theorem 16.1 Algorithm 16.1 guarantees that all users can achieve rendezvous in
MT T R = O(N 2D logN M) time slots, where D is the diameter of the system.2

Proof The theorem can be concluded through induction, similar to Theorem 10.1.
We show that all users can update to the same I value, the same set of available ports⋂m

i=1 Ci and the same labels of the ports in O(N 2D logN M) time slots.
By adopting the same analysis in Theorem 10.1, all users can generate the same

set of available ports
⋂m

i=1 Ci after 4lN P ∗ D = O(N 2D logN M) time slots when
all users have begun the rendezvous process. We show that all users can update to
the same I value through induction. Denote the user with the smallest ID value as r ,
and we show that any user ri can update the I value as user r ’s in 4lN P ∗ d(r, ri)
time slots where d(r, ri) represents the minimum number of hops separating them.

(1) When ri = r , d(r, ri) = 0, it is satisfied obviously.
(2) Suppose for any user rk with d(r, rk) ≤ k, it updates I as the ID value of user

r in 4lN P ∗ d(r, rk) time slots. Consider user rk+1 with d(r, rk+1) = k + 1 and
suppose it is connected to some user rk with d(r, rk) = k (it is easy to see that
such user must exist); user rk has already updated the I value to be the same as
user r in 4lN P ∗ k time slots and user rk+1 can update the value as that of user
rk in 4lN P time slots when they rendezvous on a some common available port
in 4lN P time slots from Theorem 13.3. Therefore, user rk+1 can also update I
to have the ID value of user r in 4lN P ∗ (k + 1) time slots.

Combining these two aspects, where D is the network diameter, all users in the
network can update the I value as that of user r in 4lN PD = O(N 2D logN M) time
slots (the process can be thought of as user r sends its ID value to all users within
D hops). After another 4lN PD time slots, all users can synchronize the labels of

1It does notmean the user really changes the ID value, but it only changes the input of the rendezvous
algorithm.
2l is defined as in Theorem 13.3.

http://dx.doi.org/10.1007/978-981-10-3680-4_10
http://dx.doi.org/10.1007/978-981-10-3680-4_13
http://dx.doi.org/10.1007/978-981-10-3680-4_13

16.2 Correctness and Complexity 211

the available ports as user r which has the smallest ID value. Therefore, the users
in the network would hop through the ports according to the same sequence after
O(N 2D logN M) time slots. So the theorem holds.

16.3 Chapter Summary

In this chapter, we extend oblivious blind rendezvous algorithms between two users
to multiple users in a multihop distributed system. Similar to the non-oblivious blind
rendezvous problem, every two neighboring users can rendezvous on a common
available port and their local information can be synchronized. Then, they can repeat
the rendezvous attempt until all users finally access the same available port.

Similar to the discussion about rendezvous process among multiple users in a
multihop distributed system (Chap.10), we assume all users in the network share
some common available port, which is impractical. In the future, we will design effi-
cient algorithms to implement the system based on the rendezvous process between
every pair of neighboring users.

References

1. Chuang, I., Wu, H.-Y., Lee, K.-R.,& Kuo, Y.-H. (2013). alternate hop-and-wait channel ren-
dezvous method for cognitive radio networks. In INFOCOM.

2. Gu, Z., Hua, Q.-S., Wang, Y., & Lau, F. C. M. (2013). Nearly optimal asynchronous blind
rendezvous algorithm for cognitive radio networks. In SECON.

3. Liu, H., Lin, Z., Chu, X., & Leung, Y.-W. (2012). Jump-stay rendezvous algorithm for cognitive
radio networks. IEEE Transactions on Parallel and Distributed Systems, 23(10), 1867–1881.

http://dx.doi.org/10.1007/978-981-10-3680-4_10

Part IV
Distributed Rendezvous Applications

Chapter 17
Rendezvous in Heterogeneous Cognitive
Radio Networks

Abstract Rendezvous is a fundamental and important process in operating a dis-
tributed system, which can be applied in many distributed applications running on
the system. In this chapter, we introduce the rendezvous process in a special type of
cognitive radio network: Heterogeneous Cognitive Radio Network (HCRN) where
different users have different capabilities to sense the licensed spectrum. Many ele-
gant rendezvous algorithms have been proposed by constructing sequences based
on the channels’ labels [1, 3, 7, 8, 10] or their identifiers (IDs) [2, 4, 5], and ren-
dezvous can be guaranteed in a short time based on the special hopping sequences
constructed. However, they all assume the users have the capability to sense and
access all the licensed channels, which is unrealistic when the number of channels
(N) is very large and some wireless devices may only operate on a small fraction
of the channels. Therefore, HCRN is proposed, in which the users may have differ-
ent spectrum-sensing capabilities. We introduce the system model and formulate the
problem in Sect. 17.1. Rendezvous algorithms for the fully available spectrum are
presented in Sect. 17.2, and rendezvous algorithms for the partially available spec-
trum are introduced in Sect. 17.3. Finally, we summarize the chapter in Sect. 17.4.

© Springer Nature Singapore Pte Ltd. 2017
Z. Gu et al., Rendezvous in Distributed Systems,
DOI 10.1007/978-981-10-3680-4_17

215

216 17 Rendezvous in Heterogeneous Cognitive Radio Networks

17.1 Preliminaries

We first introduce the system model of heterogeneous cognitive radio network
(HCRN) and its difference with traditional cognitive radio network. Then, we define
the rendezvous problem in the context ofHCRNand show the challenges of designing
efficient rendezvous algorithms for this kind of CRN.

17.1.1 System Model

The licensed spectrum is assumed to be divided into N non-overlapping channels:

U = {1, 2, . . . , N } (17.1)

Each user (here wemean secondary users) is equipped with a cognitive radio to sense
the licensed spectrum. We say a channel is available for the user if it is not occupied
by any nearby primary users (PUs) who own these licensed channels. Actually, the
users may have different spectrum sensing capabilities and suppose user i can sense
a set of continuous channels:

Ci = {cx , cx+1, . . . , cx+ki−1} ⊆ U (17.2)

which is assumed in [11, 12], where cx is the starting channel and ki = |Ci |, 1 ≤
x ≤ N − ki + 1.

The channels in set Ci are either occupied by nearby PUs or available for the
(secondary) user i . We denote:

Vi ⊆ Ci (17.3)

as the set of all available channels after the spectrum sensing stage.
Time is also assumed to be divided into slots of equal length 2t , where t is sufficient

for establishing a communication link if the users access the same channel at the same
time slot. According to the IEEE 802.22 [9], t is often set to be 10ms. The intuitive
idea of setting each time slot to be 2t is to ensure that an overlap of t exists for link
establishment even when the users do not start their process at aligned time slots (the
idea is similar to the blind rendezvous for CRN in Chap.5; we omit the details here).

Considering two users ua and ub with different spectrum sensing capability sets
Ca,Cb, and the corresponding available channel sets Va, Vb, they can rendezvous on
some common available channel if Va ∩ Vb �= ∅, which implies their capability sets
must intersect.

Here we study two scenarios: fully available spectrum and partially available
spectrum.

http://dx.doi.org/10.1007/978-981-10-3680-4_5

17.1 Preliminaries 217

Fig. 17.1 An example of
different spectrum sensing
capability sets of two users

Fig. 17.2 An example of
different available channel
sets of two users

If all channels in the users’ sensing capability sets are available after the spectrum
sensing stage, we call that the fully available scenario (i.e. Vi = Ci). But in most
circumstances, some channels are likely occupied (Vi �= Ci) and we call that the
partially available scenario.

For example, in Fig. 17.1, two users ua and ub have different sets of sensing
capabilities Ca,Cb ⊆ U . If some channels are occupied by some PUs, we label
these channels as white in Fig. 17.2 and the figure shows an example that two users
have different sets of available channels, Va ⊆ Ca and Vb ⊆ Cb respectively.

In Fig. 17.1, all channels in the user’s sensing capability set are available and it is
a fully available scenario, while Fig. 17.2 is a partially available scenario since some
channels are occupied by the PUs [6].

In each time slot, user ui can access an available channel from set Vi and attempt
rendezvous with its potential neighbors. We say rendezvous happens when the users
choose the same channel in the same time slot.

Time to rendezvous (T T R) denotes the number of time slots they take to ren-
dezvous once all users have begun their attempt. Since the users are dispersed in
different places and they may begin the rendezvous process in different time slots,
we focus on designing efficient distributed algorithms for asynchronous users. We
also use Maximum Time to Rendezvous (MTTR) to judge the performance of the
rendezvous algorithms with respect to the worst situation.

218 17 Rendezvous in Heterogeneous Cognitive Radio Networks

17.1.2 Problem Definition

We formulate the rendezvous problem for the fully available spectrum scenario in
HCRN as follows:

Problem 17.1 For any spectrum sensing capability setCi ⊆ U , design an algorithm
to access channels over different time slots:

t : fCi (t) ∈ Ci (17.4)

such that for any two users ua and ub with sets:

Ca,Cb ⊆ U,Ca ∩ Cb �= ∅ (17.5)

Supposing user ua starts δ ≥ 0 time slots earlier than user ub,

∃Tδ, s.t. fCa (Tδ + δ) = fCb(Tδ) (17.6)

The T T R value is Tδ and the maximum time to rendezvous is defined as:

MTT R = max∀δ
Tδ (17.7)

The goal is to design rendezvous algorithms with bounded MTTR.

Although the fully available spectrum scenario rarely happens in practice, it rep-
resents the best spectrum condition that may happen in designing rendezvous algo-
rithms for HCRN. Formore general situations, we formulate the rendezvous problem
for the partially available spectrum scenario as follows:

Problem 17.2 For any spectrum sensing capability set Ci ⊆ U and available chan-
nel set Vi ⊆ Ci , design an algorithm to access channels over different time slots:

t : fCi ,Vi (t) ∈ Vi (17.8)

such that for any two users ua and ub with:

Ca,Cb ⊆ U, Va ⊆ Ca, Vb ⊆ Cb, Va ∩ Vb �= ∅ (17.9)

Supposing user ua starts δ ≥ 0 time slots earlier than user ub,

∃Tδ, s.t. fCa ,Va (Tδ + δ) = fCb,Vb(Tδ) (17.10)

The T T R value is Tδ and the maximum time to rendezvous is defined as:

MTT R = max∀δ
Tδ (17.11)

The goal is to design rendezvous algorithms with bounded MTTR.

17.1 Preliminaries 219

For example, U = {1, 2, . . . , 100}, and two capabilities sets are:

{
Ca = {2, 3, 4, 5, 6}
Cb = {5, 6, 7}

Suppose that both users ua and ub adopt a simple algorithm by repeating the
channels in their sensing capability set and user ua is 1 time slot earlier than user
ub. As depicted in Fig. 17.3, they rendezvous on channel 5 at time slot 9, and thus
T T R = 14−1 = 13 time slots. In fact, if the users apply the extant algorithms based
on all channels inU , the maximum rendezvous time could be O(N 2) ≈ 10, 000 time
slots, which is unacceptable. This figure is a simple example of the fully available
spectrum scenario. When some channels are occupied, for example:

{
Va = {2, 5, 6}
Vb = {6, 7}

They cannot rendezvous on channel 5 and one more time slot is needed, as illustrated
in Fig. 17.4. This is an example of the partially fully available spectrum scenario.

Fig. 17.3 An example of rendezvous problem in HCRN

Fig. 17.4 An example of rendezvous problem in HCRN when two users have partial available
channels

220 17 Rendezvous in Heterogeneous Cognitive Radio Networks

Table 17.1 MTT R comparison for fully and partially available scenarios in HCRN

Algorithms Fully available scenario Partially available scenario

HH [12] O(|CA||CB |) −
ICH [11] O(|CA||CB |) O(|CA||CB |)
TP [6] O(max{|CA|, |CB |} log log N) −
MTP [6] O((max{|VA|, |VB |})2 log log N) O((max{|VA|, |VB |})2 log log N)

Remarks: (1) “−” means the algorithm is not applicable to the partially available spectrum scenario;
(2)CA,CB ⊆ U represent the capability sets of user A and B respectively; (3) VA ⊆ CA, VB ⊆ CB
represent the available channel sets of users A and B respectively

17.1.3 Challenges

In handling the blind rendezvous problem in HCRN, there are the following three
challenges:

(1) First, different users may have different capabilities to sense the licensed spec-
trum, we should design efficient algorithms under such heterogeneity.

