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Abstract. In this paper, we present a multi-parent crossover based
genetic algorithm for the bi-objective unconstrained binary quadratic
programming problem, by integrating the multi-parent crossover within
the framework of hypervolume-based multi-objective optimization algo-
rithm. The proposed algorithm employs a multi-parent crossover opera-
tor to generate the offspring solutions, which are used to further improve
the quality of Pareto approximation set. Experimental results on 10
benchmark instances demonstrate the efficacy of our proposed algorithm
compared with the original multi-objective optimization algorithms.

Keywords: Multi-objective optimization · Hypervolume contribution ·
Genetic algorithm · Multi-parent crossover · Unconstrained binary
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1 Introduction

The Unconstrained Binary Quadratic Programming (UBQP) problem is one of
the most studied NP-hard problem with its various practical applications. The
multi-objective UBQP problem can be mathematically formulated as follows [15]:

fk(x) = x′Qkx =
n∑

i=1

n∑

j=1

qkijxixj (1)

where fk(x) (k ∈ {1, . . . , m}) is the kth objective and to be maximized, Qk =
(qkij) is an n × n matrix of constants and x is an n-vector of binary (zero-one)
variables, i.e., xi ∈ {0, 1} (i = 1, . . . , n).
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The formulation of UBQP is notable for its ability to represent a wide range
of important combinatorial optimization problems, including traffic management
[9], financial analysis [20], molecular conformation [25], cellular radio channel
allocation [26], and so on. The literature reports a large number of heuristic and
metaheuristic algorithms to deal with the UBQP problem [14], which include
scatter search [2], directed local search [7], simulated annealing [1,13], evolu-
tionary algorithms [6,17,22], tabu search [10,23,24], etc.

Moreover, Liefooghe et al. [15] first extended the single UBQP problem into
the multi-objective case and proposed a hybrid metaheuristic algorithm to solve
the multi-objective UBQP problem. In [16], they further proposed three versions
of multi-objective local search algorithms with different search strategies to solve
the bi-objective UBQP problem.

In the current paper, we study a multi-parent crossover based genetic algo-
rithm for the bi-objective UBQP problem, which integrates a multi-parent
crossover within the framework of hypervolume-based multi-objective optimiza-
tion algorithm. The proposed algorithm consists of two main procedures: hyper-
volume contribution selection procedure and genetic algorithm with multi-
parent crossover. The hypervolume contribution selection procedure iteratively
improves the Pareto approximation set until it can not be improved any more.
Then, the multi-parent crossover is used to further improve the entire quality of
the Pareto approximation set.

The remaining part of the paper is organized as follows. In the next section,
we introduce the basic notations and definitions of multi-objective optimization.
In Sect. 3, we briefly review the previous work related to the uniform crossover
and the multi-parent crossover. Afterwards, we describe our proposed multi-
objective genetic algorithm with multi-parent crossover in Sect. 4. Section 5 is
dedicated to the computational results and concluding remarks are given in the
last section.

2 Multi-objective Optimization

In this section, we present the basic notations and definitions of multi-objective
optimization. Let X denote the search space of the optimization problem under
consideration and Z the corresponding objective space. Without loss of general-
ity, we assume that Z = �n and that all n objectives are to be maximized. Each
x ∈ X is assigned exactly one objective vector z ∈ Z on the basis of a vector
function f : X → Z with z = f(x), and the mapping f defines the evaluation of
a solution x ∈ X [8].

Actually, we are often interested in those solutions that are Pareto optimal
with respect to f . The relation x1 � x2 means that the solution x1 is preferable
to x2. The dominance relation between two solutions x1 and x2 is often defined
as follows [8]:

Definition 1 (Pareto Dominance). A decision vector x1 is said to dominate
another decision vector x2 (written as x1 � x2), if fi(x1) ≥ fi(x2) for all i ∈
{1, . . . , n} and fj(x1) > fj(x2) for at least one j ∈ {1, . . . , n}.
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Definition 2 (Pareto Optimal Solution). x ∈ X is said to be Pareto optimal
if and only if there does not exist another solution x′ ∈ X such that x′ � x.

Definition 3 (Pareto Optimal Set). S is said to be a Pareto optimal set if
and only if S is composed of all the Pareto optimal solutions.

