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Preface

Bio-inspired computing is a field of study that abstracts computing ideas (data struc-
tures, operations with data, ways to control operations, computing models, etc.) from
living phenomena or biological systems such as evolution, cells, tissues, neural net-
works, immune system, and ant colonies. Bio-Inspired Computing: Theories and
Applications (BIC-TA) is a series of conferences that aims to bring together researchers
working in the main areas of natural computing inspired from biology, for presenting
their recent results, exchanging ideas, and cooperating in a friendly framework. The
conference has four main topics: evolutionary computing, neural computing, DNA
computing, and membrane computing.

Since 2006, the conference has taken place at Wuhan (2006), Zhengzhou (2007),
Adelaide (2008), Beijing (2009), Liverpool and Changsha (2010), Penang (2011),
Gwalior (2012), Anhui (2013), Wuhan (2014), and Anhui (2015). Following the
success of previous editions, the 11th International Conference on Bio-Inspired
Computing: Theories and Applications (BIC-TA 2016) was organized by Xidian
University, during October 28–30, 2016.

BIC-TA 2016 attracted a wide spectrum of interesting research papers on various
aspects of bio-inspired computing with a diverse range of theories and applications.
We received 343 submissions, of which 115 papers were selected for two volumes of
Communications in Computer and Information Science.

We gratefully thank Xidian University, Huazhong University of Science and
Technology, and Northwestern Polytechnical University for extensive assistance in
organizing the conference. We also thank Dr. Jiao Shi and all other volunteers, whose
efforts ensured the smooth running of the conference.

The editors warmly thank the Program Committee members for their prompt and
efficient support in reviewing the papers, and the authors of the submitted papers for
their interesting papers.

Special thanks are due to Springer for their skilled cooperation in the timely pro-
duction of these volumes.

October 2016 Maoguo Gong
Linqiang Pan

Tao Song
Gexiang Zhang
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Abstract. Self-assembly is the process that the component form an
ordered form or structure. Because of the biochemical characteristics of
DNA molecules, they become a research emphasis in the field of self-
assembly. DNA-based self-assembly technology has been widely used in
the fields of nanometer machining, molecular circuit, polymer materials,
and so on. DNA self-assembly is an effective mechanism that nanometer
structure is built bottom-up. In order to overcome the problem that any
kind of self-assembled model can only solve the single algorithm, in this
paper, a new DNA self-assembly algorithmic model is designed to solve
compound logic operators problem. Five types of DNA tiles are designed
according to the characteristic of compound operation problem, namely
Initial Tile, Process Tile, Operation Tile, End Tile and Boundary Tile.
At last, the process of self-assembly are demonstrated by an instance.

Keywords: DNA self-assembly · Compound logic operators ·
Algorithmic model

1 Introduction

DNA computing [1–3] is an important research content in the crossing field of
computer science and biological science. It is a new and fast-developing direction
along with the successful completion of human genome project. In 1994, Adleman
implemented to solve Hamiltonian Path Problem that there are seven vertices
by the biological method according to the complementarity principle of DNA
molecular bases [4]. The birth of DNA computing marks the appearance of a
new computing mode and breaks the original calculation model. It opens up a
new path for solving various complicated problem.

The basic principle of DNA computing [5] is that DNA sequences are used
as a carrier of information coding, and the specific DNA sequences are used to
map the problem by the double helix of DNA molecules and the properties of
the complementary base pairing. Using enzymes as operator, the solution space
is generated by controllable biochemical reactions. Then, the solution results are
extracted by polymerase chain reaction PCR, aggregation, overlapping ampli-
fication technology POA, ultrasonic degradation, affinity chromatography, elec-
trophoresis, molecular and purification, separation of magnetic beads and other
modern molecular biological technology.
c© Springer Nature Singapore Pte Ltd. 2016
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Self-assembly is an extremely common phenomenon in the nature. The bio-
chemical process of synthesis of DNA, transcription and regulation of RNA, syn-
thesis and folding of protein synthesis or the generation of living organisms is the
product of self-assembly. In the process of self-assembly, human only can design
product and open the process of self-assembly. When self-assembly process begins
automatically, no longer need any external forces. Winfree et al. [6] firstly came
up with the idea of computing by self-assembly tiles. In 2000, Mao et al. first
put forward three cross Tile based-DNA self-assembly model, then the model
was verified that it can implement accumulation of exclusive or operation by
biological experiment [7]. In 2006, He et al. presented a kind of self-assembly
model that can realize two nonnegative binary integer addition by coding DNA
single sequence [8]. In 2009, on the basis of Brun work, Zhang et al. formed the
division operation system by DNA self-assembly [9]. In 2010, Lai et al. used lin-
ear self-assembly to implement two nonnegative binary integer subtraction [10].
In 2011, Zhang et al. combined AuNP self-assembled polymerization with DNA
computing, and constructed DNA self-assembly logic calculation model [11]. In
2013, Fan et al. built logic gates to implement the single logic operator by DNA
self-assembly [12]. In 2016, Bi et al. used self-assembly of duplex-looped DNA
hairpin motif based on strand displacement reaction to solve logic operations
[13].

At present, using self-assembly model to solve simple operation has gained
some achievement, including mathematics, logic, and other operations. How-
ever, any kind of self-assembled model can only solve the single algorithm. For
compound operation, even the most basic operations, the existing models are
unable to realize. Only through the way of dismantling, compound operations
was dismantled into several simple operations, then they are solved one by one.
This paper proposes a new DNA self-assembly system, in which both additive
operation and subtraction operation can been realized simultaneously.

2 The Principle of DNA Self-assembly

DNA self-assembly [6] is a Tile-based calculation mode. Problem is mapped to
the initial framework. Under the condition of certain biochemical reaction, the
assembly process between Tile and assembly is implemented through the comple-
mentary matching. Final assembly is the output of problem. DNA self-assembly
models are divided into three types, namely linear model, 2D self-assembly model
and 3D self-assembly, in which, 2D self-assembly model is currently the most
widely used model. 2D self-assembly model is made up of four parts, namely
basic Tile, bonding strength function, seed Tile and strength parameters. Basic
Tile is used to build the various calculation operator, store data that is pro-
duced in the operation process and perform various calculations. Each side of
Tile has some identification in order to indicate different numerical or operator.
Bonding strength function is used to define the combination intensity between
two stick ends of two adjacent tiles. Seed Tile is used to define start and end of
the self-assembly. Strength parameters are used to represent thermal and kinetic
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parameters. Only when the summation of bonding strength parameters between
every two tiles is greater than the given parameter, the assembly reaches the
steady state.

In the process of solving practical problems, we usually abstract and sim-
plify the molecule so as to improve the efficiency of modeling. Every abstract
DNA Tile owns four coupling ends, and every coupling end expresses a special
sticky end. Two sticky ends with complementary characteristics can be con-
nected together. σLU , σLD, σRU and σRD represent four sticky ends respectively.
According to the needs of the problem, a variety of different DNA structures can
been constructed through the design of their operational function so as to realize
a variety of different operations (Fig. 1).

Fig. 1. The abstract diagram of DNA Tile

3 Compound Logic Operators

Logic operation [11–13] is also called Boolean operation. Boolean used mathe-
matical method to study on logic problems, and created succeeded the logical
calculus. He uses equation to express verdict, and the ratiocination is regarded
as the transformation of the equation. The effectiveness of this transformation is
not depend on the explanation of symbols, and only depends on the combination
of the symbols. This logic theory is referred to as Boolean algebra. In the 1930s,
logic algebra was applied to the circuit system. And then, due to the development
of electronic technology and computer, the transformation rules of all sorts of
complex large systems compliance with laws that Boolean reveals. Logical oper-
ators are usually used to test the true and false value. One of the most common
logic operator is used to determine whether leave cycle or continue to execute the
instruction in the cycle. There are only two logic constants, namely 0 and 1, and
they are used to represent two contrary logic states. As with ordinary algebra,
logic variables can also been expressed by letters, symbols, Numbers and their
combination. But they have the essential difference. The values of logic constant
only have two possibilities, namely 0 and 1, and no have intermediate value.
Table 1 shows the rules of three common logic operators. They are XOR, NOR
and NAND respectively.
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Table 1. The rules of three common logic operators

x1 x2 XOR NOR NAND

0 0 0 1 1

0 1 1 0 1

1 0 1 0 1

1 1 0 0 0

4 Theoretical Model of Compound Logic Operators

Theoretical model of compound logic operators is designed contains five types of
Tile, namely Initial Tile, Process Tile, Operation Tile, End Tile and Boundary
Tile. Initial Tile express the start of the self-assembly process and record the first
parameter of compound logic operators. Process Tile is the passing tile, and it is
used to pass the calculation parameter and intermediate result. Operation Tile
is the operational rule tile, and End Tile is the final result tile. Boundary Tile
is used to control the growth direction and array orientation of self-assembly.

4.1 Initial Tile

Initial Tile is used to express the start of the self-assembly process and record
the first parameter of compound logic operators. This type of Tile owns three
stick ends, namely σLU , σRU and σRD. σLU and σRD are responsible for the
connection. When bonding strength is greater than the given parameter, Initial
Tiles are connected by σLU and σRD. σRU is used to transmit the first parameter
and connect Operation Tile. Initial Tile only owns two types. One type expresses
‘0’, and the other expresses ‘1’ (Fig. 2).

Fig. 2. Initial Tile

4.2 Process Tile

The role of Process Tile is the other parameter of compound logic operators
or the store of intermediate result. Process Tile also owns two types. One type
expresses ‘0’, and the other expresses ‘1’. Process Tile owns four stick ends,
namely σLU , σLD, σRU and σRD. When bonding strength is greater than the
given parameter, Process Tiles are connected by σLU and σRD. σLD is used to
receive the intermediate result and the front logic operator and connected with
Operation Tile, and owns six states. The intermediate result is transmitted by
σRU (Fig. 3).



DNA Self-assembly Model to Solve Compound Logic Operators Problem 7

Fig. 3. Process Tile

4.3 Operation Tile

Two calculation parameters are connected by Operation Tile. In this paper, com-
pound logic operators contain XOR, NOR and NAND, therefore, Operation Tile
owns three types. Operation Tile also owns four stick ends, namely σLU , σLD,
σRU and σRD. When bonding strength is greater than the given parameter, σLU

and σRD are used to connect two adjacent Operation Tiles. The front parameter
is transmitted by σLD, and the arithmetic is transmitted by σRU (Fig. 4).

Fig. 4. Operation Tile

4.4 End Tile

End Tile marks the end of the operation and outputs the final result. End Tile
only owns two types. End Tile owns three stick ends, namely σLU , σLD and
σRD. σLU and σRD play an role in connecting End Tiles. σLD is used to receive
the final result of compound logic operators (Fig. 5).

Fig. 5. End Tile

4.5 Boundary Tile

Boundary Tile is used to control the growth direction and array orientation of
self-assembly, and is divided into two types. One is Start Boundary Tile which
marks the beginning of a line of tile assembly. The other is End Boundary Tile
which marks the end of a line of tile assembly. The role of all of their stick ends
is the connection (Figs. 6 and 7).
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Fig. 6. Start Boundary Tile

Fig. 7. End Boundary Tile

5 The Model Instance of Compound Logic Operators

In this paper, a model instance of compound logic operators is given as so to
illustrate the correctness of the self-assembly model. The model of compound
logic operators is used to calculate 110010 ⊕ 011001 ∧ 110011 ∨ 001010. Five
kinds of tile in accordance with a certain number mix into the mix pool. They
can react automatically, and do not need any manual intervention. Figures 8, 9
and 10 show the bottom-up process. Figure 8 shows the self-assembly process of
XOR operation, and Fig. 9 shows the self-assembly process of NAND operation.
Figure 10 shows the self-assembly process of NOR operation.

Fig. 8. Self-assembly of XOR operation
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Fig. 9. Self-assembly of NAND operation

Fig. 10. Self-assembly of NOR operation
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6 Conclusions

In this paper, DNA self-assembly model of logic operators is designed. According
to the characteristic of the compound operators, we design five types of DNA
Tiles which meet the needs of computation, namely Initial Tile, Process Tile,
Operation Tile, End Tile and Boundary Tile. We demonstrate the process of self-
assembly by an instance. The computation time that the final result is gotten is
linear, and the model can greatly control the complexity of computation. How
to use membrane computing strategy, such as [14–18] to develop DNA based
computing models is a worthy research direction.
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Abstract. The molecular computing has been successfully employed to
solve more and more complex computation problems. However, as an
important complex problem, the Computational Tree Logic (CTL) model
checking is still far from resolved under the circumstance of molecular
computing, since it is still a lack of method. To address this issue, an
autonomous model checking method is presented for checking all the basic
constructs of CTL using DNA computing and sticker automata. As a
result, the CTL model checking problem under the circumstance of molec-
ular computing is solved preliminary. The simulated experimental results
demonstrate the effectiveness of the new method in molecular biology.

Keywords: Model checking · Computational tree logic · DNA
computing · Sticker automata

1 Introduction

Differ from an electronic computer, a DNA computer use DNA molecules as
the carrier of computation. In 1994, a Turing Award winner professor Adleman
solved a small scale Hamilton path problem with a DNA experiment [5], and
it is considered the pioneer work in the field of DNA computing. Since the
DNA computing has a huge advantage of parallel computing, this technique
was subsequently developed rapidly. After this famous experiment, many models
and methods based on DNA computing were presented for solving some complex
computational problems, especially the famous NP-hard problems and PSPACE-
hard ones. For examples, Lipton reported that promoted Adlemans idea and
tried to solve the SAT problem [6], Ouyang presented a DNA-computing-based
model for solving the maximal clique problem [7], Shapiro solved an automata
problem of two states and two characters using the autonomous DNA computing
technique [8].

One of the key differences between computer and other computing tools is
the universality. Xu constructed a mathematical model called “probe machine”
for the general DNA computer [10]. By integrating the storage system, operation
system, detection system and control system into a whole, he gradually obtains
c© Springer Nature Singapore Pte Ltd. 2016
M. Gong et al. (Eds.): BIC-TA 2016, Part I, CCIS 681, pp. 12–20, 2016.
DOI: 10.1007/978-981-10-3611-8 2



Model Checking Computational Tree Logic Using Sticker Automata 13

a real general DNA computer—“Zhongzhou DNA computer” [10]. According to
result from [9], a probe machine is a nine-tuples consisting of data library, probe
library, data controller, probe controller, probe operation, computing platform,
detector, true solution storage and residue collector. It is an universal DNA
computing model which can be realized in biology, and a Turing machine is just
a “special case” of a probe machine [9]. This significant progress has raised the
practical importance of the researches on DNA computing.

Beside the satisfiablity problem, the Model Checking (MC) one is another
important computational problem. And the two problems are correlative. The
MC was proposed by the Turing Award winner Clarke et al. [1]. In order to
describe the different temporal properties, the researchers have presented some
different temporal logics. The Turing Award winner Pnueli introduced Linear
Temporal Logic (LTL for short) into computer science in [2], and this logic
can express the linear properties. The Turing Award winner Clarke proposed
Computation Tree Logic (CTL for short) in [3,4], and this logic can express the
branch properties.

As a complex computational problem, the model checking under the cir-
cumstance of DNA computing is always the goal of researchers. In 2006, the
Turing Award winner Prof. Emerson employed some DNA molecules to conduct
CTL model checking for the first time [11]. As for LTL, the model checking
is a PSPACE problem in the classical computing, and we have found a DNA-
computing-based method, see Reference [12,13], which can be used for checking
all four basic constructs and some popular formulas. The basic constructs in
CTL are: EpUq, ApUq, EFp, AFp, EGp, AGp, EXp, AXp. We can obtain arbi-
trary CTL formula by combining these basic constructs recursively. Up to now,
many basic constructs in CTL cannot be conducted model checking within the
framework of DNA computing. This is the problem to be solved in this paper.

2 Preliminary

2.1 The Basic Constructs in CTL [1]

Definition 1. Let p and q be atomic propositions, EpUq, ApUq, EFp, AFp,
EGp, AGp, EXp and AXp be the basic CTL construct. An arbitrary CTL for-
mula can be obtained by combining recursively some basic CTL constructs. An
atomic proposition and a basic CTL construct are interpreted on a system model
M, and their intuitive meanings are given as follows.

• p or q is satisfied in a state s, or not.
• EpUq describes the following property: There exists at least one path in M,

such that p is always satisfied until q is satisfied.
• ApUq describes the following property: For each path in M, p is always sat-

isfied until q is satisfied.
• EFp describes the following property: There exists at least one path in M,

such that p is eventually satisfied.
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• AFp describes the following property: For each path in M, p is eventually
satisfied.

• EGp describes the following property: There exists at least one path in M,
such that p is always satisfied.

• AGp describes the following property: For each path in M, p is always
satisfied.

• EXp describes the following property: There exists at least one path in M,
such that p is satisfied in the next state.

• AXp describes the following property: For each path in M, p is satisfied in
the next state.

Given an arbitrary model M, how to use the DNA-computing-based method to
determine whether the basic CTL constructs be satisfied by M or not? To this
end, Sect. 3 will give such an approach (Fig. 1).

Fig. 1. An example on LFSA: systematic FSA model M1 which is used in experiments

2.2 Finite State Automata and Model Checking

Definition 2. A Finite State Automaton (FSA) is a five-tuples (Σ,Q, T, q0, F ),
where

• Σ is a finite alphabet
• Q is a finite set of states
• T is a finite set of transitions: T : Q × Σ → R(Q)
• q0 ∈ Q is an initial state
• F ⊆ Q is a set of acceptance states

2.3 Sticker Automata and DNA Model Checking

2.3.1 Sticker Automata
As a model of DNA computing, a sticker automaton can realize a FSA. Given a
DNA strand charactering an input string and a FSA, the sticker automaton can
determine whether or not the string is accepted by the FSA.

2.3.1.1 The Encoding Way of FSA and Input String

Reference [14] gives the following way of DNA encoding
Supposing M = (Σ,S, T, s0, F ) is a FSA, and every character a in the alpha-

bet Σ can be encoded as C(a), we have:
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(1) An input string a1, . . . , an in Σ can be encoded with the following single-
stranded DNA molecule: 5

′
I1 X0 . . . Xm C(a1) . . . X0 . . . Xm C(an)

X0 . . . Xm I2 3
′
, where I1 is an initiator sequence, X0 . . . Xm is a spacer

sequence separating C(ai),and I1 is a terminator sequence.
(2) A transition T (si, a) = sj is encoded as 3

′
Xi+1 . . . Xm C(a) X0

. . . Xj5
′
,where X means the Watson-Crick complement (WC for short) of a

nucleotide X, C(a) means the WC of the DNA strand charactering a.
(3) An initial state si is encoded as 3

′
I1 X0 . . . Xi 5

′
.

(4) An acceptance state sj is encoded as 3
′
Xj+1 . . . Xm I2 5

′
.

2.3.1.2 The Process of DNA Computing Based on Sticker Automata

The computational process of sticker automata can be concluded as follows [14].

Step 1: Data preprocessing
(1) Synthesize some DNA strands charactering an automaton and its input

strings.
(2) Put all the DNA strands into the test tube T, and anneal to make sure that

the strands and their WC complements can be hybridized completely. The
process of base pairing and the placement of ligase can form complete or
partial double stranded DNA molecules.

Step 2: Computation
After the first step, we will see the following phenomena. If the input string is

acceptedby the automaton, the tubeTcontains only the complete double stranded
DNA molecules which begin with an initiator sequence and terminate at a termi-
nator sequence. Otherwise, there are partial double stranded DNA molecules or
single stranded DNA molecules in T. Therefore, we add some ribozymes called
Mung Bean into the test tube T, in order to degrade the single stranded DNA
fragment, and retain the complete double stranded DNA molecules.
Step 3: Output of results

We can separate the different DNA molecules with different lengths using elec-
trophoretic technique. If there exists a variety of length of DNA molecules, it indi-
cates that there are some partial double stranded DNA molecules in T before we
add the ribozymes, and the input string cannot be accepted by the automaton.
Otherwise, T contains only complete double stranded DNA molecules before we
add the ribozymes, and the input string can be accepted by the automaton.

2.3.2 DNA Model Checking
On the basis of sticker automata, Reference [13] presented a DNA-computing-
based LTL model checking method, which can be denoted as the algorithm
TL-MC-DNA(DNACODE(A),x), where DNACODE(A) and x are two input of
the algorithm, A is a FSA expressing a run of a system, DNACODE(A) is an
encoding with a sticker automaton for charactering A, x = DNACODE(A(f)) is
an encoding with a sticker automaton for charactering A(f), and A(f) is a FSA
model of a formula f. In Reference [13], the scope of f includes the all the basic
LTL formulas and some popular LTL formulas, f formula for short. The output
of the algorithm is yes or no, representing the result of the model checking.
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3 The DNA Model Checking Method for the Basic CTL
Constructs

If the encoding of sticker automaton which realizes a FSA of a system and
the encoding of sticker automaton which realizes a FSA of a formula are
inputted, the algorithm TL-MC-DNA(DNACODE(A), DNACODE(A(f)) in [13]
can compute and return a result of model checking. This paper expands range
of f, and a series of new encoding of sticker automata. By computing TL-
MC-DNA(DNACODE(A), DNACODE(A(f′′)), where f′′ = {ϕ1}, (f′′ formula for
short), we can perform DNA model checking for the one temporal logic formula.
Ref. [13] has confirmed the effectiveness of the algorithm TL-MC-DNA for the f
formulas by simulated biological experiments.

3.1 The DNA Model Checking for the Four Universal Formulas

Comparing the CTL formula ApUq and the LTL formula pUq, we can clearly
see that these two formulas have the same semantics. Therefore, we can use the
algorithm TL-MC-DNA(DNACODE(A), x) to check the CTL formula ApUq.
Similarly, the algorithm TL-MC-DNA(DNACODE(A), x) can also be employed
to check the CTL constructs AFp, AGp and AXp. The obtained algorithm is
formulated as follows.

Algorithm 1. The DNA model checking algorithm for the universal CTL formulas
CTLQ-MC-DNA(DNACODE(A), DNACODE(A(fq))
INPUT: the encoding of sticker automaton which realizes a systematic FSA A, the
encoding of sticker automaton which realizes a FSA of an universal CTL formula fq,
where fq=ApUq, AFp, AGp or AXp
OUTPUT: whether A satisfies fq, or not

BEGIN
Step 1:
SELECT CASE fq

CASE ApUq
g:=pUq // where g is a f formula

CASE AFp
g:=Fp // where g is a f formula

CASE AGp
g:=Gp // where g is a f formula

CASE AXp
g:=Xp // where g is a f formula

ENDSELECT
Step 2: y:=TL-MC-DNA(DNACODE(A), DNACODE (A(g))
Step 3: IF y=“yes”,THEN return “yes”, ELSE return “no”
END
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3.2 The DNA Model Checking for the Four Existence Formulas

The formula EpUq and the formula ApUq have the following relationship:

¬EpUq = A¬p
−−
U ¬q. That is to say, EpUq =¬A¬p

−−
U ¬q. The formula EGp

and the formula AFp have the following relationship:¬EGp = AF¬p, that is
to say, EGp =¬AF¬p. The formula EFp and the formula AGp have the fol-
lowing relationship:¬EFp = AG¬p, that is to say, EFp =¬AG¬p. The formula
EXp and the formula AXp have the following relationship: ¬EXp = AX¬p,

that is to say, EXp =¬AX¬p. Comparing A¬p
−−
U ¬q and ϕ1 =¬p

−−
U ¬q, we

can clearly see that these two formulas have the same semantics. Thus,
¬ϕ1 = EpUq. Therefore, we can use the algorithm TL-MC-DNA (DNA-
CODE(A), DNACODE(A(f′′ =ϕ1)) to check the CTL formula EpUq. Similarly,
the algorithm TL-MC-DNA(DNACODE(A), x) can also be employed to check
the CTL formulas EFp, EGp and EXp. The obtained algorithm is formulated
as follows.

Algorithm 2. The DNA model checking algorithm for the existence CTL formulas
CTLC-MC-DNA(DNACODE(A), DNACODE(A(fc))
INPUT: the encoding of sticker automaton which realizes a systematic FSA A, the
encoding of sticker automaton which realizes a FSA of an existence CTL formula fc,
where fc=EpUq, EFp, EGp or EXp
OUTPUT: whether A satisfies fc, or not

BEGIN
Step 1:
SELECT CASE fc

CASE EpUq
Step 1: g:= ϕ1

Step 2: y:=TL-MC-DNA(DNACODE(A), DNACODE(A(g))) //where g is a f′′ formula
Step 3: IF y=“yes”,THEN return “no”, ELSE return “yes” //ϕ1=¬(EpUq)

CASE EFp
Step 1: g:=G¬p
Step 2: y:=TL-MC-DNA(DNACODE(A), DNACODE(A(g))) //where g is a f′′ formula
Step 3: IF y=“yes”,THEN return “no”, ELSE return “yes” // G¬p=¬(EFp)

CASE EGp
Step 1: g:=F¬p
Step 2: y:=TL-MC-DNA(DNACODE(A), DNACODE(A(g))) //where g is a f′′ formula
Step 3: IF y=“yes”,THEN return “no”, ELSE return “yes” // F¬p=¬(EGp)

CASE EXp
Step 1: g:=X¬p
Step 2: y:=TL-MC-DNA(DNACODE(A), DNACODE(A(g))) //where g is a f′′ formula
Step 3: IF y=“yes”,THEN return “no”, ELSE return “yes” // X¬p=¬(EXp)

ENDSELECT
END

3.3 The DNA Model Checking for the Basic CTL Constructs

The principle of this algorithm is: (1) If a basic CTL construct is an universal
formula, the Algorithm 1 will be called. (2) And if a basic CTL construct is an



18 W. Zhu et al.

existence formula, the Algorithm 2 will be called. In this way, the model checking
of the basic CTL constructs can be conducted. The algorithm is formulated as
follows.

Algorithm 3. The DNA model checking algorithm for the basic CTL
constructs CTL-MC-DNA(DNACODE(A), DNACODE(A(fCTL))
INPUT: the encoding of sticker automaton which realizes a systematic FSA A, the
encoding of sticker automaton which realizes a FSA of a basic CTL construct fCTL

OUTPUT: whether A satisfies fCTL, or not

BEGIN
Step 1: IF there exists fc, such that fCTL=fc,
THEN call CTLC-MC-DNA(DNACODE(A), DNACODE(A(fc))
ELSEIF there exists fq, such that fCTL=fq,
THEN call CTLQ-MC-DNA(DNACODE(A), DNACODE(A(fq))
ENDSELECT
END

4 Simulated Experiments

Experimental platform: NUPACK [15]

Experimental procedure: (1) one can design the encoding of the sticker
automata for the systematic FSA, as well as the encoding of the sticker automata
for the FSA of formula, respectively; (2) for these FSAs mentioned above, one
can simulate the process of hybridization between some single stranded DNA
molecules; (3) according to the algorithms proposed in this paper, one can get
the results of model checking of the several formulas, by reading the results of
hybridization.

Experimental objective: To test the correctness, effectiveness and biological
realizability of the new algorithms.

Fig. 2. checking the formula
ϕ1: the structural properties of
encoding sequence

Fig. 3. (Chromatic)
thermodynamic analy-
sis for ϕ1:minimum
free energy structure

Fig. 4. (Chromatic)
checking for ϕ1:pairing
probability in equilib-
rium
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(a) group 1: molecu-
lar concentrations

(b) group 1: location
and rate of pairing

(c) group 2: location
and rate of pairing

(d) group 3: location
and rate of pairing

(e) group 4: location
and rate of pairing

(f) group 5: location
and rate of pairing

(g) group 6: location
and rate of pairing

(h) group 7: location
and rate of pairing

(i) group 8: location
and rate of pairing

(j) group 9: location
and rate of pairing

(k) group 10: location
and rate of pairing

Fig. 5. (Chromatic) checking for ϕ1: the groups of sub-experimental results on base
pairing and hybridizations
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We have conducted the simulated experiments for ϕ1. We have designed a DNA
encoding via NUPAC. Figures 2, 3 and 4 show the thermodynamic analysis of
the encoding sequence at 10 Celsius degree. We have checked whether or not the
systematic FSA M1 satisfies the formula ϕ1. The results are shown in Fig. 5.

5 Conclusions

Early researches on DNA computing focus on the models and algorithms based
on non autonomous. In recent years, the DNA computing technique has devel-
oped to the self-assembly. The main results of this paper are the Algorithm 3,
which is based on the self assembly of sticker automata. With these algorithms
at hands, we can conduct model checking for the basic CTL constructs via some
DNA molecules. This is the main contribution of this paper.
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Abstract. DNA strand displacement has been widely used in designing
the molecular logic circuit, nanomedicine and molecular automata and
so on. In this article, the two-digit full subtractor is designed by DNA
strand displacement reaction and has been verified by the simulation
of DNA strand displacement. The accuracy of simulation results is fur-
ther confirmed that DNA strand displacement is a valid method for the
research of logical bio-chemical circuit. The multi-digit full subtractor
could be used in biological computer in the future.

Keywords: DNA strand displacement · Two-digit full subtractor ·
Visual DSD

1 Introduction

DNA nanotechnology has become a reliable way to control matter in the
nanoscale because of the specific of Watson-Crick base pairs [1–3]. DNA is an
ideal nanoscale engineering material and has been applied widely in molecular
device [4], logic circuit [5], nano-network [6], autonomous molecular walk [7,8],
nano-medicine [9] and so on. DNA strand displacement is a kind of new DNA
self-assembly method and has a series of the advantages.

AND gate, OR gate, and NOT gate were designed by the single strand nucleic
acids, and the signal restoration function was demonstrated [10]. Three-input
logic gate was developed by deoxyribozyme, and molecular full adder which con-
sists of a seven logic gate array was constructed [11]. In 2010, Boolean circuits
[12] were proposed to achieve a lot of functions, in which a latch circuit and a
D flip-flop are designed. A simple and universal method was invented to estab-
lish logic gates by Qian and Winfree [13]. A 74L85 standard 4-bit magnitude
comparator was simulated to prove its correctness [10]. The logic circuit [14] of
the square root of a four-bit binary number was designed, which is useful for
the next study. The implementation of logic AND gate by two grades strand
displacement reaction was described to design circuits [15]. The patterns of logic
AND gate and OR gate was put forward and confirmed by experiment [16].

DNA computing has been widely applied in DNA self-assembly technology
[17], DNA strand displacement technology [18,19] and probe machine [20] and
c© Springer Nature Singapore Pte Ltd. 2016
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so on. Compared with the past work [21,22], in this paper, the two-digit full
subtractor is constructed for the first time. The circuit can achieve the two-
digit subtraction function, which is different from the previous circuit. Many
more complex circuits could be designed on the basis of this circuit. And these
circuits could be applied to the biological computer in the future.

Based on DNA strand displacement molecular logic gates, a logical circuit of
implementing binary two-digit subtractor is presented, which could be simulated
in the programming language software. The paper is arranged as follows: the
background of DSD and the seesaw motif of basic gates are described in the
Sect. 2. The algorithm principle of binary two-digit subtractor and its dual-rail
circuit are shown in the Sect. 3. The seesaw circuit and the simulation in the
Visual DSD are shown in the Sect. 4. Finally, the conclusion about two-digit
calculation is discussed in Sect. 5.

2 DSD and Seesaw Motif of Basic Gates

DNA strand displacement reaction is a process, which means that one single
strand replaces another bounding single strand from complex. The single strand
serves as the input signal and another bounding single strand from complex
serves as output signal. The process of strand displacement and branch migration
is shown in Fig. 1. Firstly, the process is initialed in a toehold which is short and
usually consists of 4–6 base sequences [23–25,28–32]. Then branch migration
is processed in the process. Finally, the output strand is released. T represent
a short toehold domain and T* is the Watson-Crick complement pair of T.
The strand S4L-S4-S4R-T-S5L-S5-S5R and S5L-S5-S5R-T-S6L-S6-S6R indicate
input signal and output signal, respectively. S5L-S5-S5R is recognition domain.
If the input strand and output strand have the same toehold domain, then
the previous output could serve as the input of the next logic operation. This
favorable condition is provided to construct cascade between front gates and
back gates.

Fig. 1. The process of branch migration and strand displacement. T represents a short
toehold domain and T* is the Watson-Crick complement pair of T. The strand S4L-S4-
S4R-T-S5L-S5-S5R denotes input signal. The strand S5L-S5-S5R-t-S6L-S6-S6R indi-
cates output signal. S5L-S5-S5R is recognition domain.
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Boolean logic concerns the relationship of two numbers, which is a computing
method. Two states are defined: digit “0” and digit “1”, which often represent
that the event is false and true, respectively. There are the basic logical operation,
such as logic “AND”, logic “OR” and logic “NOT”.

The electronically logic gate can be transformed into an equivalent biochem-
ical logic gate through the certain corresponding rules. The seesaw DNA motif
of basic logic gates are shown in Fig. 2. An amplifying gate of one-input-three-
outputs is shown in Fig. 2(a). Two-input-one-output molecular “OR” gate and
“AND” gate are constructed (as shown in Fig. 2(c, d)) on the basis of the inte-
grating gate (as shown in Fig. 2(b)). In the DNA gates, logic “0” and logic “1”
are distinguished by high or low concentration.

Fig. 2. The seesaw DNA motif of basic logic gates. (a) One-input-three-output ampli-
fying gate. (b) Two-input-one-output integrating gate. (c, d) Abstract diagram of a
seesaw OR and AND gate.

3 Binary Two-Digit Subtractor and Dual-Rail Circuit

One-bit half subtractor and one-bit full subtractor have been constructed, but
they are unlikely to meet the needs of complying complex computations of bio-
computer. Therefore, it is necessary strongly to design the complicated logic
operation. Here, two-bit full subtractor (as shown in Fig. 3) is given to act as an
example, two-digit are taken as the input signal and two outputs are produced in
two-digit full subtractor. The truth table of two-digit full subtractor is given in
Table 1. According to the calculating principle of two-digit subtractor operation,
the corresponding logic circuit can be designed, as shown in Fig. 3. The logic
circuit works from the left to the right. In the Fig. 3, the number x2x1 and y2y1
which are located at the left side are the input single, the number s2s1 and b2
which are located at the right side are the output single. The number s2s1 and
b2 indicate the difference-bit and the borrow-bit, respectively.

If the input is absent in the response, the uncertain computation result will
be produced. Here, the dual-rail logic operation is adopted to avoid the false
output. In the dual-rail logic circuit, the original input is expressed by a pair
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Table 1. Truth table of two-digit full subtractor

Input Output Input Output

x2x1 y2y1 s2s1 b2 x2x1 y2y1 s2s1 b2

00 00 00 0 10 00 10 0

00 01 11 1 10 01 01 0

00 10 10 1 10 10 00 0

00 11 01 1 10 11 11 1

01 00 01 0 11 00 11 0

01 01 00 0 11 01 10 0

01 10 11 1 11 10 01 0

01 11 10 1 11 11 00 0

Fig. 3. The logic circuit of two-digit full subtractor operation. x2x1 and y2y1 are input
signal. s2s1 and b2 are output signal. s2s1 and b2 indicate the difference-bit and the
borrow-bit, respectively.

of inputs, which can be represented by logic ON and logic OFF, respectively.
Taking the input x1 as an example, if input x1 doesnt take part in the reaction,
then the input x0

1 shows logic ON, meanwhile, the input x1
1 shows logic OFF in

the dual-rail logic circuit. In the dual-rail logic circuit, the AND, OR, or NOT
logic function should be achieved by a pair of AND gate and OR gate. The
dual-rail logic circuits of AND gate, OR gate, NAND gate and NOR gate are
shown in Fig. 4(a–d), respectively. The dual-rail logic has been widely used to
design DNA seesaw circuits. In this article, the two-bit full subtractor dual-rail
logic circuit is designed in Fig. 4(e).

4 Seesaw Circuit and Simulation in Visual DSD

The dual-rail logic circuit should be transformed into an equivalent biochemi-
cal circuit through the certain corresponding rules. Two-inputs molecular logic
OR gate and AND gate have been fabricated to design the DNA biochemical
seesaw logic circuits. Then the seesaw biochemical logic circuit of two-digit full
subtractor operation is shown in Fig. 5.
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Fig. 4. The dual-rail logic circuits of basic gates. (a–d) The dual-rail logic circuits
of AND gate, OR gate, NAND gate and NOR gate. (e) The two-bit full subtractor
dual-rail logic circuit.

Fig. 5. The seesaw logic of two-digit full subtractor operation.
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Visual DSD is a design and analysis tool for DNA strand displacement sys-
tems [26,27]. Here, based on DNA strand displacement, the reaction process of
the two-digit full subtractor operation is simulated in visual DSD. Along with
the input of the sixteen kinds of combinations we mainly discussed, there are six-
teen kinds of the simulation results for two-digit full subtractor operation in the
simulation of Visual DSD. The simulation results of the two-digit full subtractor
operation from 00-00 to 11-11 are shown in Fig. 6(a–p). In the Fig. 6(a–p), the
light blue line and purple lines represent the value of s01 and s11, respectively;
the red line and green line represent the value of s02 and s12, respectively; the
blue line and yellow line indicate the value of b02 and b12, respectively. The total
concentration is 1000 nm. The concentration of the output is less than 100 nm
which indicates logic 0, and the output concentration range is 900–1000 nm which
indicates logic 1.

In the Fig. 6, if the input x2x1-y2x1 is 00-00, then the output s2s1 and b2 is
00 and 0, respectively, as shown in Fig. 6(a). If the input x2x1-y2x1 is 00-01, then
the output s2s1 and b2 is 11 and 1 in Fig. 6(b), respectively. If the input x2x1-
y2x1 is 00-10, then the output s2s1 and b2 is 10 and 1 in Fig. 6(c), respectively. If
the input x2x1-y2x1 is 00-11, then the output s2s1 and b2 is 01 and 1 in Fig. 6(d),
respectively. If the input x2x1-y2x1 is 01-00, then the output s2s1 and b2 is 01 and
0 in Fig. 6(e), respectively. If the input x2x1-y2x1 is 01-01, then the output s2s1
and b2 is 00 and 0 in Fig. 6(f), respectively. If the input x2x1-y2x1 is 01-10, then
the output s2s1 and b2 is 11 and 1 in Fig. 6(g), respectively. If the input x2x1-
y2x1 is 01-11, then the output s2s1 and b2 is 10 and 1 in Fig. 6(h), respectively.
If the input x2x1-y2x1 is 10-00, then the output s2s1 and b2 is 10 and 0 in
Fig. 6(i), respectively. If the input x2x1-y2x1 is 10-01, then the output s2s1 and
b2 is 01 and 0 in Fig. 6(j), respectively. If the input x2x1-y2x1 is 10-10, then the
output s2s1 and b2 is 00 and 0 in Fig. 6(k), respectively. If the input x2x1-y2x1

is 10-11, then the output s2s1 and b2 is 11 and 1 in Fig. 6(l), respectively. If the
input x2x1-y2x1 is 11-00, then the output s2s1 and b2 is 11 and 0 in Fig. 6(m),
respectively. If the input x2x1-y2x1 is 11-01, then the output s2s1 and b2 is 10
and 0 in Fig. 6(n), respectively. If the input x2x1-y2x1 is 11-10, then the output
s2s1 and b2 is 01 and 0 in Fig. 6(o), respectively. If the input x2x1-y2x1 is 11-11,
then the output s2s1 and b2 is 00 and 0 in Fig. 6(p), respectively. According to
the simulation results of the two-digit full subtractor, the following conclusions
can be obtained. (1) The output strand through fewer logic gates will sooner
tend to steady state in the logic circuit. Thus, the output signal s1, b2 and s2 in
the same reaction time concentration are successively reduced. (2) In Fig. 6(c, e,
h, g, o), two curves of logic ON occur overlap, which show that they have the
same reaction rate. (3) The logic ON and logic OFF curves correctly express the
stable state of logic 1 and logic 0, respectively. All simulation results show the
high quality correctness.
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Fig. 6. The simulation in Visual DSD. (Color figure online)

5 Conclusion

Based on DNA strand displacement reaction, two-digit logic computing circuit
has been constructed, which dedicates an approach of dynamic nanotechnology.
Here, we have designed and acquired correct simulation result of two-digit full
subtractor. Two-digit full subtractor can be applied to the biological computer.
Although the dynamic nanotechnology currently faces tremendous challenges,
this method of strand displacement still has a broad development prospect, which
could be applied in the construction of logic circuits, molecular automata and
nanomedicine and so on.
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Abstract. DNA nanotechnology has become a reliable, programmable
control method, which can realize complex reaction networks nanostruc-
tures due to the accuracy and predictability complementary DNA base
pairing. In this paper, one-bit full adder-full subtractor is constructed
to achieve two kinds of functions which are full adder function and full
subtractor function, respectively. Based on the cascaded DNA strand dis-
placement reaction, the digital logic circuit is further translated into its
corresponding dual-rail logic circuit and seesaw cascade logic circuit. The
simulation results prove the feasibility and effectiveness of the designed
circuit.

Keywords: DNA strand displacement · Full adder-full subtractor ·
Dual-rail circuit · Seesaw circuit

1 Introduction

DNA computing is a new field which combines computer science and molecular-
biology subject. DNA acts as the computing tool, which has solved many prob-
lems, such as solving Hamition path, maximal clique problem [1–3]. DNA com-
puting has merged a lot of molecule operation technology, such as self-assembly
[4–6], fluorescence labeling [7–9] strand displacement [10–12] and probe machine
[13]. DNA self-assembly technology and DNA stand displacement technology are
two important technical support of DNA nanotechnology. DNA strand displace-
ment technology is developed on the basis of DNA self-assembly technology.
In recent years, DNA strand displacement [14–16] is a new method in the bio-
computing, and has become a common method in DNA self-assembly. Based on
the strand displacement cascade reaction [17], the dynamical connection adja-
cent logic modules [18–20] have been achieved, which makes it possible for the
researcher to construct large-scale, complicated logic circuits [21]. Moreover, with
the advantage of high-capacity information accumulation, high performance par-
allel computing, programming and simulating, it had acquired an in-depth study
in the field of molecular computing, nano-machine, diagnosis and remedy of the
disease. DNA strand displacement technology has the gigantic proficiency in
c© Springer Nature Singapore Pte Ltd. 2016
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solving the math problem [22–24], managing the nano-machine and discussing
the life course. Based on DNA strand displacement, the construction of the bio-
chemistry logic circuits has significant research means by mastering the design
procedures.

Compared with the previous work [25,26], the one-bit full adder-full subtrac-
tor logical operation is constructed for the first time in this paper. Based on
the DNA strand displacement, there is the control terminal which concerns the
function of the full adder-full subtractor. There are two kinds of function in the
circuit, which are the full adder and the full subtroctor, respectively. The circuit
could be applied to the construction of the biological computer in the future.

This paper is organized as follows. Firstly, the introduction is described in
the Sect. 1. Then the strand displacement reaction mechanism is shown in the
Sect. 2. The digit circuit and dual-rail circuit of the full adder-full subtractor is
designed in the Sect. 3. The seesaw circuit and the simulation of the full adder-
full subtractor are shown in the Sect. 4. Finally, the conclusion is given for the
full adder-full subtractor.

2 The Background of DNA Strand Displacement

DNA strand displacement technology acts as an important technology of modern
biological computing, which has been proved that it is a kind of nanoscale tech-
nologies to overcome circuit component miniaturization problem. DNA strand
displacement response is a dynamic process and has the following three advan-
tages. (1) DNA strand displacement response doesn’t need special temperature
requirements and can proceed in room temperature without annealing. (2) It is
the spontaneous reaction without adding enzyme. (3) A dynamic cascade system
can be constituted due to dynamic characteristics of DNA strand displacement
response. The characteristics of DNA strand displacement technology provide a
good way for building the nanoscale large-scale circuit.

In order to perform mathematical logic, DNA strand displacement cascade
technology has been widely applied to the configuration of the basic DNA logic
gates (AND gate, OR gate and NOT gate). DNA strand displacement reaction
mechanism is shown in Fig. 1. In the Fig. 1, the domain t represents a short
toehold and the domain t* is the complementary pairing of the domain t. The
DNA single strand <a t b> and strand <b t c> represent input signal and output
signal, respectively. The strand <b t> and strand {t*}[b t]<c> are recognition
domain and the double strand complex, respectively. Firstly, the short toehold
domain t of the strand <a t b> and toehold domain t* of the double strand
complex have a DNA complementary pairing. Then the domain b of the DNA
single strand <a t b> and domain b* of the double strand complex also conduct
a DNA complementary pairing. Eventually, the output strand <b t c> falls
off from the double strand complex and releases the molecule complex <a>[t
b]:<b> [t]<c> The whole reaction process can be considered that a DNA single
strand <a t b> replace of the DNA single strand <b t c>.
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Fig. 1. The DNA strand displacement reaction process. The DNA single strand <a t
b> and strand <b t c> represent input signal and output signal. The strand <b t> is
recognition domain.

3 The Digit Circuit and Dual-rail Circuit

The full adder-full subtractor also is a combinational logic circuit which performs
simple logic operations of four binary digits. The truth table of the full adder-
full subtractor is given in Table 1. In the Table 1, there are sixteen kinds of
conditions which achieve two kinds of functions. Boolean functions of logic circuit
is constructed by “AND”, “OR” and “NOT” gates. Based on the function of the
truth table one-bit the full adder-full subtractor combinational logic circuit is
shown in Fig. 2. The full adder-full subtractor logic circuit haves four inputs
which are x0, x1, x2 and y0 in the left side of the logic circuit and two outputs
which are y1 and y2 in the right side of the logic circuit, respectively. In the

Table 1. Truth table of the full adder-full subtractor.

Logical function Input x0 Input x1 Input x2 Input y0 Output y1 Output y2

Full adder 0 0 0 0 0 0

0 0 0 1 1 0

0 0 1 0 1 0

0 0 1 1 0 1

0 1 0 0 1 0

0 1 0 1 0 1

0 1 1 0 0 1

0 1 1 1 1 1

Full subtractor 1 0 0 0 0 0

1 0 0 1 1 1

1 0 1 0 1 1

1 0 1 1 0 1

1 1 0 0 1 0

1 1 0 1 0 0

1 1 1 0 0 0

1 1 1 1 1 1
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Fig. 2. Digital logic circuit of one-bit full adder-full subtractor. x0, x1, x2 and y0 are
input signal, y1 and y2 are output signal. x0 is the control terminal which concerns the
function of the circuit. y0 is the low level carry-bit or low level borrow-bit.

logic circuit, the input x0 is the control terminal and concerns the function of
the circuit. If the value of x0 is “0”, the logic circuit implements the function of
full adder in which x1 and x2 are two addends, y0, y1 and y2 indicate low level
carry-bit the sum-bit and the high level carry-bit, respectively. On the other
hand, the logic circuit achieves the function of full subtractor if the value of
x0 is “1”. Under the circumstances, x1 and x2 are minuend and subtrahend,
y0, y1 and y2 indicate low level borrow-bit the difference-bit and the high level
borrow-bit, respectively.

Fig. 3. The dual-rail logic circuits. (a) The dual-rail logic circuit of AND gate. (b) The
dual-rail logic circuit of OR gate. (c) The dual-rail logic circuit of NAND gate. (d)
The dual-rail logic circuit of NOR gate. (e) The dual-rail logic circuit of full adder-full
subtractor.
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On the basis of the given principle, one-bit the full adder-full subtractor
combinational logic circuit should be translated into the corresponding dual-rail
circuit to avoid generating error output signal. The logic gate consists of a pair of
“AND” gate and “OR” gate. The dual-rail circuits of “AND” gate, “OR” gate,
“NAND” gate and “NOR” gate are shown in Fig. 3(a)–(d), respectively. The
input signal state is represented by logic “ON” and “OFF”. Taking the input
x0 as an example, if the input x0 participates in the reaction, then the states of
the x0

0 and x1
0 represent logic “OFF” and “ON”, respectively. On the contrary,

if the input x0 can’t participate in the reaction, then the states of the x0
0 and

x1
0 represent logic “ON” and “OFF” respectively. According to the correspond-

ing logical relationship, the dual-rail circuit of the full adder-full subtractor is
constructed, as shown in Fig. 3(e).

4 Seesaw Circuit and Simulation with Visual DSD

Based on DNA stand displacement response, DNA seesaw logic gates could be
designed. The logic gates are divided into left side and right side, and are con-
nected by a node, as shown in Fig. 4. In Fig. 4(a), the input acts as the input
single strand <a t b>, the strand {t*}[b t]<c> is the gate note. The output 1
acts as the output strand <b t c>. And output 2 is other output strand. The
red digit 0.6 is the threshold value. The value of fuel is two times of the total
output value. The gates usually consist of amplifying gate which can produce
multi-path outputs and integration gate which could receive multi-path inputs,
respectively. One-input-four-output and one-input-five-output amplifying gates
are shown in Fig. 4(b)–(c), respectively. Two-input-one-output integration gate
is shown in Fig. 4(d). The seesaw motifs of “OR” gate and “AND” gate are
shown in Fig. 4(e)–(f).

Fig. 4. The seesaw motif of basic gates. (a) The amplifying gate of one-input-two-
output. (b) The amplifying gate of one-input-four-output. (c) The amplifying gate of
one-input-five-output. (d) The integration gate of two-input-one-output. (e) OR gate.
(f) AND gate. (Color figure online)
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According to the seesaw circuit and the dual-rail logic circuit of full adder-
full subtractor, the seesaw circuit of full adder-full subtractor is shown in Fig. 5,
which could be simulated in the Visual DSD. There will be sixteen outputs
which are produced along with the sixteen inputs. The simulation results of the
full adder-full subtractor are shown in Fig. 6. In the Fig. 6, the blue curve and
yellow curve represent the value of y01 and y11 , respectively; the red line and green
line separately indicate the value of y02 and y12 , respectively In this paper, the
total concentration of the reaction is 1000 nm. When the range is 0–100 nm, it
expresses the logic “0”. On the other hand, it expresses the logic “1” if the range
is 900–1000 nm.

If the control terminal x0 is “0”, then the function of logic circuit is full adder
whose simulation results are shown in Fig. 6(a)–(h). Under this cases, if the input
signal x1x2y0 is “000”, then the output signal y1y2 is “00” in Fig. 6(a). If the
input signal x1x2y0 is “001”, then the output signal y1y2 is “10” in Fig. 6(b). If
the input signal x1x2y0 is “010”, then the output signal y1y2 is “10”, as shown
in Fig. 6(c). If the input signal x1x2y0 is “011”, then the output signal y1y2 is
“01”, as shown in Fig. 6(d). If the input signal x1x2y0 is “100”, then the output

Fig. 5. The seesaw circuit of one-bit full adder-full subtractor.
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signal y1y2 is “10” in Fig. 6(e). If the input signal x1x2y0 is “101”, then the
output signal y1y2 is “01” in Fig. 6(f). If the input signal x1x2y0 is “110”, then
the output signal y1y2 is “01”, as shown in Fig. 6(g). If the input signal x1x2y0
is “111”, then the output signal y1y2 is “11”, as shown in Fig. 6(h).

If the control terminal x0 is “1”, then the function of the logic circuit is full
subtractor whose simulation results are shown in Fig. 6(i)–(p). If the input signal
x1x2y0 is “000”, then the output signal y1y2 is “00”, as shown in Fig. 6(i). If the
input signal x1x2y0 is “001”, then the output signal y1y2 is “11” in Fig. 6(j). If
the input signalx1x2y0 is “010”, then the output signal y1y2 is “11”, as shown in
Fig. 6(k). If the input signal x1x2y0 is “011”, then the output signal y1y2 is “01”,
as shown in Fig. 6(l). When the input signal x1x2y0 is “100”, the output signal

Fig. 6. The simulation in Visual DSD. (Color figure online)
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y1y2 is “00”, as shown in Fig. 6(m). If the input signal x1x2y0 is “101”, then the
output signal y1y2 is “11” in Fig. 6(n). If the input signal x1x2y0 is “110”, then
the output signal y1y2 is “11”, as shown in Fig. 6(o). If the input signal x1x2y0
is “111”, then the output signal y1y2 is “01”, as shown in Fig. 6(p).

According to the simulation results, the following conclusions can be
obtained. The logic “ON” and logic “OFF” curves both enter into the stable
area, which express the logic “1” and logic “0” correctly, respectively. The sim-
ulation results have a high validity.

5 Conclusion

In this paper, one-bit full adder-full subtractor logic circuit has been constructed
by DNA strand displacement. Then the full adder-full subtractor combinational
logic circuit has been converted to the corresponding the dual-rail logic circuit
and the biochemical logic circuit. Finally, the seesaw logic circuit of the full
adder-full subtractor is simulated in the visual DSD. The correctness of simu-
lation results proves that the DNA strand displacement technique is a feasible
method in the study of biochemical circuit. As a result of the limitation of the
current scientific research platform and technology, the biochemical experiment
also needs to continue to be explored, which will be the focus of the next research
direction.
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Abstract. In this work, we fabricated two logic gates based on circular
DNA structure – XOR gate and AND gate calculation model with the
principle of complementary base pairing and the technology of fluores-
cence labeling. Whereafter, we constructed a simple half-adder model
based on the two logic gates. This model is simple, but it can realize
more complex logic operations in theory. And the experiment process is
convenient to operate, the results are easy to realize.

Keywords: Logic gates · Circular DNA mode · DNA strand
displacement · Fluorescence beacon · Half-adder

1 Introduction

Due to DNA has a unique ability to complementary base pairing and to produce
a variety of reconfigurable DNA self-assembly structures. It is an ideal engineer-
ing material for molecular computing. Since 1994, Adleman [1] demonstrated
the use of DNA strand displacement to perform logical operations by solving
the Hamiltonian path problem. The idea of DNA computing has been leaded to,
and since then, biological logic gates have been produced [2–4], such as common
logic operations: OR, AND, NOT, XOR and so on [5,6], multi input logic cir-
cuit model [7], molecular switches, cascade amplifiers [8,9], programmable DNA
tile self-assembly [10], logic nanoparticle beacon [11] and so on. At present,
the computational functions based on biological systems have been applied in
bioengineering and nanomedicine [12]. These systems include enzyme catalyzed
[13], DNA reaction networks, DNAzyme facilitated reactions [14], memory sys-
tem [15], neural networks [16], probe machine [17], disease diagnosis [18] and so
no. Based on these natural dynamics systems, we can develop reliable constructs
that perform logical operations after addition of nucleic acid inputs where strand
displacement drives the calculation and production of the output.

In addition, various molecular operations, such as fluorescence techniques, self
assembly techniques and strand displacement, have been utilized in the develop-
ment of DNA computing. In this model, because of the fluorescence technique is
easy to observe and detect advantage, DNA strand displacement with fluorescent
c© Springer Nature Singapore Pte Ltd. 2016
M. Gong et al. (Eds.): BIC-TA 2016, Part I, CCIS 681, pp. 39–46, 2016.
DOI: 10.1007/978-981-10-3611-8 5
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labeling for constructing various molecular computing models develops rapidly
[19]. DNAzymes in which the presence or absence of the fluorescence resonance
energy transfer (FRET) signal was used as output to accomplish NOT, AND,
and XOR logical operations. Fluorescence quenching and releasing were used as
readout of the structures that were combined for constructing logic systems [20].
When the fluorescence is quenching, we customary consider as the output is 0.
And when fluorescence is releasing, we customary consider as the output is 1.
DNA strand displacement was used to initiate the release of entrapped molecules
based on the logic computation [21–27], and in another study an automated DNA
transporter that delivered a DNA strand in a programmed pattern was devel-
oped [22]. DNA strand branch migration has accelerated the development of
research parallel computing, cryptography and nanoelectronics. And the DNA
strand displacement with fluorescent technology will be utilized to design more
complex structure, also came to widely use in the field of electronic calculation,
such as logic gate and logic circuit.

In this paper, a series of logical components are constructed by using the
principle of Watson-Crick complementary base pairing, DNA stand displacement
and the technology of fluorescence labeling. These components introduced into
the DNA strands worked as the input, and the output of the logic module is
reading by the fluorescence detection technology. These structures are simple and
stable. In addition, on this basis, we constructed a half-adder model. This model
is simple, but provides important support to build more complex molecular logic
circuit.

2 Design and Construction of Logic Gate Model

Here, we use a DNA circular containing complementary strand a/a* and two
single DNA strand to form a basic structure. This structure can report a rational
designed of two logic models – XOR gate and AND gate – based on the principle
of Watson-Crick complementary base pairing, DNA stand displacement and the
technology of fluorescence labeling.

2.1 Principle of the Proposed Method: XOR Gate

We fabricated a XOR logic computing model with Watson-Crick complementary
base pairing. First, we designed two DNA signal strands 〈ab∗〉 and 〈a∗e∗〉, with a
DNA circular containing complementary strand [a/a*] served as the basic device.
And 〈a∗〉, 〈a〉 was labeled by a corresponding quencher with a fluorophore on
their end. The mode is shown in Fig. 1.

Then, we design the XOR gate based on the basic structure. And the mech-
anism of the XOR gate computing model is shown in Fig. 2. Because when the
quencher is close to the fluorophore, fluorescence is quenching and when the
quencher is separate to the fluorophore, fluorescence is releasing. So, we record
the fluorescence intensity. If the fluorescence signal is observed, output Y1 = 1,
otherwise, Y1 = 0.



Logic Gate Based on Circular DNA Structure with Strand Displacement 41

Fig. 1. The process of the basic device used for XOR gate

Fig. 2. (A) Schematic representation of XOR gate logic computing model. (B) XOR
gate logic computing model electrical symbol defining inputs X1 and X2 and the output
Y1. (C) Truth table of XOR gate logic computing model.

In the (0, 0) state, where neither X1 nor X2 is present, there is no fluorescence
signal been observed. So, the output reading is 0.

In the (1, 0) state, X1 is added to the logic computing system. The X1
strand and the basic device form a double strands structure a/a*, b/b*, c/c*.
At the same time, X1 displace the single stranded 〈ab∗〉. At the new model,
fluorescent groups and quencher BHQ wasn’t present. There is fluorescence signal
be observed. Consequently, the output reading is 1.

In the (0, 1) state, only X2 is added to the system. Using base comple-
mentation pairing rule, the X2 strand could be combined with the basic mode
to form a new structure. The single strand 〈a ∗ e∗〉 is replaced, at the end of
〈a∗〉, the quencher BHQ and the fluorescent groups were separated. So, there is
fluorescence signal be observed. Consequently, the output reading is 1.
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In the (1, 1) state, both X1 and X2 are added to the system. This makes
single strand 〈ab∗〉 and 〈a ∗ e∗〉 are displaced, and they could hybridized com-
plementary with a form a double strands structure a/a*. The fluorescent was
present, however, the quencher BHQ was present also, and it was approached
with the end of the strand a fluorescent groups. The fluorescence is quenching.
Accordingly, the fluorescence signal is not observed and the output reading is 0.

In conclusion, only input X1 or input X2 the output reading is 1, otherwise,
the output reading is 0. So, the logic computing we have designed is an XOR gate.
The electrical symbol of the XOR logic computing model is shown in Fig. 2(B)
and (C) is the truth table. The logical expression is Y1 = (X1) * X2 + X1 * (X2).

2.2 Principle of the Proposed Method: AND Gate

First, we designed two DNA signal strands 〈a∗g∗e∗〉 and 〈a∗f ∗h∗〉, with a DNA
circular containing complementary strand a/a. Both 〈a∗〉 and 〈a〉 were labeled
with a corresponding quencher and a fluorophore on their end, respectively.
Then, adding a single DNA strand 〈a ∗ fh〉 form a double strands structure
(a/a*, f/f*, h/h*). In the new circular structure add a DNA strand 〈ap〉, and at
the end of a label a fluorophore. With the same principle, add the single strand
〈aeg〉 and the DNA strand 〈a ∗ q〉 with a corresponding quencher on its end in
every new structure according to the same order. At the last, the basic model is
shown in Fig. 3.

The following, we design the AND gate based on the basic device. And the
mechanism of the XOR gate computing model is shown in Fig. 2. The result of
the AND gate when we add two single strands X1X2, their base sequence same as
the strands, of XOR gate. The quencher is close to the fluorophore, fluorescence
is quenching and when the quencher is separate to the fluorophore, fluorescence

Fig. 3. The process of the basic device used for AND gate.



Logic Gate Based on Circular DNA Structure with Strand Displacement 43

is releasing. So, we record the fluorescence intensity. If the fluorescence signal is
observed, the output Y2 = 1, otherwise, Y2 = 0.

In the (0, 0) state, where neither X1 nor X2 is present, there is no fluorescence
signal is observed. So, the output reading is 0.

In the (1, 0) state, only X1 is added to the system. The X1 strand and
the basic device form a double strands structure [n/n*, c/c*, b/b*], but the
fluorescence not released, so the output reads 0.

In the (0, 1) state, X2 is added to the logic computing system. There is no
structure could hybridized complementary with the X2, so the quencher is close
to the fluorophore, fluorescence is quenching and the output reading is 0.

In the (1, 1) state, both X1 and X2 are added to the system. Because X1 could
hybridized complementary with the basic model and getting the new structure
could hybridized complementary with the single strand 〈d ∗ e ∗ a∗〉. The single
strand 〈a ∗ q〉 is replaced. At the ends of the strand a* quencher BHQ with
the strand a fluorescent groups was separated, and the fluorescence signal is
observed. Consequently, the output reads 1.

In conclusion, as long as any one input is 1, the output reads 0. Only both
input X1 and X2, the output reads 1. So, the logic computing we have designed
is an AND gate. Figure 3(B) express the electrical symbol of the AND logic
computing model and the truth table is shown in Fig. 3(C). The logical expression
is Y2 = X1 * X2 (Fig. 4).

Fig. 4. (A) Schematic representation of AND gate logic computing model. (B) AND
gate logic computing model electrical symbol defining inputs X1 and X2 and the output
Y2. (C) Truth table of AND gate logic computing model.
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Fig. 5. (A) Half-adder logic computing model electrical symbol defining inputs X1 and
X2 and the output Y1, Y2. (B) Truth table of half-adder logic computing model.