(2) Second, the users may start the rendezvous process at different time slots, and
the rendezvous algorithms should work for both synchronous and asynchronous
users with bounded rendezvous time.

(3) Third, traditional rendezvous algorithms have maximum time to rendezvous
(MTT R) as MTT R = O(N 2), which is large when the user can only sense a
small fraction of the channels. Thus, we should reduce the MTT R value and
guarantee fast rendezvous even for the worst situations see the comparison in
Table17.1.

17.2 Rendezvous for Fully Available Spectrum

In this section,we propose a newmethod called theTraversingPointer (TP) algorithm
for the users that have fully available channels. The intuitive idea is to accelerate the
rendezvous process by accessing two channels at the same time, where one channel
is fixed to be the first channel in the capability set, and the other is generated by
hopping among the channels in the capability set. The method of generating such
hopping sequence is similar to the method of time division in Chap. 7.

In the first place, we present a special construction for two available channels
such that rendezvous can be guaranteed in O(log log N) time slots if both users have
only two available channels. Then, we introduce the TP algorithm on the basis of
the special construction, which guarantees rendezvous for the two users with a fully
available spectrum in a short time.

http://dx.doi.org/10.1007/978-981-10-3680-4_7

17.2 Rendezvous for Fully Available Spectrum 221

17.2.1 Rendezvous Scheme for Two Available Channels

Suppose each user has only two available channels, i.e. |Va| = |Vb| = 2, and
there exists at least one common channel, i.e. Va ∩ Vb �= ∅. We present a special
rendezvous scheme for the special scenario, which constructs a sequence of length
T2 = 16(�log log n
 + 1). The construction is based on three Disjoint Relaxed
Difference Sets (DRDSs).

Supposing the available channel set of the user is:

V = {v1, v2} ⊆ U, where v1 < v2 (17.12)

the method is described in Algorithm17.1.

Algorithm 17.1 Rendezvous Scheme for Two Channels
1: l1 = �log N
 + 1, l2 = �log l1
 + 1;
2: Find the smallest number c ∈ [1, l1] such that the c-th bit of v2 is 1 and the c-th bit of v1 is 0;
3: Let

−→
D = {∗, cl2 , cl2−1, . . . , c1} where (cl2 , cl2−1, . . . , c1) is the binary representation of c;

4: Denote the rendezvous sequence S = ∅;
5: for r = 1 : l2 + 1 do
6: If

−→
D (r) = ∗, add S∗ = (v1, v1, v2, v1, v1, v2, v2, v2) twice to S;

7: If
−→
D (r) = 0, add S0 = (v1, v1, v2, v1, v2, v1, v2, v2) twice to S;

8: If
−→
D (r) = 1, add S1 = (v1, v1, v2, v1, v2, v2, v2, v1) twice to S;

9: end for
10: Repeat the rendezvous sequence S until rendezvous;

Algorithm17.1 finds the smallest number c ∈ [1, l1] such that the c-th bit of v2 is
1 but the c-th bit of v1 is 0, where l1 = �log N
+ 1. Since v1 < v2, c must exist. It is
obvious that c can be represented by l2 = �log log N
 + 1 binary bits. We construct
vector

−→
D by adding a special symbol ∗ to the binary representation as in Line 3,

and we construct the rendezvous sequence in l2 + 1 rounds. In each round, different
sequences S∗, S0, S1 are added twice to S and the intuitive idea of designing these
sequences comes from the good properties of DRDS (see Definition8.3 in Chap.8).

We define three sets as:
⎧⎨
⎩

D∗ = {{1, 2, 4, 5}, {3, 6, 7, 8}}
D0 = {{1, 2, 4, 6}, {3, 5, 7, 8}}
D1 = {{1, 2, 4, 8}, {3, 5, 6, 7}}

It is easy to check that they are three DRDS under Z8. S∗, S0 and S1 are then
constructed on the basis of D∗, D0, D1 respectively. We show the construction of
sequences S0, S1, S∗ in Figs. 17.5, 17.6 and 17.7.

In each round, sequence S∗, S0 or S1 is added twice to the rendezvous sequence
because the users can start the algorithm asynchronously. We first derive a useful
lemma, as follows.

http://dx.doi.org/10.1007/978-981-10-3680-4_8

222 17 Rendezvous in Heterogeneous Cognitive Radio Networks

Fig. 17.5 Construction of
sequence S∗ on the basis
of D∗

Fig. 17.6 Construction of
sequence S0 on the basis
of D0

Fig. 17.7 Construction of
sequence S1 on the basis
of D1

Lemma 17.1 Every 8 continuous time slots in each round corresponds to a DRDS.

Proof Consider the round containing two S0 sequenceswhere S0 is constructed based
on the DRDS D0. Every 8 continuous time slots [i, i + 7] where 1 ≤ i ≤ 9 can be
seen as rotating S0 by i − 1 time slots. From the definition of Relaxed Difference
Set (RDS) in Chap.8, the rotation of an RDS is also an RDS. Thus the rotation of S0
also corresponds to a DRDS. For example, when i = 3, the 8 continuous time slots
are:

{v2, v1, v2, v1, v2, v2, v1, v1} (17.13)

and they correspond to the DRDS:

{{2, 4, 7, 8}, {1, 3, 5, 6}} (17.14)

We can also derive the same result for the other two sequences S1, S∗, and thus
the lemma holds.

Consider two users ua and ub with available channel sets:

{
Va = {a1, a2}
Vb = {b1, b2}

http://dx.doi.org/10.1007/978-981-10-3680-4_8

17.2 Rendezvous for Fully Available Spectrum 223

Suppose the chosen numbers in Line 2 are ca, cb respectively. We show the correct-
ness of Algorithm17.1 based on different relationships between ca, cb:

(1) If ca = cb, rendezvous is guaranteed in 16 time slots as in Lemma17.2.
(2) If ca �= cb, rendezvous is guaranteed in 16(�log log N
 + 1) time slots as in

Lemma17.3.

Lemma 17.2 Algorithm17.1 guarantees rendezvous in 16 time slots if ca = cb.

Proof When ca = cb, we claim that:

a1 �= b2 and a2 �= b1 (17.15)

If a1 = b2, we can derive:
b1 < b2 = a1 < a2 (17.16)

From Line 2, the cb-th bit of b2 is 1 and the ca-th bit of a1 is 0, but ca = cb, which
leads to a contradiction. Thus a1 �= b2. Similarly, a2 �= b1.

Since the users have at least one common channel, that is:

a1 = b1 or a2 = b2 (17.17)

We show that both pairs (a1, b1), (a2, b2) appear in the constructed sequences when
two users have begun their process.

Denote the constructed sequences for the users as Sa and Sb respectively, and they
are composed of l2 + 1 rounds. We say the i-th round of user ua (denoted as r(a, i))
overlaps with the j-th round of user ub (r(b, j)) if their intersection length is at least
8 (time slots).

Without loss of generality, suppose user ua is δ time slots earlier than user ub. We
show the lemma from two situations:

(1) If r(b, 1) overlaps with r(a, 1) and there are at least 8 overlapping time slots. By
Lemma17.1, the continuous 8 time slots correspond to two DRDSs for users ua
and ub. From the definition of the DRDS, we can check that (a1, b1) and (a2, b2)
both exist in the 8 time slots, and thus they rendezvous in the first round of user
ub.

(2) If r(b, 1) overlaps with r(a, i) where 1 < i ≤ l2 + 1 and there are at least
8 overlapping time slots. If (a1, b1) does not exist in the intersecting 8 slots,
channel b1 meets a2 in four time slots and b2 also has to meet a1 in four time
slots. However, the sequence added in r(b, 1) is different from the sequence in
r(a, i). Actually, S∗ is added twice in r(b, 1) while S0 or S1 is added in r(a, i),
and this situation cannot happen. Thus, (a1, b1) exists in the first round of user
ub. Similarly, we can prove that (a2, b2) exists. Thus they can rendezvous in 16
time slots.

224 17 Rendezvous in Heterogeneous Cognitive Radio Networks

Fig. 17.8 An example of r(b, 1) overlapping with r(a, 1) in Algorithm17.1

Fig. 17.9 An example of r(b, 1) overlapping with r(a, i) where 1 < i ≤ l2 + 1 in Algorithm17.1

As depicted in Fig. 17.8, r(b, 1) overlaps with r(a, 1) and the first 8 overlapping
time slots form two DRDSs are:

{ {{2, 3, 7, 8}, {1, 4, 5, 6}} for user ua
{{1, 2, 4, 5}, {3, 6, 7, 8}} for user ub

Then we can check that (a1, b1) exists in the 2-nd time slot and (a2, b2) happens
in the 6-th time slot. Similarly, Fig. 17.9 shows the example that r(b, 1) overlaps with
r(a, i) where 1 < i ≤ l2 + 1, and both pairs (a1, b1) and (a2, b2) exist in the first
overlapping 8 time slots. Therefore, the lemma holds.

Lemma 17.3 Algorithm17.1 guarantees rendezvous in T2 = 16(�log log N
 + 1)
time slots if ca �= cb.

Proof When ca �= cb, there are four possible combinations of rendezvous situations:

⎧⎪⎪⎨
⎪⎪⎩

a1 = b1
a1 = b2
a2 = b1
a2 = b2

Thus the two users’ overlapping sequences must contain the four pairs (a1, b1),
(a1, b2), (a2, b1), (a2, b2). We show the lemma from two situations.

17.2 Rendezvous for Fully Available Spectrum 225

(1) If r(b, 1) overlaps with r(a, 1), (a1, b1), (a2, b2) exists in the overlapping part
by Lemma17.2. Since ca �= cb, without loss of generality, suppose ca < cb and
there exists 1 ≤ i ≤ l2 such that the i-th bit of ca is 0 but the i-th bit of cb is 1 (such
i must exist). When r(b, i + 1) overlaps with r(a, i + 1), we claim that (a1, b2)
and (a2, b1) exist in the overlapping part. If (a1, b2) does not happen, a1 has to
meet b1 four times and a2 has to meet b2 four times; however, r(a, i + 1) and
r(b, i + 1) use different sequences (S0 and S1) and this situation cannot happen.
Thus (a1, b2) appears at least once during the intersecting part. Similarly, (a2, b1)
also exists. Therefore, rendezvous can be guaranteed in 16(i+1) ≤ T2 time slots.

(2) If r(b, 1) intersects with r(a, i) where 1 < i ≤ l2 + 1, the pairs (a1, b1) and
(a2, b2) both exist by Lemma17.2. Using the similar technique as the first situ-
ation, we can check that (a1, b2) and (a2, b1) exist in the first round of user ub.

Combining the two situations, rendezvous can be guaranteed in T2 time slots, and
the lemma holds.

By Lemmas17.2 and 17.3, we conclude the theorem:

Theorem 17.1 Algorithm17.1 guarantees rendezvous in T2 = 16(�log log n
 + 1)
time slots for the special situation that each user has two available channels.

17.2.2 Traversing Pointer Algorithm

For the fully available spectrum scenario, we propose the Traversing Pointer (TP)
algorithm based on the rendezvous scheme for two channels. Consider two users
ua and ub with spectrum sensing capability sets Ca,Cb ⊆ U , the TP algorithm is
described as Algorithm17.2.

Algorithm 17.2 Traversing Pointer Algorithm
1: t := 1, r := 1, L := 2T2;
2: f p := cx , mp := cx+ki−1;
3: while not rendezvous do
4: r := �t/L� + 1, p := (t − 1)%L + 1;
5: r ′ := (r − 1)%(2(ki − 1));
6: if 0 ≤ r ′ < ki − 1 then
7: mp := cx+ki−1−r ′ ;
8: else
9: mp := cx+r ′%(ki−1);
10: end if
11: Invoke Algorithm17.1 with available channels { f p,mp} and repeat the output twice to

construct the rendezvous sequence RSr = {s1, s2, . . . , sL };
12: Access the p-th channel of the sequence sp ∈ RSr ;
13: t := t + 1;
14: end while

226 17 Rendezvous in Heterogeneous Cognitive Radio Networks

Fig. 17.10 An illustration of
Algorithm17.2. f p is fixed
at the first channel in all
rounds, while mp traverses
the channels back and forth
and round by round

To begin with, suppose user i has the spectrum sensing capability set as:

Ci = {cx , cx+1, . . . , cx+ki−1} ⊆ U (17.18)

where ki = |Ci |, 1 ≤ x ≤ N − ki + 1 and ∀c j ∈ Ci , channel c j is available.
The TP algorithm works on the basis of the rendezvous scheme for two available

channels. There are two constructed ‘pointers’ where f p, i.e. fixed pointer, is fixed
at the first channel cx and mp is a moving pointer that traverses the capability set
back and forth. We divide the time into rounds where each round contains L = 2T2
time slots (we repeat the constructed sequence from Algorithm17.1 twice to tackle
the asynchronous situation). f p is fixed butmp changes in each round. As illustrated
in Fig. 17.10, mp moves from the last channel cx+ki−1 to the first one cx in the first
ki − 1 rounds, and then from the first one to the last one in the next ki − 1 rounds.
The user continues the process until rendezvous.

