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Abstract. Various models have been used to represent natural phenom-
enon in order to gain insight on what stability is. A computing model
called Fuzzy abstract rewriting system on multisets, close to reality is
recently designed by introducing fuzziness on computation [1]. As an
extension of this model a device named Fuzzy Artificial cell system with
proteins on membrane is developed and the corresponding structure is
analyzed on its parameters [2]. The aim of the present study is to investi-
gate how the choices made in a simulation affect its accuracy and there-
fore the reliability of the result.

Keywords: P system · Artificial cell system · Fuzzy ACS · Proteins on
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1 Introduction

Fuzzification of membrane systems and their evolution rules which is motivated
by some practical applications is a quite recent development. Rigid mathematical
models employed in biology are not completely adequate for the interpretation
of biological information. This fact has led to the adoption of fuzzy models and
methodologies. Also it has been shown that P systems with fuzzy multiset rewrit-
ing rules are equivalent to fuzzy Turing machines. Suzuki and Tanaka [3] have
introduced the multiset Rewriting system, called Abstract Rewriting System
on Multisets (ARMS). Based on this system, they have developed a molecu-
lar computing model called Artificial Cell System which consists of a multiset
of symbols, a set of rewriting rules and membranes [3,4]. These correspond to
a class of P systems which are parallel molecular computing models proposed
by Paun [5] and are based on the processing of multisets of objects in cell-like
membrane structures [5].

On the other hand, P system with proteins on membranes has been intro-
duced and the power of the system is examined in [6,7]. Following chemical reac-
tions, the kinetics of the sulfoxidation reactions, analogous to biological systems
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were carried out by Jayaseeli and Rajagopal [8]. The computational studies of
the work mentioned above, based on membrane computing has been proposed
and Kinetic ARMS in Artificial Cell System with hierarchically structurable
membrane (KACSH) is developed in [9].

Recently we have proposed a computing device that is based on Abstract
Rewriting systems on multisets closely related to P system with fuzzy multiset
rewriting rules and fuzzy data [1]. As an extension of this model, we have devel-
oped a new system called FACSP (Fuzzy ARMS in Artificial Cell System with
proteins on membranes) and its behaviour has been studied in [2].

Models of chemically reacting systems have traditionally been simulated by
solving a set of ordinary differential equations. Many researches have conducted
numerical simulation to establish the simulation conditions and the impact on
simulation results. In this paper, the continuous interaction of the system with
environment, an operating function from kinetic equilibrium is established. A
series of eigenvalues (λ) that satisfy the equation using the corresponding rate
of reactions, complexes, oxidant, substrates and the significants according to the
real and imaginary parts of the eigen values are obtained.

2 Preliminaries

2.1 Kinetic Studies of the Sulfoxidation Reactions [8]

In many biomimetic approaches, the study of enzymatic reactions are carried out
kinetically. Jeyaseeli and Rajagopal [8] followed the spectrophotometric kinetic
studies of [Iron(III)-salen] complexes catalysed H2O2 oxidation of organic sul-
fides. When the rate of reaction (k) is plotted against substrate concentration
([S]), a saturation kinetics called Michaelis-Menten behaviour is followed. They
have proposed mechanisms based on the results of rate of reactions under various
experimental conditions.

2.2 P System with Proteins on Membranes [7]

A system with proteins on membranes is of the form

Γ = {O,P, μ,w1/z1, · · · , wm/zm, E,R1, · · · , Rm, i0}

where

– m is the degree of the system (the number of membranes)
– O is the set of objects
– P is the set of proteins (with O ∩ P = φ)
– μ is the membrane structure
– wi, i = 1 to m are the (strings representing the) multisets of objects present

in the m regions of μ
– zi, i = 1 to m are the multisets of proteins present on the membranes of μ
– E ⊆ O is the set of objects present in the environment (in an arbirarily large

number of copies each)
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– Ri are finite sets of rules associated with the m membranes of μ
– i0 ∈ {1, 2, · · · ,m} is the label of the output membrane.

