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Abstract. Genetic algorithm is a well known bio-inspired algorithm,
which has been widely used to solve practical problems in real-life. The
performance of the algorithm heavily depends on the convergence related
to the values of parameters involved. It is formulated as a hard problem
to select suitable values of mutation and crossover rates to achieve fast
or slow convergence for unknown problems. As a new study of system
framework inspired by cell model, membrane computing models is with a
membrane structure having region segmentation, intrinsic discrete, non-
deterministic, programmable and transparent features. In this paper, a
hybrid “fast-slow” convergent framework for genetic algorithm inspired
by membrane computing is proposed and applied to search optimal solu-
tion of 41 benchmark functions. It is obtained by the data experimental
results that our method performs well in solving benchmark functions
by achieving accuracy rate about 96%.

Keywords: Membrane computing · Genetic algorithm · Membrane
structure · Convergence

1 Introduction

Genetic algorithm (GA) is bio-inspired intelligent algorithm abstracted from the
human evolving process. Nowadays, the algorithm is known adaptive, heuristic,
iterative, and has been applied in solving plenty of practical problems. The
performance of GA heavily depends on the values of involved parameters, such
as mutation rate and crossover rate of the population. The most intuitive case
is that with different values, the convergence which is an important indicator
of performance to test the algorithm, will be quite different. High convergence
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rate does not mean it can search for the best solutions; while sometimes, slower
convergence can get better results, but it means spending more time [1].

Due to the instability of the convergence, many researchers are focus on
the precocious convergence of GA. It is proposed in [2] the genetic markers to
actively avoid convergence to a particular rooted tree structure. This is achieved
by maintaining a number of unique genetic markers in the population. After
that, the structure fitness sharing (SFS) algorithm proposed in [3,4] is taken as
a possible way to attempt to promote diversity based on tree structure. Moti-
vated by the fitness sharing concept, it uses labels on tree structures to decrease
the fitness of structures that are over-represented in the population. Generally
speaking, most of the researches solve this problem by optimizing algorithm and
intermediate data processing.

Membrane computing, initialed by Gh Paun in 1998 is known as new branch
of natural computing [5]. The systems investigated in the framework of mem-
brane computing is called P systems, and plenty of P systems have been devel-
oped, including cell-like P systems, tissue P systems and spiking neural P systems
[6–20]. In this work, we propose a new model inspired from membrane com-
puting models to achieve “fast-slow” convergence rate of GA in the membrane
structure. The obtained algorithm is a new candidate in membrane algorithm,
and many researchers have done good works on it. Currently, membrane com-
puting has been used in optimization field [31], Systems and Synthetic Biology
[21], Troubleshooting [36], economics [37] and linguistics [38]. These experiments
demonstrate that applying Membrane Algorithm to optimize Genetic Algorithm
is feasible. We developed here a thread control process following the Nested Mem-
brane System [24] to searching optimal solution, where a single GA is used in
each membrane and performs as a thread in the program [22]. After one iteration
(evolution), the population will produce the best individual. Under the control of
the communication rule [23,36], the efficiency of searching optimal solution gets
a big promotion, when the problem has no solving information. It is obtained
by the data experimental results that our method performs well in solving 41
benchmark functions by achieving accuracy rate about 96%.

2 Related Technologies

2.1 Genetic Algorithm

Genetic Algorithm (GA) was first proposed by J. Holland in 1975 [26]. It is
a type of heuristic random search method inspired by natural selection and
genetic mechanism of biological evolution law (survival of the fittest). It contains
feature is the direct operating to the structured objects without the delimitation
of derivation and continuity of function. It is inherent implicit parallelism and
better global optimization and it can automatically obtain and guide optimized
searching space for adjusting the search direction.

In general computing process, GA is started with setting the potential solu-
tion (population), and a population is consists of genes encoded by a certain
number of individuals (individual). It is needed initially to encode individuals
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for simplify computer operation, such as binary encoding. After producing the
first generation of populations, each generation produce more good approxi-
mate solution in accordance with the principle of survival of the fittest. In each
generation, select individual according to the individual’s fitness size, and then
generate a population representative of the new solution set by genetic operators
combined with cross and mutation. This process will lead new population to be
more adapted to the environment, and the last population of the best individual
can be the approximate optimal solution after decoding [25].

2.2 Membrane Computing Inspired Algorithm

Membrane Computing is a new branch of natural computing. It is originated
from natural cells, and the structure also builds on the biological cells. The sys-
tems investigated in membrane computing are named P systems, which is defined
as a series of membrane structures containing chemical substances (limited num-
ber), catalyst and rules (including the rules of the reaction, membrane transport
rules etc.). It is shown in Fig. 1 the membrane structure of the P systems. Like
in real biological cells, when the reactants (sometimes catalyst) are contact with
each other, the chemical reaction will occur. Due to the random applications of
rules, the calculation will be uncertain, in the other words, the repetition of the
same question may lead to multiple solutions. When the computation of the P
system is completed, the chemicals exist out of the outermost membrane will
reach steady state, which means no reaction will continue.

