
An Efficient Benchmark Generator for Dynamic
Optimization Problems

Changhe Li(B)

Hubei Key Laboratory of Intelligent Geo-Information Processing,
China University of Geosciences, Wuhan 430074, China

changhe.lw@gmail.com

Abstract. A number of benchmark generators have been proposed
for dynamic single objective optimization problems. The moving peaks
benchmark and the GDBG benchmark are widely used to test the per-
formance of an evolutionary algorithm. The two benchmarks construct a
fitness landscape with a number of peaks that can change heights, widths,
and locations. The two benchmarks are simple and easy to understand.
However, they exist two major issues: (1) the time complexity is high for
evaluating a solution and (2) peaks may become invisible when changes
occur. To address the two issues, this paper proposes an efficient genera-
tor with enriched features. The generator applies the k-d tree to partition
the search space and sets a simple unimodal function in each sub-space.
The properties of the proposed benchmark are discussed and verified by
a set of evolutionary algorithms.

Keywords: Dynamic optimization problem · Generator

1 Introduction

In recent years, there has been a growing interest in developing evolutionary algo-
rithms in dynamic environments. To comprehensively evaluate the performance
of an evolutionary algorithm (EA), an important task is to develop a good bench-
mark generator. Over the years, a number of benchmark generators for dynamic
optimization problems (DOPs) have been proposed. Generally speaking, these
benchmark generators can be classified to the following three classes in terms of
the way to construct problems. Note that, this paper focuses on only dynamic
continuous unconstrained single objective optimization problems.

The first class of generators switch the environment between several station-
ary problems or several states of a problem. Early generators normally belong
to this class. A generator based on two static landscapes A and B was pro-
posed in [7]. Changes can occur in three ways: (1) linear translation of peaks
in landscape A; (2) only the global optimum randomly moves in landscape A;
(3) switching landscapes between A and B. In [15], the environment oscillates
among a set of fixed landscapes.

Like the first class of generators, the second class of generators also consist of
a number of basic functions. However, the environment normally takes the form
c© Springer Nature Singapore Pte Ltd. 2016
M. Gong et al. (Eds.): BIC-TA 2016, Part II, CCIS 682, pp. 60–72, 2016.
DOI: 10.1007/978-981-10-3614-9 8

An Efficient Benchmark Generator for Dynamic Optimization Problems 61

f(x) = max{gi(x)}, i = 1, . . . , N to construct the fitness landscape and it does
not switch among the basic functions. The environmental changes are caused
by the changes of every g(x). Many generators fall into this class. The moving
peaks benchmark (MPB) [15] is one of the widely used generators. The MPB
consist of a number of peaks. Each peak is constructed by a simple unimodal
function which can change in height, width, and location. The DF1 generator
[15] and the rotation dynamic benchmark generator (RDBG) [10] use a similar
way to construct the fitness landscape. The DF1 generator uses the logistic
function to change the height, width and location of a peak, while the RDBG
rotates the fitness landscape to generate changes. A new generator based on
the framework of the DF1 was proposed in [20], where the basic function used
to construct a peak in DF1 was replaced by two traditional functions in [20].
A fitness landscape consists of a number Gaussain peaks was introduced in
[8] where a peak changes in its center, amplitude, and width. A challenging
dynamic landscape was proposed in [10], called composition dynamic benchmark
generator (CDBG), where a set of composition functions are shifted in the fitness
landscape. The CDBG introduces several change types, e.g., small step changes,
large step changes, random changes, chaotic changes, recurrent changes and noisy
environments.

The third class of generators divide the search space into subspaces and set
simple unimodal functions in each subspace. A disjoint generator was proposed in
[21], where each dimension of the search space is evenly divided into w segments.
The total number of subspaces is wD (D denotes the number of dimensions).
In each subspace, a peak function is defined where its global optimum is at the
center of the subspace.

The first and the third classes of generators lack of the ability of manipulating
a single peak. In the literature of EAs for DOPs, the second class of generators
are mostly used for experimental studies. This class of generators are flexible
and easy to manipulate the characteristics of a change for every peak. However,
it has two disadvantages. Firstly, to evaluation a solution x, we need to compute
the objective value of x for each basic function (g(x)) in O(D) and then find out
the maximum value as the fitness value of x. Therefore, the time complexity of
evaluating a solution is at least O(ND). Secondly, a peak may become invisible
when a change occurs, and hence the total number of peaks will be less than the
predefined value.

Besides the way of the construction of the fitness landscape, researchers
have also been interested in developing characteristics of changes to simulate
real-world applications, such as the predictability–whether changes are pre-
dictable in a regular pattern, time-linkage–whether future changes depend on
the current/previous solutions found by optimizers [4,17], detectability–whether
changes are detectable, severity– determines the magnitude of a change, and
change factors (objective functions, the number of dimensions, constraints,
domain of the search space, and function parameters).

A good benchmark generator should have the following characteristics [16]:
(1) Flexibility, the generator should be configurable regarding different aspects,

62 C. Li

e.g., the number of peaks, change severity, and change features, etc.; (2) Sim-
plicity and efficiency, the generator should be simple to implement, analyze, and
computationally efficient; (3) The generator should be able to resemble real-
world problems to some extent. Most real-world problems are very hard and
complex, with nonlinearities and discontinuities [14].