3 Result and Discussion

In this article, we use a DNA circular containing complementary strand [a/a*]
and two single DNA strand to form a basic structure, and we designed two
different basic device. Then add the X1 and X2 to the basic model to fabricate
two logic gates – XOR gate and AND gate for calculation with the principle of
complementary base pairing and the technology of fluorescence labeling. Using
these logic computing gates could fabricate a simple half-adder, Fig. 5(A) express
the electrical symbol of the half-adder model and the truth table is shown in
Fig. 5(B). Only X1 is added to the system, the output is (1, 0). Only input X2,
the output is still (1, 0). Both X1 and X2 are added to the system, the output
is (0, 1). This simple half-adder computing model could realize two a binary
encoding addition circuit in theory.

Half-adder has two inputs and two outputs, the input is X1, X2, and the
output is Y1, Y2. X1 and X2 were calculated after XOR logic gate getting Y1,
and getting AND logic gate getting Y2. We count up X1 and X2 getting the
output, of which Y1 is and Y2 is carry. Half-adder could produce binary value,
but for its part, it does not handle binary value. We designed the molecular
“half-adder” model satisfying the same theory.

4 Conclusions

In summary, we achieve a rational designed of two logic models — XOR gate and
AND gate — based on the principle of Watson-Crick complementary base pairs,
DNA stand displacement and the technology of fluorescence labeling. When the
circular DNA structure as the basic model was added some DNA signal strands,
they could begin biochemical reaction from two directions of the circular struc-
ture, and the fuel molecules could get more accurate fixed and control in the
structure. This increased the maneuverability and stability of the molecular logic
operation. At the last, we constructed a simple half-adder model, which achieved
the half plus operation based on DNA strand displacement. The half-adder logic
model is simple, but it can realize more complex logic operations in theory.
Though the model we fabricated is ideally, it is easy to be operated in biological
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experiment. However, in the actual biological experiment, there are still some
uncontrollable factors, such as temperature, mismatch and so on. Firstly, tem-
perature would have an influence on the biological reaction. For example, the
reaction would inadequately under low temperature. So, the fluorescence would
not be released completely in the result of Yi (i = 1, 2), such that the output
reads 1 while we record the fluorescence intensity produce in the Yi. In addition,
it would also form many not ideal products. We will adjust some parameters
include temperature and material concentration to achieve this model. In the
future, we hope to verify the feasibility of the model by biological experiments.
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Abstract. The working operation problem is an old problem that it is
difficult to effectively solve the combinatorial mathematics. So far this
problem has not been completely effectively solved, and it is an non-
deterministic polynomial (NP)-complete problem. This paper mainly
uses the probe machine model and combines the advantages of the
nanometer-material to design a computing model for the working oper-
ation problem. It structures a database of the vertex and edge, then
encodes as a probe library. Using computing platforms to get the solu-
tion to be tested, and finding all vertices of the directed Hamilton path
which is the solution of the problem. The probe machine is a parallel
computing model starting from the bottom; thereby it can improve the
effectiveness of the calculation in theory.

Keywords: Probe machine · NP-complete problem · Working operation
problem

1 Introduction

In 2016, Xu [1] and his research team reported major breakthrough article
“Probe Machine” at the IEEE transactions on neural networks and learned
system journal in computer science. This paper presents the first computing
model beyond Turing machine [2] that is called the probe machine. It is comput-
ing model from the underlying whole of parallel. It is just one probe operation
to find all solutions of problems for the NP-complete problem, while the com-
puter can not handle today, such as Hamilton Problems, Vertex graph coloring
problem, and so on. All NP-complete problems based on the Turing machine
are equivalent in polynomial time, which means that it has no NP-completely
problem puzzled mankind in the probe model. Some peering works on DNA
computing can be found in [6–8].

The probe machine is divided into two types of transfer and connection. The
probe machine is composed by the database, the probe libraries, data controller,
the controller probe, probe computing, computing platform, the detector, the
true solution, and residual memory support recycling. In order to composite
nano-particles and DNA molecules as data and make use of the DNA molecule
c© Springer Nature Singapore Pte Ltd. 2016
M. Gong et al. (Eds.): BIC-TA 2016, Part I, CCIS 681, pp. 47–53, 2016.
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as probe, the probe machine of connection type will be introduced. So it is the
nanometer DNA computer. The difference with the Turing machine is: the data
of the probe machine is free on placement pattern space, and it can be directly
processed information between any pair of data, which indicates a powerful par-
allelism with the increase of the size of the data, with the increasing size of data,
and the information processing capabilities dramatically.

The working operation problem for the production process is an important
problem for the organization. It is a variety of parts, and how to arrange the
appropriate equipment and decided on their order processing should be firstly
considered. To enhance efficiency, it is beneficial for full using the equipment and
shortening the production cycle. Here, we introduce a variety of jobs on a single
machine production working operation problem.

We can suppose machine that it must manufacture a variety of parts J1,
J2,...,Jn. For example, in a factory, each job Ji is a type of mold. In order to
manufacture next job, machine must be adjusted after a job. If the adjustment
time is tij from Ji to Jj parts, we seek a machining order that the entire machin-
ery of the adjustment period is least. In fact, this problem seeks for the smallest
weight to the directed Hamilton path in a weighted directed graph. At present,
there is no known effective method. First we have to translate the problem into
the directed graph G:

(1) The job Ji, i = 1, 2, · · · , n is represented vertex vi of the directed graph G.
(2) A is an arc set of the directed graph G, and (vi, vj) ∈ A if and only if

tij ≤ tji.
(3) Empowering tij to arc (vi, vj).

Thus, a working operation problem is corresponding with a directed Hamilton
path of the minimum weights sum of directed weighted graph. The vertex order
of the directed Hamilton path is corresponding to processing the order of the
job.

This paper attempts to use the connection type probe computing model for
working operation problem. Since the underlying model is an efficient full parallel
resistance, it can be more effective for working operation problem.

2 The Probe Computing Principles

The probe machine includes nine sections, which are X,Y, σ1, σ2, τ, λ, η,Q,C,
respectively. The database X includes n data pool X1,X2,X3...Xn. Each data
pool Xi stores huge element xi. Each cell consists of data and data fiber. And
data cell has only one, but the data types of fibers has pi, as shown in Fig. 1.

The probe of biological computing is used to detect a nucleotide sequence,
wherein the molecular beacon has been widely used and developed as a new type
of fluorescent probe in recent years [3–5]. The probe machine is similar to an
existing probe meaning, but it is an abstract concept. If xl

i and xa
t can be the

probe, it can be connected with the data elements xl
i and xa

t by connected probe
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Fig. 1. The structure of data cell

τxl
ix

a
t . It is named operator connection, denoted by τxl

ix
a
t . Its direction is from

xi to xj . According to the data types of fiber, we structure the probe pool Yit,
and different probe pools constitute a probe library Y (Fig. 2).

Fig. 2. The diagram of the connect operator process

The data controller σ1 and the probe controller σ2 respectively take the
required number of data and probes into the computing platform λ. Be probe
operation, and then through the detector η. Will be the result, respectively, in
the true solution storage Q or residual limb collector C.

3 The Working Operation Problem Description

The paper uses a specific example to illustrate the molecular processes oper-
ating methods of the problem. Assuming that a machine can product 5 jobs
J1, J2, · · · , J5. End processing needs change after Ji in order to process Jj . We
know that the time required when we change from the mold of Ji to Jj are
shown in the adjust matrix. First of all, we make the working operating prob-
lem matching to the graph G. For the encoding operation and convenience, we
consider a simple working operating problem. Even to the DNA computing, the
problem is still difficult. Although the figure can easily see that the best sort of
work, but with our approach, the more complex plans can also be calculated,
and it is almost difficult. If the degree of difficulty on the difference, it is only
in the encoding and molecular aspects of the operation of the pilot in a little
more trouble. We introduce the above-mentioned algorithm corresponding to the
molecular steps.
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Fig. 3. A structure model for the connection type of probe machine

Fig. 4. The graph of working operation problem and its adjust matrix

Algorithm
Step1 Structure database X.

X =
n⋃

i=1

E2(vi)

Among them E2(vi) is a set of directed two long that vi is the center. Any
directed two long (vlvivj , i �= l, j, l �= j) is named xilj , and every xilj has two
data fibers, be named xl

ilj , x
j
ilj . Its direction is from vl through vi to vj . In this

example, database is:

X =
n⋃

i=1

E2(vi), i = 1, 2, 3, 4, 5

E2(v1) = {x125, x135, x145}
E2(v3) = {x324, x321, x325}
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E2(v4) = {x431, x421, x435, x425}
E2(v5) = {x541, x531, x521}

Structure database according to Fig. 3. There have 13 types data, and 13
types data fibers, among that the length of data fiber is directly proportional to
the weight in the examples.

Structure of 13 types of nanometer particles (2.5 nm) as 13 types data cell.
Code DNA sequence for 13 type data fibers, and then synthesize corresponding
DNA strands. Thus, DNA strands (data fibers) embed in the corresponding
nanometer particles (data cell).

�(x125) = x5
125,�(x135) = x5

135,�(x145) = x5
145,�(x324) = x4

324,�(x321) = x1
321

�(x325) = x5
325,�(x431) = x1

431,�(x421) = x1
421,�(x435) = x5

435,�(x425) = x5
425

�(x541) = x1
541,�(x531) = x1

531,�(x521) = x1
521

Step2 Structure probe library based on the conditions of the probe.
In the example, to avoid small elements gathered by the probe after the

operation, and affect the calculation, design of probe conditions between two
elements is:

Between data xilj , xtab, the probe need to meet and only meet one of the
following conditions

(1) |{i, l, j}
⋂

{t, a, b}| = |{l.j}
⋂

{a, b}| = 1

(2) t ∈ {l, j}, i ∈ {a, b}, and|{l, j}
⋂

{a, b}| = 0

Structure the corresponding probe pool for the different data fibers, and
structure a probe library. The structure of the probe is on the basis of the Xu
Jin’s probe principle [1].

These probe libraries include 31 probes.

Y13 = {x1
321x

5
125, x

1
321x

5
135, x

1
321x

5
145
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5
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1
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5
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1
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5
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1
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5
125, x

1
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1
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5
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5
125, x

1
541x

5
135, x

1
541x

5
145, x

1
531x

5
125, x

1
531x

5
135, x

1
531x

5
145,

x1
521x

5
125, x

1
521x

5
135, x

1
521x

5
145, x

5
125x

1
541, x

5
135x

1
541, x

5
145x

1
541,

x5
125x

1
531, x

5
135x

1
531, x

5
145x

1
531, x

5
125x

1
521, x

5
135x

1
521, x

5
145x

1
521}

Y34 = {x4
324x

1
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Y35 = {x5
325x

1
531, x

5
325x

1
541, x

5
325x

1
521}

Y45 = {x5
435x

1
541, x

5
435x

1
531, x

5
435x

1
521, x

5
425x

1
541, x

5
425x

1
531, x

5
425x

1
521}

Step3 Perform the operation and obtain the feasible solution. After testing
platform, we get all the solution of a problem.

The probe machine takes the required number of data, the probe from the
probe pool in the database, the probe library for the quantity of data using the
data controller σ1, and the probe controller σ2, and putting into the comput-
ing platform, respectively. Then performing the operation. Through the specific
hybridization reaction between DNA molecules, under the effect of computing
platform, a variety of types of data aggregations are formatted. Get all of the
possible solutions.

Step4 Test solution. Detector puts polymers into the memory of the true
solution, and puts the rest of the polymer in the remnants of collector. Due
to the design of the data fiber, making its length is proportional to the weight
of sample, finally formed by detecting the order of working operation problem
(Fig. 4).

J2 → J3 → J4 → J5 → J1

4 Conclusion

The probe machine model is a mathematical model, and its data storage form
make it has strong parallelism. To deal with the problem of the working operation
problem, after a probe operation we can obtain all possible solutions. Compared
with other models, the model greatly reduces the complexity of the operation
process. Probe machine model expands the traditional notions of calculation as
a new research direction, and owns a profound meaning relative to the computer
and other subjects. However, we still face so many challenging problems in the
question of what kind of material in this model.
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Abstract. In dealing with the problem of modelling DNA recombina-
tion, the operation of splicing on linear and circular strings of symbols
was introduced. Inspired by splicing on circular strings, the operation
of flat splicing on a pair of strings (u, v) was considered. This operation
involves “cutting” u at a specified position and “inserting” v into it, with
v having a pre-specified prefix as well as suffix defined by a flat splicing
rule. In this work, we consider a well-known technique in formal language
theory, known as “matrix of rules”, and introduce matrix of flat splicing
rules and thus define matrix flat splicing system (MFSS). Some results
on the language generative power of MFSS are provided. An application
of MFSS in the generation of chain code pictures is also pointed out.

Keywords: Splicing on strings · Flat splicing · Matrix of rules · Formal
language

1 Introduction

In proposing an abstract model of the recombinant behaviour of DNA molecules
under restriction enzymes and a ligase, Head introduced the operation of splicing
on strings of symbols in his seminal work [7]. The idea of splicing is to “cut”
two strings at specified positions and “paste” the resulting prefix fragment of
one of these with the suffix fragment of the other, thereby yielding a new string.
This study opened up an extensive investigation by many researchers, establish-
ing several language theoretic results of interest and importance [8]. Head also
introduced the splicing operation on circular words [9], in view of the fact that
DNA molecules can occur in circular form as well.

Motivated by the splicing operation on circular strings, Berstel et al. [1]
introduced a specific type of splicing, called flat splicing on words, which involves
“cutting” a word α in a specified position leaving a prefix α1 and a suffix α2 so
that α = α1α2 and “inserting” another word β between α1 and α2, as directed by
c© Springer Nature Singapore Pte Ltd. 2016
M. Gong et al. (Eds.): BIC-TA 2016, Part I, CCIS 681, pp. 54–63, 2016.
DOI: 10.1007/978-981-10-3611-8 7
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a flat splicing rule, which requires β to have certain pre-specified prefix and suffix.
Berstel et al. [1] have made an elaborate study on the effect of this operation by
defining a flat splicing system (FSS).

In formal language theory, regulating rewriting with different control mecha-
nisms has been investigated extensively (see [3,14]). Matrix grammar (see [4,18])
is one such mechanism, where matrices of rules are finite sequences of rules, which
are specified and in a successful derivation, any of these sequences of rules has
to be applied in every derivation step of the matrix grammar.

In this work, we consider matrices of flat splicing rules and a new variant of
systems, called matrix flat splicing systems (in short, MFSS), is proposed. We
exhibit the generative power of MFSS by certain comparison results. We also
indicate an application of this system in the generation of chain code pictures [6,
11,13,19] made of unit horizontal and vertical segments in the two-dimensional
plane.

2 Preliminaries

For notions and results on formal grammars and languages we refer to [17]. In
what follows, we introduce some preliminaries used in this work.

A word w is a finite sequence of symbols belonging to a finite set V , called an
alphabet in formal language theory. We denote by V ∗, the set of all words over
V , including the empty word λ and V + = V ∗ − {λ}. The number of symbols in
w counting repetitions is the length |w| of a word w. Obviously, |λ| = 0.

We recall the notion of flat splicing on words [1]. A flat splicing rule r is of the
form (α|γ − δ|β), where α, β, γ, δ are words over an alphabet V. For two words
w1 = uαβv, w2 = γxδ, an application of the flat splicing rule r = (α|γ − δ|β) to
the pair (w1, w2) yields the word w = uαγxδβv and we write (w1, w2) �r w. In
other words, the second word w2 is inserted between α and β in the first word w1

as a result of applying the rule r. When α = β = γ = δ = λ, the flat splicing rule
is (λ|λ−λ|λ) and an application of this kind of rule allows insertion of any word
v into any other word u and anywhere in u. A flat splicing rule r = (α|γ − δ|β),
where α, β, γ, δ are letters in V or the empty word, is called alphabetic.

A flat splicing system (FSS) is a triple S = (Σ, I,R), where Σ is an alphabet,
I, called initial set, is a set of words over Σ, and R is a finite set of flat splicing
rules [1]. The FSS S is respectively called finite, regular or context-free according
as I is a finite set, regular set or a context-free language.

For any two words u, v ∈ L and any rule r ∈ R, we write (u, v) �r w, if the
rule r is applicable to the pair (u, v) and if the word w is obtained by applying the
rule r to the pair (u, v). The language L generated by S is the smallest language
containing I and such that for any two words u, v ∈ L, the word w is also in L, if
(u, v) �r w. When all the flat splicing rules are alphabetic, the FSS is called an
alphabetic flat splicing system (AFSS). The families of languages generated by
FSS and AFSS are respectively denoted by L(FSS,X) and L(AFSS,X) for
X = FIN,REG or CF according as the initial set is finite, regular or context-
free.



56 R. Ceterchi et al.

We illustrate an alphabetic flat splicing system and its work with an example.

Example 1. Consider the alphabetic flat splicing system

S1 = ({a, b, c, d}, {a, b, dcd}, {r1, r2, r3, r4}),

where r1 = (d|a − λ|c), r2 = (a|a − λ|c), r3 = (c|b − λ|d), r4 = (c|b − λ|b).
Initially, the rule r1 or r3 is applicable to the pair of words (dcd, a). Appli-

cation of the rule r1 inserts a (the only axiom which begins with a) between d
and c in the first word dcd yielding dacd. Likewise, applying the rule r3 to the
pair (dcd, b) yields dcbd. Application of r2 to the pair (dacd, a) inserts a between
a and c in dacd yielding da2cd while the application of r4 to the pair (dcbd, b)
inserts b between c and b in dcbd yielding dcb2d. Thus, proceeding in this way, the
words generated will be of the form dancbmd, n,m ≥ 0. The language generated
by S1 is L1 = {a, b} ∪ {dancbmd | n,m ≥ 0}.

The following result [1] on alphabetic flat splicing system shows the power
of alphabetic context-free flat splicing system.

Theorem 1. [1] The language generated by an alphabetic flat splicing system
with context-free initial set is context-free.

3 Matrix Flat Splicing System

We now introduce matrix flat splicing system consisting of matrices of flat splic-
ing rules.

Definition 1. A matrix flat splicing system of degree n ≥ 1 (each matrix has
at the most n flat splicing rules) (MnFSS) is a triple S = (Σ, I,M), where

– Σ is an alphabet;
– I, called initial set, is a set of words over Σ;
– M is a finite set of matrices which are finite sequences of flat splicing rules.

The MnFSS S is respectively called finite, regular or context-free according
as I is a finite set, regular set or a context-free language.

Given words u, v1, · · · , vn and any matrix rule r ∈ M , with r = [r1, · · · , rn]
we write (u, v1, · · · , vn) �r w, if (u, v1) �r1 w1, and for 1 ≤ i ≤ (n − 2),
(wi, vi+1) �ri+1 wi+1, and (wn−1, vn) �rn wn = w.

The language L generated by S is the smallest language containing I and
such that for any two words u, v ∈ L, the word w is also in L if (u, v) �r w, for
r ∈ M . When all the flat splicing rules in every matrix r ∈ M are alphabetic, the
MnFSS is called an alphabetic matrix flat splicing system (AMnFSS). The fam-
ilies of languages generated by MnFSS and AMnFSS are respectively denoted
by L(MnFSS,X) and L(AMnFSS,X) for X = FIN,REG or CF according as
the initial set is finite, regular or context-free.
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Remark 1. By definition, for X = FIN,REG, the inclusions L(MnFSS,X) ⊆
L(Mn+1FSS,X) and L(AMnFSS,X) ⊆ L(AMn+1FSS,X) are clear. It
remains to explore whether the inclusions are proper.

We illustrate (alphabetic) matrix flat splicing systems and their works with
examples.

Example 2. Consider an AM2FSS S2 = ({a, b, c, d}, {a, b, dabcbad}, {r1, r2}),
where for i ∈ {1, 2}, ri = [ri1, ri2] with the flat splicing rules

r11 = (d|a − λ|a), r12 = (a|a − λ|d), r21 = (λ|b − λ|c), r22 = (c|b − λ|λ).

Application of the matrix rule r1 = [r11, r12] to (dabcbad, a, a) yields the word
da2bcba2d as follows. The rule r11 = (d|a−λ|a) is applied to (dabcbad, a) yielding
the word da2bcbad. Then the rule r12 = (a|a−λ|d) is applied to (da2bcbad, a) to
yield da2bcba2d so that (dabcbad, a, a) �r1 da2bcba2d. Likewise, (dabcbad, b, b) �r2

dab2cb2ad. The process can be continued to yield the language L2 = {a, b} ∪
{danbmcbmand | n,m ≥ 1}.

Example 3. Consider the M2FSS S3 = ({a, b, c, x, y}, {c, ab, xy}, {r1, r2}) where
the matrix rule r1 = [(x|ab − λ|y), (b|c − λ|y)], r2 = [(a|ab − λ|b), (b|c − λ|c)]. We
note that initially, only derivation (xy, ab, c) �r1 xabcy is possible. Subsequently,
for n > 1, (xa(n−1)b(n−1)c(n−1), ab, c) �r2 xanbncny. The language generated by
S3 is L3 = {ab, c} ∪ {xanbncny | n ≥ 0}.

Theorem 2. L(AM2FSS, FIN) − L(AFSS,CF ) �= ∅.
Proof. Consider the language L4 = {ab, c} ∪ {anbncn | n ≥ 1} over the alphabet
{a, b, c}. This language is generated by an AM2FSS with a finite initial set
{abc, ab, c} and matrix rule r = [r1, r2] where r1 = (a|a − b|b), r2 = (b|c −
λ|c). Initially, only derivation (abc, ab, c) �r aabbcc is possible. Subsequently, for
n > 2, (a(n−1)b(n−1)c(n−1), ab, c) �r anbncn. On the other hand, L4 cannot be
generated by any AFSS with context-free initial set since by Theorem 1, the
language generated by such a system can only be context-free while L4 is a
non-context-free language.

Corollary 1. L(AM2FSS, FIN) − CF �= ∅.
Proof. The language L4 in the proof of Theorem 2 is in L(AM2FSS, FIN) as
shown in the proof of Theorem 2, but it is not in CF.

Theorem 3. L(AFSS, FIN) = L(AM1FSS, FIN) ⊂ L(AM2FSS, FIN).

Proof. The equality in the statement follows by noting that every alphabetic
flat splicing rule r can be considered as a matrix rule [r]. The inclusion
L(AM1FSS, FIN) ⊆ L(AM2FSS, FIN) holds by definition. The proper inclu-
sion can be seen as follows: The language L4 in the proof of Theorem 2 is in
L(AM2FSS, FIN) but not in L(AFSS,CF ) as shown in the proof of Theorem
2. Also L(AFSS, FIN) ⊆ L(AFSS,CF ) as FIN ⊂ CF and hence L4 is not in
L(AFSS, FIN) and hence not in L(AM1FSS, FIN).
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Theorem 4. For n ≥ 3, L(AMn−1FSS, FIN) ⊂ L(AMnFSS, FIN).

Proof. The inclusion follows from the definition. To prove the proper inclusion,
we consider the language

Ln = {a2n−1} ∪ {a2i−1a2i | 1 ≤ i ≤ (n − 1)}
∪{ap

1a
p
2a

p
3a

p
4 · · · ap

2n−2a
p
2n−1 | p ≥ 1}

over the alphabet Σ = {ai | 1 ≤ i ≤ (2n − 1)}. This language is generated by an
AMnFSS Sn = (Σ, I,M), where I = {a2n−1, a1a2a3a4 · · · a2n−3a2n−2a2n−1} ∪
{a2i−1a2i | 1 ≤ i ≤ (n − 1)} and M = {r}, r = [(a1|a1 − a2|a2), (a3|a3 −
a4|a4), · · · , (a2n−3|a2n−3 − a2n−2|a2n−2), (a2n−1|a2n−1 − λ|λ)]. Note that the
matrix r is a sequence of n alphabetic flat splicing rules.

Initially, the only possibility of derivation is

(a1a2a3a4 · · · a2n−3a2n−2a2n−1, a1a2, a3a4, · · · , a2n−3a2n−2, a2n−1)

�r a2
1a

2
2a

2
3a

2
4 · · · a2

2n−3a
2
2n−2a

2
2n−1.

The process can be continued and subsequently, for p > 2, we have

(a(p−1)
1 a

(p−1)
2 a

(p−1)
3 a

(p−1)
4 · · · a(p−1)

2n−3 a
(p−1)
2n−2 a

(p−1)
2n−1 ,

a1a2, a3a4, · · · , a2n−3a2n−2, a2n−1)

�r ap
1a

p
2a

p
3a

p
4 · · · ap

2n−3a
p
2n−2a

p
2n−1.

It can be seen that no other derivation step is possible. Hence

Ln ∈ L(AMnFSS, FIN).

On the other hand, Ln /∈ L(AM(n−1)FSS, FIN). This can be seen as fol-
lows. Assume the contrary, it is clear from the language Ln that the word
a1a2a3a4 · · · a2n−3a2n−2a2n−1 has to be in the axiom. So, in order to gener-
ate words of Ln of the form ap

1a
p
2a

p
3a

p
4 · · · ap

2n−3a
p
2n−2a

p
2n−1 for p > 1, inser-

tion of ai, 1 ≤ i ≤ (2n − 1) in a previously generated word of a similar form
aq
1a

q
2a

q
3a

q
4 · · · aq

2n−3a
q
2n−2a

q
2n−1, q < p has to be done by a matrix or a finite

sequence of at the most (n − 1) alphabetic flat splicing rules. This would mean
that at the most only (n − 1) insertions can be done and also insertion of a
word of the form ar

2i−1a
r
2i, for some r ≥ 0, can be done only between a2i−1 and

a2i. But aq
1a

q
2a

q
3a

q
4 · · · aq

2n−3a
q
2n−2a

q
2n−1 has (n − 1) such pairs and another letter

(namely, a2n−1) at the end, which means that there are at the most n − 1 rules
in a matrix, the word ap

1a
p
2a

p
3a

p
4 · · · ap

2n−3a
p
2n−2a

p
2n−1 cannot be generated from a

previously generated word.

Regulated rewriting [3,14] is an intensively investigated area of formal lan-
guage theory with different methods and techniques developed for controlling the
application of rules in a context-free grammar. Matrix grammar [18] is such a
mechanism defining a family of languages richer than the context-free languages.
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Simple matrix grammars of degree n ≥ 1 (n − SMG) [10] constitute a sub-
family of matrix grammars investigated by many researchers (see, for example,
[5,10,16]). It is known [10] that there is a hierarchy of classes of languages gen-
erated by simple matrix grammars. More precisely, the family of languages gen-
erated by simple matrix grammars of degree n ≥ 1 is denoted by S(n), the lan-
guage Ln = {ak

1a
k
2 · · · ak

nbkcknckn−1 · · · ck1 | k ≥ 1}, where a1, · · · , an, b, c1, · · · , cn
are distinct symbols, is in S(n + 1) but not in S(n) [10]. In what follows, we
now show that L(AMn+1FSS, FIN) contains a language not generated by any
simple matrix grammar of degree n.

Theorem 5. For n ≥ 1, L(AMn+1FSS, FIN) − S(n) �= ∅.
Proof. Let Ln = {ak

1a
k
2 · · · ak

nbkcknckn−1 · · · ck1 | k ≥ 1}. We first consider the
case when n is even, n = 2m, m ≥ 1. We prove the result by constructing a
M2m+1FSS S = (Σ, I,M) generating L = L2m ∪ {a2i−1a2i, b, c2ic2i−1 | 1 ≤
i ≤ m}, where Σ = {a1, · · · , a2m, b, c1, · · · , c2m}, I = {a1a2 · · · a2m−1a2mbc2m
c2m−1 · · · c2c1, a2i−1a2i, b, c2ic2i−1 | 1 ≤ i ≤ m}, and M consists of the matrix
flat splicing rule

r = [(a1|a1 − a2|a2), · · · , (a2m−1|a2m−1 − a2m|a2m), (b|b − λ|λ),

(c2m|c2m − c2m−1|c2m−1), · · · , (c2|c2 − c1|c1)].
It can be seen that the M2m+1FSS S generates the language L but L cannot

be generated by any SMG of degree n = 2m, which can be shown by an argument
closely analogous to the proof showing Ln is not in S(n) [10].

The proof for the case when n is odd, n = 2m − 1, m ≥ 1 is similar. Now
L = L2m−1 ∪ {a2i−1a2i, a2m−1b, c2ic2i−1 | 1 ≤ i ≤ m − 1} and

I = {a1a2 · · · a2m−2a2m−1bc2m−1c2m−2 · · · c2c1, a2i−1a2i,

a2m−1b, c2ic2i−1 | 1 ≤ i ≤ m − 1}.

Also M consists of the matrix flat splicing rule

r = [(a1|a1 − a2|a2), · · · , (a2m−3|a2m−3 − a2m−2|a2m−2), (a2m−1|a2m−1 − b|b),

(c2m−1|c2m−1 − λ|λ), (c2m−2|c2m−2 − c2m−3|c2m−3), · · · , (c2|c2 − c1|c1)].
It can be again seen that the M2mFSS S generates the language L but L

cannot be generated by any SMG of degree n = 2m − 1 [10].

Right-linear simple matrix grammars (RLSMG) [10,15] form a subclass of
simple matrix grammars and the family of languages of RLSMG of degree n ≥ 1
is denoted by R(n). It is known that the language L′

n = {ak
1a

k
2 · · · ak

n+1 | k ≥ 1}
where a1, · · · , an+1 are distinct symbols, is in R(n + 1) but not in R(n) [10]. In
what follows, we show that there is a language generated by an AMFSS which
does not belong to R(n).
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Theorem 6.

(i) For even n, AMn
2 +1FSS − R(n) �= ∅.

(ii) For odd n, AMn+1
2

FSS − R(n) �= ∅.

Proof. Let L′
n = {ak

1a
k
2 · · · ak

n+1 | k ≥ 1}, where a1, · · · , an+1 are distinct sym-
bols. Let n = 2m, m ≥ 1. Consider the language

L′ = L′
2m ∪ {a1a2, · · · , a2m−1a2m, a2m+1}.

We construct a Mm+1FSS S = (Σ, I,M) generating L′. Let Σ = {a1, · · · ,
a2m+1} and

I = {a1a2 · · · a2m−1a2ma2m+1, a2i−1a2i, a2m+1 | 1 ≤ i ≤ m}.

Let M consist of the matrix flat splicing rule

r = [(a1|a1 − a2|a2), · · · , (a2m−1|a2m−1 − a2m|a2m), (a2m|a2m+1 − λ|a2m+1).

It can be seen that the Mm+1FSS S generates the language L′ but L′ cannot
be generated by any RLSMG of degree n = 2m, which can be shown by an
argument closely analogous to the proof showing L′

n is not in S(n) [10].
The proof for the case when n is odd, n = 2m − 1, m ≥ 1 is similar. Now

L′ = L′
2m−1 ∪{a2i−1a2i | 1 ≤ i ≤ m} and I = {a1a2 · · · a2m−1a2m, a2i−1a2i | 1 ≤

i ≤ m}. Also M consists of the matrix flat splicing rule

r = [(a1|a1 − a2|a2), · · · , (a2m−1|a2m−1 − a2m|a2m)].

It can be again seen that the MmFSS S generates the language L′ but L′

cannot be generated by any RLSMG of degree n = 2m − 1 [10].

A new type of parallel rewriting system called grammar with linked non-
terminals which uses context-free productions that replace a nonterminal with
its connected instances, has been introduced in [12]. The family of languages
generated by grammars with linked nonterminals of degree k is denoted by
L(k − SN). In establishing a hierarchy result, it has been proved that the lan-
guage Lk+1 = {an

1an
2 · · · an

k+1 | n ≥ 1}, where a1, · · · , ak+1 are distinct symbols,
is not in L(k − SN) [12]. As done in Theorem 6, we can show that there is a
language generated by an AMFSS which does not belong to L(k − SN). We
state the result in the following Theorem.

Theorem 7.

(i) For even k, AM k
2+1FSS − L(k − SN) �= ∅.

(ii) For odd k, AM k+1
2

FSS − L(k − SN) �= ∅.
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4 Application to Chain-Code Pictures

As early as 1982, Maurer et al. [13] introduced a picture generating model,
called chain code picture grammar, where the chain code pictures are made of
unit lines in the two-dimensional plane, with the pictures being drawn according
to a sequence of instructions left, right, up, down represented by words over
Σ = {l , r , u, d}. There has been a number of investigations on various properties
of the chain-code pictures (e.g., see [2,6,11,19,20]). As an application of matrix
flat splicing system, we indicate here the applicability of matrix flat splicing
system with only alphabetic flat splicing rules in describing a chain code picture
language consisting of diamond shaped chain code pictures with four equal size
stair pattern in each side as shown in Fig. 1.

Fig. 1. A diamond shaped chain-code picture with four equal sized stairs

We note that description of such pictures in terms of a formal language of
words over the symbols l, r, u, d is a context-sensitive language given by

Lc = {u(ru)nrr(dr)ndd(ld)nll(ul)nu | n ≥ 1}.

We give an AM4FSS to generate Lc. The alphabet is {l, r, u, d}. The axioms
are ururrdrddldllulu, ru, dr, ld, ul. The matrix alphabetic flat splicing rule is

r = [(u|r − u|r), (r|d − r|d), (d|l − d|l), (l|u − l|u)].

It can be seen that this AM4FSS generates the language Lc∪{ru, dr, ld, ul}.
Except for the four words ru, dr, ld, ul, every word in this language corresponds
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to a diamond shaped chain code picture with four equal size stair pattern in each
side. The drawn chain-code picture corresponding to the word u(ru)2rr(dr)2dd(l
d)2ll(ul)2u is shown in Fig. 1.

5 Conclusions and Discussions

In this work, a well-known technique in formal language theory, known as matrix
of rules, has been introduced into flat splicing system, thus matrix flat splicing
systems were defined. Some results on the language generative power of matrix
flat splicing systems were presented. Matrix flat splicing systems were used to
generate chain code pictures.

The language generative power of matrix flat splicing systems in compari-
son with context-free languages has been given in Corollary 1. It is of interest
to investigate the language generative power of matrix flat splicing systems in
comparison with other languages in Chomsky hierarchy. It will be of interest
to study other mechanisms of regulated rewriting in the context of flat splicing
systems.
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Abstract. DNA strand displacement has great potential for use in logic
circuits. In the paper, the two DNA-based logic circuits that behave as
half-subtract and half-adder were implemented relying on strand dis-
placement and fluorescence labeling technique. The half-adder and half-
subtract were achieved by simply modifying the sequences of the input
strands, while retaining the same DNA logical structure as a universal
platform. By taking advantage of the branch migration mechanism, sep-
aration and combination of fluorescent group were controlled, two series
of fluorescence signals were defined as the output signal. We simulated
within the Visual DSD design tool which analyzes their performance
and proves the correctness of the circuits. The system reported herein is
rather concise compared to other molecular logic gate systems.

Keywords: DNA strand displacement · Universal platform ·
Fluorescence signal · Visual DSD

1 Introduction

As nanotechnology has become a principal research interest, molecular-scale
devices that can be built by either top-down or bottom-up approach are widely
studied. In recent years, DNA has been demonstrated as remarkable material
in fabrication of arithmetic systems [1] and molecular logic computing, because
of properties such as special recognition of target sequences, self-assembly into
defined structures [2]. Meanwhile, DNA strand displacement is one of the basic
DNA molecular computing technologies by virtue of its own energy level cause,
highly specific hybridizations, sensitivity and accuracy to release and combina-
tion [3,4]. In 1994, Adleman in [5] introduced a DNA-based bio-computing sys-
tem for solving famous mathematics traveling salesman problems. In 2011, Qian
in [6,7] realized a four-bit binary square-root circuit that comprised 130 DNA
strands and four interconnected neurons that can play mind-reading game by
DNA strand displacement cascades, which has attracted great attention in the
field of information computing. These demonstrated that DNA sequences can
serve as elementary computing devices such as half-adder, half-subtract, full-
adder, and full-subtract [8,9]. Simultaneously, as fluorescence technology rapid
c© Springer Nature Singapore Pte Ltd. 2016
M. Gong et al. (Eds.): BIC-TA 2016, Part I, CCIS 681, pp. 64–71, 2016.
DOI: 10.1007/978-981-10-3611-8 8
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development, the researchers tried to combine strand displacement with fluo-
rescence technology to construct molecular devices. In 2003, Saghatelian in [10]
established the DNA logic gates by using fluorescence technology and molecular
operation for the first time. Fluorescent signals are used in the construction of
logic gates since light can be recognized as the output signal. These techniques
provide a new direction for the study of molecular devices in the future.

Most of the previous DNA logic operating methods, logic gates was used as
an elementary unit to implement the logical circuits [11]. For instance: a half-
adder can perform an addition operation on two binary digits by integration
of an XOR gate and an AND gate in parallel to generate a Sum output and
a Carry output, respectively. A half-subtract can perform a subtraction of two
bits, which requires the combination of an XOR gate and an Inhibit gate to
produce a Difference output and a Borrow output, respectively. But the half-
adder and half-subtract have some limitations: (1) the inputs and logic gates for
the required logical circuits are different from each other, (2) the reaction process
is more complex, the reaction time is too long. So it is necessary to construct
multi-functional molecular devices on a single bio-molecular platform.

In the paper, we achieved a half-adder and half-subtract on the same platform
by simply modifying the inputs. The constructed systems in this study are based
on the concept of molecular beacon [12] and DNA strand displacement. The
simplicity and stability of this structure makes it easy to operate. The presence
and absence of the single-stranded DNA are assigned as the respective inputs of
1 and 0, two series of fluorescence signals are defined as the output signal. We
finally use this Visual DSD [13] software tool to analyze and simulate the DNA
circuits in this paper.

2 Design and Construction of Half-adder and
Half-subtract Model

2.1 Materials and Analysis

In this section, we present an universal platform architecture showed the Fig. 1
and implement the half-adder and half-subtract circuits on the base of the plat-
form by using DNA strand displacement. The universal platform is formed of
three DNA single strands with different direction and based on the principle of

Fig. 1. A schematic representation of the universal platform.



66 Z. Wang et al.

Watson-Crick complementarity. Each strand has a direction from the 5-end to
the 3-end. We think that the different letters represent different DNA domains
that these domains between will not interfere with each other [14]. The domain
b∗ indicates the complementary domain of b that hybridizes with b. In addition,
these short domain (a∗, e) are considered as toeholds. The toehold is extremely
important component because it provides a DNA domain for the interaction
between the input and the platform. Once the toehold domain (a, e∗) on the
input strand binds to exposed toeholds on the platform (a∗, e); then, input toe-
hold will initiate the reaction. Eventually, the reaction occurs through branch
migration, which translates input strand into output strand.

In the platform, the 〈d∗〉 strand carries a Cy5 (red dye) at the 5′-end. The
〈a∗ b∗ c∗〉 strand is modified respectively with quencher at the 5′-end and at
the 3′-end. Since the fluorescence resonance energy transfer (FRET) efficiency
depends on the distance between donor and receptor pair. The DNA strand holds
the fluorophore and the quencher in close proximity, leading the fluorescent signal
is quenched. When the fluorophore and the quencher are separated by the strand
displacement reaction, resulting in a high fluorescent signal [15]. Herein, the two
input strands are designed to hybridize with the gate to cause an output change
of fluorescence. The absence of the each input is considered as 0 and the presence
of input is defined as 1. The output signal is defined depends on whether the
last fluorescence signal was observed.

2.2 Design of Half-adder

The half-adder model is showed in the Fig. 2, the Input A 〈e d c b a〉 carries
fluorophore (green dye) at the 3-end, the Input B 〈a∗ b∗ c∗ d∗ e∗〉 is only a
pure single strand. Input A is complementary to the Input B completely. Fur-
thermore, when the strand displacement reaction is completed and the balance
is achieved. Then, the output has been read out. Herein, the high concentra-
tion green fluorescent signal on behalf of carry bit, the high concentration red
fluorescent signal is read as the sum-bit.

In the (0, 0) state, neither Input A nor Input B is present, fluorophore of the
platform stays near the quencher. Consequently, no fluorescent signal is released

Fig. 2. (a) Implementation principles of the developed DNA half adder. (b) Truth table
for half adder (Color figure online)
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and the output reading is (0, 0). In the (0, 1) state, when Input B 〈a∗ b∗ c∗ d∗ e∗〉
is added, the branch migration is initiated when the toehold e∗ binds to the
exposed toehold e in the platform. As a result, forming a new complexes and
displace single strand 〈a∗ b∗ c∗〉 and 〈d∗〉 from the platform. The fluorophore
at the 5′-end of strand 〈d∗〉 shifts away from the quencher and releases a red
fluorescence signal. Hence, the output reading is (0, 1).

In the (1, 0) state, when the Input A 〈e d c b a〉 is added, at first, the
toehold in the Input A binds to the toehold a∗ in the platform. This produces
a double strand and releases another double strand. Since, forming the Input
A-〈a∗ b∗ c∗〉 duplex, the green fluorophore and the quencher stay together, so
the green fluorescence is not observed. In contrast, the displacement reaction
also leads to the red fluorophore separated from the platform, restoring the red
high fluorescent signal. As a result, the output result is (0, 1).

In the (1, 1) state, both Input A and Input B coexist, the double strand of
Input A-Input B is formed, because the Input A and Input B is favored over
hybridization each other. Neither the 〈a∗ b∗ c∗〉 nor the 〈d∗〉 of gate is replaced
by the Input A or the Input B. Therefore, the red fluorophore and the quencher
still stay together in the gate duplex, so the red fluorescence is not observed.
Because of the 〈a∗ b∗ c∗ d∗ e∗〉 strand does not carry quencher, the 〈e d c b a〉
strand carries fluorophore (green dye) at the 3-end, therefore we can observe the
green fluorescence, so the final result reading is (1, 0).

2.3 Design of Half-subtract

The half-subtract model is showed in the Fig. 3, the Input A 〈e d c b a〉 carries
quencher at the 5-end, the Input B 〈a∗ b∗ c∗ d∗ e∗〉 carries fluorophore (green
dye) at the 3-end. Input A is complementary to the Input B completely. As the
chemical reaction reaches equilibrium, the results will be read out. Eventually, in
the half-subtract, the green fluorescent signal strand represents the borrow-bit,
the red fluorescent signal strand represents the difference-bit.

Fig. 3. (a) Implementation principles of the developed DNA-based half-subtract. (b)
Truth table for half-subtract (Color figure online)
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In the (0, 0) state, no input is added, consequently, no fluorescent signal is
released. Both the borrow-bit and the difference-bit are read as 0, the output
reading is (0, 0).

In the (0, 1) state, the 〈d∗〉 and 〈a∗ b∗ c∗〉 is released from the platform in the
presence of Input B 〈a∗ b∗ c∗ d∗ e∗〉. Due to the presence of the toehold e in the
platform, thus Input B prefers to hybridize with 〈e d c b〉 by the toehold (e, e∗),
forming an Input B-〈e d c b〉 duplex. The red fluorophore thus becomes far away
from the quencher and exhibits red fluorescent signal. This green fluorescence
is introduced simultaneously. So green fluorescence and red fluorescence can be
observed at the same time. Thus, the output reading is (1, 1).

In the (1, 0) state, only the Input A 〈e d c b a〉 is present, the toehold a in the
Input A first binds to the complementary toehold a∗ in the platform. Finally, the
strand displacement reaction results in the separation of the red fluorescence and
the quencher, releasing the red fluorescent signal. The output reading is (0, 1).

In the (1, 1) state, both inputs are present, Input A and Input B have a higher
probability to hybridize each other. When Input A and Input B are hybridized,
fluorescence and quencher are brought in the vicinity, fluorophore on the Input
B is quenched. Consequently, without any fluorescence signals are released and
the output reading is (0, 0).

3 Result and Discussion

As mentioned above, we have theoretically verified the feasibility of half-adder
and half-subtract. Next, we will prove the correctness of the molecular devices
through the simulation with DSD [13]. Visual DSD is an implementation of a
programming language for designing DNA circuits based on DNA strand dis-
placement systems. The Visual DSD software can compile a number of DNA
strand displacement into a set of chemical reactions for simulation. Herein we
simulate the reaction process of half-adder and half-subtract in DSD. In the
deterministic simulation plots, the abscissa represents the reaction time(s), and
the ordinate represents the DNA strand concentration (nm), the upper left cor-
ner of the block diagram of different color corresponding to the DNA strand
in the figure. The Output results in the designed half-adder and half-subtract
where the output reading relies on the fluorescence. However, in DSD software
we can prove the correctness of the theory by detecting the concentration of the
strand connected with the final fluorescent signal, as the reactions reach equi-
librium [16]. The stochastic simulation diagram of the model of half-adder is
shown in Fig. 4. In the simulation diagram, the blue curve represents Input B
〈a∗ b∗ c∗ d∗ e∗〉, the green curve represents Input A 〈e d c b a〉 carrying green
fluorescence. The red curve represents the output carrying red fluorescence. As
can be seen from the simulation diagram Fig. 4(a) in the (0, 1) state, the initial
concentration of the red curve is 0 nm, when the input strand 〈a∗ b∗ c∗ d∗ e∗〉
is added, it will be found that at first the red curve is rapidly increasing in the
form of a slope. Because the input strand has just been added, the concentra-
tion is relatively large. After a period of time, along with the reaction, this input
strand is gradually consumed, the rate of this reaction gradually slow. Thus, out-
put concentration increase is relatively slow. Next when the strand displacement
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Fig. 4. A simulation diagram of the half-adder model. (a) the (0,1) state, (b) the (1,0)
state. (Color figure online)

reaction is completed and toward equilibrium, the input strand is exhausted, the
output strand remains stable [17]. This final equilibrium concentration is used
as the output concentration. We see that the concentration of the output strand
approaches 1 nM by the equilibrium of the simulation.

In the (1,0) state, when the input strand with green fluorescent signal
is added, as time goes on, the concentration of green fluorescence gradually
decreased and the concentration of red fluorescence increased gradually. The
simulation process is similar to that of the (0, 1) state.

Figure 5 presents the simulation diagram of the model of half-subtract. In the
(0, 1) state, the blue curve represents Input B 〈a∗ b∗ c∗ d∗ e∗〉, the green curve and
red curve represent the output strand (Input B-〈e d c b〉) and < d∗ > respectively.
In addition, it should be noted that the red curve and the green curve are
completely overlapping, because of the output strand (Input B-〈e d c b〉) and
〈d∗〉 are replaced at the same time. Other simulation principles are similar to
the half adder. Figure 5(b) shows simulation diagram of the (1, 0) state.

Fig. 5. A simulation diagram of the half-subtract model. (a) the (0,1) state, (b) the
(1,0) state, the blue curve represents Input A 〈e d c b a〉 (Color figure online)
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This simulation results demonstrate two DNA-based logic circuits for arith-
metic operations and the correctness of molecular devices we have designed [18].
To our knowledge that computation time for circuits can be shown to scale
linearly with circuit depth. However, in the study, the advantage of using the
fluorescence technique is that the required two logic gates of half-adder and half-
subtract are completed with same universal DNA platform and triggered by the
same inputs [19]. There is no doubt, it reduces the number of reactive strands
and circuit depth, making the circuits more easily to operate. In comparison
with the previous half-adder and half-subtract, in this study, localized circuits
have advantages with respect to both speed and stability.

4 Conclusions

In summary, a half-subtract and half-adder are designed by using the fluores-
cence technique and displacement of DNA strands successfully. In the study, the
molecular devices overcome the limitations of the required two logic gates being
achieved with different substrates or being triggered with different inputs. There
is no doubt that the use of fluorescence as the signal evaluation makes it simple
and flexible for the design of logic circuits to meet the arithmetic processing
requirements. However, DNA strand displacement systems also have the disad-
vantages: for example, we know that DNA reactions happen in diffusion, perhaps
not surprisingly, DNA strand displacement systems have their own leak reaction.
Along with the increase of the system complexity, the leak phenomenon is more
serious. Therefore, it should be noted that there is a long road ahead to inte-
grate the developed molecular systems to compete with silicon-based technology.
Although the developed half-adder and half-subtract are implemented in simu-
lation stage, but these models provide a new method that makes DNA a highly
promising for the implementation molecular devices on a single bio-molecular
platform [20–24].
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Abstract. Genetic algorithm is a well known bio-inspired algorithm,
which has been widely used to solve practical problems in real-life. The
performance of the algorithm heavily depends on the convergence related
to the values of parameters involved. It is formulated as a hard problem
to select suitable values of mutation and crossover rates to achieve fast
or slow convergence for unknown problems. As a new study of system
framework inspired by cell model, membrane computing models is with a
membrane structure having region segmentation, intrinsic discrete, non-
deterministic, programmable and transparent features. In this paper, a
hybrid “fast-slow” convergent framework for genetic algorithm inspired
by membrane computing is proposed and applied to search optimal solu-
tion of 41 benchmark functions. It is obtained by the data experimental
results that our method performs well in solving benchmark functions
by achieving accuracy rate about 96%.

Keywords: Membrane computing · Genetic algorithm · Membrane
structure · Convergence

1 Introduction

Genetic algorithm (GA) is bio-inspired intelligent algorithm abstracted from the
human evolving process. Nowadays, the algorithm is known adaptive, heuristic,
iterative, and has been applied in solving plenty of practical problems. The
performance of GA heavily depends on the values of involved parameters, such
as mutation rate and crossover rate of the population. The most intuitive case
is that with different values, the convergence which is an important indicator
of performance to test the algorithm, will be quite different. High convergence
c© Springer Nature Singapore Pte Ltd. 2016
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rate does not mean it can search for the best solutions; while sometimes, slower
convergence can get better results, but it means spending more time [1].

Due to the instability of the convergence, many researchers are focus on
the precocious convergence of GA. It is proposed in [2] the genetic markers to
actively avoid convergence to a particular rooted tree structure. This is achieved
by maintaining a number of unique genetic markers in the population. After
that, the structure fitness sharing (SFS) algorithm proposed in [3,4] is taken as
a possible way to attempt to promote diversity based on tree structure. Moti-
vated by the fitness sharing concept, it uses labels on tree structures to decrease
the fitness of structures that are over-represented in the population. Generally
speaking, most of the researches solve this problem by optimizing algorithm and
intermediate data processing.

Membrane computing, initialed by Gh Paun in 1998 is known as new branch
of natural computing [5]. The systems investigated in the framework of mem-
brane computing is called P systems, and plenty of P systems have been devel-
oped, including cell-like P systems, tissue P systems and spiking neural P systems
[6–20]. In this work, we propose a new model inspired from membrane com-
puting models to achieve “fast-slow” convergence rate of GA in the membrane
structure. The obtained algorithm is a new candidate in membrane algorithm,
and many researchers have done good works on it. Currently, membrane com-
puting has been used in optimization field [31], Systems and Synthetic Biology
[21], Troubleshooting [36], economics [37] and linguistics [38]. These experiments
demonstrate that applying Membrane Algorithm to optimize Genetic Algorithm
is feasible. We developed here a thread control process following the Nested Mem-
brane System [24] to searching optimal solution, where a single GA is used in
each membrane and performs as a thread in the program [22]. After one iteration
(evolution), the population will produce the best individual. Under the control of
the communication rule [23,36], the efficiency of searching optimal solution gets
a big promotion, when the problem has no solving information. It is obtained
by the data experimental results that our method performs well in solving 41
benchmark functions by achieving accuracy rate about 96%.

2 Related Technologies

2.1 Genetic Algorithm

Genetic Algorithm (GA) was first proposed by J. Holland in 1975 [26]. It is
a type of heuristic random search method inspired by natural selection and
genetic mechanism of biological evolution law (survival of the fittest). It contains
feature is the direct operating to the structured objects without the delimitation
of derivation and continuity of function. It is inherent implicit parallelism and
better global optimization and it can automatically obtain and guide optimized
searching space for adjusting the search direction.

In general computing process, GA is started with setting the potential solu-
tion (population), and a population is consists of genes encoded by a certain
number of individuals (individual). It is needed initially to encode individuals
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for simplify computer operation, such as binary encoding. After producing the
first generation of populations, each generation produce more good approxi-
mate solution in accordance with the principle of survival of the fittest. In each
generation, select individual according to the individual’s fitness size, and then
generate a population representative of the new solution set by genetic operators
combined with cross and mutation. This process will lead new population to be
more adapted to the environment, and the last population of the best individual
can be the approximate optimal solution after decoding [25].

2.2 Membrane Computing Inspired Algorithm

Membrane Computing is a new branch of natural computing. It is originated
from natural cells, and the structure also builds on the biological cells. The sys-
tems investigated in membrane computing are named P systems, which is defined
as a series of membrane structures containing chemical substances (limited num-
ber), catalyst and rules (including the rules of the reaction, membrane transport
rules etc.). It is shown in Fig. 1 the membrane structure of the P systems. Like
in real biological cells, when the reactants (sometimes catalyst) are contact with
each other, the chemical reaction will occur. Due to the random applications of
rules, the calculation will be uncertain, in the other words, the repetition of the
same question may lead to multiple solutions. When the computation of the P
system is completed, the chemicals exist out of the outermost membrane will
reach steady state, which means no reaction will continue.

Fig. 1. Membrane structure.

A membrane algorithm framework consists of three different kinds of
components:

– A number of regions which are separated by nested membranes (Fig. 1).
– For every region, a subalgorithm and a few tentative solutions of the opti-

mization problem to be solved.
– Solution transporting mechanisms between adjacent regions.
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There are three basic types of membrane system: Cell-like P system, Tis-
sue P system, spiking neural P systems [29,32,35]. We consider here a cell-like
membrane structure named Nested Membrane System, which is a friendly model
for programming. The structure is used by Nishida to solve the TSP problem
[30,31], and have been applied for data optimization [31].

We denote by S a feasible solution of the problem, which is distributed dif-
ferences in different membranes. The communication rules means that the mem-
brane sends some solutions into the outer membrane which directly contains it.
The rule can be written as follows.

{amax1, amax2, . . . , amaxn}i − {}iamax1, amax2, . . . , amaxn (1)

It is denoted by i the membrane i, and by amax1, amax2, . . . , amaxn the n
best solutions in the region 1, 2, . . . , n, respectively. The model converges very
fast because of the communication between membranes. In terms of realization of
membrane computing, some associated simulation software have been released.

3 The Model and Data Experiments

3.1 GA Program

We design a basic GA program to run the dimensional function. In the program,
we can set initial conditions to control the convergence rate. Every gene contains
the potential solution and the threshold. In order to simplify the crossing and
mutation process, encoding process is omitted as in [33].

– Chromosome: Chromosome and can be called individuals, a certain number
of individuals of the population, the number of groups of individuals called
population size.

– Gene: Gene elements include characteristics of the individual genes. In this
paper, a set of possible solutions S = (x1, x2, x3) are designed and each of
them is called gene.

– Fitness: Each individual’s degree of adaptation to the environment is called
fitness. In order to reflect the ability to adapt to the chromosome, the intro-
duction of the function of each chromosome in question can be measured.
Here, the function is calculated to value in the population of individuals.

– Select: Select means winning individuals from population, and Selecting oper-
ation is based on the population of individual fitness assessment.

– Cross: Genetic recombinant (plus variation) play a central role in the process
of evolution is a genetic recombinant organisms (plus variation). Because of
giving up Genes encoding process gene cross is implemented by exchanging a
random parameter of two genes.

– Variation: The basic contents of the gene mutation operator are the value of a
population of some individual strings locus for change. Here we use Real value
variation.
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3.2 Membrane Structure

The nested membrane structure of degree m is selected, which means the number
of membrane is m. The value of m is set to be 5 or 6 here, and in each membrane,
GA is performed with different mutation and crossover rates. All of the GA
run the same function. Because of the lightweight program, we set each GA
as a thread [34]. The data communication rule works in neighbor membrane.
The communication process looks as follows (current membrane is the middle
membrane):

1. Each membrane start GA thread
2. Suspend thread every 50 iteration
3. Monitoring inner membrane

If (inner membrane has no request for communication):
3.1 Compared with the individual of the outer membrane
3.2 Suspend outer membrane
3.3 Replace the best individual of outer membrane
3.4 Reuse thread
3.5 Judge the outer membrane to reuse (avoid the thread to be suspended

before reaching 50 iteration by inner membrane)
Else: wait for the inner membrane

4. The best individual in the outmost becomes the output of the algorithm

The individual are modified only when both of the membranes have been
suspended. In order to avoid deadlocks, the inner membrane has higher priority
than the outer membrane.

3.3 Data Experiments

It is tested the proposed method by solving 41 benchmark functions. In the step
of initialization, we created 5 GA and set different initialization information.
The iteration is set to be 10000 for each GA. We controlled convergence rates
by changing number of individuals, cross rate and variation rate (Table 1).

Table 1. The values of involved parameters in the GA in different regions

Population Iterations Cross Variation

1000 10000 0.8 0.08

1000 10000 0.6 0.01

500 10000 0.8 0.08

500 10000 0.6 0.01

800 10000 0.8 0.1

The interface of the software is shown in Fig. 2.
The tested functions are listed in Table 2.
It is obtained by the data experimental results that our method performs

well in solving benchmark functions by achieving accuracy rate about 96%.
We exam the formulas the help of the model (Table 3).
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Table 2. The list of tested benchmark functions

Formula

Ackley’s function (Ak) f(x, y) = −20 exp(−0.2
√

0.5(x2 + y2)) − exp(0.5(cos(2(π)
x) + cos(2(π)y))) + e + 20

Sphere function (Sh) f(x) =
∑n

i=1 x2
i

Rosenbrock function (Rbk) f(x) =
∑n−1

i=1 [100(xi+1 − x2
i ) + (xi − 1)2]

Beale’s function (Bl) f(x, y) = (1.5−z+xy)2+(2.25−x+xy2)2+(2.625−x+xy3)2

GoldsteinPrice function (GP) f(x, y) = (1 + (x + y + 1)2(19 − 14x + 3x2 − 14y + 6xy +
3y2))×(30+(2x−3y)2(18−32x+12x2+48y−36xy+27y2))

Booth’s function (Bt) f(x, y) = (x + 2y − 7)2 + (2x + y − 5)2

Bukin function N.6 (BN.6) f(x, y) = 100
√|y − 0.01x2| + 0.01|x + 10|

Matyas function (Mt) f(x, y) = 0.26(x2 + y2) − 0.48xy

Levi function N.13 (LN.13) f(x, y) = sin2(3πx)+(x−1)2(1+sin2(3πy))+(y −1)2(1+
sin2(2πy))

Three-hump camel function(Thc) f(x, y) = 2x2 − 1.05x4 + x6
6 + xy + y2

Easom function (Es) f(x, y) = − cos x cos y exp(−((x − π)2 + (y − π)2))

Cross-in-tray function (Ct) f(x, y) = −0.0001(| sin x sin y exp(|100−
√

x2+y2
π |)|+1)0.1

Eggholder function (Ehd) f(x, y) = −(y+47) sin(
√

| x
2 + (y + 47)|)−x sin(

√|x − (y+

47)|)
Holder table function (Ht) f(x, y) = −| sin x cos y exp(|1 −

√
x2+y2

π |)|
McCormick function (McC) f(x, y) = sin(x + y) + (x − y)2 − 1.5x + 2.5y + 1

Schaffer function N. 2 (Scf.2) f(x, y) = 0.5 +
sin2(|x2−y2|)−0.5
(1+0.001(x2+y2))2

Schaffer function N. 4 (Scf.4) f(x, y) = 0.5 +
cos2(sin(|x2−y2|))−0.5

(1+0.001(x2+y2))2

Hump Functions (Hmp) f(x) = 4x2
1 − 2.1x4

1 + x6
1/3 + x1x2 − 4x2

2 + 4x4
2

Rastrigin function (Rst) f(x) = An +
∑n

i=1(x
2
i − A cos(2πxi))

Colville function (Clv) f(x) = 100(x2
1 − x2)

2 + (x1 − 1)2 + (x3 − 1)2 + 90(x2
3 −

x4)
2 + 10.1((x2 − 1)2 + (x4 − 1)2) + 19.8(x−

2 1)(x4 − 1)

Griewank function (Gwk) f(x) =
∑n

i=1
x2

i
4000 −∏n

i=1 cos(
xi√

i
) + 1

Schwefel function (Swf) f(x) = −∑n
i=1 xi sin(

√|xi|)
Shubert function (Shb) f(x) = (

∑5
i=1 i cos((i+1)x1 + i))(

∑5
i=1 i cos((i+1)x2 + i))

Sum Squares function (SSq) f(x) =
∑n

i=1 ix2
i

Zakharov function (Zkr) f(x) =
∑n

i=1 x2
i + (0.5

∑n
i=1 ixi)

2 + (0.5
∑n

i=1 ixi)
4

Generalized Rastrigins function (GR) f(x) =
∑n

i=1[x
2
i − 10 cos(xπxi) + 10]

Styblinski-Tang function (SbT) f(x) = 0.5(
∑n

i=1 x4
i − 16x2

i + 5xi)

Michaelwiczs function (Mcw) f(x, y) = − sin x sin20( x2
π ) − sin y sin20( 2y2

π )

Six-hump camel back function (Shcb) f(x, y) = (4 − 2.1x2 + 1
3x4)x2 + xy + 4(y2 − 1)y2

Xin-She Yangs functions (XSY) f(x) = (
∑n

i=1 |xi|) exp(−∑n
i=1 sin(x2

i ))

J.D. Schaffer function (JDS) f(x) =
sin2(

√
(x2

1+x2
2))−0.5

[1+0.001(x2
1+x2

2)]2
− 0.5

Quartic Function i.e. Niose (Qie) f(x) =
∑n

i=1 ix4
i + random[0, 1)

Step function (Step) f(x) =
∑n

i=1(|xi + 0.5|)2
Schwefels Problem 2.21 (Swf2.21) f(x) = maxn

i=1{|xi|}
Schwefels Problem 2.22 (Swf2.22) f(x) =

∑n
i=1 |xi| +

∏n
i=1 |xi|

Schwefels Problem 1.2 (Swf1.2) f(x) =
∑n

i=1(
∑n

j=1 xj)
2
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Table 3. The values of parameters in tested benchmark functions

Formula Search domain Minimum Result Deviation

Ak [–10,10] n = 2 0 0 0

Sh [–10,10] n = 2 0 0 0

[–10,10] n = 30 0 0 0

Rbk [–10,10] n = 2 0 0 0

[–512,512] n = 10 0 0 0

Bl [–10,10] 0 0 0

GP [–2,2] 3 0 Err

Bt [–10,10] 0 0 0

BN.6 [–15,15] 0 0 0

Bt [–10,10] 0 0 0

Mt [–10,10] 0 0 0

Es [–100,100] –1 –0.98564252 1.5%

LN.13 [–10,10] 0 0 0

The [–10,10] 0 0 0

Ct [–10,10] –2.06261 –2.07697545 0.69%

Ehd [–512,512] –959.6407 –954.20825867 0.566%

Ht [–10,10] –19.2085 –19.12593522 0.43%

McC [–3,4] –1.9133 –1.89645318 0.88%

Scf. 2 [–5,5] 0 0 0

Scf. 4 [–5,5] 0.292579 0 Err

Hmp [–5,5] n = 2 0 0 0

Rst [–5.12,5.12] n = 2, A = 10 0 0 0

[–5.12,5.12] n = 10, A = 10 0 0 0

Clv [–10,10] n = 4 0 0 0

[–10,10] n = 10 0 0 0

Gwk [–600,600] n = 2 0 0 0

[–600,600] n = 10 0 0 0

Swf [–500,500] n = 2 837.9658 837.96552803 3.24e−7

[–500,500] n = 10 0 0 0

Shb [–10,10] n = 3 –186.7309 –186.72187594 0.0048%

SSq [–10,10] n = 2 0 0 0

[–10,10] n = 30 0 0 0

Zkr [–5,10] n = 2 0 0 0

[–5,10] n = 10 0 0 0

GR [–5.12,5.12] n = 2 0 0 0

[–5.12,5.12] n = 10 0 0 0

SbT [–5,5] n = 2 (–78.33234,–78.33232) –78.322614322 0.023%

[–5,5] n = 10 (–391.6617,–391.6616) –391.59810786 0.0162%

Mcw [0,5] m = 10, n = 2 −1.8013 −1.80120638 0.0052%

Shcb [–3,3] –1.0316 1.03052387 0.10%

XSY [–2,2] n = 2 0 0 0

JDS [–100,100] –1 0.99022143 0.978%

Qie [–1.28,1.28] 0 0 0

Step [–100,100] n = 3 0 0 0

[–100,100] n = 10 0 0 0

Swf2.21 [–100,100] n = 3 0 0 0

[–100,100] n = 100 0 0 0

Swf2.22 [–10,10] n = 3 0 0 0

[–10,10] n = 10 0 0 0

Swf1.2 [–100,100] n = 3 0 0 0
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Fig. 2. Fast-slow GA framework.