17.2.3 Correctness and Complexity

Consider any two users ua and ub with spectrum sensing capability sets:

{
Ca = {cx , cx+1, . . . , cx+ka−1}
Cb = {cy, cy+1, . . . , cy+kb−1}

where 1 ≤ x ≤ N −ka +1, 1 ≤ y ≤ N −kb +1. Ca ∩Cb �= ∅ implies the following
situation must happen:

cx ∈ Cb or cy ∈ Ca (17.19)

Therefore, the constructed two pointers can help guarantee rendezvous when one
user’s moving pointer coincides with the other’s fixed pointer. We derive the time
complexity to achieve rendezvous in Theorem17.2.

Theorem 17.2 The TP algorithm (Algorithm17.2) guarantees rendezvous for the
fully available spectrum scenario in O(max{|Ca|, |Cb|} log log N) time slots.

Proof Since the channels in the capability sets Ca and Cb are continuous and Ca ∩
Cb �= ∅, the first channel of Ca is in Cb (i.e. cx ∈ Cb) or the first channel of Cb is in
Ca (i.e. cy ∈ Ca). Without loss of generality, suppose cx ∈ Cb.

17.2 Rendezvous for Fully Available Spectrum 227

Denote the consecutive L time slots constructed in Line 11 as a round, and the cho-
sen available channels in the r -th roundof twousers are { f pa,r ,mpa,r }, { f pb,r ,mpb,r }
respectively.

We say the i-th round of user ua (denoted as ra,i) overlaps with the j-th round
of user ub (rb, j) if their intersection part contains at least L/2 time slots. From
Theorem17.1, if ra,i overlaps with rb, j and { f pa,i ,mpa,i }∩ { f pb, j ,mpb, j } �= ∅, two
users can achieve rendezvous in L = 32(�log log N
 + 1) time slots. There are two
different situations according to the start time of two users:

(1) If user ua starts earlier (no later) than user ub, suppose the i-th round of user ua
overlaps with the first round of user ub. We can find that, after r = y + kb −
1− x rounds, ra,i+r overlaps with rb,1+r where user ub’s moving pointer chooses
channel:

mpb,1+r = cy+kb−(1+r) = cx = f pa,i+r (17.20)

thus, rendezvous is guaranteed in (r + 1)L ≤ |Cb|L time slots.
(2) If user ub starts earlier than user ua , suppose the i-th round of user ub overlaps

with the first round of user ua , there are two situations according to the moving
direction of user ub’s moving pointer (mp). It is easy to check that user ub’s
moving pointer chooses channel cx within 2kb rounds no matter which direction
it is heading. We omit the details and the reader may deduce the complexity of
the situation. Therefore, rendezvous is guaranteed in 2|Cb|L time slots.

Similarly, when cy ∈ Ca , rendezvous is also guaranteed in 2|Ca|L time slots.
Therefore, the TP algorithm (Algorithm17.2) guarantees rendezvous in
2max{|Ca|, |Cb|}L = O(max{|Ca|, |Cb|} log log N) time slots when the spectrum
is fully available.

In order to show the efficiency of the TP algorithm, we show a constructive lower
bound in Theorem17.3.

Theorem 17.3 max{|Ca|, |Cb|} time slots are needed to guarantee rendezvous for
the fully available spectrum condition.

Proof Suppose user ua can sense only 1 channel (i.e. |Ca| = 1) which belongs toCb.
In order to discover the channel for rendezvous, user ub has to traverse all channels
in Cb at least once and thus (at least) max{|Ca|, |Cb|} time slots are needed, which
concludes the theorem.

It is clear that the lower bound still holds if two users are synchronous, and the TP
algorithm is nearly optimal with only an additional O(log log N) factor. Compared
with the state-of-the-art result O(|Ca||Cb|) in [12], the TP algorithm removes an
O(min{|Ca|, |Cb|}) factor and it works more efficiently.

228 17 Rendezvous in Heterogeneous Cognitive Radio Networks

17.3 Rendezvous for Partially Available Spectrum

In this section, we propose the Moving Traversing Pointer (MTP) algorithm for the
users that have partially available channels. The intuitive idea is also to accelerate
the rendezvous process by accessing two channels at the same time, and the time
to rendezvous is only impacted by an O(log log N) factor. When it comes to the
partially available scenario, the TP algorithm cannot work because the channel they
rendezvous on may be unavailable. Therefore, we propose this modified algorithm
where the ‘fixed pointer’ can also move after the ‘moving pointer’ has already tra-
versed all channels in the capability set. Through such a modification, the MTP
algorithm can guarantee rendezvous in O((max{|Va|, |Vb|})2 log log N) time slots.

17.3.1 Moving Traversing Pointer Algorithm

In practical situations, the sensed available channels may be only a fraction of the
spectrum sensing capability set. For two users ua and ub with capability setsCa,Cb ⊆
U and available channel sets Va ⊆ Ca, Vb ⊆ Cb, the TP algorithmmay not guarantee
rendezvous.

For example, suppose the first channel of user ua (cx) belongs to user ub’s capa-
bility set (cx ∈ Cb), cx is available for user ua (cx ∈ Va), but it is not available for
user ub (cx /∈ Vb). The fixed pointer of user ua stays at channel cx all the time but
user ub cannot access cx , and thus rendezvous may not happen. In order to overcome
the disadvantage, we modify the TP algorithm and the intuitive idea is to move the
‘fixed pointer’ after the ‘moving pointer’ has already traversed the channels.

Similar to the assumption in the TP algorithm, suppose user i has the spectrum
sensing capability set as:

Ci = {cx , cx+1, . . . , cx+ki−1} ⊆ U (17.21)

where ki = |Ci | and 1 ≤ x ≤ n − ki + 1, and the available channel set is denoted as
Vi ⊆ Ci . Order the available channels by increasing order and denote:

Vi = {ci,1, ci,2, . . . , ci,mi } (17.22)

where mi = |Vi | and the equation:

∀1 ≤ j1 < j2 ≤ mi , ci, j1 < ci, j2 (17.23)

holds. The MTP algorithm is presented in Algorithm17.3.

17.3 Rendezvous for Partially Available Spectrum 229

Algorithm 17.3 Moving Traversing Pointers Algorithm
1: t := 1, r := 1, mi = |Vi |;
2: L := 2T2, P := 2(mi − 1)L;
3: f p := ci,1, mp := ci,mi ;
4: while Not rendezvous do
5: l := �t/P� + 1, p1 = (t − 1)%P + 1;
6: r := �p1/L� + 1, p2 := (p1 − 1)%L + 1;
7: l ′ := (l − 1)%mi + 1, f p := ci,l ′ ;
8: r ′ := (r − 1)%(2(mi − 1)) + 1;
9: if 0 < r ′ < mi then
10: mp := ci,mi+1−r ′ ;
11: else
12: mp := ci,r ′%(mi−1);
13: end if
14: Invoke Algorithm17.1 with available channels { f p,mp} and repeat the output twice to con-

struct the rendezvous sequence RSl,r = {s1, s2, . . . , sL };
15: Access the p2-th channel as sp2 ∈ RSl,r ;
16: t := t + 1;
17: end while

TheMTP algorithm (Algorithm17.3) is different from the TP algorithmwhere the
‘fixed pointer’ does not always stay at the same channel. Assume time is divided into
loops of length P = 2(mi − 1)L time slots and each loop contains 2(mi − 1) rounds
of length L=2T2=32(�log log N
+1). The pointer f p stays at a fixed available
channel in each loop and it moves to the next available one every P time slots as in
Line 7. Similar to the TP algorithm, the ‘moving pointer’ stays at a fixed channel in
each round and traverses the available channels back and forth round by round. As
illustrated in Fig. 17.11, f p is fixed at channel ci,1 for the first P time slots and mp
traverses from the last available channel ci,mi to the first one ci,1, and then back to the
last one every L time slots. In the next loop of P time slots, fpmoves to channel ci,2
as Fig. 17.12 and mp repeats the traversal. This process continues until rendezvous.

Fig. 17.11 mp traverses the
channels back and forth and
round by round, while f p
moves to the next available
channel every 2(mi − 1)
rounds

Fig. 17.12 mp traverses the
channels back and forth and
round by round, while f p
moves to the next available
channel every 2(mi − 1)
rounds

230 17 Rendezvous in Heterogeneous Cognitive Radio Networks

17.3.2 Correctness and Complexity

Consider users ua and ub with capability sets Ca,Cb ⊆ U and available channel sets
Va ⊆ Ca, Vb ⊆ Cb where Ca ∩ Cb �= ∅. Denote:

{
Va = {ca,1, ca,2, . . . , ca,ma }
Vb = {cb,1, cb,2, . . . , cb,mb }

where ma = |Va|,mb = |Vb|. We show the correctness and the efficiency in the
following theorem.

Theorem 17.4 The MTP algorithm (Algorithm17.3) guarantees rendezvous for the
partially available spectrum scenario in O((max{|Va|, |Vb|})2 log log N) time slots.

Proof Since Va ∩ Vb �= ∅, there exist 1 ≤ x ≤ ma, 1 ≤ y ≤ mb such that one
common available channel exists:

ca,x = cb,y (17.24)

Denote the consecutive L time slots constructed in Line 14 as a round and every
2(mi − 1) rounds as a loop (i = a or b). Denote the r -th round of l-th loop for users
ua and ub as ra(l, r) and rb(l, r), and the chosen available channels in the round as
{ f pa(l, r),mpa(l, r)} and { f pb(l, r),mpb(l, r)} respectively.

Similar to the analysis of Theorem17.2, we say round ra(la, ra) overlaps with
round rb(lb, rb) if their intersection part contains at least L/2 time slots. From
Theorem17.1, if ra(la, ra) overlaps with rb(lb, rb) and the chosen channels satisfy:

{ f pa(l, r),mpa(l, r)} ∩ { f pb(l, r),mpb(l, r)} �= ∅ (17.25)

rendezvous can be achieved in the intersection part.
Without loss of generality, assuming ma = |Va| ≤ |Vb| = mb and we show the

theorem from two aspects.

(1) If user ua starts the algorithm earlier than user ub, suppose ra(la, ra) overlaps
with the first round of user ub (rb(1, 1)). After (y − 1) · 2(mb − 1) rounds,
user ub’s fixed pointer (f p) stays at channel cb,y for the next 2(mb − 1) rounds.
Since 2(mb − 1) ≥ 2(ma − 1), user ua’s moving pointer (mp) has enough time
(rounds) to traverse all available channels including ca,x = cb,y , and therefore
the chosen channels overlap in 2(ma − 1) rounds and rendezvous is guaranteed
in [2(mb − 1) · (y − 1) + 2(ma − 1)] · L ≤ 2(mb − 1)mbL time slots.

(2) If user ub starts the algorithm earlier than user ua , suppose rb(lb, rb) overlaps
with the first round of user ua (ra(1, 1)). Obviously, user ub can get to the loop
where the fixed pointer (f p) stays at channel cb,y in no more than mb − 1 loops
(i.e. (mb − 1) · 2(mb − 1) rounds). By the same analysis, rendezvous can be
guaranteed in the following 2(ma − 1) rounds, which implies the maximum
rendezvous time can be bounded by:

17.3 Rendezvous for Partially Available Spectrum 231

[(mb − 1) · 2(mb − 1) + 2(ma − 1)] · L ≤ 2(mb − 1)mbL (17.26)

time slots.