Reaction rules are applied in the following manner: In each step, a maximal
multiset of rules is used, that is, no other rule is applicable to the objects and
the proteins which remain unused by the chosen multiset. At each step we have
the condition that each object and each protein can be involved in the applica-
tion of at most one rule, but the membranes are not considered as involved in
the rule applications except the division rules, hence the same membrane can
appear in any number of rules of types 1–5 at the same time [7]. By halting
computation, we understand a sequence of configurations that ends with a halt-
ing configuration (there is no rule that can be applied considering the objects
and proteins present at that moment in the system). With a halting computa-
tion, we associate a result in the form of the multiplicity of objects present in
region i0 at the moment when the system halts. We denote by N(Π) the set of
numbers computed in this way by a given system Π. We denote in the usual
way by NOPm(pror; list of types of rules) the family of sets of numbers N(Π)
generated by systems with at most m membranes using rules as specified in the
list of types of rules, and with at most r proteins present on a membrane. When
parameters m or r are not bounded, we use ∗ as a subscript.

2.3 Fuzzy Artificial Cell System with Proteins on Membranes [2]

Definition. A Fuzzy ACS with Proteins on membranes FACSP is a construct,

Γ = {O,P, μ,w1/z1, · · · , wm/zm, E, (Rp, ρ), i0, J, ω}
where

– m is the degree of the system (the number of membranes)
– O is the set of objects
– P is the set of proteins (with O ∩ P = φ)
– μ is the membrane structure
– wi, i = 1 to m are the (strings representing the) multisets of objects present

in the m regions of μ
– zi, i = 1 to m are the multiset of proteins (biological catalysts) present on the

membranes of μ
– E is the set of objects present in the environment (in an arbitarily large number

of copies each)
– Rp are finite sets of Fuzzy multiset evolution rules, p = 1 to m of μ
– ρ is the partial order relation over Rp

– i0 ∈ {1, 2, · · · ,m} is the elementary membrane (output)
– J = {Rpi ∈ Rp/1 ≤ i ≤ q}, q = cardinality of Rp

– ω : J → [0, 1] is the membership function s.t. ω(Rpq) = i, i ∈ [0, 1].
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The rules are used in the non-deterministic maximally parallel
way:

The same rules are applied to every membrane. There are no rules specific
to a membrane. All the rules are applied in parallel. In every step, all the rules
are applied to all objects in every membrane that can be applied. If there are
more than one applicable rule that can be applied to an object and protein then
one rule is selected randomly. If a membrane dissolves, then all the objects in its
region are left free in the region immediately above it. All objects and proteins
not specified in a rule and which do not evolve are passed unchanged to the next
step. At each step we have the condition that each object and each protein can
be involved in the application of at most one rule, but the membranes are not
considered as involved in the rule applications except the division rules, hence
the same membrane can appear in any number of rules at the same time.

By halting computation, we understand a sequence of configurations that
ends with a halting configuration (there is no rule that can be applied considering
the objects and proteins present at that moment in the system). With a halting
computation we associate a result in the form of the multiplicity of objects
present in region i0 at the moment when the system halts.

A Fuzzy ACS with proteins on membranes generates a language L(FACSP )
as follows: An object x ∈ O∗ which is present in the region i0 at the moment
when the system halts is said to be in L(FACSP ) iff it is derivable from any
object S ∈ O and the grade of membership ωL(FACSP )(x) is greater than 0,
where

ωL(FACSP )(x) =
(

max

1 ≤ k ≤ n

) [(
min

1 ≤ i ≤ lk

)
?ω(Rk

i )
]

,

x ∈ O∗ and n is the number of different derivatives that x has in FACSP , lk is
the length of the kth derivative chain, Rk

i denotes the label of the ith multiset
evolution rule used in the kth derivative chain, i = 1, 2, . . . , lk.

Clearly, ωL(FACSP )(x) = Strength of the strongest derivative chain for S to
x for all x ∈ O∗.

We denote in the usual way by FACSPm(pror; list of types of rules) the fam-
ily of languages L(FACSP ) generated by systems Π with at most m membranes,
using rules as specified in the list of types of rule and with at most r proteins
present on a membrane. When parameters m or r are not bounded, we use ∗ as
a subscript.

3 Simulation of FACSP

The mathematical simulation pattern of rate constants (k) with substrate con-
centrations are analysed.