4 Conclusion

In this paper, a hybrid “fast-slow” convergent framework for genetic algorithm
inspired by membrane computing is proposed. Such framework incorporates
basic Cell-like P System and GA. Several basic features like compartmentaliza-
tion, communication among compartments, dynamic membrane structure help
GA to combine the convergence. It is tested the proposed method by solving
41 benchmark functions. It is found that our method performs well in solving
benchmark functions by achieving accuracy rate about 96%.

Compared with these results, we can find the algorithm show good perfor-
mance for searching optimal solution. It combines the potential results of differ-
ent GA and provides a method to solve premature convergence. It also reduces
the influence of the initialization to GA. On the other hand, the communication
rule can be optimized, and the present paper control the data transmission by
making use of thread control inspired by Nested membrane structure.

Membrane algorithms inherit the parallelism of P system. In the further
study, the algorithms will be naturally implemented on a parallel hardware. The
parallelism is simulated in a common serial machine. The GA in each membrane
is not true parallel processing and it is also the difficulty of the application
of membrane computing, even if the algorithm running in a cluster, because
the communication costs is too high to optimization. So, there are still many
improvements to do if the framework in this paper runs on a parallel hardware,
such as GPU. We hope other membrane structure such as spiking neural P sys-
tems [39] can also be applied if the threads control method is well designed. It is of
interests to replace GA in each membrane by some other intelligent algorithms,
such as PSO, simulated annealing. As well, some other membrane structures,
for instance, star membrane structure, and rooted membrane structure can be
expanded to our hybrid framework.
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Abstract. Focused on the contradiction between selective pressure and
population diversity in the optimization algorithm using hybrid evolu-
tionary mechanisms, this paper proposes a membrane image threshold
segmentation algorithm based on the idea of membrane computing. The
proposal uses a hybrid tissue P system of three one-level-membrane-
structure (OLMS) membranes in which genetic algorithm (GA) and par-
ticle swarm optimal algorithm (PSO) are used as evolution operator. The
proposed algorithm uses the communication rules and transfer rules to
establish the interactions among the membranes, and then enhances the
diversity of population in the system and improves the convergence of the
algorithm. After comparing with the conventional methods, simulation
results and dynamic behavior analysis show that the proposal evidently
improve the validity and feasibility of the image segmentation algorithm.

Keywords: Membrane computing · Tissue P system · Threshold seg-
mentation

1 Introduction

Image segmentation is critical for the digital image processing, and is the first
step to analyze image [1]. The quality of image segmentation directly affects the
effect of the subsequent processing of image processing. The current methods
of image segmentation mainly include threshold method, edge test [2], region
growing method [3], morphology watershed method, and etc.

Image threshold segmentation is an important segmentation technology [4].
The basic idea regards the image as two parts: the object and background, using

c© Springer Nature Singapore Pte Ltd. 2016
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the gray value difference between the object and background, select a suitable
gray value as a threshold, for each pixel in the image by gray value attributable
to the object and the background of two parts.

Based on the maximum class square error method, Otsu proposes an algo-
rithm to calculate the single threshold. Not related to the specific content of
the image but based on pixel gray level statistics, So it has stronger robust-
ness, and has been applied in many fields, such as medical [5], infrared image
[6] and so on. Single threshold Otsu method only considers the gray information
of the image, but does not take into account the spatial position of the pixels,
the image segmentation effect is not obvious in double peak image. In 1979, a
two-dimensional segmentation method was proposed, which became a hot issue
in the study [7,8]. As the single threshold is extended to multi-threshold, due to
the increase of the dimension, the traversing method to select threshold is larger,
and the computation complexity increases exponentially. Then how to efficiently
calculating the optimal threshold value becomes the key of the algorithm. Swarm
intelligence evolution algorithm is introduced to find the optimal threshold, such
as the genetic algorithms [9], particle swarm optimization algorithm [10], and
etc.

But for intelligent algorithms, the efficiency of the algorithm mostly depends
on the configuration parameters and the initial solution. At the same time, intel-
ligent algorithm is easy to fall into local optimum, and thus can not find the
global optimal solution. Many scholars had done related work [11,12] to improve
the algorithm. Membrane Computing is a novel distributed parallel computing
model. It is a abstract computational model based on the most basic unit of life
cells, and first formally proposed by the European Academy of Sciences Ghe-
orghe Păun in his research report at Turku computer center [13]. Since then,
many scholars began to engage in related research [26–29] [30].

The purpose of membrane computing is to abstract a new calculation model
from cells, particularly in the cell membrane, with its structure and function,
called a membrane system [19,20]. Membrane computing includes the three ele-
ments: membrane structures, objects and evolution of the rules [14,21]. The
object of tissue-like P systems is the mechanism in which multiple cells that each
cell can have its own objects and evolutionary rules, through mutual cooperation
and communication with each other, together to complete the calculation. This
parallel multiple evolutionary mechanism provides a feasible solution to solve
the problem: convergence to local optimal due to lack of population diversity.
There is a wide range of applications, such as the gradient edge detection [15],
multimodal image registration [16], coal sorting robots [17]and so on. There are
some works [23–27] on evolutionary optimization.

2 Principle of Threshold Images Segmentation

For a digital image, the variance is a measure of the uniformity of the gray level
distribution. Bigger the variance is, more evident the difference between the vari-
ous parts of the image is. It means that in the image segmentation, as part of the
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target is divided into background or part of the background wrong into target,
this will lead to the two part of the difference is smaller, so the maximum vari-
ance in image segmentation means that the probability of fault points minimum.
Based on the principle, a threshold image segmentation algorithm is proposed by
Otus. In later studies, to consider both grey value and the corresponding spatial
location relationship, two-dimensional threshold image segmentation algorithm
is proposed.

For a digital image with size M ∗ N , for each pixel, its pixel gray value and
neighborhood gray value are L, define a binary array (i, j), of which i is the pixel
gray value, j is the average gray value of corresponding (3 ∗ 3) neighborhood;
nij is the number of the pixel which have the same binary array (i, j).

The relative probability is:

pi,j =
ni,j

M · N
; (1)

Assume that the object and background as I0 and I1, s is the threshold of
pixel gray value and t is the gray value threshold of neighborhood.

Two classes of the probability are:

P0(s, t) =
s∑

i=1

t∑

j=1

Pi,j (2)

P1(s, t) =
L∑

i=s+1

L∑

j=t+1

Pi,j (3)

Two classes of the corresponding mean vector are:

μ0 = (μ0i μ0j)T = (
s∑

i=1

t∑

j=1

i · Pi,j

P0

s∑

i=1

t∑

j=1

j · Pi,j

P0
)T (4)

μ1 = (μ1i μ1j)T = (
L∑

i=1

L∑

j=1

i · Pi,j

P1

L∑

i=1

L∑

j=1

j · Pi,j

P1
)T (5)

The population mean vector is

muT = (μTi μTj)T = (
L∑

i=1

L∑

j=1

i · Pi,j

L∑

i=1

L∑

j=1

j · Pi,j)T (6)

Ignoring the influence of noise and other, we can do the assumptions as the
following:

P0 + P1 ≈ 1, μ ≈ P0μ0 + P1μ1 (7)

Use the trace of matrix Sb(s,t) as the discrete degree measure, then

R = P0[(μ0i − μTi)2 + (μ0j − μTj)2] + P1[(μ1i − μTi)2 + (μ1j − μTj)2] (8)
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So the best optional threshold value (s, t) should meet the following equation:

(s∗, t∗) = arg max
1≤s,t≤L

(R) (9)

How to ascertain the optimal threshold is the key for the algorithm. Due to
the adoption of the two-dimensional data, the calculation amount and difficulty
are increased. How to solve the large data optimization, based on membrane
computing framework we proposed a hybrid evolutionary mechanism of two-
dimensional segmentation algorithm. Using membrane parallel evolution and
exchange of information, this work maintains the diversity algorithm object,
and overcomes the algorithm falling into a local optimum.

3 Threshold Segmentation Membrane Algorithm

The 3-degree tissue-link membrane system is defined as [17,21,22]:
∏

= (O, σ1, σ2, σ3, syn, i0);

Therein to,

(1) O is a finite non-empty alphabet, and its elements is the object of membrane
system, in this paper the object indicates the image grey value corresponding
to the binary code set.

(2) σi shows the ith cell as follows: σi = (Qi, Ri), Qi shows the object of ith cell.
Ri expresses the evolution rules, evolution rule of cell σ1, σ2 is the particle
swarm algorithm, and evolution rule of cell σ3 is the genetic algorithm.

(3) Syn indicates the connections between cells, and this cells can communicate.
Between three cells can be two-way information transmission, which form a
network structure.

(4) i0 shows the output cell label. Here i0 = 0, that means cells will send optimal
solution to the environment.

(5) System input is the parameters and initial solution configuration for various
evolutionary algorithm; System downtime rule is to meet the maximum
number of iterations; System output is the global optimal solution to the
environment.

3.1 Object of the Tissue-Link Membrane System

The tissue-link P system is to solve the given optimization, so all the objects of
the membrane system is feasible solution set. Considering the characteristics of
digital image grey value, all objects in this work use binary coding.

Assume that the object number in the whole system is N , and the dimension
of each solution is D, all objects in the cells constitute a N ∗ D matrix:

⎛

⎜⎜⎝

pop11 pop12 · · · pop1D
pop21 pop22 · · · pop2D
· · · · · · · · · · · ·

popN1 popN2 · · · popND

⎞

⎟⎟⎠
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All objects are averagely assigned to three membranes. Membrane 1, 2 as
the auxiliary membrane, is to increase the diversity of population; Membrane
3 as the main membrane, focuses on the local optimization. For each object,
the relative object function value is its fitness value. In the iterative process,
the optimal solution of whole system was sent to environment, called the global
optimal, denoted as Zbest.

3.2 Hybrid Evolutionary Rule and Communication Rules

Three membranes with intelligent optimization rules, due to their respective dif-
ferent purposes, are different in specific evolutionary rules. The main function
of auxiliary membrane is used to keep the diversity of population, and expand
the search space, then reduce the probability that fall into local optimum, and
improve the ability of global optimization. The particle swarm algorithm is sim-
ple and can be quick calculated. Therefore parameter configuration can be used
to expand the search space so as to maintain the population diversity. The main
function of main membrane focuses on the strong local search ability, and this
can effectively solve the optimal solution in the space.

Genetic algorithm has the strong optimal ability, through the parameter con-
figuration, we can strengthen its local optimization ability. Through information
exchange between the main membrane and the auxiliary membrane, the advan-
tages of different algorithms are played, and the efficiency of the system can be
great optimized by using the hybrid evolution rules.

The evolution rules of the membrane 1: The global PSO. The global particle
swarm optimal intelligence algorithm is used as evolution rules of membrane 1.
In the particle location update formula, as C1 = 0, the particles have not the
cognitive ability, and become only a social model, called global PSO algorithm.
The particle has the ability to expand the search space, and has the greatest
protection for the whole population diversity.

Location update function is shown as follows:

Vk+1 = c2r2(Gbest − Xk) (10)

sig(Vk) =
1

1 + exp(−Vk)
(11)

Xk+1 =
{

0 sig(Vk) < rand
1 sig(Vk) ≥ rand

(12)

Therein to, c2 is learning factor, and r2 is random number. Gbest is the current
optimal location of the global, Xk is the kth iterations of the particle position,
Vk is the kth iterations of the particle velocity. After each iteration of the fixed
number, Membrane 1 output to the membrane 3 T of the best particle, to the
membrane 2 output T of the suboptimal particle. To ensure that the same size of
the particles, before the next iteration, through the roulette way to select fixed
particles into the next iteration.

The evolution rules of the membrane 2: PSO with inertia weight. At the inter-
national conference on evolutionary computation, some researchers corrected the
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basic location and velocity formula in 1998. Inertia weighting factor had been
introduced. The value of inertia weighting factor is bigger, then global optimiza-
tion capability is stronger, as well as local optimization ability weaker, and vice
versa.

The 2th Membrane mainly give the diversity of particles to the main Mem-
brane, so the weight sets up by using linear growth, then enhance global opti-
mization ability, and consider the global optimal solution. The new formula of
velocity is given as follows:

Vk+1 = ω · Vk + c1r1(Pbest − Xk) + c2r2(Gbest − Xk) (13)

ω = ωwin + n · (
ωmax − ωwin

N
) (14)

Particles location update formula same as membrane 1. After each iteration
of the fixed number, membrane 2 give the number T of the optimal particle to the
membrane 3, and give the number T of the suboptimal particle to the membrane
2. To ensure that the same size of the particles, before the next iteration, through
the roulette way to select fixed particles into the next iteration.

The evolution rules of the membrane 3: The Standard GA. The rule of Mem-
brane 3 is standard genetic algorithm: elite strategy choice, two-point crossover
and random mutation. After each iteration of the fixed number, it accept 2T
object from the auxiliary membrane, and with the original object which consti-
tute a set of selected object. Keep the best T objects, and select the rest of the
object through the form of the roulette wheel based on fitness values. So it can
not only retain the best object of the whole system, but also keep the diversity
of the population under large probability.

4 Experiment Analysis

4.1 Data Sets Used in the Experiments

The paper uses 3 typical images to carry out the experiment. Digital image
corresponding to the experiment and the relative data characteristics are shown
below (Table 1) (Fig. 1).

Table 1. Data sets used in the experiments

Data sets Type Col of data Row of data No. of data

Lena jpg 240 240 57600

Rice png 256 256 65536

Cameraman jpg 330 314 103620
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Fig. 1. There experiment images

4.2 Parameter Configuration in Experiments

The parameter configuration are as follows: each membrane has 50 objects, the
largest number of iterations is 300; Membrane 1 uses the global particle swarm
optional algorithm, C1 = 2; Membrane 2 use the global particle swarm optional
algorithm, C1 = C2 = 2; The crossover probability and mutation probability
of the genetic algorithm is pc = 0.8 and pm = 0.003. Each iteration 5 times, an
information communication is active.

4.3 Algorithm Analysis and Comparison

In order to evaluate the characteristics of the algorithm, the two kinds of measure
factors used in this work are the diversity and convergence. Population diversity
is mainly used to evaluate the individuals difference degree, in the iteration of the
algorithm, the diversity of population is important for preventing the algorithm
from falling into local optimum.

Based on the Statistical diffusion theory, the function used to measure the
particle diversity is [18].

Dbc =
1

n − 1
(
∑

i S
2
i

L
− s2

L · n
) (15)

Therein to, n is the population number, L is the dimension of the particles;
Si is the number of 1 in the binary digits for the ith particle; S is the number of
1 for all particles in the binary. Dbc relative change rate reflect species diversity
change rate.

Convergence is one of the important factors that determines the algorithm
performance. In this paper, we use the best individual fitness and the average
individual fitness to test and analyze the convergence of the algorithm. The
defines are respectively given as follows:

Cfb = max(fi(x))(i = 1, 2, · · · , n) (16)

Cfa =
∑n

i=1 fi(x)
n

(17)
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The numerical change shows the capabilities of exploration and development
(Fig. 2).

Fig. 2. The segmentation image

5 Conclusion

Focused on the contradiction between selective pressure and population diver-
sity in the optimization algorithm, using hybrid evolutionary mechanisms, this
paper proposes a membrane image threshold segmentation algorithm based on
the idea of membrane computing. The proposal uses a hybrid tissue P system
consisting of OLMS membranes in which GA and PSO are used as evolution
operator. The proposed algorithm uses the communication rules and transfer
rules to establish the interactions among the membranes, and then enhances
the diversity of population in the system and improves the convergence of the
algorithm. After comparing with the conventional methods, simulation results
and dynamic behavior analysis show that the proposal evidently improve the
validity and feasibility of the image segmentation algorithm.

There are several further problems which deserve be considered. An interest-
ing and important research line is how to proved the advantage of the membrane
computing than others.
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Abstract. Consensus clustering is a class of robust clustering algo-
rithms, which obtain the finally clustering results based on multiple
existing basic partitionings. In this study, we introduce the K-medoids
algorithm and the cell-like P systems with promoters and inhibiters
(a class of parallel and distributed computing models) to the consen-
sus clustering, and propose the K-medoids-based consensus clustering
based on the cell-like P system with promoters and inhibiters. Through
the experiment, the proposed consensus clustering algorithm can obtain
high quality clustering results in a short time. This study improves the
result in TKDE, 2015, 2, 155–169.

Keywords: Consensus clustering · K-medoids · P system · Membrane
computing

1 Introduction

Information plays an important rule in each field in modern society. It is an
important problem that how to analyze data and extract useful information
from the huge amounts of data. Clustering analysis is a class of important data
analysis methods, which can reveal the relationship between data objects and
data objects, data objects and data features, data features and data features.
Although there are many traditional clustering algorithms, they have three limi-
tations: (1) The clustering results largely depend on the parameters settings and
the initialization. (2) Most clustering algorithms can not judge the real cluster-
ing numbers. (3) Different clustering algorithms may generate different clustering
results through different clustering algorithms. Consensus clustering is proposed
make up the above limitations [1]. A consensus clustering algorithm contains
two phases: the generation of several basic partitionings of data set (each basic
partitioning is a clustering result of the data set by a certain clustering algo-
rithm), and the aggregation of these basic partitionings. It aggregates several
basic partitionings obtained by common clustering algorithms, and obtains the
finally result which is better than all these partitionings. Many improvements
are proposed from these two aspects [2–8].
c© Springer Nature Singapore Pte Ltd. 2016
M. Gong et al. (Eds.): BIC-TA 2016, Part I, CCIS 681, pp. 95–108, 2016.
DOI: 10.1007/978-981-10-3611-8 11
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The basic partitionings are usually generated by simple algorithms such as
K-means algorithm, because of the low time complexity of these algorithms [9].
However, K-means algorithm is sensitive to the outlier. How to generate higher
quality clustering result in a shorter time is an important topic in consensus
clustering. In this study, we use K-medoids algorithm to increase the robust-
ness, and the parallel and distributed computing model: cell-like P systems with
promoters and inhibiters to decrease the time complexity [10,11].

Membrane computing is a novel research branch of bio-inspired computing,
initiated by Păun in 2002, which seeks to discover new computational models
from the study of biological cells, particularly of the cellular membranes [11,12].
The obtained models are distributed and parallel bio-inspired computing devices,
usually called P systems. There are three mainly investigated P systems, cell-like
P systems [11], tissue P systems [13], and neural-like P systems (also known as
spiking neural P systems) [14] (and their variants, see e.g. [15–24]). P systems
are known as powerful computing models, are able to do what Turing machines
can do efficiently [25–31]. The parallel evolution mechanism of variants of P sys-
tems, such as numerical P systems [32,33], spatial P systems [34], spiking neural
P systems with anti-spikes [35], has been found to perform well in doing com-
putation, even solving computational hard problems [36–38]. Cell-like P systems
with promoters and inhibitors are abstracted based on the structure and function
of the living cell, which have three main components, the membrane structure,
multisets of objects evolving in a synchronous maximally parallel manner, and
evolution rules. Objects in P system evolve in a maximum parallel mechanism,
regulating by promoters and inhibitors, such that the systems do computation
efficient [39].

In this study, a consensus clustering based on the K-medoids algorithm and
the cell-like P systems with promoters and inhibitors is proposed (CPPI-KMCC
algorithm, for short). Specifically, the r basic partitionings are obtained in r
membranes in parallel, and the finally partitioning is obtained in membrane
n. Experimental results based on Iris database of UC Irvine Machine Learning
Repository [40] shows that the proposed algorithm can obtain more accurate
and stable results in data clustering.

2 Preliminaries

In this section, we recall some basic concepts and notions in K-medoids
algorithm, consensus clustering, and cell-like P systems with promoters and
inhibitors.

2.1 The K-Medoids Algorithm

The K-medoids algorithm, which is more robust to outliers and noise, is a one
of the classical partitioning algorithm of clustering improved by the K-means
algorithm [10].
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Let X = {x1, x2, · · · , xn} denotes a data set with n objects. A medoid is
one object of a cluster with the minimal total distance to all other objects.
By distributing all non-medoid objects to the nearest medoid, all objects are
clustered into K clusters C = {C1, C2, · · · , CK}. The clusters have the three
following properties:

– Ci �= φ, 1 ≤ i ≤ K;
–

⋃K
i=1 Ci = X;

– Ci

⋂
Cj = φ, i �= j, 1 ≤ i, j ≤ K.

What’s more, objects in the same cluster are similar to each other, and
objects from distinct clusters are different from each other. The distance needs
to be defined in order to find the solution. In the literatures various alternatives
have been reported to approach this task. It can choose one according to the
request.

The K-medoid algorithm has some specific methods. Partitioning around
medoids (PAM) is a representative one.

The steps of the PAM are as follows:

– Select K objects as medoids arbitrarily from all the objects as the initial K
clusters.

– Distribute the remaining objects to their most similar cluster with the shortest
distance.

– Randomly select non-medoid object O′.
– Compute the distance of O′ and all the other objects in the belonging cluster.
– Set O′ as the new medoid if the total distance in the belonging cluster is

decreased.
– Repeat the steps 2 to 5 above until all medoids don’t change anymore.

So given arbitrary n objects, they can be clustered into K clusters using the
K-mediods algorithm.

2.2 The Consensus Clustering

Let X = {x1, x2, · · · , xn} denotes a data set with n objects. These n objects can
be clustered into K clusters C = {C1, C2, · · · , CK} by some clustering algorithm,
which is called a partitioning of this data set. Given r basic partitionings

∏
=

π1, π2, · · ·, πr of a data set X, consensus clustering aims to find a consensus
partitioning π which meets:

maxΓ (π,Π) = Σr
i=1wiU(π, πi), (1)

where, Γ is the consensus function, U is the utility function, wi is the weight of
basic partitioning πi with

∑r
i=1 wi = 1. Or meets:

minΓ (π,Π) = Σr
i=1wiD(π, πi), (2)

where, D is the distance function.
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In this study, we use the method proposed in [9] to find the cluster π.
The initial data set X is transformed into a binary data set χ(b) = {x

(b)
l |l =

1, 2, · · · , n}, which is derived from the r basic partitionings:

x
(b)
l =<x

(b)
l,1 , · · · , x

(b)
l,i , · · · , x

(b)
l,r >,with

x
(b)
l,i =<x

(b)
l,i1, · · · , x

(b)
l,ij , · · · , x

(b)
l,iKi >, and

x
(b)
l,ij =

⎧
⎨

⎩

1, if xl belongs to the j-th cluster
in the i-th basic partitioning,

0, otherwise

The finally clustering result can be obtained by clustering this newdata setχ(b).
In this study, we use the squared Euclidean distance to compute the distance

between two objects.

2.3 Cell-like P System with Promoters and Inhibitors

A cell-like P system with promoters and inhibitors consists of three main com-
ponents: the hierarchical membrane structure, objects and evolution rules. By
membranes, a cell-like P system with promoters and inhibitors is divided into
separated regions. Objects, information carriers, and evolution rules (by which
objects can evolve to new objects) present in these regions. Objects are repre-
sented by characters or strings of symbols. Evolution rules are executed in the
uncertainty and maximum parallelism way in each membrane.

The definition of cell-like P system with promoters and inhibitors is as follows.
A cell-like P system of degree m is of the form

Π = (O,μ,w1, w2, . . . , wm, R1, . . . , Rm, ρ, iout),

where
(1) O is the alphabet which includes all objects of the system.
(2) μ is the membrane structure.
(3) wi is the initial objects in cell i, object λ shows that there is no object in

cell i.
(4) Ri is the set of rules in cell i with the form of (u → v)α, where u is a string

composed of objects in O and v is a string over {ahere, aout, ainj
|a ∈ O, 1 ≤

j ≤ t}. (ahere means object a remains in membrane i in which here can
be omitted; aout means object a goes into the outer layer membrane. And
ainj

means object a goes into the inner layer membrane j.) α ∈ {z, z′} is a
promoter or an inhibitor. A rule can execute only when promoter z appears
and stop only when inhibitor z′ appears.

(5) ρl defines the partial order relationship of the rules, i.e., higher priority rule
means the rule should be executed with higher priority.

(6) iout is where the computation result is placed.

In the system, evolution rules are executed in the maximum parallel way and
in the uncertain way in each membrane. If more than one rule can possibly be
used but the objects in the membrane can only support some of them, then the
maximal number of rules will be used. For more details one can refer to [11].
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3 The K-Medoids-Based Consensus Clustering Based on
Cell-like P Systems with Promoters and Inhibitors

In this section, a consensus clustering based on the K-medoids algorithm and
the cell-like P systems with promoters and inhibitors is proposed, where pro-
moters and inhibitors are utilized to regulate parallelism of objects evolution.
The obtained algorithm is shortly called CPPI-KMCC.

Before introducing CPPI-KMCC, two distance matrixes are defined.

D′
nn =

⎛

⎜⎜⎝

f ′
11 f ′

12 · · · f ′
1n

f ′
21 f ′

22 · · · f ′
2n

· · ·
f ′

n1 f ′
n2 · · · f ′

nn

⎞

⎟⎟⎠ , (3)

where f ′
ij is the distance between the objects xi and xj . Specific calculation

method is selected depending on the type of object. Specifically, the element fij

of matrix Dnn is obtained by multiplying f ′
ij for 100 times and rounding off,

thus getting an integer. The distance matrix Dnn is as follows:

Dnn =

⎛

⎜⎜⎝

f11 f12 · · · f1n

f21 f22 · · · f2n

· · ·
fn1 fn2 · · · fnn

⎞

⎟⎟⎠ . (4)

3.1 The Cell-like P System for CPPI-KMCC

The membrane structure used as the framework for CPPI-KMCC is shown in
Fig. 1.

Fig. 1. Membrane structure for CPPI-KMCC

The dataset of objects to be dealt with is placed in membrane 0. The r
basic partitionings are generated in membranes K1 + 2,K2 + 2, · · · ,Kr + 2 by
K-medoids algorithm in parallel. And all these basic partitionings information
are put into membrane K + 2 to process the consensus clustering.
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The cell-like P system with promoters and inhibitors for CPPI-KMCC is as
follows.

Π = (O,μ,wij , Rij , iin, iout), i, j = 1, 2, · · ·, r, n,

where,

– O = {ai, Uij ,Wij ,W
′
ij , βj , Aij , δ,Dij , e, ψ, θ, α, aij , Oi, δi, ζi, s, s

′, η, σ, bi, Sij};
– μ = [0[i(Ki+2)[i1]i1[i2]i2 · · · [i(Ki+1)]i(Ki+1)]i(Ki+2)]0, i = 1, 2, · · · , r, n;
– w0 = wn(Kn+1) = λ,

wi(Ki+2) = wn(K+2) = β1, β2, · · · , βKi
, δKi , e (i = 1, 2, · · · , r),

wij = δ1 (i = 1, 2, · · ·, r; j = 1, 2, · · ·,Ki + 1),
wnj = δ1 (j = 1, 2, · · ·,K);

– iin = 0;
– iout = n + 2;
– Rij is the set of rules in membrane ij.

R0 :⎧
⎪⎨

⎪⎩

r1={aiU
Wij
ij → (ai)in1(K1+2),2(K2+2),··· ,r(Kr+2),n(Kn+2)U

Wij
ij in1(K1+2),2(K2+2),··· ,r(Kr+2)

|i, j = 1, 2, · · · , n}
r2={W ′

ij → (Wij)in n(K+2)|i, j = 1, 2, · · · , n}

Objects ai and U
Wij

ij are put into membrane 0 to start the com-
putational process. Object ai means the i-th data in the data set, and
object U

Wij

ij means the distance between the i-th data ai and the j-th
data aj is Wij . Rule r1 is executed to send copies of ai to membranes
1(K1 + 2), 2(K2 + 2), · · · , r(Kr + 2), n(Kn + 2), and copies of Wij to mem-
branes 1(K1 + 2), 2(K2 + 2), · · · , r(Kr + 2).

The Generation of Basic Partitionings

Rules in membranes 11, 12, · · · , 1K1, 1(K1 + 1), 1(K1 + 2) work together to give
a basic partitioning by K-medoids algorithm. Membranes 11, 12, · · · , 1K1 repre-
sent the K1 clusters needed to be generated. And the clustering result is stored
in membrane 1(K1 + 1).

R1(K1+2) :⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r1 = {aiβj → AjiAji inj |i = 1, 2, · · · , n; j = 1, 2, · · · , K1}
r2 = {a

iδK1A1i1A2i2 ···AK1iK1
U

Wii1
ii1

U
Wii2
ii2

···U
WiiK1
iiK1

¬D
Wii1
i1 D

Wii2
i2 ···D

WiiK1
i(K1)

→

aiD
Wii1
i1 D

Wii2
i2 · · · DWiiK1

iK1
|i = 1, 2, · · · , n; i1, i2, · · · , iK1 = 1, 2, · · · , n}

r3 = {δK1 → λ}
r4 = {ai¬Dik → ai ink |i = 1, 2, · · · , n; k = 1, 2, · · · K1}
r5 = {Di1Di2 · · · DiK1 → λ|i1, i2, · · · , iK1 = 1, 2, · · · , n}
r6 = {Dij → λ|i = 1, 2, · · · , n; j = 1, 2, · · · , K1}
r7 = {eiψj → θin1,2,··· ,K1 |i = 1, 2, · · · , n; ψ = 0, 1, · · · k − 1}⋃{ψk → αin1,2,··· ,K1

}
r8 = {aik → aik in1(K1+2) |i = 1, 2, · · · , n; k = 1, 2, · · · K1}
r9 = {W ′

ij → (W ′
ij)out|i, j = 1, 2, · · · , n}

ρ1 > ρ2 > ρ3 > ρ4 > ρ5 > ρ6 > ρ7 > ρ8 = ρ9
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In the initial state, objects β1, β2, · · · , βK1 are in membrane 1(K1 + 2) to
show K1 medoids are needed. Rule r1 is executed to choose K1 medoids and
put them to membranes 11, 12, · · · , 1K1 for the K1 clusters. Rule r2 is executed
to generate Wij distance objects Dij , which means the distance between object
ai and the j-th medoid is Wij . Rule r5 is executed to dissolve the same part of
Di1Di2 · · · DiK1 . When a Dik is disappeared, which means the distance between
ai and the k-th cluster is the shortest one, object ai is sent to membrane k. Rules
r3 and r6 is executed to dissolve the useless objects. Rule r7 is executed to send
an object θ to each of membranes 11, 12, · · · , 1K1 to start the computation in
membranes 11, 12, · · · , 1K1.

When all medoids in the K1 clusters are not changed, which means the
clusters are obtained, an object α is sent to these K1 membranes by rule r7.

Rule r8 is executed to send objects aik to membrane 1(K1 +2), which means
ai belongs to the k-th cluster.

R1k, k = 1, 2, · · · ,K1 :⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r1 = {(ai)α → aik out|i = 1, 2, · · · , n; k = 1, 2, · · · K1}
r2 = {(θAjh)¬ai

→ Ajhψout(Ajh)outδout#|i, h = 1, 2, · · · , n; j = 1, 2, · · · ,K1}
r3 = {θδiai → θζiOi|i = 1, 2, · · · , n}⋃{(θδi)¬ai

→ θδi+1|i = 1, 2, · · · , n}
r4 = {(aj)OiAhp

→ bjs
wijs′wpj |i, j, p = 1, 2, · · · , n; h = 1, 2, · · · ,K1}

r5 = {ss′ → λ}
r6 = {s

′tOiAhp → apAhiη|i, p = 1, 2, · · · , n; h = 1, 2, · · · ,K1}⋃{stOiAhp → aiAhpσ|i, p = 1, 2, · · · , n; h = 1, 2, · · · ,K1}
r7 = {bi → ai|i = 1, 2, · · · , n}
r8 = {ζi → δi+1|i = 1, 2, · · · , n}
r9 = {ηiσj → eout|i = 1, 2, · · · , n; j = 0, 1, · · · , n}⋃{(σj)¬ηj → ψout|i, j = 1, 2, · · · , n}
r10 = {ai → (ai)out|i = 1, 2, · · · , n}
r11 = {δn+1Ajpθ → (δ)out(Ajp)outδ1Ajp#|j = 1, 2, · · · ,K1; p = 1, 2, · · · , n}⋃{(Ajpθ)δn+1 → (δ)out(Ajp)outδ1Ajp#|j = 1, 2, · · · ,K1;p = 1, 2, · · · ,n}

ρ1 > ρ2 > ρ3 > ρ4 > ρ5 > ρ6 > ρ7 > ρ8 > ρ9 = ρ10 = ρ11

The best medoid is found in the membrane. The process starts with a1 con-
trolled by the auxiliary object δ1. If a1 does not in the membrane, auxiliary
object δ1 is changed to δ2 to check a2. Otherwise, a1 is changed to O1 to show
that a1 is set as the new medoid by rule r3. Rule r4 is executed to calculated
the distance sum between the new medoid and all the other objects aj . The
distance sum value are stored by the number of object s. Similarly, the distance
sum between the old medoid and all the other objects aj value are stored by the
number of object s′. Rule r5 is executed to dissolve objects s and s′. Rule r6
is executed to compare the two medoids. If s′ are still in the membrane, which
means the new medoid can reduce the distance sum, object a1 is set as the new
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medoid. If s are still in the membrane, which means the new medoid cannot
reduce the distance sum, the medoid is still the old one. Rule r8 is executed to
generate δ2 to check the object a2. And so on, until all objects in this mem-
brane are all checked, and the best medoid will be found. If the medoid in this
membrane is changed, an object e is sent out. If the medoid in this membrane
is not changed, an object ψ is sent out. Lastly, rules r9 and r10 are executed to
return the objects in this membrane to the initial state, and put the information
of the medoid out. Object # is generated to stop the computational process.

When the clustering process is over, an object α is sent to this membrane.
Rule r1 is executed to send an object aik to show that ai belongs to the k-th
membrane.

The structure and rules in i1, i2, · · · , iKi, i(Ki + 1), i(Ki + 2) are similar.
Therefore, the rules are not listed in detail.

R1(K1+1) :
W r

ij⎧
⎪⎪⎨

⎪⎪⎩

r1 = {(aikajk)¬Sij
→ aikajkSij |i, j = 1, 2 · · ·, n; k = 1, 2, · · ·,K1}

r2 = {aij → λ|i, j = 1, 2, · · ·, n}
r3 = {WijSij → λ|i, j = 1, 2, · · ·, n}
r4 = {Wij → (W ′

ij)out|i, j = 1, 2, · · ·, n}

If aik and ajk are in this membrane, which means ai and aj both belongs to
the k-th cluster, an object Sij is generated. In the initial state, K1 Wij are in
this membrane to show that the initial distance between ai and ai is K1. Rule
r3 is executed to dissolve Wij and Sij . Rule r4 is executed to put out the result.

The Consensus Process

Rn(K+2) :⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r1 = {aiβj → AjiAji inj
|i = 1, 2, · · · , n; j = 1, 2, · · · ,K}

r2 = {a
iδK1A1i1A2i2 ···AKiK

U
Wii1
ii1

U
Wii2
ii2

···UWiiK
iiK

¬D
Wii1
i1 D

Wii2
i2 ···DWiiK

i(K)

→
aiD

Wii1
i1 D

Wii2
i2 · · · DWiiK

iK |i = 1, 2, · · · , n; i1, i2, · · · , iK = 1, 2, · · · , n}
r3 = {δK → λ}
r4 = {ai¬Dik

→ ai ink
|i = 1, 2, · · · , n; k = 1, 2, · · · K}

r5 = {Di1Di2 · · · DiK → λ|i1, i2, · · · , iK = 1, 2, · · · , n}
r6 = {Dij → λ|i = 1, 2, · · · , n; j = 1, 2, · · · ,K}
r7 = {eiψj →θin1,2,··· ,K |i=1, 2, · · · , n;ψ= 0, 1, · · · k − 1}⋃{ψk → αin1,2,··· ,K}
r8 = {aik → aik inn(K+2) |i = 1, 2, · · · , n; k = 1, 2, · · · K}

ρ1 > ρ2 > ρ3 > ρ4 > ρ5 > ρ6 > ρ7 > ρ8 = ρ9
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Rnk, k = 1, 2, · · · , K :
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r1 = {(ai)α → aik out|i = 1, 2, · · · , n; k = 1, 2, · · · K}
r2 = {(θAjh)¬ai → Ajhψout(Ajh)outδout#|i, h = 1, 2, · · · , n; j = 1, 2, · · · , K}
r3 = {θδiai → θζiOi|i = 1, 2, · · · , n}⋃{(θδi)¬ai → θδi+1|i = 1, 2, · · · , n}
r4 = {(aj)OiAhp → bjs

wij s′wpj |i, j, p = 1, 2, · · · , n; h = 1, 2, · · · , K}
r5 = {ss′ → λ}
r6 = {s

′tOiAhp → apAhiη|i, p = 1, 2, · · · , n; h = 1, 2, · · · , K}
⋃{stOiAhp → aiAhpσ|i, p = 1, 2, · · · , n; h = 1, 2, · · · , K}

r7 = {bi → ai|i = 1, 2, · · · , n}
r8 = {ζi → δi+1|i = 1, 2, · · · , n}
r9 = {ηiσj → eout|i = 1, 2, · · · , n; j = 0, 1, · · · , n}

⋃{(σj)¬ηj → ψout|i, j = 1, 2, · · · , n}
r10 = {ai → (ai)out|i = 1, 2, · · · , n}
r11 = {δn+1Ajpθ → (δ)out(Ajp)outδ1Ajp#|j = 1, 2, · · · , K; p = 1, 2, · · · , n}

⋃{(Ajpθ)δn+1 → (δ)out(Ajp)outδ1Ajp#|j = 1, 2, · · · , K; p = 1, 2, · · · , n}
ρ1 > ρ2 > ρ3 > ρ4 > ρ5 > ρ6 > ρ7 > ρ8 > ρ9 = ρ10 = ρ11

Rn(K+1) :
φ

Rules in this process are similar with the process in the basic partitionings,
therefore, the details are not listed.

3.2 Time Complexity Analysis

In this subsection, the time cost in the worst case of CPPI-KMCC is analyzed.
The computational process begins when the data set and the distance infor-

mation are put into membrane 0.
1 step is needed to send copies of the data set to membranes

1(K1 + 2), 2(K2 + 2), · · · , r(Kr + 2), n(K + 2), and send copies of the distance
information to membranes 1(K1 + 2), 2(K2 + 2), · · · , r(Kr + 2).

Then, rules in membranes 1(K1 + 2), 2(K2 + 2), · · · , r(Kr + 2) work in par-
allel to generate the r basic partitionings.

In membrane i(Ki +2), 1 step is needed to choose the Ki medoids randomly.
1 step is needed to generate the distance objects between each ai and the j-th
medoids. 1 step is needed to dissolve the auxiliary objects δ. 2 steps are needed to
put the object ai to its nearest cluster. 1 step is needed to dissolve the auxiliary
objects Dij . 1 step is needed to send an object θ to membranes 1, 2, · · ·,K1 to
active the computational process in these membranes.

In each membrane 1, 2, · · ·,Ki, each objects ai is compared with the current
medoids, if the distance sum between some ai and the other objects is smaller
than the distance sum between the current medoids and the other objects, this ai

is the new medoids. The comparison is made from a1 to an, which is controlled by
the auxiliary objects δi. Each comparison need 6 steps if ai is in this membrane,
and 1 step if ai is not in this membrane. 1 step is needed to dissolve the auxiliary
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objects, return the objects in this membrane to the initial state, and send an
object e to show the new medoid has been found.

Then, rules in membrane i(Ki + 2) runs to redistribute objects ai to its
nearest medoids, and the best medoid of each cluster is refound.

Suppose at the I-th iteration, Ki ψ are sent to membrane i(Ki + 2) to show
that all medoids are not changed. An object α is sent to membranes 1, 2, · · ·,Ki.
And 2 steps are needed to put objects aik out, which means ai belongs to the
k-th cluster.

4 steps are needed in membrane i(Ki+1) to generate the distance information
between each object in the new binary data set. And 2 steps are needed to
transfer these objects to membrane n(K + 2) to active the consensus clustering
process.

The total time complexity is: 1+(7+6n)+(6+6n)∗(I −1)+(6+2)+4+2+
(7+6n)+ (6+6n) ∗ (I − 1)+ (6+2) = 12nI +12I +25 = O(nI), while the time
complexity of in [9] is O((d + 1)InrK) (d is the number of data dimensions.).

4 Experiments and Analysis

Breast Cancer Database

The breast cancer database of UC Irvine Machine Learning Repository is used
as an experiment [40]. This database contains 699 records, and each record con-
tains 10 attribute values and the corresponding breast cancer class (benign,
or malignant). 16 records containing the missing attributes are removed in this
experiment. The left 683 records are numbered from 1 to 683 following the order.
All records are divided into two classes.

Firstly, the K-medoids algorithm is used to cluster this database. Because we
don’t know the right clustering numbers, the K is set 2, 3 and 4, respectively.
The clustering results are shown in Table 1. All experiments are done ten times.
And these 30 cluster results are used as the basic partitionings to do the K-
medoids-based consensus clustering. The clustering results are shown in Table 2.

Table 1. The clustering accuracy by the K-medoids algorithm with different K values
for 10 times

The value of K 1 2 3 4 5

2 0.959004392 0.959004392 0.959004392 0.959004392 0.959004392

3 0.884333821 0.692532943 0.904831625 0.834553441 0.869692533

4 0.535871157 0.812591508 0.811127379 0.639824305 0.655929722

The value of K 6 7 8 9 10

2 0.959004392 0.959004392 0.959004392 0.959004392 0.959004392

3 0.7715959 0.890190337 0.884333821 0.802342606 0.834553441

4 0.578330893 0.720351391 0.65885798 0.79795022 0.696925329
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Table 2. The clustering accuracy by the K-medoids-based consensus algorithm with
different K values for 10 times

The value of K 1 2 3 4 5

2 0.959004392 0.959004392 0.959004392 0.959004392 0.959004392

3 0.959004392 0.734992679 0.959004392 0.959004392 0.959004392

4 0.959004392 0.959004392 0.959004392 0.959004392 0.959004392

The value of K 6 7 8 9 10

2 0.959004392 0.959004392 0.959004392 0.959004392 0.959004392

3 0.959004392 0.734992679 0.959004392 0.959004392 0.959004392

4 0.959004392 0.734992679 0.959004392 0.959004392 0.959004392

We can see from this figure, if the clustering numbers of the K-medoids algo-
rithm are set correctly, the results are good. However, if the clustering numbers
are set incorrectly, the results are unstable, and the results are bad sometimes.
We use the 30 results as 30 basic partitionings, and do K-medoids-based con-
sensus clustering, the clustering results are better and stable, even if half basic
partitionings are not so good and the clustering numbers are set incorrectly. The
consensus clustering can improve the clustering accuracy compared to the basic
algorithms.

Iris Database

The Iris database of UC Irvine Machine Learning Repository is used as an exper-
iment [40]. This database contains 150 records. The 150 records are numbered
from 1 to 150 following the order. Each record contains four Iris attribute values
and the corresponding Iris species. All records are divided into three species,
data from 1 to 50, data from 51 to 100 and data from 101 to 150, respectively.

Firstly, the K-medoids algorithm is used to cluster this database. Because
we don’t know the right clustering numbers, the K is set 3 and 4, respectively.
All experiments are done ten times. And these 20 cluster results are used as
the basic partitionings to do the K-medoids-based consensus clustering. The
clustering results are shown in Fig. 2.

We can see from this figure, if the clustering numbers of the K-medoids algo-
rithm are set correctly, the results are good. However, if the clustering numbers
are set incorrectly, the results are unstable, and the results are bad sometimes.
We use the 20 results as 20 basic partitionings, and do K-medoids-based con-
sensus clustering, the clustering results are better and stable, even if half basic
partitionings are not so good. The consensus clustering can improve the cluster-
ing accuracy compared to the basic algorithms.

Then, we use the K-means-based consensus clustering to cluster this data-
base, the results are shown in Fig. 3.
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Fig. 3. The clustering accuracy comparision

We can see from this figure, the clustering results obtained by K-medoids-
based consensus clustering are better than K-means-based consensus clustering
in most cases. The comparison is more remarkable when noises or outliers are in
the databases.

5 Conclusions

With the advent of the era of big data, the traditional way of data processing is
more and more difficult to meet people’s requirement. Consensus clustering as a
new clustering thoughts, can obtain robust results. However, the time complexity
of consensus clustering is usually high. Profit from the great parallelism, P system
can decrease the time complexity of computing and improve the computational
efficiency. Recent years, as a new biological computing method, the theory of
membrane computing has been adequately studied. In this study, a K-medoids-
based consensus clustering based on the cell-like P system with promoters and
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inhibiters is proposed. The clustering results are more accurate, and the time
complexity is lower through experiments. In previous studies, simple algorithms
are used as basic algorithms in the consensus algorithm considering the time
complexity. In the future, complicated algorithms can be used as basic algorithms
because of the parallel computational models: P systems. The accuracy can be
further improved. And P system can be used in other clustering algorithms.
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China (Nos. 61170038, 61472231, 61402187, 61502535, 61572522 and 61572523).
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Abstract. This paper presents an approach for classifying different
types of faults occurring in power transmission lines by integrating Fuzzy
Reasoning Spiking Neural P Systems (FRSNPS) with wavelet transform
and singular value decomposition. This is the first attempt to extend the
application of FRSNPS from fault section identification to fault classifi-
cation. The effectiveness of the introduced method is verified by various
cases of fault types in power transmission lines.

Keywords: Membrane computing · Fuzzy reasoning spiking neural P
systems · Fault classification

1 Introduction

Membrane computing, formally introduced by Păun in [1], is an attractive
research field of computer science aiming at abstracting computing models, called
membrane systems or P systems, from the structure and functioning of living
cells, as well as from the way the cells are organized in tissues or high order
structures [2–4]. A spiking neural P system (SNPS), introduced in [5], is the
type of P system inspired by the neurophysiological behavior of neurons sending
electrical impulses (spikes) along axons from presynaptic neurons to postsynap-
tic neurons [6,7,9]. SNPS is a kind of distributed and parallel computing models
with good understandability and dynamics, which makes it become a hot topic
in membrane computing [8,10].

Until now, there are only several investigations focusing on the applications of
SNPS [13]. In [11], an optimization neural P system was proposed to solve well-
known NP complete combinatorial optimization problems. In [12], SNPS was
used to represent fuzzy knowledge. In addition, spiking neural P systems com-
bining fuzzy reasoning (FRSNPS) were presented to diagnose the faults occur-
ring in power systems with uncertainty and incompleteness [14–19]. The use of
FRSNPS for fault diagnosis focused on only fault element diagnosis. These appli-
cations indicate that FRSNPS has good characteristics, such as strong capability
c© Springer Nature Singapore Pte Ltd. 2016
M. Gong et al. (Eds.): BIC-TA 2016, Part I, CCIS 681, pp. 109–117, 2016.
DOI: 10.1007/978-981-10-3611-8 12
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to set up complicated logical relationships and intuitive visualization, for solving
real-life problems. So this paper discusses the application of FRSNPS to fault
classification.

Fault classification is the most important task involved in power transmission
line protection, which must be accomplished as fast and accurate as possible
to isolate the system from fault point and recover power supply after a fault
occurs. Because of the strict requirements and its significance, much attention
has been paid to fault classification in the past years. Traditional methods for
fault classification are mostly based on power frequency component, which are
limited with respect to protection speed and susceptible to many factors, such
as fault types, fault resistance, fault locations and fault inception angles [20–
23]. The transient components with abundant fault information, generated by
faults, was analyzed by using wavelet transform [36–39] and fuzzy logic [24–
27] and artificial neural networks [31,33–35]. The main disadvantages of these
techniques are that they require numerous training samples or that the inference
process is a black-box operation, which are not easily understood [40]. Thus,
fault classification is still a challenging problem and an ongoing research topic
in power systems.

This paper presents a fault classification scheme with FRSNPS to build a
fault classification model to identify fault types on the basis of fault features.
Extensive experiments verify the feasibility.

2 Fault Classification with FRSNPS

2.1 Fuzzy Production Rules of Fault Classification

When a fault occurs in the power transmission lines, the fault component current
of the fault phase has a dramatic change, while the fault component current of
the sound phases slightly changes. So the wavelet singular value of a fault phase is
much larger than that without any fault and the wavelet singular value of a sound
phase is very small. The zero sequence current is theoretically zero to phase to
phase faults and three phase fault. The zero sequence current is large to ground
faults. Thus, the wavelet singular value of the fault component zero-sequence
current to ground fault is much larger than that without any fault. The wavelet
singular value of the fault component zero-sequence current of phase to phase
fault is very small. It is noting that large and small mentioned above are fuzzy
knowledge representing transient feature values. Thus, the fuzzy production rules
of fault classification are described as follows.

R1: IF (s0 is large) THEN (Grounded fault)
R2: IF (s0 is small) THEN (Phase-to-Phase fault)
R3: IF (sa is large) AND (sb is small) AND (sc is small) AND (Grounded

fault) THEN Ag

R4: IF (sa is small) AND (sb is large) AND (sc is small) AND (Grounded
fault) THEN Bg
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R5: IF (sa is small) AND (sb is small) AND (sc is large) AND (Grounded
fault) THEN Cg

R6: IF (sa is large) AND (sb is large) AND (sc is small) AND (Grounded
fault) THEN ABg

R7: IF (sa is small) AND (sb is large) AND (sc is large) AND (Grounded
fault) THEN BCg

R8: IF (sa is large) AND (sb is small) AND (sc is large) AND (Grounded
fault) THEN CAg

R9: IF (sa is large) AND (sb is large) AND (sc is small) AND (Phase-to-
Phase fault) THEN AB

R10: IF (sa is small) AND (sb is large) AND (sc is large) AND (Phase-to-
Phase fault) THEN BC

R11: IF (sa is large) AND (sb is small) AND (sc is large) AND (Phase-to-
Phase fault) THEN CA

R12: IF (sa is large) AND (sb is large) AND (sc is large) AND (Phase-to-
Phase fault) THEN ABC.

The normalized wavelet singular values obtained by wavelet transform and
SVD, sa, sb, sc and s0, are crisp and need to be fuzzified before they are used
as the inputs of fault classification models based on rFRSNPS. On the basis of
data analysis, two fuzzy sets are chosen for the normalized values sa, sb and
sc designated as large and small . Similarly, two fuzzy sets are used for the
normalized value s0 designated as large and small . The membership functions,
which are shown in Fig. 1, are defined for the four normalized values according
to data analysis of different fault samples. For sa, sb, and sc, small expresses
any value less than 0.5, while large reflects any value greater than 0.5. small
in the functions of s0 indicates any value less than 0.001, while large indicates
the value greater than 0.001.

0

1

0.2 0.5 1

small large

sa/sb/sc

(a) sa, sb, and sc

0

1

0.001 0.002 s0

small large

(b) s0

Fig. 1. Fuzzy membership functions.
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2.2 Fault Classification Models

On the basis of fuzzy production rules, fault classification model with rFRSNPS
can be built and are shown in Fig. 2, where Al, As, Bl, Bs, Cl, Cs, 0l and
0s represent propositions “sa is large”, “sa is small”, “sb is large”, “sb is
small”, “sc is large”, “sc is small”, “s0 is large”, “s0 is small”, respectively.
The rFRSNPS for fault classification is described as follows:

Π1 = (O, σ1, σ2, . . . , σ32, syn, in, out)

where

(1) O = {a} is the singleton alphabet (a is called spike);
(2) σ1, . . . , σ20 are proposition neurons corresponding to the propositions with

fuzzy truth values θ1, . . . , θ20;
(3) σ21, . . . , σ32 are rule neurons, where σ21, σ22 are general rule neurons,

σ23,. . .,σ32 are and rule neurons;
(4) syn = {(1, 21), (2, 22), (3, 23), (3, 26), (3, 28), (3, 29), (3, 31), (3, 32), (4, 24),

(4, 25), (4, 27), (4, 30), (5, 24), (5, 26), (5, 27), (5, 29), (5, 30), (5, 32), (6, 23),
(6, 25), (6, 28), (6, 31), (7, 25), (7, 27), (7, 28), (7, 30), (7, 31), (7, 32), (8, 23),
(8, 24), (8, 26), (8, 29), (9, 23), (9, 24), (9, 25), (9, 26), (9, 27), (9, 28), (10, 29),
(10, 30), (10, 31), (10, 32), (21, 9), (22, 10), (23, 11), (24, 12), (25, 13), (26, 14),
(27, 15), (28, 16), (29, 17), (30, 18), (31, 19), (32, 20)};

(5) in = {σ1, . . . , σ8};
(6) out = {σ11, . . . , σ20}.

3 Experiments

The two-machine three-phase power system, which is shown in Fig. 3, is simu-
lated on PSCAD/EMTDC for producing fault samples to test the performance
of the introduced approach. The Bergeron line model of PSCAD/EMTDC is
considered for transmission lines. Power system parameters are given in Table 1.
Wavelet transform [29] and singular value decomposition [30] are used to obtain
wavelet singular values. Fuzzy reasoning algorithm [14,15] is applied to inference
classification model with FRSNPS. The sampling frequency is set to 50 kHz, and
the mother wavelet “db3” and 8-scaled wavelet transform are chosen. The test
cases are considered for different values of fault resistance, fault location, fault
inception angles [23,42], as follows:

(1) Fault resistance: 0, 50, 100 and 200 ohms.
(2) Fault location: 0, 50, 100, 150 and 200 km from the bus.
(3) Fault inception angles: 0, 30, 60, 90, 120 and 150◦.

We use one sample as the example to illustrate the classification process,
which are described as follows:

Case 1: The fault is Ag fault.
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Fig. 2. Fault classification models with rFRSNPS.

S RF

Fig. 3. Simplified model of the transmission line.

Table 1. Power system parameters considered in the experiments

Source data at sending ends Transmission line data

Positive-sequence impedance 9.19+ j52.1 (Ω) Length 200 (km)

Zero-sequence impedance 6.69+ j37.9 (Ω) Voltage (kV) 500

Frequency 50 (Hz) Positive-sequence impedance 3.92+ j56.0 (Ω)

Source data at receiving ends Zero-sequence impedance 36.6+ j172 (Ω)

Positive-sequence impedance 8.19+ j42.1 (Ω) Positive-sequence capacitance 13.5 (nF/km)

Zero-sequence impedance 6.47+ j33.3 (Ω) Zero-sequence capacitance 9.20 (nF/km)

Frequency 50 (Hz)
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We sample three phase currents with the duration 1/4 cycle after the fault
inception and three phase currents with the duration 15–20 ms before the fault
inception. Thus, the three phases and zero-sequence fault component currents
can be calculated. Then, the wavelet singular values, 20.5098, 1.2329, 1.2341
and 7.6589 for Sa, Sb, Sc and S0, respectively, are obtained by using wavelet
transform and SVD. The normalized feature values, 1, 0.0601, 0.0602 and 0.3734
for sa, sb, sc and s0, respectively, are also gained. Subsequently, these values are
fuzzified by using fuzzy membership functions to get the initial states of the
input proposition neurons. Finally, the reasoning algorithm described is used to
accomplish reasoning of fault classification.

The initial parameter matrices of the rFRSNPS for fault classification are as
follows: θ0=[1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0], δ0=[0 0 0 0 0 0 0 0 0 0 0 0],
C=[0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95].

When g = 1, the results are the following: δ1=[1 0 0 0 0 0 0 0 0 0 0 0], θ1=[0
0 1 0 0 1 0 1 0.95 0 0 0 0 0 0 0 0 0 0 0].

When g = 2, the results are: δ2=[0 0 0.95 0 0 0 0 0 0 0 0 0],θ2=[0 0 0 0 0 0
0 0 0 0 0.9025 0 0 0 0 0 0 0 0 0].

When g = 3, we get: δ3=[0 0 0 0 0 0 0 0 0 0 0 0].
Thus, the termination condition is satisfied and the reasoning results, i.e., the

fuzzy truth values, 0.9025, 0, 0, 0, 0, 0, 0, 0, 0 and 0, from the output neurons
σ11, . . . , σ20, are obtained, respectively. Because the value 0.9025 is the highest
fuzzy truth values among all values from output neurons, the proposition “Ag”
corresponding to σ11 is satisfied. That is to say, the fault type is Ag.

According to the classification processes described above, the classification
results of 1200 simulations for various values of fault resistance and various fault
locations, and various fault inception angles is shown in Table 2. It can be seen
that the method presented in this paper achieves good results with high accuracy,
and is immune to various fault conditions, such as fault resistance, fault locations
and fault inception angels.

Table 2. Classification results of 1200 independent simulations

Fault types Number of samples Misclassification Accuracy

Single-phase-to-ground fault Ag 120 0 100%

Bg 120 0 100%

Cg 120 0 100%

Double-phase-to-ground fault ABg 120 0 100%

BCg 120 0 100%

CAg 120 0 100%

Phase-to-phase fault AB 120 0 100%

BC 120 0 100%

CA 120 0 100%

Three phase fault ABC 120 0 100%

Total 1200 0 100%
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4 Conclusions

In this paper, an approach combining wavelet transform, singular value decom-
position and fuzzy reasoning spiking neural P systems was presented to classify
ten types of short-circuit faults occurring in power system transmission lines.
A case considering fault inception angles, various fault resistance and fault loca-
tions was used to carry out the experiments to show the feasibility.
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tion of China (61672437, 61373047).

References
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14. Peng, H., Wang, J., Pérez-Jiménez, M.J., Wang, H., Shao, J., Wang, T.: Fuzzy
reasoning spiking neural P system for fault diagnosis. Inf. Sci. 235(20), 106–116
(2013)

http://dx.doi.org/10.1038/srep.27624
http://dx.doi.org/10.1038/srep.27624


116 K. Huang et al.

15. Wang, T., Zhang, G.X., Zhao, J.B., He, Z.Y., Wang, J., Pérez-Jiménez, M.J.:
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Abstract. That combining membrane computing with optimization
technology offers a new information interaction model for the research
of problems in optimization filed. Based on this, a membrane algorithm
owned six basic membranes is proposed to solve the defects of the slow
convergence and the small diversity in solving vehicle routing problem
with time window. In order to further improve the efficiency and the
precision, some new rules are designed: for the former problem, a node
classifier is introduced to improve the efficiency by filtering directly a
plenty of in-feasible solutions; two methods for the latter problems: an
uncertain segment crossover is designed in the corresponding membrane
in order to explore directly two feasible segments and segment-node inser-
tion operation is introduced in order to make two individuals inserted
synchronously another path. In order to verify the effectiveness of the
algorithm, a series of experiments are designed. Known through the
results of experiments that these two properties of membranes make
the search ability of the algorithm improving quickly for local and global
exploration and node classifier improves effectively the running efficiency
of this algorithm, which proves that membrane algorithm can accelerate
the convergence speed and increase diversity of population.