Similarly, ifma ≥ mb, we also can show that rendezvous is guaranteed in 2(ma −
1)maL time slots. Therefore, Algorithm17.3 guarantees rendezvous in:

2(max{ma,mb})2 ·32(�log log N
+1) = O((max{|Va|, |Vb|})2 log log N) (17.27)

time slots. Thus, the theorem holds.

17.4 Chapter Summary

The rendezvous problem has been widely studied in Cognitive Radio Networks
(CRNs) since the unlicensed spectrum is overcrowded due to the increasing num-
ber of wireless devices, while the licensed spectrum is often underutilized. In this
chapter, we introduce rendezvous processes in dealing with a special type of CRN
where the users (such as the mobile phones or other wireless devices) can only detect
a fraction of all channels. The different capabilities of detecting the licensed chan-
nels of the users create a heterogeneous network and this kind of network is called
Heterogeneous Cognitive Radio Network (HCRN).

In the chapter, we study the simplest version ofmodeling the users’ heterogeneous
capabilities to detect the licensed channels, where each user can only sense a set of
continuous channels. We mainly consider two scenarios, all channels in the users’
sensing range are available, or part of them are available.

For the first situation, we introduce the Traversing Pointer (TP) algorithm, where
two pointers exist to traverse the channels that the user can detect. This idea originates
from the method of traversing the elements in an array, but it cannot work if the
users’ capability set is not continuous. For the second situation, we modify the
TP algorithm and the proposed Moving Traversing Pointer (MTP) algorithm can
traverse all channels in the users’ capability set, while it keeps moving slowly to all
available channels.

Rendezvous in an arbitrary HCRN can be more difficult if the users’ capability
set is discontinuous. The proposed “pointer” works well in the continuous capability
set since we can regard it as an array, but we need to find out other efficient ways to
handle more general heterogeneous capabilities.

References

1. Chen, S., Russell, A., Samanta, A. & Sundaram, R. (2014). Deterministic blind rendezvous in
cognitive radio networks. In ICDCS.

2. Chuang, I., Wu, H. -Y., Lee, K. -R., & Kuo, Y. -H. (2013). Alternate hop-and-wait channel
rendezvous method for cognitive radio networks. In INFOCOM.

232 17 Rendezvous in Heterogeneous Cognitive Radio Networks

3. Gu, Z., Hua, Q. -S., Wang, Y., & Lau, F. C. M. (2013). Nearly optimal asynchronous blind
rendezvous algorithm for cognitive radio networks. In SECON.

4. Gu, Z., Hua,Q. -S.&Dai,W. (2014). Local sequence based rendezvous algorithms for cognitive
radio networks. In SECON.

5. Gu, Z., Hua, Q. -S., & Dai, W. (2014). Fully distributed algorithms for blind rendezvous in
cognitive radio networks. InMOBIHOC.

6. Gu, Z. Pu, H., Hua, Q. -S. & Lau, F. C. M. (2015). Improved rendezvous algorithms for
heterogeneous cognitive radio networks. In INFOCOM.

7. Liu, H., Lin, Z., Chu,X.,&Leung,Y. -W. (2012). Jump-stay rendezvous algorithm for cognitive
radio networks. IEEE Transactions on Parallel and Distributed Systems, 23(10), 1867–1881.

8. Shin, J., Yang, D., & Kim, C. (2010). A channel rendezvous scheme for cognitive radio net-
works. IEEE Communications Letters, 14(10), 954–956.

9. Stevenson, C. R., Chouinard, G., Lei, Z., Hu, W., Shellhammer, S. J., & Caldwell, W. (2009).
IEEE 802.22: The first cognitive radio wireless regional area network standard. IEEE Commu-
nications Magazine, 47(1), 130–138.

10. Theis, N. C., Thomas, R. W., & DaSilva, L. A. (2011). Rendezvous for cognitive radios. IEEE
Transactions on Mobile Computing, 10(2), 216–227.

11. Wu, C. -C.,&Wu, S. -H. (2013). On bridging the gap between homogeneous and heterogeneous
rendezvous schemes for cognitive radios. In MobiHoc.

12. Wu, S. -H., Wu, C. -C., Hon, W. -K., & Shin, K. G. (2014). Rendezvous for heterogeneous
spectrum-agile devices. In INFOCOM.

Chapter 18
Rendezvous Search in a Graph

Abstract The rendezvous search problem in a graph has been widely studied. The
problem is defined as follows: two players are initially placed randomly in a space
S which can be represented by discrete points or is continuous. Two players want
to meet up, which is the so-called “rendezvous”. In a compact space, it is hard to
define how exactly two players meet. Therefore, we assume they are said to meet
if their distance is no larger than a given value r . This assumption is reasonable
because two players can look around and find each other if someone is within the
field of vision. r can be considered the detection radius of the player. The goal of
rendezvous search is to minimize the time for the players to meet. In this chapter, we
first introduce the hardness of rendezvous search in Sect. 18.1, where two types of
symmetry are presented. In order to show the intuitive ideas of designing rendezvous
search algorithms, we choose rendezvous search along a cycle as the example in
Sect. 18.2. The rendezvous search algorithms are presented in Sect. 18.3, and we
summarize the chapter in Sect. 18.4.

18.1 Symmetry of Rendezvous Search

There are different settings for the rendezvous search problem, and we introduce two
types of symmetry as follows:

(1) Symmetry of the players: Similar to the rendezvous process in distributed sys-
tems, two players are symmetric if they are indistinguishable; otherwise, they
have some special labels or identifiers (IDs).

(2) Symmetry of the search space: Similar to the oblivious and non-oblivious setting
in distributed systems, the players may see the same information of the search
space, which is called symmetry (of the search space).

When two players are symmetric, they have no distinguishable labels and they
have to execute the same rendezvous strategy. This corresponds to the algorithm-
symmetric setting in distributed systems. When two players are asymmetric, they
can agree on different strategies before the problem starts, which corresponds to the
algorithm-asymmetric setting. Notice that, we combine the two aspects Alg and I D

© Springer Nature Singapore Pte Ltd. 2017
Z. Gu et al., Rendezvous in Distributed Systems,
DOI 10.1007/978-981-10-3680-4_18

233

234 18 Rendezvous Search in a Graph

in distributed systems since the non-anonymous setting can be used to break sym-
metry, which means they can be used to design different algorithms, i.e. asymmetric
algorithms.

The symmetry of the search space hasmany differentmeanings.Different from the
distributed systems, the players in a search space can walk along a specific direction
such as clockwise or anticlockwise, and face north, south, east or west. Moreover,
the search space has both X-axis and Y-axis, but these information can be hard to
obtain. Therefore, the symmetry of the search space can be represented as follows
according to the available information.

(1) The players can see the coordinates of each point in the space, including the
distance along x-axis and y-axis, the origin point (denoted as (0, 0) in the space),
and the direction of each movement (corresponds to the forward direction of the
axes);

(2) the players can see the x-axis and y-axis with forward direction, but they can-
not see the origin point, which means they do not have a common point for
rendezvous;

(3) the players can see the x-axis and y-axis, but they do not know the directions of
the axises, neither do they know the origin point;

(4) the players cannot see any information about the x-axis and y-axis, but they
know the directions, such as clockwise or anticlockwise;

(5) the players can see nothing in the search space, which means they are in a
absolutely symmetric space.

Rendezvous in the search space is interesting and these different settings have
drawnmuch attention from the researchers. There is an interesting example proposed
in [1]. Suppose there is a straight-line river, over which there is a single bridge.
Two players are randomly placed in the river and they want to meet. This is a one-
dimension space where only the axis along the river is considered.

For thefirst situation, the players can see the river andhow the river flows.Actually,
they can define a direction according to the flow of the river. In addition, they can see
the single bridge, which can be regarded as the origin point. This setting is a fully
asymmetric one, where the players can design strategies that depend on the initial
positions (since they know the origin point and the direction of the axis) and system
information.

For the second situation, the bridge is removed and the players do not know
their exact positions. But they can use the river and the flow directions to design
rendezvous strategies. This setting is harder than the first one.

For the third version, the river stops flowing and the players cannot find the
directions of the axes. This makes rendezvous harder than those situations in which
they do have the directions.

For the fourth version, suppose the river does not exist in the space, but the players
can determine the direction according to some other information, such as how the
sun moves.

For the most difficult version, the players have no common direction, no origin
point, nor the axis. They have to design algorithms in a fully symmetric situation.

18.2 Rendezvous Search Along a Cycle 235

18.2 Rendezvous Search Along a Cycle

In this section, we show a simple example of rendezvous search, and the reader may
refer to [1] for more detailed versions of rendezvous search in a graph. We introduce
how to design efficient rendezvous search algorithms when two players are randomly
placed along a cycle.

As illustrated in Fig. 18.1, two players are placed randomly along a cycle. Suppose
the cycle is presented by discrete points, i.e. suppose there are N discrete points along
the cycle. Any two adjacent points have distance 1 (a unit length). There are several
settings, as discussed above. First, we consider the symmetry of the players.

(1) Symmetric Players. Two players are symmetric if they have no distinguishable
labels, and they have to run the same algorithm;

(2) Asymmetric Players. Two players have different roles in the rendezvous search
problem and they can run different strategies.

Similarly, we define the symmetry of the search space (the cycle) as follows:

(1) The cycle has N discrete points and each point is labeled globally, which means
the players know the labels of the point beforehand. Suppose the players know
the directions of the movement, such as the clockwise direction in Fig. 18.2. In
addition, the players know the location of point 0;

(2) The players can see the label of the point that they are at, and they know the
clockwise direction. However, they do not know the position of point 0.

Fig. 18.1 An example of
rendezvous search along a
cycle

236 18 Rendezvous Search in a Graph

Fig. 18.2 An example of
rendezvous search along an
asymmetric cycle

(3) The players can see the label of the point that they are at, but they do not know
the clockwise direction nor the position of the origin point 0.

(4) The points in the cycle are not labeled and the players can only know the clock-
wise direction.

(5) The players are in an absolutely symmetric cycle, where no labels of the points,
or the direction can be obtained.

Figure18.2 shows an example of an asymmetric cyclewhere the points in the cycle
are labeled globally, and the clockwise direction is clearly achievable by the players.
Notice that, the reader may be confused by the second situation, where the players
know the clockwise direction and the labels of the points, but they do not know the
origin point 0. The reader may suggest a simple idea: the player can record the label
of his initial position (such as k) and the move forward with step length 1 to the next
point. If the point is labeled k + 1, he can go backward k + 1 steps to get to the origin
point, or go forward N − k + 1 steps. However, the points in the cycle may not be
labeled sequentially, and the figure only shows the simplest version. Therefore, two
adjacent points can have a lot of differences and this information cannot be used for
finding out the origin point.

After two players are placed in the cycle randomly (at any two points), they have
to find the other one by adopting appropriate strategies. We assume the distance
between any two adjacent points is 1 unit and the maximum speed of the players’
move in each second is 1 unit.

18.3 Rendezvous Search Algorithms 237

18.3 Rendezvous Search Algorithms

We introduce several rendezvous search algorithms in this section, and present how
these algorithms can be used for the introduced rendezvous settings.

Algorithm 18.1 Towards Origin Point Algorithm
1: Denote the label of the initial points as k;
2: Compute the direction of smallest length from k to the origin point;
3: Move with the computed direction with maximum speed;

The first algorithm is called the Toward Origin Point Algorithm, where the player
moves towards the origin point 0 with maximum speed 1. Notice that, there are
two directions and the player can compute which direction is better such that the
player will spend less time. This algorithm is only feasible when the players have the
same labels of the points in the cycle. Notice that, the algorithm can work for two
symmetric players. The time complexity to achieve rendezvous is relatively low. The
worst situation is: one player has to spend � N

2 � seconds to reach the origin point.

The second algorithm works as follows:

(1) One player (denote as A) moves clockwise with unit speed 1;
(2) the other player (denote as B) moves anticlockwise with unit speed 1.

This algorithm assumes that two players are asymmetric and they know the direc-
tions along the cycle. Actually, they can rendezvous when they move with opposite
directions. Notice that, there are some special situations we should mention.

For example, suppose player A is at point 2 and player B is at point 3 initially. If
player A goes clockwisely as in Fig. 18.2, he will get to point 3 in the next second,
while player B will get to point 2. In some works, it is assumed that both players
can rendezvous within the movement, i.e. they can rendezvous halfway, while some
other works assume they can only rendezvous at some point. We do not focus on any
special situation in this book. The time used to achieve rendezvous is also small and
the worst situation will also use N

2 seconds when two users are adjacent, but they
move along opposite directions.