3.1 FACSP in Oxidation of Sulfides

Process. We describe the formation of intermediate between complex and the
oxidant.
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(a) Z + X(F3)X → X(F4O)X;
X(F4O)X + Y -RSR′ → X(F3)X + Y -RSOR′

A simple abstract reaction scheme is followed.
Case I : X = H
Following convention is used to do the computation.
Y = H = L, Y = OCH3 = M,Y = CH3 = N,
Y = F = P, Y = Cl = Q,Y = Br = U, Y = NO2 = V .
Now (a) will have the following reaction rules

1. Z + H(F3)H → H(F4O)H;
H(F4O)H + L-RSR′ → H(F3)H + L-RSOR′

2. Z + H(F3)H → H(F4O)H;
H(F4O)H + M -RSR′ → H(F3)H + M -RSOR′

3. Z + H(F3)H → H(F4O)H;
H(F4O)H + N -RSR′ → H(F3)H + N -RSOR′

4. Z + H(F3)H → H(F4O)H;
H(F4O)H + P -RSR′ → H(F3)H + P -RSOR′

5. Z + H(F3)H → H(F4O)H;
H(F4O)H + Q-RSR′ → H(F3)H + Q-RSOR′

6. Z + H(F3)H → H(F4O)H;
H(F4O)H + U -RSR′ → H(F3)H + U -RSOR′

7. Z + H(F3)H → H(F4O)H;
H(F4O)H + V -RSR′ → H(F3)H + V -RSOR′

3.2 Behaviour of FACSP

Consider the FACSP

Γ = (O,P, μ,w1/z1, w2/z2, E, (Rp, ρ), i0, J, ω)
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where

– O = {Z,A1, B, Si, Pi, i = 1, . . . , 7},
– P = {A1, B},
– μ = [1[2 ]2]1,
– w1, w2 are the multisets of objects present in the regions 1, 2 of μ, w1 =

{Z, Si, i = 1, . . . , 7}, w2 = {φ},
– z1, z2 are the multisets of proteins present on the membranes 1, 2 of μ, z1 =

{A1}, z2 = {φ},
– E = {φ},
– Rp are finite sets of Fuzzy multiset evolution rules, p = {1, 2}
– ρ = φ,
– i0 = 2 is the output membrane,
– J = {Rpi ∈ Rp/q = 1 ≤ i ≤ q}, q = cardinality of Rp,
– ω : J → [0, 1] is the membership function s.t. ω(Rpq) = i, i ∈ [0, 1], where

ωL(FACSP )(x) =
(

max

1 ≤ k ≤ n

) [(
min

1 ≤ i ≤ lk

)
?ω(Rk

i )
]

and x ∈ O∗

Rp = {R1, R2} consists the following evolution rules.

R1 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R11 : [1A1|Z]1 → [1B|φ]1;
[1B|S1]1 → [1A1| [2 |P1]2]1
with ω(R11) = 0.0025

R12 : [1A1|Z]1 → [1B|φ]1;
[1B|S2]1 → [1A1| [2 |P2]2]1
with ω(R12) = 0.01

R13 : [1A1|Z]1 → [1B|φ]1;
[1B|S3]1 → [1A1| [2 |P3]2]1
with ω(R13) = 0.0059

R14 : [1A1|Z]1 → [1B|φ]1;
[1B|S4]1 → [1A1| [2 |P4]2]1
with ω(R14) = 0.0016

R15 : [1A1|Z]1 → [1B|φ]1;
[1B|S5]1 → [1A1| [2 |P5]2]1
with ω(R15) = 0.0011

R16 : [1A1|Z]1 → [1B|φ]1;
[1B|S6]1 → [1A1| [2 |P6]2]1
with ω(R16) = 0.0009

R17 : [1A1|Z]1 → [1B|φ]1;
[1B|S7]1 → [1A1| [2 |P7]2]1
with ω(R17) = 0.00027

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

R2 = φ.
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In its initial configuration, the system contatins 2 membranes with 8 objects
{Z, Si, i = 1, ..., 7} and a biological protein A1 on membrane 1. It has two steps.
In the first step, any one of the 7 rules is selected randomly. Let the rule R11 be
applied. Then the protein A1 is changed into B. In the second step, the protein
change back from B to A1 and the object S1 evolved into P1 and move to
membrane 2. Since there is no rule that can transform the object in membrane 2
further, the process halts. The resulting object in the output membrane 2 is P1.

max
1 ≤ k ≤ n

[
min

1 ≤ i ≤ l1
(0.0025)

]
= 0.0025;

ωL(FACSP )(P1) = 0.0025

FACSP

Similar process will be done when other rules are applied. As a result,
the membership values ωL(FACSP )(Pi) for i = 1 to 7 are obtained. Hence
L(FACSP ) = {Pi/i = 1 to 7}.