Based on the above considerations, this paper aims to propose a novel gener-
ator, which is able to (1) address the two issues mentioned above of the current
mainly used generators and (2) provide enriched characteristics of changes. To
achieve the aims, this paper uses the idea of space partition and chooses a peak
function for every sub-space from a predefined function set. A new benchmark
generator, called Free Peaks (FPs), is proposed. The k-d tree [1] is used to par-
tition the solution space. Each peak in a sub-space can be freely manipulated
regarding its height, peak location, shape, and basin of attraction. A set of char-
acteristics of changes are also introduced in this paper.

The rest of this paper is organized as follows. Section 2 introduce the con-
struction of the FPs in detail, including the partition process of the k-d tree,
a set of basic peak functions, and the setup of subspaces. Section 3 gives the
construction of different types of changes. Section 4 presents the results of the
experimental studies. Finally, conclusions are given in Sect. 5.

2 Free Peaks

The section introduces the basic elements of the free peaks (FPs) benchmark
generator. Without loss of generality, maximization optimization problems are
assumed in this paper. Before the introduction of the generator, we need to
prepare a set of simple shape functions.

2.1 One Peak Function

In this paper, eight simple symmetrical unimodal functions are defined as follows:

s1(x) = h − d(x), (1a)
s2(x) = h · exp(−d(x)), (1b)

s3(x) = h −
√

h · d(x), (1c)
s4(x) = h/(1 + d(x)), (1d)

s5(x) = h − d2(x)/h, (1e)

s6(x) = h − exp (2
√

d(x)/
√

D) + 1, (1f)

s7(x) =

{
h ∗ cos(π · d(x)/r) d(x) ≤ r

−h − d(x) + r d(x) > r
, (1g)

s8(x) =

{h∗(cos(mπ·d(x)(1−1/r))−ηmd(x)/r)√
d(x)+1

d(x) ≤ r

−h(η(m − 1) + 1)/
√

r + 1 d(x) > r
(1h)

An Efficient Benchmark Generator for Dynamic Optimization Problems 63

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100
s(
x)

d(x)

s1
s2

s3
s4

s5
s6

s7
s8

Fig. 1. Shapes of the eight functions with D = 1, where h = 100, r = 50, η = 5.5, and
m = 3 (objective values of all functions are standardized within [0, 100].

where d(x) =
√∑D

i (xi − Xi)2 is the Euclidean distance from x to the peak,
which is located at a user-defined location Xsv with a height of h > 0 (v =

1, . . . , 8), r is a parameter of value in [0,
√∑D

i (usv
i − lsv

i)2] (usv
i = 100, lsv

i =
−100), and m and η determine the number of segments and the gap between
two neighbor segments of s8, respectively. The default values of Xsv=0, h =
100, r = 50,m = 3 and η = 5.5 are used in this paper.

Figure 1 shows the shapes of the eight functions. Among these functions, s1 is
a linear function, s2-s4 are convex functions, s5 and s6 are concave functions, s7
is partially convex, partially concave, and partially linear and s8 is a disconnected
function. Each function has a single peak located at X and is monotonic from
the peak.

2.2 Partition the Search Space

The k -d tree [1] is a binary tree where each node is a k -dimensional point. Every
non-leaf node can be thought of as implicitly generating a splitting hyperplane
that divides the space into two parts. Points to the left of this hyperplane are
represented by the left subtree of that node and points to the right of the hyper-
plane are represented by the right subtree. Every leaf node denotes a sub-space

Fig. 2. An example of the k-d tree for the division of a 2-D space with ranges ([0:10],
[0:10]) by a set of six points.

64 C. Li

Algorithm 1. kdtree(list, depth)
1: axis ← depth%D;
2: Select the median by axis from list
3: if ‖list‖=1 then � A leaf node
4: Create a sub-space;
5: else
6: Create a node node with data of the median point;
7: node.left ← kdtree(points in list before the median, depth+1);
8: node.right← kdtree(points in list after the median, depth+1);
9: return node;

10: end if

Algorithm 2. inquire(x, node,depth)
1: i ← depth%D;
2: if node is a leaf node then return the sub-space; end if
3: if xi < nodei then
4: inquire(x, node.left,depth+1);
5: else
6: inquire(x, node.right,depth+1);
7: end if

of the solution space. Fig. 2 shows a k-d tree (Fig. 2-left) for the decomposition
of a 2-D solution space (Fig. 2-right) with six points.

To construct a balanced tree, the canonical method [1] is used, where a
median point is selected with the cutting axis. Algorithms 1 and 2 present the
space partition process and the inquiry of a sub-space, respectively. In this paper,
the solution space is divided by default into N subspaces with random sizes

2.3 Setup of the Sub-space

A function f(x) constructed based on the FPs can be defined by

f(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

fb1 (x),x ∈ [lb1 ,ub1]

fb2 (x),x ∈ [lb2 ,ub2]

· · · · · · · · · · · · · · · · · ·
fbN (x),x ∈ [lbN ,ubN]

(2)

where each subspace bk contains a basic function f bk associated with a shape
function sv(k = 1, 2, . . . N, v = 1, 2, . . . , 8). The whole search space of f([l,u]) is
divided into N subspaces: [lb1 ,ub1], . . . , [lbN ,ubN], i.e., [l,u]={[lbk ,ubk], . . .}, k =
1, 2, . . . N . To compute the objective of x (f(x)), we need to find the subspace
bk where x is (i.e., lbk ≤ x < ubk) by Algorithm 2, then map x to a solution xsv

in the search space of sv associated with f bk in subspace bk by

map(xi) = x
sv
i = l

sv
i + (u

sv
i − l

sv
i)

xi − l
bk
i

u
bk
i − l

bk
i

, i = 1, 2, . . . D, (3)

An Efficient Benchmark Generator for Dynamic Optimization Problems 65

where the mapping is linear from a solution in the subspace bk of f([lbk ,ubk]) to
a solution in the search space of sv ([lsv ,usv]). Eventually, we set the objective
f(x) by

f(x) = f
bk (x) = sv(x

sv). (4)

2.4 Time Complexity

According to the above description of the FPs, to evaluate a solution x we need
to perform the following three steps of procedures: (1) find out the sub-space (bk)
where x is; (2) map x to a location (xsv) in the search space of f bk ; (3) compute
the objective of (xsv) by one of the eight shape functions. Identifying a solution
in which sub-space has a time complexity of O(log(N)) by Algorithm 2. Both the
second and the third steps run in O(D). Therefore, the total time complexity of
evaluating a solution in the FPs is O(log(N)) + 2O(D).

