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Abstract
Knowledge on the fate and transport of heavy metals is essential for predicting 
the environmental impact of metal contamination on agricultural soils. This 
chapter presents an overview of various factors that are involved in controlling 
the retention and mobility of heavy metals in soils with a special reference to soil 
mineralogy. The bioavailability of most elements, in particular heavy metals, in 
soils is governed by adsorption-desorption, complexation, precipitation and ion-
exchange processes. The most important surfaces involved in metal adsorption in 
soils are active inorganic colloids such as clay minerals, oxides and hydroxides 
of metals, metal carbonates and phosphates and organic colloids. In addition to 
soil mineralogy, other important parameters controlling heavy metal retention 
and their distribution are soil texture, structure, pH, redox condition, cation and 
anion concentration, ionic strength, organic matter, microbial and root activity 
and climatic conditions. However, the ultimate fate of elements depends on a 
combination of several factors that are working together in the soil system. 
Finally, several remediation strategies have also been highlighted based on the 
fundamental principles of metal immobilization on mineral containing soil 
amendments.
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4.1	 �Introduction

The concern over the ever-growing imbalance in the natural environments has been 
increasing over the last few decades. Lately, the threat of toxicity of heavy metals to 
plants and humans has become manifold due to environmental contamination result-
ing from the extensive use of heavy metals in industry and agriculture. Since soils 
are, inadvertently, the ultimate victim of all human activities, it is extremely impor-
tant for us to protect soils from being degraded in order to give future generations a 
safe and sound habitat. In the order of the abundance of various metals, Pb, Cr, As, 
Zn, Cd, Cu and Hg are found in the contaminated sites (USEPA 1996; Wuana and 
Okieimen 2011). The harmful effects of these metals in posing human and animal 
health issues are well known. Most of these metals impose serious risk due to their 
potential bioaccumulation and biomagnification in the food chain. Depending on 
their chemical speciation the metals can even migrate into the ground water and 
create a more serious issue.

More than one heavy metal can co-exist in contaminated soils. The bioavailabil-
ity of the metals present in such multi-element environments is regulated to a large 
extent by the competition for available adsorption sites. In other words, the bioavail-
ability and bioaccessibility of heavy metals depend on the elements’ interaction 
with various soil components which control the metals’ retention and mobility in 
soils. Studies have demonstrated that numerous physical, chemical, biological fac-
tors can be involved in controlling the retention and mobility of heavy metals. This 
chapter aims to present an overview on these factors in relation to the mineralogical 
properties of soils. Several remediation strategies have also been highlighted based 
on the fundamental principles of metal immobilization on soil minerals.

4.2	 �Adsorption of Heavy Metals on Soil Minerals

The fate and bioavailability of most elements, in particular heavy metals, in soils is 
governed by adsorption–desorption processes. Their adsorption on soils and miner-
als are also different due to their hydrolysis behaviour (Naidu et al. 1998). Among 
various heavy metals, Cu and Pb are reportedly the least mobile, whereas Cd and Zn 
are considerably more mobile. In addition, highly toxic metalloids such as As, 
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Cr and Se, which exist as anions in the environment, are highly mobile because these 
anionic species get repelled by the intrinsically negatively charged soil particles.

The adsorption of heavy metals on purified soil clay minerals has been studied 
extensively in the past (Sen Gupta and Bhattacharyya 2012; Bhattacharyya and 
Gupta 2008; García-Sánchez et al. 1999). Several chemical modification processes 
were also known to increase the adsorption capacity of heavy metals on clay miner-
als (Bhattacharyya and Gupta 2008; Sarkar et al. 2010, 2012, 2013a; Rusmin et al. 
2015; Perelomov et al. 2016; Celis et al. 2000). The surfaces of clay minerals con-
tain two major types of reaction sites, namely Bronsted and Lewis acid sites, and ion 
exchange sites. This could be further explained by a constant capacitance model 
that assumes two kinds of binding sites (Schindler et al. 1987; Angove et al. 1998). 
The first type of adsorption sites adsorb metals by ion exchange, whereas the second 
type of adsorption sites involve inner-sphere binding to ampholytic –OH groups. 
The hydroxyl groups located on the edges (due to silanol and aluminol groups) are 
responsible for many metal–clay interactions. The 1:1 type clay mineral (e.g., 
kaolinite) contains a net zero layer charge, but the small negative charge at the bro-
ken edges can participate in metal adsorption. Contrarily, 2:1 type clay minerals 
(e.g., montmorillonite) hold a net negative charge of 0.8 unit per unit cell, which 
makes it a better adsorbent of heavy metal cations.