Definition 4 (Non-dominated Solution). x ∈ S (S ⊂ X) is said to be non-
dominated if and only if there does not exist another solution x′ ∈ S such that
x′ � x.

Definition 5 (Non-dominated Set). S is said to be a non-dominated set if
and only if any two solutions x1 ∈ S and x2 ∈ S such that x1 � x2 and x2 � x1.

In fact, there does not exist the total order relation among all the solutions in
multi-objective optimization. Thus, the aim is to generate the Pareto optimal
set, which keeps the best compromise among all the objectives.

Nevertheless, in most cases, it is impossible to generate the Pareto optimal
set in a reasonable time. Therefore, we are interested in finding a non-dominated
set which is as close to the Pareto optimal set as possible, and the overall goal
is often to identify a good Pareto approximation set.

3 Related Work

The uniform crossover and its variants are usually integrated into the hybrid
metaheuristics as an important part for further improvement, which are widely
used to solve many combinatorial optimization problems, such as quadratic
assignment problem [5], gate assignment problem [12], single-objective UBQP
problem [14]. In this section, we briefly review the literature on solving the
UBQP problem with the uniform crossover and the multi-parent crossover.

Merz and Freisleben [21] proposed a hybrid genetic algorithm, which incor-
porates a simple local search into the traditional genetic algorithm. A variant
of uniform crossover is used to generate offspring solutions based on Hamming
distance from the parents. Computational results on the UBQP problem show
that the proposed algorithm is sufficient to find best known results for the prob-
lem instances with less than 200 variables, but not very effective on the problem
instances with large size.

Lodi et al. [17] presented an effective evolutionary method for solving the
UBQP problem. In this algorithm, a uniform crossover operator is used to pro-
duce the offspring solutions, where the variables with common values in parental
solutions are temporarily fixed in the current round of local search. Computa-
tional results on the problem instances with up to 500 variables show the attrac-
tiveness and the effectiveness of the proposed method, especially on the small
problem instances.

Lü et al. [18] proposed a hybrid metaheuristic approach for solving the UBQP
problem, which incorporates a tabu search procedure into the framework of
evolutionary algorithms. In this algorithm, a uniform crossover operator and a
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diversification-guided combination operator are used to generate offspring solu-
tions in order to further enforce the search capacity of the proposed algorithm.
The extensive computational studies on problem instances with up to 7000 vari-
ables reveal that their proposed algorithm is very competitive.

Wang et al. [27] integrated four multi-parent crossover operators (called MSX,
Diagonal, U-Scan and OB-Scan) within the memetic algorithm framework for
dealing with unconstrained binary quadratic programming problem. Their pro-
posed algorithms apply these crossover operators to further improve the results
generated by the tabu search procedure. The experimental results and the analy-
sis on the behavior of the algorithm provide the evidences and the insights as to
key role of the crossover operators.

4 Multi-parent Crossover Based Genetic Algorithm

The Multi-Parent Crossover based Genetic Algorithm (MPCGA) is proposed to
solve the bi-objective UBQP problem, which consists of two main procedures:
hypervolume contribution selection and genetic algorithm with the multi-parent
crossover. The general architecture of the MPCGA algorithm is described in
Algorithm 1.

Algorithm 1. Multi-Parent Crossover based Genetic Algorithm
Input: N (Population size)
Output: A: (Pareto approximation set)
Step 1: P ← N randomly generated individuals
Step 2: A ← Φ
Step 3: Calculate a fitness value for each individual x ∈ P with HC indicator
Step 4:
while Running time is not reached do

repeat
1) Hypervolume Contribution Selection: x ∈ P

until all neighbors of x ∈ P are explored
2) A ← Non-dominated solutions of A

⋃
P

3) Genetic Algorithm: z ∈ A
end while
Step 5: Return A

In MPCGA, all the individuals in an initial population are randomly gen-
erated, i.e., each variable of an individual is randomly assigned a value 0 and
1 (Step 1). Then, each individual is calculated a fitness value by the Hyper-
volume Contribution (HC) indicator defined in [4] (Step 3) and optimized by
the hypervolume contribution selection procedure. Afterwards, we employ the
multi-parent crossover operator proposed in [19] to produce the offsprings, in
order to further improve the quality of Pareto approximation set.
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4.1 Hypervolume Contribution Selection

After the fitness assignment for each individual, we apply the Hypervolume Con-
tribution Selection (HCS) procedure [4] presented in Algorithm 2 to the initial
population, in order to generate a set of efficient individuals.