3 Constructing Dynamic Optimization Problems

This section introduces two types of changes: physical changes and non-physical
changes. Physical changes are changes, which can be observed, including changes
in peak location, peak shape, peak height, the size of the basin of attraction,
and the number of peaks. Non-physical changes are characteristics of physi-
cal changes, including detectability, predictability, time-linkage, and noise. The
physical changes are listed as follows.

3.1 The Change in a Peak’s Location Within the Peak’s Basin

To change a peak’s location (Xbk(t)) within its basin bk at time t, we change
its mapping location Xsv (t) (see Eq. (3)) in the search space of the associated
component function sv by

Xsv (t + 1) = (Xsv (t) − Xsv (t − 1))λ + ν(1 − λ)N(0, σsv), (5)

where ν is a normalized vector with a random direction; N(0, σsv) returns a
random number of the normal distribution with mean 0 and variance σsv (the
shift severity with a default value of (1); λ ∈ [0, 1] is a parameter to determine
the correlation between the direction of the current movement and the previous
movement. λ = 1 indicates the direction of a peak’s movement is predictable,
and λ = 0 indicates the movement of a peak is completely in a random direction.
The ith dimension of Xsv (t) will be re-mapped to a valid location if it moves
out of the range of the component function as follows:

X
sv
i =

⎧
⎪⎨

⎪⎩

lsvi + (usv
i − lsvi)

(lsv
i

−X
sv
i

)

(uisv−X
sv
i

)
Xsv

i < lsvi ,

lsvi +
(usv

i
−l

sv
i

)2

(Xsv
i

−l
sv
i

)
Xsv

i > usv
i

(6)

66 C. Li

3.2 The Change in the Size of a Peak’s Basin of Attraction

To vary the size of the basin of attraction of a peak, we just need to change the
value of the cutting hyper-plane constructed with the dimension c of a division
point dp (point dp should be a parent node of a leaf node in the kd-tree, e.g.,
node (2,3) in Fig. 2) as follows.

dpc = dpc + R(−σc, σc)(b
u
k+1,c − b

l
k,c), (7)

where σc = 0.01 is the severity, bl
k,c and bu

k+1,c are the upper boundary and
lower boundary of two neighbour subspaces bk and bk+1, respectively, which are
generated by cutting the cth dimension of the hyper-rectangle for the generation
of sub-spaces bk and bk+1; Note that, two neighbour subspaces will change if we
change the value of a cutting dimension.

3.3 The Change in a Peak’s Height

The height of a peak at time t is changed as follows:

Hi(t + 1) =

{
Hi(t) − δhi

Hi(t + 1) < Hmin||Hi(t + 1) > Hmax,

Hi(t) + δhi
Otherwise,

(8)

where δhi
= N(0, σhi

), σhi
is the height severity of peak pi, σhi

is set to a random
value in [0,7]; Hmin and Hmax are the minimum and maximum heights, which
are set to 0 and 100, respectively, in this paper.

3.4 The Change in the Number of Peaks

The number of peaks follows a recurrent change as follows:

N(t + 1) =

{
σN (N(0) + t)%T + Nmin (N(0) + t)%T = 0,

σN (T − (N(0) + t)%T) + Nmin Otherwise,
(9)

where N(t) is the number of peaks at time t (N(0) is the initial number of peaks);
σN = 2 is a change step; T = 25 is the time period; Nmin = 1 is the minimum
number of peaks. If the number of peaks increases, σN random division points
are added to the division set; Otherwise, σN points are randomly removed from
the division set.

In addition to the predictable change in a peak’s location and the recurrent
change in the number of peaks, three other non-physical features are introduced:
a time-linkage change, a partial change, and noisy environments. In the time-
linkage change, a peak changes only when it is found by an optimizer. For the
partial change, a part of peaks change when an environmental change occurs. In
the noisy environment, noise is added to a solution when it is to be evaluated by

xi = xi + σnoiBRbkN(0, 1), (10)

where i = 1, . . . , D, bk = inquire(x), σnoi = 0.01 is the noise severity; BRbk is
the basin ratio of the subspace bk where x is located.

Table 2 summarizes the feature comparison between FPs and other four pop-
ular benchmarks. From the table, the FPs provides many more features than the
other four benchmarks.

An Efficient Benchmark Generator for Dynamic Optimization Problems 67

Table 1. Default settings for the FPs, where u means that the problem changes every
u objective evaluations, a peak is found if the distances in objective space and decision
space are less than εo and εs, respectively.