Adsorption reactions involving heavy metals are extremely rapid whereas 
desorption reactions can be orders of magnitude slower (McBride 1994). 
Additionally, adsorption–desorption reactions are often not completely reversible 
and this non-singularity or hysteresis can increase with increased residence time (or 
ageing) between the heavy metal and soil constituent surface (Glover et al. 2002; 
Rezaei Rashti et al. 2014). The adsorption–desorption of heavy metals on clay min-
erals depend on many environmental factors which consequently influence their 
mobility in soils. A complete understanding of the surface sequestration process in 
soils and minerals helps to better evaluate the bioavailability and potential toxicity 
of heavy metals.

4.3	 �Factors Affecting Retention of Heavy Metals in Soil

Mobility of heavy metal elements and subsequent retention in soil is controlled by 
a sequence of processes, beginning with desorption or dissolution followed by dif-
fusion and convection. Further retention of elements at another location occurs due 
to re-adsorption or precipitation reactions. The key factors that control heavy metal 
retention in soils are summarized in Fig. 4.1. However, the ultimate fate of the ele-
ment depends on a combination of several physical, chemical, biological and cli-
matic factors.
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4.3.1	 �Physical Factors

4.3.1.1	 �Texture
Soil texture plays an important role in the retention of heavy metals in soils. Texture 
reflects the distribution of various particle size fractions including the fine particles 
like clay and oxidic minerals. In general, soils high in clay-sized minerals tend to 
retain a higher concentration of elements than coarse-textured soils, which is attrib-
uted to the higher surface area and metal binding sites of the clay-sized fraction. The 
importance of clays in the retention of metals was experimentally proved by several 
researchers. For example, Andersson (1979) demonstrated the strong adsorption 
affinity of Pb and other metals to the clay fractions and ranked adsorption affinity in 
the order of clay > silt > sand. Similarly, for a given total Cd concentration, Cd 
availability was higher in sandy soils than in clay soils (Eriksson 1989). In another 
study, the ammonium acetate extractable Zn, Pb, Cu and Cd was always lower in 
loamy soils than in sandy soils (Scokart et al. 1983).

4.3.1.2	 �Structure
The soil physical structures which may influence metal mobility include the proper-
ties such as fracturing and permeability (Jones and Jarvis 1981). This plays a crucial 
role in maintaining flow velocity into and out of soil aggregates which may be help-
ful to predict diffusion of metal ions within the soils. For example, soils with a 
higher macro porosity and colloids with greater surface charge contributed a higher 
degree of Pb mobility and transport (Karthanasis 2001). While the presence of 
earthworms that tended to increase soil porosity and diffusivity resulted in increased 
plant-available Pb and Zn concentrations (Ireland 1975).

Fig. 4.1  Schematic diagram showing various factors affecting retention of heavy metals in soils
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4.3.1.3	 �Water Content
High solubility of heavy metals is not manifested as significant mobility unless 
there is sufficient water movement in the soil pores. Under arid climatic condition, 
the net water flow through the soil profile is upward and the mobile metals that are 
carried to the surface become concentrated by evaporation. Conversely, under wet 
condition, mobile metals are carried downward as long as there is free drainage. 
However, the mobility of elements is ultimately governed by the individual charac-
ter of the particular elements. Agricultural sites that were subjected to the use of 
arsenate, lead and copper as pesticides many decades ago still retained Pb and Cu in 
the soil surface, although arsenate moved deeper in the soil profile in some cases 
(McBride 1994). Even under continuous leaching, removal of a large portion of 
these less mobile elements by natural process could take over thousands of years 
(McBride 1994).

