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Abstract. In this paper, an improved multi-objective ABC algorithm
based on k-means clustering, called CMOABC, is proposed. For keep-
ing the population diversity, the multi-swarm technology based on
k-means clustering is employed to decompose the population into many
clusters. Due to each subcomponent evolving separately, after every spe-
cific iterations, the population will be re-clustered to facilitate informa-
tion exchange among different clusters. CMOABC is applied to solve
the real-world Optimal Power Flow (OPF) problem that considers the
cost, loss, and emission impacts as the objective functions. The simu-
lation results demonstrate that, compared to NSGA-II, MOPSO, and
MOABC, the proposed CMOABC is superior for solving OPF problem,
in terms of optimization accuracy.
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1 Introduction

Swarm intelligence (SI) is an innovative artificial intelligence technique for
solving complex multi-objective optimization problems (MOPs), such as non-
dominated sorting genetic algorithm II [1], multi-objective particle swarm opti-
mization [2], multi-objective evolutionary algorithm based on Decomposition
[3]. Artificial bee colony (ABC) algorithm is a powerful search technique that
drew inspiration from the biological foraging behaviors observed in bee colony
[4]. Many researchers have presented several existing multi-objective ABC
algorithms [5]. However, these proposed algorithms still suffer from low con-
vergence rate and lacking the diversity of swarm.

To conquer the weakness of initial MOABC, an improved multi-objective
ABC algorithm based on k-means clustering, named CMOABC, is proposed.
The population is partitioned into several sub-populations based on k-means
clustering. Information communication between the sub-populations depends on
re-clustering the population after each specific iterations. To further enhance the
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population diversity, a number of individuals with worse performance re-generate
in the re-clustering process.

Optimal Power Flow (OPF) is a classical multi-objective problem. Tradition-
ally, the basic objective of OPF is to schedule the committed generating units
to meet the system load demand at minimum operating cost while satisfying
the various system equality and inequality constraints [6]. But the passage of
clean air act amendments in 1990 forced the utilities to reduce the emission
from fossil fuel fired thermal station [7–10]. Therefore, in addition to fuel cost,
emission must also be considered as an objective. OPF problem is a non-linear,
constrained optimization problem where many competing objectives are present.
CMOABC is utilized to solve OPF problem. Compared with MOABC, MOPSO
and NSGAII, CMOABC can accommodate considerable potential for solving
OPF problem.

2 Optimal Power Flow Problem Formulation

2.1 Minimization of Total Fuel Cost

The fuel cost curves of the thermal generators are modeled as a quadratic cost
curves and can be represented as follows:

fcost =
Ng∑

i=1

fi(aiPGi
2 + biPGi + ci) (1)

where ai, bi and ci are the the fuel cost coefficients of the ith generator, PGi is
real power output of the ith generator.

2.2 Minimization of Total Power Losses

The power flow solution gives all bus voltage magnitudes and angles. Then, the
total MW active ower loss in a transmission network can be described as follows:

flost =
Nl∑

k=1

gk(V 2
i + V 2

j − 2ViVj cos(δi − δj)) (2)

where Nl is the number of transmission lines, Vi and Vj are the voltage magni-
tudes at the ith bus and jth bus, respectively; δi and δj are the voltage angles
at the ith bus and the jth bus, respectively.

2.3 Total Emission Cost Minimization

In this paper, two important types of emission gasses, namely, sulpher oxides
SOx and nitrogen oxides NOx, are taken as the pollutant gasses. Here, the total
emission cost is defined as bellow:

femission =
Ng∑

i=1

(αi + βiPGi + γiPGi
2) (3)
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where femission is the total emission cost (ton/h) and αi, βi and γi are the
emission coefficients of the ith unit.

|SLi| ≤ SLi,max i = 1, . . . , Nl (4)

3 CMOABC Algorithm

The stochastically generated population is partitioned into n subpopulations
based on the widely adopted k-means cluster method [8]. The number of clusters
is determined by the predefined set G = {g1, g2, . . . , gm}, where g1 > g2 >
. . . > gm. It may happen that two or more clusters come close to each other or
get overlapped to a high degree. The distances between each two clusters are
calculated as following equation:

Dis cluster =
∥∥clustercenteri − Nei clustercenteri

∥∥ (5)

where Dis cluster is the distance between one cluster and its neighbor, Nei clus
tercenteri is the center of the ith cluster’s neighbor. clustercenteri is the center of
the ith cluster. If the distance is smaller than the specific distance DISm, one
of the clusters will be removed and its non-domination solutions are store.