Parameter Value Parameter Value

Number of peaks (N) 10 Number of dimensions (D) 5

Change frequency (u) 5000 Correlation coefficient (λ) 0

Basin change No Ratio of changing peaks (rc) 1.0

Time-linkage change No Noisy environments No

Height severity(σh) [0,7] Basin severity (σc) 0.01

Height range (0,100] Domain range [−100, 100]

Initial peak shape Random Initial peak height 100

Initial peak location Sub-space center Number of steps (σN) 2

Shift severity (σsv) 1.0 Noise severity (σnoi) 0.01

Objective threshold (εo) 0.01 Distance threshold (εs) 0.1

Table 2. Feature comparison with peer benchmarks

Physical change/
Non-physical change

MPB [5] DF1 [15] RDBG [10] CDBG [10] FPs

Peak location � � � � �
Peak height � � � � �
Peak width � � � � �
Movement within
the basin

× × × × �

Manageable basin
size

× × × × �

Number of peaks × × � × �
Recurrent × × � � �
Partial × × � × �
Time-linkage × × × × �
Noise × × � × �
Predictable � × × × �

4 Experimental Studies

In this section, two groups of experiments are carried out. The first group of exper-
iments aim to investigate the performance of the FPs and the second group of
experiments aim to compare the performance of a set of existing EAs on the FPs.

68 C. Li

4.1 Comparison of Computing Efficiency

In this subsection, an experiment is carried out to compare the performance of
the FPs with two peer benchmark generators (the MPB [5] and the rotation DBG
[10]) in terms of two different aspects. The first comparison is the computational
efficiency. Figure 3 shows the time cost on evaluating one million random points
for the three benchmarks in different scenarios. The left graph of Fig. 3 shows the
comparison on problems with different numbers of peaks with 100 dimensions
and the right graph shows the comparison on problems with different numbers
of dimensions with 1,000 peaks. From the results, it can be seen that the time
spent with the FPs is significantly smaller than the other two benchmarks. In
both cases, the time spent with the FPs is almost constant as the number of
dimensions/peaks increases in comparison with the time spent with the other
two benchmarks.

 0

 100000

 200000

 300000

 400000

 500000

 600000

10 50 100 500 1000

Ti
m

e
(m

s)

The number of peaks (D=100)

 Free peaks
 Moving peaks

 Rotation DBG

 0

 100000

 200000

 300000

 400000

 500000

 600000

5 10 20 50 100

Ti
m

e
(m

s)

The number of dimensions (N=1000)

 Free peaks
 Moving peaks

 Rotation DBG

Fig. 3. Time cost of three benchmarks for evaluating one million random points in
different scenarios.

The second comparison is the number of invisible peaks. Table 3 shows the
average number of invisible peaks for the three benchmarks over 1,000 changes.
From the results, the issue of the rotation DBG is more serious than the MPB
in all test cases. Moreover, the number of invisible peaks will increase as the
number of peaks increases for the MPB and the rotation DBG. This is because,
in the two peer benchmarks a peak can be hidden by a higher peak with a
broader basin of attraction. This issue does not exist in the FPs as each peak
takes a different subspace.

4.2 The Performance of Existing Algorithms

In this subsection, 11 peer algorithms are selected. They are mQSO [3], SAMO
[2], SPSO [18], AMSO [12], CPSO [22], CPSOR [11], FTMPSO [24], DynDE
[13], DynPopDE [19], mNAFSA [23], and AMP/PSO [9]. For parameters of
all the peer algorithms, default values suggested in their proposals are used.
Note that, the parameter settings for these algorithms may be not the optimal
values. The stopping criterion is 100 changes. All the results are averaged over

An Efficient Benchmark Generator for Dynamic Optimization Problems 69

Table 3. The number of invisible peaks of three benchmarks with D = 5

Problem The number of peaks (N)

10 50 100 500 1000

Free peaks 0 0 0 0 0

Moving peaks [15] 0 0.04 0.124 4.77 18.85

Rotation DBG [10] 0.12 4.12 10.23 90.22 217.24

30 independent runs of an algorithm on each problem. The offline error (EO)
[6] and the best-before-change error (EBBC) are used. The offline error used in
this paper is the average of the best error found every two objective evaluations
and the best-before-change error is the average of the best error achieved at the
fitness evaluation just before a change occurs.

A two-tailed t-test with 58◦ of freedom at a 0.05 level of significance was
conducted for each pair of algorithms on EO and EBBC . The t-test results are
given with the letters “w”, “l”, or “t”, which denote that the performance of an
algorithm is significantly better than, significantly worse than, or statistically
equivalent to its peer algorithms, respectively.

Tables 4, 5 and 6 show the comparison between the chosen algorithms on
the FPs with different numbers of peaks, different changing ratios, and the
time-linkage feature, respectively. From the results, it can be seen that different
features have very different impacts on the performance of a particular algo-
rithm. For example, the partial change feature cause difficulties for algorithms

Table 4. Performance comparison on the FPs with different number of peaks, where
the default settings in Table 1 are used.

N AMP/PSO SAMO DynPopDE SPSO mQSO CPSOR CPSO FTMPSO DynDE AMSO mNAFSA

10

EO 2.62±0.1 3.11±0.081 7.75±1.7 13.2±3.5 2.7±0.075 4.14±0.25 7.53±0.3 3.97±0.13 3.23±0.049 3.36±0.7 10.2±0.97
w,t,l 10,0,0 7,1,2 2,1,7 0,0,10 9,0,1 4,0,6 2,1,7 5,0,5 6,1,3 6,2,2 1,0,9
EBBC 0.426±0.12 1.64±0.12 6.25±1.4 12.2±3.7 1.22±0.11 2.39±0.25 6.26±0.28 2.96±0.088 2.22±0.079 1.95±0.91 7.48±0.87
w,t,l 10,0,0 7,1,2 2,1,7 0,0,10 9,0,1 5,0,5 2,1,7 4,0,6 6,1,3 6,2,2 1,0,9