When two players do not have a common direction, we propose the third algorithm
(known as Wait For Mommy):

(1) One player (denote as A) stays at the initial point;
(2) the other player (denote as B) moves along the cycle in a fixed direction and

maximum speed of 1 unit per second.

In the algorithm, player A can be considered as the child who gets lost in a
supermarket and he will stay where he is and waits for his mother, while player
B represents his mother who searches all places to find her boy. This algorithm is
feasible when two players are asymmetric, but we do not know the directions or the
labels of the points along the cycle.

238 18 Rendezvous Search in a Graph

All the three algorithms introduced cannot perform well for the fully symmetric
situation, where the players are symmetric, and the search space (the cycle) is also
symmetric for the users. We present a randomized algorithm for this most difficult
situation.

Algorithm 18.2 Random Half Cycle Algorithm
1: Denote the initial point of the player as P;
2: Denote two directions as d1, d2;
3: while Not Rendezvous do
4: Generate a random value p ∈ [0, 1];
5: if p < 0.5 then
6: Walk with direction d1 for N

2 seconds with maximum speed 1;
7: else
8: Walk with direction d2 for N

2 seconds with maximum speed 1;
9: end if
10: end while

The Random Half Cycle Algorithm is presented in Algorithm18.2. Suppose the
initial point of the player is P but he does not know the label of the point. Denote
the two directions as d1, d2 but he does not know which one means clockwise. For
every N

2 seconds, the player generates a random value p and it walks along direction
d1 if p < 0.5. This means the player does not know which direction is better, and he
can only choose a fixed direction for the next N

2 seconds with probability 0.5. The
player continues the process until rendezvous happens.

This randomized algorithm cannot guarantee rendezvous for certain, but two play-
ers running the algorithm can achieve rendezvous with high probability. This is
because: when two players choose opposite directions for rendezvous as in Fig. 18.3
for N

2 seconds, they can definitely rendezvous (here we omit the details such as
whether N is odd or even). However, if the players walk along the same direction,
they cannot rendezvous and their relative distance is the same. Therefore, if two
players choose opposite directions, they can rendezvous (Fig. 18.4). We show the
efficiency and the correctness of the algorithm.

Theorem 18.1 Two symmetric players running Algorithm18.2 can achieve ren-
dezvous within cN log N

2 seconds with high probability, where c is a constant.

Proof In every N
2 seconds, the players will make decisions independently. Denote

event A as two players who choose the opposite directions every N
2 seconds; then:

Pr(A) = 1

2
(18.1)

Actually, we can denote event Ai as two players who choose the opposite direc-
tions in the i-th N

2 second. It is easy to see that events A1, A2, . . . , Ai , . . . are inde-
pendent, and we use A to represent these events. Clearly, if event A happens, two

18.3 Rendezvous Search Algorithms 239

Fig. 18.3 Two players walk
with opposite directions

Fig. 18.4 Two players walk
with opposite directions

players can rendezvous. Therefore, we suppose event A does not happen for c log N
times where c is a constant, and the probability can be deduced as:

Pr
(
A1

⋂
A2

⋂
. . .

⋂
Ac log N

)
=

(
1 − 1

2

)c log N

=
(
1

N

)c

(18.2)

240 18 Rendezvous Search in a Graph

when N → ∞, rendezvous happens within the i-th N
2 second with high probability

1 − (1
N)

c. Therefore, two users can achieve rendezvous with high probability.

We derive the expected time to rendezvous in Theorem18.2.

Theorem 18.2 Two symmetric players running Algorithm18.2 can achieve ren-
dezvous in expected 3N

4 seconds.

Proof We show the sketch of the proof. As shown in Theorem18.1, rendezvous
happens if event A happens. For every N

2 seconds, the expected time to rendezvous
is E(A) = N

4 seconds based on the fact that event Amust happen. This can be verified
easily since the average situation is when the distance between two players are N

2
units far away.

We suppose the expected time to rendezvous is T , and we formulate it as:

T = Pr(A) ∗ E(A) + Pr(A) ∗
(
T + N

2

)
(18.3)

This first item represents event A happens while the second item computes the time
when event A does not happen within the period of N

2 time slots.
Clearly, we can compute the expected time T = 3N

4 , and so the theorem holds.

18.4 Chapter Summary

Rendezvous search in a graph is an interesting application, where two players try
to meet in a compact space. In this chapter, we introduce how to design rendezvous
search strategies in a graph. For simplicity, we consider the rendezvous search prob-
lem in a cycle. Readers who are interested in this particular subject can refer to [1]
for more information.

The hardest part of rendezvous search is to break symmetry, both symmetry of
the players and symmetry of the search space. Similar to rendezvous in a distributed
system, the players’ IDs can be used to break symmetry among the players and
the labels of the search space can be used to break symmetry of the space. We list
different settings to point out the hardness of rendezvous search in this chapter.

We propose two different rendezvous search strategies for rendezvous search
along a cycle. The first algorithm is called Towards Origin Point Algorithm where
the origin point is known to both players and they can walk towards the origin point
for rendezvous. The second one is called Random Half Cycle Algorithm where the
players have no outside (or global) information and they have to walk along the cycle
in different directions based on predefined probability. This algorithm can make two
players find each other in a short expected time.

18.4 Chapter Summary 241

There are many interesting variants of the rendezvous search problem, such as to
minimize the time to find each other, and two players trying to fulfill a rendezvous
search game, where one player wants to be meet quickly but the other one does not
want to be found. Such applications or problems can utilize the intuitive idea of basic
rendezvous in distributed systems, and we hope the ideas and techniques introduced
here can be to solve more such related problems.

Reference

1. Alpern, S., & Gal, S. (2003). The Theory of Search Games and Rendezvous. Berlin: Springer.

Chapter 19
Neighbor Discovery in Wireless
Sensor Networks

Abstract Wireless sensor networks (WSNs) are widely used in many applications
such as air pollution monitoring, natural disaster prevention, health care monitoring,
etc. The sensor nodes are deployed in the monitored area and they form a wireless
network through communication with nearby sensors. In this chapter, we introduce
the fundamental process in constructing a wireless sensor network, which is called
neighbor discovery, where the sensors can find nearby neighboring sensors when
their distance is within a threshold. There are two main reasons for studying the
neighbor discovery problem. First of all, the deployed sensors as a configuration
may vary dynamically according to different reasons. For example, new sensors may
be added and old ones removed; and some types of sensors have the ability to move
around inside the area. Therefore, a sensor may need to find nearby neighboring sen-
sors when theymove into its communication range or some new sensors are deployed
in the vicinity. The second reason is the limited power supply. In most situations,
sensors are powered by battery and their energy is very limited. For example, sup-
pose a sensor is powered by a 1200mAh battery, and the processor consumes 2mA
under full power and the radio consumes 20mA when it is turned on. If the sensor
keeps the radio on and computing never stops, the lifetime of the sensor is a little
more than two days. Therefore, sensors need some special method to save energy in
order to extend their lifetime. A trivial way is to add sleeping mode, where a sensor
keeps silent in a sleep state for most of the time, wakes up for work for only a small
fraction of the time. Practically, in sleep mode, the processor’s power consumption
drops to 2µA and the radio power drops to 1µA, and thus lifetime can be extended
significantly. If the sensor wakes up for only 1% of the time and sleeps for 99%
of the time, the estimated lifetime would be half a year. If the wake-up portion is
0.1% of the time, the lifetime can be over five years. Therefore, we assume sensors
are silent for most of the time, and they wake up mainly for data collection and
communication. The neighbor discovery problem is to design the schedules of the
sensors’ sleep mode and wake mode, such that two nearby sensors can be in wake
mode at the same time to find each other, which is a kind of rendezvous problem. In
this chapter, we first propose a motivational example in Sect. 19.1, and formulate the
problem in Sect. 19.2. We introduce the trivial brute force algorithm for the neighbor
discovery problem in Sect. 19.3 and another two algorithms: relaxed difference set
based algorithm and co-prime algorithm in Sects. 19.4 and 19.5 respectively. Finally,
we summarize the chapter in Sect. 19.6.

© Springer Nature Singapore Pte Ltd. 2017
Z. Gu et al., Rendezvous in Distributed Systems,
DOI 10.1007/978-981-10-3680-4_19

243

244 19 Neighbor Discovery in Wireless Sensor Networks

19.1 Motivational Example

In sensor networks, the sensors may turn on or off their radio periodically, randomly
or according to some pre-defined rules. In Fig. 19.1, three sensor nodes have different
wake-up schedules, where the top lines of each node mean the radio is on while the
bottom lines mean the radio is off. The sensor nodes use different wake-up schedules
and two neighboring users can find each other if they are close enough and their
radios are both turned on at the same time. Suppose all three nodes are near to each
other, and they can discover each other if they turn on the radio at the same time. As
shown in the figure, node a and node b may find each other when they both turn on
the radios, but node a and node c cannot find each other since their wake-up times
do not intersect. We call the latter uncoordinated schedules which could be the result
of improper initialization, crash at unpredicted times, etc.

Some MAC protocol research proposed a sampling method where a sensor node
would sample radio activities during its sleeping times, to try to learn their wake-up
schedules of nearby nodes. If the neighboring nodes’ schedules can be predicted,
the node can add some additional wake-up times to its own schedule to achieve
coordination with the other nodes. For example, node a in can learn the other two
nodes’ schedules during its sleeping times, and it will revise its wake-up strategy
such that it can discover its neighbors (see Fig. 19.1).

Although the learning method can help solve the neighbor discovery problem, it
increases the ratio of wake-up time, which leads to shorter lifetime. Therefore, in
this chapter, we study how to design efficient algorithms such that the sensor nodes
can finally discover each other with a coordinated wake-up schedule, while keeping
a low wake-up ratio.

In designing neighbor discovery algorithms for sensor networks, we face the
following challenges:

(1) Symmetric schedule: the sensors nodes should adopt the samewake-up schedule
since they are anonymous and placed in a distributed fashion in the monitoring
area;

(2) asynchronous time clock: each sensor node may have a local time clock, and
they will execute according to its own time clock.

In many practical applications, a large number of sensor nodes are deployed in the
monitoring area and it is impossible to design a special wake-up schedule for each

Fig. 19.1 An example

19.1 Motivational Example 245

Fig. 19.2 An example of learning the neighboring nodes’ wake-up schedule

sensor node. Therefore, a symmetric schedule for all sensors is preferred. Different
sensor nodes may be deployed at different times, their local clocks are different and
they will execute the neighbor discovery algorithm according to its own clock. The
designed algorithms should take all this into account.

19.2 Problem Definition

We define the terms and variables used to formally describe the neighbor discovery
problem for wireless sensor networks.

Definition 19.1 (Time slot) we divide time into slots of equal length, where two
neighboring nodes can discover each other during one unit time slot if they both
have their radios turned on.

Definition 19.2 (Slot aligned network) suppose there exists a global clock where
the time is divided into slots of equal length. For any node in the network, the start
time of its own clock must be the start time of any slot in the global clock.

For example, in Fig. 19.3, the start time of node a’s local clock meets the start
time of the global time slot 3, while node b’s start slot meets the start time of the
global time slot 6. If some nodes are not slot aligned, choose a nearby time slot to
continue. This slot aligned idea is also used in traditional rendezvous.

Fig. 19.3 An example of slot aligned network

246 19 Neighbor Discovery in Wireless Sensor Networks

Definition 19.3 (Wake-up schedule) each sensor node has limited energy and the
wake-up schedule is defined as the time pattern of when it should wake up or sleep.

By designing thewake-up schedule, a sensor nodewill be only awake for a portion
of the time. This extends the sensor’s lifetime and it can also discover its neighbors
in an energy-efficient manner.