DISm = 0.2 ∗ min (Ri, Ri neighbor) (6)

where Ri is the radius of clusteri and Ri neighor is the radius of the neighbors
of clusteri.

In order to exchange information among individuals, the whole population
is re-partitioned into gi+1 clusters based on k-means clustering after each TI
iterations, where gi and gi+1 are orderly chosen from the predefined set G. The
individuals in a cluster may be distributed into different new clusters when the
number of the clusters is changing. To balance the exploration and exploitation,
TI is not a constant.

TI =

{
floor (0.03 ∗ itermax) if iter ≤ 0.5 ∗ itermax

floor (0.06 ∗ itermax) if iter > 0.5 ∗ itermax

(7)

where itermax is the maximum iterations; iter is the current iteration.
After each TI iterations, a certain number of individuals in each cluster

should be regenerated according to this cluster’s contribution to the external
archive. For the jth cluster, the number of solutions updating to the external
archive during each TI iterations is recorded in Num Update(j). Then, accord-
ing to its position in the sort of Num Update, the number of individuals needed
to regenerate in the jth cluster is calculated in Eq. (32). The individuals which
will be removed in cluster j are determined by non-domination sort.

Num regenerate(j) =
Sort Update(j)

gi
∗ Num ind(j)

2
(8)

where Num ind(j) is the number of individuals in the jth cluster;
Sort Update(j) indicates the jth cluster’s position in the sort of Num Update;
and gi is the current number of clusters (Table 1).
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Table 1. Pseudocode of CMOABC

4 Multi-objective Optimal Power Flow Based
on CMOABC

In order to validate the robustness of the proposed CMOABC method, a stan-
dard IEEE 30 bus system has been used as the test system. The system represents
a portion of the American Electric Power System (in the Midwestern US).

The three objectives are optimized simultaneously by the four algorithms
and the corresponding best solutions are given in Table 2. Figure 1 also shows
the result values of three competing objectives. As shown in Fig. 13, compare to
other three algorithms, the Pareto-optimal solutions obtained by the CMOABC
are better distributed on the front with good diversity. Among other three algo-
rithms, the Pareto-optimal solutions obtained by the standard MOABC are also
well distributed, the diversification of them is not as well as the ones obtained
by the proposed CMOABC.

Furthermore, from the Table 2, CMOABC is able to discover a well-
distributed and diverse solution set for three-objective problem. However, other
three algorithms cannot archive the true Pareto front for three-objective OPF
problem. CMOABC obtains the best emission, cost, though the system loss
obtained by CMOABC is 2.1601MW, which is a little more than 2.1598MW
obtained by MOABC.
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Table 2. The best compromise solutions for cost, emission and loss using different
multi-objective algorithms

CMOABC MOABC NSGAII MOPSO

PG1 19.0732 18.9234 35.6214 22.0152

PG2 32.9875 27.9542 53.9065 15.1023

PG3 68.0549 70.8965 47.6936 90.0136

PG4 82.0132 85.9831 45.4762 84.2253

PG5 29.0385 27.0467 54.9945 7.2104

PG6 52.1248 53.0102 46.0154 65.3609

f1 fuel cost 612.0513 614.0154 622.5149 631.4003

f2 (emisson) 0.2120 0.2171 0.2225 0.2341

f3 (loss) 2.1601 2.1598 3.0301 2.8998

(I) CMOABC (II) MOABC

(III) MOPSO (IIII) NSGA-II

Fig. 1. Pareto fronts obtained by CMOABC, MOPSO, MOABC, and NSGA-II for fuel
cost, emission and loss
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5 Conclusions

An improved multi-objective ABC algorithm based on k-means cluster, called
CMOABC, is proposed. CMOABC adopts k-means clustering method to parti-
tion the population into many clusters and the number of the clusters is changing
to implement information exchange among the different clusters. CMOABC is
used to handle multi-objective OPF problem, and 30-bus IEEE test system is
adopted to test the proposed algorithm. By comparing the simulation results
of CMOABC, MOABC, MOPSO and NSGAII, the proposed method is able to
give well distributed Pareto optimal solutions than other three methods for OPF
problem with different objectives.
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