20

EO 3.04±0.16 3.16±0.11 6.93±1.8 11.8±2.2 3.56±0.81 4.46±0.75 7.37±0.35 3.96±0.082 3.44±0.6 3.88±0.79 9.1±0.82
w,t,l 10,0,0 9,0,1 2,1,7 0,0,10 6,2,2 4,0,6 2,1,7 5,1,4 7,1,2 5,2,3 1,0,9
EBBC 1.2±0.19 2.08±0.13 5.64±1.6 11.3±2.4 2.2±0.75 2.85±0.71 6.3±0.36 3.08±0.06 2.59±0.55 2.8±0.92 6.99±0.8
w,t,l 10,0,0 8,1,1 3,0,7 0,0,10 8,1,1 4,3,3 2,0,8 4,2,4 5,2,3 4,3,3 1,0,9

30

EO 2.08±0.065 2.24±0.08 5.36±1.3 9.9±2.3 3.23±0.77 3.65±0.68 5.23±0.2 2.69±0.084 3.73±0.88 2.57±0.5 8±0.65
w,t,l 10,0,0 9,0,1 2,1,7 0,0,10 6,0,4 4,1,5 2,1,7 7,1,2 4,1,5 7,1,2 1,0,9
EBBC 1.17±0.069 1.65±0.077 4.24±1.2 9.24±2.7 2.28±0.69 2.51±0.66 4.36±0.21 2.03±0.053 3.08±0.84 1.92±0.51 5.83±0.51
w,t,l 10,0,0 9,0,1 2,1,7 0,0,10 5,2,3 5,1,4 2,1,7 6,2,2 4,0,6 7,1,2 1,0,9

50

EO 2.73±0.15 2.8±0.11 4.7±1.2 9.91±1.7 4.16±0.9 4.86±1.2 5.84±0.24 3.42±0.2 5.72±1.3 3.12±0.4 6.49±0.37
w,t,l 9,1,0 9,1,0 4,2,4 0,0,10 5,1,4 4,1,5 2,1,7 7,0,3 2,1,7 8,0,2 1,0,9
EBBC 1.7±0.13 2.1±0.1 3.83±0.97 9.64±1.8 3±0.77 3.52±1.1 4.99±0.23 2.67±0.16 4.88±1.2 2.33±0.39 4.82±0.3
w,t,l 10,0,0 9,0,1 4,1,5 0,0,10 6,0,4 4,1,5 1,1,8 7,0,3 1,2,7 8,0,2 2,1,7

100

EO 2.5±0.16 3±0.25 4.87±1.3 12.5±1.8 9.59±2.2 5.99±1.8 6.14±0.17 4.17±0.5 9.89±2.7 2.96±0.36 7.33±0.67
w,t,l 10,0,0 8,1,1 6,0,4 0,0,10 1,1,8 4,1,5 4,1,5 7,0,3 1,1,8 8,1,1 3,0,7
EBBC 1.66±0.16 2.26±0.24 3.97±1.1 12.3±1.8 8.41±2.2 4.73±1.7 5.26±0.17 2.79±0.34 9.2±2.6 2.18±0.31 5.51±0.59
w,t,l 10,0,0 8,1,1 6,0,4 0,0,10 1,1,8 4,1,5 4,1,5 7,0,3 1,1,8 8,1,1 3,0,7

200

EO 1.94±0.16 2.21±0.22 3.92±2.8 10.3±1.8 8.3±2.2 7.12±1.9 4.56±0.19 3.2±0.3 8.63±2 2.39±0.45 5.9±0.53
w,t,l 10,0,0 8,1,1 5,2,3 0,0,10 1,1,8 3,0,7 5,1,4 6,1,3 1,1,8 8,1,1 4,0,6
EBBC 1.32±0.14 1.6±0.21 3.14±2.5 10.2±1.8 7±2.1 5.82±1.8 3.87±0.2 2.06±0.22 7.9±2 1.83±0.4 4.21±0.51
w,t,l 10,0,0 9,0,1 5,1,4 0,0,10 1,1,8 3,0,7 5,1,4 7,0,3 1,1,8 8,0,2 4,0,6

w-l 119 87 -23 -120 6 -15 -43 31 -29 60 -73

70 C. Li

Table 5. Performance comparison on the FPs with different ratios of the number of
changing peaks, where the default settings in Table 1 are used.

rc AMP/PSO SAMO DynPopDE SPSO mQSO CPSOR CPSO FTMPSO DynDE AMSO mNAFSA

0.1

EO 1.52±0.15 0.496±0.087 11.7±2.5 16.5±5.8 0.398±0.3 2.12±0.25 28.9±5 1.22±0.12 0.872±0.047 1.97±3.8 5.9±1.7
w,t,l 5,1,4 9,1,0 2,0,8 1,0,9 9,1,0 4,1,5 0,0,10 6,1,3 7,1,2 4,4,2 3,0,7
EBBC 0.00983±0.022 0.161±0.094 9.84±2.1 16.4±5.8 0.163±0.3 1.11±0.25 28.7±5.1 0.872±0.12 0.479±0.051 1.5±3.9 4.99±1.6
w,t,l 10,0,0 7,2,1 2,0,8 1,0,9 7,2,1 4,1,5 0,0,10 5,1,4 6,1,3 4,5,1 3,0,7