Algorithm 2. Hypervolume Contribution Selection (HCS)
Steps:

1) x∗ ← one randomly chosen unexplored neighbors of x
2) P ← P

⋃
x∗

3) calculate x∗ fitness: HC(x∗, P )
4) update all z ∈ P fitness values
5) ω ← the worst individual in P
6) P ← P\{ω}
7) update all z ∈ P fitness values
8) if ω �= x∗, Progress ← True

In the HCS procedure, an individual x∗, which is one of the unexplored
neighbors of x in the population P , is assigned to a fitness value by the HC
indicator. If x∗ is dominated, the fitness values of all the individuals in P remain
unchanged. If x∗ is non-dominated, we need to update the fitness values of non-
dominated neighbors of x∗.

Actually, the neighborhood of UBQP is usually defined by the simple one-flip
move, which flips the value 0 (or 1) of the kth variable of each solution x ∈ P to 1
(or 0) to obtain a new individual x∗ as the neighbor of x [11]. Then, we calculate
the objective function values of this new neighbor with the fast incremental
neighborhood evaluation formula [19] below:

Δi = (1 − 2xi)(qii +
∑

j∈N,j �=i,xj=1

qij) (2)

Afterwards, the individual ω with the worst fitness value is deleted from
the population P . If ω is dominated, the fitness values of the other individuals
remain unchanged. If ω is non-dominated, the fitness values of the non-dominated
neighbors of ω need to be updated. The HCS procedure will repeat until the
termination criterion is satisfied.

4.2 Genetic Algorithm

The main idea of uniform crossover is to assign values to the variables of offspring
that represent assignments made in common by both parents, and to randomly
assign values to remaining variables of the offspring solution [18]. Based on this
idea, a multi-parent crossover operator called MSX is proposed to solve the
UBQP problem [19]. In this work, we employ the MSX crossover operator to
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Algorithm 3. Genetic Algorithm (GA)
Steps:

1) randomly select a subset of individuals E from A
2) z ← MSX Crossover Operator(E)
3) A ← HCS(z)

improve the Pareto approximation set A generated by the HCS procedure. The
exact steps are presented in Algorithm 3.

In our algorithm, we randomly select a set E (|E| = s) of non-dominated
individuals from the Pareto approximation set A. Let E = {x(1), x(2), . . . , x(s)},
where x(i) = {x

(i)
1 , x

(i)
2 , . . . , x

(i)
n } and the individuals in E are ordered in terms

of their fitness values, i.e., x(1) is the best individual in E and x(s) is the worst
individual in E. As suggested in [19], we set s to be a random number between
4 and 8. Then, the MSX crossover operator is defined below [27]:

MSX Crossover Operator: we define a weight w(i) for the individual x(i)

and a strength value Strength(j) for variables xj as: w(i) = 1/
∑

sum(i) =
1/

∑n
j=1 x

(i)
j and Strength(j) =

∑s
i=1 w(i)x(i)

j .

The value Strength(j) gives a relative indication of the tendency of the indi-
viduals in E to favor xj = 1 or xj = 0. Furthermore, we take an advantage of the
sum(i) values over E to get a value for the number of xj components that should
be 1 in an average individual, denoted by Avg =

∑s
i=1 sum(i)/s [19]. Then, the

variables with the first Avg largest Strength values receive assignment 1 and
other variables receive assignment 0. Afterwards, a new offspring is generated
and inserted into the Pareto approximation set A with the HC indicator for
further improvement.

5 Experiments

In order to evaluate the efficiency of our proposed algorithm, we carry out the
experiments on 10 benchmark instances of bi-objective UBQP problem, which
are generated by the tools provided in [15]. The MPCGA algorithm is pro-
grammed in C++ and compiled using Dev-C++ 5.0 compiler on a PC running
Windows 7 with Core 2.50 GHz CPU and 4 GB RAM.