4.3.2	 �Chemical Factors

4.3.2.1	 �Soil Reaction (pH)
Soil pH is generally considered to be the principal factor controlling elemental 
mobility. It governs elemental availability mainly by three ways: (1) by influencing 
the metal solubility; (2) controlling the precipitation–dissolution reaction, and (3) 
controlling the adsorption process. In general, the  solubility of metals tends to 
increase at lower soil pH and decrease at higher pH values (Chuan et al. 1996; Ming 
et al. 2016). For metal cations, high pH would favor adsorption and precipitation as 
oxides, hydroxides and carbonates (Park et  al. 2011a). Generally, in acidic pH, 
adsorption reaction becomes the important process in controlling elemental concen-
tration in soil solution, whilst precipitation reaction takes the lead under alkaline 
conditions. Increasing solution pH tends to increase in the net negative charge of 
soil colloids and thus increases affinity of soils for metal cations (Naidu et al. 1998; 
Wu et al. 2003). The correlation between metal adsorption and pH is partly due to 
the competition of H+ (and Al3+) ions for binding sites at low pH leading to decreased 
metal adsorption (Basta and Tabatabai 1992).

4.3.2.2	 �Redox Condition
Soil redox potential is also crucial in controlling mobility of elements. Reduction–
oxidation (redox) reaction is a process that involves flow of electrons from a reduc-
ing agent to an oxidizing agent. Redox reactions are governed by the free electron 
activity (pE) in soil solution, also expressed as Eh, the redox potential (Sposito 
1983). High redox potential is recorded in well-aerated dry soils, whilst soils prone 
to waterlogging and high in organic matter content tend to have low Eh values. 
Some elements become more soluble and mobile in one oxidation state than another 
(e.g., Mn, Cr, As and Se) (Sarkar et al. 2012, 2013b). Transition metals (e.g., Fe, 
Mn) could facilitate the electron transfer reactions in the presence of organic acids 
and clay minerals to carry out reduction of metalloids (e.g., Cr) (Sarkar et al. 2013b). 
The elements that are classified as chalcophiles (e.g., Cu, Hg, Zn, Cd, As, Se and Pb) 
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might form sulfide minerals in reducing environments which are insoluble in nature. 
The solubility of Pb, Cd and Zn could increase under reduced soil environment due 
to possible dissolution of Fe–Mn oxyhydroxides under reducing environments 
(McBride 1994). Under reducing environments Hg could form volatile organomer-
cury compounds which might reduce soil bioavailability apparently.

4.3.2.3	 �Clay Content and Type
Heavy metals are less mobile in soils where a large quantity of binding sites for 
adsorption is available. Clay particles have surface functional groups that tend to 
adsorb heavy metal ions and make it immobile in nature. As described earlier, heavy 
metal adsorption can be described in two basic processes: nonspecific adsorption or 
ion exchange reaction and chemisorbed inner-sphere complex. Most phyllosilicate 
clay minerals such as vermiculite and montmorillonite carry permanent negative 
charge due to isomorphous substitution of cations within their mineral structure. A 
large portion of the metal binding capacity are due to the permanent and/or pH-
independent charge. Further, cation adsorption by expandable layer silicates might 
occur largely in the inter-layer surfaces compared to the planar surfaces. However, 
penetration of water and metal cations between the layers of non-expandable phyl-
losilicates (e.g., kaolinite and serpentine) is difficult due to their low cation exchange 
capacity (Bhattacharyya and Gupta 2008).