0.3

EO 1.68±0.13 1.25±0.097 10.9±1.5 11.8±5.1 0.99±0.048 2.86±0.18 21.7±1.9 2.58±0.16 1.83±0.044 2.19±0.77 6.65±1.1
w,t,l 8,0,2 9,0,1 1,1,8 1,1,8 10,0,0 4,0,6 0,0,10 5,0,5 7,0,3 6,0,4 3,0,7
EBBC 0.126±0.077 0.622±0.12 9.05±1.3 11.5±5.1 0.448±0.054 1.79±0.19 21.2±1.9 1.96±0.12 1.24±0.054 1.46±0.85 5.39±1.1
w,t,l 10,0,0 8,0,2 2,0,8 1,0,9 9,0,1 5,0,5 0,0,10 4,0,6 6,1,3 6,1,3 3,0,7

0.5

EO 2.23±0.24 1.86±0.16 7.9±0.85 9.24±1.6 1.57±0.094 3.48±0.27 15.5±1.3 3.59±0.077 2.61±0.054 3.13±0.93 8.71±0.86
w,t,l 8,0,2 9,0,1 3,0,7 1,1,8 10,0,0 5,1,4 0,0,10 4,0,6 7,0,3 5,1,4 1,1,8
EBBC 0.482±0.2 1.09±0.19 6.32±0.81 8.5±1.7 0.786±0.1 2.39±0.29 14.8±1.3 2.83±0.076 1.97±0.068 2.3±0.99 6.93±0.79
w,t,l 10,0,0 8,0,2 3,0,7 1,0,9 9,0,1 5,1,4 0,0,10 4,0,6 6,1,3 5,2,3 2,0,8

0.7

EO 2.12±0.083 2.41±0.13 8.89±1.3 12.1±1.9 1.96±0.15 3.59±0.17 11.5±0.7 3.79±0.08 2.73±0.059 2.91±0.74 8.68±0.96
w,t,l 9,0,1 8,0,2 2,1,7 0,1,9 10,0,0 5,0,5 0,1,9 4,0,6 6,1,3 6,1,3 2,1,7
EBBC 0.287±0.1 1.3±0.15 7.34±1.4 11±2 0.918±0.15 2.26±0.19 10.5±0.75 2.75±0.097 1.94±0.065 1.82±0.78 6.74±0.87
w,t,l 10,0,0 8,0,2 2,0,8 0,1,9 9,0,1 5,0,5 0,1,9 4,0,6 6,1,3 6,1,3 3,0,7

0.9

EO 2.57±0.11 2.73±0.11 7.82±2.1 13.8±2.4 2.31±0.079 3.64±0.19 9.24±0.65 3.84±0.15 2.98±0.053 3.54±1.4 11.1±1.1
w,t,l 9,0,1 8,0,2 3,0,7 0,0,10 10,0,0 5,1,4 2,0,8 4,1,5 7,0,3 4,2,4 1,0,9
EBBC 0.465±0.11 1.55±0.12 6.46±1.9 13.4±2.5 1.09±0.11 2.21±0.22 8.13±0.67 2.79±0.063 2.17±0.078 2.42±1.4 8.63±0.99
w,t,l 10,0,0 8,0,2 3,0,7 0,0,10 9,0,1 5,2,3 2,0,8 4,1,5 5,2,3 4,3,3 1,0,9

1

EO 2.62±0.1 3.11±0.081 7.75±1.7 13.2±3.5 2.7±0.075 4.14±0.25 7.53±0.3 3.97±0.13 3.23±0.049 3.36±0.7 10.2±0.97
w,t,l 10,0,0 7,1,2 2,1,7 0,0,10 9,0,1 4,0,6 2,1,7 5,0,5 6,1,3 6,2,2 1,0,9
EBBC 0.426±0.12 1.64±0.12 6.25±1.4 12.2±3.7 1.22±0.11 2.39±0.25 6.26±0.28 2.96±0.088 2.22±0.079 1.95±0.91 7.48±0.87
w,t,l 10,0,0 7,1,2 2,1,7 0,0,10 9,0,1 5,0,5 2,1,7 4,0,6 6,1,3 6,2,2 1,0,9

w-l 99 77 -62 -104 103 -1 -100 -10 40 28 -70

Table 6. Performance comparison on the FPs with the time-linkage on different num-
bers of peaks, where the default settings in Table 1 are used except the time-linkage
feature.

N AMP/PSO SAMO DynPopDE SPSO mQSO CPSOR CPSO FTMPSO DynDE AMSO mNAFSA

10

EO 2.17±0.41 8.38±5.8 18.2±9.9 4.16±3.4 2.9±0.73 4.65±1.4 26.6±14 4.81±0.86 3.22±0.57 4.21±2.2 2.77±3.6
w,t,l 9,1,0 2,0,8 1,0,9 3,5,2 7,2,1 3,3,4 0,0,10 3,3,4 6,3,1 3,4,3 5,5,0
EBBC 0.246±0.23 6.38±5.7 17±9.9 3.73±3.3 1.35±0.62 2.93±1.3 26.5±14 3.7±0.71 2.27±0.39 2.73±2.3 1.93±3.7
w,t,l 10,0,0 2,0,8 1,0,9 3,4,3 8,1,1 4,3,3 0,0,10 3,1,6 6,2,2 4,4,2 4,5,1

20

EO 3.01±1.3 6.89±4.3 28.4±9 3.1±4.1 11±3.6 5.52±3.1 42.7±17 10.1±2.9 9.23±3.5 5.25±2.7 4.48±1.3
w,t,l 9,1,0 5,2,3 1,0,9 8,2,0 2,2,6 5,3,2 0,0,10 2,2,6 2,2,6 5,3,2 6,3,1
EBBC 1.24±1.3 5.69±4.1 26.5±9.7 2.89±3.9 9.64±3.6 4.01±3 42.7±17 9.16±2.8 8.55±3.4 4.06±2.6 3.25±1.3
w,t,l 10,0,0 5,2,3 1,0,9 6,3,1 2,2,6 5,4,1 0,0,10 2,2,6 2,2,6 5,4,1 6,3,1