Fig. 1. Membrane structure.

A membrane algorithm framework consists of three different kinds of
components:

– A number of regions which are separated by nested membranes (Fig. 1).
– For every region, a subalgorithm and a few tentative solutions of the opti-

mization problem to be solved.
– Solution transporting mechanisms between adjacent regions.
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There are three basic types of membrane system: Cell-like P system, Tis-
sue P system, spiking neural P systems [29,32,35]. We consider here a cell-like
membrane structure named Nested Membrane System, which is a friendly model
for programming. The structure is used by Nishida to solve the TSP problem
[30,31], and have been applied for data optimization [31].

We denote by S a feasible solution of the problem, which is distributed dif-
ferences in different membranes. The communication rules means that the mem-
brane sends some solutions into the outer membrane which directly contains it.
The rule can be written as follows.

{amax1, amax2, . . . , amaxn}i − {}iamax1, amax2, . . . , amaxn (1)

It is denoted by i the membrane i, and by amax1, amax2, . . . , amaxn the n
best solutions in the region 1, 2, . . . , n, respectively. The model converges very
fast because of the communication between membranes. In terms of realization of
membrane computing, some associated simulation software have been released.

3 The Model and Data Experiments

3.1 GA Program

We design a basic GA program to run the dimensional function. In the program,
we can set initial conditions to control the convergence rate. Every gene contains
the potential solution and the threshold. In order to simplify the crossing and
mutation process, encoding process is omitted as in [33].

– Chromosome: Chromosome and can be called individuals, a certain number
of individuals of the population, the number of groups of individuals called
population size.

– Gene: Gene elements include characteristics of the individual genes. In this
paper, a set of possible solutions S = (x1, x2, x3) are designed and each of
them is called gene.

– Fitness: Each individual’s degree of adaptation to the environment is called
fitness. In order to reflect the ability to adapt to the chromosome, the intro-
duction of the function of each chromosome in question can be measured.
Here, the function is calculated to value in the population of individuals.

– Select: Select means winning individuals from population, and Selecting oper-
ation is based on the population of individual fitness assessment.

– Cross: Genetic recombinant (plus variation) play a central role in the process
of evolution is a genetic recombinant organisms (plus variation). Because of
giving up Genes encoding process gene cross is implemented by exchanging a
random parameter of two genes.

– Variation: The basic contents of the gene mutation operator are the value of a
population of some individual strings locus for change. Here we use Real value
variation.
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3.2 Membrane Structure

The nested membrane structure of degree m is selected, which means the number
of membrane is m. The value of m is set to be 5 or 6 here, and in each membrane,
GA is performed with different mutation and crossover rates. All of the GA
run the same function. Because of the lightweight program, we set each GA
as a thread [34]. The data communication rule works in neighbor membrane.
The communication process looks as follows (current membrane is the middle
membrane):

1. Each membrane start GA thread
2. Suspend thread every 50 iteration
3. Monitoring inner membrane

If (inner membrane has no request for communication):
3.1 Compared with the individual of the outer membrane
3.2 Suspend outer membrane
3.3 Replace the best individual of outer membrane
3.4 Reuse thread
3.5 Judge the outer membrane to reuse (avoid the thread to be suspended

before reaching 50 iteration by inner membrane)
Else: wait for the inner membrane

4. The best individual in the outmost becomes the output of the algorithm

The individual are modified only when both of the membranes have been
suspended. In order to avoid deadlocks, the inner membrane has higher priority
than the outer membrane.

3.3 Data Experiments

It is tested the proposed method by solving 41 benchmark functions. In the step
of initialization, we created 5 GA and set different initialization information.
The iteration is set to be 10000 for each GA. We controlled convergence rates
by changing number of individuals, cross rate and variation rate (Table 1).