Keywords: Membrane computing · IUOX · PMX · Node classifier ·
VRPTW

1 Introduction

The vehicle routing problem (VRP) is proposed by Dantzig and Ramser in 1959,
which is an important research topic in management science. Vehicle routing
problem with time windows (VRPTW) is an expand of VRP, which adds time
windows to each client on the basis of VRP and specifies that each vehicle must
c© Springer Nature Singapore Pte Ltd. 2016
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be visited within this window. So far, VRPTW has important theoretical and
practical significance in logistic research area such as rail distribution system, the
layout of public traffic transport routing, the mail and newspaper delivery system
and so on. Therefore it has important theoretical and practical significance in
logistic research area. However, because VRPTW is the different premutation
and combination of all clients under max-load and time windows constraints, the
consuming time can be grow exponentially as the scales increases such as the
computational complexity of this problem is O(MN2) (where M is the size of
population and N is the number of clients), promptly, showing that this problem
is an NP-hard problem. Therefore, this problem has caused more attentions
among many scholars, for example, references [1,2] respectively researched the
impact of congestion avoidance and a dynamic constraint for VRPTW with
time-dependent; These constraints for VRPTW are to be more realistic close to
real life.

Based on the difficulty in solving NP-hard problem through exact algo-
rithms, some heuristic algorithms are used to optimize this problem, such as [3,4]
are respectively introduced an improved ant colony algorithm and an adaptive
cauchy differential evolution algorithm to VRPTW, and reference [5] proposed
an uniform crossover to make GA exploring quickly a better search space in order
to improve the precision of solutions; However these algorithms have existed dif-
ferent deficiencies, for example, the lower efficiency and poor precision, especially
traditional genetic algorithm. Therefore the paper tries to use a new scheme to
improve the performance of the algorithm.

As the research has advanced, a new filed-membrane computing-is explored
to solve some practical problems based on its parallelism and closure. With
the development of this filed, many researches about P system began to rise,
for example, P system with minimal parallelism is used in [6], Alhazov studied
trading polarizations in P system with active membranes in [7–10], reference
[11] researched computational complexity of tissue-like P system, and reference
[12] studied Tissue P system with cell separation, Spiking Neural P system with
different operation are researched contained neuron division and budding [13],
astrocytes [14], exhaustive use of rules [15] and sequential spiking for normal
forms for some classes [16], references [17–19] introduced asynchronous spiking
neural P systems. Based on these properties, membrane algorithm was intro-
duced by Nishida [20], references [21,22] analyzed its diversity, convergence and
implementation, which shows that membrane computing can solve effectively
some problems than other technologies.

Aiming at above introduction, membrane computing is considered to solve
discrete optimization problems based on this state that all membranes in P
system can execute synchronously thus reducing time complexity; According to
the characteristics of global search for genetic algorithm, the paper proposed a
new membrane algorithm with GA evolution mechanism (MGA) to deal with
these problems. In order to better optimize this problem, two improved strategies
are introduced to this mechanism on the basis of membrane algorithm: (a) a node
classifier is added to mem. 1 for ameliorating the efficiency; (b) double crossover
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mechanisms are respectively introduced to mem. 3 and mem. 4 thus expanding
the search scope of population.

The paper is organized as follows: in Sect. 2, the definition and mathematical
model are introduced; Sect. 3 is devoted to the object and evolution rules; Sect. 4
addresses the experimental design, computational results are presented based on
some standard data set. Finally, conclusions are presented in Sect. 6.

2 Definition and Mathematical Mode for VRPTW

2.1 Definition for VRPTW

The VRPTW can be defined as a problem of designing an optimal set of routes
that services all customers. Each customer is visited only once by exactly one
vehicle with a given time interval; all routes start and end at the depot, and total
demands of all customers on one particular route must not exceed the capacity of
the vehicle. Let the number of depot be 0, client number is labeled as 1, 2, . . . , n
and variant is defined as

xijk =
{

1, if exist an edge from i to j serviced by vehicle k,
0, else, not exist.

(1)

And the time tj of arriving vj is described as:

tj =
N∑

i=0

K∑

k=1

xijk(max(ti, ei) + tij + si), j ∈ 1, 2, . . . , N (2)

Where tij is the time computed from vi to vj , si(s0 = 0) is the service time
of loading or unloading for vi, max(ti, ei) represents a starting service time for
vi, set N = N + i(i = 1, . . . , n).

2.2 Mathematical Model for VRPTW

Mathematically, it can be described as G = (V,A), where V represents a node
set, A = {(i, j)|i, j ∈ V } is an edge set. For VRPTW, 0 stands for a central
depot owned q vehicles that are responsible for n customers to carry out the
work of distribution of goods, gi(i = 1, . . . , n) is the demand of vi, [ei, li] is a
time window of vi that the serviced time of each customer is not earlier than
ei and can not be later than li. The objective is to determine a feasible route
schedule that primarily minimizes the total travel distance.

Min Z =
∑

k∈V

∑

i∈N

∑

j∈N

Cijxijk (3)
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Subject to:

∑
i∈V yijk =

∑
j∈V yjik

∑
i∈V ′ y0ik =

∑
j∈V ′ yj0k = 1

∑
k∈K

∑
j∈N yijk ≤ 1, ∀ k ∈ K

∑
i∈C di

∑
j∈N yijk ≤ q, ∀ k ∈ K

∑
j∈N x0jk = 1, ∀ k ∈ K

∑
i∈N xihk =

∑
j∈N xhjk, ∀h ∈ C, ∀ k ∈ V

∑
i∈N yi,n+1,k = 1, ∀ k ∈ V

ei
∑

j∈V yjik ≤ aik ≤ li
∑

j∈V yjik

aik + si + cij − ajk ≤ (1 − yijk), ∀i, j ∈ V
′

yijk ∈ {0, 1}
Where, Cij is the transportation cost; formula (3) is the minimum total dis-

tance of all routes; constraint (1) shows the connectivity of each path; constraint
(2) expresses each vehicle must start from certral depot and end at the depot;
constraint (3) ensures that each customer is visited at most once by vehicle k;
constraint (4) shows that the demand of each client is less than the remain of
vehicle; constraint (5)–(7) ensures that the path continuity; constraint (8) and
(9) ensure the constraint condition of time window for each client; constraint
(10) is that if xkij = 1, then vi and vj are visited by vehicle k;

3 Membrane Algorithm with GA Evolution Machanism

Based on the case that the capability of traditional algorithm lacks power for
keeping a kind of a balance between the diversity and the convergence as well as
between global optimum and local optimum when solving optimization problem,
MGA is proposed. Evolution mechanism of genetic algorithm designed as rules
of membranes also merges both the distribution and the parallelism. In paper,
membrane structure, objects and rules are designed in detail as Sect. 3.1–3.3.

3.1 Membrane Configuration of MGA

According to the property of VRPTW and the evolution characteristic of genetic
algorithm, the paper designs six membranes in membrane configuration, where
mem. 0 records a global optimal solution xgbest, mem. 1 is used to execute node
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classifier operation, mem. 2 is used for initialing population, mem. 3 executes uni-
fied order crossover operation, mem. 4 is designed as partially mapped crossover,
mem. 5 is regarded as mutation operation and mem. 6 executes copy operation,
where mem. i represents membrane number such as mem. 1 is membrane 1,
others similar. Therefore, the system

∏
of MGA is designed as follows.

∏
= (O, σ1, σ2, σ3, σ4, σ5, σ6, syn, i0) (4)

where,

(1) O = {a}, a ∈ [1, N ], N is the number of clients;
(2) syn = {(1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5), (3, 2), (4, 2), (5, 2), (2, 6)};
(3) i0 = 0 is output membrane number;
(4) σi (i = 1, . . . , 6) represents the ith cell, which is expressed by:

σi = (Qi, si,0, ωi,0, Ri) (5)

In formula (5),

(a) Qi = (si,0, si,1, . . . , si, tmax), si,j is the jth iterations of the ith cell, tmax is
max iterations.

(b) si,0 is an initial statue, initial objects of mem. 1, mem. 2, 3, 4 is an empty
set;

(c) Ri is a limited rule set contained the evolved rules and the transported rules;

In order to clearly to express this system, the paper uses the form of picture
to express it, it is described as Fig. 1 following.

Fig. 1. The framework of MGA.

Seen from Fig. 1 that the transport rules between membranes is as: Initial
population are firstly produced in mem. 2 before l1 chromosomes are sent to
mem. 3, l2, l3, l4(l4 = S−l1−l2−l3) chromosomes selected using roulette method
are respectively sent to mem. 4, 5, 6, and then the classed results of mem. 1 are
respectively sent to mem. 3, 4, 5 before executing operation according to the
rules of each membrane. These individuals of four membranes are synchronously
resent to mem. 2 after the completion of evolution.
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3.2 Coding for Objects

Based on this case that VRPTW is multiple vehicles routing optimization prob-
lem with constraints, the solutions is as an object of MGA which is formed by
applying combinatorial arrangement of data structure for all clients under sat-
isfying max load and time window. In the algorithm, an object is encoded by
selecting natural number where each object is expressed by using the form of
Xt

i = {xt
i1, x

t
i2, . . . , x

t
iN}, ωi = (X1i,X2i, . . . , Xni) is object multiple sets of the

ith membrane, and xij ∈ [1, N ], Xni is a code of kth object in mem. i.

3.3 The Rules in Membranes

To ensure the corrected evolution of all objects in each membrane, some rules
is designed according to evolution mechanism of MGA. Based on this, the rules
are divided two classes: (1) Evolution rules: mem. 1 executes node classifier
rules; mem. 2 is used to produce initial population, mem. 3 and mem. 4 execute
respectively crossover rules, mem. 5 is used to make mutation rules and mem. 6
is designed as copy rules; (2) Transportation rules.

3.3.1 Rules in Membrane 1: Node Classifier Mechanism

In order for further improving the running efficiency on the basis of improving
efficiency by using the parallelism between membranes, a node classifier mech-
anism is introduced to mem. 1. This mechanism is that vi is classed into a
set owned similar time window with other nodes according to its window thus
avoiding the disadvantage of a plenty of selecting infeasible solutions and then
improving the running efficiency of the algorithm.

According to the characteristic of VRPTW, node classifier is introduced from
the following six types.

Definition. Let T be a set after the classification. Under satisfying max load,
for all to meet v ∈ V , obtain:

C1: In node classifier, for time window [ei, li]: If li > Node[i − 1].cartime, then
v(x + vi, vi, y) → v(x, vi, y + vi); else, vi is directly deleted.
C2: For PMX, execute the rules v1(x+ s1, s1, y) → v2(x1 + s2, s2, y1) and v2(x+
s2, s2, y) → v1(x2 + s1, s1, y2), that all segments in Node Classifier satisfy s1 ∈
[ex2 , ly3 ] and s2 ∈ [ex1 , ly1 ] can execute PMX operation.
C3: For IUOX, if all nodes belonged to s1 and s2 satisfy the requirement and of
inserting R2 and R1 in Node Classifier, then the rules v1(x + a, a, y) → v2(x2 +
a, a, y2) and v2(x2 + b, b, y2) → v1(x1 + b, b, y1) can be executed, where a ∈ s1
and b ∈ s2.
C4: Initialize routing structure car client, for arbitrary window [ei, li], [ei+1,
li+1] and ei+1 > li: if select tail insertion operation, then these clients of Node
Classifier that latest service lk(k ∈ [0, i]) is less than ei+1 are directly deleted.
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Seen from the above six properties that C1 shows that latest service time
of node vi is larger than depart time of previous node ci−1; C2 and C3 express
that different crossover operations are executed under the premise of satisfying
constraints of the exchange; C4 illustrates that the probability is very small that
a node of Ti is inserted to the back of a node of Tk(k > i) in node classifier.

Analysis from the complexity after improving that since the archive size is
usually chosen proportional to the population size M , that each client vk is
inserted to current route Ri needs to judge N times, the overall complexity
of traditional GA is O(M ∗ N) without introducing node classifier. However,
after adding to this mechanism, because these nodes inserted effectively current
position pij must be at a certain range, promptly, the number of nodes selected
to insert to pij is logTi

(N), the computational complexity for MGA is O(M ∗
logTi

(N)). According to above analysis, running efficiency gets improving thus
proving that this mechanism is effective to solve efficiency problem.

3.3.2 Operation of Membrane 2: Initialization Population

Due to the idea that MGA is regarded as multi-population algorithm, S objects
need to be produced by applying the corresponding technology. In order for
making the algorithm producing multiple objects in the closed and independent
domain, mem. 2 is used as a computing device for obtaining objects and stores
new object set after updating through every generation. The steps are designed
as (a) – (e).

(a) Let population scale be S, vi is the ith client, s is the sth object.
(b) Obtain classification set T and then F = T and s + +(s = 0) after calling

the rules of mem. 1.
(c) vi is selected from set F and then adjust whether vi is inserted to route rk

according to C1-C6: if possible, execute this operation using tail operation;
Else, turn(d).

(d) Reopen a route rj under the premise of not inserting into any route and vi
is inserted to route rj , continue until set F is an empty set, over.

(e) If s > S, then complete initialization, over; Else, turn (b).

Analyzing from rules (a)–(e) that the method of obtaining objects is that
firstly initial the number of vehicles n computed according to the requirement
of load VRPTW before this n clients stored in the front row of node classifier
are randomly inserted to n routes, and then other clients beyond above clients
are respectively inserted to above routes using tail insertion, if not satisfy, then
reopen a new route, which expresses that this way both avoids this defect of
applying a plenty of space in obtaining objects and improves the convergence
speed thus proving the great feasibility of this mechanism.

3.3.3 Rules in Membrane 3: Unified Order Crossover (IUOX)

Because that the span of windows for two segments not existed in the same
domain leads to the larger probability of the un-success for segments crossover



Membrane Algorithm with Genetic Operation 125

when the nodes based on time window are doing segment crossover, a segment-
point insertion is proposed through the characteristic of this problem. The defi-
nition and the evolution rules are respectively introduced as follows.

(a) Definition. Two crossover segments s1 and s2 are randomly elected from
routes R1 and R2 after randomly selecting routes R1 and R2 before executing
R2 = R2 − {s1} and R1 = R1 − {s2} and then R1 and R2 after deleting
segment s2 and s1 are recomputed arrival time of each vi for every route and
then execute two operations R2 = R2 +{s1} and R1 = R1 +{s1}, promptly,
obtain R

′
1 and R

′
2.

Where R = R + {s} is that segment s is inserted to route R and R = R −{s}
represents that segment s is deleted from route R;

(b) Evolution rules for IUOX

r1 : {x11, x12, . . . , x1i, x1(1+l), . . . , x1N} → {x11, x2(j+l), . . . , x12, x2j , . . . , x1N}
(6)

r2 : {x21, x22, . . . , x2j , x2(j+l), . . . , x2N} → {x21, x22, . . . , x1i, x1(i+1), . . . , x2N}
(7)

Where s1 = (x1i, x1(i+1), . . . , x1(i+l)) and s2 = (x2j , x2(j+1), . . . , x2(j+l)) are
two crossover segments.

Based on the above analysis, IUOX must make two segments inserting into
current route thus greatly improving the evolution efficiency of this algorithm
and then proving the effectiveness of this evolution mechanism.

3.3.4 Rules in Membrane 4: Partially Mapped Crossover (PMX)
Because of the existence of the span of window, a double-uncertain segments
crossover is proposed to evolve with a smaller probability in order to ensure
the feasibility of objects. Based on this, its definition and evolution rules are
introduced as a. – c.

a. Definition. s1 is arbitrarily selected from route R1 after routes R1 and
R2 are selected and then s2 is selected from R2 under the premise of double
constraints about the remain of vehicle and time window of R1, promptly, obtain
R

′
1 and R

′
2 after exchanging s1 and s2.

Summary from proposition that rules of PMX is designed as:

(a) Crossover Rules for object X1

r3 : x1u1y1 → x1u2y1 (8)

(b) Crossover Rules for object X2

r4 : x2u2y2 → x2u1y2 (9)

Analysis from the operation process of PMX that this method can make more
excellent segments from parents passed on to next generation thus motivating
individual to move toward the direction of the optimum and then improving the
precision of the algorithm on the basis of multiple membranes.
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3.3.5 Rules in Membrane 5: Mutation Operation

Mutation mechanism is designed in mem. 5 in order to expand the search scope
of population, the rule is introduced as follows.

r5 : {x11, x12, . . . , x1k, . . . , x1m, . . . , x1N}→ {x11, x12, . . . , x1m, . . . , x1k, . . . , x1N}
(10)

Study from rule r5, that mutation mechanism makes a blind search in current
space makes the diversity of population expanding thus improving the precision
of solutions at a certain extent, promptly, proving that the effectiveness of this
mutation mechanism introduced by membrane 5.

3.3.6 Rules for Membrane 6: Copy Rules

Because the evolved direction of population is directed toward the optimal solu-
tion space, the cope rule is proposed and the rule is designed as: where si,j = s

′
i,j .

r6 : si,j → s
′
i,j (11)

Analysis from formula (11) that elite selection strategy can make optimal
objects from parents copying to next generation thus ensuring that these object
sets of membranes continuously evolves toward an optimal space with a better
trend and then improving the convergence speed of the algorithm, promptly,
proving that the efficiency of this rules for MGA.

3.4 Transportation Mechanism of MGA

Based on the restrictions that the evolution of some objects of current membrane
can successfully execute after obtaining the source of other membranes, some
communications are built between membranes. These rules are introduced as
follows.

M1: Transport for Objects from mem. 2 to mem. 3, 4, 5, 6

r7 : si,j → (si,j , go) (12)

M2: Design for set T from mem. 1 to mem. 3,4,5

r8 : T → (T, go) (13)

M3: Rules for objects from mem. 3, 4, 5, 6 to mem. 2, where s
′
1,(i,j) represents the

objects after evolving in mem. 3, 4, 5, 6 by using the rules of four membranes.

r9 : s
′
k,(i,j) → (s

′
k,(i,j), go) (14)

where k stands for a membrane labeled as k and k can be given these values
such as 1, 2, 3, 4.
M4: Rules for local optimum from mem. 2 to mem. 0

r13 : xlbest → (xlbest, go) (15)

M5: Rules for global optimum in mem. 0

r14 : xgbest → (xgbest, out) (16)
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3.5 Termination Condition and Output

For MGA, in order to ensure the convergence at the process of program running,
the paper designs the following termination criterions:

(1) The program has achieved termination status when the value of the optimal
solution is equal to the one of standard database;

(2) In order to the running time of the algorithm, adjust that the algorithm
also gets stopping when the ratio is controlled within 10%, where ratio =
(fitcurrent − optimum)/optimum%100 and current solution fitcurrent
remains unchanged in a certain number of iterations.

Seen that the algorithm terminated immediately just meeting any one of
these two conditions.

For output domain, it is specified as environment area of mem. 0, promptly,
the optimum of mem. 0 is a final output result of MGA.

4 Application of MGA in VRPTW

Based on the effect that MGA is applied to optimize the route for some practice
problems, MGA is adopted to deal with vehicle route problem with time window.
In order to make the algorithm optimizing current objects in solving the process
of VRPTW, the detailed steps are designed as follows.

Step 1: Construct membrane system; Initialization population using the rules
of mem. 2.
Step 2: Local optimum Pi and global optimum Pg are respectively computed
after compute the fitness of individual.
Step 3: For mem. 3, two objects are randomly selected using formula (23) from
current population and do segment-point crossover operation using IUOX
according to the crossover rules of this mechanism.
Step 4: For mem. 4, two objects are picked using roulette method and then
evolve by adopting an uncertain crossover method through the evolution rules
of this membrane.
Step 5: For mem. 5, vi recorded its position p1 is selected in node classifier
and an inserted set T of vi is obtained and then adjust whether T is an empty
or not: if not, k is obtained from set T and then adjust whether the node of
pk is inserted into the p1 or not: if possible, then insert; else, directly discard.
Repeat Step 5, until reaching termination condition, over.
Step 6: For mem. 6, l4 objects are synchronously selected using formula (23)
to directly enter into the next generation by adopting the rules of membrane 6
Step 7: These objects from membrane 3, 4, 5, 6 are synchronously sent to
membrane 2, turn Step 2, continue until getting stop condition.
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Table 1. Different benchmarks with time windows: comparison with best known.

GAMC Best known GAMC Known GAMC Known

B = 25

C101 191.30 191.3 R101 709.94 617.1 RC101 597.14 461.0

C103 277.76 190.3 R103 571.04 454.6 RC103 515.39 332.8

C104 206.70 186.9 R104 451.17 416.9 RC104 498.19 306.6

C201 295.66 214.7 R201 533.04 463.3 RC201 415.55 360.2

C202 221.87 214.7 R202 480.87 410.5 RC202 412.67 338.1

C203 231.81 214.7 R203 401.43 391.4 RC203 438.87 326.9

C204 277.65 213.1 R204 368.75 355.0 RC204 318.89 299.0

Average 239.05 202.0 524.98 456.98 454.26 347.05

B = 50

C101 537.84 362.4 R101 1085.29 1044.0 RC101 2264.97 944.0

C102 524.02 361.4 R102 912.050 909.0 RC102 2111.22 822.5

C103 417.72 361.4 R103 1148.14 772.9 RC103 2205.61 710.9

C104 483.54 358.0 R104 894.76 625.4 RC104 1513.28 545.8

C201 669.49 360.2 R201 943.29 791.9 RC201 1306.95 684.8

C202 781.31 360.2 R202 790.91 698.5 RC202 1185.83 613.6

C203 489.9 359.8 R203 871.96 605.3 RC203 1247.58 553.3

C204 556.98 350.1 R204 990.05 506.4 RC204 1695.48 444.2

Average 557.6 359.18 954.55 744.17 691.36 664.8

5 Simulation Experiment

In order for verifying the performance of the algorithm, MGA is selected to use
the data of 100 scales for testing VRPTW, which mainly evaluates the diversity
of population and the ability of global convergence. The flat of this experiment
select dual-core Intel, 2.30 GHz, 4.00 GB memory based on Windows 10 system
and select VC6.0++ to encode. In experiment parts, the parameters is tuned
according to the method [10] and MGA is compared with GA and database, and
then the experiment results focus on the research in order to thoroughly analysis
the comprehensive performance.

5.1 Results for Parameters Tuning

Analysis through the theory of optimization algorithm that the value for each
parameter has an effect on the optimization of MGA, promptly, the better para-
meters can promote this optimization. Therefore, these parameters are tuned
by using this method in reference [10]. All results by tuning are designed as:
crossover rate PC is designed as 0.75, mutation rate PM is obtained as 0.20,
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Table 2. Comparison results under clients 100 for MGA and GA.

Network scales Optimum Average Time Ratio (%)

MGA GA MGA GA MGA GA MGA/GA

C101 3161.02 3731.12 3330.42 4036.90 81.88 101.32 −0.180

C102 3412.38 3386.32 3644.89 3459.1 220.68 261.57 0.007

C103 3488.55 3521.07 3658.13 3698.27 122.25 369.52 −0.009

C104 3445.99 3613.07 3881.76 3780.31 506.73 598.34 −0.048

C201 2612.29 3013.13 2921.34 3103.10 131.89 164.21 −0.153

C202 2928.49 3413.63 3600.93 3510.30 145.42 201.79 −0.165

C203 3331.47 3521.36 3796.58 3591.41 285.98 274.01 −0.056

C204 3376.85 3247.25 3600.63 3613.28 542.10 437.07 0.038

R101 3124.77 3341.71 3527.19 3987.41 261.32 332.20 −0.069

R102 2902.94 3287.19 3316.54 3758.19 198.24 241.32 −0.123

R103 2662.68 3103.31 3131.29 3151.90 318.79 351.40 −0.165

R104 2788.43 2896.46 2937.85 3125.61 234.19 296.51 −0.038

R201 2253.78 2431.67 2693.77 2510.01 174.95 210.30 −0.078

R202 2307.27 2354.01 2420.62 2409.31 198.72 231.17 −0.020

R203 2410.39 2517.89 2855.91 2597.06 302.33 392.19 −0.044

R204 2594.80 2630.34 2778.95 2725.07 368.53 413.07 0.109

RC101 3775.05 4103.41 3937.77 4209.17 93.35 127.01 −0.041

RC102 3705.93 4038.25 3959.37 4137.06 158.17 211.15 −0.089

RC103 3569.42 3845.03 3581.23 3945.17 231.03 298.13 −0.077

RC104 3319.85 3590.48 3331.01 3658.93 380.902 411.03 −0.081

RC201 2778.42 2913.52 2977.71 3014.30 174.84 201.36 −0.048

RC202 2850.69 2985.04 3009.52 3128.69 186.27 213.14 −0.047

RC203 2821.21 3045.97 3205.78 3379.23 306.60 331.07 −0.079

RC204 3407.26 3564.41 3583.31 3610.73 441.86 479.13 −0.046

Average 3042.93 3253.98 252.79 297.83 8.6%

population size S is computed as 500, iter max D is tuned as 1000, and the
algorithm runs 30 times where R expresses operation times.

5.2 Analysis of Experiment Results for Different Scales

To obtain effectively experiment results for proving the performance contained
computing ability and optimized one when solving problem using MGA in an
optimization field, some scales are firstly tested before the performance for MGA
is optimized to the best state and then a large scale instance is tested in order
to verify its advantage after deviated ratio is controlled to a smaller range when
testing some small scale data. These results are as Tables 1 and 2.

By analyzing experiment results of three above types with a quantitative
approach in Table 1, with the application of 25 scales, that the averages of opti-
mums for three types of problems are respectively 239.05, 524.98 and 454.26
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Fig. 3. Comparison of optimum, average and time for scale 100 in (a)–(c)

and the averages of optimums in database are severally 202.0, 456.98 and 347.05
illustrates that the deviated ratio between MGA and database is respectively
18.3%, 14.8% and 30.8%, which shows that the algorithm can correctly adduce
populations evolving toward the direction of the best domains in small scales;
With the resurrect of 50 scales in Table 2, that the averages of optimums of three
instances are respectively 557.6, 954.55 and 691.36 shows that deviated ratios
about three indicators are aptly 55.4%, 28.2% and 3.9% computed by compar-
ing with database, which shows that the performance of the algorithm has been
improved and this ratio can be controlled within a certain error range thus illus-
trating that it can search a good solution under the premise of the limited time,
promptly, proving the feasibility of MGA for solving large scales problems.

In order to directly express the results in above tables, the paper are designed
two graphs as Figs. 2 and 3 where Fig. 2 is the curves of optimum for C101, R101
and RC101 under 2000 iterations and Fig. 3 is the graphics of the optimum of 24
instances, average values and time where for average and time, the former eight
instances are in the descending order, middle eight instances are in ascending
and last eight instances are descending in order to the effect of graph. Analysis
from Figs. 2 and 3(a)–(c) that the comprehensive performance of MGA is better
than GA; For the total results for these three instances.

The performance with which MGA is applied to test the data of a large scale
is verified by using the instance of 100 scales and the experiment results are
proved by analysing according to Tables 1 and 2, Figs. 1 and 2.

6 Conclusion

Considering the efficiency about NP-hard optimization problems, membrane
algorithm is regarded as the best choose for the defects. MGA is an optimization
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algorithm that improved genetic algorithm is embedded in membrane comput-
ing based on bionic cell. Communication cooperation mechanism between mem-
branes is regarded as crucial problems thus initially solving the problem of the
low convergence and the small diversity. Obtaining the following conclusions: (1)
In the study of the algorithm efficiency, node classifier is used to make process
of single membrane evolving in high reliability, accurate positioning and fast
processing speed; (2) In the study of improving precision, that crossover mecha-
nism and mutation one make the algorithm converging quickly and the diversity
increasing fleetly; (3) Transportation rules between membranes can make objects
evolving smoothly and efficiently so as to improve the performance of membrane
algorithm.

Verification through these results indicates that in precision aspect, the accu-
racy of MGA increases by 15.3 percentage points so as to prove that the indepen-
dent evolution of membranes and the communication mechanism between mem-
branes can achieve the higher precision; In time efficiency aspect, this mechanism
makes the algorithm increasing by 7.8 percentage points, which proves that MGA
fully demonstrates the optimized abilities and computing power.
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Abstract. The membrane system and artificial immune system are both
a branch of natural computing, which has attracted much attention in
various disciplines. Inspired from the structure and inherent mechanism
of membrane computing and immune computing, a membrane system
based on immune mechanism algorithm is proposed to deal with classi-
fication problems. The approach contains three important stages: firstly,
the candidate cells are generated by selecting from the gene pool ran-
domly; then, calculate the affinity of the candidate cell with each element
in the self-set to construct the classifier; finally, input the un-label cells
into the detectors to test the performance of the classifier.

Keywords: Membrane computing · Immune algorithm · Negative
selection · Classifier

1 Introduction

Natural Computing is a discipline whose aim is the study and implementation
of the dynamic processes that occur in the living nature and that are likely to
be interpreted as calculation procedures. Membrane computing (P systems) was
initiated by Pǎun, which is a class of powerful computing model abstracted from
the way that the living cells process chemical compounds, energy and information
in their compartmental structures [1].

As a model of computation with universality property, membrane comput-
ing is so computationally efficient that it can solve difficult computational NP-
complete problems in a polynomial time by creating exponentially membranes
[2]. SAT problem was solved by the splitting rule of membrane system [3]. [4]
gives a family of P systems to solve All-SAT problem with simplified membrane
structure and few evolution rules based on the character of membrane division
and parallel processing in the P systems.

Artificial immune systems (AIS) can be defined as computational systems
inspired by theoretical immunology, observed immune functions, principles, and
mechanisms to solve problems [5]. Negative selection is one of the most discussed
algorithms in artificial immune system [6].
c© Springer Nature Singapore Pte Ltd. 2016
M. Gong et al. (Eds.): BIC-TA 2016, Part I, CCIS 681, pp. 133–141, 2016.
DOI: 10.1007/978-981-10-3611-8 14



134 L. Ye and P. Guo

In this paper, based on a combination of membrane system and artificial
immune systems, we proposed immune classification algorithm by a membrane
system. In this system, a set of detectors are created by the given rules firstly,
then this collection of detectors called classifier will be used to recognize the cat-
egory of the unknown objects. It can be also used in some pattern identification
and combinatorial optimization problems.

The paper is organized as follows. Section 2 describes the foundation of mem-
brane system and negative selection algorithm. The details of ΠNS, including the
membrane structure, evolving rules and analyses are proposed in Sect. 3. The
conclusions and further researches are then discussed in Sect. 4.

2 Related Works

Membrane Computing devices are generically called P systems. They constitute
a theoretical computing model of a distributed, parallel and non-deterministic
type.

2.1 Cell-Like P System

The main syntactic ingredients of a cell-like P system are the membrane struc-
ture shown in Fig. 1, the multi-sets, and the evolution rules. The semantics of
the systems are defined through a nondeterministic and synchronous model, by
introducing the concepts of configuration, transition step, and computation.

Fig. 1. The structure of cell-like P system

A basic transition P system of degree m ≥ 1 is a tuple,

Π = (O,μ, ω1, · · · , ωm, (R1, ρ1), (R2, ρ2), · · · , (Rm, ρm), io) (1)

where,

(i) O is the alphabet of the system;
(ii) μ is a membrane structure consisting of m membranes, which are labeled

by numbers in the set {1,· · · , m};
(iii) ω1 · · · ωm are multi-sets, representing the objects initially presented in the

regions (1,· · · , m) of the system;
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(iv) R1, · · · ,Rm are finite sets of evolution rules associated with the regions
(1,· · · , m) of μ; (ρ1, · · · , ρm) are strict partial order relations defined over
(R1, · · · ,Rm) respectively, specifying a priority relation among the evolu-
tion rules; The rule can be described as the form (u → v, ρi), where, u → v
is rewrite rule, and ρi(1 ≤ i ≤ m) indicate the priority.

(v) io is indicating the output region.

The cell division in P systems plays in a crucial role for generating expo-
nential work space in linear time. Here we consider the following cell membrane
interaction operation to formalize in P systems area.

2.2 Negative Selection

The immune algorithm called negative selection was first developed by Forrest [6]
for real-time detection of computer virus. In this algorithm, T cells are randomly
generated to detect foreign antigens without reacting to self-cells in the thymus.
Hence, the mature T cells leaving the thymus will not match the self-cells and
will therefore only match the non-self cells. The basic concept of a negative
selection algorithm is shown in Fig. 2.

Fig. 2. Negative selection algorithm

3 ΠNS for Classification

The P system named ΠNS is proposed to create the classifier which will classify
the un-label objects. The details of the system will be given in this section.

3.1 Definition

ΠNS for classification can defined as:

ΠNS = (O,μ, ω1, · · · , ωm, R, io) (2)

I. O is a finite and non-empty alphabet of objects.
O = {Ψ1, Ψ2, β, γ, γ′, λ, δ, φ, φs, φss, φc, φcc, η, η0, η

′, ηi, ηii}
∪ {ξi, 0 ≤ i ≤ 26} ∪ {aj , bj , · · · , zj , 1 ≤ j ≤ k}
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Fig. 3. Initial membrane structure

II. μ is the membrane structure composed of four main membranes in the skin
membrane shown in Fig. 3. The membrane G represents gene pool to store
the different gene segments as the initial multi-sets which should be placed.
The membrane S represents the self-set to store the autologous cells which
should also be placed at first, the number of these cells is define as (2k −1).
The membrane C denotes as classifier which is used to retain the detectors,
it is empty at the beginning. The membrane T is the templte of a membrane
to generate new membrane u to store the un-label cells.

III. ωi is multi-sets, representing the objects for i record of the data set in the
regions i.

IV. The rules in R should have priority, and the explanations of some rules are
given here, k indicates the priority:
– [huδ]h → v, k

The membrane h is dissolved, and the object u is replaced with object v.
– [hu → v]h, k

In the region named h, remove the multi-set of objects specified by u, and
to introduce the objects specified by v.

– [hu → (v, inj)]h, k
The object v should be moved into the membrane j which is the upper
membrane that has not been dissolved, and the object u will be removed
from membrane h.

– [hu → (v, out)]h, k
The object v will be moved to the region immediately outside membrane
h.

– [hu → [hv]h]h, k
The object u will be replaced with a new membrane containing object v.

– [h1u]h1 → [h2u]h2[h2u]h2
All objects and membranes in the original membrane will be duplicated
and appear in the two new membranes.

– uj [h]h[j ]j → [jv[h]h]j
The membrane will be filtered into j th membrane by uj , and uj be
replaced with symbol v.

V. io is the skin membrane to output the result.
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The value of k is smaller, and the priority of the corresponding rule is higher.
When k = 1, the corresponding rule will have the highest priority.

All of the rules that can be applied must be applied simultaneously. The
marked output membranes are never dissolved.

3.2 Rule Set

The rules of P system ΠNS in each membrane are as follows:

(1) The rule set in the skin membrane called RM . In this set, r1 ∼ r7 are
used in generation phase, r8 ∼ r37 are used in testing phase. In generation
phase, The number of new cell is determined by the number of symbol φ
denoted as N. The symbol φss is used to send detectors into self set. The
key point of this process is that leaving only one cell in skin membrane,
the others all sending into membrane S. In testing phase, The symbol L
represents number of detectors to be generated. The symbol K represents
the count of each attribute. The priority of r9 is lower than that of r12 ∼ r37,
in other words, sending the objects into membrane u before duplicating
membrane u.

r1: Ψ1 → φN (ξ0ξ1 · · · ξM , inG)
r2: φ[0]0 → φs[0]0[0]0
r3: φN

s → φN
ss

r4: φN
ss[0]0 → (η[0]0, ins)

r5: γ → γ′Ψ1([0]0, inC), 2
r6: γ′LΨ1 → �, 1
r7: β → Ψ1(η′′, in0)
r8: Ψ2[T ]T → φL−1[T ]T [u]u
r9: φ[u]u → φc[u]u[u]u, 2
r10: φL−1

c → φL
cc

r11: φcc[u]u → (η0[u]u, inC)
r12: aj → (aj , inu), 1; (1 ≤ j ≤ K)
r13: bj → (bj , inu), 1; (1 ≤ j ≤ K)
· · ·
r37: zj → (zj , inu), 1; (1 ≤ j ≤ K)

(2) The rule set in membrane G called RG. The symbol M represents the
number of attributes in the data set, its max value is 26. The symbol ξ0 was
generated a new candidate cell. The membrane 0 will be out of membrane
G after that all the values have been sent into the membrane by r4 ∼ r29.

r1: ξi → (ξi, ini), 1; (1 ≤ i ≤ M)
r2: ξ0 → [0]0, 1
r3: φM [0]0 → ([0]0, outG)
r4: aj → φ(aj , in0), 1; (1 ≤ j ≤ K)
r5: bj → φ(bj , in0), 1; (1 ≤ j ≤ K)
· · ·
r29: zj → φ(zj , in0), 1; (1 ≤ j ≤ K)
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(3) The rule set in gene membrane of membrane G called Rgi, 1 ≤ i ≤ M .
The symbol ξi releases an attribute value randomly out of corresponding
membrane i.

r1: ξ1aj → aj(aj , out1); (1 ≤ j ≤ K)
r2: ξ2bj → bj(bj , out2); (1 ≤ j ≤ K)
· · ·
r26: ξ26zj → zj(zj , out26); (1 ≤ j ≤ K)

(4) The rule set in membrane S called RS . The symbol N represents the number
of self cells. The symbol β represents that the corresponding attribute from
the two cells are matched. The symbol γ represents that the two cells are
not matched.

r1: ηηi → ηii; (1 ≤ i ≤ N)
r2: ηii[i]i → [i]iηi([iη′]i, in0); (1 ≤ i ≤ N)
r3: β2 → βγ, 1
r4: βγM−1 → (β, outS), 2
r5: γM → (γ, outS)

(5) The rule set in self membrane of membrane S called Rsi, 1 ≤ i ≤ N .
Dissolve the membrane to release the object into outer membrane.

r1: η′ → γδ
(6) The rule set in membrane 0 called R0. r1 ∼ r26 are matching rules for the

affinity measure. The symbol m is a threshold of the affinity. If the number
of matched attributes is greater than the threshold, it will release a symbol
β out of membrane, otherwise it will release a symbol γ.

r1: a2
j → β; (1 ≤ j ≤ K)

r2: b2j → β; (1 ≤ j ≤ K)
· · ·
r26: z2j → β; (1 ≤ j ≤ K)
r27: γ → γ2, 3
r28: βmγ2 → η′′(β, out0), 1
r29: γ2 → η′′(γ, out0), 1
r30: β → λ|η′′ , 1
r31: aj → λ|η′′ , 1; (1 ≤ j ≤ K)
r32: bj → λ|η′′ , 1; (1 ≤ j ≤ K)
· · ·
r56: zj → λ|η′′ , 1; (1 ≤ j ≤ K)
r57: η′′ → δ, 2
r58: η′ → γδ

(7) The rule set in membrane C called RC . The copies of unlabel cell are sent
into each detector in this membrane. The symbol Z represents the self cell
and the symbol Y represents the non-self cell. The result will be sent out
of this membrane into skin membrane.

r1: η0[0]0 → [0]0([0η′]0, inu)
r2: β2 → βγ, 1
r3: βγN−1 → (Y, outC), 2
r4: γN → (Z, outC)
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(8) The rule set in membrane T and u called RT . Each unknown cell is sent into
the copy of membrane T saved as membrane u. The match procedure is the
same with R0. If the affinity of the two cell is greater than the threshold,
it will release a symbol β out of membrane, otherwise it will release a
symbol γ.

r1: a2
j → β; (1 ≤ j ≤ K)

r2: b2j → β; (1 ≤ j ≤ K)
· · ·
r26: z2j → β; (1 ≤ j ≤ K)
r27: γ → γ2, 3
r28: βmγ2 → η′′(β, outu), 1
r29: γ2 → η′′(γ, outu), 1
r30: β → λ|η′′ , 1
r31: aj → λ|η′′ , 1; (1 ≤ j ≤ K)
r32: bj → λ|η′′ , 1; (1 ≤ j ≤ K)
· · ·
r56: zj → λ|η′′ , 1; (1 ≤ j ≤ K)
r57: η′′ → δ, 2

3.3 Algorithm Implementation

ΠNS contains three important phases: generate the candidate detectors ran-
domly; calculate the affinity of the detector to decide whether deleted or con-
verted into immune cell in classifier; test the performance of the classifier.

In skin membrane M, when it receives the starting symbol Ψ1, the rule (r1 ∈
RM ) will send symbols into membrane G to produce a new elementary membrane
called the candidate cell. In skin membrane G, the new membrane marked zero
for a candidate detector by rule (r2 ∈ RG). The symbol ξi(1 ≤ i ≤ M) is sent
into membrane (1 ≤ i ≤ M) in order to release a random attribute value by
the rules (r1 ∼ r26 ∈ Rgi), the detector will be out of the gene pool by rule
(r3 ∈ RG).

The candidate cell will be replicated by membrane separation. The affinity
of each self cell in self set with the candidate cell must be calculated. Suppose
the number of self cells is N (N = 2k − 1), the symbol φ controls the times of
replication to produce N copies which will be sent into membrane S by the rules
(r2 ∼ r4 ∈ RM ). Only one membrane will be left in the skin membrane waiting
for the next operation.

In membrane S, once the symbol η sent in, the rule (r1, r2 ∈ RS) will send the
copy of each self cell into the candidate cell. Then the membranes i will dissolve
and release the objects into membrane zero. Next, the rules (r1 ∼ r26 ∈ R0)
may be reacted or not. There are (M + 1) kinds of possibility. If one attribution
is equivalent, it will produce one β. The symbol γ is as a time slice, its count
will be two by the rule r27.m is the affinity to determine the similarity of two
cells according to the specific problem (1 ≤ m ≤ M). The final output is β or γ
representing matched or not matched respectively.
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In the skin membrane, the symbol γ means that the new cell can not be
recognized by the self set and can join to the classifier by rule (r5 ∈ RM ). The
symbol β means that the new cell can be recognized and must be deleted and
start the next round search of by rules (r7 ∈ RM and r57 ∈ R0). L indicates
the number of detectors to be generated, the search process will stop until the
termination symbol �.

When the classifier is generated, the classification performance of that must
be tested. In the testing process, input the symbol Ψ2 from the environment to
start the detection, then apply the rule (r8 ∈ RM ) to generate membrane u to
store the unlabel cell by rules (r12 ∼ r37 ∈ RM ). Then replicate the membrane
u and send them into membrane C by rule (r9 ∼ r11 ∈ RM ). The replication
process and matching process are similar to the process of affinity testing in
generation of detector.

In membrane C, the rules (r3 ∼ r4 ∈ RC) are applied to release the symbol
Y which means that the cell is allogeneic or Z which means that the cell is
autologous.

3.4 Analyses

ΠNS is a P system of immune algorithm for classification. The key issues of the
classification problem are implemented in three membranes. Therefore, the data
of practical problems in real life can be transferred into objects in the specific
membrane. The membrane G represents gene pool to store the different gene
segments as the initial multi-sets, in other words, which contains the range of
values for each attribute and the values must be the discrete numerical. The
membrane S represents the self-set to store the autologous cells. Typically, all
the data is divided into two sets: training set and testing set. The records of
training set are transferred and placed in the membrane S in advance. If the
new candidate cell is recognized by the cells of training set, that means they
are the same kind, otherwise, they belong to different kinds, and the candidate
cell will be converted to detector and sent to the membrane C which denotes
as classifier. When the classifier is generated, it can be used to differentiate the
objects without class label. The performance of the classifier can be tested by
the data of testing set.

The simulation of ΠNS based on negative selection was validated using iris
data set from UCI Machine Learning Repository [7]. The initial data of iris data
set was preprocessed. In the experimentations, the affinity of two different cell
is 75%. According to the thought of membrane calculation, both in the detector
generation phase and in the testing phase, the matching process between self cell
with detector and the testing cell with detector are asynchronous execution. It
means that this system converts serial execution of the basic algorithm to parallel
execution, decreases the algorithm execution time. The classification accuracy
is improved with the increase of the number of detectors and the accuracy of
classification is sufficiently comparable to other top classification algorithm.



An Immune Algorithm Based on P System for Classification 141

4 Conclusion

In this paper, we have proposed ΠNS for classification based on immune algo-
rithm of immune system. The important advantage of the system is the par-
allelism which is inherent character of membrane system. In standard negative
selection algorithm, the operate to calculate the affinity of two cells both in
searching the immune cell and testing the unlabel cell is serial process. However,
the candidate cell will be duplicated to match the self cells or detectors at the
same time. It could be increase the searching speed. There are still some problem
to solve, from which the most important is ignoring noise in data and increasing
efficiency of algorithm when using data sets containing patterns not uniformly
distributed within different classes.
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Abstract. Various models have been used to represent natural phenom-
enon in order to gain insight on what stability is. A computing model
called Fuzzy abstract rewriting system on multisets, close to reality is
recently designed by introducing fuzziness on computation [1]. As an
extension of this model a device named Fuzzy Artificial cell system with
proteins on membrane is developed and the corresponding structure is
analyzed on its parameters [2]. The aim of the present study is to investi-
gate how the choices made in a simulation affect its accuracy and there-
fore the reliability of the result.

Keywords: P system · Artificial cell system · Fuzzy ACS · Proteins on
membranes · Michaelis-menten behaviour · Simulation

1 Introduction

Fuzzification of membrane systems and their evolution rules which is motivated
by some practical applications is a quite recent development. Rigid mathematical
models employed in biology are not completely adequate for the interpretation
of biological information. This fact has led to the adoption of fuzzy models and
methodologies. Also it has been shown that P systems with fuzzy multiset rewrit-
ing rules are equivalent to fuzzy Turing machines. Suzuki and Tanaka [3] have
introduced the multiset Rewriting system, called Abstract Rewriting System
on Multisets (ARMS). Based on this system, they have developed a molecu-
lar computing model called Artificial Cell System which consists of a multiset
of symbols, a set of rewriting rules and membranes [3,4]. These correspond to
a class of P systems which are parallel molecular computing models proposed
by Paun [5] and are based on the processing of multisets of objects in cell-like
membrane structures [5].

On the other hand, P system with proteins on membranes has been intro-
duced and the power of the system is examined in [6,7]. Following chemical reac-
tions, the kinetics of the sulfoxidation reactions, analogous to biological systems
c© Springer Nature Singapore Pte Ltd. 2016
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were carried out by Jayaseeli and Rajagopal [8]. The computational studies of
the work mentioned above, based on membrane computing has been proposed
and Kinetic ARMS in Artificial Cell System with hierarchically structurable
membrane (KACSH) is developed in [9].

Recently we have proposed a computing device that is based on Abstract
Rewriting systems on multisets closely related to P system with fuzzy multiset
rewriting rules and fuzzy data [1]. As an extension of this model, we have devel-
oped a new system called FACSP (Fuzzy ARMS in Artificial Cell System with
proteins on membranes) and its behaviour has been studied in [2].

Models of chemically reacting systems have traditionally been simulated by
solving a set of ordinary differential equations. Many researches have conducted
numerical simulation to establish the simulation conditions and the impact on
simulation results. In this paper, the continuous interaction of the system with
environment, an operating function from kinetic equilibrium is established. A
series of eigenvalues (λ) that satisfy the equation using the corresponding rate
of reactions, complexes, oxidant, substrates and the significants according to the
real and imaginary parts of the eigen values are obtained.

2 Preliminaries

2.1 Kinetic Studies of the Sulfoxidation Reactions [8]

In many biomimetic approaches, the study of enzymatic reactions are carried out
kinetically. Jeyaseeli and Rajagopal [8] followed the spectrophotometric kinetic
studies of [Iron(III)-salen] complexes catalysed H2O2 oxidation of organic sul-
fides. When the rate of reaction (k) is plotted against substrate concentration
([S]), a saturation kinetics called Michaelis-Menten behaviour is followed. They
have proposed mechanisms based on the results of rate of reactions under various
experimental conditions.

2.2 P System with Proteins on Membranes [7]

A system with proteins on membranes is of the form

Γ = {O,P, μ,w1/z1, · · · , wm/zm, E,R1, · · · , Rm, i0}

where

– m is the degree of the system (the number of membranes)
– O is the set of objects
– P is the set of proteins (with O ∩ P = φ)
– μ is the membrane structure
– wi, i = 1 to m are the (strings representing the) multisets of objects present

in the m regions of μ
– zi, i = 1 to m are the multisets of proteins present on the membranes of μ
– E ⊆ O is the set of objects present in the environment (in an arbirarily large

number of copies each)
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– Ri are finite sets of rules associated with the m membranes of μ
– i0 ∈ {1, 2, · · · ,m} is the label of the output membrane.

Reaction rules are applied in the following manner: In each step, a maximal
multiset of rules is used, that is, no other rule is applicable to the objects and
the proteins which remain unused by the chosen multiset. At each step we have
the condition that each object and each protein can be involved in the applica-
tion of at most one rule, but the membranes are not considered as involved in
the rule applications except the division rules, hence the same membrane can
appear in any number of rules of types 1–5 at the same time [7]. By halting
computation, we understand a sequence of configurations that ends with a halt-
ing configuration (there is no rule that can be applied considering the objects
and proteins present at that moment in the system). With a halting computa-
tion, we associate a result in the form of the multiplicity of objects present in
region i0 at the moment when the system halts. We denote by N(Π) the set of
numbers computed in this way by a given system Π. We denote in the usual
way by NOPm(pror; list of types of rules) the family of sets of numbers N(Π)
generated by systems with at most m membranes using rules as specified in the
list of types of rules, and with at most r proteins present on a membrane. When
parameters m or r are not bounded, we use ∗ as a subscript.

2.3 Fuzzy Artificial Cell System with Proteins on Membranes [2]

Definition. A Fuzzy ACS with Proteins on membranes FACSP is a construct,

Γ = {O,P, μ,w1/z1, · · · , wm/zm, E, (Rp, ρ), i0, J, ω}
where

– m is the degree of the system (the number of membranes)
– O is the set of objects
– P is the set of proteins (with O ∩ P = φ)
– μ is the membrane structure
– wi, i = 1 to m are the (strings representing the) multisets of objects present

in the m regions of μ
– zi, i = 1 to m are the multiset of proteins (biological catalysts) present on the

membranes of μ
– E is the set of objects present in the environment (in an arbitarily large number

of copies each)
– Rp are finite sets of Fuzzy multiset evolution rules, p = 1 to m of μ
– ρ is the partial order relation over Rp

– i0 ∈ {1, 2, · · · ,m} is the elementary membrane (output)
– J = {Rpi ∈ Rp/1 ≤ i ≤ q}, q = cardinality of Rp

– ω : J → [0, 1] is the membership function s.t. ω(Rpq) = i, i ∈ [0, 1].
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The rules are used in the non-deterministic maximally parallel
way:

The same rules are applied to every membrane. There are no rules specific
to a membrane. All the rules are applied in parallel. In every step, all the rules
are applied to all objects in every membrane that can be applied. If there are
more than one applicable rule that can be applied to an object and protein then
one rule is selected randomly. If a membrane dissolves, then all the objects in its
region are left free in the region immediately above it. All objects and proteins
not specified in a rule and which do not evolve are passed unchanged to the next
step. At each step we have the condition that each object and each protein can
be involved in the application of at most one rule, but the membranes are not
considered as involved in the rule applications except the division rules, hence
the same membrane can appear in any number of rules at the same time.

By halting computation, we understand a sequence of configurations that
ends with a halting configuration (there is no rule that can be applied considering
the objects and proteins present at that moment in the system). With a halting
computation we associate a result in the form of the multiplicity of objects
present in region i0 at the moment when the system halts.

A Fuzzy ACS with proteins on membranes generates a language L(FACSP )
as follows: An object x ∈ O∗ which is present in the region i0 at the moment
when the system halts is said to be in L(FACSP ) iff it is derivable from any
object S ∈ O and the grade of membership ωL(FACSP )(x) is greater than 0,
where

ωL(FACSP )(x) =
(

max

1 ≤ k ≤ n

) [(
min

1 ≤ i ≤ lk

)
?ω(Rk

i )
]

,

x ∈ O∗ and n is the number of different derivatives that x has in FACSP , lk is
the length of the kth derivative chain, Rk

i denotes the label of the ith multiset
evolution rule used in the kth derivative chain, i = 1, 2, . . . , lk.

Clearly, ωL(FACSP )(x) = Strength of the strongest derivative chain for S to
x for all x ∈ O∗.

We denote in the usual way by FACSPm(pror; list of types of rules) the fam-
ily of languages L(FACSP ) generated by systems Π with at most m membranes,
using rules as specified in the list of types of rule and with at most r proteins
present on a membrane. When parameters m or r are not bounded, we use ∗ as
a subscript.

3 Simulation of FACSP

The mathematical simulation pattern of rate constants (k) with substrate con-
centrations are analysed.

3.1 FACSP in Oxidation of Sulfides

Process. We describe the formation of intermediate between complex and the
oxidant.
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(a) Z + X(F3)X → X(F4O)X;
X(F4O)X + Y -RSR′ → X(F3)X + Y -RSOR′

A simple abstract reaction scheme is followed.
Case I : X = H
Following convention is used to do the computation.
Y = H = L, Y = OCH3 = M,Y = CH3 = N,
Y = F = P, Y = Cl = Q,Y = Br = U, Y = NO2 = V .
Now (a) will have the following reaction rules

1. Z + H(F3)H → H(F4O)H;
H(F4O)H + L-RSR′ → H(F3)H + L-RSOR′

2. Z + H(F3)H → H(F4O)H;
H(F4O)H + M -RSR′ → H(F3)H + M -RSOR′

3. Z + H(F3)H → H(F4O)H;
H(F4O)H + N -RSR′ → H(F3)H + N -RSOR′

4. Z + H(F3)H → H(F4O)H;
H(F4O)H + P -RSR′ → H(F3)H + P -RSOR′

5. Z + H(F3)H → H(F4O)H;
H(F4O)H + Q-RSR′ → H(F3)H + Q-RSOR′

6. Z + H(F3)H → H(F4O)H;
H(F4O)H + U -RSR′ → H(F3)H + U -RSOR′

7. Z + H(F3)H → H(F4O)H;
H(F4O)H + V -RSR′ → H(F3)H + V -RSOR′

3.2 Behaviour of FACSP

Consider the FACSP

Γ = (O,P, μ,w1/z1, w2/z2, E, (Rp, ρ), i0, J, ω)
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where

– O = {Z,A1, B, Si, Pi, i = 1, . . . , 7},
– P = {A1, B},
– μ = [1[2 ]2]1,
– w1, w2 are the multisets of objects present in the regions 1, 2 of μ, w1 =

{Z, Si, i = 1, . . . , 7}, w2 = {φ},
– z1, z2 are the multisets of proteins present on the membranes 1, 2 of μ, z1 =

{A1}, z2 = {φ},
– E = {φ},
– Rp are finite sets of Fuzzy multiset evolution rules, p = {1, 2}
– ρ = φ,
– i0 = 2 is the output membrane,
– J = {Rpi ∈ Rp/q = 1 ≤ i ≤ q}, q = cardinality of Rp,
– ω : J → [0, 1] is the membership function s.t. ω(Rpq) = i, i ∈ [0, 1], where

ωL(FACSP )(x) =
(

max

1 ≤ k ≤ n

) [(
min

1 ≤ i ≤ lk

)
?ω(Rk

i )
]

and x ∈ O∗

Rp = {R1, R2} consists the following evolution rules.

R1 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R11 : [1A1|Z]1 → [1B|φ]1;
[1B|S1]1 → [1A1| [2 |P1]2]1
with ω(R11) = 0.0025

R12 : [1A1|Z]1 → [1B|φ]1;
[1B|S2]1 → [1A1| [2 |P2]2]1
with ω(R12) = 0.01

R13 : [1A1|Z]1 → [1B|φ]1;
[1B|S3]1 → [1A1| [2 |P3]2]1
with ω(R13) = 0.0059

R14 : [1A1|Z]1 → [1B|φ]1;
[1B|S4]1 → [1A1| [2 |P4]2]1
with ω(R14) = 0.0016

R15 : [1A1|Z]1 → [1B|φ]1;
[1B|S5]1 → [1A1| [2 |P5]2]1
with ω(R15) = 0.0011

R16 : [1A1|Z]1 → [1B|φ]1;
[1B|S6]1 → [1A1| [2 |P6]2]1
with ω(R16) = 0.0009

R17 : [1A1|Z]1 → [1B|φ]1;
[1B|S7]1 → [1A1| [2 |P7]2]1
with ω(R17) = 0.00027

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

R2 = φ.
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In its initial configuration, the system contatins 2 membranes with 8 objects
{Z, Si, i = 1, ..., 7} and a biological protein A1 on membrane 1. It has two steps.
In the first step, any one of the 7 rules is selected randomly. Let the rule R11 be
applied. Then the protein A1 is changed into B. In the second step, the protein
change back from B to A1 and the object S1 evolved into P1 and move to
membrane 2. Since there is no rule that can transform the object in membrane 2
further, the process halts. The resulting object in the output membrane 2 is P1.

max
1 ≤ k ≤ n

[
min

1 ≤ i ≤ l1
(0.0025)

]
= 0.0025;

ωL(FACSP )(P1) = 0.0025

FACSP

Similar process will be done when other rules are applied. As a result,
the membership values ωL(FACSP )(Pi) for i = 1 to 7 are obtained. Hence
L(FACSP ) = {Pi/i = 1 to 7}.

We obtain different languages with corresponding membership values for dif-
ferent complexes (Ai, i = 1 to 7). The membership values for different complexes
are tabulated as follows (Table 1).

We denote by FACSP2(pro1; 7ffp) the family of languages L(FACSP ) gen-
erated by Γ with atmost 2 membranes using rules as specified in the 7ffp rules
and with atmost one protein.

3.3 Mathematical Modeling and Simulation of FACSP

Chemical equations are commonly written in the following way:

A + B −→ C + D

indicating that species A and B react together to form species C and D. From the
chemical equation we can easily write the rate equation. It is important to note
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Table 1. Membership values ωL(FACSP )(Pi) = ω(Pi).

Complex ω(P1) ω(P2) ω(P3) ω(P4) ω(P5) ω(P6) ω(P7)

A1 0.0025 0.01 0.0059 0.0016 0.0011 0.0009 0.00027

A2 0.006 0.034 0.023 0.0054 0.0028 0.0029 0.0009

A3 0.0055 0.023 0.019 0.0062 0.0025 0.0026 0.0008

A4 0.0017 0.0025 0.0019 0.0009 0.00084 0.00072 0.00023

A5 0.00089 0.0018 0.00096 0.00062 0.00051 0.0004 0.00017

A6 0.015 0.066 0.043 0.011 0.008 0.0065 0.0021

A7 0.00053 0.0011 0.00076 0.00042 0.0004 0.0003 0.00019

that most chemical systems are assumed to follow mass action kinetics, meaning
that the reaction rate is proportional to the concentration of the reactants.

− ˙[A] = −ra = k[A][B]

Here [A] represents the concentration of species A, ra is the reaction rate and k
is the rate constant of the reaction. ra is by convention negative since A is being
consumed in the reaction. Now we describe the natural phenomenon of Fuzzy
ACS in oxidation of sulfides. The mathematical model [10] is used because of its
theoretical simplicity. The mathematical modeling of FACSP is given below.

[1A1|Z]1
k1−−→
k−1

[1B|φ]1 (1)

[1B|S1]1 −→
k2

[1A1|[2|P1]2]1 (2)

In Eqs. (1) and (2), ki, i = 1, 2 are the reaction rate for each individual reaction,
while Z,A1, B, S1 and P1 are species. The molar concentration of A1 is denoted
by [A1] likewise for the other species. The equations for the evolution of [A1]
and [S1] are as follows.

d[A1]/dt = k2[B][S1] − k1[Z][A1] (3)

d[S1]/dt = −k2[B][S1] (4)

The above equations are of the form

d[A1]/dt = F1([A1], [S1])

d[S1]/dt = F2([A1], [S1])

where
F1([A1], [S1]) = k2[B][S1] − k1[Z][A1]

F2([A1], [S1]) = −k2[B][S1]
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Equilibria. The equilibria of (3) and (4) is given by solving the system

k2[B][S1] − k1[Z][A1] = 0 (5)

− k2[B][S1] = 0 (6)

From (5)
k2[B][S1] = k1[Z][A1]

[B] = (k1[Z][A1])/(k2[S1]) (7)

(5)–(6) gives
2k2[B][S1] − k1[Z][A1] = 0

k1[Z][A1] = 2k2[B][S1]

[A1] = (2k2[B][S1])/(k1[Z]) (8)

[S1] = (k1[Z][A1])/(2k2[B]) (9)

From Eq. (5), we obtain
S1 = α(A1) where α = k1[Z]/k2[B]

([A1], [S1]) = ([A1], α[A1])

From Eq. (6),
([A1], [S1]) = (0, 0)

Hence (0, 0) and ([A1], α[A1]) are the equilibrium of the system.

Stability. To evaluate stability, we evaluate the Jacobian at the stationary
state.

∂(F1)/∂[A1] = −k1[Z]; ∂(F1)/∂[S1] = k2[B];

∂(F2)/∂[A1] = 0; ∂(F2)/∂[S1] = −k2[B]

J =
(

∂(F1)/∂[A1] ∂(F1)/∂[S1]
∂(F2)/∂[A1] ∂(F2)/∂[S1]

)
=

(−k1[Z] k2[B]
0 −k2[B]

)

Trace J = −(k1[Z] + k2[B])

The eigen value equation or characteristic equation is applied in order to
evaluate the stationary state.

det(J − λI) = 0

Arranging these values into matrix form gives
(−k1[Z] − λ k2[B]

0 −k2[B] − λ

)
= 0
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i.e.,
λ2 + (k1[Z] + k2[B])λ + k1k2[Z][B] = 0

Using Eq. (7)

[S1]λ2 + ([S1] + [A1])k1[Z]λ + k2
1[Z]2[A1] = 0 (10)

Here we state that,

k1 = 2.5 × 10−3, [Z] = 5 × 10−3, [S1] = i × 10−3, i = 0, 2, 4, 10, [A1] = 2 × 10−4

Solving the quadratic Eq. (10) for different values of [S1] using MATLAB,
eigen values of the Jacobian matrix are obtained.

The eigen values for different catalysts for the sulfoxidation reactions are
tabulated in Table 2. From the data collected, all Eigen values are real and
negative since λ1 < 0 and λ2 < 0. Thus the system is stable. The changes for
the eigen values with substrate concentrations are plotted.