For a sequence:
S = {s(1), s(2), . . . , s(t), . . . , s(T)}

where s(t) means the state of the sensor at time t , we formally define the wake-up
schedule as such:

Definition 19.4 (The neighbor discovery (wake-up) schedule) of the sensor node
ua is defined as a sequence Sa = {sa(1), sa(2), . . . , sa(t), . . . , sa(T)} where T is the
length and each element sa(t) is:

sa(t) =
{
0 if sensor ua sleeps in slot t
1 if sensor ua wakes up in slot t

Definition 19.5 (Duty cycle) da of the neighbor discover schedule Sa is defined as:

da = |{1 ≤ t ≤ T : sa(t) = 1}|
T

We define the asynchronous situations of time slots as:

Definition 19.6 (Clock drift) means every two neighboring sensor nodes may have
random clock drifts. Suppose node ua is k time slots earlier than node ub, we can
rotate the neighbor discovery schedule by k slots as:

rotate(Sa, k) = {ska (t)|ska (t) = sa((t + k − 1) mod T + 1), t ∈ [1, T]}

Suppose two sensor nodes ua and ub have corresponding neighbor discover sched-
ules Sa and Sb, and user ua is k time slots earlier than node ub; we define the neighbor
discovery problem between them as:

Definition 19.7 (Neighbor discovery) means there exists time slot t ∈ [1, Ta ∗ Tb]
such that ska (t) = sb(t) = 1 where Ta = |Sa|, Tb = |Sb|.

When both elements ska (t) and sb(t) are equal to 1, two sensors wake up at time
slot t (in node ub’s clock), and then they can discover each other when they are close
enough. Slot t is also called discovery slot between the two sensors. When node ua
is k slots later than user ub, we can let k < 0 and the definition also works.

For example, the neighbor discover schedule for node ua is:

Sa = {0, 0, 0, 1, 0}

19.2 Problem Definition 247

Fig. 19.4 An example of neighbor discovery between two synchronous nodes

Fig. 19.5 An example of neighbor discovery between two asynchronous nodes

while the neighbor discover schedule for node ub is:

Sa = {1, 0, 0, 1, 0, 0}

As shown in Fig. 19.4, if there is no clock drift between two nodes, they can find
each other in time slot 4, and Fig. 19.5 shows the example when node ua is 4 time
slots earlier than node ub. Clearly, two nodes can also discover each other in time slot
13 (and it is time slot 9 in node ua’s clock). In these two examples, two sensor nodes
adopt different wake-up schedules which is not that practical. Symmetric wake-up
schedule is preferred by two and definitely by more nodes.

19.3 Brute Force Algorithm

Since the sensor nodes may start the neighbor discovery algorithm at any time, if
the sensor nodes keep awake all the time, two neighbors can clearly find each other.
However, the duty cycle then of the sensors is 100%, which is inefficient. An easy
improvement is to make the sensor nodes wake up for k time slots, where k ≥ � N+1

2 �.
We describe the method as follows:

(1) Time is divided into rounds and each round contains N time slots;
(2) in each round, the sensor node keeps awake in the first k ≥ � N+1

2 � time slots and
asleep for the other time slots.

Notice that, when k = � N+1
2 �, two different sensors should have at least one

common slot when they are all awake, and this is called the “51%” solution, since
the node keeps awake for more than half of the time in each round.

248 19 Neighbor Discovery in Wireless Sensor Networks

Fig. 19.6 An example of brute force algorithm

For example, if N = 7 and k = 4, two nodes ua and ub can find each other no
matter when they start the process in Fig. 19.6. Clearly, it is easy to compute the time
complexity to discover each other, which is bounded within T ≤ � N+1

2 �.

19.4 Relax Difference Set Based Algorithm

Another method is to design a neighbor discovery schedule on the basis of relaxed
difference set (RDS). Recall the definition of RDS:

Definition 19.8 A set D = {a1, a2, · · · , ak} ⊆ Zn (the set of all nonnegative inte-
gers less than n) is called a Relaxed Difference Set (RDS) if for every d 	= 0 (mod n),
there exists at least one ordered pair (ai , a j) such that ai − a j ≡ d (mod n), where
ai , a j ∈ D.

For any n time slots, we can design a fixed relaxed difference set under Zn and the
sensors nodes wake up according to the difference set can find each other efficiently.
We describe the algorithm in Algorithm19.1.

Algorithm 19.1 Relaxed Difference Set Based Algorithm
1: Choose a positive integer n > 0;
2: Construct a relaxed difference set D = {a1, a2, · · · , ak} ⊆ Zn ;
3: Denote time slot t := 0;
4: Denote the constructed neighbor discovery schedule as S := {s(0), s(1), . . . , s(t), . . .};
5: while Not discover the other node do
6: t ′ := t mod T ;
7: index := t ′ mod n;
8: if index ∈ D then
9: s(t) := 1;
10: else
11: s(t) := 0;
12: end if
13: end while

As shown in Algorithm19.1, we divide time into rounds of n time slots and
construct a relaxed difference set under Zn . Then,we transform the relaxed difference
set D into a schedule of length n, as follows:

19.4 Relax Difference Set Based Algorithm 249

Fig. 19.7 An example of transforming an RDS to a neighbor discover schedule

s(t) =
{
1 if t ∈ D
0 otherwise

where t ∈ [0, n). The sensor nodes repeat the sequence until they find the others. We
illustrate the transformation in Fig. 19.7.

According to the definition of RDS, when one node is δ time slots later or earlier
than another neighboring node, they can both find each other. We analyze the time
complexity for discovering each other and the duty cycle of the designed schedule.

Obviously, no matter when the sensor nodes start the algorithm, they can find
each other within n time slots, since the property of RDS guarantees that at least one
common time slot exists such that they are awake during n consecutive time slots.

As described in Chap.8, the size of the relaxed difference set can be as small as
Ω(

√
n) and the duty cycle of the constructed schedule is:

d = |RDS|
n

= Ω(
√
n)

n

Actually, Chap. 8 shows the method of constructing an RDS with size
√
3n and thus

the duty cycle can be small.
Therefore, there is a tradeoff between the time complexity to discover each other

and the duty cycle of the schedule. Ifwewant to reduce the time of discovery, n should
be small. If we want to reduce the duty cycle, we should increase n. Considering
both, we can choose an appropriate n value in practice to implement the wake-up
schedule.

19.5 Co-Prime Algorithm

Co-prime algorithm is based on the Chinese Remainder Theorem as discussed in
Chap.9. If two nodes use two different prime numbers to design their neighbor
discovery schedules, they can find each other with very short duty cycle, if the
chosen primes are different. This type of algorithms is as follows:

• For sensor node ua , choose a random prime number pa ;
• time is divided into rounds where each round contains pa time slots;

http://dx.doi.org/10.1007/978-981-10-3680-4_8
http://dx.doi.org/10.1007/978-981-10-3680-4_8
http://dx.doi.org/10.1007/978-981-10-3680-4_9

250 19 Neighbor Discovery in Wireless Sensor Networks

Fig. 19.8 An example of
co-prime algorithm

Fig. 19.9 An example of
neighbor discovery when
two nodes ua and ub start at
the same time

Fig. 19.10 An example of
neighbor discovery when
two nodes ua and ub start in
different time slots

• the sensor node ua wakes up in the first time slot of each round, and keeps asleep
for the other pa − 1 time slots.

For example, as illustrated in Fig. 19.8, if the node ua chooses prime number
pa = 5, the constructed schedule is shown in the figure.

Considering any two neighboring nodes ua and ub, denote their chosen prime
numbers as pa and pb respectively. If pa 	= pb, they can definitely find each other
within pa ∗ pb time slots.

For example, node ua chooses pa = 5 and node ub chooses pb = 3; they can find
each other in the first time slot if they start at the same time, as shown in Fig. 19.9,
or they can discover the other in time slot 11 if node ub is one time slot later than
node ua as depicted in Fig. 19.10 (the time complexity is actually 10 since node ub
is later).

We analyze the time complexity of neighbor discovery and the length of the duty
cycle. Suppose node ua is δ time slots earlier than node ub. From node ub’s clock,
node ub will wake up in time slot 1 + pb ∗ lb where pb is the chosen prime number
and lb can be any positive integer. (Notice that, we assume time starts with slot 1,
and sometimes we can also assume it starts with slot 0.) We rewrite the equation as:

t ≡ 1 mod pb

where node ub wakes up in time slot t .
We then analyze when node ua would wake up in node ub’s clock. When:

(t + k) mod pa ≡ 1

19.5 Co-Prime Algorithm 251

Fig. 19.11 An example of
neighbor discovery does not
happen if two sensor nodes
choose the same prime
number

where pa is the chosen prime number, node ua will be awake. We rewrite it as:

t ≡ 1 − k mod pa

where node ua wakes up in time slot t .
Therefore, we need to compute such value t by combining both equations, and

there exists t ∈ [1, pa ∗ pb] satisfying both equations from the Chinese Remainder
Theorem. Therefore, the time complexity is bounded within pa ∗ pb.

Obviously, the duty cycle of node ua is d = 1
pa

which can be relatively short. But
larger pa value may lead to higher time complexity of neighbor discovery. Therefore,
choosing the appropriate pa value is important.

Notice that, if two sensor nodes choose the same prime number, they may not find
each other if they do not start at the same time. As shown in Fig. 19.11, both nodes
choose prime 5 and node ub is 1 time slot later than node ua , and they can never find
each other. Therefore, the chosen prime numbers should be different, but it is hard
to guarantee that the chosen primes are always different in practical wireless sensor
networks.

19.6 Chapter Summary

In this chapter, we study neighbor discovery problem in wireless sensor networks.
Since the sensors have only limited battery power, if they keep awake all the time, the
sensors will go down soon. Therefore, we need to design wake-up schedules for the
sensors to save energy and extend their lifetime. However, if different sensors wake
up according to different schedules, two neighboring sensors may not discover each
other if one of them happens to be asleep. The goal of neighbor discovery problem
is to design efficient wake-up schedules for the sensors such that they can find each
other in a short time, while having a low duty cycle of being awake.

We introduce three types of rendezvous algorithms. The first one is to be awake
for most of the time (larger than 50%) and the sensors can find each other for sure.
This type of algorithm is called the brute force algorithm. The second one is relaxed
difference set based algorithm, where we use relaxed difference set to design wake-
up schedules and the duty cycle can be reduced to O(1

N). The third one is co-
prime algorithm where the sensors choose prime numbers to generate their wake-up
schedules and it guarantees quick discovery if two sensors’ chosen prime numbers
are different.

Part V
Conclusions and Future Works

Chapter 20
Conclusions and Future Works

In this book, we introduce the fundamental process in constructing a distributed sys-
tem, which is referred to as rendezvous. A distributed system is composed ofmultiple
autonomous entities that can make decisions locally. Through appropriate coopera-
tion among these distributed entities, the system can be utilized to carry out some
global computational tasks. In order for the entities to cooperate, communication
links have to be made use of dynamically and effectively through their connected
external ports; entities may fail to connect to the others if they make a wrong choice
of the external ports. To be able to access the correct connected pair of external ports
by the two entities involved in a communication act is essential in all cooperation,
and the aim of the rendezvous algorithms we study is to achieve that efficiently.

20.1 Conclusions

In studying the rendezvous problem in distributed systems, there are five important
components that should be taken into consideration.

First, the distributed entities could choose to run symmetric or asymmetric algo-
rithms, where the entities utilize the same algorithm for rendezvous attempt if the
choice is symmetric, or they would run different algorithms if it is asymmetric.
Obviously, designing symmetric algorithms for the distributed entities would be
much more challenging, which however is much more practical for real distributed
system implementations. In this book, we present the differences of designing these
two types of rendezvous algorithms, and many elegant methods are presented.

Second, timing plays an important role in a distributed system. For simplicity, we
assume time is divided into slots of equal length and the distributed entities can per-
form their local computations in each time slot. Considering different applications,
we study two different types of distributed systems: synchronous systems where all
entities start the algorithm at the same time, and asynchronous systems where the
entities could start the algorithm in different time slots. Obviously, designing effi-
cient rendezvous algorithms for synchronous systems is much easier than those for

© Springer Nature Singapore Pte Ltd. 2017
Z. Gu et al., Rendezvous in Distributed Systems,
DOI 10.1007/978-981-10-3680-4_20

255

256 20 Conclusions and FutureWorks

asynchronous systems. However, most practical distributed systems are asynchro-
nous and the entities have to perform their own tasks in an asynchronous manner.
In this book, we present simple algorithms for synchronous entities, and introduce
relatively more complicated rendezvous algorithms for asynchronous entities.