Table 1. The values of involved parameters in the GA in different regions

Population Iterations Cross Variation

1000 10000 0.8 0.08

1000 10000 0.6 0.01

500 10000 0.8 0.08

500 10000 0.6 0.01

800 10000 0.8 0.1

The interface of the software is shown in Fig. 2.
The tested functions are listed in Table 2.
It is obtained by the data experimental results that our method performs

well in solving benchmark functions by achieving accuracy rate about 96%.
We exam the formulas the help of the model (Table 3).
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Table 2. The list of tested benchmark functions

Formula

Ackley’s function (Ak) f(x, y) = −20 exp(−0.2
√

0.5(x2 + y2)) − exp(0.5(cos(2(π)
x) + cos(2(π)y))) + e + 20

Sphere function (Sh) f(x) =
∑n

i=1 x2
i

Rosenbrock function (Rbk) f(x) =
∑n−1

i=1 [100(xi+1 − x2
i ) + (xi − 1)2]

Beale’s function (Bl) f(x, y) = (1.5−z+xy)2+(2.25−x+xy2)2+(2.625−x+xy3)2

GoldsteinPrice function (GP) f(x, y) = (1 + (x + y + 1)2(19 − 14x + 3x2 − 14y + 6xy +
3y2))×(30+(2x−3y)2(18−32x+12x2+48y−36xy+27y2))

Booth’s function (Bt) f(x, y) = (x + 2y − 7)2 + (2x + y − 5)2

Bukin function N.6 (BN.6) f(x, y) = 100
√|y − 0.01x2| + 0.01|x + 10|

Matyas function (Mt) f(x, y) = 0.26(x2 + y2) − 0.48xy

Levi function N.13 (LN.13) f(x, y) = sin2(3πx)+(x−1)2(1+sin2(3πy))+(y −1)2(1+
sin2(2πy))

Three-hump camel function(Thc) f(x, y) = 2x2 − 1.05x4 + x6
6 + xy + y2

Easom function (Es) f(x, y) = − cos x cos y exp(−((x − π)2 + (y − π)2))

Cross-in-tray function (Ct) f(x, y) = −0.0001(| sin x sin y exp(|100−
√

x2+y2
π |)|+1)0.1

Eggholder function (Ehd) f(x, y) = −(y+47) sin(
√

| x
2 + (y + 47)|)−x sin(

√|x − (y+

47)|)
Holder table function (Ht) f(x, y) = −| sin x cos y exp(|1 −

√
x2+y2

π |)|
McCormick function (McC) f(x, y) = sin(x + y) + (x − y)2 − 1.5x + 2.5y + 1

Schaffer function N. 2 (Scf.2) f(x, y) = 0.5 +
sin2(|x2−y2|)−0.5
(1+0.001(x2+y2))2

Schaffer function N. 4 (Scf.4) f(x, y) = 0.5 +
cos2(sin(|x2−y2|))−0.5

(1+0.001(x2+y2))2

Hump Functions (Hmp) f(x) = 4x2
1 − 2.1x4

1 + x6
1/3 + x1x2 − 4x2

2 + 4x4
2

Rastrigin function (Rst) f(x) = An +
∑n

i=1(x
2
i − A cos(2πxi))

Colville function (Clv) f(x) = 100(x2
1 − x2)

2 + (x1 − 1)2 + (x3 − 1)2 + 90(x2
3 −

x4)
2 + 10.1((x2 − 1)2 + (x4 − 1)2) + 19.8(x−

2 1)(x4 − 1)

Griewank function (Gwk) f(x) =
∑n

i=1
x2

i
4000 −∏n

i=1 cos(
xi√

i
) + 1

Schwefel function (Swf) f(x) = −∑n
i=1 xi sin(

√|xi|)
Shubert function (Shb) f(x) = (

∑5
i=1 i cos((i+1)x1 + i))(

∑5
i=1 i cos((i+1)x2 + i))

Sum Squares function (SSq) f(x) =
∑n

i=1 ix2
i

Zakharov function (Zkr) f(x) =
∑n

i=1 x2
i + (0.5

∑n
i=1 ixi)

2 + (0.5
∑n

i=1 ixi)
4

Generalized Rastrigins function (GR) f(x) =
∑n

i=1[x
2
i − 10 cos(xπxi) + 10]

Styblinski-Tang function (SbT) f(x) = 0.5(
∑n

i=1 x4
i − 16x2

i + 5xi)

Michaelwiczs function (Mcw) f(x, y) = − sin x sin20( x2
π ) − sin y sin20( 2y2

π )

Six-hump camel back function (Shcb) f(x, y) = (4 − 2.1x2 + 1
3x4)x2 + xy + 4(y2 − 1)y2

Xin-She Yangs functions (XSY) f(x) = (
∑n

i=1 |xi|) exp(−∑n
i=1 sin(x2

i ))

J.D. Schaffer function (JDS) f(x) =
sin2(

√
(x2

1+x2
2))−0.5

[1+0.001(x2
1+x2

2)]2
− 0.5

Quartic Function i.e. Niose (Qie) f(x) =
∑n

i=1 ix4
i + random[0, 1)