Table 2. Eigen values for different catalysts

A1 A2 A3 A4 A5 A6 A7

s1 λ1 −1.25 −3 −2.75 −85 −44.5 −7.5 −26.5

λ2 0 0 0 0 0 0 0

s2 λ1 −0.05 −0.0017 −0.00115 −0.0125 −0.9 −0.0033 −0.55

λ2 −0.005 −0.00017 −0.000115 −0.00125 −0.09 −0.00033 −0.055

s3 λ1 −0.0295 −0.00115 −0.095 −0.95 −0.48 −0.00215 −0.38

λ2 −0.00148 −0.000058 −0.00475 −0.0475 −0.024 −0.000108 −0.019

s4 λ1 −0.8 −0.027 −0.95 −0.0475 −0.31 −0.055 −0.21

λ2 −0.0267 −0.0009 −0.48 −0.024 −0.0103 −0.00183 −0.007

s5 λ1 −0.55 −0.014 −0.0125 −0.42 −0.255 −0.04 −0.2

λ2 −0.0138 −0.00035 −0.00031 −0.0105 −0.0064 −0.001 −0.005

s6 λ1 −0.45 −0.0145 −0.013 −0.36 −0.2 −0.0325 −0.15

λ2 −0.009 −0.00029 −0.00026 −0.0072 −0.004 −0.00065 −0.003

s7 λ1 −0.135 −0.45 −0.4 −0.00115 −8.5 −0.0105 −9.5

λ2 −0.0023 −0.0075 −0.0067 −0.000019 −0.142 −0.00017 −0.158

When the concentration of the substrate (sulfides) increases there is an
increase in rate constant and attains saturation at higher concentration (Fig. 1).
When these results are examined mathematically using Fuzzy ACSH on mem-
branes there is a consistancy between the pattern of plots obtained for kinetic
results. As the concentration of the substrate increases, the eigen values first
decreases and increases. It becomes constant at higher rate constant. This behav-
iour can be correlated to the saturation kinetics of chemical reactions. The pat-
tern is shown in figure (Figs. 2 and 3).
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Fig. 1. k1 vs. [substrate] for complex 1 catalyzed H2O2 oxidation of 1–7

Fig. 2. (S, λ1)
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Fig. 3. (S, λ2)

4 Conclusion

The new membrane computing model FACSP (Fuzzy ARMS in Artificial Cell
System with Proteins on membranes) is analysed in its environment. The sta-
bility and equilibrium of the system are determined. The eigen values and the
critical points of different catalysts for the sulfoxidation reactions are obtained. A
mathematical approach is constructed to show the consistency of Fuzzy ACSH
on membranes with the Michaelis-Menten kinetics. It is interesting to note that
there is a correlation between the two types of plots.
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A Family P System of Realizing RSA Algorithm
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Abstract. P system is a new kind of distributed parallel computing
model, and many variants of it are proposed to solve the problems such
as NP problems, arithmetic operation, image processing. RSA is a classic
asymmetric encryption algorithm which plays a very import role in the
field of the information security and it is used widely in data transmission
and digital signature. This paper is based on P system to realize the
RSA algorithm in parallel which includes key generation and encryption
& decryption, then a cell-like RSA P system ΠRSA is designed from this.
An instance is given to illustrate the feasibility and effectiveness of our
designed P systems.

Keywords: RSA · Cell-like P system · Membrane computing

1 Introduction

RSA algorithm [1] is a classic asymmetric encryption algorithm which has been
used widely in the data transmission and the digital signature. Many researches
have made improvements and breakthroughs on the basis of it and a variety of
RSA variants are designed. In [2], authors presented an electronic cash scheme
using the modulus N = p2q. And Takagi in [3] introduced the CRT variant of
RSA, where the RSA modulus of the form N = prq. In addition RSA is also used
for different application scenarios. Reference [4] applies it in Cloud data auditing
and propose a concrete ID-CDIC construction from RSA signature. Reference
[5] proposed a new CEMBS-constructing method based on RSA signature.

Membrane computing, also called P systems, is a branch of natural computing
and abstracts computing models from the architecture and the functioning of
living cells. It is a distributed parallel computing model, and based on maximal
parallelism and non-determinism of evolutionary rules in P system, it has been
proved that membrane computing has the same equivalent computing power as
Turing machine. Up to now, many different P systems are proposed to solve the
problems in the field of computer science. References [6,7] are used for solving
SAT problem, References [8,9] are applied in solving image processing problem,
References [10,11] presents some P systems for solving problems in the field of
graph theory, and References [12,13] are used for multi-objective optimization.

c© Springer Nature Singapore Pte Ltd. 2016
M. Gong et al. (Eds.): BIC-TA 2016, Part I, CCIS 681, pp. 155–167, 2016.
DOI: 10.1007/978-981-10-3611-8 16
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Focus on realizing RSA algorithm in parallel, this paper designs a P system
ΠRSA which includes two sub P systems: the key generation P system and the
encryption & decryption P system. The remainder of this paper is organized as
follows: The second section we give descriptions of the RSA algorithm which is
designed based on the maximal parallelism. The P systems designed for realizing
RSA algorithm are discussed in the third section. The fourth section gives an
instance to show the implementation of the P systems. And the conclusions are
drawn in the final section.

2 RSA Algorithm

Figure 1 shows the process of single RSA algorithm which includes two parts [1].
One is the process to generate private and public key pairs. The other is to do
encryption and decryption.

Fig. 1. The process of RSA algorithm

(1) In the key generation process, (n, e) is the public key pair and (n, d) is the
private key where

1 < e < φ(n), gcd(e, φ(n)) = 1 (1)

where φ(n) = (p − 1) × (q − 1).

d ≡ e−1(mod φ(n)) (2)

In this paper, we detailedly designs the RSA algorithm in more consideration
of parallelism. The key generations can be done in two steps as follows.

(i) Generating three big primes p & q & e in parallel.

To meet Eq. (1), we can just generate a prime not more than φ(n) as e. So
we can generate three big random primes p & q & e in parallel. An algorithm
designed for generating p & q is to loop to generate a big number util the number
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is a prime. The input is a list of placeholders hnbn−1bn−2 . . . b1e0 and the output
is a random prime who has d digits. In the input e0 is the lowest digit which
is selected from the set {1, 3, 5, 7, 9}, bi represents the number in the ith digit
and hn is the highest digit which meets the condition hn �= 0. Additionally, the
method to generate the primes e can be to generate a number whose digits no
more than the sum digits of p & q, so just apply the same algorithm and replace
hn with bn as the input. In this way, we can generate a number who has n or no
more than n digits by select number of each digit in parallel, the complexity of
the number generation can be O(1).

After we get the number, the prime judgement is needed. Since the number
we generated is an odd and the odd prime can only be divide by 3 or the number
in the format of 6i±1, so we judge the prime by trial division where the divisors
is the number 3 or the number in the format of 6i ± 1 enumerated from the
square estimate root of the number down to 1. In addition, we have a conclusion
that between the two numbers 10k + 1 and 10k + 3, one is always in the format
of 6i − 1, the other is 6i + 1. So the square root of a number a can be estimated
by 10�a/2�+1. So the complexity of prime judgement is O(10log10(a)/2/6) where
a is the number we generated.

In this way, the complexity of random prime generations is O(k ×
10log10(a)/2/6) where k is the times of the random number generations.

(ii) Two multiplications for calculating n & φ(n), and then we get the decryption
key d in Eq. (2) by the extended Euclid. And the complexity of the extended
Euclid is O(log(n)) where n is the number equals p × q.

So the complexity of the key generation is O(k × 10log10(a)/2/6 + O(log(n))).

(2) The process of decryption and encryption have the same operations. If we
have a message M , the ciphertext C can be calculated by the following
formula:

C = Me(mod n) (3)

Similarly, the plain text can also be calculated by the similar formula:

M = Ce(mod n) (4)

In this paper, the algorithm we used to do the decryption and encryption is
the fast modular multiplication and the complexity is O(log(e)).

3 Design of the P System

Cell-like P systems [14] is a hierarchically arranged set of membranes which are
usually identified by Labels from a given set and contained in a distinguished
external membrane. In this section, we discuss the design of a RSA P system
based on the algorithm mentioned in Sect. 2 and the cell-like P system.
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3.1 The Definition of the RSA P System

According to [14], the RSA P system can be defined as formula (5).

Πrsa = (O,μ, ω,R, ρ,A1) (5)

where,

(1) O is a finite and non-empty alphabet of objects, including

{ai, bi, ci,mi, ni, xi, di, pi, qi, hi, gi, si, ei, e0, f, d, s′, t, t1,
t2, t3, t4, t5, t6, t7, t8, t9, t10, t11, t12, t13, t14, u, v, p′, q′, e′,

#1,#2,#3,−, o−, o+, o×, o÷}
including:
(i) ai, bi, ci, mi, ni, xi, di, pi, qi, hi, gi, si, ei which are used for represent-

ing number in hybrid encoding [15]. In the following parts, we will use
N(x) to represent a number, and mark the multiset {xk0

0 xk1
1 xk2

2 . . . xkn
n }

(N(x) = k0 ∗100 +k1 ∗101 +k2 ∗102 + . . .+kn ∗10n) as x. If N(x) = 23,
then x = {x2

1x
3
0} will represents 23 in the hybrid encoding.

(ii) i, j, k in rules are used as index, which represents all the integers in
[0,1000].

(iii) −, o−, o+, o×, o÷ which represents minus sign and four operations.
(iv) the other objects which control the evolution of the P system.

(2) μ is the initial structure of our P system as shown in Fig. 2.
where,
– A2 and its sub membranes are used for key generation, see Sect. 3.2;
– Rules in A3 are used for encryption and decryption, see Sect. 3.3;
– A1 is used for controlling and coordinating its sub membranes to achieve

the RSA, see Sect. 3.4.
(3) ω is a collection of multisets in the initial configuration. Where:

ωA1 = φ, ωA2 = φ, ωA3 = φ

(4) In R, there are five types of rules:
(i) u → v, k. This rule means object u evolves to object v. And the k

indicates the priority; the smaller value k is set, the higher the priority
of the rule is.

(ii) u → v |w, k. This rule means object u evolves to object v when multiset
w appears in the membrane. In the rule, the w indicates rule can only
be applied in the presence of multiset w.

(iii) u → v1(v2, in/out), k. This rule means object u evolves to object v1, at
the same time generates object v2 which stays in or is sent into or outer
the membrane.

(iv) u → v1(v2, in/out) |w, k. This rule means object u evolves to object v1
when multiset w appears in the membrane, at the same time generates
object v2 which stays in or is sent into or outer the membrane.
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Fig. 2. The initial configuration of the RSA P system

(v) [u]i → [v1]i[v2]i. This rule generates two copies of membranes i. The
multiset u will separately evolve to multiset v1 and multiset v2 in each
membrane, meanwhile other objects and sub membranes do not have
any changes.

(5) The final result can be found in membrane A1 when the whole system halts.

In addition, there are many arithmetic operations in A2 & A3, so we need
an arithmetic membrane to provide addition, subtraction, multiplication and
division functions. Since the focus of this paper is to realize RSA algorithm and
many arithmetic P systems have been designed [16,17], we don’t specially design
an arithmetic sub P system separately, and we just define a membrane MC is
one of these arithmetics. We define that the input of MC is two multisets a, b
which represents the two operands N(a), N(b) and an operator of the multiset
{o−, o+, o×, o÷}. Then the output of MC is the multiset c represented the result,
the multiset m represented remainders which may exists and the object − which
occurs when the result is a negative number.

The next will introduce each membrane and its rules, for more convenience
in narration, the copies of the object x is denoted by |x |.

3.2 Key Generation Membrane A2

The Key Generation Membrane A2 has some sub membranes and the initial
structure of it is as shown in Fig. 3, where the rules is designed according to the
algorithm in Sect. 2.

Random Prime Integer Generation Membrane M 1, M 2, M 3. The
membrane M1,M2 & M3 has the same rules, they each accept the object
hnbn−1bn−2 . . . b1e0 with an object t to generate a random prime integer, and
then send out the result objects as p, q and e separately. The rules are:

r1: (bi → bi |t, 1) r2: (bi → biai |t, 1)
r3: (bi → bia

2
i |t, 1) r4: (bi → bia

3
i |t, 1)

r5: (bi → bia
4
i |t, 1) r6: (bi → bia

5
i |t, 1)

r7: (bi → bia
6
i |t, 1) r8: (bi → bia

7
i |t, 1)

r9: (bi → bia
8
i |t, 1) r10: (bi → bia

9
i |t, 1)

r11: (e0 → e0a
1
0 |t, 1) r12: (e0 → e0a

3
i |t, 1)

r13: (e0 → e0a
5
0 |t, 1) r14: (e0 → e0a

7
0 |t, 1)
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Fig. 3. The initial structure of membrane A2

r15: (e0 → e0a
9
i |t, 1) r16: (hi → hiai |t, 1)

r17: (hi → hia
2
i |t, 1) r18: (hi → hia

3
i |t, 1)

r19: (hi → hia
4
i |t, 1) r20: (hi → hia

5
i |t, 1)

r21: (hi → hia
6
i |t, 1) r22: (hi → hia

7
i |t, 1)

r23: (hi → hia
8
i |t, 1) r24: (hi → hia

9
i |t, 1)

r25: (t → t3, 2) r26: (ai → ai(ai in M4) |t3 , 1)
r27: (t3 → (t in M4), 2) r28: (ai → (pi, out) |p′t1 , 1)
r29: (ai → (qi, out) |q′t1 , 1) r30: (ai → (ei, out) |e′t1 , 1)
r31: (bi → λ |t1 , 1) r32: (hi → λ |t1 , 1)
r33: (e0 → λ |t1 , 1) r34: (t1 → λ, 2)
r35: (p′ → (p′ out) |t1 , 1) r36: (q′ → (q′ out) |t1 , 1)
r37: (e′ → (e′ out) |t1 , 1) r38: (ai → λ |t2 , 1)
r39: (t2 → t, 2)

Where r1 ∼ r24 are used to generate the number in each digit, r25 ∼ r27 are
used to send the generated number into M4 to do prime judgement, r28 ∼ r30
send out the prime number and the other rules are used to clear objects and
control the evolution.

Prime Judgment Membrane M 4. Membrane M4 and its sub membranes are
designed to judge whether a number is a prime number, it accepts the multiset
a and an object t, and output an object t1 if the number is a prime number,
otherwise output an object t2. The process of the membrane includes three steps:

1. To estimate the square root of the number in M5, the rules are
r40: (t → b0t0, 1) r41: (ai → λ |ti , 1)
r42: (ti → dti+1 |aj

, 2) r43: (ti → e′, 3)
r44: (bid2 → bi + 1, 1) r45: (bi → (bi+1 out) |e′ , 1)
r46: (d → λ |e′ , 1) r47: (e′ → (t3 out), 2)

2. The membrane M6,M7 & M8 are used to do trial division, and they separately
judge the number is a multiple of 3 or the number can be in the format
6i + 1, 6i − 1. The rules are:
r48: (ai → ai(ai in Mc) |ft1 , 1) r49: (bi → bi(bi in Mc) |ft1 , 1)
r50: (f → d(o÷ in Mc) |t1 , 2) r51: (t1 → t3 |mi

, 1)
r52: (t1 → t2 |e′ , 2) r53: (ci → λ |t3 , 1)
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r54: (mi → λ |t3 , 1) r55: (bi → (ai in Mc) |t3 , 1)
r56: (d → f(o−b60 in MC) |t3 , 1) r57: (t3 → t4, 2)
r58: (ai → λ |−, 1) r59: (bi → λ |−, 1)
r60: (ci → λ |−, 1) r61: (ft4− → s′(t1 out), 3)
r62: (t4 → t1 |c20 , 4) r63: (t4 → t1 |ci , 4)
r64: (t4 → t4− |c0 , 5) r65: (ci → bi |f , 6)
r66: (ai → λ |t2 , 1) r67: (bi → λ |t2 , 1)
r68: (ci → λ |t2 , 1) r69: (mi → λ |t2 , 1)
r70: (d → λ |t2 , 1) r71: (t2 → s′(t2 out), 3)
r72: (ai → λ |s′t4e′ , 1) r73: (bi → λ |s′t4e′ , 1)
r74: (ci → λ |s′t4ci , 1) r75: (s′t2 → (e′ out), 2)
r76: (s′ft4− → (e′ out), 2) r77: (s′2 → λ, 1)

3. The membrane M4 is used to control the evolution.
(i) Accepting the multiset a and an object t, then send them into M5 to do

the estimation.
r78: (ai → ai(ai in M5) |t, 1) r79: (t → (t in M5), 2)

(ii) After the estimate in the M5, transfer the result into M6,M7 & M8:
r80: (ai → (ai in M6)(ai in M7)(ai in M8) |t3 , 1)
r82: (bi → (bi in M7)(bi in M7) |t3 , 1)
r83: (t3 → (b30t1 in M6)(b0t1 in M7)(b30t1 in M7), 2)

(iii) For the result of the prime judgement:
(1) If the object sent from M6,M7 & M8 are all t1, which indicates that

the numbers are all prime numbers, we send out the object t1, and
send an object s′ into M6,M7 & M8 to clear the temporary object s′.
Rules are:
r84: (t31 → (s′ in M6)(s′ in M7)(s′ in M8)(t1 out), 1)

(2) If any output of the membrane M6 & M7 & M8 is an object t2, we
will send an object s′ to each of the other membranes to stop their
evolution, then send out the sign object t2.
r85: (t1 → λ |t2 , 1) r86: (t2 → e′ |e, 1)
r87: (t32 → e′3(s′ in M6)(s′ in M7)(s′ in M8), 2)
r88: (t22 → e′2(s′ in M6)(s′ in M7)(′s in M8), 3)
r89: (t2 → e′(s′ in M6)(s′ in M7)(s′ in M8), 4)
r90: (e′3 → (t2 out), 1)

Extended Euclidean Membrane M 9. Membrane M9 is designed according
to the Extended Euclidean algorithm, and it accepts the multiset a

⋃
n

⋃{tf}
from the outer membrane and output the reverse of N(a) to N(n). The main
rules are:

r91: (ai → ai(ai in MC) |t, 1) r92: (ni → ni(bi in Mc) |t, 1)
r93: (f → f(o÷ in MC) |t, 1) r94: (t → t1, 2)
r95: (t1 → t2 |mi

, 1) r96: (e′ → λ, 3)
r97: (ai → (ai in MC) |t2 , 1) r98: (mi → mi(bi in MC) |t2 , 1)
r99: (ci → λ |t2 , 1) r100: (f → f(o− in MC) |t2 , 1)
r101: (t2 → t3, 2) r102: (t3 → t4 |e′ , 1)
r103: (ci → (ai in MC) |t4 , 1) r104: (ni → ai(bi in MC) |t4 , 1)
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r105: (f → f(o÷ in MC) |t4 , 1) r106: (mi → ni |t4 , 1)
r107: (t4 → t5, 2) r108: (t5 → t6 |e′ , 1)
r109: (ci → (ai in MC) |t6 , 1) r110: (hi → hi(bi in MC) |t6 , 1)
r111: (mi → λ |t6 , 1) r112: (f → f(o× in MC) |t6 , 1)
r113: (t6 → t7, 2) r114: (t7 → t8 |e′ , 1)
r115: (ci → (bi in MC) |t8 , 1) r116: (gi → (ai in MC) |t8 , 1)
r117: (uv → − |t8 , 1) r118: (fv → (o+ in MC) |t8 , 2)
r119: (fu → −(o+ in MC) |t8 , 2) r120: (f → (o− in MC) |t8 , 3)
r121: (hi → gi |t8 , 1) r122: (v → u |t8 , 1)
r123: (xi → hi |t8 , 1) r124: (− → v |t8 , 1)
r125: (t8 → t9, 4) r126: (t8 → t9 |e′ , 1)
r127: (−2 → λ |t9., 1) r128: (t9 → t, 2)
r129: (t1 → t10 |e′ , 2) r130: (ai → λ |t10 , 1)
r131: (ni → λ |t10 , 1) r132: (ci → λ |t10 , 1)
r133: (gi → λ |t10 , 1) r134: (hi → λ |t10 , 1)
r135: (u → λ |t10 , 1) r136: (v → λ |t10 , 1)
r137: (t10 → t11 |−, 2) r138: (xi → (ai in MC) |t11 , 1)
r139: (bi → bi(bi in MC) |t11 , 1) r140: (f → f(o− in MC) |t11 , 1)
r141: (t11 → t12, 2) r142: (t12 → t13 |e′ , 1)
r143: (ci → xi |t13 , 1) r144: (t13 → t10, 2)
r145: (t10 → t14, 3) r146: (xi → (xi out) |t14 , 1)
r147: (bi → λ |t14 , 1) r148: (f → λ |t14 , 1)

Key Generation Membrane A2. The membrane A2 accepts the objects from
A1, and control the process of key generation. It has four steps, including:

(1) Sending the objects from A1 into M1,M2 & M3, to generate the multisets
p, q & e representing three primes N(p), N(q) & N(e), the rules are:
r149: (i → (hibi−1bi−2 . . . b1e0 in M1) |#1 , 1) r150: (#1 → (p′t in M1), 2)
r151: (i → (hjbj−1bj−2 . . . b1e0 in M2) |#2 , 1) r152: (#2 → (q′t in M2), 2)
r153: (i → (bkbk−1bk−2 . . . b1e0 in M3) |#3 , 1) r154: (#3 → (e′t in M3), 2)

(2) The occurrence of the object p′ & q′ indicates that p & q are generated,
rules r155 ∼ r157 are applied to send objects into MC for the calculation of
N(n) = N(p)×N(q). After that calculation, the object e′ occurs, the result
ci evolves to ni, and an object p0 and an object q0 are consumed. Then
sending p

⋃
q into MC to calculate N(m) = (N(p) − 1) × (N(q) − 1), the

rules are:
r155: (pi → pi(pi in MC) |p′q′ , 1) r156: (qi → qi(qi in MC) |p′q′ , 1)
r157: (p′q′ → (o× in MC), 2) r158: (ci → ni |e′ , 2)
r159: (e′p0q0 → p′q′f, 2) r160: (pi → λ |f , 1)
r161: (qi → λ |f , 1) r162: (ci → mi |e′f , 1)

(3) Sending m & e into M9 to get d.
r163: (e′f → t |e0 , 1) r164: (mi → (mi in M9) |t, 1)
r165: (ei → ei(ei in M9) |t, 1) r166: (t → (tf in M9), 2)

(4) Sending out the key pairs (n, e) and (n, d) into membrane A2.
r167: (ni → (ni out) |d0, 1) r168: (ei → (ei out) |d0 , 1)
r169: (di → (di out), 2)
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3.3 Encryption and Decryption Membrane A3

Membrane A3 is designed based on the fast modular multiplication algorithm.
It accepts abc from outer membrane, and send out the result of N(a)N(b)%N(c).
The initial structure of A3 is shown as Fig. 4.

Fig. 4. The initial structure of membrane A3

The rules of A3 are:
r170: (t → t1 |bi , 1) r171: (bi → (ai in MC) |t1 , 1)
r172: (t1 → t2(o÷b20 in MC), 2) r173: (ci → bi |t3 , 1)
r174: (ci → bi |t4 , 1) r175: (e → λ, 3)
r176: (t2 → t3 |m0, 1) r177: (si → (bi in MC) |t3 , 1)
r178: (ai → ai(ai in MC) |t3 , 1) r179: (t3 → t5(o× in Mc), 2)
r180: (t5 → t6 |e′ , 1) r181: (ci → (ai in MC) |t6 , 1)
r182: (ni → ni(bi in MC) |t6 , 1) r183: (t6 → t7(o÷ in Mc), 2)
r184: (t7 → t8 |e′ , 1) r185: (mi → si |t8 , 1)
r186: (ci → λ |t8 , 1) r187: (t2 → t4 |e′ , 2)
r188: (t4 → t8, 2) r189: (ai → (aibi in MC) |t8 , 1)
r190: (t8 → t9(o× in MC), 2) r191: (t9 → t10 |e′ , 1)
r192: (ci → (ai in MC) |t10 , 1) r193: (ni → ni(bi in MC) |t10 , 1)
r194: (t10 → t11(o÷ in Mc), 2) r195: (t11 → t12 |e′ , 1)
r196: (mi → ai |t12, 1) r197: (ci → λ |t12 , 1)
r198: (t12 → t, 2) r199: (t → t13, 2)
r200: (ai → λ |t13 , 1) r201: (si → (si out) |t13 , 1)
r202: (t13 → λ, 2) r203: (ni → λ |t13 , 1)

3.4 Skin Membrane A1

The function of membrane A1 is to control and coordinate its sub membrane to
achieve RSA algorithm, and start the evolution of the system according to the
input of P system, including 2 aspects: send the input which are the digits of
N(p), N(q) & N(e) into A2 (the input should promise that the digits of N(e)
are less than the sum of digits of N(p) and N(q)) and then send the message to
be encrypted or decrypted with key pair into A3. The main rules are:
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(1) Sending three numbers and three sign objects into A2:
r204: (i → i in A2 |#1 , 1) r205: (#1 → #1 in A2, 2)
r206: (i → i in A2 |#2 , 1) r207: (#2 → #2 in A2, 2)
r208: (i → i in A2 |#3 , 1) r209: (#3 → #3 in A2, 2)

(2) According to the input object, send the (m,n, e) or (m,n, d) into A3 to do
encryption or decryption.
r210: (ni → ni(ni in A3) |u, 1) r211: (ei → ei(bi in A3) |u, 1)
r212: (mi → (ai in A3) |u, 1) r213: (u → (ts0 in A3), 2)
r214: (ni → ni(ni in A3) |v, 1) r215: (di → di(bi in A3) |v, 1)
r216: (mi → (ai in A3) |v, 1) r217: (v → (ts0 in A3), 2)

After the end of evolution of
∏

RSA, the result will be in the membrane A1.

4 Instance

In this section, we will give an instance to show how the P system works on
realizing RSA algorithm.

4.1 Key Generation

We assume that the digits of N(p), N(q) & N(e) are 2, 3, 3, then the input
objects {2,#1, 2,#2, 3,#3} will be sent into membrane A1 in sequence. Rules
r204 ∼ r209 of A1 will be applied to send the objects into A2 and then rules
in A2 are used to initialize the process of key generation with sending different
placeholders into M1,M2 & M3. The initialization structure is shown as Fig. 5.

Fig. 5. The initial structure of genera-
tion

Fig. 6. Complete the generation of
p & q & e

(1) Rules in M1,M2 & M3 are used to generate p & q & e in par-
allel, and if we assume the primes we generated in M1,M2 & M3

are 61 & 53 & 17, the objects generated in M1,M2 & M3 will be
{h1e0t1pa6

1a
1
0}, {h1e0t1qa

5
1a

3
0} & {b2b1e0t1ea

1
1a

7
0}, then ai will evolve to

pi, qi & ei and be sent out, the structure of membrane will be shown as
Fig. 6.
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(2) In the presence of p′ & q′, the multiset p
⋃

q will be sent into membrane MC

to calculate N(n) = 61×53 = 3233 and get the result multiset {n3
3n

2
2n

3
1n

3
0}.

After the calculation the multiset (p − 1)
⋃

(q − 1) will be sent into MC to
calculate N(m) = 60 × 52 = 3120 which represents φ(N(n)) in Sect. 2 and
get the result {m3

3m2m
2
1}, see Fig. 7.

(3) After the calculation of N(m), the multiset e
⋃

m will be sent into membrane
M9 to calculate N(d), the result {d23d

7
2d

5
1d

3
0}which represents N(d) = 2753

can be seen in Fig. 8.
(4) The end of the evolution in M9 is the end of the key generation, the objects

{e1e
7
0n

3
3n

2
2n

3
1n

3
0d

2
3d

7
2d

5
1d

3
0} which represents the key pairs (n, e) & (n, d) will

be sent out to A1, and redundant objects will be cleaned (Fig. 9).

Fig. 7. After the calculation of m Fig. 8. After the calculation of d

Fig. 9. Key generation completed

4.2 Encryption and Decryption

The algorithm of encryption is same with the decryption, and the only difference
is that the input of encryption is e while the input of decryption is d. We take
65 for example to show the process of encryption, so the input of A1 will be
{m6

1m
5
0}

⋃{u} (Fig. 10).
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Fig. 10. The initial structure of
encryption

Fig. 11. A3 accepts objects and start
the encryption

Fig. 12. After the encryption Fig. 13. After the encryption

(1) In the presence of object u, the multiset n
⋃

m
⋃

e
⋃{u} will be convert to

n
⋃

a
⋃

b
⋃{ts0} and be sent into A3 to do encryption (Fig. 11).

(2) According to the algorithm in Sect. 2, we send the objects into MC to do the
calculations, and rules r170 ∼ r203 are used to complete the fast modular
multiplication, and the result objects {s23s

7
2s

9
1} which represents s = 2790

can be seen in Fig. 12.
(3) After the encryption in A3, all the result objects will be sent out to A1

(Fig. 13).

5 Conclusions

In this paper, we give a solution to realize the RSA algorithm in parallel and
design a P system ΠRSA, including structure and rules. Then an instance is
given to describe the process of the calculation and illustrate the feasibility and
effectiveness of our designed P system. But the foundation of the P system ΠRSA

we designed in this paper is the RSA algorithm proposed in [1], although we make
the process to generate a big prime more parallel, it is still the bottleneck in the
realization of ΠRSA. On the other hand, the code we used in this paper is based
on hybrid coding, which makes a large number of rules exist during the process,
the use of other coding methods will effectively reduce the number of rules. We
will do further research in these two directions.
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Abstract. Membrane computing is a distributed and parallel bio-
inspired computing paradigm providing new computing models. The
computational model of membrane computing is called “P systems”.
Despite several P systems simulation tools have been built, the general
object-oriented framework of P systems lacks. This study gives the com-
puter storage structure of P systems, the object-oriented static model
and the object-oriented dynamic model of membrane computing using
Umlet. This study intuitively gives the concepts and operations involved
in the membrane computing, which facilitates a better understanding of
the thought of membrane computing, and provides support for research
personnel having no membrane computing foundation.
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1 Introduction

Biological systems, such as cells, tissues, and human brains, have deep compu-
tational intelligences. Biologically inspired computing, or bio-inspired comput-
ing in short, focuses on abstracting computing ideas from biological systems to
construct computing models and algorithms. Membrane computing is a novel
research branch of bio-inspired computing, initiated by Gh. Păun in 2002, which
seeks to discover new computational models from the study of biological cells,
particularly of the cellular membranes [1,2]. The obtained models are distributed
and parallel bio-inspired computing devices, usually called P systems. There are
three mainly investigated P systems, cell-like P systems [1], tissue P systems [3],
and neural-like P systems (also known as spiking neural P systems) [4] (and their
variants, see e.g. [5–11]). P systems are known as powerful computing models,
are able to do what Turing machines can do efficiently [12–16]. The parallel evo-
lution mechanism of variants of P systems, such as numerical P systems [17,18],
spatial P systems [19], spiking neural P systems with anti-spikes [20], has been
found to perform well in doing computation, even solving computational hard
problems [21–23].

The implement research of membrane computing contains three aspects: soft-
ware, hardware and biochemical methods. Sixteen P systems softwares are listed
c© Springer Nature Singapore Pte Ltd. 2016
M. Gong et al. (Eds.): BIC-TA 2016, Part I, CCIS 681, pp. 168–186, 2016.
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on the P systems webpage, in which P-Lingua and MeCoSim are the most pop-
ular ones [24]. The field-programmable gate arrays are used to carry out the
reconfigurable hardware implementation of P systems [25]. Unicom u-tube and
broth are used to realized the biochemical implementation scheme [26]. Due to
the hardware and the biochemical methods need to consume large amounts of
resources, the software simulation is currently the most common way to imple-
ment the membrane computing. Although several software simulation tools have
been built, they give the functions in detail, while the general object-oriented
framework of P systems is not given. Only the simulations of several specific P
systems are given, therefore, when researchers want to simulate a new variety
of P systems, they need to design themselves. If there is a description of all
concepts and operations from a macroscopic perspective, the design process will
become easier.

For this purpose, a general object-oriented description for membrane com-
puting is given. The paper is organized as follows: The object-oriented descrip-
tion of membrane computing is introduced in Sect. 2. Section 3 gives the storage
structure of P systems in computers. In Sects. 4 and 5, the object-oriented sta-
tic model and the object-oriented dynamic model are constructed respectively.
Finally, some conclusions are drawn in Sect. 6.

2 Preliminaries

In this section, some knowledge about Unified Modeling Language (UML) is
introduced. For more detail, please refer [28].

The UML is a unified modeling language in the field of software engineer-
ing, which aims to provide a standard way to model and visualize the software
development. UML defines five classes of diagrams.

(1) The use-case diagram: The use-case diagram describes the system function
from the perspective of the users, and points out the operators of each
function.

(2) The static diagram: (including the class diagram, the package diagram, and
the object diagram)
the class diagram: The class diagram describes the static structure of the
class in the system.
the package diagram: The package diagram is composed of packages and
classes showing the relationship between the packages.
the object diagram: The object diagram is the instance of class diagram.

(3) The behavior diagram (including the state diagram and the activity dia-
gram): The behavior diagram describes the exchange relationship composed
by the system dynamic model and the objects.
the state diagram: The state diagram describes to state control flow.
the activity diagram: The activity diagram describes the workflow of the
case.
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(4) The interaction diagram (the sequence diagram and the cooperation dia-
gram): The interaction diagram describes the interactions between objects.
the sequence diagram: The sequence diagram describes a dynamic relation-
ship between objects, emphasizes the order of the messages which are sent
by objects, and shows the interaction between objects.
the cooperation diagram: The cooperation diagram describes the coopera-
tive relationship between objects.

(5) The implementation diagram: the configuration diagram: The configuration
diagram defines the physical architecture of software and hardware in the
system.

3 The Object-Oriented Description of Membrane
Computing

The object-oriented method is a programming paradigm which is based on the
“objects”. The object is a package composed of data attributes and the corre-
sponding operations on these data. A group of objects with similar properties
form a “class” [27].

The three main components: membranes, rules, and P system objects of the
three main P systems: cell-like P system, tissue-like P system, and neural-like P
system are described from the view of the object-oriented description.

(1) P system object: The characters or strings which are derived from chem-
ical substances in cells are called objects. In this paper, they are called
P system objects to differentiate them from objects in an object-oriented
method. Alphabet O contains all P system objects in a P system.

(2) Membrane: Membranes divide the whole P system region into sev-
eral compartments. Multiset of P system objects and rules are placed in
compartments. Each compartment is a relatively independent computing
unit. Each membrane has its label (the set of labels h is called H) and
charge (+, −, 0).

(3) Rule: Rules point out the operations that need to be executed on P system
objects or membranes. By executing rules, the configuration of a P system
is changed. Higher priority rules should be executed with higher priority if
the priority of rules is defined.
There are several types of rules: evolution rules which change the kind or the
number of P system objects in a certain compartment (u → v, u, v ∈ O∗),
communication rules which change the compartment which the P sys-
tem objects belong to ((u, out; v, in), u, v ∈ O∗), membrane creation rules
which create new membranes (a → [b]αj , a, b ∈ O, h ∈ H,α ∈ {+,−, 0}),
membrane division rules which divide one membrane into two membranes
([ha]α1

h → [h1b]
α2
h1

[h2c]
α3
h2

, h, h1, h2 ∈ H,α1, α2, α3 ∈ {+,−, 0}, a, b, c ∈ O),
and membrane dissolution rules which dissolve membranes ([ha]αh → b, h ∈
H,α ∈ {+,−, 0}, a, b ∈ O).
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(4) Cell-like P system: The cell-like P system is the basic membrane comput-
ing model. It simulates the structure and function of cells. All other mem-
branes, rules, and P system objects are in a membrane called skin membrane.
The membrane structure of a cell-like P system is a tree structure.

(5) Tissue-like P system: The tissue-like P system is an important extension
of membrane computing model. It simulates the structure and function of
tissues. Multiple cells are placed in one environment, and both the cells and
the environment can have P system objects. The membrane structure is a
graph structure.

(6) Neural-like P system: The neural-like P system is a relatively new pro-
posed membrane computing model which is a hot area in membrane com-
puting. The cells in this P system are neurons. Spiking Neural P system, SN
P system for short, is the main kind of neural-like P system, which has only
one P system object called spike. The execution of rules in SN P systems
need several steps. If a rule in one neuron needs t steps to be executed, this
neuron is closed during this period of time, which means this neuron cannot
receive or emit spikes. If no rule in one neuron is executed at a time, this
neuron is open.

In conclusion, the model of membrane computing: P system can be seen as a
class which has several attributes, such as membrane structure, environment (the
kind and number of objects in environment), rules, alphabet, multiset, configu-
ration(the membrane structure and the multiset in each component). P system
class has three subclasses: cell-like P system, tissue-like P system, and neural-
like P system. The membrane structure and the objects of the P systems are
changed through executing rules, therefore, three types of operations are defined:
operation on membranes, operation on rules, and operation on P system objects.
The details will be given in the following sections.

4 The Data Structure of Membrane Computing

In this section, the data structure of membrane computing is designed with the
purpose of storing the alphabet, membrane, multiset, evolution rule, commu-
nication rule, membrane creation rule, membrane division rule, and membrane
dissolution rule in computers.

(1) Alphabet: A string array is used to store all characters in a P system. The
characters appear only in this array in the whole P system. In the following,
the characters are represented by the serial number in the string array to
save space. For instance, there is a string array alphabet = [a, b, c, d, e] shown
in Fig. 1, the five characters are represented by 1, 2, 3, 4 and 5. String 224
is used to show two a and one d.

(2) Membrane: String arrays of length 5 are used to store the relevant infor-
mation as Figs. 2 and 3.

(3) Multiset: String arrays of length 2 are used to store the multiset as Fig. 4.



172 X. Liu et al.

Fig. 1. The data structure of the alphabet.

Fig. 2. The data structure of the membrane for the cell-like P systems.

Fig. 3. The data structure of the membrane for the tissue-like P systems and the
neural-like P systems.

Fig. 4. The data structure of the multiset.

(4) Rule type: An string array is used to store all rules types used in a P
system. Each string stores one type of rule. The strings appear only in this
array in the whole P system. In the following, the strings are represented
by the serial number in the string array to save space.

(5) Evolution rule: String Arrays of length 6 are used to store the evolution
rule as Fig. 5.

(6) Communication rule: String Arrays of length 7 are used to store the
communication rule as Fig. 6.

(7) Membrane creation rule: String Arrays of length 8 are used to store the
membrane creation rule as Fig. 7.

(8) Membrane division rule: String Arrays of length 12 is used to store the
membrane division rule which divides a membrane into two membranes as
Fig. 8.

(9) Membrane dissolution rule: String Arrays of length 7 is used to store
the membrane dissolution rule as Fig. 9.
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Fig. 5. The data structure of the evolution rule.

Fig. 6. The data structure of the communication rule.

Fig. 7. The data structure of the membrane creation rule.

Fig. 8. The data structure of the membrane division rule.

Fig. 9. The data structure of the membrane dissolution rule.
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5 An Object-Oriented Static Model of Membrane
Computing

According to the object-oriented description of membrane computing, the P
system class has three subclasses: cell-like P system class, tissue-like P system
class, and neural-like P system class. These subclasses inherit the attributes of
the P system class, and they have their own attribute: the membrane structure.
Each P system class aggregates by membrane class, rule class, and object class.

The membrane class has eight attributes.

(1) Label: Label is used to distinguish different membranes.
(2) Charge: The charge of a membrane can be positive which is represented by

“+”, negative which is represented by “-”, and neutral which is represented
by “0”.

(3) Multiset: Multiset shows the kind and the number of P system objects
contained in this membrane.

(4) InnerMembranes: InnerMembranes show the labels of membranes which
are in this membrane. (This is the attribute of the cell-like P systems.)

(5) OuterMembrane: The OuterMembrane shows the label of membrane
which is outside this membrane. (This is the attribute of the cell-like P
systems.)

(6) ConnectToMembrane: The ConnectToMembrane shows the labels of the
membranes which have channels from the current membrane. (This is the
attribute of the tissue-like P systems and the neural-like P systems.)

(7) ConnectFromMembrane: ConnectFromMembrane shows the labels of
membranes which have channels to the current membrane. (This is the
attribute of the tissue-like P systems and the neural-like P systems.)

(8) Status: Status shows at this step, this membrane is open or closed.

The rule class also has four attributes aims to make the operations easier.

(1) Id: Id uses to distinguish different rules.
(2) RuleComparator: RuleComparator is used to compare the priority and

choose the rule with higher priority. Each rule is assigned a priority level
represented by a positive integer. Bigger number means higher priority.

Object class has only one attribute: alphabet.
The class diagram is shown in Fig. 10. The relationship between the P system

class and the cell-like P system class, the tissue-like P system class, the neural-
like P system class is inheritance. The inheritance means a class (called subclass)
inherits the attributes and operations of another class (called superclass), and
the subclass can add its own attributes and operations or rewrite its superclass’s
operations. In UML diagram, the inheritance is represented by a solid line with
a hollow triangular arrowhead, pointing from the subclass to the superclass. The
relationship between the cell-like P system class, the tissue-like P system class,
the neural-like P system class and the membrane class, the rule class, the object
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Fig. 10. The class diagram shows that the relationship between the P system class
and the cell-like P system class, the tissue-like P system class, the neural-like P system
class is inheritance, and the relationship between these three P system classes and the
membrane class, the rule class, the object class are aggregation.

class are aggregation. The aggregation shows the relationship between the whole
and the parts, while the whole and the parts are separable. In UML diagram, the
aggregation is represented by a solid line with a arrow and a hollow diamond.

Figure 11 shows the relationship among operation classes. The P system oper-
ation class aggregates by cell-like P system operation class, tissue-like P system
operation class, and neural-like P system operation class. Each of these three
class aggregates by membrane operation class, rule operation class, and object
operation class.

The P system operation class has six operations which are used to acquire
information about a P system: get configuration, get membrane structure, get
multiset, get alphabet, get environment, and get rules. The cell-like P system
operation class, the tissue-like P system operation class, and the neural-like P
system operation class inherit the operations from P system operation class,
and they have their own operations: get membrane structure, and set membrane
structure. Each P system operation class aggregates by membrane operation
class, rule operation class, and object operation class.
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Fig. 11. The class diagram shows that relationship between the operation classes of P
system.

The membrane operation class has twenty operations.

(1) CreateMembrane: A new membrane is created by the membrane cre-
ation rule.

(2) DissolveMembrane: The current membrane is dissolved, P system
objects and the innermembranes in the current membrane enter into the
outermembrane, and rules in the current membrane are removed.

(3) SetCharge: The charge of the current membrane is set.
(4) GetCharge: The charge of the current membrane is obtained.
(5) SetLabel: The label of the current membrane is set.
(6) GetLabel: The label of the current membrane is obtained.
(7) GetAllMembranes: All labels of membranes in a P system are obtained.
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(8) GetChildMembranes: All labels of innermembranes in the current mem-
brane are obtained.

(9) GetParentMembrane: The label of outermembrane in the current mem-
brane is obtained.

(10) GetChannelsToMembrane: All membranes which are connected to the
current membrane are obtained.

(11) GetChannelsFromMembrane: All membranes which are connected
from the current membrane are obtained.

(12) GetSelectedRules: The id of rule which will be executed in the current
membrane is obtained.

(13) IsSkinMembrane: Whether a membrane is the skin membrane or not is
judged.

(14) IsOpen: Whether a neuron is open is judged.
(15) IsClosed: Whether a neuron is closed is judged.
(16) DecreaseStepsToOpen: This operation is used to record how many steps

are needed to make a closed neuron open again.
(17) GetMultiset: Multiset of P system objects in the current membrane is

obtained.
(18) renewLabel: The label of the current membrane is updated.
(19) BuildChannel: For dynamic membrane structure, a new channel between

membranes is created.
(20) RemoveChannel: For dynamic membrane structure, a channel between

membranes is melt.

The rule class has seven operations: getRuleId, setRuleId, selectRule, exe-
cuteRule, buildRule, getType and removeRule.

The object class has three operations: add objects, remove objects, and
update objects.

The relationship between the P system class, the P system operation class
and the P system set class is shown in Fig. 12. The P system set class contains
the whole set of P system. The P system operation depends on the P system.
The dependence means the change of class A can make the change of the class
B. It is said that class B depends on class A. In UML diagram, the dependence
is represented by a imaginary line with a arrow, pointing from the class B to the
class A.

6 Object-Oriented Dynamic Model of Membrane
Computing

The object-oriented dynamic model of membrane computing describes the infor-
mation transmission process between objects. In P system, changes are triggered
by rules. In this section, the activity diagram and the sequence diagrams of four
common rule operations are given.
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Fig. 12. The relationship between P system class, P system operation class and the P
system set class. The relationship between P system class and the P system set class
is unidirectional association.

6.1 The Activity Diagram

Figure 13 shows the workflow of the rules. The activity is controlled by rules.
At the beginning, a rule is selected. The type of the selected rule is checked by
“getType”.

If the rule is an evolution rule, the objects which are consumed by this rule is
removed from the system by “removeObjects”, and then the objects which are
generated by this rule is added to the system by “addObjects”.

If the rule is a communication rule, the label number of the membrane
which communicates with the current membrane is obtained by “getLabel”. The
objects which are transported from the current membrane are removed from the
current membrane by “removeObjects”, and these objects are added to the mem-
brane which communicates with the current membrane by “addObjects”. The
objects which are transported to the current membrane are handle by opposite
operations.

If the rule is a membrane creation rule, the objects which are consumed
by this rule is removed from the system by “removeObjects”, and then a new
membrane is created by “createMembrane”. The label and the charge of the new
membrane are set by “setLabel” and “setCharge”. Objects are added to the new
membrane by “addObjects”.
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Fig. 13. The activity diagrams

If the rule is a membrane division rule, two new membranes are created by
“createMembrane”. The label and the charge of the new membranes are set
by “setLabel” and “setCharge”. Objects are added to the new membranes by
“addObjects”. The connections between the new membranes and other mem-
branes are built by “buildConnect”. The objects and the rules in the old
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membrane are removed from the system by “removeObjects” and “removeRule”.
The connections between the old membrane and other membranes are removed
from the system by “removeConnect”. The old membrane is removed from the
system by “dissolveMembrane”.

If the rule is a membrane dissolution rule, the objects which are consumed by
this rule is removed from the system by “removeObjects”, and then the objects
which are generated by this rule is added to the system by “addObjects”. The
rules and the membrane are removed from the system by “removeRule” and
“dissolveMembrane”.

6.2 The Sequence Diagrams

Sequence diagrams give a visual description of the time sequence of messages
transmitted between objects.

(1) Evolution rule: As shown in Fig. 14, “P system class” sends a message
“selectRule” to “Rule class” to deal with the chosen rule. Firstly, the serial
number of this rule type is judged by “getType”. If this rule is an evolution
rule, “removeObjects” is activated to remove the P system objects which are
consumed. At the next step, “addObjects” is activated to add the generated
P system objects. After these steps, “generate()” is activated to generate
new P system attributes.

Fig. 14. The sequence diagrams of evolution rule



A General Object-Oriented Description for Membrane Computing 181

(2) Communication rule: As shown in Fig. 15, “P system class” sends a mes-
sage “selectRule” to “Rule class” to deal with the chosen rule. Firstly, the
serial number of this rule type is judged by “getType”. If this rule is an
communication rule, “getLabel” is used to obtain the label of the mem-
brane which is communicated with the current membrane. The objects which
are transported from the current membrane are removed from the current
membrane by “removeObjects”, and these objects are added to the mem-
brane which communicates with the current membrane by “addObjects”.
The objects which are transported to the current membrane are handle by
opposite operations. After these steps, “generate()” is activated to generate
new P system attributes.

Fig. 15. The sequence diagrams of communication rule

(3) Membrane creation rule: As shown in Fig. 16, “P system class” sends a
message “selectRule” to “Rule class” to deal with the chosen rule. Firstly,
the serial number of this rule type is judged by “getType”. If this rule is
a membrane creation rule, “removeObjects” is activated to remove the P
system objects which are consumed. At the next step, “createMembrane” is
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Fig. 16. The sequence diagrams of membrane creation rule

activated to create the new membrane. The label and the charge of the new
generated membrane are set by “setLabel” and “setCharge”. “addObjects”
is activated to add the P system objects to the new membrane. After these
steps, “generate()” is activated to generate new P system attributes.

(4) Membrane division rule: As shown in Fig. 17, the “P system class”
sends a message “selectRule” to the “Rule class” to deal with the chosen
rule. Firstly, the serial number of this rule type is judged by “getType”.
If this rule is a membrane division rule, two new membranes are created
by “createMembrane”. The label and the charge of the new membranes are
set by “setLabel” and “setCharge”. Objects are added to the new mem-
branes by “addObjects”. The connections between the new membranes and
other membranes are built by “buildConnect”. The objects and the rules
in the old membrane are removed from the system by “removeObjects”
and “removeRule”. The connections between the old membrane and other
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membranes are removed from the system by “removeConnect”. The old
membrane is removed from the system by “dissolveMembrane”. After these
steps, “generate()” is activated to generate new P system attributes.

(5) Membrane dissolution rule: As shown in Fig. 18, “P system class” sends
a message “selectRule” to “Rule class” to deal with the chosen rule. Firstly,
the serial number of this rule type is judged by “getType”. If this rule is

Fig. 17. The sequence diagrams of membrane division rule
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a membrane dissolution rule, “removeObjects” is activated to remove the
P system objects which are consumed. At the next step, “addObjects” is
activated to add the generated P system objects. Because this rule is a
membrane dissolution rule, “removeRule” is activated to remove all rules in
this membrane, and then, “dissolveMembrane” is activated to dissolve this
membrane. All P system objects enter into the outermembrane. After these
steps, “generate()” is activated to generate new P system attributes.

Fig. 18. The sequence diagrams of membrane dissolution rule

6.3 The Use-Case Diagram

A use-case diagram is used to show what a user needs to do to build a P system
(Fig. 19). Due to the fact that all parameters of P systems and operations (rules)
are packaged in the P system class and the P system operation class, respectively,
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what a user needs to do is to set the P system parameters, and the system will
run itself to generate the computational result. The user does not need to know
the programming details.

Fig. 19. The use-case diagram

7 Conclusion and Discussion

This paper analyzes membrane computing from the object-oriented method,
gives a feasible scheme of storing P systems in computers, and builds object-
oriented static model and the object-oriented dynamic model, which can help
new researchers know membrane computing more quickly and roundly. In the
further, the reusable components will be designed to make the realization of P
systems easier.
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14. Ibarra, O.H., Păun, A., Rodŕıguez-Patón, A.: Sequential SNP systems based on
min/max spike number. Theor. Comput. Sci. 410(30), 2982–2991 (2009)

15. Song, T., Xu, J., Pan, L.: On the universality and non-nniversality of spiking neural
P systems with rules on synapses. IEEE Trans. Nanobiosci. 14(8), 960–966 (2015)

16. Wang, X., Song, T., Gong, F., Zheng, P.: On the computational power of spiking
neural P systems with self-organization. Sci. Rep. 6, 27624 (2016). doi:10.1038/
srep27624
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Abstract. Spiking neural P systems (in short, SN P systems) is a class
of distributed parallel computing models. Parallel computation of matrix
operations has been supported on some new computing devices such as
GPU, which provides a promising way to simulate the parallel compu-
tation of SN P systems. In this paper a matrix representation method
of parallel computation for SN P systems is developed. In firing mech-
anism of SN P systems, the delay factor plays the role of controlling
the receiving of spikes in neurons and the opportunity of emitting the
spikes after the firing. In order to achieve the parallel computation of SN
P systems, several matrices or vectors are introduced to decompose the
firing mechanism of neurons. The parallel computation procedure of SN
P systems can be achieved by the operations of the matrices or vectors.
Two examples are used to illustrate the parallel computation procedure
using the matrix operations.

Keywords: P systems · Spiking neural P system · Parallel computing ·
Matrix representation

1 Introduction

Membrane computing initiated by Pǎun [1], was inspired from the structure and
functioning of living cells as well as the interactions of living cells in tissues or
higher order biological structures. Membrane computing is a class of distributed
parallel computing models, known as P systems [2–7]. As one of main forms,
spiking neural P systems (in short, SN P systems) were inspired by the neu-
rophysiological behavior of neurons sending electrical impulses (spikes) along
axons to other neurons under the framework of membrane computing [8]. A SN
P system can be viewed as a net of neurons placed in the nodes of a directed
graph whose arcs represent the synaptic connections among the neurons. The
flow of information is inherently realized by the exciting of pulse potentials,
which are encoded by the so-called spikes. The spikes, which are objects of a
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M. Gong et al. (Eds.): BIC-TA 2016, Part I, CCIS 681, pp. 187–199, 2016.
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unique type and are placed inside the neurons, can be sent from presynaptic to
postsynaptic neurons according to specific firing/spiking rules. By applying a
firing/spiking rule, some spikes are consumed and new spikes are produced, and
the produced spikes are sent to all subsequent neurons. When a forgetting rule
is applied, spikes are removed from neurons. More recently, a large number of
variants of SN P systems have been proposed [8–19].

The parallel computation is an important feature of SN P systems, and it
is attractive for the development of efficient algorithms in real-world applica-
tions. However, the parallel computation ability of SN P systems can not be
implemented or simulated really because of the limitation of serial architecture
of current computer. GPUs (Graphical Processing Units) and FPGA (Field-
Programmable Gate Array) provided the implementation means of parallel com-
putation, specially, parallel computation of matrix operations. In order to realize
the parallel computation of SN P systems, a feasible way is to express its parallel
computation procedure by matrix operations. For this, Zeng et al. [20] discussed
matrix representations of two kinds of SN P systems without delay: SN P sys-
tems with extended rules and SN P systems with weights. Based on the matrix
representations, Cabarle et al. [21–23] achieved the simulators of several SN P
systems without delay. However, the delay is an important characteristic in firing
mechanism of SN P systems. Therefore, it is an interesting topic how to build
the matrix representation of SN P systems with delay because it is significant
for implementation of their parallel computations on GPU/FPGA. This work
focuses on the interesting issue and proposes a matrix representation method
of SN P systems with delay. In order to decompose the firing mechanism of
SN P systems, several matrices and vectors are introduced, such as rule delay
matrix, spike consumption matrix, spike generation matrix and caching spike
vector. Based on matrix operations, the matrices and vectors describe the firing
mechanism of neurons in SN P systems, including the firing, spike consumption,
time delay and emitting spike. The main contribution behind this work is that
a matrix representation method of SN P systems (with delay) is developed.

The rest of this paper is organized as follows. First, we briefly review the
definition of SN P systems in Sect. 2. The matrix representation method of SN
P systems is discussed in Sect. 3. Two examples to illustrate the parallel compu-
tation procedure of SN P systems are provided in Sect. 4. The conclusions and
future work on the topic are discussed in Sect. 5.

2 SN P Systems

In this section, we briefly review SN P systems in a computing version (i.e., able
to take some inputs and provide some outputs). A more detailed description of
SN P systems can be found in literatures [2,8–10].

Definition 1. A SN P system of degree m ≥ 1, is a construct of the form

Π = (A, σ1, σ2, . . . , σm, syn, I,O)

where
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(1) A = {a} is the singleton alphabet (the object a is called spike);
(2) σ1, . . . , σm are neurons, of the form σi = (ni, Ri), 1 ≤ I ≤ m, where

(i) ni ≥ 0 is the initial number of spikes contained in neuron σi;
(ii) Ri is a finite set of rules of the form

E/ac → ap; d

where E is a regular expression over a, c ≥ 1 and p, d ≥ 0, with c ≥ p; if
p = 0, then d = 0.

(3) syn ⊆ {1, 2, . . . ,m} × {1, 2, . . . ,m} with i �= j for all (i, j) ∈ syn, 1 ≤ i, j ≤
m ( synapses between neurons).

(4) I and O are input neuron set and output neuron set, respectively.

A SN P system can be viewed as a directed graph in which the nodes denote
its neurons and the arcs represent the synaptic connections among the neurons.
Each neuron contains one or more spikes, or no spike. Under the control of
firing/spiking rules, the spikes excited by a neuron will be transmitted into its
subsequent neurons. The firing/spiking rules are of the form E/ac → ap; d,
where d ≥ 0 is called the delay factor. If p = d = 0, E/ac → ap; d is written
in the form E/ac → λ, known as forgetting rule. If d = 0, E/ac → ap; d can
be written as a simple form, E/ac → ap, called the firing/spiking rule without
delay. Thus, SN P systems with the firing/spiking rules without delay is called
SN P systems without delay in this work. The literature [20] has discussed matrix
representation of SN P systems without delay. However, this paper focuses on
matrix representation of SN P systems with delay.

The firing mechanism of neurons can be described as follows. If neuron σi

contains k spikes, ak ∈ L(E), and k ≥ c, then firing/spiking rule E/ac → ap; d
can be applied. When the rule is applied, c spikes are consumed (k − c spikes
remain) and the neuron will produces p spikes after d time units. In case of no
delay (i.e., d = 0), the produced spikes are emitted immediately. However, in the
case of delay d > 0, delay mechanism will work as follows: if rule E/ac → ap; d
in neuron σi is used at step t, the neuron is “closed” or “blocked” at steps
t, t + 1, . . . , t + d − 1, and it can not receive new spikes from other neurons; at
step t+d, the neuron emits the produced spikes and becomes again open, hence
it can receive the spikes from other neurons; the p spikes emitted by neuron σi

are transmitted to all neurons σj such that (i, j) ∈ syn, hence each such neuron
σj of them receives p spikes. A forgetting rule ac → λ is applicable to a neuron
whether the neuron contains exactly c spikes and then all c spikes are removed.

SN P systems are synchronized by a global clock, marking the time for the
whole system. Besides, SN P systems are non deterministic because two rules
E1/ac1 → ap1 ; d1 and E2/ac2 → ap2 ; d2 can have L(E1) ∩ L(E2) �= ∅. Therefore,
it is possible that two or more rules of the system can be enabled in a neuron.
In this case, one of them is non-deterministically chosen to be used. Moreover,
in each time unit, if a neuron can use a rule, the rule must be used. Each neuron
deals with its spikes in the sequential manner, only using one rule in each time
unit, but the rules are used in parallel for all neurons of the system.
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3 Matrix Representation of SN P Systems with Delay

Currently, parallel implementation of matrix operations has received an effective
support on some new computing devices such as GPUs and FPGA. Therefore,
an effective way to realize parallel computation of SN P systems is using the
matrix operations to express its computing procedure. In this section, we will
focus on the matrix representation of SN P systems with delay.

We assume the SN P system Π considered here has m neurons σ1, σ2, . . . , σm

and n rules r1, r2, . . . , rn. Denote by R1, R2, . . . , Rn the firing rule sets of neu-
rons σ1, σ2, . . . , σm respectively. We firstly define several matrices, vectors and
operations as follows.

Definition 2 (Relation Matrix). The relation matrix of Π, L, is defined by

L =
(
lij

)

n×m
(1)

where

lij =
{

1, if (i, j) ∈ syn and i �= j
0, elsewise

(2)

Matrix L describes relationship between neurons in Π. lij = 1 means a
synapse connection from neuron σi to neuron σj where σj is a successor of σi.
However, lij = 0 indicates no synapse connection from neuron σi to neuron σj .
L is often asymmetric Maybe, this is, if (i, j) ∈ syn then (j, i) is not necessarily
be in syn.

Definition 3 (Rule Delay Matrix). The rule delay matrix of Π, D, is defined
by

D =
(
τij

)

n×m
(3)

where

τij =
{

dij , if ri ∈ Rj

0, elsewise
(4)

where dij is the delay of ith firing rule Eij/asij → apij ; dij in neuron σj.

Matrix D expresses the delay factors of firing rules in neurons of Π. The
matrix will be used to control the waiting times until spikes are emitted after
neurons fire.

Definition 4 (Spike Consumption Matrix). The spike consumption matrix of
Π, U , is defined by

U =
(
uij

)

n×m
(5)

where uij expresses the number of the consumed spikes when ith firing rule
Eij/asij → apij ; dij in neuron σj fires.

uij =
{

sij , if ri ∈ Rj

0, elsewise
(6)
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The matrix indicates that if firing rule ri : Eij/asij → apij ; dij is enabled
and applied and ri ∈ Rj , then uij = sij ; elsewise uij = 0.

Definition 5 (Spike Generation Matrix). The spike generation matrix of Π, V ,
is defined by

V =
(
vij

)

n×m
(7)

where vij denotes the number of the generated spikes after ith firing rule
Eij/asij → apij ; dij in neuron σj fires.

vij =
{

pij , if ri ∈ Rj

0, elsewise
(8)

The matrix indicates that if ri ∈ Rj and firing rule ri : Eij/asij → apij ; dij
is applied, then vij = pij ; elsewise vij = 0.

Definition 6 (Countdown Operation). Suppose T = (t1, t2, . . . , tm) is a vector,
ti ∈ N, i = 1, 2, . . . ,m. The countdown operation of T is defined by

T ↓ = (t1, t2, . . . , tm)↓ = (t↓1, t
↓
2, . . . , t

↓
m) (9)

where

t↓i =
{

ti − 1, if ti ≥ 1
0, elsewise

(10)

In Definition 6, vector T is called waiting time vector, each of which indi-
cates the waiting time of the corresponding neuron to be opened. In this work,
rule delay matrix and countdown operation will be used to realize the delay
mechanism of SN P systems.

Definition 7 (Caching Spike Vector). The vector Wk = (w(k)
1 , w

(k)
2 , . . . , w

(k)
m )

is called the caching spike vector at kth computing step, where w
(k)
i is the number

of the cached spikes in neuron σi at kth computing step, i = 1, 2, . . . ,m. Initially,
let W0 = (0, 0, . . . , 0).

Definition 8 (Waiting Time Vector). The vector Tk = (t(k)1 , t
(k)
2 , . . . , t

(k)
m ) is

called the waiting time vector at kth computing step, where t
(k)
i expresses the

residual time that neuron σi waits for at kth computing step, i = 1, 2, . . . ,m.
Initially, let T0 = (0, 0, . . . , 0).