30

EO 1.74±0.45 4.68±2.3 13.3±11 5.45±3 3.32±2.2 3.95±2 6.6±7 4.1±2 2.14±1.4 3.68±1.8 6.07±3.8
w,t,l 9,1,0 1,6,3 0,0,10 1,3,6 5,3,2 3,5,2 1,5,4 3,5,2 9,1,0 4,4,2 1,3,6
EBBC 0.514±0.32 3.84±2.2 11.7±10 5.12±2.7 2.38±2.1 2.91±1.9 6.59±7 3.64±1.9 1.75±1.4 2.86±1.6 5.56±3.6
w,t,l 10,0,0 4,3,3 0,0,10 1,2,7 6,3,1 4,4,2 1,2,7 4,3,3 8,1,1 4,4,2 1,2,7

50

EO 2.39±0.74 3.59±1.4 13.8±7 6.28±4 4.34±1.6 3.94±1.3 25.4±22 5.02±1.2 3.16±1 3.55±1.3 6.8±2.4
w,t,l 10,0,0 5,4,1 1,0,9 2,2,6 4,3,3 5,3,2 0,0,10 3,2,5 7,2,1 6,3,1 2,1,7
EBBC 1.06±0.71 3.06±1.3 11.6±6.1 6.12±3.8 3.47±1.6 2.88±1.2 25.4±22 4.67±1.2 2.72±0.97 2.87±1.3 6.22±2.5
w,t,l 10,0,0 5,4,1 1,0,9 2,2,6 5,3,2 5,4,1 0,0,10 3,1,6 6,3,1 5,4,1 2,1,7

100

EO 2.27±0.77 2.38±0.99 13.8±3.2 7.02±2.8 5.61±2.3 3.53±1.3 17.3±14 5.55±1.7 6.21±3 3.5±1.6 6.28±2.3
w,t,l 9,1,0 9,1,0 0,1,9 2,2,6 3,3,4 7,1,2 0,1,9 3,3,4 2,4,4 7,1,2 2,4,4
EBBC 0.948±0.81 1.87±0.95 11.2±2.8 6.9±2.7 4.85±2.2 2.64±1.3 17.3±14 5.35±1.7 5.84±3 2.84±1.6 5.56±2.3
w,t,l 10,0,0 9,0,1 1,0,9 2,1,7 3,3,4 7,1,2 0,0,10 3,3,4 2,4,4 7,1,2 3,3,4

200

EO 3.29±0.91 2.81±0.82 9.29±1.9 4.39±2.3 7.55±1.7 6.78±1.8 24.4±19 6.14±1.2 6.78±1.6 3.38±1.1 2.98±1.1
w,t,l 7,2,1 9,1,0 1,0,9 6,0,4 2,2,6 2,3,5 0,0,10 3,2,5 2,3,5 7,2,1 7,3,0
EBBC 2.44±1 2.37±0.79 6.18±1.5 4.27±2.3 6.86±1.7 6.03±1.7 24.4±19 6.01±1.2 6.42±1.6 2.84±1.1 2.4±1.1
w,t,l 7,3,0 7,3,0 1,4,5 6,0,4 1,3,6 1,4,5 0,0,10 2,3,5 1,4,5 7,3,0 7,3,0

w-l 109 32 -97 -10 6 20 -108 -22 17 45 8

(e.g., CPSO) that need the detection of changes. In this case, changes are hard
to be detected as only a part of the fitness landscape is allowed to change. The
detection will fail by monitoring the changes of the fitness of a set of solutions
if these solutions are in unchange areas. As a result, mechanisms for handling

An Efficient Benchmark Generator for Dynamic Optimization Problems 71

changes will be not triggered. Therefore, the performance of this type of algo-
rithm is poor in this case. The time-linkage feature is hard for most algorithms,
where their performance gets worse when this feature is enabled. For all the
algorithms, AMP/PSO, which was recently proposed, performs best in terms of
both performance metrics in most test cases Table 5.

5 Conclusions

This paper proposes a efficient benchmark generator, named free peaks, for
constructing dynamic optimization problems. The framework is simple, feature
enriched, and computing efficient. The properties and difficulties are analytical
without the assistance of the visualization of the fitness landscape. The app-
roach uses the building-blocks approach to construct a problem, therefore users
can construct a problem with desired features. Users can replace the component
functions used in this paper with their own functions. To test an algorithm’s
performance on a problem with a certain feature, users just need to switch on or
off that particular feature instead of switching to another problem with a quite
different structure.

Acknowledgments. This work was supported by the National Natural Science Foun-
dation of China under Grant 61673355.