Third, the entities in a distributed system are not able to utilize all the external ports
for communication, this is because some ports may be occupied by other services or
other types of communication. We say the external ports are available if they are not
occupied by other services or communication. In this book, we study the symmetric
port scenariowhere all entities in a distributed system have the same set of available
external ports, and the asymmetric port scenario where different entities may have
different sets of available ports. Obviously, the symmetric port scenario is a special
case of the asymmetric port scenario, and designing rendezvous algorithms for the
latter could be much more difficult than for the former. However, in the so called
oblivious blind rendezvous problem (in Part III), the symmetric port scenario could
present as much difficulty as the asymmetric port scenario. We present distributed
rendezvous algorithms, including deterministic and randomized ones for both the
symmetric port scenario and the asymmetric scenario.

Fourth, breaking symmetry is an essential act in distributed systems. We adopt
a commonly used assumption to break symmetry where each entity in a distributed
system can be assigned a distinguishable identifier (ID). There are two types of
distributed systems: anonymous systems assume all entities in the system are indis-
tinguishable and they cannot be separated by deterministic methods; non-anonymous
systemson the other hand assumes each entity in the systemhas a unique IDwhich can
be used to break symmetry. Designing rendezvous algorithms for non-anonymous
systems is much easier than for anonymous systems, since the users’ IDs can be
used to design entity-specific algorithms. In this book, we present elegant results
for both anonymous and non-anonymous systems, but only randomized algorithms
are applicable in handling the oblivious blind rendezvous situation in anonymous
systems. These randomized algorithms also have good performance on average.

The last component is port labeling, which defines the blind rendezvous problem
in Part II and the oblivious blind rendezvous problem in Part III. In the blind ren-
dezvous problem, all entities in the distributed system are assumed to have the same
labels of the external ports and any pair of ports with the same label are connected.
This situation is called non-oblivious port labeling. However, in general distributed
systems, the entities inside the system are not able to obtain any global information
and so they cannot see the global labels of the external ports beforehand. We call
this oblivious port labelingwhere the entities in a distributed system are free to label
their own ports according to local rules and they do not know the connection patterns
of any pair of the external ports. This blindness of port labeling makes rendezvous
much harder to tackle and we call it the oblivious blind rendezvous problem which
we study in Part III. In this book, we introduce a series of distributed algorithms for
the blind rendezvous problem, and present a few extant results for the oblivious blind
rendezvous problem.

To sum up, we study rendezvous in the distributed systems in three parts (Parts
II, III, and IV):

20.1 Conclusions 257

In Part II, we formulate the blind rendezvous problem in distributed systems,
where the entities in the system cannot see the others’ information and they have to
execute the algorithms in a “blind” way. In this part, we assume all entities see the
global labels of the external ports in advance, and they can run algorithms that build on
those global labels. Since rendezvous mainly happens between any two neighboring
entities,we provide intuitive ideas, commonused techniques, and efficient algorithms
for two entities in Chaps. 6–9, and we present an extension for multiple entities in a
multihop distributed system in Chap.10.

The intuitive ideas of handling blind rendezvous for two entities come from the
following aspects:

(1) In designing asymmetric algorithms, one entity waits on a fixed port for a suf-
ficiently long time while the other entity accesses the ports sequentially. This
method could reduce the time complexity of rendezvous and it is from the sim-
ple idea of wait-for-mummy: when a child gets separated with his mother in the
supermarket, the child should stay put and wait for his mother to come to meet
him. This trivial idea helps the design of efficient asymmetric algorithms for the
distributed systems.

(2) In designing symmetric algorithms for anonymous entities, the global labels of
the external ports can be utilized to design such algorithms. The idea is to convert
the designed rendezvous sequence to a disjoint relaxed difference set (DRDS),
and the construction of the DRDS corresponds to the rendezvous sequence that
guarantees rendezvous with high efficiency.

(3) In designing symmetric algorithms for non-anonymous entities, the entities’
identifiers (IDs) could be utilized to design the rendezvous sequence, by com-
bining the global labels of these external ports. Due to the uniqueness of the
entities’ IDs, the rendezvous algorithms could be much more efficient than those
for anonymous entities.

The techniques introduced in designing rendezvous algorithms include:

(1) Channel hopping, which is originally defined for cognitive radio networks, can
also be used for general distributed systems. Since the rendezvous algorithms
have to be suitable for asynchronous entities, they have to generate a sequence
with fixed length and repeat the sequence to access the ports. Normally, the
sequence is generated by some mathematical calculations which can be consid-
ered as hopping to the next channel (or port in the distributed system) by adding
some hopping step. This technique is commonly utilized in designing various
types of rendezvous algorithms.

(2) ID Scaling, which converts the entity’s ID to another unique string, is often used
in designing symmetric algorithms for non-anonymous entities. The converted
strings of different entities must have different bits and this kind of information
can be used as different hopping steps in generating the rendezvous sequences.

This book introducesmany kinds of rendezvous algorithms. For asymmetric algo-
rithms, we shed new light on designing efficient algorithms that have very low time

http://dx.doi.org/10.1007/978-981-10-3680-4_6
http://dx.doi.org/10.1007/978-981-10-3680-4_9
http://dx.doi.org/10.1007/978-981-10-3680-4_10

258 20 Conclusions and FutureWorks

complexity. For symmetric algorithms, we present global sequence (GS) based ren-
dezvous algorithms for anonymous entities and local sequence (LS) based rendezvous
algorithms for non-anonymous entities. The GS based algorithms can guarantee ren-
dezvous within O(N 2) time slots, which matches the known derived lower bound
of such kind of algorithm. The LS based algorithms guarantee rendezvous within
O((max{|CA|, |CB |})2) time slots, whereCA,CB represent the available port sets for
the two entities respectively. This result is much better than the GS based algorithms
especially when the available ports only account for a small fraction of all the ports.

In Part III, we formulate the oblivious blind rendezvous problem in distributed
systems, where the entities in the system cannot see the global labels of the external
ports beforehand, and they have to label the external ports locally. This part tackles
a harder but more general rendezvous setting. Actually, when the entities have no
information about the external ports, themethod of generating a rendezvous sequence
on the basis of the ports’ labels cannot work. For some worst-case scenarios, there
simply does not exist any deterministic distributed algorithm and the rendezvous
cannot be guaranteed within a finite time. In this part, we focus on the oblivious
blind rendezvous problem between two entities, in Chaps. 12–15, and we discuss the
extension to multiple entities in a multihop distributed system in a simple way in
Chap.16.

The intuitive ideas behind handling oblivious blind rendezvous for two entities
come from the following:

(1) In designing asymmetric algorithms, we adopt the strategy that one entity should
wait on a fixed port for a sufficiently long time, while the other entity accesses the
available ports sequentially. The hardness comes from tuning the relevant para-
meters such that the waiting time is long enough to cover the possible accessing
of the ports by the other entity; but long waiting time could lead to long ren-
dezvous time, since the entity does not know which port is the correct port to
wait for.

(2) In designing symmetric algorithms for non-anonymous entities, the key point is
to break symmetry between the entities, and their IDs play the vital role. In addi-
tion, somemathematical principles, such as co-prime properties, should be taken
into consideration. Actually, if two entities repeat a sequence of different lengths
pa �= pb and pa, pb are two prime numbers, they can definitely rendezvous. This
observation is also a novel idea in designing deterministic distributed rendezvous
algorithms.

(3) In designing symmetric algorithms for anonymous entities, it is impossible to
design deterministic ones, which is also shown in the book. Therefore, tricky ran-
domized methods are employed to design rendezvous algorithms with expected
low time complexity. The intuitive idea is to sample different prime numbers or
different randomized values that are coupled in the rendezvous sequences.

http://dx.doi.org/10.1007/978-981-10-3680-4_12
http://dx.doi.org/10.1007/978-981-10-3680-4_15
http://dx.doi.org/10.1007/978-981-10-3680-4_16

20.1 Conclusions 259

The techniques introduced in designing oblivious blind rendezvous algorithms
include:

(1) ID Scaling, which is also an important technique in blind rendezvous algo-
rithms, converts an entity’s ID to another unique string, and the corresponding
rendezvous sequence can be created on the basis of the string.

(2) Randomized sampling, which generates different random values or random
prime numbers, is commonly adopted in breaking symmetry between two anony-
mous entities. The difference of sampled randomized numbers could help design
rendezvous sequences and guarantee bounded rendezvous. However, such sam-
pling can only guarantee achieving rendezvous with high probability, but it can-
not assure rendezvous for any situation.

Different kinds of oblivious blind rendezvous algorithms are presented in Part
III. For asymmetric algorithms, we extend the design of blind rendezvous algo-
rithms while keeping the increased time complexity at an acceptable level; about
O(N 2) time slots are sufficient to achieve rendezvous. For symmetric algorithms
between two non-anonymous entities, building on the converted bits of the enti-
ties’ IDs, we construct rendezvous sequences with different hopping steps and the
time complexity is about O((max{ka, kb})2) time slots for most situations, where
ka, kb represent the two entities’ number of available ports respectively. In addition,
we show the method of deriving lower bounds for such rendezvous algorithms and
the proposed algorithms have acceptable performance compared with the refined
bound Ω((ka − kg) · (kb − kg)) where kg represents the number of common avail-
able ports. For symmetric algorithms between two anonymous entities, we design
several randomized algorithms and the efficiency is also guaranteed through careful
calculations.

InPart IV,wediscuss three practical distributed systemswhere rendezvous process
plays a fundamental role. The first one is a heterogeneous cognitive radio network
(HCRN),which is a special type of cognitive radio network. In theHCRN, each entity
is equippedwith a cognitive radio that can sense a set of continuous licensed channels.
We modify the blind rendezvous algorithms such that the time complexity could be
much smaller than that of the GS based algorithms. Then, we introduce rendezvous
search in a graph where the entities should meet at some discrete locations in the
graph. For simplicity, we present several rendezvous algorithms for the rendezvous
search along a cycle and we compare the rendezvous problem in different situations
with the studied rendezvous settings in Part II and Part III. The last application we
consider is the neighbor discovery problem in wireless sensor networks, where the
sensors should have low duty-cycle schedule to prolong their lifetime. Though it is
not related to the rendezvous problem directly, we can regard the design of wake-
up schedules as the design of rendezvous sequences. Different types of rendezvous
based algorithms are also introduced for designing the schedule such that two nearby
sensors can discover each other, while keeping to a relatively low duty-cycle.

260 20 Conclusions and FutureWorks

20.2 Future Works

This book introduces the rendezvous problem in the distributed systems, which also
covers rendezvous theory, efficient distributed algorithms, and some representative
distributed applications that use rendezvous. Through the chapters, the readers can
fully understand what role the rendezvous process plays in constructing a distributed
system,what the rendezvous problem tries to solve fromboth theoretical and practical
views, how rendezvous algorithms work for the autonomous entities in the system,
to what extent rendezvous efficiency could be achieved, and how the rendezvous
process can be applied in the other application domains. In order to broaden the
scope of the rendezvous theory, the algorithms, and the applications, we suggest
several possible future directions and the readers who are interested in this subject
may follow the points given to pursue further.

First of all, closing the gap between the lower bounds on the maximum time to
rendezvous inworst-case situations and the upper bounds by the presented algorithms
will likely be a long term project. For example, as shown in Sect. 8.6, the lower bound
of the global sequence based rendezvous algorithms could be as low as (about) N 2

time slots through theoretical analysis. However, the state-of-the-art result can only
guarantee rendezvous within (about) 3N 2 time slots for the worst situation. The gap
between these two bounds cannot be closed easily at least for now. We should try
to find tighter lower bounds or design more efficient algorithms. In Table 8.2, we
compute the relationship between the value n and the maximum cardinality of the
disjoint relaxed difference set under Zn when n is not large, which corresponds to
the lower bound of the global sequence based algorithm; the table implies that it is
hard to derive tighter theoretical lower bound, but one meaningful direction would
be to design shorter global sequences that can be adopted in rendezvous.

Considering the oblivious blind rendezvous between two non-anonymous users
as another example, the derived lower bound by the adversary assignment graph in
Sect. 13.3 requires at least Ω((ka − kg) · (kb − kg)) time slots to rendezvous, where
ka, kb represent the number of available ports for the two users respectively and kg
represents the number of common available ports between them. However, when
the users have no global labels of the external ports, i.e. oblivious port labeling, the
extant results can only guarantee rendezvous within O((max{ka, kb})2) time slots
[5] or within O(kakb) time slots under certain assumptions [4]. The gap between the
lower bound and the upper bounds is large. The direction of deriving tighter lower
bounds and designing better algorithms is an important one.