Definition 9 (Spiking Vector). The vector Xk = (x(k)
1 , x

(k)
2 , . . . , x

(k)
m ) is called

the spiking vector at kth computing step, where x
(k)
i expresses the number of

spikes to be sent in neuron σi at kth computing step. Initially, let X0 =
(0, 0, . . . , 0).

Based on firing principle of neurons, x
(k)
i can be computed by

x
(k)
i =

{
w

(k)
i , if t(k)i = 0

0, elsewise
(11)
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Fig. 1. The computing procedure of parallel computing for SN P systems.

where w
(k)
i is the number of the cached spikes in neuron σi and t

(k)
i denotes the

residual time that neuron σi waits for at kth computing step, i = 1, 2, . . . ,m.
For convenience, we formally denote Xk = Wk � Tk.

Definition 10 (Receiving Vector). The vector Yk = (y(k)
1 , y

(k)
2 , . . . , y

(k)
m ) is called

the receiving vector at kth computing step, where y
(k)
i expresses the number of the

spikes received in neuron σi at kth computing step. Initially, let Y0 = (0, 0, . . . , 0).

Based on firing principle of neurons, y
(k)
i can be computed by

y
(k)
i =

{
Xk · [L]i, if t

(k)
i = 0

0, elsewise
(12)

where [L]i is ith column of relation matrix L, i = 1, 2, . . . ,m. For convenience,
we formally denote Yk = (Xk · L) � Tk.

Definition 11 (Configuration Vector). The vector Ck = (n(k)
1 , n

(k)
2 , . . . , n

(k)
m ) is

called the configuration vector of Π after kth computing step, where n
(k)
i is the

number of spikes contained in neuron σi after kth computing step, i = 1, 2, . . . ,m.

Denote by vector C0 = (n(0)
1 , n

(0)
2 , . . . , n

(0)
m ) the initial configuration vector of

Π, where n
(0)
i is the initial number of spikes in neuron σi, i = 1, 2, . . . ,m.

Therefore, computing procedure of SN P system Π can be expressed as
C0

1⇒ C1
2⇒ C2

3⇒· · · k⇒ Ck
k+1⇒ · · · .

Definition 12 (Rule Firing Vector). The vector Zk = (z(k)1 , z
(k)
2 , . . . , z

(k)
n ) is

called the rule firing vector after kth computing step, where

z
(k)
i =

{
1, if rule ri fires and t

(k−1)↓
i = 0

0, elsewise
(13)
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Table 1. The parallel computation algorithm for SN P systems

Input: C0, W0, T0, U , V , D and L;

Output: Ck;

Begin
for k = 1, 2, · · ·

Zk ←
¨︷ ︸︸ ︷

(Ck−1, U, T ↓
k−1);

Tk ← T ↓
k−1 + Zk · D;

Wk ← Wk−1 − Wk−1 � Tk + Zk · V ;
Xk ← Wk � Tk;
Yk ← (Xk · L) � Tk;
Ck ← Ck−1 − Zk · U + Yk;

end for
End.

Note that Zk is an indicator vector, each component of which indicates
whether the corresponding rule fires and opened.

Lemma 1. Zk =
¨︷ ︸︸ ︷

(Ck−1, U, T ↓
k−1), where

¨︷ ︸︸ ︷
(·, ·, ·) is called the firing operation.

Proof. According to firing mechanism of neurons, if the number of spikes con-
tained in neuron σj meets regular expression E of rule ri (related with Ck−1

and U) and t
(k−1)↓
i = 0, then z

(k)
i = 1; elsewise z

(k)
i = 0. Therefore, we have

Zk =
¨︷ ︸︸ ︷

(Ck−1, U, T ↓
k−1).

Lemma 2. Tk = T ↓
k−1 +

¨︷ ︸︸ ︷
(Ck−1, U, T ↓

k−1) · D

Proof. Note that Tk is a waiting time vector, each component of which indicates
whether the corresponding neuron is closed and has waiting time to be opened.
According to firing mechanism of neurons, if a neuron is closed (after firing) and
waits to open, then ti,k = ti,k−1 − 1; if a neuron is enabled and fires and delay
factor of the corresponding rule has di > 0, then ti,k = Zi · [D]j , where [D]j is
jth column of D. Thus, Lemma 2 can be concluded by Lemma 1.

Lemma 3. Wk = Wk−1 − Wk−1 � Tk +
¨︷ ︸︸ ︷

(Ck−1, U, T ↓
k−1) · V

Proof. Note that Wk is a caching spike vector, each component of which indi-
cates the number of spikes cached in the corresponding neuron. According to
firing mechanism of neurons, Wk = Wk−1 − W ′ + W ′′, where W ′ is the emitted
spike vector and W ′′ is the spike vector to be cached at k computing step. By
Definition 9, we have W ′ = Wk−1 � Tk. Since V is the spike generation matrix,
W ′′ = Zk · V can be concluded by Definitions 9 and 12. Based on Lemma 1, we

have W ′′ =
¨︷ ︸︸ ︷

(Ck−1, U, T ↓
k−1) · V .
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Based on Lemma 2 and 3, we can conclude matrix representation of parallel
computation for SN P systems as follows.

Theorem 1 (Matrix Representation). The computation procedure of Π is given
by

Ck = Ck−1 + ((Wk � Tk) · L) � Tk −
¨︷ ︸︸ ︷

(Ck−1, U, T ↓
k−1) · U. (14)

Proof Based on firing mechanism of neurons, Ck = Ck−1 + C ′ − C ′′, where C ′

denotes the received new spike vector and C ′′ denotes the consumed spike vector
at kth computing step. By Definitions 9 and 10, we have C ′ = ((Wk �Tk) ·L)�Tk.
Note that U is spike consumption matrix. Based on Lemma 1, we have C ′′ =

Zk · U =
¨︷ ︸︸ ︷

(Ck−1, U, T ↓
k−1) · U . Thus, the theorem is proven.

Based on Theorem 1, the developed parallel computing algorithm for SN
P systems based on matrix operations is provided in Table 1 in an iteration
algorithm, and its computing procedure is shown in Fig. 1.

4 Two Illustration Examples

In this section, we use two examples to illustrate parallel computation procedure
of SN P systems with delay.

Example 1 SN P system Π1, shown in Fig. 2, has three neurons (σ1, σ2, σ3) and
three rules (r1, r2, r3). R1 = {r1}, R2 = {r2} and R3 = {r3}.

a2s-1

a+/a a 2 
a

a a 0 

as a 1

Rules:
           r1:    a+/a a;2

r2:    as a;1
r3:    a a;0

Fig. 2. SN P system Π1 and its firing rules.

According to the Definitions 2, 3, 4 and 5, the relation matrix, rule delay
matrix, spike consumption matrix and spike generation matrix of Π1 are,
respectively

L =

⎛

⎝
0 1 0
0 0 1
0 0 0

⎞

⎠ ,D =

⎛

⎝
2 0 0
0 1 0
0 0 0

⎞

⎠ , U =

⎛

⎝
1 0 0
0 s 0
0 0 1

⎞

⎠ , V =

⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠

Initially, C0 = (2s − 1, 0, 1), W0 = (0, 0, 0), T0 = (0, 0, 0). The parallel com-
putation procedure of Π1 is provided as follows.
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Step (1) Z1 =
¨︷ ︸︸ ︷

(C0, U, T ↓
0 ) = (1, 0, 1), T1 = T ↓

0 + Z1 · D = (2, 0, 0),
W1 = W0 − W0 � T1 + Z1 · V = (1, 0, 1), X1 = W1 � T1 = (0, 0, 1),
Y1 = (X1 · L) � T1 = (0, 0, 0), C1 = C0 − Z1 · U + Y1 = (2s − 2, 0, 0).

Step (2) Z2 =
¨︷ ︸︸ ︷

(C1, U, T ↓
1 ) = (0, 0, 0), T2 = T ↓

1 + Z2 · D = (1, 0, 0),
W2 = W1 − W1 � T2 + Z2 · V = (1, 0, 0), X2 = W2 � T2 = (0, 0, 0),
Y2 = (X2 · L) � T2 = (0, 0, 0), C2 = C1 − Z2 · U + Y2 = (2s − 2, 0, 0).

Step (3) Z3 =
¨︷ ︸︸ ︷

(C2, U, T ↓
2 ) = (0, 0, 0), T3 = T ↓

2 + Z3 · D = (0, 0, 0),
W3 = W2 − W2 � T3 + Z3 · V = (1, 0, 0), X3 = W3 � T3 = (1, 0, 0),
Y3 = (X3 · L) � T3 = (0, 1, 0), C3 = C2 − Z3 · U + Y3 = (2s − 2, 1, 0).

Step (4) Z4 =
¨︷ ︸︸ ︷

(C3, U, T ↓
3 ) = (1, 0, 0), T4 = T ↓

3 + Z4 · D = (2, 0, 0),
W4 = W3 − W3 � T4 + Z4 · V = (1, 0, 0), X4 = W4 � T3 = (0, 0, 0),
Y4 = (X4 · L) � T4 = (0, 0, 0), C4 = C3 − Z4 · U + Y4 = (2s − 3, 1, 0).

Step (5) Z5 =
¨︷ ︸︸ ︷

(C4, U, T ↓
4 ) = (0, 0, 0), T5 = T ↓

4 + Z5 · D = (1, 0, 0),
W5 = W4 − W4 � T5 + Z5 · V = (1, 0, 0), X5 = W5 � T4 = (0, 0, 0),
Y5 = (X5 · L) � T5 = (0, 0, 0), C5 = C4 − Z5 · U + Y5 = (2s − 3, 1, 0).

Step (6) Z6 =
¨︷ ︸︸ ︷

(C5, U, T ↓
5 ) = (0, 0, 0), T6 = T ↓

5 + Z6 · D = (0, 0, 0),
W6 = W5 − W5 � T6 + Z6 · V = (1, 0, 0), X6 = W6 � T5 = (1, 0, 0),
Y6 = (X6 · L) � T6 = (0, 1, 0), C6 = C5 − Z6 · U + Y6 = (2s − 3, 2, 0).

According to parallel computing algorithm described above, we easily obtain
the computing results in the subsequent steps. Table 2 gives the computing
results of Π1 in the first 15 steps.

Example 2 SN P system Π2, shown in Fig. 3, has six neurons (σ1, σ2, σ3, σ4,
σ5, σ6) and eleven rules (r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11). R1 = {r1, r2, r3},
R2 = {r4, r5}, R3 = {r6}, R4 = {r7}, R5 = {r8} and R6 = {r9, r10, r11}.

Based on the definitions above, the relation matrix, rule delay matrix, spike
consumption matrix and spike generation matrix of Π2 are, respectively

L =

⎛

⎜⎜⎜⎜⎜⎜⎝

0 1 1 0 0 0
1 0 0 0 0 1
1 0 0 1 1 1
0 0 0 0 0 1
0 0 0 0 0 1
1 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎠
, D =

⎛

⎜⎜⎜⎜⎜⎜⎝

2 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 2 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎠

T

U =

⎛

⎜⎜⎜⎜⎜⎜⎝

4 2 1 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 2 3

⎞

⎟⎟⎟⎟⎟⎟⎠

T

, V =

⎛

⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0

⎞

⎟⎟⎟⎟⎟⎟⎠

T
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Table 2. The computing results of Π1 in the first 15 steps

k Zk Tk Wk Xk Yk Ck

0 - (0,0,0) (0,0,0) - - (2s-1,0,1)

1 (1,0,1) (2,0,0) (1,0,1) (0,0,1) (0,0,0) (2s-2,0,0)

2 (0,0,0) (1,0,0) (1,0,0) (0,0,0) (0,0,0) (2s-2,0,0)

3 (0,0,0) (0,0,0) (1,0,0) (1,0,0) (0,1,0) (2s-2,1,0)

4 (1,0,0) (2,0,0) (1,0,0) (0,0,0) (0,0,0) (2s-3,1,0)

5 (0,0,0) (1,0,0) (1,0,0) (0,0,0) (0,0,0) (2s-3,1,0)

6 (0,0,0) (0,0,0) (1,0,0) (1,0,0) (0,1,0) (2s-3,2,0)

7 (1,0,0) (2,0,0) (1,0,0) (0,0,0) (0,0,0) (2s-4,2,0)

8 (0,0,0) (1,0,0) (1,0,0) (0,0,0) (0,0,0) (2s-4,2,0)

9 (0,0,0) (0,0,0) (1,0,0) (0,1,0) (0,0,0) (2s-4,3,0)

10 (1,0,0) (2,0,0) (1,0,0) (0,0,0) (0,0,0) (2s-5,3,0)

11 (0,0,0) (1,0,0) (1,0,0) (0,0,0) (0,0,0) (2s-5,3,0)

12 (0,0,0) (0,0,0) (1,0,0) (1,0,0) (0,1,0) (2s-5,4,0)

13 (1,0,0) (2,0,0) (1,0,0) (0,0,0) (0,0,0) (2s-6,4,0)

14 (0,0,0) (1,0,0) (1,0,0) (0,0,0) (0,0,0) (2s-6,4,0)

15 (0,0,0) (0,0,0) (1,0,0) (1,0,0) (0,1,0) (2s-6,5,0)

a3

a4 a 2
a2 a;1
a

a a 1 a a 0
a a;1

Rules:
     r1:    a4 a;2     r7:    a a;2  
     r2:  a2 a;1     r8:    a a;1
     r3:   a r9:    a a;0
     r4:    a a;0      r10:   a2

     r5:    a a;1      r11:   a3

     r6:    a a;1

a
a a 0
a2

a3

a a 2 

a a 1 

Fig. 3. SN P system Π2 and its firing rules.

Initially, C0 = (3, 0, 0, 0, 0, 1), W0 = (0, 0, 0, 0, 0, 0), T0 = (0, 0, 0, 0, 0, 0). The
parallel computation procedure of Π2 is provided as follows.

Step (1) Z1 =
¨︷ ︸︸ ︷

(C0, U, T ↓
0 ) = (0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0),

T1 = T ↓
0 +Z1 ·D = (0, 0, 0, 0, 0, 0), W1 = W0 −W0 �T1 +Z1 ·V = (0, 0, 0, 0, 0, 1),

X1 = W1 � T1 = (0, 0, 0, 0, 0, 1), Y1 = (X1 · L) � T1 = (1, 0, 0, 0, 0, 0),
C1 = C0 − Z1 · U + Y1 = (4, 0, 0, 0, 0, 0).
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Step (2) Z2 =
¨︷ ︸︸ ︷

(C1, U, T ↓
1 ) = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

T2 = T ↓
1 +Z2 ·D = (2, 0, 0, 0, 0, 0), W2 = W1 −W1 �T2 +Z2 ·V = (1, 0, 0, 0, 0, 0),

X2 = W2 � T2 = (0, 0, 0, 0, 0, 0), Y2 = (X2 · L) � T2 = (0, 0, 0, 0, 0, 0),
C2 = C1 − Z2 · U + Y2 = (0, 0, 0, 0, 0, 0).

Step (3) Z3 =
¨︷ ︸︸ ︷

(C2, U, T ↓
2 ) = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

T3 = T ↓
2 +Z3 ·D = (1, 0, 0, 0, 0, 0), W3 = W2 −W2 �T3 +Z3 ·V = (1, 0, 0, 0, 0, 0),

X3 = W3 � T3 = (0, 0, 0, 0, 0, 0), Y3 = (X3 · L) � T3 = (0, 0, 0, 0, 0, 0),
C3 = C2 − Z3 · U + Y3 = (0, 0, 0, 0, 0, 0).

Step (4) Z4 =
¨︷ ︸︸ ︷

(C3, U, T ↓
3 ) = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

T4 = T ↓
3 +Z4 ·D = (0, 0, 0, 0, 0, 0), W4 = W3 −W3 �T4 +Z4 ·V = (1, 0, 0, 0, 0, 0),

X4 = W4 � T3 = (1, 0, 0, 0, 0, 0), Y4 = (X4 · L) � T4 = (0, 1, 1, 0, 0, 0),
C4 = C3 − Z4 · U + Y4 = (0, 1, 1, 0, 0, 0).

Step (5) Z5 =
¨︷ ︸︸ ︷

(C4, U, T ↓
4 ) = (0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0),

T5 = T ↓
4 +Z5 ·D = (0, 0, 1, 0, 0, 0), W5 = W4 −W4 �T5 +Z5 ·V = (0, 1, 1, 0, 0, 0),

X5 = W5 � T4 = (0, 1, 0, 0, 0, 0), Y5 = (X5 · L) � T5 = (1, 0, 0, 0, 0, 1),
C5 = C4 − Z5 · U + Y5 = (1, 0, 0, 0, 0, 1).

Step (6) Z6 =
¨︷ ︸︸ ︷

(C5, U, T ↓
5 ) = (0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0),

T6 = T ↓
5 +Z6 ·D = (0, 0, 0, 0, 0, 0), W6 = W5 −W5 �T6 +Z6 ·V = (0, 0, 0, 0, 0, 0),

X6 = W6 � T5 = (0, 0, 1, 0, 0, 1), Y6 = (X6 · L) � T6 = (2, 0, 0, 1, 1, 1),
C6 = C5 − Z6 · U + Y6 = (2, 0, 0, 1, 1, 1).

Table 3. The computing results of Π2 in the first 15 steps

k Zk Tk Wk Xk Yk Ck

0 · · · (0,0,0,0,0,0) (0,0,0,0,0,0) · · · · · · (3,0,0,0,0,1)

1 (0,0,0,0,0,0,0,0,1,0,0) (0,0,0,0,0,0) (0,0,0,0,0,1) (0,0,0,0,0,1) (1,0,0,0,0,0) (4,0,0,0,0,0)

2 (1,0,0,0,0,0,0,0,0,0,0) (2,0,0,0,0,0) (1,0,0,0,0,0) (0,0,0,0,0,0) (0,0,0,0,0,0) (0,0,0,0,0,0)

3 (0,0,0,0,0,0,0,0,0,0,0) (1,0,0,0,0,0) (1,0,0,0,0,0) (0,0,0,0,0,0) (0,0,0,0,0,0) (0,0,0,0,0,0)

4 (0,0,0,0,0,0,0,0,0,0,0) (0,0,0,0,0,0) (1,0,0,0,0,0) (1,0,0,0,0,0) (0,1,1,0,0,0) (0,1,1,0,0,0)

5 (0,0,0,1,0,1,0,0,0,0,0) (0,0,1,0,0,0) (0,1,1,0,0,0) (0,1,0,0,0,0) (1,0,0,0,0,1) (1,0,0,0,0,1)

6 (0,0,1,0,0,0,0,0,1,0,0) (0,0,0,0,0,0) (0,0,1,0,0,1) (0,0,1,0,0,1) (2,0,0,1,1,1) (2,0,0,1,1,1)

7 (0,1,0,0,0,0,1,1,1,0,0) (1,0,0,2,1,0) (1,0,0,1,1,1) (0,0,0,0,0,1) (0,0,0,0,0,0) (0,0,0,0,0,0)

8 (0,0,0,0,0,0,0,0,0,0,0) (0,0,0,1,0,0) (1,0,0,1,1,0) (1,0,0,0,1,0) (0,1,1,0,0,1) (0,1,1,0,0,1)

9 (0,0,0,0,1,1,0,0,1,0,0) (0,1,1,0,0,0) (0,1,1,1,0,1) (0,0,0,1,0,1) (1,0,0,0,0,1) (1,0,0,0,0,1)

10 (0,0,1,0,0,0,0,0,1,0,0) (0,0,0,0,0,0) (0,1,1,0,0,1) (0,1,1,0,0,1) (3,0,0,1,1,2) (3,0,0,1,1,2)

11 (0,0,0,0,0,0,1,1,0,1,0) (0,0,0,2,1,0) (0,0,0,1,1,0) (0,0,0,0,0,0) (0,0,0,0,0,0) (3,0,0,0,0,0)

12 (0,0,0,0,0,0,0,0,0,0,0) (0,0,0,1,0,0) (0,0,0,1,1,0) (0,0,0,0,1,0) (0,0,0,0,0,1) (3,0,0,0,0,1)

13 (0,0,0,0,0,0,0,0,1,0,0) (0,0,0,0,0,0) (0,0,0,1,0,1) (0,0,0,1,0,1) (1,0,0,0,0,1) (4,0,0,0,0,1)

14 (1,0,0,0,0,0,0,0,1,0,0) (2,0,0,0,0,0) (1,0,0,0,0,1) (0,0,0,0,0,1) (0,0,0,0,0,0) (0,0,0,0,0,0)

15 (0,0,0,0,0,0,0,0,0,0,0) (0,0,0,0,0,0) (1,0,0,0,0,0) (1,0,0,0,0,0) (0,1,1,0,0,0) (0,1,1,0,0,0)
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Based on parallel computing algorithm described above, we can obtain the
computing results in the subsequent steps. Table 3 gives the computing results
of Π2 in the first 15 steps.

5 Conclusions and Future Work

The distributed parallel computation is an attractive feature of SN P systems.
However, parallel computation ability of SN P systems can not really be simu-
lated on the current computer due to the restriction of serial architecture. Cur-
rently, some new computing devices such as GPU and FPGA, which support the
parallel computation, provide an way to implement the parallel computation of
SN P systems. This paper presented a matrix representation for SN P systems
with delay, where several matrices, vectors and operations were introduced to
express the parallel computation procedure of SN P systems. Since matrix oper-
ations are easily implemented on GPU and FPGA, the proposed representation
method can help to achieve the parallel computation of SN P systems with delay
on GPU or FPGA. Therefore, the future work is that based on the matrix rep-
resentation, we will further discuss the implementation of SN P systems with
delay and its variants on GPUs or FPGA.
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Abstract. In the field of DNA computing, splicing system was pro-
posed by Tom Head in which the splicing operation is used. Various
models have been studied with mate operation working on strings. The
operations mate and drip considered in membrane computing resemble
the operation cut and recombination well known from DNA computing.
Here we introduce a new generative device called APm(mate) system. A
P system with mate operation working on array is focused. The power
of P system with mate operation as a unique evolution rule is examined.

Keywords: P system · Splicing operation · Mate operation · Mate array
operation

1 Introduction

DNA computing was introduced by Head in [1] more than twenty years ago,
when he formalized the operation of splicing, well-known from biology as an
operation on DNA stands. In [2], the range of Turing machines was encoded
using iterated splicing on multisets. The splicing operation then mainly was
used as a basic tool for building a generative mechanism called a splicing system
or H system as formalized by Gheorghe Paun.

A new kind of generative mechanism was proposed in [3] with mate and drip
operations working on strings. In P systems and tissue P systems the objects are
placed inside the membranes. In the variant of membrane systems introduced
by Cardelli [4], the objects are placed on the membranes. The computations in
these models also called brane calculus are based on specific ways to divide and
fuse membranes and to redistribute the objects on the membranes [5,6] the rules
usually being applied in a sequential way in contrast to the (maximal) parallel
way of applying rules in P systems. Various attempts have already been made
to combine different models from the area of P systems and of brane calculi
[7,8]. Following this research line by investigating tissue P systems with the
brane operations mate and drip in [9] computational completeness results were
obtained both for symbol objects as well as for string objects. It is of interest
to note that systems using mate operation are Turing complete and they can
compute all Turing computable sets of numbers.
c© Springer Nature Singapore Pte Ltd. 2016
M. Gong et al. (Eds.): BIC-TA 2016, Part I, CCIS 681, pp. 200–214, 2016.
DOI: 10.1007/978-981-10-3611-8 19
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In this paper we deal with the mate operation on arrays in terms of mem-
brane computing formalism. We investigate the power of P systems with mate
operation as a unique evolution rule.

2 Preliminaries

For an alphabet V , we denote the set of all strings over V , by V ∗, the empty
string λ included; the set of non-empty strings over V , that is V ∗ −λ is denoted
by V +. The length of a string x ∈ V ∗ is denoted by | x | and | x |a for a ∈ V is
the number of occurrences of the symbol a in x. The set of all arrays over V is
denoted by V ∗∗.

2.1 Array P System [10]

The array-rewriting P system (of degree m ≥ 1) is a construct

Π = (V, T,#, μ, F1, . . . , Fm, R1, . . . , Rm, io)

where V is the total alphabet, T ⊆ V is the terminal alphabet, # is the blank
symbol, μ is a membrane structure with m membranes labeled in a one-to-one
way with 1, 2, · · · ,m, F1, · · · , Fm are finite sets of arrays over V associated with
the m regions of μ,R1, . . . , Rm are finite sets of array rewriting rules over V
associated with the m regions of μ; the rules have attached targets here, out, in
(in general, here is omitted), hence they are of the form A → B(tar); finally, io is
the label of an elementary membrane of μ (the output membrane). The general
case, when a set T is distinguished we speak about an extended P system, when
V = T we have a non-extended system. According to the form of its rules, an
array P system can be monotonic, context-free (CF ), # - context-free (#CF )
or regular (REG). In the extended case, a rule is called regular if it is of one of
the following forms:

a b # b
a # → b c, # a → b c, → , → , a → b

# c a c

where all a, b, c are non-blank symbols. In the non-extended case, we use the
notion of a regular rule in the restricted sense; such a rule is of one of the forms:

a a # b
a # → a b , # a → b a , → , →

# b a a

where all a, b are non-blank symbols.
The set of all arrays generated by a system Π is denoted by AL(Π). The

family of all array languages AL(Π) generated by systems Π as above, with at
most m membranes, with rules of type α ∈ {REG,CF,#CF} is denoted by
EAPm(α). If non-extended systems are considered, then we write APm(α).
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2.2 Mate Operation [3]

The operation mate is defined as Mate:(u | a, b | v;x). This operation has the
following meaning: (u | a, b | v;x) fuses a membrane carrying the multiset sua
and the membrane carrying the multiset bvw into one cell which then has the
multiset suxvw, (i.e.) ab is replaced by x and the remaining multisets are taken
as they are. A sequence of transitions constitutes a computation. A computation
which starts from the initial configuration is successful if (i) it halts, that is, it
reaches a configuration where no rule can be applied and (ii) in the halting
configuration there are only two membranes, the skin (marked with λ) and an
inner one. The result of a successful computation is given by the multiset which
marks the inner membrane in the halting configuration. Here we consider as the
result the vector describing the multiplicity of proteins in this multiset. Note that
the computations which do not halt or halt with more than one inner membrane
provide no output. The family of all sets of vectors P (Π) computed by P systems
Π using at any moment during halting computation with at most m membranes
and mate rules is denoted by POPm(mate).

3 Array P System with Mate Operation

A P system with mate operation working on array is introduced here.

3.1 Definition

An Array P system with Mate operation is a construct

Π = (V, VT ,#, μ,A,R, i0)

where V is a finite set of symbols, VT is a set of terminal symbols; VT ⊆ V,
# is the blank symbol; # /∈ V , μ is a membrane structure with m membranes
injectively labeled by 1, 2, . . . ,m, A = (A1, A2, . . . , Am) is a sequence of sets
of axioms where Ai ⊆ V ∗∗, 1 ≤ i ≤ m, describing the initial contents of the
membranes, R is a finite set of tables Ri, i = 1, 2, . . . ,m containing mate rules
associated with the regions of μ and i0 is the output membrane.

A computation in Π starts with the initial configuration described by A;
a computation is performed by applying suitable mate rules from R in a non-
deterministic, maximally parallel way, thereby passing from one configuration of
the system to the next one. A sequence of transitions constitutes a computation.

The mate column operation on a membrane is defined on two arrays X, Y of
order m×n and the rule Ri from the finite set of mate rules R = (R1, R2, . . . Rm)
as follows:

{{(P | A,B | Q;Z), tar}, {p � c a $c b � c q; z}}

where X = SΦPΦA and Y = BΦQΦW ;X,Y,Z ⊆ V ∗∗. The mate column opera-
tion will be done to the elements of arrays X and Y, taking the sub arrays starting
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from the first row towards the end of the row. The sub arrays s, p, a, b, q, w and
z of S, P,A,B,Q,W and Z respectively will be of order p × q, 1 ≤ p ≤ m and
1 ≤ q ≤ n such that the number of rows will be equal and the number of columns
may differ. {p � c a $c b � c q ; z } fuses the two arrays carrying (s Φ p Φ a ) and
( b Φ q Φ w ) into an array which has the form (s Φ p Φ z Φ q Φ w ) where (a, b)
is replaced by (z) and the remaining sub arrays are taken as they are.

The mate row operation on a membrane is defined on two arrays X, Y of
order m×n and the rule Ri from the finite set of mate rules R = (R1, R2, . . . Rm)
as follows:

{{(P | A,B | Q;Z), tar}, {p � c a $r b � c q; z}}

where X = SΘPΘA and Y = BΘQΘW ;X,Y,Z ⊆ V ∗∗. The mate row operation
will be done to the elements of arrays X and Y, taking the sub arrays starting
from the first column towards the end of the column. The sub arrays s, p, a, b, q, w
and z of S, P,A,B,Q,W and Z respectively will be of order p × q, 1 ≤ p ≤ m
and 1 ≤ q ≤ n such that the number of columns will be equal and the number of
rows may differ. {p � c a $r b � c q ; z } fuses the two arrays carrying (s Θ p Θ a )
and ( b Θ q Θ w ) into an array which has the form (s Θ p Θ z Θ q Θ w ) where
(a, b) is replaced by (z) and the remaining sub arrays are taken as they are.

The generated array in the form SΦPΦZΦQΦW or SΘPΘZΘQΘW is sent
to the region indicated by tar. If tar = here, then the generated array remains
in the same membrane where it is generated. If tar = out, then the generated
array is moved to the region immediately outside the membrane. If tar = in,
then the generated array is sent to the region immediately inside the membrane.

A computation is successful only if (i) it halts by reaching a configuration
where no rule can be applied any more and (ii) the output array in the halting
configuration is the required array. The set of all such arrays computed by a
system Π is denoted by MAL(Π). The family of all array languages generated
by systems MAL(Π), with at most m membranes with mate operation is denoted
by APm(mate).

3.2 Example

Consider the Array P system with mate operation

Π1 =

⎛

⎝{x, b}, {x, b},#, [1[2[3]3]2]1,

⎧
⎨

⎩

x x x
x b x
x x x

⎫
⎬

⎭ , φ, φ, (R1, R2, R3), 3

⎞

⎠ where

R1 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x
x
...
x

∣∣∣∣∣∣∣∣∣

x . . . x x
b . . . b x
...

...
...

...
x . . . x x

,

x
x
...
x

∣∣∣∣∣∣∣∣∣

x . . . x x
b . . . b x
...

...
...

...
x . . . x x

;

x
b
...
x

, (in)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
,

{
x � c x $c x � c x; (x . . . x x x ) → (x ),
x � c b $c x � c b; ( b . . . b x x ) → ( b )

}

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,
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R2 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x x . . . x x
x b . . . b x
...

...
...

...
...

x b . . . b x
x x . . . x x

,

x x . . . x x
x b . . . b x
...

...
...

...
...

x b . . . b x
x x . . . x x

; x b . . . x , (in, out)

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x � c x $r x � c x;

⎛

⎜⎜⎜⎜⎜⎝

x
...
x
x
x

⎞

⎟⎟⎟⎟⎟⎠
→ (x ),

x � c b $r x � c b;

⎛

⎜⎜⎜⎜⎜⎝

b
...
b
x
x

⎞

⎟⎟⎟⎟⎟⎠
→ ( b )

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

R3 = {φ}.

Intially, the axiom array
x x x
x b x
x x x

is in the skin region and the other regions

do not have objects. If the mate rule R1 is applied with the object to itself in
region 1, the generated array is moved to region 2. In region 2, the mate rule
R2 is applied and the generated array is sent to outer region 1 or inner region
3. When the generated array is sent to region 3, there is no rule to apply and
hence the system halts. As a result, the array of solid square shape is obtained.
The process is repeated, when the generated array in region 2 is sent out to
region 1. The picture language generated by Π1 consists of all solid squares of
b�s surrounded by x�s as in Fig. 1.

x x x x x
x b b b x
x b b b x
x b b b x
x x x x x

Fig. 1. Square of b� s surrounded by x� s

A vertical bar ′ |′ and a horizontal bar ′−′ are used to indicate the place
where cutting is done.

3.3 Theorem

The set of all chessboards with even side-length [11] is generated by AP3(mate).

Proof: Consider the Array P system with mate operation
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Π2 =

⎛

⎜⎜⎝{a, b}, {a, b},#, [1[2[3]3]2]1,

⎧
⎪⎪⎨

⎪⎪⎩

# # # #
# a b #
# b a #
# # # #

⎫
⎪⎪⎬

⎪⎪⎭
, φ, φ, (R1, R2, R3), 3

⎞

⎟⎟⎠

where

R1 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

# # # . . . # #
# a b . . . a b
# b a . . . b a
...

...
...

...
...

...
# a b . . . a b
# b a . . . b a
# # # . . . # #

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

#
#
#
...
#
#
#

,

#
#
#
...
#
#
#

# # . . . # #
a b . . . a b
b a . . . b a
...

...
...

...
...

a b . . . a b
b a . . . b a
# # . . . # #

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

#
#
#
...
#
#
#

;

# #
a b
b a
...

...
a b
b a
# #

, (in)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

⎧
⎪⎪⎨

⎪⎪⎩

# � c # $c # � c #; (# ### . . . ##) → (# #),

(
b
a

)
� c

(
#
#

)
$c

(
b
a

)
� c

(
#
#

)
;
(

# # a b . . . a b
# # b a . . . b a

)
→

(
a b
b a

)

⎫
⎪⎪⎬

⎪⎪⎭

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

R2 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

# # # . . . #
# a b . . . #
# b a . . . #
...

...
...

...
...

# a b . . . #
# b a . . . #
# # # . . . #

,

# # # . . . #
# a b . . . #
# b a . . . #
...

...
...

...
...

# a b . . . #
# b a . . . #
# # # . . . #

;
# a b . . . #
# b a . . . # , (in, out)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

# � c # $r # � c #;

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

#
#
#
#
...
#
#

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

→
(

#
#

)
,

(
b a

) � c (
# #

)
$r

(
b a

) � c (
# #

)
;

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

# #
# #
a b
b a
...

...
a b
b a

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

→
(

a b
b a

)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,
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R3 = {φ}.

The picture language generated by Π2 consisting of all ′′chessboards′′ with
even side-length as in Fig. 3 where ′a′ stands for black and ′b′ stands for white.
The corresponding picture pattern is shown in Fig. 2.

Fig. 2. Chess board

a b a b a b
b a b a b a
a b a b a b
b a b a b a
a b a b a b
b a b a b a

Fig. 3. Pattern of Chess board

4 Closure Properties

4.1 Theorem

The class APm(mate) is not closed under union and concatenation.

Proof: Let L1 be the set of solid squares of b�s surrounded by x′s [Example 3.2]
and L2 be the set of solid squares of a�s surrounded by x′s as in Fig. 4.

x x x x x
x a a a x
x a a a x
x a a a x
x x x x x

Fig. 4. A member of L2
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Perform mate column operation on two initial arrays of the form

x x x
x a x
x x x

,
x x x
x b x
x x x

by ′cutting′ inside the array and then ′fusing′ the resulting array according to
the rules we will obtain arrays which will not be elements of L1 ∪ L2.

Let L1 be a language consisting of arrays with at least three rows and any
number of columns with left border made of x′s, right border of y′s and inner
part of a′s. A member of L1 is shown in Fig. 5.

x a a a y
x a a a y
x a a a y

Fig. 5. Member of L1

Similarly, let L2 be another language of arrays as in L1 but left border made
of p′s, right border of q′s and inner part made of a′s. A member of L2 is shown in
Fig. 6.

p a a a q
p a a a q
p a a a q

Fig. 6. Member of L2

In order to obtain arrays of L1ΦL2 (a member of which is shown in Fig. 7), the
column mate operation of two arrays should maintain the inner part of x′s and
q′s and two successive innermost column of y′s and p′s. But this is not possible
due to the mate rules. An analogous argument applies to row concatenation.

x a y p a q
x a y p a q
x a y p a q

Fig. 7. Member of L1ΦL2

4.2 Theorem

The class APm(mate) is closed under reflections on the base and right leg and
rotations by 90◦, 180◦ and 270◦.
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Proof: Let Π = (V, VT ,#, μ,A,R, i0) be a system APm(mate) generating a
language L. Let P be a member array in L. Consider the mate column/row
operation (P | A,B | Q;Z).
Let the finite set of tables Ri containing mate column/row rules be given by

(p � c a $c b � c q ; z) and
(p � c a $r b � c q ; z)

The language Lb consisting of reflections of pictures of L on the base are
obtained by modifying mate rules:

(p⊥ � c a⊥ $c b⊥ � c q⊥ ; z⊥) and
(q⊥ � c b⊥ $r a⊥ � c p⊥ ; z⊥)

′ ⊥′ represents the reflection on the base

Similarly, the language Lrl consisting of reflections of pictures of L on the right
leg can be obtained by modifying mate rules:

(qR � c bR $c aR � c pR ; zR) and
(pR � c aR $r bR � c qR ; zR)

where ′R′ stands for the reversal.

The language L1, by rotating the pictures of L by 90◦ is obtained by
modifying mate rules:

((pT )R � c (aT )R $r (bT )R � c (qT )R ; (zT )R) and

((qT )R � c (bT )R $c (aT )R � c (pT )R ; (zT )R)

where ′T ′ stands for the transpose.

The language L2, by rotating the pictures of L by 180◦ is obtained by
modifying mate rules:

((q⊥)R � c (b⊥)R $c (a⊥)R � c (p⊥)R ; (z⊥)R) and

((q⊥)R � c (b⊥)R $r (a⊥)R � c (p⊥)R ; (z⊥)R)

The language L3, by rotating the pictures of L by 270◦ is obtained by
modifying mate rules:

((qT )⊥ � c (bT )⊥ $r (aT )⊥ � c (pT )⊥ ; (zT )⊥) and

((pT )⊥ � c (aT )⊥ $c (bT )⊥ � c (qT )⊥ ; (zT )⊥).
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5 Generative Power

We now compare the generative power of Array P system with mate operation
with other description models.

5.1 Theorem

The family AP3(mate) intersects with the family HAP3 [12].

Proof: Consider the Array P system with mate operation

Π3 =

⎛

⎝{x, a}, {x, a},#, [1[2[3]3]2]1,

⎧
⎨

⎩

a a a
x a x
x a x

⎫
⎬

⎭ , φ, φ, (R1, R2, R3), 3

⎞

⎠ where

R1 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a . . . a
x . . . x
...

...
...

x . . . x

∣∣∣∣∣∣∣∣∣

a . . . a
a . . . x
...

...
...

a . . . x

,

a . . . a
x . . . a
...

...
...

x . . . a

∣∣∣∣∣∣∣∣∣

a . . . a
x . . . x
...

...
...

x . . . x

;

a a a
x a x
...

...
...

x a x

, (in)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
,

{
a � c a $c a � c a; (a a . . . a . . . a a ) → (a a a ),
x � c a $c a � c x; (a x . . . x . . . x a ) → (x a x )

}

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

R2 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

a . . . a a . . . a
x . . . a x . . . x
x . . . a x . . . x
...

...
...

...
...

...
x . . . a x . . . x

,

a . . . a a . . . a
x . . . a x . . . x
x . . . a x . . . x
...

...
...

...
...

...
x . . . a x . . . x

;
x . . . a x . . . x
x . . . a x . . . x
x . . . a x . . . x

, (in, out)

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a � c x $r a � c x;

⎛

⎜⎜⎜⎝

x
...
x
a

⎞

⎟⎟⎟⎠ →
⎛

⎝
x
x
x

⎞

⎠ ,

a � c a $r a � c a;

⎛

⎜⎜⎜⎝

a
...
a
a

⎞

⎟⎟⎟⎠ →
⎛

⎝
a
a
a

⎞

⎠

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

R3 = {φ}.

The picture language generated by Π3 consists of T shapes as in Fig. 8. where
′x′ stands for empty.
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a a a a a
x x a x x
x x a x x
x x a x x
x x a x x

Fig. 8. Array describing pattern T

This language also can be generated by HAP3 [12].
Consider the Array P System Hybrid teams of degree 3.

Π = ({S,A,B, a}, {a},#, [1[2[3]3]2]1, S, φ, φ,R1, R2, R3, 3) where

R1 = {(Q1, t)in}, R2 = {(Q2, ∗)here, (Q2, ∗)in}, R3 = {(Q3, t)here} ,

Q1 = {P1}, Q2 = {P2, P3, P4}, Q3 = {P5, P6},

P1 =

⎧
⎨

⎩

# S #

#
→

A a A

B

⎫
⎬

⎭ , P2 = {# A → A a}, P3 = {A # → a A},

P4 =
{

B
# → a

B

}
, P5 = {A → a}, P6 = {B → a}.

This Array P systems with hybrid teams Π generates a language consisting of
arrays in the shape of token T as shown in Fig. 8.

5.2 Theorem

The family AP3(mate) intersects with the family EAP5(REG) [13].

Proof: Let the Array P system AP3(mate) for all m ≥ 3 be a construct

Π4 =

⎛

⎝{x, y}, {x, y},#, [1[2[3]3]2]1,

⎧
⎨

⎩

y x y
x x x
y x y

⎫
⎬

⎭ , φ, φ, (R1, R2, R3), 3

⎞

⎠ where

R1 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

y . . . y
...

...
...

x . . . x
y . . . y
...

...
...

y . . . y

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x y . . . y
...

...
...

...
x x . . . x
x y . . . y
...

...
...

...
x y . . . y

,

y . . . y x
...

...
...

...
x . . . x x
y . . . y x
...

...
...

...
y . . . y x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

y . . . y
...

...
...

x . . . x
y . . . y
...

...
...

y . . . y

;

y x y
...

...
...

x x x
y x y
...

...
...

y x y

, (in)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

⎧
⎨

⎩

y � c x $r x � c y; (x y . . . y . . . y x ) → (y x y ),

x � c x $r x � c x; (x x . . . x . . . x x ) → (x x x )

⎫
⎬

⎭

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,
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R2 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y . . . x y . . . y
...

...
...

...
...

...
y . . . x y . . . y
x . . . x x . . . x
y . . . x y . . . y
...

...
...

...
...

...
y . . . x y . . . y

,

y . . . x y . . . y
...

...
...

...
...

...
y . . . x y . . . y
x . . . x x . . . x
y . . . x y . . . y
...

...
...

...
...

...
y . . . x y . . . y

;
y . . . xy . . . y
x . . . xx . . . x
y . . . xy . . . y

, (in, out)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y � c x $r x � c y;

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x
y
...
y
...
y
x

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

→
⎛

⎝
y
x
y

⎞

⎠ ,

x � c x $r x � c x;

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x
x
...
x
...
x
x

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

→
⎛

⎝
x
x
x

⎞

⎠

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

R3 = {φ}.

The picture language generated by Π4 consists of plus shapes as in Fig. 9.
where ′x′ stands for � and ′y′ stands for empty. The corresponding picture
pattern is shown in Fig. 10.

Fig. 9. Array plus
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y y y x y y y
y y y x y y y
y y y x y y y
x x x x x x x
y y y x y y y
y y y x y y y
y y y x y y y

Fig. 10. Array describing pattern plus

This language also can be generated by EAP5(REG) [13].

Consider the array P system generating the star-shaped arrays of Lstar.

Πs = {V, {�},#, μ, F1, F2, F3, F4, F5, R1, R2, R3, R4, R5, 5}, where

V = {A,B,C,D,B�, C �,D�,X1,X2,X3,X4, a}, μ = [1[2[3][4]4]3]2]1,

F1 = {M1,M2},M1 =
A

D � B
C

,M2 =
X1

X4 � X2

X3

, F2 = F3 = F4 = F5 = φ.

The sets of rules are given by

R1 = {r1,1 :
#
A

→ A
a

(in), r1,2 : X1 → � (in)},

R2 = {r2,1 : B # → � B�(in), r2,2 : B� → B(out), r2,3 : X2 → � (in)},

R3 = {r3,1 :
C
# → �

C �
(in), r3,2 : C � → C(out), r3,3 : X3 → � (in)},

R4 = {r4,1 : # D → D �(out), r4,2 : # D → D� �(in), r4,3 : X4 → � (in)},
R5 = {r5,1 : A → �, r5,2 : B� → �, r5,3 : C � → �, r5,4 : D� → �, }

Intuitively a computation in Πs, that starts with array A1 moves the array from
region 1 to region 4 through regions 2, 3 with each arm of the star-shaped array
growing by the symbol {�} for each step. The array either comes back to region
1 from region 4 through regions 2, 3 or is sent to region 4. In the farmer case,
the process repeats; while in the latter case, the desired array is formed over {�}
and is collected in the language.

5.3 Theorem

(i) The class APm(mate) of Array P system with mate operation and L(2RLG)
of picture languages generated by two-dimensional are incomparable but not
disjoint.

(ii) The class LOC of local array languages and the class of APm(mate) are
incomparable but not disjoint.
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5.4 Definition

Notations:

| T |c is the number of columns in array T .
| T |r is the number of rows in array T .

A language L ⊆ V ∗∗ has the Bounded Step property if there is a constant k
such that for each T ∈ L with | T |c > k or | T |r > k either of the following
properties (1), (2) holds:

1. There are U, V ∈ L where U = SΦPΦA and V = BΦQΦW such that
T = SPZQW and | Z |c ≤ k. (Column Bounded Step Property).

2. There are U, V ∈ L where U = SΘPΘA and V = BΘQΘW such that
T = SPZQW and | Z |r ≤ k. (Row Bounded Step Property).

5.5 Theorem

Every APm(mate) language has the Bounded Step Property.

Proof: Let L ∈ APm(mate) and Π = (V, VT ,#, μ,A,R, i0) be an Array P
system with mate operation generating L.
Let k1 = max{| T |c: T ∈ A},
k2 = max{| T |r: T ∈ A},
k3 = max{| zi |c},
k4 = max{| zj |r}.

Note that | Z |c=| zi |c if Z =

z1
z2
...
zl

for some l and | Z |r=| zj |r if Z = z1 z2 . . . zm

for some m.
Let k = max {k1, k2, k3, k4}. If E ∈ L is such that either | E |c > k or

| E |r > k then E /∈ A. Hence either E = SΦPΦZΦQΦW for some Z obtained
by the mate column rule (P | A,B | Q;Z), F = SΦPΦA, G = BΦQΦW ,
F,G ∈ L or E = SΘPΘZΘQΘW for some Z obtained by the mate row rule,
(P | A,B | Q;Z), F � = SΘPΘA, G� = BΘQΘW , F �, G� ∈ L. Hence there is a
constant k such that for each E ∈ L either for | E |c > k there exist F,G ∈ L
such that E = SΦPΦZΦQΦW and 0 < | Z |c ≤ k or for | E |r > k there exist
F �, G� ∈ L such that E = SΘPΘZΘQΘW and 0 < | Z |r ≤ k. Hence L has the
Bounded step property.

6 Conclusion

In this paper, we have introduced a new model called Array P system with mate
operation. We have studied bounded step property and some closure properties
such as union, concatenation and rotation on family of languages generated by
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Array P system with mate operation. The generative power is compared with
other models of picture description. It is worth examining further properties of
the system.
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Abstract. A Watson-Crick finite automaton is one of DNA compu-
tational models using the Watson-Crick complementarity feature of
deoxyribonucleic acid (DNA). We are interested in investigating a gram-
mar counterpart of Watson-Crick automata. In this paper, we present
results concerning the generative power of Watson-Crick (regular, lin-
ear, context-free) grammars. We show that the family of Watson-Crick
context-free languages is included in the family of matrix languages.

1 Introduction

Discoveries in bio-molecular science and related fields bring forth advancement
in computing world, such as the birth of membrane computing and DNA com-
puting. Both membrane computing and DNA computing stem from molecular
biology although from different substances in living nature, where membrane
computing get its insight from how membrane works in a cell, and DNA com-
puting from how the deoxyribonucleic acid works.

In membrane computing, or P systems, introduced by Pǎun (see [1–3]), the
most important part is the membrane structure which consists of several mem-
branes or regions. The objects in the membranes can be interpreted as strings,
which evolve according to the given rules. The computational properties of sev-
eral variants of P systems such as tissue-like P systems in generating control
languages [4], and neural-like or spiking neural P systems, with additional fea-
tures such as weights and self-organization [5,6]. In this paper, we focus on the
sister field of membrane computing - DNA computing. Paper [7] investigated the
relationship between membrane computing and DNA computing, and how their
results can be intertwined with each other.

Our focus lies on one of the DNA computing models, called a Watson-Crick
finite automaton [8], which utilises a feature unique to DNA, namely the Watson-
Crick complementarity. DNA can be recognized as a double-stranded string with
four bases (symbols): adenine (A), guanine (G), thymine (T), and cytosine (C).
The upper strand and lower strand can only be attached with the Watson-Crick
complementarity, where base A can only be paired with base T, and base C with
base G.
c© Springer Nature Singapore Pte Ltd. 2016
M. Gong et al. (Eds.): BIC-TA 2016, Part I, CCIS 681, pp. 215–225, 2016.
DOI: 10.1007/978-981-10-3611-8 20
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A Watson-Crick finite automaton works on a double-stranded tape of symbols
with two reading heads, instead of a single-stranded tape and one head in a finite
automaton. The tapes are attached with relation similar to Watson-Crick com-
plementarity in DNA. The symbols in each of the tapes are scanned separately
usually from left to right, by their corresponding heads controlled by a common
state. It is shown that a Watson-Crick automaton can recognize languages more
powerful than what a finite automaton is able to. There are several types of
Watson-Crick automata proposed, such as initial stateless Watson-Crick finite
automata, Watson-Crick automata with a Watson-Crick memory, Watson-Crick
transducers [9], and weighted Watson-Crick automata [10]. Compact information
on Watson-Crick automata are given in the survey [11].

Interesting computational models do not materialise from automata part
only, but also the formal grammars – their analytical counterparts. Earlier
researches signify that the usage of context-free grammars also provide bene-
ficial methods in analysing DNA strings [12,13]. The computational relations
among context-free grammars and Watson-Crick automata are examined in
[14,15]. Using Watson-Crick complementarity feature, (static) Watson-Crick reg-
ular grammars are introduced in [16]. Further variants of Watson-Crick gram-
mars, i.e. Watson-Crick regular, linear, and context-free grammars, as well as
their generative power and closure properties are investigated in [17–20].

In this paper, we present the latest results on the computational power of
Watson-Crick grammars. Necessary notions and definitions from formal language
theory are given in Sect. 2. Section 3 presents the results regarding the generative
power, including the classifications between families of languages generated by
Watson-Crick grammars, and also the upper bound of Watson-Crick context-free
grammars. Finally, we conclude the paper with some open problems in Sect. 4.

2 Preliminaries

Let us recall necessary information on formal languages theory and automata.
More details can be found in [9,11,21,22].

Let Σ be an alphabet, a finite set of symbols, then Σ∗ denotes the set of all
strings, finite sequences of symbols of Σ. The notion Σ+ means Σ∗ −{λ}, where
λ is an empty string. For x ∈ Σ∗, |x| is the length of a string x, and a set L ⊆ Σ∗

is a language.
A Chomsky grammar is defined by G = (N,T, S, P ) where N is a set of

nonterminal symbols, T is a set of terminal symbols, N ∩ T = ∅, S ∈ N is the
start symbol, and P ⊆ (N ∪ T )∗N(N ∪ T )∗ × (N ∪ T )∗ is the set of production
rules. A pair (α, β) ∈ P is also written as α → β. We say x ∈ (N ∪ T )∗ directly
derives y ∈ (N ∪ T )∗, denoted by x ⇒ y, iff x = a1αa2 and y = a1βa2 for some
production rules α → β ∈ P. A language generated by a grammar G is defined
by L(G) = {w ∈ T ∗ | S ⇒∗ w}.

A grammar G = (N,T, S, P ) is said to be

– context-sensitive if each production has the form u1Au2 → u1uu2 where A ∈
N , u1, u2,∈ (N ∪ T )∗, and u ∈ (N ∪ T )+,
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– context-free if each production has the form A → u where A ∈ N and u ∈
(N ∪ T )∗,

– linear if each production has the form A → u1Bu2 or A → u where A,B ∈ N
and u1, u2, u ∈ T ∗,

– right-linear if each production has the form A → uB or A → u where A,B ∈ N
and u ∈ T ∗,

– left-linear if each production has the form A → Bu or A → u where A,B ∈ N
and u ∈ T ∗,

– regular if it is either right-linear or left-linear.

Theorem 1 (Chomsky Hierarchy [22]).

FIN ⊂ REG ⊂ LIN ⊂ CF ⊂ CS ⊂ RE.

where FIN,REG,LIN,CF,CS,RE denote the families of finite, regular,
linear, context-free, context-sensitive, and recursively enumerated languages,
respectively.

A finite automaton (FA) is a quintuple M = (Q,V, q0, F, δ), where Q is a set
of states, V is an alphabet, q0 ∈ Q is the initial state, F ⊆ Q is a set of final
states, and δ : Q × V → 2Q is the transition function. The language accepted by
M is noted by L(M), and the family of languages accepted by finite automata
by FA. It is known that FA = REG [22].

Let for an alphabet V , ρ ⊆ V × V be a symmetric relation. Then [V/V ] =
{[a/b] | a, b ∈ V and (a, b) ∈ ρ}. We denote an element of V ∗ ×V ∗ by 〈u/v〉. We
also use the form 〈V ∗/V ∗〉 instead of V ∗ ×V ∗. The set WKρ(V ) = [V/V ]∗ρ of all
well-formed double-stranded strings is called the Watson-Crick domain, while
WK+

ρ (V ) = WKρ(V ) − {[λ/λ]}. Let the upper strand be u = a1a2 · · · an and
the lower strand be v = b1b2 · · · bn. Then, we denote [a1/b1][a2/b2] · · · [an/bn] ∈
WKρ as [u/v]. Note that when the elements in the upper strand is complement
and has the same length with the lower strand, 〈u/v〉 = [u/v].

A Watson-Crick finite automaton (WKFA) is a 6-tuple M = (Q,V, q0, F, δ, ρ)
where Q, V , q0 and F are defined as for a FA, and δ : Q × 〈V ∗/V ∗〉 → 2Q is the
transition function where δ(q, 〈u/v〉) is not an empty set only for finitely many
triples (q, u, v) ∈ Q×V ∗×V ∗. The relation in transition function q2 ∈ δ(q1, 〈u/v〉)
can be written as a rewriting rule in grammars, i.e., q1〈u/v〉 → 〈u/v〉q2. The
reflexive and transitive closure of → is described as →∗. The language accepted
by a WKFA M is

L(M) = {u : [u/v] ∈ WKρ(V ) and q0[u/v] →∗ [u/v]q where q ∈ F}.

The family of languages accepted is denoted by WKFA. By [9,14], we have
REG ⊂ WKFA ⊂ CS.

A matrix grammar is a quadruple G = (V , Σ, S, M) where V,Σ, S are
defined as for a context-free grammar, M is a finite set of matrices which are
finite strings over a set of context-free rules (or finite sequences of context-free
rules). The language generated by G is L(G) = {w ∈ Σ∗ | S

π==⇒ w and π ∈
M∗}. The families of languages generated by matrix grammars without erasing
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rules and by matrix grammars with erasing rules are denoted by MAT and
MATλ, respectively. By [23], CF ⊂ MAT ⊂ CS and MAT ⊆ MATλ ⊂ RE.

We recall the definitions of Watson-Crick (regular, linear, context-free) gram-
mars (for details, see [16–20])

Definition 1. A Watson-Crick (WK) grammar G = (N,T, S, P, ρ) is

– regular if each production has the form A → 〈u/v〉B or A → 〈u/v〉 where
A,B ∈ N and 〈u/v〉 ∈ 〈T ∗/T ∗〉.

– linear if each production has the form A → 〈u1/v1〉B〈u2/v2〉 or A → 〈u/v〉
where A,B ∈ N and 〈u1/v1〉, 〈u2/v2〉, 〈u/v〉 ∈ 〈T ∗/T ∗〉.

– context-free if each production has the form A → α where A ∈ N and α ∈
(N ∪ (〈T ∗/T ∗〉))∗.

Definition 2. Let G = (N,T, ρ, S, P ) be a WK context-free grammar. We say
that x ∈ (N ∪〈T ∗/T ∗〉)∗ directly derives y ∈ (N ∪〈T ∗/T ∗〉)∗, denoted by x ⇒ y,
if and only if x = 〈u1/v1〉A〈u2/v2〉 and y = 〈u1/v1〉α〈u2/v2〉 where A,B ∈ N ,
ui, vi ∈ 〈T ∗/T ∗〉, i = 1, 2, 3, 4, and A → α ∈ P . The language generated by a
WK grammar is a quintuple G is defined as

L(G) = {u : [u/v] ∈ WKρ(T ) and S ⇒∗ [u/v]}.

3 The Computational Power

In this section, we would see interesting results on how the complementarity
concept embedded in Chomsky grammars increases their computational power.
Here, we mention several results regarding to the generative power of WK gram-
mars. For further details on the omitted proofs, readers are referred to [17,20].

We first consider the relations of the families of WK languages. Then, we
establish the upper bound for these families.

Theorem 2 [17,20].

WKREG ⊆ WKLIN, LIN ⊂ WKLIN, and CF ⊂ WKCF.

Theorem 3 [17,20].

LIN − WKREG �= ∅, WKREG − CF �= ∅ and WKLIN − CF �= ∅.

We further investigate the upper bound of the family of WK context-free
languages. Since the family of matrix languages MATλ is closed under homo-
morphism (see [23,24]), the next lemma holds.

Lemma 1. Let L ∈ T ∗ and L′ = {ww′ ∈ T ∗ | w ∈ L,w′ = h(w)} ∈ MATλ

where h : T ∗ → T ′∗ is a homomorphism. Then, L ∈ MATλ.

Theorem 4. WKCF ⊆ MATλ.
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Proof. Let G = (N,T, S, P, ρ) be a WK context-free grammar. Define a matrix
grammar G′ = (N ′′, T ′, S′′,M) where N ′ = N ∪ {A′ | A ∈ N} ∪ {S′, S′′,X} and
T ′ = T ∪ {a′ | a ∈ T}, and the matrices of M are defined as follows.

First, we define the start matrix m1 = (S′′ → SXS′) where from S and S′, we
generate the upper and lower strands, respectively. Then, for every production
of P in the form

A → 〈u1/v1〉B1〈u2/v2〉 · · · 〈us/vs〉Bs〈us+1/vs+1〉,
where 〈ui/vi〉 ∈ 〈T ∗/T ∗〉, 1 ≤ i ≤ s + 1, and Bj ∈ N , 1 ≤ j ≤ s, we introduce a
matrix:

(A → u1B1u2B2 . . . Bsus+1, X → Zu1Zu2 . . . Zus+1X,

A′ → v′
1B

′
1v

′
2B

′
2 . . . Bsv

′
s+1, Zv1 → λ,Zv2 → λ, . . . , Zvs+1 → λ)

where Zui
and Zvi

, 1 ≤ i ≤ s + 1, are new nonterminals introduced to count
the numbers of the complements of ui based on ρ which need to be generated in
the lower strand of the derived string, and v′ = h(v), where h : T ∗ → T ′∗ is the
homomorphism defined by for all a ∈ T , h(a) = a′, a′ ∈ T ′, and h(λ) = λ.

For each production of P in the form A → 〈x/y〉 where 〈x/y〉 ∈ 〈T ∗/T ∗〉, we
introduce a matrix

(A → x,A′ → y′,X → ZxX,Zy → λ)

where Zx and Zy are new nonterminals. Thus, N ′′ consists of all nonterminals
of N ′ and all “Z”-nonterminals defined above.

Lastly we introduce the erasing matrix (X → λ). Then, we can easily see
that L(G′) = {ww′ | w ∈ L(G), w′ = h(w)}. By Lemma 1, L(G′) = L(G). ��

A construct of balanced parentheses is a string over opening and closing
parentheses where each opening parenthesis has a corresponding closing sym-
bol and the pairs of parentheses are properly nested. The ability to differentiate
between parentheses that are correctly balanced and those that are unbalanced
is an important part of recognising many programming language structures. The
parsing algorithms of compilers and interpreters have to check the correctness of
balanced parentheses in the blocks of codes including algebraic and arithmetic
expressions.

In the following examples, we will show how different types of WK grammars
generate strings with different levels of balanced parentheses. To avoid confusion,
we denote “(” as the open bracket terminal symbol and “)” as the closed bracket
terminal symbol, in bold font.

Example 1. Let G5 = ({S,A,B}, {(, )}, {((, ))}{((, ))}, S, P5) be a WK regular
grammar. P5 consists of the rules:

S → 〈(/λ〉S, S → 〈(/λ〉A,

A → 〈)/(〉A, A → 〈)/(〉B,

B → 〈λ/)〉B, B → 〈λ/λ〉|S.



220 N.L. Mohamad Zulkufli et al.

From this, we obtain the derivation:

S ⇒ 〈(/λ〉S ⇒∗ 〈(n
/λ〉A

⇒ 〈(n)/(〉A ⇒∗ 〈(n)n
/(n〉B

⇒ 〈(n)n
/(n)〉B ⇒∗ 〈(n)n

/(n)n〉S
⇒ 〈(n)n(/(n)n〉S ⇒∗ 〈(n)n(m

/(n)n〉A ⇒ · · · .

Hence, the language obtained is:

L5 = {
j∏

i=1

(ni)ni | j ≥ 1}.

WK regular grammar can store the information of how much the opening
parentheses “(” it has produced while generating the same amount of the closing
brackets “)”. However, WK regular grammars can’t store the additional informa-
tion if the string in L5 are to be accompanied by additional opening parentheses
before the string and the same amount of additional closing parentheses in the
end of the string.

Lemma 2. L6 = {(k(n)n(m)m)k : n,m, k ≥ 1} ∈ WKLIN − WKREG.

Proof. The language L6 can be generated by the following WK linear grammar
G6 = ({S,A,B}, {(, )}, {((, ))}, S, P6), built from G5 where

P6 = P5 ∪ {S → 〈(/(〉S〈)/)〉}.