4.3.2.4	 �Oxidic Material Content
Oxides and hydroxides of Fe and Mn occur in association with clay minerals as 
coatings on the phyllosilicates and also as crystals or free gels. Oxides concentra-
tions are usually low under reducing conditions; therefore, influence of oxidic mate-
rials in controlling metal solubility is likely to be important under oxidizing 
environments. Hydroxides of Mn and Fe may reduce heavy metal ion concentration 
by both surface adsorption and precipitation reaction (Chuan et al. 1996). Surface 
adsorption on oxidic minerals followed by diffusion of metal ions into the small 
pores of mineral lattice structure might also contribute in elemental retention in 
soils (Backes et al. 1995). Preferential adsorptions of metals by different oxides are 
governed by the type of adsorbing surfaces and also by type of elements. For exam-
ple, the preferential order of specific adsorption by hydrous oxides follows the order 
of Pb > Cu >> Zn > Cd. Oxides of Mn particularly have a strong affinity for Pb 
adsorption as compared to Cd. Further, Zn and Cu are probably adsorbed with equal 
affinity by Mn- and Fe-oxides. When multiple metals are present in the soil solu-
tions, they might impart competition to each other for the active surfaces on clay 
minerals, and consequently one metal could become more mobile than the other 
(Ming et al. 2016).

4.3.2.5	 �Anions
Concentration of anions in the soil solution also controls the heavy metal solubility 
in soil. It is well established that various inorganic and organic anions form com-
plexes with heavy metals and thus influences the metal solubility and subsequent 
mobility in soil. Precipitation of stable metal complex is governed by the type of 
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anions present in the soil solution. For example, the mobility of Pb ions reduced in 
the presence of sulfate and phosphate anions due to the formation of sparingly sol-
uble salts between Pb and these anions (Park et al. 2011a).

4.3.3	 �Biological Factors

4.3.3.1	 �Organic Matter
Organic matter affects the physical, chemical and biological conditions of soils. 
Decomposition of plant and animal residues leads to accumulation of organic mat-
ter in soils. Soil organic matter is composed of various functionally active com-
pounds such as humic acid, fulvic acid and humin which are typically associated 
with soil inorganic colloids such as clay minerals. Organic matter reacts with heavy 
metals mainly by two major processes, including complexation or inner-sphere 
mechanism and adsorption or ion exchange reaction (Evans 1989). The active func-
tional groups of organic matter are the negatively charged carboxyl, phenolic and 
amino groups that are involved in cation-binding reaction. These functional groups 
increase in number with the increase in humification processes. The increase in pH 
tends to increase in ionization of functional groups and organo-metal complexes 
thus become stable at higher pH values (Krishnamurti et al. 1997). There were also 
evidences where organic matter formed soluble organo-mineral complexes espe-
cially when organic component was dominated by the  fulvic acid fraction 
(Temminghoff et al. 1997).

4.3.3.2	 �Microbial Activity
Microorganisms are considered to be the most important component controlling the 
biological activity in soils and influence the nutrient recycling in the system. Various 
functions are served by microbial transformation of metals. Generally, microbial 
transformation of metals is classified into two main categories: redox transforma-
tion of inorganic forms and transformations from inorganic to organic form, and 
vice versa (Bolan et al. 2013). Through oxidation of Mn, Fe, As and S, microorgan-
isms can obtain energy. On the other hand, through dissimilatory reduction pro-
cesses they can utilize metals as a terminal electron acceptor for anaerobic 
respiration. Soil microorganisms might also immobilize heavy metals by aiding the 
precipitation of hydrated ferric oxides and sulfides and also by exudation of metal 
complexing mucopolysaccharides (Park et  al. 2011b). Bacterial cell walls may 
adsorb heavy metals from soil solutions due to the presence of surface functional 
groups (Mullen et al. 1989). Sometimes microorganisms might enhance metal solu-
bility by the acidification of the soil (Ernst 1996).

4.3.3.3	 �Plant Root Activity
Plant root also plays an  important role in controlling the metal bioavailability 
(Krishnamurti et  al. 1997; Ernst 1996). The exudation of acidic chemicals (e.g., 
H2CO3) lowers the rhizospheric pH and hence increases metal bioavailability. Plant 
roots are also known to release chelating organic molecules that tend to solubilize 
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metal cations from its insoluble forms, which results in greater bioavailability of 
metals in the solution. Further, symbiotic association of fungi with plant roots might 
facilitate metal solubilization over a large soil area.