Besides the theoretical bounds for the rendezvous problem, another major area is
the handling of dynamic occupancy of the external ports. For example, the following
two entities have different sets of available ports:

{
Ca = {1, 3, 5, 7, 9}
Cb = {2, 4, 6, 8}

http://dx.doi.org/10.1007/978-981-10-3680-4_8
http://dx.doi.org/10.1007/978-981-10-3680-4_8
http://dx.doi.org/10.1007/978-981-10-3680-4_13

20.2 Future Works 261

Suppose they utilize a simple rendezvous algorithm where each entity access the
available port sequentially, the users can never rendezvous since they have no com-
mon available port. However, the occupancy of the external ports by other services
may vary over time and the set of the available ports could also change. Suppose
port 9 becomes available for the second entity in time slot 3 and they can achieve
rendezvous in time slot 5. This dynamic change can help achieve rendezvous, but it
can also reduce the chance of communication when some common available ports
are occupied temporarily. How to accommodate such dynamic changes of the ports’
occupancy is an interesting and useful problem.We believe this could be a promising
direction in the future, not only due to the lack of a corresponding rendezvous theory,
but also the phenomenon occurs in many practical distributed systems. One possible
method is to handle the changes of the ports’ states by randomized sampling, while
the other strategywould be generating the change patterns throughmachine learning.

Other than theory and algorithms in further rendezvous research, many interesting
applications are also worth further exploring.

The first related application would be the classic telephone coordination problem
which is introduced in Sect. 1, and the best known result, the Anderson-Weber strat-
egy (AW), is proposed in [3]. However, this work only proposes a good randomized
strategy that has better performance than random selection, i.e. 0.829n time slots are
needed in expectation compared with n time slots. It is still an open problemwhether
a better algorithm exists with even shorter expected time.

Another application is the multi-radio cognitive radio network, where each user
in the network is equipped with multiple cognitive radios that can switch to multi-
channelmode for rendezvous in one time slot. This newnetwork architecture can help
reduce rendezvous time and enable more efficient rendezvous protocols. However,
there are very few related works [6–9] and extant research lacks comprehensive
theoretical foundations for this relatively new type of networks.

The last application we discuss is rendezvous search game [1, 2]. In Chap.18, we
introduce rendezvous search in a graph where two players aim to meet at a discrete
location of the graph as quickly as possible. However, the rendezvous search game
turns the problem into a complicated one. Similar to rendezvous search, two players
are involved but they have different goals: one player tries to find the other player
as quickly as possible while the other player tries to “hide” and avoid being found.
The different goals of the players make the problem interesting, but harder to solve.
This is also why it is called a game. Some works have studied the problem but more
general solutions remain missing.

The rendezvous process is indeed vital in constructing a basic distributed system.
We talk about the theory of rendezvous, present distributed algorithms that have
high efficiency, and discuss some interesting applications where rendezvous can be
adopted. This field is still at a tender age from the perspective that it is still far
from widely applied, and so to induce deeper understanding in a wider audience
is important for its further development. This book represents a small step of that
mission, andwe hope the readers can acquire a good understanding of the rendezvous
problem and its solutions after reading the book.

http://dx.doi.org/10.1007/978-981-10-3680-4_1
http://dx.doi.org/10.1007/978-981-10-3680-4_18

262 20 Conclusions and FutureWorks

References

1. Alpern, S., & Lim, W. S. (1998). The symmetric rendezvous-evasion game. SIAM Journal of
Control and Optimization, 36(3), 948–959.

2. Alpern, S., & Gal, S. (2003). The theory of search games and rendezvous. Berlin: Springer.
3. Anderson, E. J., & Weber, R. R. (1990). The rendezvous problem on discrete locations. Journal

of Applied Probability, 28, 839–851.
4. Chen,L.,Bian,K.,Chen,L., Liu,C., Park, J.-M. J.,&Li,X. (2014).AGroup-theoretic framework

for rendezvous in heterogeneous cognitive radio networks. InMobiHoc.
5. Gu, Z., Hua, Q.-S., & Dai, W. (2014). Fully distributed algorithms for blind rendezvous in

cognitive radio networks. InMOBIHOC.
6. Li, G., Gu, Z., Lin, X., Pu, H., & Hua, Q-S. (2014). Deterministic distributed rendezvous algo-

rithms for multi-radio cognitive radio networks. InMSWiM.
7. Paul, R., Jembre, Y. Z., & Choi, Y.-J. (2014). Multi-interface rendezvous in self-organizing

cognitive radio networks. In DySPAN.
8. Yu,L., Liu,H., Leung,Y.-W.,Chun,X.,&Lin,Z. (2013).Multiple radios for effective rendezvous

in cognitive radio networks. In ICC.
9. Zhang, J., & Zhang, Z. (2011). Initial link establishment in cognitive radio networks without

common control channel. In WCNC.

	Preface
	Acknowledgements
	Contents
	Acronyms
	Part I Distributed Rendezvous Theory
	1 Distributed Systems
	1.1 What is Distributed System?
	1.2 Local Area Networks
	1.3 Email
	1.4 Wireless Sensor Networks
	1.5 Cognitive Radio Networks
	1.6 Telephone Networks
	References

	2 Distributed Computing
	2.1 What is Distributed Computing?
	2.2 Communication Model
	2.3 Information Incompleteness
	2.4 Timing and Synchrony
	References

	3 Rendezvous Theory
	3.1 What is the Rendezvous Problem?
	3.2 Rendezvous in Multichannel Wireless Networks
	3.3 Rendezvous in Cognitive Radio Networks
	3.4 Rendezvous in Distributed Systems
	3.5 Distributed Rendezvous Algorithms
	3.5.1 Distributed Telephone Coordination Algorithms
	3.5.2 Distributed Rendezvous Algorithms for Multichannel Networks
	3.5.3 Distributed Rendezvous Algorithms for Cognitive Radio Networks

	References

	4 Rendezvous Categories
	4.1 Symmetric and Asymmetric Algorithms
	4.2 Synchronous and Asynchronous
	4.3 Symmetric and Asymmetric Port Settings
	4.4 Anonymous and Non-anonymous Entities
	4.5 Oblivious and Non-oblivious Port Labeling
	4.6 Rendezvous Categories
	References

	Part II Blind Rendezvous in Distributed Systems
	5 Blind Rendezvous Problem
	5.1 System Model
	5.2 Metrics
	5.3 Problem Definition
	5.4 Challenges
	5.5 Chapter Summary
	References

	6 Asymmetric Blind Rendezvous Algorithms
	6.1 Synchronous and Port-Symmetric Rendezvous
	6.1.1 Smallest Port Accessing Algorithm
	6.1.2 Quorum-Based Channel Hopping

	6.2 Asynchronous and Port-Symmetric Rendezvous
	6.2.1 Asynchronous Quorum-Based Channel Hopping
	6.2.2 Sequential Accessing Algorithm

	6.3 Synchronous and Port-Asymmetric Rendezvous
	6.3.1 Modified Sequential Accessing Algorithm

	6.4 Asynchronous and Port-Asymmetric Rendezvous
	6.4.1 Sequential Access and Temporary Wait for Rendezvous

	6.5 Chapter Summary
	References

	7 Synchronous Blind Rendezvous Algorithms
	7.1 Expanded Sequential Accessing Algorithm
	7.2 Chapter Summary

	8 Asynchronous Blind Rendezvous Algorithms for Anonymous Users
	8.1 Generated Orthogonal Sequence (GOS)
	8.2 Deterministic Rendezvous Sequence (DRSEQ)
	8.3 Channel Rendezvous Sequence (CRSEQ) Algorithm
	8.4 Jump Stay Algorithm
	8.5 Disjoint Relaxed Different Set (DRDS) Based Rendezvous Algorithm
	8.5.1 Global Sequence (GS)
	8.5.2 Disjoint Relaxed Difference Set (DRDS)
	8.5.3 Equivalence of DRDS and Good GS
	8.5.4 DRDS Construction
	8.5.5 DRDS Based Rendezvous Algorithm
	8.5.6 Improved DRDS Based Rendezvous Algorithm

	8.6 Lower Bound for GS Based Rendezvous Algorithms
	8.7 Chapter Summary
	References

	9 Local Sequence (LS) Based Rendezvous Algorithms
	9.1 Local Sequence (LS)
	9.2 Ring Walk Algorithm
	9.3 Alternate Hop-and-Wait (AHW) Algorithm
	9.4 A Simple LS Based Rendezvous Algorithm
	9.5 A Modified LS Based Rendezvous Algorithm
	9.6 Chapter Summary
	References

	10 Blind Rendezvous for Multi-users Multihop System
	10.1 Algorithm Description
	10.2 Correctness and Complexity
	10.3 Discussions
	10.4 Chapter Summary
	References

	Part III Oblivious Blind Rendezvous in Distributed Systems
	11 Oblivious Blind Rendezvous
	11.1 System Model
	11.2 Metrics
	11.3 Problem Definition
	11.4 Examples of Oblivious Blind Rendezvous
	11.5 Chapter Summary
	References

	12 Asymmetric Oblivious Blind Rendezvous Algorithms
	12.1 Port-Symmetric Rendezvous
	12.2 Synchronous and Port-Asymmetric Rendezvous
	12.3 Asynchronous and Port-Asymmetric Rendezvous
	12.4 Chapter Summary

	13 Oblivious Blind Rendezvous for Non-anonymous Users
	13.1 Synchronous Oblivious Blind Rendezvous
	13.1.1 Synchronous Check and Hop Algorithm
	13.1.2 Correctness and Complexity

	13.2 Asynchronous Oblivious Blind Rendezvous
	13.2.1 ID Hopping Algorithm
	13.2.2 Multi-step Port Hopping Algorithm

	13.3 Lower Bound for Oblivious Blind Rendezvous
	13.3.1 Adversary Assignment Graph
	13.3.2 A Loose Lower Bound
	13.3.3 A Refined Lower Bound

	13.4 Chapter Summary
	Reference

	14 Fully Distributed Rendezvous Algorithm for Non-anonymous Users
	14.1 Conversion Based Hopping Algorithm
	14.2 Correctness and Complexity
	14.3 Chapter Summary
	Reference

	15 Oblivious Blind Rendezvous for Anonymous Users
	15.1 Hardness of Anonymity
	15.2 Port-Symmetric Rendezvous
	15.2.1 Intuitive Ideas
	15.2.2 Stay or Random Selection Algorithm
	15.2.3 Synchronous Users Scenario
	15.2.4 Asynchronous Users Scenario

	15.3 Port-Asymmetric Rendezvous
	15.3.1 Random Picking Algorithm
	15.3.2 Random Prime Selection and Sequential Accessing Algorithm

	15.4 Chapter Summary
	References

	16 Oblivious Blind Rendezvous for Multi-user Multihop CRN
	16.1 Algorithm Description
	16.2 Correctness and Complexity
	16.3 Chapter Summary
	References

	Part IV Distributed Rendezvous Applications
	17 Rendezvous in Heterogeneous Cognitive Radio Networks
	17.1 Preliminaries
	17.1.1 System Model
	17.1.2 Problem Definition
	17.1.3 Challenges

	17.2 Rendezvous for Fully Available Spectrum
	17.2.1 Rendezvous Scheme for Two Available Channels
	17.2.2 Traversing Pointer Algorithm
	17.2.3 Correctness and Complexity

	17.3 Rendezvous for Partially Available Spectrum
	17.3.1 Moving Traversing Pointer Algorithm
	17.3.2 Correctness and Complexity

	17.4 Chapter Summary
	References

	18 Rendezvous Search in a Graph
	18.1 Symmetry of Rendezvous Search
	18.2 Rendezvous Search Along a Cycle
	18.3 Rendezvous Search Algorithms
	18.4 Chapter Summary
	Reference

	19 Neighbor Discovery in Wireless Sensor Networks
	19.1 Motivational Example
	19.2 Problem Definition
	19.3 Brute Force Algorithm
	19.4 Relax Difference Set Based Algorithm
	19.5 Co-Prime Algorithm
	19.6 Chapter Summary

	Part V Conclusions and Future Works
	20 Conclusions and Future Works
	20.1 Conclusions
	20.2 Future Works
	References