The derivation is:

S ⇒ 〈(/(〉 S 〈)/)〉 ⇒∗
〈
(k

/(k
〉

S
〈
)k

/)k
〉

⇒
〈
(k(/(k

〉
S

〈
)k

/)k
〉

⇒∗
〈
(k(n

/(k
〉

A
〈
)k

/)k
〉

⇒
〈
(k(n)/(k(

〉
A

〈
)k

/)k
〉

⇒∗
〈
(k(n)n

/(k(n
〉

B
〈
)k

/)k
〉

⇒
〈
(k(n)n

/(k(n)
〉

B
〈
)k

/)k
〉

⇒∗
〈
(k(n)n

/(k(n)n
〉

S
〈
)k

/)k
〉
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⇒
〈
(k(n)n(/(k(n)n

〉
S

〈
)k

/)k
〉

⇒∗
〈
(k(n)n(m

/(k(n)n
〉

A
〈
)k

/)k
〉

⇒
〈
(k(n)n(m)/(k(n)n(

〉
A

〈
)k

/)k
〉

⇒∗
〈
(k(n)n(m)m

/(k(n)n(m
〉

B
〈
)k

/)k
〉

⇒
〈
(k(n)n(m)m

/(k(n)n(m)
〉

B
〈
)k

/)k
〉

⇒∗ [(k(n)n(m)m)k
/(k(n)n(m)m)k].

We show that L6 /∈ WKREG by contradiction. Suppose that L6 can be
generated by the WK regular grammar G5. The derivation is:

S ⇒ 〈(/λ〉S ⇒∗
〈
(k

/λ
〉

S

⇒∗
〈
(k(/λ

〉
S ⇒∗

〈
(k(n

/λ
〉

A

⇒
〈
(k(n)/(

〉
A ⇒∗

〈
(k(n)k

/(k
〉

B.

In the above derivation, we can see that the generation of the first closing
parentheses, “)”, whose total numbers are supposed to be n, are affected by
the opening parentheses “(k”. Thus, the string generated will be (k(n)k)n,
instead of (k(n)n)k. Another example which show the same phenomenon is
L = {anbmcndm | n,m ≥ 1} (see Example 2 in [17]).

This applies to any other WK regular grammars as well, because until all
the amount of closing parentheses for the first opening parentheses, in this case
“(k”, the closing parentheses for the second batch of opening parentheses “(n”
cannot be generated; we do not have any means to do the following by WK
regular grammars:

– generate the n numbers of closing parentheses first for the n number second
opening parentheses instead of the k number of the first opening parentheses,

– then generate m numbers of the next opening parentheses,
– closing parentheses them, and
– finally generate the k number of the closing parentheses for the first k number

of the opening parentheses.

��
Lemma 3.

L7 = {(k1(n1)n1(m1)m1)k1(k2(n2)n2(m2)m2)k2

| n1,m1, k1, n2,m2, k2 ≥ 1} ∈ WKCF − WKLIN.
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Proof. The language L7 can be generated by the WK context-free grammar
G7 = ({S,A,B}, {(, )}, {((, ))}, S, P7) where P7 = P6 ∪ {S → SS}.

Then, we have the following derivation:

S ⇒ SS ⇒ 〈(/(〉S〈)/)〉S ⇒∗
〈
(k1/(k1

〉
S

〈
)k1/)k1

〉
S

⇒∗
〈
(k1(n1)n1(m1)/(k1(n1)n1(

〉
A

〈
)k1/)k1

〉
S

⇒∗
〈
(k1(n1)n1(m1)m1/(k1(n1)n1(m1

〉
B

〈
)k

/)k1
〉

S

⇒
〈
(k1(n1)n1(m1)m1/(k1(n1)n1(m1)

〉
B

〈
)k1/)k1

〉
S

⇒∗
〈
(k1(n1)n1(m1)m1)k1/(k1(n1)n1(m1)m1)k1

〉
S

⇒
〈
(k1(n1)n1(m1)m1)k1(/(k1(n1)n1(m1)m1)k1

〉
S

⇒∗
〈
(k1(n1)n1(m1)m1)k1(k2/(k1(n1)n1(m1)m1)k1

〉
S

⇒∗ [(k1(n1)n1(m1)m1)k1(k2(n2)n2(m2)m2)k2/

(k1(n1)n1(m1)m1)k1(k2(n2)n2(m2)m2)k2 ]

In the above derivation, we can see that the first non-terminal B is accom-
panied by non-terminal symbols on both left and right sides. Thus, there is no

Fig. 1. The hierarchy of Watson-Crick, matrix, and Chomsky language families
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way to generate the extra terminal symbols “(k2(n2)n2(m2)m2)k2” from the said
B, other than putting an extra non-terminal symbol besides B - in this case the
second S in the rule {S → SS} ∈ P7. ��

Combining the results above, we obtain the following theorem.

Theorem 5. The relations in Fig. 1 hold; the dotted lines denote incomparability
of the language families and the arrows denote proper inclusions of the lower
families into the upper families, while the dotted arrows denote inclusions.

4 Conclusions

In this paper, we include further results on the generative power of Watson-Crick
context-free grammars, classification between Watson-Crick languages, and clo-
sure properties, which are summarized below:

– WK linear grammars can generate some context-sensitive languages;
– the families of linear languages and WK regular languages are strictly included

in the family of WK linear grammars;
– the family of WK linear languages is strictly included in the family of WK

context-free languages;
– the families of WK regular languages and linear languages are not comparable;
– the family of WK regular languages is not comparable with the family of linear

languages;
– the family of WK linear languages is not comparable with the family of

context-free languages;
– the family of WK context free languages is included in the family of matrix

languages (without appearance checking);
– WK regular grammars preserves the closure properties similar to the ones of

regular languages;

The following problems related to the topic remain open:

1. Is the family of Watson-Crick context-free languages properly included in the
family of matrix languages (without appearance checking)?

2. Is the family of Watson-Crick context-free languages (without erasing rules)
included in the family of matrix languages (without appearance checking and
without erasing rules)?

3. What are the remaining closure properties of Watson-Crick (regular, linear
and context-free) grammars?
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Abstract. Spiking neural P systems are a class of distributed parallel
computing devices inspired from the way neurons communicate by means
of spikes. The necessary number of neurons to construct universal spiking
neural P systems is a current research hotspot. In this work, we design
the system by using the parallelism of the membrane system, and put all
the instructions of the register machine in the same neuron. In this way,
we can use less neurons to construct the system and make the simulation
of instruction more concisely. With anti-spike, in instructions execution
module, we only use standard rules. A universal systems without delay
having 24 neurons is constructed.

Keywords: Spiking neural P systems · Anti-spike · Small universal

1 Introduction

Spiking neural P systems (SN P systems, for short) have been introduced in [1,2]
as a new class of distributed and parallel computing devices. They were inspired
by membrane systems (also known as P systems) [3–7] and are based on the
neurophysiological behavior of neurons sending electrical impulses to other neu-
rons. Since the model was put forward, for various SN P system, computation
complete and the necessary number of neurons to construct universal P systems
became a hotspot of research [8–10]. In this work, we investigate the necessary
number of neurons to construct universal P systems with anti-spike. Păun put
forward the problem for the first time in [11]. There is a universal computing
SN P system with standard rules having 84 neurons and there is a universal
number generating SN P system with standard rules having 76 neurons. Since
then, Pan, see, e.g. [12–14] research separately the instruction of relationship,
without delay rules, and weighted SN P system with rules on synapses. Small
general research for SN P system, not only has the traditional computer science
significance to require fewer resources, but also has its significance of life science
to seek the minimum general “brain”. Basic idea mainly comes from the [11],
simulating the general register machine by SN P system, one neuron is associated
c© Springer Nature Singapore Pte Ltd. 2016
M. Gong et al. (Eds.): BIC-TA 2016, Part I, CCIS 681, pp. 226–236, 2016.
DOI: 10.1007/978-981-10-3611-8 21
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with each instruction of register machine. For the general register machine, each
registry and each instruction have at least a corresponding neurons (It usually
need auxiliary neurons to complete the corresponding instruction). Notice the
membrane system parallelism, in the simulation, the advantage in parallel did
not play completely. Because the instructions of register machine are serialized.
For step t, the ith instruction is executed. At this point, only the neurons corre-
sponding the ith instruction is fire, most other neurons are not fire. Considering
the parallelism of membrane system, we can put all instructions in the same neu-
ron, so the all instructions neurons and their corresponding auxiliary neurons
was reduced to one. During the execution of the ith instruction, through the
rules, only the neurons corresponding the ith instruction can take fire. In this
way, we can greatly reduce the number of neurons. Compared with computer
science, in the process of general simulation, registry is used to store data, cor-
responding hardware. And instruction is used to deal with the data according to
certain rules, corresponding to the software. Pan and Zang put forward in litera-
ture [15], a neuron is used to store all of the instructions, and the corresponding
small universal system is constructed. Through simulating the general register
machine in literature [16,17], based on extended rules the small universal SN P
system can be made up of 12 neurons without delay rule. In 2009 Pan proposes
a SN P system with anti-spike and proves that under the pure rules, the system
has the calculation completely. Readers can refer to [18] for more information.
And then, in the literature [19] to study the ability to produce language. In
the literature [20], the homogeneous SN P system with anti-spikes has proved
its generality. There are many other works about anti-spikes you can refer to
[21–23] and SN p you can refer to [24–30].

In this paper, based on the above work, according to [15], by constructing
a neuron store all instructions, we construct a small general SN P system. The
remainder of this paper is organized as follows: we first introduce related work
in Sect. 2 and then elaborate the proposed small universal SN P Systems with
anti-Spikes in Sect. 3. Comprehensive study and proof are discussed in Sect. 4.
And finally, Sect. 5 give conclusion and acknowledgement.

2 Prerequisites

The reader must have some familiarity with language and automata theory, as
well as with membrane computing, so that we recall here only a few important
definitions. For more details you can refer to [13,14]. For an alphabet V, V ∗ is
the free generated by V with respect to the concatenation operation and the
identity λ (the empty string); the set of all nonempty strings over V , that is
V ∗ − λ, is denoted by V +.

A regular expression over an alphabet V is defined as follows:

(1) λ and each a ∈ V are regular expressions over V ;
(2) if E1, E2 are regular expressions, then (E1)∪ (E2), (E1)(E2) and (E1)+ are

regular expressions over V;
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(3) nothing else is a regular expressions over V .

In this work, the regular expression is mainly used as a judge in which neurons
are fire.

Regular languages are defined by means of regular expressions, which will
be essentially used also in our main definition in the next section. With each
regular expression E there associate a language L(E), defined as follow:

(1) L(λ) = λ and L(a) = a, for all a ∈V ;
(2) L((E1) ∪ (E2)) = L(E1) ∪ L(E2); L((E1)(E2)) = L(E1)L(E2);

L((E1)+) = L(E1)+ for all regular expressions E1, E2 ∈ V .

2.1 Universal Register Machine

The register machine has the form:

M = (m,H, l0, lh, I)

where m is the number of registers, H is the set of instruction labels, l0 is the
start label, lh is the halt label, and I is the set of instructions (Table 1).

The instructions are of the following forms:

(1) li : (ADD(r), lj , lk)): add 1 to register r and then go to one the instructions
with labels lj and lk, non-deterministically chosen.

(2) li : (SUB(r), lj , lk)): if register r is non-empty, then subtract 1 from it and
go to the instruction with label lj , otherwise go to the instruction with label
lk.

(3) HALT: the halt instruction.

A register machine is a construct Mu = (8,H, l0, lh, I), which is of the fol-
lowing forms:

2.2 Spiking Neural P Systems with Anti-Spikes

A computing SN P system of degree m ≥ 1, is a construct of the form:

Π = (O, σ1, σ2, · · · , σm, syn, in, out)

where:

1. O = {a, a} is the alphabet, a is called spike, a is called anti-spike;
2. σi are neurons of the form: σi = (ni, Ri), 1 ≤ i ≤ m, ni is the initial number

of spikes contained in σi; Ri is a finite set of rules, they have the two forms:
(1) E�ac → ap; d, where E is a regular expression over a, and c ≥ 1, d ≥ 0,

p ≥ 1, with the restriction c ≥ p;
(2) as → λ, for s ≥ 1, with the restriction that for each rule E�ac → ap; d

of type(1) from Ri, we have as /∈ L(E);
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Table 1. The universal register machine

l0 : (SUB(1), l1, l2) l1 : (ADD(7), l0)

l2 : (ADD(6), l3) l3 : (SUB(5), l2, l4)

l4 : (SUB(6), l5, l3) l5 : (ADD(5), l6)

l6 : (SUB(7), l7, l8) l7 : (ADD(1), l4)

l8 : (SUB(6), l9, l0) l9 : (ADD(6), l10)

l10 : (SUB(4), l0, l11) l11 : (SUB(5), l12, l13)

l12 : (SUB(5), l14, l15) l13 : (SUB(2), l18, l19)

l14 : (SUB(5), l16, l17) l15 : (SUB(3), l18, l20)

l16 : (ADD(4), l11) l17 : (ADD(2), l21)

l18 : (SUB(4), l0, lh) l19 : (SUB(0), l0, l18)

l20 : (ADD(0), l0) l21 : (ADD(3), l18)

lh : HALT

3. syn ⊆ {1, 2, · · · ,m} × {1, 2, · · · ,m},1 ≤ i ≤ m, (i, i) /∈ syn.
4. in, out ∈ {1, 2, · · · ,m} indicate the input and output neurons, respectively.

Note that the rules are used as in a usual SN P system, with the fact that
a, a cannot stay together, a rule of the form: aa → λ is applied immediately in
a maximal manner, and it takes no time.

The initial configuration is described by the numbers n1, n2, · · · , nm of spikes
present in any neuron, with all being open. During the process, a configuration
of the system is presented by both the number of spikes exit in any neuron and
by the state of the neuron, that is, by the number of steps to count down until
it becomes open. Thus, 〈r1/t1, · · · , rm/tm〉 is the configuration where neuron σi

contains ri ≥ 0 spikes and it will be open after ti ≥ 0 step, i = 1, 2, · · · ,m; with
this notation, the initial configuration is C0 = 〈n1/0, · · · , nm/0〉.

3 A Small Universal SN P System with Anti-Spike

We are still using the idea of simulated universal register machine to construct
the small universal system in this work.

A SN P system with anti-spike consists of four modules: state instruction
module, cycle trigger module, register module (simulation instruction in the
registry operation) and output module (decoding output and an end to the
system). Through to the corresponding part of the structure features and rules,
the final system as shown in the figure below (Fig. 1):

Among them, the rounded part of the corresponding neurons for instruction
selection module; the rectangular part of the corresponding neurons for instruc-
tion execution module. The dashed part is the registry neurons feedback signal,
mainly is the instructions of subtraction and halt. In the instruction execution
module, all rules are standard rules.
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Fig. 1. The structure of system

First of all, there have a problem. The construction does not allow subtraction
operation on the neuron where we place the result. Register 0 is subject of
such operations, l19 : (SUB(0), l0, l18). So Păun deal with it in this way: add a
register-label it with 8- and place the halt instruction with the following:

l22 : (SUB(0), l23, l24) l23 : (ADD(8), l22) l24 : HALT

Considering the instruction of register machine are serialized, and parallel
computing is one of the biggest advantage of the membrane system. For exam-
ple, at time t, the ith instructions is executed. At this point, only the neurons
corresponding the ith instruction is in the excited state, most other neurons are
not excited state. Considering the parallelism of membrane system, we can put
all instructions in the same neuron, so the all instructions neurons and their cor-
responding auxiliary neurons was reduced to one. During the execution of the ith
instruction, through the rules, only the neurons corresponding the ith instruc-
tion can take fire. In this way, we can greatly reduce the number of neurons.
We design the system is divided into two main modules. The first is instruction
choice module, main task is to select the corresponding instruction, and go to
next instruction; The second is the instruction execution module, main task is
to do the calculation in the corresponding register (Table 2).

There are two tasks we must to solve: (1) for the neurons storing instruction,
need to choose the next instruction and choose which register is operation at the
same time. (2) for each neurons corresponding register, need to choose the type
of instructions (addition or subtraction), and do the corresponding operation;
For addition, the calculation results has no effect to choice the next instruction,
easy to implement. But subtraction, we need to determine whether the number
in the registry is 0, and need to return information to the neurons corresponding
store instruction.



An Improvement of Small Universal Spiking Neural P Systems 231

Table 2. The rules associated with neurons

σai(0 ≤ i ≤ 8) a → λ, a2i+2 → a, a2i+3 → a; a2j+3 → λ, a2j+2 → λ(j = i)
σa9 a → a, a → a
σa10 a → λ, a → a

σi(0 ≤ i ≤ 7) a(a2)
+

a → a, a → a

σ8
a(a2)

+

a2 → a, a → a

σout a → a, a2 → a, a → λ
σb1 , σb2 aT → aT

σstate Rm = aP (m)(a20)
+

aP (m) → a19

σstate Rli =
ap(i)(aT )

+

ap(i)+T−p(j) → a2r+3, a
p(i)(aT )

+

ap(i)+T−p(k) → a2r+3

σstate Rli =

⎧

⎨

⎩

ap(i)(aT )
+

aT+2 → a2r+2

ap(i)−1(aT )
+

ap(i)−1+T−p(j) → a, a
p(i)−3(aT )

+

ap(i)−2+T−p(k) → a

⎫

⎬

⎭

3.1 The Structure of Neuron σstate

As mentioned earlier, at time t, the ith instructions is executed. At this point,
only the neurons corresponding the ith instruction is in the excited state, most
other neurons are not excited state. Considering the parallelism of membrane
system, we can put all instructions in the same neuron, so the all instruction
neurons and their corresponding auxiliary neurons was reduced to one. During
the execution of the ith instruction, through the rules, only the neurons corre-
sponding the ith instruction can take fire. Now we put the 25 instructions in one
neuron, refer to [8], called σstate. The form as following:

Rstate = l0 ∪ l1 ∪ · · · ∪ l25

For neuron σstate, need to solve at the same time: choose the next instruction
and choose which register. We can use a forgetting rule to achieve it.

For add instruction, li : (ADD(r), lj , lk), the forgetting rule as the following:

Rli =
{

ap(i)(aT )+
/
ap(i)+T−p(j) → a2r+3, a

p(i)(aT )+
/
ap(i)+T−p(k) → a2r+3

}

For sub instruction, li : (SUB(r), lj , lk) , the forgetting rule as the following:

Rli =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ap(i)(aT )+
/
aT+2 → a2r+2

ap(i)−1(aT )+
/
ap(i)−1+T−p(j) → a

ap(i)−3(aT )+
/
ap(i)−2+T−p(k) → a

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭
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Among them, the first step is only selected the corresponding register; After
the feedback of the corresponding register, if the corresponding information and
regular expression match, and then select the next instruction.

Remark: We assume that T = 20;P (i) = 4(i+1). The value of the T is difference
from number corresponding instruction. As long as meet: T > max(P (i)) , and
P (i) = 4(i + 1) is mainly used in the subtraction instructions to different.

3.2 The Structure of Auxiliary Neurons σa

There are two kind auxiliary neurons. The first kind auxiliary neurons aim is
to determine which neuron operate and do what kind operation (ADD or SUB)
though accept the spikes from neuron σstate. The spike from neuron must be
identified by auxiliary neurons σai

(0 ≤ i ≤ 7), and need to differentiate instruc-
tion type. Based on coding theory, 19 kinds of signals can be used. There are
rules corresponding auxiliary neurons:

Table 3. The rules of auxiliary neurons

Neurons σa0 σa1 σa2 σa3 σa4 σa5 σa6 σa7 σa8

SUB 2 4 6 8 10 12 14 16 18

ADD 3 5 7 9 11 13 15 17 19

Assume that at some moment, neurons σai
(0 ≤ i ≤ 7) receives 11 spikes,

only neuron σ4 can be fire by the rule: a2i+3 → a, then we can see that this
means register 4 should do ADD instruction, and the other registers do nothing
(Table 3).

The second kind auxiliary neurons aim is to deal with the operation only
use standard rule in the instruction execution module. Because the encoding
of the value n of a register R is done by means of placing 2n spikes in the
neuron associated with the register. If we want to add 1 in some register, we
should send 2 spikes. When do ADD, neurons σ9, σ10 accept one spike form
σai

(0 ≤ i ≤ 7), then they send two spikes to the same neurons corresponding
some register use rule a → a. When do SUB, neurons σ9, σ10 accept one anti-
spike form σai

(0 ≤ i ≤ 7), then they send one anti-spikes to the same neurons
corresponding some register by using rule a → a,a → λ.

4 Proof and Conclusion

Theorem: There is a universal SN P system with anti-spike having 24 neurons,
in the instruction execution module, all rules are standard rules.



An Improvement of Small Universal Spiking Neural P Systems 233

4.1 Module ADD (Simulating li : (ADD(r), lj, lk))

We start by activating neuron σstate associated with the li label of M , when
firing, neuron σstate non-deterministically chose the rule

Rli =
{

ap(i)(aT )+
/
ap(i)+T−p(j) → a2r+3

}

produces 2r +3 spikes, which are sent to all neuron σai(0 ≤ i ≤ 7). The number
of spikes in neuron σstate is of the form ap(j)(aT )+, it will activate neuron σstate

associated with the label lj of M .
For the neuron σai(0 ≤ i ≤ 7, i 
= r),use the rule a2i+3 → λ ,and do nothing

with others. But the number of spikes in neuron σar is of the form 2i + 3, hence
the rule can fire. Though the rule a → a of neuron σa9, σa10, neuron σr will
accept 2 spikes, it means the number of associated register add 1. And then no
rule can use. So in this way, we simulate li : (ADD(r), lj , lk), the number of
register is add 1, and non-deterministically chose next instruction.

Therefore, the system can simulated ADD instruction correctly. It add 1
to register r and then go to one instructions with labels lj and lk, non-
deterministically chosen.

4.2 Module SUB (Simulating li : (SUB(r), lj, lk))

We start by activating neuron σstate associated with the li label of M , when
firing, neuron σstate use the rule:

ap(i)(aT )+
/
aT+2 → a2r+2

produces 2r +2 spikes, which are sent to all neuron σai(0 ≤ i ≤ 7). The number
of spikes in neuron σstate is of the form ap(i)−2(aT )+, it con not activate neuron
σstate next time.

For the neuron σai(0 ≤ i ≤ 7, i 
= r), use the rule a2i+2 → λ, and then do
nothing. But the number of spikes in neuron σar is of the form 2i + 2, hence
the rule a2i+2 → ā can fire, though the rule a → λ,a → a of neuron σa9, σa10,
neuron σr will accept 1 anti-spike.

(1) If there have 2n spikes in neuron σr already, that means the number of
spikes is not empty, now use the rule: aa → λ, then the number of spikes
in neuron σr is of the form a(a2)+, and it can use the rule:

a(a2)+
/
a → a

it means the number of spikes in neuron σr reduce 2. And then the neuron
σstate accept the spike from neuron σr, the number of spikes in neuron σstate

is of the form ap(i)−1(aT )+. Hence firstly the rule

ap(i)−1(aT )+
/
ap(i)−1+T−p(j) → a
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can fire, it will activate neuron σstate associated with the lj label of M and
secondly a spike sent to all neuron σai(0 ≤ i ≤ 7). By the rule: a → λ, it
con not activate any neuron next time.

(2) If there have no spike in neuron σr, then the number of spikes in neuron
σr is only an anti-spike, it can use the rule: a → a. It means the number
of spikes in neuron σr is not change. And then the neuron σstate accept
the anti-spike from σr, the number of spikes in neuron σstate is of the form
ap(i)−3(aT )+. Hence firstly the rule:

ap(i)−3(aT )+
/
ap(i)−3+T−p(k) → a

can fire, it will activate neuron σstate associated with the lk label of M and
secondly a spike sent to all neuron σai(0 ≤ i ≤ 7). By the rule : a → λ, it
con not activate any neuron next time.

4.3 Module OUTPUT

We start by activating neuron σstate associated with the halt label of M , when
firing, neuron σstate use the rule:

aP (m)(a20)+
/
aP (m) → a19

produces 19 spikes, which are sent to neuron σa8. The number of spikes from
neuron σa8 is of the form 2i + 3, hence (1) the rule a2i+3 → a can fire, but (2)
no rule used for neuron σstate can fire.

Now register 8 has 2n spikes, add the spike from neuron σa8, the number of

spikes in neuron σ8 is of the form 2n + 1, the rule a(a2)+
/
a2 → a fire, hence (1)

the rule of neuron σout: a2 → a can fire and send a spike to out, but (2) no rule
used for neuron σb2 can fire.

Then register 8 has 2n − 1 spikes, the rule a(a2)+
/
a2 → a fire again, then

the rule of neuron σout:a → λ can fire. It continue do until the neuron σ8 only
has one spike. The last time when neuron σ8 fire, it use the rule a → a, hence
neuron σout fire again, and then the system halts. In this way, we get the spike
train 10n1, encoding the number n as the result of the computation.

5 Conclusions and Remark

This paper mainly studied the small general of SN P system, based on the
parallelism of P system, we put all the instructions on the same neurons, and
reduces the number of necessary neuron greatly. In this way, we can use less
neurons to construct the system and make the simulation of instruction more
concise. In particular, using anti-spike, all instructions operation use standard
rules. A universal systems without delay rules having 24 neurons is constructed.
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But the choice of instruction must be implemented through rules, the difficulty
of the rules greatly increased. Similar to computer science, through software
programming to save hardware cost. How to find a way which can make not only
the number of neurons decreased, but also the complexity of the rules moderate,
This is a problem. At the same time, the anti-spikes is only used in the registry
operation. How to use the two kind spikes to encode more information, such as
9 registry must have 18 spikes to differentiate, if we use the two kind spikes to
reduce the number of spike for 9? this problem is to consider in the future. On
the other hand, this idea can deal with other kind of SN P system? it is a quite
interesting problem.
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Abstract. Compared with the theoretical research, the application
research of membrane computing was started late. Firstly, cell-like P sys-
tem is selected as a computational framework for data clustering based on
studies of previous membrane clustering algorithm in this paper. Then,
particle swarm optimization algorithm is used as the optimization algo-
rithm to construct the membrane algorithm and the parallel computing
characteristic of programmable logic device FPGA is used to realize data
clustering. Finally, experimental results show that FPGA processor can
realize the characteristics of parallel computing while the system oper-
ates the membrane clustering algorithm, which can improve the speed of
operation at the same time. Besides, the proposed method can be used
in practical engineering systems.

Keywords: Membrane computing · FPGA · Parallelism · Clustering
algorithm

1 Introduction

As a branch of natural computing, membrane computing is designed to abstract
computational models from the structure and function of life cells as well as
the cell collaboration in organizations, which is firstly proposed by Pǎun in his
research report presented in [1]. In past years, the studies of the membrane com-
puting can be roughly divided into three aspects: (1) Modeling and theoretical
analysis, namely, the establishment of a variety of membrane systems and the
analysis of capacity and effectiveness of calculation; (2) Construction and appli-
cation of membrane system for practical problems; (3) Development of simula-
tion platform of membrane system in software and hardware. Nowadays, a large
number of membrane systems have been constructed in the first aspect, and the
fruitful results of the calculation ability and computational effectiveness have
c© Springer Nature Singapore Pte Ltd. 2016
M. Gong et al. (Eds.): BIC-TA 2016, Part I, CCIS 681, pp. 237–248, 2016.
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been formed in [2–7]. At the same time, a number of membrane system software
and hardware simulation platforms have been successfully developed in [8–10].
However, compared with the theoretical research, the application research of
membrane computing was started late.

In recent years, some scholars have begun to pay attention on the study of
membrane computing, including supervised learning (classification) and unsu-
pervised learning (clustering), which has produced a number of meaningful
research results in [11–15]. For example, the classical Hebbian learning law is
used to develop a classification model through designing a simple spiking neural
membrane system proposed by Gutierrez-Naranjo and Pérez-Jiménez in [11], and
a model of membrane computing for fault diagnosis of power system has been
studied in [12]. In addition, a learning model against the proposed fuzzy spiking
neural membrane system is developed in [13]. For the unsupervised learning prob-
lem, a hierarchical clustering method has been discussed to be realized through
the membrane computing by Cardona et al. in [14], which uses an evolutionary
rule of the membrane system to realize the classical hierarchical clustering the-
ory and verify the model. A modified clustering algorithm is proposed to realize
the traditional k-medoids algorithm by using the rules of a cell membrane sys-
tem in [15]. A clustering framework inspired by the membrane computing has
been proposed in [16,17], and the test results on the benchmark data sets show
that the clustering framework outperforms the classical clustering algorithm in
clustering quality (accuracy), stability and convergence significantly. Therefore,
it can be strongly predicted that the membrane computing has potential advan-
tages and good prospects in dealing with data clustering problems.

A clustering algorithm in the framework of membrane computing has been
proposed by Peng in [14–16], which is called membrane clustering algorithm
(MC). The core of this method is to establish a tissue-like P system with degree
of 3 and hybrid evolution mechanisms, and the final goal is to automatically
search the optimal clustering centers for a data set to be clustered. In order
to realize the distributed parallel clustering algorithm, how to implement the
membrane clustering algorithm on the programmable logic device FPGA has
been discussed in this paper. For this reason, a parallel implementation method
of membrane clustering algorithm based on FPGA by using the particle swarm
optimization algorithm is proposed. Then, the distributed parallel computing
model is established, and the numerical calculation process with high density is
described. Finally, the parallel simulation is performed on FPGA.

The rest of this paper is organized as follows. Section 2 states the struc-
ture and objection representation of membrane clustering algorithm and algo-
rithm learning. Parallel implementation of the membrane clustering algorithm
on FPGA is described in detail in Sect. 3. Experiment results and analysis are
provided in Sect. 4. Finally, Sect. 5 draws the conclusion.
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2 Membrane Clustering Algorithm

2.1 Structure of Membrane Clustering Algorithm

Inspired by the idea of membrane computing and combined with the evolutionary
rule of particle swarm optimization algorithm, a membrane clustering algorithm
is proposed. In this paper, a cell-like P system is constructed as computing
framework, which is used for data clustering operations, and finally determines
the optimal clustering centers. The cell-like P system of degree q can be formally
described as follows:

Π = (O,ω1, ω2, . . . , ωq, R1, R2, . . . , Rq, R
′, i0) (1)

where

(1) O is a set of all objects.
(2) ωi(1 ≤ i ≤ q) is initial multiset of objects in ith cell.
(3) Ri(1 ≤ i ≤ q) is finite set of evolution rules in ith cell. The evolutionary

rules are combined with the particle swarm algorithm and described by the
following velocity-location model:

V i
j = ω · V i

j + c1r1(P i
best − Zi

j) + c2r2(Gbest − Zi
j) (2)

Zi
j = Zi

j + V i
j (3)

where
(a) ω is the inertia weight, c1 and c2 are two constants, r1 and r2 are two

random number in [0,1].
(b) Zi

j is jth object in ith cell and V i
j is the corresponding velocity vector.

(c) P i
best is the best object in ith cell, while Gbest is the best object in the

whole system.
(4) R′

i is finite set of communication rules of the form: < i, Z/Z ′, 0 >, where, Z
and Z ′ are two objects, i = 1, 2, ..., q.

(5) i0 indicates the output region.

In the above about the specific definition of P system, because the PSO has
the advantages of fast speed, high calculation efficiency, simple algorithm logic
and suitability for analysis and processing of real data, this paper chooses PSO
as the evolution rules of the object. More importantly, PSO itself is a parallel
computing processing operation and the algorithm won’t produce competitive
relationships between different particles in the process of running. Although it
is easy to fall into local optimum, the object communication in the process
of the calculation can be made continuously between the cellular nodes after
the algorithm combined with the framework of cell-like P system, which can
effectively overcome this disadvantage.
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2.2 Object Representation in the Structure of the Membrane
Clustering Algorithm

In this paper, the object of the data clustering in the structure of the
membrane clustering algorithm is expressed as follows: suppose that in a d-
dimensional space, the clustering problem is considered to partition data set
D = {X1,X2, . . ., Xn} into k clusters, C1, C2, . . . , Ck, where Z1, Z2, . . . , Zk are
the corresponding cluster centers. In order to process the clustering problem,
the objects in the system are designed as a k × d-dimensional vector, shown in
Fig. 1.

Z = (Z1, Z2, . . . , Zk) = (Z11, Z12, . . . , Z1d, . . . , Zk1, Zk2, . . . , Zkd) (4)

where Zi = (Zi1, Zi2, . . . , Zid) is ith cluster center, namely the particle of PSO
algorithm.

* *

*
*
**

*
*

***

*

* *
*

*

* *

C1

CK

Z1

o
object

membrane

Z=(Z1,Z2, ,Zk)

Data set 

Z2

ZK

Fig. 1. Representation of the object in the clustering problem

As is well known for the theory of cluster problems, except choosing the
appropriate classified measures, how to evaluate clustering centers of each itera-
tion calculation is also an important question. The final clustering results make
the same feature data compact, and loose conversely. Therefore, based on such a
standard and combined with the characteristics of the data type, we choose the
following way (5) as the evaluation function of the clustering centers, namely,
the fitness function of the object in the cell.

f(Z) = M(C1, C2, . . . , Ck) =
k

Σ
i=1

Σ
Xj∈ci

d(Xj , zi) (5)

where, d(Xj , zi) represents the distance from the data point to the clustering
centers. Generally, the value of particle is smaller, the object is better, and vice
versa.
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2.3 Learning Algorithm

PSO algorithm was put forward by Eberhart and Kennedy in 1995 at first, and
its basic concept was derived from the study of the foraging behavior of birds
in [17]. In this paper, PSO algorithm is used as the optimization algorithm of data
clustering and the basic idea is to use the evolution mechanism of the PSO to
make iterative optimization. The particles of PSO algorithm are the data points
of data clustering. Firstly, the initial clustering centers can be determined after
loading the data and initialization, and their fitness function can be calculated.
Then, the clustering centers will be calculated by speed update function and
location update function of PSO algorithm. Finally, the current local optimal
particle and the global optimal particle are updated after completing fitness
calculation and comparing with the initialized clustering centers. The iterative
calculation can be completed following the steps, and the optimal clustering
center can be obtained to realize data clustering. Through the implementation
of evolution mechanisms of the PSO algorithm, the process of finding the local
optimal particle and the global best particle is the process of finding the optimal
cluster center.

3 Parallel Implementation of the Membrane Clustering
Algorithm on FPGA

3.1 FPGA Parallel Computing Principle

Field Programmable Gate Array (FPGA for short) is a field programmable
logic array in [18]. A typical FPGA internal structure is shown in Fig. 2, the
FPGA chip mainly contains programming input and output unit, basic program-
ming logic unit, clock management, embedded block ram, rich routing resources,
embedded unit in the bottom function and embedded hardware module. As it can
be seen from Fig. 2, the FPGA is composed of multiple internal programmable
logic blocks (CLB), and there is an abundance of routing resources between logic
programming blocks. In order to achieve different functions, the FPGA can be
designed as different wiring to connect different circuits by the design of verilog.
However, different functions within the FPGA are embodied in different arrays,
and each array can be performed in parallel. It is generally known the circuit is a
parallel process. In this paper, the use of connections inside the FPGA program-
mable logic blocks can be completed all the functions shown in Fig. 3, including
the data loading, initialization, data processing and the final output, the whole
process of data processing is done inside the FPGA without using any peripheral
equipment.

3.2 Implementation Process of Membrane Clustering Algorithm on
FPGA

In this paper, the object of single membrane cell will parallel execute the evolu-
tionary mechanism in this environment by using cell-like P system as computing
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Fig. 2. A typical FPGA structure diagram

framework and regarding outer membrane as a public environment. Finally, the
parallelism of membrane computing will be verified by implementing a minimum
system.

The logic steps are shown in Fig. 3, and described as follows:
Step 1: Loading data: input parameters are given, q, m, k, c1, c2 as well

as data set D = {X1,X2, . . . , Xn}; here, only a minimum system is achieved
temporarily. q = 1, m = 2.

Step 2: Initialization: m initial objects can be randomly generated for each
of the q cells respectively.

Step 3: For each object in the q cells, the evolution and communication
operations are performed as follows:

(1) Object evolution: the object is evolved by using Eqs. (2) and (3).
(2) Object evaluation: the fitness value of the object is computed by using

Eq. (5).
(3) Object communication: the object is transported to update the global best

object Gbest.

Step 4: Halting judgment: if the preset stop condition is satisfied, the system
halts and exports the global best object Gbest; Otherwise, go to Step 3.
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Fig. 3. The function of the membrane clustering algorithm on FPGA
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3.3 Implementation Program Module Partitioning of Membrane
Clustering Algorithm on FPGA

The PSO algorithm is operated on FPGA in the cell P system to performed
parallelism of membrane computing, the objects of the experiment in the two
cells are performed by using the same evolution rules, so the experiment can
make full use of parallelism of FPGA to improve the computing speed. Function
partition diagram is shown in Fig. 3, combined with parallelism of FPGA, the
particle swarm optimization algorithm process is divided into the different mod-
ules according to the different function. However, the different function module
is composed of various programmable logic unit of FPGA hardware structure by
layout. This paper uses the top-down design method which completes the call
of each functional submodule on the top-level module. Finally, the membrane
algorithm is realized in parallel on FPGA, and the realization of the prelim-
inary exploration of membrane algorithm on the hardware is also completed.
The specific description of function modules are shown in Fig. 4:

Top level module: the overall control of the whole process, using top-down
design method to achieve the call of each sub module and data initialization.

Module 1 (M1): it is a place where the whole experimental data set is stored
in, the experimental data set is 250 two-dimensional arrays that their numerical
size of horizontal and vertical axes is between 4 and 16. Combined with the
characteristics of FPGA processor processing data, here the whole data set value
is expanded 100 times to facilitate the programming and data processing, but it
does not affect the results of the experiment.

Module 2 (M2): it is a recognized data set and this experimental data set
is best clustered into k = 5, therefore, optimization of the number of clustering
categories is simplified. In a smallest system, the initialization of the five clus-
tering centers of object 1in a cell will be realized through module 2, and module
2’ is the same as module 2.

Module 3 (M3): combined with the optimization principle of particle swarm
optimization algorithm and the data clustering method, the particle of object
1(each data point of the data set) will calculate the fitness and judge the merits
of the calculation. This module uses the FPGA multiplier to calculate Δx2 and
Δy2 of the Euclidean distance. The root operation of Euclidean distance uses a
coordinate rotation digital calculation method while judging. Module 3’ is used
to process data in object 2. Because the processing flow of object 1 and object
2 is synchronous, the basic principle of programming is consistent.

Module 4 (M4): the first iteration computation of particle swarm optimiza-
tion is realized, and then the local optimum and global optimum are selected.
The ultimate goal of data clustering is to pick out the best clustering center,
which can accurately represent different characteristics of each data type and
achieve the best classification data set. It needs to be explained that the global
optimum after the iteration computation of the PSO algorithm is the best cluster
center of data clustering.

Module 5 (M5): it will accomplish the velocity and position updating calcu-
lation of object 1. The experimental data is two-dimensional, so the method is
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used to complete the speed update and position update of abscissa and ordinate
of data points respectively. Module 5’ is to process particles of the object 2, and
then the new local optimum particle and the global best particle are obtained
after making comparison of the particle’s fitness. Among them, the velocity
update function of the PSO algorithm involves random number r1 and r2, then
the programming way uses a LFSR (linear feedback shift register) principle to
generate random numbers in this paper. Owing to the minimum system haven
two objects, the clustering center of each object is two-dimensional, including x
and y coordinates, and a velocity update requires two random numbers r1 and
r2, the system contains eight random number generation modules. Note that the
produce of r1 and r2 are changed along with the iteration, that is, the velocity
updating formula is used while an iterative arithmetic is carried out. And the
random numbers r1 and r2 will change in real-time following the whole system
update.

4 Experiment Results and Analysis

The experimental parameters involved in this paper are set to c1 = c2 = 1,
q = 1, m = 2. AD.5 is selected as the experimental data set for data clustering
(combined with the characteristics of processing data on FPGA, this experiment
will expand the size of all the data points 100 times, which does not impact on
the analysis of experimental results). After writing and debugging stages of the
entire program, the experimental data set is brought to the experiment. Then
it can achieve programming control of data clustering inside the FPGA, observe
the simulation results, and draw the conclusion of the experiment.

Table 1. Experimental results.

The number of iteration f-1-para-old f-2-para-old f-1-para-new f-2-para-new

1 70971 119406 70971 119406

2 64171 83403 64171 83403

10 63501 74514 59754 54748

50 95381 248791 49283 54748

Experiment results are shown in Table 1, f-1-para old and f-2-para old show
the fitness values before iteration. f-1-para new and f-2-para new show the fitness
values after iteration. The changes of the object’s fitness values in the each cell
reflect the implementation of membrane clustering algorithm based on FPGA.
The experimental results show that fitness of particles decrease with the increas-
ing of the number of iterations in the intracellular two objects. The convergence
trend indicating that each particle is gradually closer to the best local, and the
data clustering effect can be achieved. As long as it has been running to observe
the results of the operation, the global optimal will be got to achieve the best
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division of the whole system data. In this section, the concept of parallel has been
always adhered to the whole implementation process of programming, because
the process of data clustering is parallel executed in the two objects of the sys-
tem by using the PSO algorithm. Not only the better reflects the parallelism of
membrane clustering algorithm, but also improves the efficiency of the clustering
process, and obtains the ideal clustering effect.

5 Conclusions

In order to realize the parallelism of the membrane clustering algorithm, the PSO
algorithm is presented based on FPGA hardware system in the cell-like P system.
In this paper, the Euclidean distance is selected as the similarity measure. Thus,
the smaller the f value, the closer to the clustering centers, which indicates the
object is better. Finally, a preliminary realization is made by the application of
the membrane computing in hardware, and it further expands the range of the
membrane computing in practical engineering applications.
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Abstract. Membrane Computing comes under the field of Natural
Computing. This was introduced by Gheorghe Paun. This field has been
there from a decade. To realize Membrane Computing it is important
to have tools that can be used either to process or simulate membrane
computing. There have been several attempts in this area. This paper
is an attempt to provide the details of the tools that are available for
membrane computing. Primarily the tools are classified into two compo-
nents. On one hand we have tools that are being used for specific type of
P Systems or the tools which have a specific application. On the other
hand there are tools which are comparatively generic in nature. Further
this paper lists the tools that have been designed and developed to be
used for the biological applications of P Systems. After classification, a
brief description of the tools is given in this paper. Finally a brief quanti-
tative analysis of the tools is done. Though there have been few surveys
of P System tools, this is a slightly different paper which tries to classify
and tries to a give review of the tools.

Keywords: Membrane computing tools · P Systems · P System tools ·
P System simulators

1 Introduction

Membrane Computing was introduced by Paun in 1998 [39]. This is one of the few
elegant works that aim at imitating the biological processes (based on cell). There
are several applications of membrane Computing. Membrane Computing or P-
Systems are characterized by high parallelizability. It is bio inspired computing
paradigm which has a lot of applications because of its inherent structure. It was
inspired by structure and functioning of a living cell. As the concept is based on
the living cell, this is also being seen as a tool to be used to emulate or describe
biological processes, which is one of the important applications of P Systems,
which may even revolutionize the way biological processes are studied.

To realize the power of membrane computing it was necessary to develop
the tools that will emulate/simulate biological processes. Not only this, there is
also a need to have P System tools that will allow the simulation of P System
to test/realize its computational properties and mathematical properties. Both

c© Springer Nature Singapore Pte Ltd. 2016
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the types of the tools are necessary. The number of tools for the latter is more
compared to the former. Initially, there were several tools developed with the sole
purpose of demonstrating the power of P Systems for solving computational and
Mathematical problem and then gradually tools started coming up for several
applications of membrane computing.

These tools, apart from testing the P Systems also allowed the user to use
P System to visualize and understand the way P Systems work, thereby giving
more clarity to the user on certain fine issues of P Systems. Most of the systems
are born out of research and are created for immediate necessities/requirement
for the researchers.

As the membrane computing paradigm evolved theoretically, there were sev-
eral methods and mechanism to experience the practical implication of mem-
brane computing. Thus several simulation softwares and tools have been devel-
oped to experience or visualize the models of membrane computing. Though
there have been several applications of each and every simulation model, the
primary application is visualizing the actual membrane computing model.

The simulators or simulation tools can be primarily be classified into two,
the simulators or simulation tools that concentrate more on biological aspects of
membrane computing and help use the membrane computing paradigm for simu-
lating biological processes; and, the set of tools/simulators that have been devel-
oped for using the membrane computing paradigm for solving problems related
to Mathematics and Computer Science. All the simulators in these two areas
have been discussed in this paper. There are several tools and softwares that have
been developed by different researchers working on membrane computing. A list
of these softwares has been given in the website that has been maintained for
P-Systems [8]. There are also several initial studies made on tools for membrane
computing. There are also a few surveys that have been done before [25,50,62].
Though the list also has been maintained [8], this paper is an attempt to classify
all the available tools according to their topic, thus to have a systematic litera-
ture review of the tools that are available for P Systems. Apart from these, there
is also some detail about all the simulators, thereby just giving a brief idea about
the purpose, language and other properties of the simulator. The Fig. 1, lists the
tools according to the timeline in the chronological order. There are further five
sections in the paper, Sect. 2 talks about tools/simulators for membrane com-
puting in general and classifications used in this paper. The next section gives
the details about tools that are specific to a type of P System or specific to
certain application of P System. The next section lists and briefly describes the
tools that are a little generic in nature, i.e. the tool which allow more than two
types of P Systems to be realized or which doesn’t have any specific application.
The next section lists the tools/simulation that are specific for biological appli-
cation. The prefinal section analyses the survey and the final section concludes
the paper.
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Fig. 1. Timeline of simulator and tools

2 Classification of Membrane Computing Tools

As discussed Membrane Computing is a vast topic. There are many researchers
in this area working and expanding it from all the directions. As the research
progresses and development progresses different type of tools are required for
different areas. Thus keeping this view time to time several tools have been
developed according to the need of the researchers.
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P System tools can be classified in different ways, in this paper we discuss
two important ways of classification. Firstly, the tools can be classified as generic
tools i.e. P System tools that can be used in general to study the properties,
behavior of P Systems and specific tools i.e. The tools that have a specific appli-
cation or the tool which is specifically designed for a particular P System variant.
Then the other type of tool classification is based on eventual application of P
Systems i.e. computational/general application or biological application. This is
another way of classifying the tools. Unlike the former classification, this clas-
sification gives an idea about the research that is going on one particular area
and significant number of tools tells us that there are several works going over
this topic. But on the other hand only with the number of tools, one may not
be able really predict exactly the number of works that are being carried out in
this area but will have some idea about the progress. This paper discusses all
the tools according to the classification.

In this paper, simulators/tools that have been developed for P Systems are
classified. Here the P System/application specific tools have been listed sepa-
rately and the general tools have been listed separately. Mostly all the tools are
explained very briefly, just to give an idea about the tool. Further the tools spe-
cific to biology are listed again to give an idea about the tools that are related
to biology separately. To avoid repetition the other part i.e. non-biological tools
are not listed separately.

3 P System Tools that are Specific to a Particular
Application or Type

This is second classification of P Systems, this section discusses the details about
the tools/simulators that are specific to a type of P System or specific kind of
application. Here all the specific tools are only considered. By specific we refer
the tools,

– That are designed only for a particular type of P System (Transition P Systems
[39], Numerical P Systems [61] etc.)

– That have a very specific type of application (eg. Generating trees (J Plant
[69]))

In this section all the tools that come under the above area are discussed.
From the time the P System simulator was being designed, it started from

designing the specific type of P Systems. It all started from designing, first to
come, the simplest transition P System. As it proceeded, there were several
system which came for specific kinds of P Systems. On the whole if it is to be
seen there are more number of simulator only for specific kinds of P Systems.
This section describes in detail the specific kinds/type of P Systems. Out of total
number of tools that have been listed in paper nearly Forty Five (Table 1) tools
belongs to this category.



Tools and Simulators for Membrane Computing 253

Table 1. List of tools for specific P Systems

Tool/software Name of the
developers

Base
tool/framework/
language

Purpose

Membrane computing
in prolog [47]

Mihaela Malita Prolog Transition P System

On a LISP
implementation of a
class of P Systems [71]

Yasuhiro Suzuki,
Hiroshi Tanaka

LISP Transition P System

Membrane software A
P System simulator
[24,35]

G. Ciobanu, D.
Paraschiv

Visual C++ Two variants of P
Systems

A CLIPS simulator
for recognizer P
Systems with active
membranes [65]

Mario de Jesus Perez
Jimenez and
Francisco Jose
Romero Campero

CLIPS For recognizer P
Systems with active
membranes

A MzScheme
implementation of
transition P systems
[58]

Delia Noval
Balbontn, Mario J.
Perez Jimenez, and
Fernando Sancho
Caparrini

MzScheme Transition P System

A software simulation
of transition P
Systems in Haskell
[10]

Fernando Arroyo
et al.

Haskell Transition P System

Distributed simulator
for transition
P-Systems [72]

Apostolos
Syropoulos et al.

Java (with
standard UDP
protocol)

Distributed in
nature, works for
transition P-System

Sevilla carpets [26,60] G. Ciobanu,
Gh. Paun,
Gh. Stefanescu

Python Comparing solutions
for subset sum
problem

SubLP-Studio v0.1 [8] Alexandros Georgiou Java For L-System and
P-System

A prolog simulator for
deterministic P
Systems with active
membranes [28]

Andres
Cordon-Franco et al.

Prolog Deterministic P

P Systems running on
a cluster of computers
[27]

Gabriel Ciobanu,
Guo Wenyuan

C++, MPI Generic

Modelling biological
processes by using a
probabilistic P system
software [9]

Ioan I. Ardelean,
Matteo Cavaliere

- For biological
processes
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Table 1. (Continued)

Tool/software Name of the
developers

Base
tool/framework/
language

Purpose

SimCM [55] M. Isabel
Nepomuceno
Chamorro

Java Transition P System

A simulator and an
evolution program for
conformon-P systems
[34]

Pierluigi Frisco,
Ranulf T. Gibson

Java Conformon P
System

A Simulator for
confluent P systems
[41]

Gutierrez Naranjo,
Miguel Angel, Mario
de Jesus Perez
Jimenez, and Agustn
Riscos Nunez

Prolog For more than one
type of P System

Simulation software
for membrane
approximation
algorithm [57]

T. Nishida - Specifically designed
for membrane
approximation
algorithm

Vibrio Fischeri [8] P. Cazzaniga,
D. Pescini

C For biological
process

Dynamical
probabilistic
P-Systems [66]

P. Cazzaniga,
D. Pescini

MPI and C Probabilistic
P-System

Tissue simulator: a
graphical tool for
tissue P Systems [15]

Rafael
BorregoCRopero,
Daniel Dı́az-Pernil,
and Mario J.
Perez-Jimenez

Java and C# Specifically designed
for tissue P-Systems

DasPsimulator [29] D.K. Das and
T. Renz

Java P-System simulation
with active
membranes for
transition P Systems

A tool for using the
SBML format to
represent P Systems
which model
biological reaction
networks [56]

Isabel Nepomuceno,
Juan Antonio
Nepomuceno,
Francisco Jose
Romero Campero

CLIPS To represent
biological processes

A software tool for
dealing with spiking
neural P Systems [67]

Daniel
Ramirez-Martinez,
Miguel A.
Gutierrez-Naranjo

Xbase++ and
SWI C prolog

Spiking neural P
System
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Table 1. (Continued)

Tool/software Name of the
developers

Base
tool/framework/
language

Purpose

MetaPlab: a virtual
laboratory for
modeling biological
systems by MP
systems [21]

Alberto Castellini
and Vincenzo Manca

Java For bio-systems

Simulation of P
Systems with active
membranes on CUDA
[23]

Jose M. Cecilia et al. C and C++
programing
language along
with CUDA
extensions

P Systems with
active membranes

A P-Lingua based
simulator for tissue P
systems [52]

Miguel A.
Martinez-del-Amor et
al.

P-Lingua Specifically designed
tissue P-Systems

Parallel simulation of
probabilistic P
Systems on multicore
platforms [53]

Martnez del Amor,
Miguel Angel et al.

OpenMp,
P-lingua,
MeCoSim

Probabilistic P
Systems especially
for modeling
ecosystem

Simulating a P system
based efficient
solution to SAT by
using GPUs [22]

Cecilia Jose M. et al. CUDA Solution for SAT

SNUPS [16] Octavian Arsene,
Catalin Buiu and
Nirvana Popescu

Java Numerical
membrane
computing

A PCLingua based
simulator for spiking
neural P Systems [45]

Macas-Ramos,
Luis F. et al.

P-Lingua Spiking neural
networks

JPlant [69] Elena Rivero-Gil
et al.

Java Generating graphics

A spiking neural P
System simulator
based on CUDA [18]

Francis Cabarle,
Henry Adorna, and
Miguel A.
Martinez-del-Amor

CUDA C
Python

Spiking neural P
System

An improved GPU
simulator for spiking
neural P systems [19]

Francis Cabarle,
Henry Adorna, and
Miguel A.
Martinez-del-Amor

CUDA C
Python

Spiking neural P
System

A Java-based
P-Lingua simulator
for Enzymatic
Numerical P Systems
(ENPS) [31]

M. Garca-Quismondo
et al.

Java, P-Lingua Biological process
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Table 1. (Continued)

Tool/software Name of the developers Base

tool/framework/

language

Purpose

DCBA: simulating

population dynamics P

Systems with

proportional object

distribution [51]

M.A. Martnez-del-Amo CUDA, P-Lingua Population dynamics
P Systems
environment ecology

A GPU simulator for
Enzymatic Numerical P
Systems (ENPS) models
in CUDA [36]

M. Garca-Quismondo
et al.

Java, P-Lingua Biological process

A GPU simulation for
evolution-communication
P Systems with energy
having no antiport rules
[11]

Zylynn F. Bangalan CUDA C,
P-lingua

Evolution-
communication P
Systems

Simulating a family of
tissue P Systems solving
SAT on the GPU [54]

M.A. Martnez del
Amor et al.

CUDA Tissue P System

Accelerated simulation of
membrane computing to
solve the n-queens
problem on multi-core
[48]

Maroosi Ali and Ravie
Chandren Muniyandi

Visual C++ N queens problem

A C++ simulator for
PGSP systems [37]

M. Garca-Quismondo
et al.

C++ PGSP, biological
process

A P-lingua based for
tissue P System with cell
separation [63]

Ignacio Perez-Hurtado
et al.

P-Lingua Tissue P System

Simulating spiking neural
P systems without delays
using GPUs [17]

Francis Cabarle, Henry
Adorna, and Miguel A.
Martinez-del-Amor

CUDA, Pyhon Spiking neural P
System

Antibiotic Resistance
Evolution Simulator
(ARES) [20]

Marcelino Campos
et al.

Java, P-Lingua Biological processes

P-Lingua based simulator
for P Systems with
symport/antiport rules
[46]

Luis F. Macas-Ramos
et al.

P-Lingua Generic

Lulu - a software
simulator for P colonies
[32,33]

Andrei George Florea,
Catalin Buiu

Python P Colonies

Enhancing the simulation
of membrane system on
the GPU for the
N-Queens problem [68]

Ravie Chandren and
Maroosi Ali

Visual C++ N queens problem
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The tools are briefly explained here:

3.1 Membrane Computing in Prolog

This is the first working simulator that has been developed for membrane com-
puting. This was developed by Malita [47]. This simulator was designed for
Transition P System. This is one of the simplest simulators that was the first
one to be developed to test the power of membrane computing. This simulator
was developed in PROLOG, PROLOG then being one of the best languages
known for its expressiveness.

3.2 On a LISP Implementation of a Class of P Systems

This simulator is also one of the earliest implementations of membrane comput-
ing. This simulator uses LISP language for implementation. This was developed
by Suzuki and Tanaka [71]. This simulator was specifically developed for what
ACS. This model was developed by same authors who have developed this simu-
lator. This model is a variant of the existing model. This model allows dissolving
and creating membranes.

3.3 Membrane Simulator

Membrane Simulator is a simulator designed by Ciobanu and Paraschiv [24,35].
It is a simulator which is specifically designed for two variants of P Systems
namely for initial version of catalytic hierarchical cell system and for active
membrane systems. It is one of the earliest simulator that was solely aimed at
realizing P System (2002). It is developed using Microsofts Visual C++.

3.4 A CLIPS Simulator for Recognizer P Systems with Active
Membranes

This is a simulator developed for simple recognizer P systems with active mem-
branes. This simulator was developed by de Jesus Perez Jimenez and Campero
[65]. This simulator is based on CLIPS (C Language Integrated Production Sys-
tem). Here the P Systems are represented using the production system tech-
niques. This is a fairly simple simulator which allows the users to model recog-
nizer P Systems with active membranes.

3.5 A MzScheme Implementation of Transition P Systems

This simulator allows the users to simulate transition P Systems using Mzscheme.
This simulator was developed by Balbontn Noval et al. [58]. Mzscheme is a
scheme language that was first introduced in 1975. This simulator is one of the
only simulators in Mzscheme for simplest form of P Systems, i.e. transition P-
Systems. This simulator in a sense is an implementation of transition P System
in Mzscheme, albeit it was one of the earliest simulators for P Systems.
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3.6 Simulation of Transition P System Using Haskell

This is a simulation algorithm developed by Arroyo et al. [10]. Here the devel-
opers have simulated a model of earlier proposed transition P-System. This is
one of the few simulations that use Haskell as the programming language (The
interpreter that has been used is hugs 98). This is one of the initial softwares sim-
ulations for transition P-Systems. This is a fairly simple simulation and primary
simulation that was aimed to show a software model for transition P System.

3.7 Distributed Simulator for Transition P System

This was again developed by Syropoulos et al. [72]. This simulator is for tran-
sition P System. This tool is distributed in core. This is one of the old tool
for Transition P Systems. The tool is developed using Java especially using of
Remote Method Invocation (RMI), which gives the distributed nature to the
simulator. This is a simple and preliminary tool that can be used for simulation
and analysis of small, less complex problems. The main aim of development of
this simulator was to a give a distributed implementation. Thus, the main draw-
back of the simulator is that it cannot be used for complex systems. Further this
simulator can be extended to complex membrane systems.

3.8 SubLP-Studio

SubLP-Studio is a software simulator for the Sub LP-Systems model, a vari-
ant of L-Systems and P-Systems. This was developed by Alexandros Georgiou
[8]. It optionally interfaces to cpfg, thus producing plant graphics using the
turtle interpreter [8]. SubLP-Studio is an editor and simulator for the Sub LP-
Systems computational model [8]. This model is based on a combination of L-
Systems, originally proposed by Aristid Lindenmayer, and P-Systems, originally
proposed by Gheorghe Paun. The model features membrane-delimited parallel
string rewriting for parametric symbols, and has extensions for arithmetic using
variables and user-defined functions.

3.9 A Prolog Simulator for Deterministic P Systems with Active
Membranes

This simulator was developed by Cordon-Franco et al. [28]. Here the developers
have used PROLOG for developing the simulator. PROLOG is one of the old-
est languages that is used for logic programming. The main reason for choosing
PROLOG is its expressiveness which is very useful in handling symbolic knowl-
edge representation. This simulator which is specifically designed for determin-
istic P Systems with active membranes.
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3.10 Modelling Biological Processes by Using a Probabilistic P
System Software

This simulator allows the users to model simple biological processes. This was
developed by Ardelean and Cavaliere [9]. This simulator is one of the earliest
simulators for biological processes. This simulators use probabilistic P Systems.
Probabilistic P Systems can be inherently used for modeling biological processes.
The developers have shown the way the simulator works in their paper [9].

3.11 P Systems Running on a Cluster of Computers

This was developed by Ciobanu and Wenyuan [27]. This tool aims at simulating
a simple P System. This is specifically designed on Cluster of Computers. This is
one of the first simulators to use cluster of computers for deploying/simulating
P Systems. This is used for simulating Transition P Systems. This simulator is
simple in structure and can be used for simulating small problems and it can be
extended for other special types of membranes. It has been implemented using
C++ and uses message passing interface (MPI). This simulator is designed such
that it can be easily extended.

3.12 SimCM

SimCM (Simulador de Computacion con Membranas) tool was developed by
Ángeles Nepomuceno Chamorro et al. [55]. This tool is primarily designed for
Transition P System. This tool allows dissolution of membrane and priority rules
are also allowed. The program is written in Java, because of its properties such
as scalability and distributed network. The authors have used Java as it will
be helpful in capturing parallelism that is required for Membrane Computing.
The simulator is designed in MVC (Model-View-Controller) model. There are
two subsystem that have been created as part of this system, the subsystem I
consist of the main simulator engine, that forms the core part of simulator. The
subsystem II is used for Guide User Interface (GUI) that is used to interact with
the user. The two subsystems interact with each other.

3.13 Conformon P System

This simulator is designed for Conformon P Systems. According to Frisco and
Gibson [34]. Conformon P Systems have simple structure/definition that allows
them to be used for modeling biological processes of any scale. The tool has
been specifically designed for biologists, so as to allow them to use this tool for
simulating simple known biological processes so that they study these processes.
And further this can be extended to be used for unknown biological processes
which can be a little complex or difficult to study. In short this tool could help
the users to easily model part of the processes which are known. Thus this is a
step towards biological application of Membrane computing (P Systems). The
simulator uses Java for implementation. The aim of the simulator creators was to
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use any good object oriented programming language to create this simulator. The
input format for the simulator is XML file. Because of XML formats simplicity
and generality it has been used here as an input format. Thus the user has to
give the input in a XML format, which can be easily understood.

3.14 Simulator for Confluent P Systems

This tool is developed by Naranjo et al. [41]. Earlier to this tool there have
been several tools that have been developed for P Systems, specially the tools
which allow simulating a P System. Most of the tools that have been developed
are for specific type/class of P Systems. This tool that has been developed for
P Systems is different from others as it is not created for a specific type of P
Systems.