Step function (Step) f(x) =
∑n

i=1(|xi + 0.5|)2
Schwefels Problem 2.21 (Swf2.21) f(x) = maxn

i=1{|xi|}
Schwefels Problem 2.22 (Swf2.22) f(x) =

∑n
i=1 |xi| +

∏n
i=1 |xi|

Schwefels Problem 1.2 (Swf1.2) f(x) =
∑n

i=1(
∑n

j=1 xj)
2
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Table 3. The values of parameters in tested benchmark functions

Formula Search domain Minimum Result Deviation

Ak [–10,10] n = 2 0 0 0

Sh [–10,10] n = 2 0 0 0

[–10,10] n = 30 0 0 0

Rbk [–10,10] n = 2 0 0 0

[–512,512] n = 10 0 0 0

Bl [–10,10] 0 0 0

GP [–2,2] 3 0 Err

Bt [–10,10] 0 0 0

BN.6 [–15,15] 0 0 0

Bt [–10,10] 0 0 0

Mt [–10,10] 0 0 0

Es [–100,100] –1 –0.98564252 1.5%

LN.13 [–10,10] 0 0 0

The [–10,10] 0 0 0

Ct [–10,10] –2.06261 –2.07697545 0.69%

Ehd [–512,512] –959.6407 –954.20825867 0.566%

Ht [–10,10] –19.2085 –19.12593522 0.43%

McC [–3,4] –1.9133 –1.89645318 0.88%

Scf. 2 [–5,5] 0 0 0

Scf. 4 [–5,5] 0.292579 0 Err

Hmp [–5,5] n = 2 0 0 0

Rst [–5.12,5.12] n = 2, A = 10 0 0 0

[–5.12,5.12] n = 10, A = 10 0 0 0

Clv [–10,10] n = 4 0 0 0

[–10,10] n = 10 0 0 0

Gwk [–600,600] n = 2 0 0 0

[–600,600] n = 10 0 0 0

Swf [–500,500] n = 2 837.9658 837.96552803 3.24e−7

[–500,500] n = 10 0 0 0

Shb [–10,10] n = 3 –186.7309 –186.72187594 0.0048%

SSq [–10,10] n = 2 0 0 0

[–10,10] n = 30 0 0 0

Zkr [–5,10] n = 2 0 0 0

[–5,10] n = 10 0 0 0

GR [–5.12,5.12] n = 2 0 0 0

[–5.12,5.12] n = 10 0 0 0

SbT [–5,5] n = 2 (–78.33234,–78.33232) –78.322614322 0.023%

[–5,5] n = 10 (–391.6617,–391.6616) –391.59810786 0.0162%

Mcw [0,5] m = 10, n = 2 −1.8013 −1.80120638 0.0052%

Shcb [–3,3] –1.0316 1.03052387 0.10%

XSY [–2,2] n = 2 0 0 0

JDS [–100,100] –1 0.99022143 0.978%

Qie [–1.28,1.28] 0 0 0

Step [–100,100] n = 3 0 0 0

[–100,100] n = 10 0 0 0

Swf2.21 [–100,100] n = 3 0 0 0

[–100,100] n = 100 0 0 0

Swf2.22 [–10,10] n = 3 0 0 0

[–10,10] n = 10 0 0 0

Swf1.2 [–100,100] n = 3 0 0 0
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Fig. 2. Fast-slow GA framework.

4 Conclusion

In this paper, a hybrid “fast-slow” convergent framework for genetic algorithm
inspired by membrane computing is proposed. Such framework incorporates
basic Cell-like P System and GA. Several basic features like compartmentaliza-
tion, communication among compartments, dynamic membrane structure help
GA to combine the convergence. It is tested the proposed method by solving
41 benchmark functions. It is found that our method performs well in solving
benchmark functions by achieving accuracy rate about 96%.

Compared with these results, we can find the algorithm show good perfor-
mance for searching optimal solution. It combines the potential results of differ-
ent GA and provides a method to solve premature convergence. It also reduces
the influence of the initialization to GA. On the other hand, the communication
rule can be optimized, and the present paper control the data transmission by
making use of thread control inspired by Nested membrane structure.

Membrane algorithms inherit the parallelism of P system. In the further
study, the algorithms will be naturally implemented on a parallel hardware. The
parallelism is simulated in a common serial machine. The GA in each membrane
is not true parallel processing and it is also the difficulty of the application
of membrane computing, even if the algorithm running in a cluster, because
the communication costs is too high to optimization. So, there are still many
improvements to do if the framework in this paper runs on a parallel hardware,
such as GPU. We hope other membrane structure such as spiking neural P sys-
tems [39] can also be applied if the threads control method is well designed. It is of
interests to replace GA in each membrane by some other intelligent algorithms,
such as PSO, simulated annealing. As well, some other membrane structures,
for instance, star membrane structure, and rooted membrane structure can be
expanded to our hybrid framework.
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