We obtain different languages with corresponding membership values for dif-
ferent complexes (Ai, i = 1 to 7). The membership values for different complexes
are tabulated as follows (Table 1).

We denote by FACSP2(pro1; 7ffp) the family of languages L(FACSP ) gen-
erated by Γ with atmost 2 membranes using rules as specified in the 7ffp rules
and with atmost one protein.

3.3 Mathematical Modeling and Simulation of FACSP

Chemical equations are commonly written in the following way:

A + B −→ C + D

indicating that species A and B react together to form species C and D. From the
chemical equation we can easily write the rate equation. It is important to note



Simulation of Fuzzy ACSH on Membranes with Michaelis-Menten Kinetics 149

Table 1. Membership values ωL(FACSP )(Pi) = ω(Pi).

Complex ω(P1) ω(P2) ω(P3) ω(P4) ω(P5) ω(P6) ω(P7)

A1 0.0025 0.01 0.0059 0.0016 0.0011 0.0009 0.00027

A2 0.006 0.034 0.023 0.0054 0.0028 0.0029 0.0009

A3 0.0055 0.023 0.019 0.0062 0.0025 0.0026 0.0008

A4 0.0017 0.0025 0.0019 0.0009 0.00084 0.00072 0.00023

A5 0.00089 0.0018 0.00096 0.00062 0.00051 0.0004 0.00017

A6 0.015 0.066 0.043 0.011 0.008 0.0065 0.0021

A7 0.00053 0.0011 0.00076 0.00042 0.0004 0.0003 0.00019

that most chemical systems are assumed to follow mass action kinetics, meaning
that the reaction rate is proportional to the concentration of the reactants.

− ˙[A] = −ra = k[A][B]

Here [A] represents the concentration of species A, ra is the reaction rate and k
is the rate constant of the reaction. ra is by convention negative since A is being
consumed in the reaction. Now we describe the natural phenomenon of Fuzzy
ACS in oxidation of sulfides. The mathematical model [10] is used because of its
theoretical simplicity. The mathematical modeling of FACSP is given below.

[1A1|Z]1
k1−−→
k−1

[1B|φ]1 (1)

[1B|S1]1 −→
k2

[1A1|[2|P1]2]1 (2)

In Eqs. (1) and (2), ki, i = 1, 2 are the reaction rate for each individual reaction,
while Z,A1, B, S1 and P1 are species. The molar concentration of A1 is denoted
by [A1] likewise for the other species. The equations for the evolution of [A1]
and [S1] are as follows.

d[A1]/dt = k2[B][S1] − k1[Z][A1] (3)

d[S1]/dt = −k2[B][S1] (4)

The above equations are of the form

d[A1]/dt = F1([A1], [S1])

d[S1]/dt = F2([A1], [S1])

where
F1([A1], [S1]) = k2[B][S1] − k1[Z][A1]

F2([A1], [S1]) = −k2[B][S1]
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Equilibria. The equilibria of (3) and (4) is given by solving the system

k2[B][S1] − k1[Z][A1] = 0 (5)

− k2[B][S1] = 0 (6)

From (5)
k2[B][S1] = k1[Z][A1]

[B] = (k1[Z][A1])/(k2[S1]) (7)

(5)–(6) gives
2k2[B][S1] − k1[Z][A1] = 0

k1[Z][A1] = 2k2[B][S1]

[A1] = (2k2[B][S1])/(k1[Z]) (8)

[S1] = (k1[Z][A1])/(2k2[B]) (9)

From Eq. (5), we obtain
S1 = α(A1) where α = k1[Z]/k2[B]

([A1], [S1]) = ([A1], α[A1])

From Eq. (6),
([A1], [S1]) = (0, 0)

Hence (0, 0) and ([A1], α[A1]) are the equilibrium of the system.

Stability. To evaluate stability, we evaluate the Jacobian at the stationary
state.