4.3.4	 �Climatic Factors

Heavy metal uptake by plant roots was found to be positively correlated with tem-
perature (Miller and Friedland 1994). This relationship was attributed to the increase 
rate of organic matter decomposition at higher temperature, which increased the 
mobilization of organo-metal complexes. Moreover, with an increase in tempera-
ture, the metal activity in the soil solutions and in plant roots might increase the 
absorption rate. Further, high evapo-transpiration rate at higher temperature also 
might contribute to an increased uptake of metals by plants.

4.4	 �Stabilization/Immobilization of Heavy Metals in Soils

The key mechanisms of immobilization of heavy metals in soils are adsorption, 
surface complexation, precipitation and ion exchange (Fig. 4.2). These are achieved 
by applying various amendments to the contaminated soils (Table 4.1). One of the 
most effective physico-chemical processes controlling the behavior and bioavail-
ability of heavy metals is adsorption (Wan Ngah and Hanafiah 2008). A charged 
solute (ions) can get attached to the charged soil surface due to electrostatic interac-
tion (Bolan et al. 2003). This strategy of immobilization involves the addition of 
adsorbents (e.g., clay minerals, zeolites, fly ash, red mud and biochar) into the con-
taminated soil (Wuana and Okieimen 2011; Sarkar et  al. 2012; Antoniadis et  al. 
2012; Taghipour and Jalali 2015; Usman et al. 2005; Zhang et al. 2016). The adsor-
bent can also provide surface complexation reaction. Through this reaction metals 
are redistributed from solution phase to the solid phase and reduce their bioavail-
ability in the environment (Bolan and Duraisamy 2003). In this method, functional 
groups like hydroxyl, carboxyl, amino and phenoxyl on the surface of organic mat-
ter or clay minerals react with heavy metals and produce surface complexes (Harter 
and Naidu 1995). These complexes are of two types: (1) inner-sphere complexes, in 
which no molecule of the solvent is interposed between surface functional groups 
and ions, and (2) outer-sphere complexes, in which at least one molecule of the 
solvent comes between the surface functional groups and ion (Alloway 1995; Bolan 
et  al. 2014). The outer-sphere complexes are less stable than inner-sphere com-
plexes. Precipitation of heavy metals is another way to reduce metal bioavailability 
in soils. Precipitation can be achieved by adding various binding agents (e.g., 
cement, biochar, fly ash, lime, zeolite, manure, compost, chitosan  and sewage 
sludge) (Bolan et al. 2014; Ling et al. 2008; Wuana and Okieimen 2011; Xi et al. 
2014). Precipitation of hydroxides or sulfides within the solid matrix is one of the 
major mechanisms by which metals can be immobilized (Fu and Wang 2011). 
Hydroxide precipitation is relatively effective in the pH range of 8–11 (Huisman 
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et  al. 2006). Ion exchange is another way of remediating heavy metals in soils 
(Dabrowski et al. 2004). In this method, metal cations are replaced by surrounding 
phenolic groups, finally forming a chelate. The ion exchange agent could be natu-
rally occurring inorganic zeolites or synthetically produced organic resins (Vazquez 
et al. 1994). However, this is a reversible process. Depending on the type of func-
tional groups of exchanging ions, ion exchanger can be strongly acidic (sulfonate), 
weakly acidic (carboxylate), strongly basic (quaternary ammonium) and weakly 
basic (tertiary and secondary amines) (Hubicki and Kołodyńska 2012). Remediation 

Fig. 4.2  Schematic diagram representing different immobilization/stabilization processes of 
heavy metals in soil

Table 4.1  Soil amendments for heavy metal immobilization

Materials Sources Heavy metal immobilized

Lime Lime factory Cd, Cu, Ni, Pb, Zn

Phosphate salt Fertilizer plant Pb, Zn, Cu, Cd

Hydroxyapatite Mining of phosphate rock Zn, Pb, Cu, Cd

Fly ash Thermal power plant Cd, Pb, Cu, Zn, Cr

Slag Thermal power plant Cd, Pb, Zn, Cr

Red mud Aluminum industry Zn, Cu, Cd

Clay minerals Mining industry Cd, Pb, Cu, Zn, Cr, As

Zeolites Mining industry Zn, Cd

Fe/Mn oxides Oxidic minerals Cd, Pb, Cu, Zn,
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of heavy metal contaminated soils with various organic and inorganic amendments 
has attracted attention due to the method’s low cost and environmental benefits.