5.1 Parameters Settings

The MPCGA algorithm requires to set a few parameters, we mainly discuss two
important ones: the running time and the population size. The exact information
about the instances and the parameter settings is presented in Table 1.
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Table 1. Parameter settings used for bi-objective UBQP instances: instance dimension
(D), population size (P ) and running time (T ).

Dimension (D) Population (P ) Time (T )

bubqp 1000 01 1000 10 100′′

bubqp 1000 02 1000 10 100′′

bubqp 2000 01 2000 20 200′′

bubqp 2000 02 2000 20 200′′

bubqp 3000 01 3000 30 300′′

bubqp 3000 02 3000 30 300′′

bubqp 4000 01 4000 40 400′′

bubqp 4000 02 4000 40 400′′

bubqp 5000 01 5000 50 500′′

bubqp 5000 02 5000 50 500′′

5.2 Performance Assessment Protocol

In this paper, we evaluate the efficiency of multi-objective optimization algo-
rithms using a test procedure that has been undertaken with the performance
assessment package provided by Zitzler et al.1. The quality assessment protocol
works as follows: we first create a set of 20 runs with different initial popu-
lations for each algorithm and each benchmark instance. Afterwards, we cal-
culate the reference set PO∗ in order to determine the quality of k different
sets A0 . . . Ak−1 of non-dominated solutions. Furthermore, we define a reference
point z = [w1, w2], where w1 and w2 represent the worst values for each objective
function in A0 ∪ · · · ∪ Ak−1. Then, the evaluation of a set Ai of solutions can
be determined by finding the hypervolume difference between Ai and PO∗ [28],
and this hypervolume difference has to be as close as possible to zero.

5.3 Computational Results

In this subsection, we present the computational results obtained by our pro-
posed MPCGA algorithm, the indicator-based multi-objective local search algo-
rithm (IBMOLS) proposed in [3] and the hypervolume-based multi-objective
local search algorithm (HBMOLS) proposed in [4].

The computational results are summarized in Table 2. Each line in this table
contains a value both in bold and in grey box, which is the best result obtained
on the considered instance. The values both in italic and in bold mean that
the corresponding algorithms are not statistically outperformed by the algorithm
which obtains the best result (with a confidence level greater than 95%).

1 http://www.tik.ee.ethz.ch/pisa/assessment.html.

http://www.tik.ee.ethz.ch/pisa/assessment.html
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Table 2. The computational results on bi-objective UBQP problem obtained by the
algorithms: IBMOLS, HBMOLS and MPCGA

Algorithm
Instance IBMOLS HBMOLS MPCGA

bubqp 1000 01 0.175422 0.102101 0.100887

bubqp 1000 02 0.125044 0.093831 0.091997

bubqp 2000 01 0.102348 0.100722 0.094091

bubqp 2000 02 0.122507 0.094502 0.093091

bubqp 3000 01 0.103768 0.102531 0.066613

bubqp 3000 02 0.105664 0.093186 0.093022

bubqp 4000 01 0.120652 0.104065 0.103641

bubqp 4000 02 0.931491 0.930591 0.901945

bubqp 5000 01 0.944998 0.959954 0.287479

bubqp 5000 02 0.115645 0.101692 0.101490

From Table 2, we can observe that all the best results are obtained by
MPCGA, and the most significant result is achieved on the instance bubqp 5000
01, where the average hypervolume difference value obtained by MPCGA is much
smaller than the values obtained by IBMOLS and HBMOLS.

However, the values on the instances (bubqp 1000 01, bubqp 3000 02, bubqp
4000 01 and bubqp 5000 02) obtained by HBMOLS are not statistically outper-
formed by MPCGA. Actually, the new offsprings generated by the MSX crossover
operator evidently improve the entire quality of Pareto approximation set, which
makes the MPCGA algorithm have a chance to search the high-quality individ-
uals in the objective space. Thus, MPCGA has a better performance on all the
instances.

6 Conclusion

In this paper, integrating the multi-parent crossover within the hypervolume-
based multi-objective optimization algorithm to further improve the overall qual-
ity of Pareto approximation set, the MPCGA is proposed to deal with the bi-
objective unconstrained binary quadratic programming problem. The computa-
tional results of MPCGA on 10 benchmark instances have shown the feasibility
of the improvements and the effectiveness of MPCGA for the bi-objective UBQP
problem.
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