References

1. Bentley, J.L.: Multidimensional binary search trees used for associative searching.
Commun. ACM 18(9), 509–517 (1975)

2. Blackwell, T.: Particle swarm optimization in dynamic environments. In: Yang, S.,
Ong, Y.-S., Jin, Y. (eds.) Evol. Comput. Dynamic Uncertain Environ. Studies in
Computational Intelligence, vol. 51, pp. 29–49. Spinger, Heidelberg (2007). doi:10.
1007/978-3-540-49774-5 2

3. Blackwell, T., Branke, J.: Multiswarms, exclusion, and anti-convergence in dynamic
environments. IEEE Trans. Evol. Comput. 10(4), 459–472 (2006)

4. Bosman, P.A.N.: Learning, anticipation and time-deception in evolutionary online
dynamic optimization. In: Proceedings of 2005 Genetic and Evolationary Compu-
tation Conference, pp. 39–47. ACM (2005)

5. Branke, J.: Memory enhanced evolutionary algorithms for changing optimization
problems. In: Proceedings of 1999 IEEE Congress on Evolationary Computation,
vol. 3, pp. 1875–1882 (1999)

6. Song, T., Liu, X., Zhao, Y., Zhang, X.: Spiking neural P systems with white hole
neurons. IEEE Trans. Nanobiosci. (2016). doi:10.1109/TNB.2016.2598879

7. Cobb, H.G., Grefenstette, J.J.: Genetic algorithms for tracking changing environ-
ments. In: 5th International Conference on Genetic Algorithms, pp. 523–530 (1993)

8. Grefenstette, J.J.: Evolvability in dynamic fitness landscapes: a genetic algorithm
approach. In: Proceedings of 1999 IEEE Congress on Evolationary Computation,
vol. 3, p. 2038 (1999)

9. Li, C., Nguyen, T.T., Yang, M., Mavrovouniotis, M., Yang, S.: An adaptive multi-
population framework for locating and tracking multiple optima. IEEE Trans. Evol.
Comput. 99, 1 (2015)

http://dx.doi.org/10.1007/978-3-540-49774-5_2
http://dx.doi.org/10.1007/978-3-540-49774-5_2
http://dx.doi.org/10.1109/TNB.2016.2598879

72 C. Li

10. Li, C., Yang, S.: A generalized approach to construct benchmark problems for
dynamic optimization. In: 7th International Conference on Simulated Evolution
and Learning, pp. 391–400 (2008)

11. Li, C., Yang, S.: A general framework of multipopulation methods with clustering
in undetectable dynamic environments. IEEE Trans. Evol. Comput. 16(4), 556–577
(2012)

12. Li, C., Yang, S., Yang, M.: An adaptive multi-swarm optimizer for dynamic opti-
mization problems. Evol. Comput. 22(4), 559–594 (2014)

13. Mendes, R., Mohais, A.S.: DynDE: a differential evolution for dynamic optimiza-
tion problems. In: Proceedings of 2005 IEEE Congress on Evolationary Computa-
tion, pp. 2808–2815 (2005)

14. Michalewicz, Z.: The emperor is naked: evolutionary algorithms for real-world
applications. ACM Ubiquity 2012, 1–13 (2012)

15. Morrison, R.W., De Jon, K.A.: A test problem generator for non-stationary envi-
ronments. In: Proceedings of 1999 IEEE Congress on Evolationary Computation,
pp. 2047–2053 (1999)

16. Nguyen, T.T., Yang, S., Branke, J.: Evolutionary dynamic optimization: a survey
of the state of the art. Swarm Evol. Comput. 6, 1–24 (2012)

17. Nguyen, T.T., Yao, X.: Dynamic time-linkage problems revisited. In: Giacobini,
M., et al. (eds.) EvoWorkshops 2009. LNCS, vol. 5484, pp. 735–744. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-01129-0 83

18. Parrott, D., Li, X.: Locating and tracking multiple dynamic optima by a particle
swarm model using speciation. IEEE Trans. Evol. Comput. 10(4), 440–458 (2006)

19. du Plessis, M.C., Engelbrecht, A.P.: Differential evolution for dynamic environ-
ments with unknown numbers of optima. J. Glob. Optim. 55, 1–27 (2012)

20. Tfaili, W., Siarry, P.: Fitting of an ant colony approach to dynamic optimization
through a new set of test functions. Int. J. Comput. Intell. Res. 3, 203–216 (2007)

21. Trojanowski, K., Michalewicz, Z.: Searching for optima in non-stationary envi-
ronments. In: Proceedings of 1999 IEEE Congress on Evolutionary Computation,
vol. 3, p. 1850 (1999)

22. Song, T., Pan, Z., Dennis, M.W., Wang, X.: Design of logic gates using spiking
neural P systems with homogeneous neurons and astrocytes-like control. Inf. Sci.
372, 380–391 (2016)

23. Yazdani, D., Nasiri, B., Sepas-Moghaddam, A., Meybodi, M., Akbarzadeh-
Totonchi, M.: mNAFSA: a novel approach for optimization in dynamic environ-
ments with global changes. Swarm Evol. Comput. 18, 38–53 (2014)

24. Yazdani, D., Nasiri, B., Sepas-Moghaddam, A., Meybodi, M.R.: A novel multi-
swarm algorithm for optimization in dynamic environments based on particle
swarm optimization. Appl. Soft Comput. 13(4), 2144–2158 (2013)

http://dx.doi.org/10.1007/978-3-642-01129-0_83

	An Efficient Benchmark Generator for Dynamic Optimization Problems
	1 Introduction
	2 Free Peaks
	2.1 One Peak Function
	2.2 Partition the Search Space
	2.3 Setup of the Sub-space
	2.4 Time Complexity

	3 Constructing Dynamic Optimization Problems
	3.1 The Change in a Peak's Location Within the Peak's Basin
	3.2 The Change in the Size of a Peak's Basin of Attraction
	3.3 The Change in a Peak's Height
	3.4 The Change in the Number of Peaks

	4 Experimental Studies
	4.1 Comparison of Computing Efficiency
	4.2 The Performance of Existing Algorithms

	5 Conclusions
	References