4.5	 �Biological Quality of Metal Contaminated Soils

Metals can impose highly toxic effect on the native microorganisms in soils. The 
microorganisms also need metal ions at very low concentration for their nutrition. 
However, an excess amount of these essential metals can be detrimental for their 
cellular functions (Lemire et al. 2013). In a soil microhabitat, the degree of metal 
toxicity to microorganisms depends primarily on the types of metals, their specia-
tions and the microorganisms themselves (Giller et al. 1998). A generalized toxicity 
profile of heavy metals represents that microorganisms (e.g., algae, bacteria, fungi, 
actinomycetes and protozoa) are more vulnerable to metal toxicity than the macro-
biota (e.g.,  nematode and earthworm) (Fig. 4.3) (Vig et  al. 2003). This chapter 
mainly emphasizes on the microorganisms due to their major role in the dynamics 
of soil biogeochemical processes in agricultural and environmental remediation 
perspective.

The heterogeneity of soil largely controls whether the toxicity of metals is miti-
gated or not. As described earlier, numerous factors including soil pH, organic mat-
ter and mineralogical composition are involved. Clay minerals and some of their 
modified products are efficient adsorbents of toxic metals in soils. This reduces 
metal bioavailability to the microorganisms and saves them from toxicity (Biswas 
et al. 2015; Mandal et al. 2016). In soils, the microorganisms often tend to nest with 
or in the vicinity of clay minerals and form micro-aggregates or biofilms (Almås 
et al. 2005; Biswas et al. 2017; Giller et al. 2009). Therefore, the application of clay 
minerals (as amendments) can be an efficient supplement in soil microsites to pro-
tect the microbial cells from toxic metals.

However, the efficiency of a clay-based adsorption technique mostly lies on the 
properties of the clay mineral for a target toxic metal. Álvarez-Ayuso et al. (2003) 

Fig. 4.3  A generalized schematic presentation of different level of toxicity of metals on various 
soil biota (adapted and modified from Vig et al. 2003)

S. Sarkar et al.



99

reported that a 4% palygorskite amendment in a mining soil (pH = 5.4) immobilized 
92% of the mobile (soluble and exchangeable) Pb, 77% of Cu, 76% of Zn and 48% 
of Cd. Several other clay minerals and zeolite were also used as the metal-
immobilizer in soil; however, how the addition of clay minerals into soil would 
impact the microbial community and thus the overall microbial quality remained 
inconclusive. It was found that the toxicity of Cu (in terms of substrate-induced 
nitrification and substrate-induced respiration) could not be explained by the soil 
solution metal concentrations or exchangeable metal concentrations, but a signifi-
cant relationship was found between the EC50 values for substrate-induced respira-
tion and percent clay content (Broos et al. 2007). Therefore, it is highly important 
to conduct field scale studies in the toxicological perspective for the quality of soil 
biota while a raw and modified clay products is used as the metal adsorbent.

4.6	 �Conclusions

The fate and behavior of heavy metals and metalloids in the soil environment are 
governed by numerous physical, chemical and biological factors. The key physico-
chemical properties that control heavy metal retention in soils are imparted by the 
clay minerals and oxidic particles. Additionally, organic colloidal particles also play 
an important role. The mineral and colloidal particles have numerous active sites on 
their surfaces which can retain heavy metals through adsorption, complexation, pre-
cipitation and ion exchange. Due to these properties mineral amendments can be 
applied to contaminated soils alone or in combination with another organic amend-
ment for immobilizing heavy metals. This can be one of the cost effective strategies 
for heavy metal remediation in contaminated soils. However, further research is 
needed to investigate the bio-physico-chemical interactions of heavy metals where 
microorganisms also play a key role in the biogeochemical cycle of elements in 
soils.
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