∂(F1)/∂[A1] = −k1[Z]; ∂(F1)/∂[S1] = k2[B];

∂(F2)/∂[A1] = 0; ∂(F2)/∂[S1] = −k2[B]

J =
(

∂(F1)/∂[A1] ∂(F1)/∂[S1]
∂(F2)/∂[A1] ∂(F2)/∂[S1]

)
=

(−k1[Z] k2[B]
0 −k2[B]

)

Trace J = −(k1[Z] + k2[B])

The eigen value equation or characteristic equation is applied in order to
evaluate the stationary state.

det(J − λI) = 0

Arranging these values into matrix form gives
(−k1[Z] − λ k2[B]

0 −k2[B] − λ

)
= 0
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i.e.,
λ2 + (k1[Z] + k2[B])λ + k1k2[Z][B] = 0

Using Eq. (7)

[S1]λ2 + ([S1] + [A1])k1[Z]λ + k2
1[Z]2[A1] = 0 (10)

Here we state that,

k1 = 2.5 × 10−3, [Z] = 5 × 10−3, [S1] = i × 10−3, i = 0, 2, 4, 10, [A1] = 2 × 10−4

Solving the quadratic Eq. (10) for different values of [S1] using MATLAB,
eigen values of the Jacobian matrix are obtained.

The eigen values for different catalysts for the sulfoxidation reactions are
tabulated in Table 2. From the data collected, all Eigen values are real and
negative since λ1 < 0 and λ2 < 0. Thus the system is stable. The changes for
the eigen values with substrate concentrations are plotted.

Table 2. Eigen values for different catalysts

A1 A2 A3 A4 A5 A6 A7

s1 λ1 −1.25 −3 −2.75 −85 −44.5 −7.5 −26.5

λ2 0 0 0 0 0 0 0

s2 λ1 −0.05 −0.0017 −0.00115 −0.0125 −0.9 −0.0033 −0.55

λ2 −0.005 −0.00017 −0.000115 −0.00125 −0.09 −0.00033 −0.055

s3 λ1 −0.0295 −0.00115 −0.095 −0.95 −0.48 −0.00215 −0.38

λ2 −0.00148 −0.000058 −0.00475 −0.0475 −0.024 −0.000108 −0.019

s4 λ1 −0.8 −0.027 −0.95 −0.0475 −0.31 −0.055 −0.21

λ2 −0.0267 −0.0009 −0.48 −0.024 −0.0103 −0.00183 −0.007

s5 λ1 −0.55 −0.014 −0.0125 −0.42 −0.255 −0.04 −0.2

λ2 −0.0138 −0.00035 −0.00031 −0.0105 −0.0064 −0.001 −0.005

s6 λ1 −0.45 −0.0145 −0.013 −0.36 −0.2 −0.0325 −0.15

λ2 −0.009 −0.00029 −0.00026 −0.0072 −0.004 −0.00065 −0.003

s7 λ1 −0.135 −0.45 −0.4 −0.00115 −8.5 −0.0105 −9.5

λ2 −0.0023 −0.0075 −0.0067 −0.000019 −0.142 −0.00017 −0.158

When the concentration of the substrate (sulfides) increases there is an
increase in rate constant and attains saturation at higher concentration (Fig. 1).
When these results are examined mathematically using Fuzzy ACSH on mem-
branes there is a consistancy between the pattern of plots obtained for kinetic
results. As the concentration of the substrate increases, the eigen values first
decreases and increases. It becomes constant at higher rate constant. This behav-
iour can be correlated to the saturation kinetics of chemical reactions. The pat-
tern is shown in figure (Figs. 2 and 3).
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Fig. 1. k1 vs. [substrate] for complex 1 catalyzed H2O2 oxidation of 1–7

Fig. 2. (S, λ1)
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Fig. 3. (S, λ2)

4 Conclusion

The new membrane computing model FACSP (Fuzzy ARMS in Artificial Cell
System with Proteins on membranes) is analysed in its environment. The sta-
bility and equilibrium of the system are determined. The eigen values and the
critical points of different catalysts for the sulfoxidation reactions are obtained. A
mathematical approach is constructed to show the consistency of Fuzzy ACSH
on membranes with the Michaelis-Menten kinetics. It is interesting to note that
there is a correlation between the two types of plots.
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