This tool is able to simulate more than one type of P System. According to
the developers it is one of the first attempts to do so. This tool unlike the other
tools, which need all predifined limited structures allows creativity to the user.
It allows the user to mix up two or models to have a different model of P System.
This is one of the features that has not been there in any of the softwares that
have been proposed before.

The software is developed based on PROLOG. The decision to choose prolog
has been attributed to the properties of the language, i.e. its vast expressiveness
and also in this case, its ability of evolving through the different configurations.
The important advantage of this tool is that it allows the users to use more than
one type of P Systems, which has much better expressiveness than the other tools
that have been developed before this tool and in addition to that it also allows
verification of complex problems for P Systems. One of the main drawback of
the simulator is that it may require more time for complex problems.

3.15 Simulator for Dynamical Probabilistic P System

Dynamic Probabilistic P System has been developed by Pescini et al. [66].
Dynamic Probabilistic P System are suitable for modelling complex biological
and chemical processes. Thus aim here was to develop a simulator that can be
used to simulate specific biological processes. The developers have used C Lan-
guage for development of the simulator. The simulator here is used to define
a simple biological model, here, in this case the predator prey model has been
analysed.

3.16 Tissue Simulator: Tissue Based P System

It is another tool that is specifically designed for Tissue P-Systems. This sim-
ulator is designed by Borrego-Ropero et al. [15]. This is a graphical simulator
that allows the users to simulate Tissue P-Systems with cell division. It is graph
based tool specifically designed for tissue based system. The tool is developed
using Java and C#. Java has been used to parse the grammar generated using
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ANTLR. ANTLR is a commonly used parser, generator that is used to trans-
late or parse structured text or binary file [7]. C# has been used to develop
the kernel and the graphical interface which is widely used to build languages
tools and frameworks. According to the developers, the interconnection between
both the languages is transparent and a user can easily switch between the win-
dows by clicking on buttons that have been developed [15]. The software follows
Model-View-Controller model.

3.17 DasPSimulator

DasPSimuator is another simulator for specifically designed for Transition P Sys-
tem. This is similar to SimCM Simulator that has been created by Das and Renz
[29]. There are several properties in this type of P System simulation in addition
to that of SimCM. Some of the additional properties of the systems are that this
system is able to perform membrane create, membrane division and membrane
string replication operation in addition to membrane dissolution operation which
was already a part of SimCM Simulator that has been developed.

The Simulator is based on Java. The Simulator uses Model View Controller
architecture. The simulator has two subsystems. The first subsystem considers
the core (program) part of the simulator. The second part of the simulator is
mainly devoted to its GUI. The GUI portion is mainly done in Java. The two
subsystems interact with each other. This software primarily allows the user to
model Transition P Systems. The main drawback of this simulator is that it is
designed only for transition P Systems. There can be several addition to the
existing simulator so that it can be used for some other types of P Systems.

3.18 A Tool for Using the SBML Format to Represent P Systems
Which Model Biological Reaction Networks

This tool was developed by Ángeles Nepomuceno Chamorro et al. [56]. The tool is
basically used to represent P System, so that further this representation turns out
to be useful in modelling the biological processes using this representation. Thus
the main aim of the tool is to represent P-System in the most suitable format that
is suitable to represent the biological processes. This tool uses System Biological
Markup Language (SBML) [42]. Here CLIPS (C Language integrated production
System) has been used [1]. The tool’s main goal is to provide the user with the
environment to write the description of processes using SBML, In addition to
that the tool converts the SBML code written by the user is converted to CLIPS
code automatically. This converted CLIPS code is used to for simulation. The
tool is follows the MVC (Model View Controller) Architecture.

3.19 A Software Tool for Dealing with Spiking Neural P Systems

This software tool was developed by Martinez et al. [67]. This software tool
is basically for spiking neural systems. This is one of the first attempts
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to create software for spiking neural systems. The developers have several
tools/programming languages for simulation. There are three modules in the
simulator. Each and every module has different purpose and thus accordingly
more suitable language has been chosen for each module. The first module is
used for graphical user interface (GUI) for this Xbase ++ has been used. Xbase
++ is an object oriented language that is specifically used for Database Oriented
graphic implementation. The second module is developed using PROLOG-SWI.
This acts as a inference engine. The main advantage of this tool is modularity
which allows easy extension of the tool.

3.20 MetaPlab

MetaPlab is a simulator, designed for special class of P System called MetaPSys-
tem. MP Systems are the systems that are used for modelling biological processes
and biological system. MetaPlab is one of the softwares that is to be used for
biological aspect of membrane computing. The Software is based on Java. This
software is an extension of Psim Simulator. Psim Simulator is one of the generic
simulators that have been used for biological aspects of membrane computing.
This is a computationally intensive framework that is based on extensible set
of plugins. MetaPlab software is specifically designed for biologists to under-
stand the biological systems especially their internal mechanisms which specif-
ically allows to reproduce and analyse the, in silico, phenomenon like response
to external stimuli, structural changes and environmental condition alterations.

This is primarily plugin based (Plugin Framework) simulator. Thus each and
every important task there is a plugin, For eg. There are plugins such as Flux
Discovery, Simulation Plugin, Chart Plugin and HTML Plugin. This is one of the
few systems that aim to find its applications to biological aspects of Membrane
Computing and one of the tool with good graphical interface. There are several
properties of this tool that are significant, these properties are better simulation
and visualization. It also allows graphical and statistical analysis of curves, i.e.
it allows the users to plot the graph. It also allows the users to import biological
networks from online database.

3.21 Simulation of P Systems with Active Membranes on CUDA

This simulator was developed by Cecilia et al. [23]. This simulator is specially
designed for P System with active membrane over CUDA. This is developed using
C and C++ language with CUDA extension. This is one of the first attempts to
simulate P Systems using CUDA. This is also a simple simulator which doesn’t
have a great GUI, as its main intention is to model P Systems using CUDA and
to use the full power of GPU’S so that the membrane computing implementation
can be efficiently parallelised to speed up the simulation processes.

3.22 P-Lingua Based Tissue Simulator

This is a simulator based on Tissue like P System developed by Martinez-del-
Amor et al. [52]. This is one of the first few simulators for tissue like membrane



Tools and Simulators for Membrane Computing 263

computing. This simulator is an extension over the existing P-Lingua core library.
Thus the previous versions of P-Lingua didn’t have the provision for Tissue
P Systems. The latest version of P-Lingua specifically has this feature. Here
simulation of Tissue P System with cell division is presented. As told, this is not
a separate tool and is an extension of P-Lingua.

3.23 Parallel Simulation of Probabilistic P Systems on Multicore
Platforms

This tool is developed by Martnez del Amor et al. [53] The purpose of this
tool is to allow the users to create a simulation for probabilistic P System. The
tool is set to run on multicore platform. The main library that has been used
for implementation is OpenMP, which is used for efficient parallelization of the
algorithms. The simulator inherently uses P-Lingua Core and MeCoSim. These
components would be used by the users to define the membrane structure of the
P System. As this is a probabilistic P System model, the main aim here is to use
this for defining biological processes. This was primarily designed for ecologists
to model ecosystem.

3.24 SNUPS

SNUPS is a software tool for modeling simulations of numerical P System It was
developed by Buiu et al. [16]. Numerical P Systems use numerical data and use
numerical program, primarily in deterministic way. According to the developers,
this is first simulator that has been designed specifically for Numerical P Sys-
tems. SNUPS is developed using Java. SNUPS is quite user friendly as it allows
the user to use it using to modes, one way is to run it as a batch application
and other way is to operate it using a GUI. The membrane structures here can
be created using application. These membrane structures that are created are
stored as XML file. These XML files can be given as input to the tool via com-
mand line. After processing the membranes the results are stored as CSV files.
Further, the GUI is divided into three more components, membranes tree sym-
bols assignment and rules definition. The advantage of using SNUPS is, that it is
one of the best simulators for Numerical P System. The underlying architecture
is parallel in nature, and thus the time taken for execution is less compared to
other tools.

3.25 A P-Lingua Based Simulator for Spiking Neural P Systems

Spiking Neural P Systems were introduced in 2006 [43,44]. These kind of P Sys-
tems have been extensively popular because of its properties. Here Macas-Ramos
et al. [45] have developed a simulator for spiking neural P System. Though there
has been already an attempt in this direction but there are several improvements
and differences here. Here the developers have used P-lingua for developing the
simulator. As P-lingua has become a standard language to define a P System,
this simulator serves as an extension of the framework, thereby allowing the
framework to be used for SN-P Systems also.
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3.26 JPlant

This tool was developed by Rivero-Gil et al. [69]. This tool has been written in
Java. The primary aim of this tool is to create a membrane computing model,
i.e. it is used for membrane creation. This tool computes the configuration of a
restricted P System and then draws the respective graphical representation of
the system. This is one of the kind of a tool which reduces the work of drawing
P Systems. This tool has a good GUI (Graphical User Interface). Thus in simple
terms this is the tool used for generating graphs using the P System Model.

3.27 A C++ Simulator for PGSP Systems

This software system is primarily developed is C++. This allows efficient sim-
ulation of Probabilistic Guarded Scripted P Systems. This simulator has been
developed by Garca-Quismondo et al. [37]. PGSP Systems are special kind of P
System that have been used to study the behaviour of Pieris napi olerace [59].

3.28 A P-Lingua Based Simulator for Tissue P Systems with Cell
Separation

This was developed by Perez-Hurtado et al. [63]. This simulator is based on P-
Lingua. This tool is also designed for Tissue P System. This tool is better than
its predecessor, it is not an official successor of the tool but it also tries to solve
the same problem of tissue P-Systems but with cell separation. Thus specifically
this tool allows modelling tissue P System with cell separation. As this simulator
is based on P-Lingua it has several advantages over other simulators. It would
be easier for the users to define (give input) the P System file (model).

3.29 A Membrane Computing Simulator of Trans-Hierarchical
Antibiotic Resistance Evolution Dynamics in Nested Ecological
Compartments (ARES)

Antibiotic resistance evolution simulator was developed by Campos et al. [20].
This simulator based on membrane computing was specifically designed for
Antibiotic resistance evolution. Antibiotic resistance is one of the important
area in biomedical field. There is often a need for biologists to experiment on
antibiotic resistance and thus this tool will be helpful to them as it allows antibi-
otic resistance evolution. Primarily this tool has five types of nested computing
membranes which allow the users to create (emulate) hierarchy of ecobiological
compartments. The tool has been implemented using Java. This tool specifically
has been installed in a server.
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3.30 Lulu - A Software Simulator for P Colonies

This is a first attempt to develop software for P colonies. This is a project
which is at its initial stages. This is initiated by Florea and Buiu [32,33]. P
Colonies are special types of P system variants that have a wide verity of real
time applications. This tool has been developed in Python. This tool mainly is
intended to be used for only P colony application. The tool consists of library
which will allow the user to connect the P colony simulation to a robot and will
in turn allow the user to control mobile robot through it.

4 P System Tools That Are Generic in Nature

There are a few tools which allow to simulate the P System and allow the users
to understand the working of P System. These system are not designed for
specific type of P System. This does not mean that all the P System types can
be realized using these tools but it supports more than one basic simulation of
membrane computing. This set of simulators not only includes the simulators
used for computational purposes.

This list also includes the tools that are used for biological purposes. Thus,
these tools are not too specific about the types of P system that they can be
used for. Though there are a few in the list, the one which can really be called as
generic tool is P-Lingua [30]. This is the one of the best framework that allows
the users to create any kind of simulator according to their need. This simulator
is based on Java. Using P-Lingua there has been a tool developed, which is called
as MeCoSim. This tool gives a user a wide range option and allows the users
to solve and simulate several kinds of computational problems as well as it also
allows the users to use it for biological processes.

Based on Plingua there have been several simulators been designed. Accord-
ing to [5], there is PMCGPU project by Research Group in Natural Computing,
University of Seville. This project uses primarily P-Lingua to design simulators
using GPUs (Graphics Processing Unit), Primarily designed with CUDA these
simulators use GPU for realizing different kinds of P Systems.

4.1 Web-PS: Web Based P-System Simulator with Query Facility

A Web based P-System simulator with Query Facility by Bonchis [14]. This
is a web based tool for simulating P System. This tool is made up of several
components developed in several languages. There are three level and accordingly
different tools have been used for different levels. The first level is the internal
level where CLIPS has been used. In the next level C language has been used. In
the third level i.e. the outermost level which is accessed by the user is the web
application, this is developed using PHP and Java Script. The tool processes the
XML Files (i.e. it uses XML file for input and output).
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Table 2. Generic tools for P Systems

Tool/software Name of the
developers

Base
tool/framework/
language

Purpose

Web-PS: web based

simulator for membrane

computing [14]

Cosmin Bonchi,

Cornel Izba, Dana

Petcu, Gabriel

Ciobanu

Embedded C,

CLIPS

Web based simulator

SL P simulator [38] M. Gheorghe et al. Scilab Biological processes

C P simulator [38] M. Gheorghe et al. C Biological processes

PSim [12] Luca Bianco et al. Java Bio-Systems

Cyto-Sim: biological
compartment simulator
[70]

S. Sedwards et al. J# For bio-systems

P-Lingua 4.0: a
programming language
for membrane [30]

Daniel Daz Pernil
et al.

P-Lingua Core Generic P-System

MeCoSim: membrame
computing simulator [64]

Ignacio Perez-Hurtado
et al.

P-lingua Generic

Infobiotics workbench [13] Jonathan Blakes et al. Jmcss-SBML,
standalone
software

Generic tool for
biological aspects of
membrane
computing

Improved implementation
of simulation for
membrane computing on
the graphic processing
unit [49]

Maroosi Ali et al. CUDA, C++ General

MeCoGUI: a simple,
java-based graphic user
interface for P-Lingua [2]

M. Garca-Quismondo
et al.

Java, P-Lingua Generic

4.2 SL P Simulator

This simulator was developed by Gheorghe et al. [38]. This is a multicompart-
ment P System simulator for biological processes that was developed using Sci-
lab. This is a simple simulator devoid of several complexities which allows effi-
cient multi-compartment simulation.

4.3 C P Simulator

This simulator again was developed by Gheorghe et al. [38]. This has the
same properties as SL Psimulator but with a variance that is wholly developed
using C.
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4.4 Psim

Psim is a simulator developed by Bianco et al. [12]. This simulator is for bio
molecular dynamics based on P Systems. The system is specifically made for
Metabolic P System, which are deterministic P Systems. This tool is used to
verify the biological aspect of the P System. This is probably the first tool for
metabolic P System. Some of the important features of this software are: Its easy
to use, Plugin based architecture, Flexibility, Portability (through XML) and
cross platform acceptability. It allows the user to devise a system specification by
using MP graphs and then further allows simulate its dynamics in a completely
discrete way [12].

4.5 P-Lingua

P Lingua is one of the best accomplishments in the area of softwares/simulators
for membrane computing. The Primary component of P-Lingua is the P-Lingua
Core. It is a Java Library. As the developers say, the main aim behind creation
of P-Lingua, was to have it as a standard for P Systems. Based on the tools that
have been developed based on P Lingua, It has accomplished the task or aim for
which this was created. Based on PLingua there have been several tools. This tool
is developed by Pernil et al. [30]. The main aim here is to give platform for other
users of membrane computing, to create simulators. As membrane computing
is a vast area, it is always difficult to have simulator for each and every special
type of cells/membrane. As it is a known fact that there are a several kinds of P
Systems available. P Lingua is a standard for defining P Systems. This is tool is
based on java. There are several reasons for creation of this language/framework
but the main reason is to a have standard framework for describing all the types
of P-Systems. Before having P-Lingua though there were not many attempts
made to have a standard format, almost all tools were developed for specific
purposes only.

P Lingua is an open tool (i.e. Open for contribution from people) and is
especially designed in Java, so that users can easily contribute extensions to the
existing framework. The framework facilitates addition of models. Specifically
the framework allows the users to add several specific P Systems. Apart from
provisions for input there are several provisions for output formats.

There are several simulators that have been developed using P-Lingua frame-
work. This is kind of universal framework which is intended to become a standard
for P System representation and for processing. Here the main aim of developers
is to create Java (core) classes that will allow other developers working with P
Systems to extend this core and use these files according to their needs. There
are two main advantages: There will be single Java based tool which can be
universally used by anybody who has knowledge of Java and P Systems and a
user can use this tool to create a specific tool/simulator as required according
to their need using P lingua i.e. usually as an extension P-lingua core. Thus,
it would be a useful addition to the repository apart from having solved the
intended problem.
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P-lingua had an advantage that it can also add files in XML Format. P-lingua
library has parsers and compilers that will parse XML Format. In addition to
that it allows exporting the P System models that can be easily exported in
XML and Binary Format.

4.6 Cyto-Sim

Cyto-Sim is simulator specifically developed for biochemical processes. It is a
stochastic simulator for membrane enclosed hierarchy [70]. Here the membrane
has three layers namely the inner layer, outer layer and the integral layer. Cyto-
Sim was developed by Sedwards and Mazza [70]. It is developed using J#. Cyto-
Sim allows the users to import as SBML format, it allows to export as SBML
and m files (Matlab). Cyto-Sim is one of the few simulators that is specifically
designed for biological processes.

4.7 MeCoSim: Membrane Computing Simulator

Membrane Computing Simulator is a software that is developed using P-lingua
core. As per the developers, Perez-Hurtado et al. [64]. it is a general purpose
software that is used to create specific P-Systems. The user has an advantage of
customizing the configuration file given to the user.

MeCoSim was developed by Research Group on Natural Computing (RGNC),
University of Seville, Spain [64]. The developers of MeCoSim have concetrated on
its GUI (Graphical User Interface). This is one of first Softwares/Simulators that
uses P-lingua Core. MeCoSim (Membrane Computing Simulator) is a software
application that offers the users a General Purpose Application to generate their
own specific simulators by simply customizing a configuration file for each case
study.

MeCoSim is used to simulate P Systems for biological processes and also
allows the users to solve computational or mathematical problems. As mentioned
above there are two aspects of a P-Systems applications. One is to apply P-
Systems for simulating biological processes and the other is for Mathematical
and Computational Processes. Though there have been several attempts initially
to have a simulator/tool for P-Systems that would be used for Mathematical and
Computational purposes, they were not as successful as this.

This is one of the tools that has biological applications, for simulation of
biological components, by using membrane computing (P-Systems). It is always
not possible to have different customized software to simulate each type of bio-
logical process. The full form of MeCoSim is Membrane Computing Simulator.
This is one of the first attempts to provide a customizable simulator that can
simulate a range of biological processes using Membrane Computing Concept.
A user can change the configuration file to customize it and create different type
of simulator according to the need.

MeCoSim is developed using PLingua. Plingua is one of the Tool/Framework
that has been extensively used for simulating with Membrane Computing. There
are several important simulators that have been developed using Plingua.
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PMCGPU Project

PMCGPU (Parallel simulators for Membrane Computing on the GPU) is a
project by Research Group on Natural Computing, University of Seville, Spain
[5]. This project aims at providing high performance tools for P Systems. This
is one of the important projects that aim to use High Performance computing
tools for membrane computing. These tools are based on CUDA. It also supports
OpenCL, or Open MP.

There are several simulators being developed using GPUs under this. These
simulators primarily aim of extracting as much parallelizability as possible.
Majority of the GPU based tool mentioned here use CUDA [4], and major-
ity of them use specifically CUDA with C. As mentioned, the main aim here is
to increase computability and parallelizability as much as possible. The specific
simulators that have been developed are

– A GPU Simulator for Enzymatic Numerical P Systems (ENPS) models in
CUDA by Garca-Quismondo et al. [36]

– A GPU Simulation for Evolution-Communication P Systems with Energy Hav-
ing no Antiport Rules Bangalan et al. [11]

– Simulating a Family of Tissue P Systems Solving SAT on the GPU by del
Amor et al. [54]

– Accelerated simulation of membrane computing to solve the n-queens problem
on multi-core by Maroosi and Muniyandi [48]. Simulating Spiking Neural P
systems without delays using GPUs by Cabarle et al. [17].

– A Spiking Neural P system simulator based on CUDA by Cabarle et al. [18].
– An improved GPU simulator for spiking neural P systems by Cabarle et al.

[19].

Though the simulators that have been mentioned here are not generic in
nature, these are a part of project which is based on a generic tool called P-
lingua. Thus to have a flow we have listed the tools here in this section.

4.8 The Infobiotics Workbench

A P System based tool for Systems and Synthetic Biology. The Infobiotics Work-
bench is a tool that has been developed by Blakes et al. [13]. It is one of the
important applications for P Systems in Biology. As other P Systems, Infobiotics
workbench allows the user to create/model biological processes and then allows
the user to execute the models either using stochastic simulation or numerical
methods. It also supports formal model analysis and model checking. Here two
model representation languages have been used, mcss-SBML [3] (An extension
of Systems Biology Markup Language) and a DSL (Domain Specific Language)
which implements lattice population P Systems. This software can interface with
two model checkers, PRISM [6] and MC2 [40]. The software is available under
GPL3 for both Unix based systems, Windows and MacOS.
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4.9 MeCoGUI: A Simple, Java-Based Graphic User Interface
for P-Lingua

MeCoGUI is one of the additional package with P-lingua. It work has been
initiated by Garca-Quismondo et al. [2]. It is a simple, java based graphic user
interface for P-lingua. It is one of the best additional GUI packages for P-Systems
that have been developed so far. This has been extensively used in all places,
wherever P-lingua is used. This can be used with almost all types of simulating
models in P-lingua. For Eg. This can be used with two simulators that have been
developed for PGSP Systems (One in C++ and another in P-lingua).

5 P System Tools That Have Biological Application

This section lists out the tools that have been specifically designed for biolog-
ical applications. This also includes the tools that can be used for biological
applications in addition to other applications. Mostly every tool listed in this
space is only for biological process. These biological processes might be specific
or generic. But the exception is MeCoSim [64] which can be used for Computa-
tional/ Mathematical applications as well as for biological applications (Table 3).

Table 3. Tools and simulators with biological applications

Tool/software Name of the
developers

Base
tool/framework/
language

Purpose

Modelling biological
processes by using a
probabilistic P system
software [9]

Ioan I. Ardelean,
Matteo Cavaliere

- Biological processes

A simulator and an
evolution program for
Conformon P-Systems
[34]

Pierluigi Frisco,
Ranulf T. Gibson

Java Conformon P
System

Vibrio Fischeri [8] P. Cazzaniga,
D. Pescini

C Biological process

Dynamical probabilistic
P-Systems [66]

P. Cazzaniga,
D. Pescini

MPI and C Probabilistic
P-System

SL P simulator [38] M. Gheorghe et al. Scilab Biological processes

C P simulator [38] M. Gheorghe et al. C Biological processes

Cyto-Sim: biological
compartment simulator
[70]

S. Sedwards et al. J# For Bio-Systems
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Table 3. (Continued)

Tool/software Name of the
developers

Base
tool/framework/
language

Purpose

A tool for using the
SBML format to
represent P Systems
which model biological
reaction networks [56]

Isabel Nepomuceno,
Juan Antonio
Nepomuceno,
Francisco Jose
Romero Campero

CLIPS To represent
biological processes

MetaPlab: a virtual
laboratory for modeling
biological systems by
MP systems [21]

Alberto Castellini
and Vincenzo Manca

Java For bio-systems

MeCoSim: membrame
computing simulator
[64]

Ignacio
Perez-Hurtado et al.

P-lingua Generic

Parallel simulation of
probabilistic P Systems
on multicore platforms
[53]

Martnez del Amor,
Miguel Angel et al.

OpenMp,
P-lingua,
MeCoSim

Probabilistic P
Systems especially
for modeling
ecosystem

Infobiotics workbench
[13]

Jonathan Blakes
et al.

Jmcss-SBML,
Standalone
software

Generic tool for
biological aspects
of membrane
computing

A Java-based P-Lingua
simulator for
Enzymatic Numerical P
Systems (ENPS) [31]

M. Garca-Quismondo
et al.

Java, P-Lingua Biological process

DCBA: simulating
population dynamics P
Systems with
proportional object
distribution [51]

M.A.
Martnez-del-Amo

CUDA, P
Lingua

Population
dynamics P
Systems
environment
ecology

A GPU simulator for
Enzymatic Numerical P
Systems (ENPS)
models in CUDA [36]

M. Garca-Quismondo
et al.

Java, P-Lingua Biological process

A C++ simulator for
PGSP systems [37]

M. Garca-Quismondo
et al.

C++ PGSP, Biological
process

Antibiotic Resistance
Evolution Simulator
(ARES) [20]

Marcelino Campos
et al.

Java, P-Lingua Biological processes
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6 Analysis

This section quantitatively analyses the tools. The Fig. 2, depicts the year wise
tools/simulator developed. This shows that there has been several simulators
being developed for biological processes also. Though the number of tools devel-
oped for computational aspect of Membrane computing is more, but off late
there have been considerable development for biological processes. Though the
number of tools that have been developed for biological processes are less there
has been a considerable amount of research going on in this area.

There is an increase in computational simulation in the later years because
of the development in P Lingua. As a language/framework one of the most used
language/framework is P Lingua. After its development there have been consis-
tent work in this area and several tools have been created using this framework
(Fig. 3). Though this framework is developed by using Java, for classification we
have not included P-Lingua based tool under Java so as to know specifically the
number of tools that exclusively use P Lingua and the tools which exclusive use
only Java (Not Part of P-Lingua).

Fig. 2. Tools developed

From the tables in the previous sections (Tables 1 and 2) we can see that,
as mentioned there is a rise in P Lingua in recent years such that not other
language or framework is preferred, except that C++ for sequential simulation
and Python [32]. Though many places CUDA with C is used but it is mainly
being used with P Lingua.
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Fig. 3. Tools based on their language/framework

7 Conclusion

This paper is a survey of P System tools or simulators that have been developed
till now from the inception of the concept called membrane computing. Here the
tools have been classified according their generality. The tools that are specific
in the type of P System and its application are considered as one part of the
classification and the tools that are generic are considered as the other. There is
also a list of P System tools/simulators that are specific to biological processes
which is just to emphasize the use of P System for Biological Processes. The
paper, briefly analyses the simulations/tools, specifically over the years from its
inception.
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65. de Jesús Pérez Jiménez, M., Campero, F.J.R., et al.: A CLIPS Simulator for Recog-
nizer P Systems with Active Membranes (2004)

66. Pescini, D., Besozzi, D., Mauri, G., Zandron, C.: Dynamical probabilistic P sys-
tems. Int. J. Found. Comput. Sci. 17(01), 183–204 (2006)

67. Mart́ınez, D.R., Naranjo, M.A.G., et al.: A Software Tool for Dealing with Spiking
Neural P Systems (2007)

68. Ravie, C., Ali, M.: Enhancing the simulation of membrane system on the GPU for
the N-queens problem. Chin. J. Electron. 24(4), 740–743 (2015)

69. Rivero-Gil, E., Gutiérrez-Naranjo, M.A., Romero-Jiménez, A., Riscos-Núñez, A.:
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Abstract. We introduce new P system models, called as external and
internal parallel contextual hexagonal array P systems, based on the
external and internal parallel contextual hexagonal array grammars. We
can generate hexagonal arrays using these P system models with the
help of Z-direction, X-direction and Y-direction external or internal par-
allel contextual hexagonal array rules. We discuss some basic properties
of these P systems and give some comparison results in terms of their
generative powers.

Keywords: P system · Hexagonal array · Parallel contextual array

1 Introduction

Two-dimensional languages are one of the extensions of string languages theory.
To study the problem of picture generation and description, where pictures are
considered as connected, digitized finite arrays in the two-dimensional plane,
there has been a continued interest in adapting the techniques of formal string
language theory for developing various new methods. Over the past several years
there has been a steady growth in the literature on array grammars and array
acceptors.

While investigating isometric array generation, Rosenfield [20,21] had
pointed out the need for array rewriting rules for picture languages. The idea is
to generalize the Chomsky string grammars to arrays by having rewriting rules
that allow replacement of a sub-array of a picture with another sub-array. To
describe digital pictures viewed as rectangular arrays of terminals, Siromoney
et al. [22] proposed a simple generative model, called two-dimensional matrix
grammar. And later motivated by the need to generate picture languages that
cannot be generated by two-dimensional matrix grammars, Siromoney et al. [23]
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introduced array models, generalizing the notion of rewriting rules in which the
concatenation of strings is extended to row and column concatenation of arrays.

Hexagonal pictures occur in several application areas especially in picture
processing and image analysis. Hexagonal kolam array grammars for generat-
ing hexagonal arrays and hexagonal patterns on triangular grids which can be
treated as two-dimensional representation of three-dimensional blocks was con-
structed by Siromoney et al. [24]. We refer to [15,16] for the study of two-
dimensional representations of three-dimensional blocks. Recently, the hexagons
and the hexagonal tiling have been addressed by a symmetric coordinate frame
in [7,14] and possible link of applications in [13].

Contextual grammars were introduced by Marcus [10] in 1969 as another
model to describe natural languages. A contextual grammar produces a lan-
guage by starting from a given finite set of strings and adding, iteratively, pairs
of strings (called as contexts), associated to sets of words (called selectors) to
the string already obtained. Many variants of contextual grammars have been
considered in the literature and investigated from a mathematical point of view
[5,11,12]. Two special cases of contextual grammars, called internal and external
are very natural and have been extensively investigated. An external contextual
grammar generates a language starting from a finite set of strings and iteratively
adjoining to its contexts. In internal contextual grammars [5], the context are
adjoined inside the current string.

In [26], Thomas et al. developed a new method of generating hexagonal arrays
based on an extension of contextual grammars called parallel contextual hexag-
onal array grammars. Their systems yield languages of hexagons using parallel
rewriting relations. They make use of ‘window movement’ on arrow heads to
decide whether the languages are generated by array contexts of choice map-
pings by the applications of array contextual operations parallely. This concept
was based on the contextual style of rectangular array generation using external
and internal parallel contextual array grammars considered in [6].

The area of membrane computing, was initiated by Paun [17] introducing a
new computability model, now called as P system, which is distributed highly
parallel theoretical model based on the membrane structure and behavior of
the living cells. A computation starts from an initial configuration of a sys-
tem, defined by a membrane structure with objects and evolution rules in each
membrane, and terminates when no further rule can be applied. One uses the
Chomsky way of rewriting for computations, in a P system with string objects.
In [9] the contextual way of handling string objects in P systems has been con-
sidered and that the contextual P systems are found to be more powerful than
ordinary string contextual grammars and its variants. Ceterchi et al. [1] intro-
duced array P systems of the isometric variety, extending the string rewriting
P systems to arrays using context-free type of rules. Henceforth, several P sys-
tem models for generating arrays, both isometric and non-isometric variety, have
been considered in the literature (for example [2,8,25]). In [8] P system mod-
els namely, external and internal parallel contextual array P systems have been
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introduced based on the contextual style of array generation using external and
internal parallel contextual array grammars.

In this paper we introduce new P system models, called as external and inter-
nal parallel contextual hexagonal array P systems, based on the contextual style
of external and internal parallel contextual hexagonal array grammars consid-
ered in [26]. In Sect. 2, we list out some prerequisites. In Sect. 3, we define parallel
internal contextual hexagonal array P system and give an example. In Sect. 4,
we define parallel external contextual hexagonal array P system and give an
example. In Sect. 5, some properties of both parallel internal and external con-
textual hexagonal array P systems are discussed. In Sect. 6, we give comparison
results for the family of hexagonal array languages generated by the newly con-
structed P systems with other classes of hexagonal array languages. In Sect. 7,
we conclude the article with a brief remark.

2 Preliminaries

In this section we recall some notions related to hexagonal array grammars and
parallel contextual hexagonal array grammars. We can refer to [3,26] for further
details.

Definition 1. We consider hexagons of the following type:

upper right vertexupper left vertex

leftmost vertex

lower left vertex lower right vertex

rightmost vertex

Let Σ be a finite alphabet of symbols. A hexagonal picture p over Σ is a
hexagonal array of symbols over Σ. For example, a hexagonal picture over the

alphabet {a, b, c} is: p =
a b

a c b
a b

. The set of all hexagonal arrays over Σ is

denoted by Σ∗∗H . A hexagonal picture language L over Σ is a subset of Σ∗∗H .

With respect to a triad
z

x y of triangular axes x, y, z, the coordinates of

each element of a hexagonal picture can be fixed.

Definition 2. For k ≥ 2, aj , bj ∈ Σ, (j ≥ 1), let

1. xyTr be a trapezium array of type a1 a2 · · ·ak

b1 b2 · · · bk bk+1

2. yxTr be a trapezium array of type a1 a2 · · ·ak ak+1

b1 b2 · · · bk

3. xxPzA be a parallelogram array of type a1 a2 · · ·ak

b1 b2 · · · bk
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4. yyPzA be a parallelogram array of type a1 a2 · · ·ak

b1 b2 · · · bk

5. yzTr be a trapezium array of type

ak bk+1

· · · · · ·

a2 b3
a1 b2

b1

6. zyTr be a trapezium array of type

ak+1

ak bk

· · · · · ·

a2 b2
a1 b1

7. yyPxA be a trapezium array of type

ak

· · · bk
a2 · · ·

a1 b2
b1

8. zzPxA be a trapezium array of type
ak bk

· · · · · ·
a2 b2

a1 b1

9. zxTr be a trapezium array of type

b1 a1

b2 a2

··· ···

bk ak

bk+1

10. xzTr be a trapezium array of type

a1

b1 a2

b2 a3

··· ···

bk ak+1

11. zzPyA be a trapezium array of type
b1 a1

b2 a2

··· ···

bk ak

12. xxPyA be a trapezium array of type

a1

b1 a2

b2 ···
··· ak

bk

Remark 1. 1. A xxPzA parallelogram array a1 a2 · · ·ak

b1 b2 · · · bk is denoted by [ u1
u2 ]

where u1 = a1 a2 · · ·ak and u2 = b1 b2 · · · bk are rectangular arrays of size 1 ×
k, k ≥ 2.

2. A yyPzA parallelogram array a1 a2 · · ·ak

b1 b2 · · · bk is denoted by [ u1
u2 ] where

u1 = a1 a2 · · ·ak and u2 = b1 b2 · · · bk are rectangular arrays of size 1× k, k ≥ 2.
3. Let PzAx be the set of all xxPzA parallelogram arrays including the type of

arrays a
b

, denoted by [ a
b ] where a, b ∈ Σ.

4. Let PzAy be the set of all yyPzA parallelogram arrays including the type of

arrays a
b
, denoted by [ a b ] where a, b ∈ Σ.
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5. Let xyTR be the set of all xyTr trapezium arrays and yxTR be the set of all
yxTr trapezium arrays.

Similarly, we can also define yzTR, zyTR, PxAy, PxAz, zxTR, xzTR, PyAz,
PyAx.

Definition 3. For, xyTr1 = a1 a2 · · ·ak

b1 b2 · · · bk bk+1

and xyTr2 = b1 b2 · · ·bk+1

c1 c2 · · ·ck+1 ck+2

, the opera-

tion � is defined as,

xyTr1 � xyTr2 =
a1 a2 · · ·ak

b1 b2 · · · bk bk+1

c1 c1 · · · ck ck+1ak+2

, k ≥ 2.

Similarly we can define the operation x � y for x, y ∈ {xyTR, yxTR,PzAx,
PzAy}, taking into account the compatibility of the operation.

In like manner, we can also define the operations � and � and
hence y �z, for y, z ∈ {yzTR, zyTR, PxAy, PxAz} and z �x for z, x ∈
{zxTR, xzTR, PyAz, PyAx}, taking into account the compatibility of the oper-
ations.

Definition 4. 1. A xy arrow-head is a picture obtained from the representation
xxPzA1 �xxPzA2 � . . .�xxPzAr � yyPzA1 � yyPzA2 � . . .� yyPzAs, where
r, s ≥ 1.

2. A yx arrow-head is a picture obtained from the representation yyPzA1 �
yyPzA2 � . . .�yyPzAm �xxPzA1 �xxPzA2 � . . .�xxPzAn, where m,n ≥ 1.

3. A xy arrow is a picture of the form

a1

a2

· · ·an=
b1
b2

···

bm

, n,m ≥ 2.

4. A yx arrow is a picture of the form

c1
c2

···

ck=
d1

d2

· · ·

ds

, k, s ≥ 2.

Similarly we can define yz, zy, zx, xz arrow-heads and arrows.

Definition 5. Let u1, u2 be rectangular arrays of size 1× k, k ≥ 1 and v1, v2 be
rectangular arrays of size 1×r, r ≥ 1 and $xy, $yx, $xx and $yy be special symbols
not in Σ.

1. A xy array context over Σ is of the form xy = [ u1
u2 ] $xy [ v1

v2 ] ∈
PzAx$xyPzAy

2. A yx array context over Σ is of the form yx = [ u1
u2 ] $yx [

v1
v2 ] ∈

PzAy$yxPzAx

3. A xx array context over Σ is of the form xx =
[ u1
u2 ] $xx [ v1

v2 ] ∈ PzAx$xxPzAx

4. A yy array context over Σ is of the form yy = [ u1
u2 ] $yy [

v1
v2 ] ∈

PzAy$yyPzAy
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Similarly we can define yz, zy, zx, xz, zz array contexts.
We now define Z-direction parallel internal xy, yx, xx, yy array contextual

operations.

Definition 6. Consider a hexagonal array H = [aijk] of size (l,m, n). Suppose
H can be written as H = X1©<X2©>X3 where X1 is a xy arrow-head or a xy
arrow, X3 is a yx arrow-head or yx arrow, X2 = [ai′j′k′ ] is a hexagonal array
of size (l,m, n′) where n′ < n. We write H ⇒ H ′ if there exists,

1. a finite number of xy array contexts xyi ∈ XY ′ (1 ≤ i ≤ m − 1 if l > m or
1 ≤ i ≤ l − 1 if m ≥ l) not all need be distinct, where XY ′ is a finite subset
of PzAx$xyPzAy.

2. a finite number of yx array contexts yxi ∈ Y X ′ (1 ≤ i ≤ m − 1 if l > m or
1 ≤ i ≤ l − 1 if m ≥ l) not all need be distinct, where Y X ′ is a finite subset
of PzAy$yxPzAx.

3. a finite number of xx array contexts xxi ∈ XX ′ (1 ≤ i ≤ l − m if l > m) not
all need be distinct or no xx array context in XX ′ if m ≥ l, where XX ′ is a
finite subset of PzAx$xxPzAx.

4. a finite number of yy array contexts yyi ∈ Y Y ′ (1 ≤ i ≤ m − l if m > l not
all need be distinct or no yy array context in Y Y ′ if l ≥ m, where Y Y ′ is a
finite subset of PzAy$yyPzAy.

5. a choice mapping ϕxy : xyTR → 2XY ′
such that

xyi = [ ui
ui+1 ] $xy [

vi
vi+1 ] ∈ ϕxy(xyTri)

1 ≤ i ≤ m − 1 if l > m or 1 ≤ i ≤ l − 1 if m ≥ l
6. a choice mapping ϕyx : yxTR → 2Y X′

such that

yxi =
[
u′
i

u′
i+1

]
$yx

[
v′
i

v′
i+1

]
∈ ϕyx(yxTri)

1 ≤ i ≤ m − 1 if l > m or 1 ≤ i ≤ l − 1 if m ≥ l
7. a choice mapping ϕxx : PzAx → 2XX′

such that
xxi = [ ui

ui+1 ] $xx [
vi

vi+1 ] ∈ ϕxx(xxPzAi)
i = 1, 2, . . . , l − m if l > m

8. a choice mapping ϕyy : PzAy → 2Y Y ′
such that

yyi = [ ui
ui+1 ] $yy [

vi
vi+1 ] ∈ ϕyy(yyPzAi)

i = 1, 2, . . . ,m − l if m > l

H = X1©<X2©>X3 and H ′ = X1©<L©<X2©>R©>X3 where L is a xy arrow-head
or xy arrow and R is a yx arrow-head or yx arrow.

Similarly we can define X-direction parallel internal yz, zy, yy, zz array con-
textual operations by considering the hexagonal array H = [aijk] as H =
X1©>X2©

>

X3 where X1 is a yz arrow-head or a yz arrow, X3 is a zy arrow-head
or a zy arrow, X2 = [ai′j′k′ ] is a hexagonal array of size (l′,m, n) where l′ > l.
We write H ⇒ H ′ if H ′ = X1©>L©>X2©

>

R©>X3 where L is a yz arrow-head or
yz arrow and R is a zy arrow-head or zy arrow.

Similarly we can define Y-direction parallel internal zx, xz, zz, xx array con-
textual operations by considering the hexagonal array H = [aijk] as H =
X1©< X2©<X3 where X1 is a zx arrow-head or a zx arrow, X3 is a xz arrow-
head or a xz arrow, X2 = [ai′j′k′ ] is a hexagonal array of size (l,m′, n) where
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m′ > m. We write H ⇒ H ′ if H ′ = X1©< L©< X2©<R©<X3 where L is a zx
arrow-head or zx arrow and R is a xz arrow-head or xz arrow.

Definition 7. A Z-direction parallel internal contextual hexagonal array gram-
mar with choice is an ordered system,

GZI = (Σ,B,XY ′, Y X ′,XX ′, Y Y ′, ϕxy, ϕyx, ϕxx, ϕyy)

where

1. Σ is a finite alphabet,
2. B is a finite subset of Σ∗∗H called the base of GZI ,
3. XY ′ is a finite subset of PzAx$xyPzAy called the set of xy array contexts,
4. Y X ′ is a finite subset of PzAy$yxPzAx called the set of yx array contexts,
5. XX ′ is a finite subset of PzAx$xxPzAx called the set of xx array contexts,
6. Y Y ′ is a finite subset of PzAy$yyPzAy called the set of yy array contexts,
7. ϕxy : xyTR → 2XY ′

, ϕyx : yxTR → 2Y X , ϕxx : PzAx → 2XX′
,

ϕyy : PzAy → 2Y Y ′
are the choice mapping which perform the parallel inter-

nal xy, yx, xx, yy contextual operations respectively. When xy, yx, xx, yy are
omitted we call GZI as a Z-direction parallel internal hexagonal array gram-
mar without choice.

The direct derivation with respect to GZI is a binary relation ⇒Z−in on Σ∗∗H .
It is defined as H ⇒Z−in H ′ where H,H ′ ∈ Σ∗∗H with H = X1©<X2©>X3,
H ′ = X1©<L©<X2©>R©>X3, where X1 is a xy arrow-head or a xy arrow, X3 is
a yx arrow-head or yx arrow, X2 ∈ Σ∗∗H is of size (l,m, n′) where n′ < n and
L is a xy arrow-head or xy arrow, R is a yx arrow-head or yx arrow are the
contexts obtained by performing parallel internal xy, yx, xx, yy array contextual
operations according to the choice mappings ϕxy, ϕyx, ϕxx, ϕyy.

Definition 8. Let GZI = (Σ,B,XY ′, Y X ′,XX ′, Y Y ′, ϕxy, ϕyx, ϕxx, ϕyy) be a
Z-direction parallel internal contextual hexagonal array grammar. The language
generated by GZI , is defined as

L(GZI) = {H ′ ∈ Σ∗∗H/there exists H ∈ B such that H ⇒∗
Z−in H ′}

Similarly we can define X-direction and Y-direction parallel internal contex-
tual hexagonal array grammars and also the language generated by them.

In the like manner, we can also define Z-direction, X-direction and Y-direction
parallel external contextual hexagonal array grammars and also the language
generated by them.

3 Parallel Internal Contextual Hexagonal Array P
Systems

Definition 9. An parallel internal contextual hexagonal array P system is a
construct,

∏
= (V, T, μ,XY, Y Z,ZX,M1,M2, . . . , Mh, (R1, ϕ1), (R2, ϕ2), . . . ,

(Rh, ϕh), i0)
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where,

V is the finite nonempty set of symbols called total alphabet;
T ⊆ V is the set of terminal alphabet;
μ is the membrane structure with h membranes or regions;
XY = XY ′ ∪ Y X ′ ∪ XX ′ ∪ Y Y ′

Y Z = Y Z ′ ∪ ZY ′ ∪ Y Y ′′ ∪ ZZ ′

ZX = ZX ′ ∪ XZ ′ ∪ ZZ ′′ ∪ XX ′′

XY ′ is the finite subset of PzAx$xyPzAy called xy array contexts;
Y X ′ is the finite subset of PzAy$yxPzAx called yx array contexts;
Y Z ′ is the finite subset of PxAy$yzPxAz called yz array contexts;
ZY ′ is the finite subset of PxAz$zyPxAy called zy array contexts;
ZX ′ is the finite subset of PyAz$zxPyAx called zx array contexts;
XZ ′ is the finite subset of PyAx$xzPyAz called xz array contexts;
XX ′ is the finite subset of PzAx$xxPzAx called xx array contexts;
Y Y ′ is the finite subset of PzAy$yyPzAy called yy array contexts;
ZZ ′ is the finite subset of PxAz$zzPxAz called zz array contexts;
XX ′′ is the finite subset of PyAx$xxPyAx called xx array contexts;
Y Y ′′ is the finite subset of PxAy$yyPxAy called yy array contexts;
ZZ ′′ is the finite subset of PyAz$zzPyAz called zz array contexts;
Mi, 1 ≤ i ≤ n is a finite set of hexagonal arrays over V called axioms, initially

present in the region i.
ϕi ⊆ {ϕxy, ϕyx, ϕ′

xx, ϕ′
yy} or {ϕyz, ϕzy, ϕ

′′
yy, ϕ

′
zz} or {ϕzx, ϕxz, ϕ

′′
zz, ϕ

′′
xx}

ϕxy : xyTR → 2XY ′
, ϕyx : yxTR → 2Y X′

, ϕ′
xx : PzAx → 2XX′

, ϕ′
yy : PzAy →

2Y Y ′
are the choice mappings which perform the Z-direction parallel internal

xy, yx, xx, yy contextual operations respectively.
ϕyz : yzTR → 2Y Z′

, ϕzy : zyTR → 2ZY ′
, ϕ′′

yy : PxAy → 2Y Y ′′
, ϕ′

zz : PxAz →
2ZZ′

are the choice mappings which perform the X-direction parallel internal
yz, zy, yy, zz contextual operations respectively.
ϕzx : zxTR → 2ZX′

, ϕxz : xzTR → 2XZ′
, ϕ′′

zz : PyAz → 2ZZ′′
, ϕ′′

xx : PyAx →
2XX′′

are the choice mappings which perform the Y-direction parallel internal
zx, xz, zz, xx contextual operations respectively.

Ri = φ (or){({
ϕxy(xyTri) = [ ui

ui+1 ] $xy [
vi

vi+1 ], ϕyx(yxTri) =
[
u′
i

u′
i+1

]
$yx

[
v′
i

v′
i+1

]
,

ϕ′
xx(xxPzAj) =

[ uj
uj+1

]
$xx

[ vj
vj+1

]
, ϕ′

yy(yyPzAk) = [ uk
uk+1 ] $yy [

vk
vk+1 ]

}
,α

)}

1 ≤ i ≤ m − 1 if l > m or 1 ≤ i ≤ l −
−

1 if m ≥ l, j = 1, 2, . . . , l − m if l > m
and k = 1, 2, . . . ,m l if m > l, α here, out, int}∈ {

Here, xyTr1 =
a11p · · · a11q

a12(p−1) a12p · · · a12q

where, 1 < p < q < n
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(or)
{({

ϕyz(yzTri) = [ ui
ui+1 ] $yz [ vi vi+1 ], ϕzy(zyTri) = [ u′

i u′
i+1 ] $zy

[
v′
i

v′
i+1

]
,

ϕ′′
yy(yyPxAj) =

[ uj
uj+1

]
$yy

[ vj
vj+1

]
, ϕ′

zz(zzPxAk) = [ uk uk+1 ] $zz [ vk vk+1 ]
}
,α

)}

1 ≤ i ≤ n − 1 if m > n or 1 ≤ i ≤ m − 1 if n ≥ m, j = 1, 2, . . . ,m − n if m > n

and k = 1, 2, . . . , n − m if n > m. α ∈ {here, out, int}

Here, yzTr1 =

ap11 a(p−1)21

· · · · · ·

aq11 a(q−1)21

aq21

where, 1 < p < q < l
(or)

{({
ϕzx(zxTri) = [ ui ui+1 ] $zx [

vi
vi+1 ], ϕxz(xzTri) =

[
u′
i

u′
i+1

]
$xz [ v′

i v′
i+1 ],

ϕ′′
zz(zzPyAj) = [ uj uj+1 ] $zz [ vj vj+1 ], ϕ′′

xx(xxPyAk) = [ uk
uk+1 ] $xx [

vk
vk+1 ]

}
,α

)}

1 ≤ i ≤ l − 1 if n > l or 1 ≤ i ≤ n − 1 if l ≥ n, j = 1, 2, . . . , n − l if n > l and
k = 1, 2, . . . , l − n if l > n. α ∈ {here, out, int}

Here, zxTr1 =

a1p(n−1) a1pn

··· ···

a1q(n−1) a1qn

a1(q+1)(n−1)

where, 1 < p < q < m
i0 is the output membrane
The direct derivation with respect to

∏
is a binary relation ⇒ on V ∗∗H and

is defined as H ⇒in H ′, where H,H ′ ∈ V ∗∗H if and only if,
H = X1©<X2©>X3, H ′ = X1©<L©<X2©>R©>X3, where X1 is a xy arrow-head

or a xy arrow, X3 is a yx arrow-head or yx arrow, X2 ∈ V ∗∗H is of size (l,m, n′)
where n′ < n and L is a xy arrow-head or xy arrow, R is a yx arrow-head or
yx arrow are the contexts obtained by using the evolution rules Ri based on the
Z-direction parallel internal xy, yx, xx, yy array contextual operations according
to the choice mappings ϕxy, ϕyx, ϕ′

xx, ϕ′
yy.

(or)
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H = X1©>X2©

>

X3, H ′ = X1©>L©>X2©

>

R©>X3 where X1 is a yz arrow-head or
a yz arrow, X3 is a zy arrow-head or a zy arrow, X2 ∈ V ∗∗H is of size (l′,m, n)
where l′ > l and L is a yz arrow-head or yz arrow, R is a zy arrow-head or zy
arrow are the contexts obtained by using the evolution rules Ri based on the
X-direction parallel internal yz, zy, yy, zz array contextual operations according
to the choice mappings ϕyz, ϕzy, ϕ

′′
yy, ϕ

′
zz.

(or)

H = X1©< X2©<X3, H ′ = X1©< L©< X2©<R©<X3 where X1 is a zx arrow-head or
a zx arrow, X3 is a xz arrow-head or a xz arrow, X2 ∈ V ∗∗H is of size (l,m′, n)
where m′ > m and L is a zx arrow-head or zx arrow, R is a xz arrow-head or
xz arrow are the contexts obtained by using the evolution rules Ri based on the
Y-direction parallel internal zx, xz, zz, xx array contextual operations according
to the choice mappings ϕzx, ϕxz, ϕ

′′
zz, ϕ

′′
xx.

Initially the P-system
∏

consists of the membrane structure μ with h mem-
branes which are labeled as 1, 2, . . . , h. The outermost membrane being the skin
membrane is labeled as 1, which also is our output membrane. We use the evolu-
tion rules Ri which is based on the choice mapping ϕi present in the membrane
labeled i and carry out the step by step computation. The hexagonal array we
obtain after each and every computation is considered to be of size (l,m, n).
Thus obtained hexagonal array is placed in the membrane as indicated by α. If
α is chosen as ‘here’, then the resulting hexagonal array remains in the same
membrane. If α is chosen as ‘int’, then the resulting array is sent to the mem-
brane with label t. If α is chosen as ‘out’, then the resulting hexagonal array is
sent out from the present membrane and enters the immediate outer membrane.
If that outer membrane is the skin membrane, then we say that the resulting
hexagonal array is present in the language generated by this P-system. The com-
putation is said to be successful, when there is no rule applicable to the hexagonal
array obtained after the last computation and hence the system halts. A suc-
cessful computation may result in a hexagonal array being sent out to the skin
membrane depending on α. All the hexagonal arrays with symbols over T thus
collected in the skin membrane is called the language generated by the parallel
internal contextual hexagonal array P system and is denoted by PICHAL(

∏
).

The family of all hexagonal array languages PICHAL(
∏
) generated by the

parallel internal contextual hexagonal array P systems with at most h mem-
branes is denoted by PICHAPh.

If a P system does not involve X-direction parallel internal yz, zy, yy, zz array
contextual operations and Y-direction parallel internal zx, xz, zz, xx array con-
textual operations then we call that P system as Z-direction parallel internal
contextual hexagonal array P system and denote it by ZPICHAL(

∏
). The fam-

ily of all hexagonal array languages ZPICHAL(
∏
) generated by the Z-direction

parallel internal contextual hexagonal array P systems with at most h mem-
branes is denoted by ZPICHAPh.

Similarly we can define XPICHAPh and YPICHAPh, the family of all
hexagonal array languages XPICHAL(

∏
) and YPICHAL(

∏
) generated by the



288 J.I. Suseelan et al.

X-direction and Y-direction parallel internal contextual hexagonal array P sys-
tems with at most h membranes, respectively.

Example 1. Consider the parallel internal contextual hexagonal array P-
system,

∏
= (V, T, μ,XY, Y Z,ZX,M1,M2,M3,M4, (R1, ϕ1), (R2, ϕ2), (R4, ϕ3),

(R4, ϕ4), 1) where,
V = {a}
T = {a}
μ = [1[2]2[3]3[4]4]1

XY =
{

[ a
a ] $xy [ a a ] , [ a a ] $yx [ a

a ]
}

Y Z =
{

[ a a ] $yz [ a a ] , [ a a ] $zy [ a a ]
}

ZX =
{

[ a a ] $zx [ a
a ] , [ a

a ] $xz [ a a ]
}

M1 = ∅

M2 =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a a a a
a a a a a

a a a a a a
a a a a a a a
a a a a a a
a a a a a
a a a a

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭
M3 = ∅
M4 = ∅
R1 = ∅

R2 =
{({

ϕxy

( [
ai

ai+1

]

2≤i≤n

)
= [ a

a ] $xy [ a a ] , ϕyx

( [
ai+1

ai

]

2≤i≤n

)
=

[ a a ] $yx [ a
a ]

}
, in3

)}

R3 =
{({

ϕyz

(
[ aj aj+1 ]2≤j≤l

)
= [ a a ] $yz [ a a ] , ϕzy

( [
‘aj+1

aj

]

2≤j≤l

)
=

[ a a ] $zy [ a a ] , ϕ′
zz

(
[ aj aj ]2≤j≤l = [ a a ] $zz [ a a ]

}
, in4

)}

R4 =
{({

ϕzx

(
[ ak+1 ak ]2≤k≤m

)
= [ a a ] $zx [ a

a ] , ϕxz

( [
ak+1

ak

]

2≤k≤m

)
=

[ a
a ] $xz [ a a ]

}
, α

)}
, α ∈ {out, in2}

Membrane labeled 1 i.e., the skin membrane is the output membrane.
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We consider the hexagonal array obtained after each computation to be of
size (l,m, n).

The language generated by this P system is the set of hexagonal arrays over
{a} of sizes (2l, 2m, 2n), l,m, n ≥ 3 with l = m = n.

4 Parallel External Contextual Hexagonal Array P
Systems

Definition 10. An parallel external contextual hexagonal array P system is
a construct,

∏
= (V, T, μ,XY, Y Z,ZX,M1,M2, . . . , Mh, (R1, ϕ1), (R2, ϕ2), . . . ,

(Rh, ϕh), i0)
where, V, T, μ,XY, Y Z,ZX,Mi are as defined in Definition 9,

ϕi ⊆ {ϕxy, ϕyx, ϕ′
xx, ϕ′

yy} or {ϕyz, ϕzy, ϕ
′′
yy, ϕ

′
zz} or {ϕzx, ϕxz, ϕ

′′
zz, ϕ

′′
xx}

ϕxy : xyTR → 2XY ′
, ϕyx : yxTR → 2Y X′

, ϕ′
xx : PzAx → 2XX′

, ϕ′
yy : PzAy →

2Y Y ′
are the choice mappings which perform the Z-direction parallel external

xy, yx, xx, yy contextual operations respectively.
ϕyz : yzTR → 2Y Z′

, ϕzy : zyTR → 2ZY ′
, ϕ′′

yy : PxAy → 2Y Y ′′
, ϕ′

zz : PxAz →
2ZZ′

are the choice mappings which perform the X-direction parallel external
yz, zy, yy, zz contextual operations respectively.
ϕzx : zxTR → 2ZX′

, ϕxz : xzTR → 2XZ′
, ϕ′′

zz : PyAz → 2ZZ′′
, ϕ′′

xx : PyAx →
2XX′′

are the choice mappings which perform the Y-direction parallel external
zx, xz, zz, xx contextual operations respectively.

Ri = φ (or){({
ϕxy(xyTri) = [ ui

ui+1 ] $xy [
vi

vi+1 ], ϕyx(yxTri) =
[
u′
i

u′
i+1

]
$yx

[
v′
i

v′
i+1

]
,

ϕ′
xx(xxPzAj) =

[ uj
uj+1

]
$xx

[ vj
vj+1

]
, ϕ′

yy(yyPzAk) = [ uk
uk+1 ] $yy [

vk
vk+1 ]

}
,α

)}

1 ≤ i ≤ m − 1 if l > m or 1 ≤ i ≤ l − 1 if m ≥ l, j = 1, 2, . . . , l − m if l > m
and k = 1, 2, . . . , m − l if m > l, α ∈ {here, out, int}

Here, xyTr1 =
a111 · · · a11n

a211 a121 · · · a12n

(or)
{({

ϕyz(yzTri) = [ ui
ui+1 ] $yz [ vi vi+1 ], ϕzy(zyTri) = [ u′

i u′
i+1 ] $zy

[
v′
i

v′
i+1

]
,

ϕ′′
yy(yyPxAj) =

[ uj
uj+1

]
$yy

[ vj
vj+1

]
, ϕ′

zz(zzPxAk) = [ uk uk+1 ] $zz [ vk vk+1 ]
}
,α

)}

1 ≤ i ≤ n − 1 if m > n or 1 ≤ i ≤ m − 1 if n ≥ m, j = 1, 2, . . . ,m − n if m > n
and k = 1, 2, . . . , n − m if n > m. α ∈ {here, out, int}
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Here, yzTr1 =

a111 a112

· · · · · ·

al11 a(l−1)21

al21

(or)
{({

ϕzx(zxTri) = [ ui ui+1 ] $zx [
vi

vi+1 ], ϕxz(xzTri) =
[

u′
i

u′
i+1

]
$xz [ v′

i v′
i+1 ],

ϕ′′
zz(zzPyAj) = [ uj uj+1 ] $zz [ vj vj+1 ], ϕ′′

xx(xxPyAk) = [ uk
uk+1 ] $xx [

vk
vk+1 ],

}
,α

)}

1 ≤ i ≤ l − 1 if n > l or 1 ≤ i ≤ n − 1 if l ≥ n, j = 1, 2, . . . , n − l if n > l and
k = 1, 2, . . . , l − n if l > n. α ∈ {here, out, int}

Here, zxTr1 =

a11(n−1) a11n

··· ···

a1m(n−1) a1mn

a2mn

i0 is the output membrane
The direct derivation with respect to

∏
is a binary relation ⇒ on V ∗∗H and

is defined as H ⇒ex H ′, where H,H ′ ∈ V ∗∗H if and only if,
H ′ = L©<H©>R, where L is a xy arrow-head or xy arrow, R is a yx arrow-

head or yx arrow are the contexts obtained by using the evolution rules Ri based
on the Z-direction parallel external xy, yx, xx, yy array contextual operations
according to the choice mappings ϕxy, ϕyx, ϕ′

xx, ϕ′
yy.

(or)

H ′ = L©>H©>R where L is a yz arrow-head or yz arrow, R is a zy arrow-head
or zy arrow are the contexts obtained by using the evolution rules Ri based on the
X-direction parallel external yz, zy, yy, zz array contextual operations according
to the choice mappings ϕyz, ϕzy, ϕ

′′
yy, ϕ

′
zz.

(or)

H ′ = L©< X2©<R where L is a zx arrow-head or zx arrow, R is a xz arrow-
head or xz arrow are the contexts obtained by using the evolution rules Ri based
on the Y-direction parallel external zx, xz, zz, xx array contextual operations
according to the choice mappings ϕzx, ϕxz, ϕ

′′
zz, ϕ

′′
xx.

The working of the parallel external contextual hexagonal array P system is
the same as the parallel internal contextual hexagonal array P system except that
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the contexts are obtained externally using the evolution rules provided based
on the Z-direction parallel external xy, yx, xx, yy array contextual operations
according to the choice mappings ϕxy, ϕyx, ϕ′

xx, ϕ′
yy or the X-direction parallel

external yz, zy, yy, zz array contextual operations according to the choice map-
pings ϕyz, ϕzy, ϕ

′′
yy, ϕ

′
zz or the Y-direction parallel external zx, xz, zz, xx array

contextual operations according to the choice mappings ϕzx, ϕxz, ϕ
′′
zz, ϕ

′′
xx. As

like the parallel internal contextual hexagonal array P system every successful
computation depending on α may result in an hexagonal array being sent out to
the skin membrane. All the hexagonal arrays with symbols over T collected in
the skin membrane is the language generated by the parallel external contextual
hexagonal array P system and is denoted by PECHAL(

∏
).

The family of all hexagonal array languages PECHAL(
∏
) generated by the

parallel external contextual hexagonal array P systems with atmost h membranes
is denoted by PECHAPh.

If a P system does not involve X-direction parallel external yz, zy, yy, zz array
contextual operations and Y-direction parallel external zx, xz, zz, xx array con-
textual operations then we call that P system as Z-direction parallel external
contextual hexagonal array P system and denote it by ZPECHAL(

∏
). The fam-

ily of all hexagonal array languages ZPECHAL(
∏
) generated by the Z-direction

parallel external contextual hexagonal array P systems with at most h mem-
branes is denoted by ZPECHAPh.

Similarly we can define XPECHAPh and YPECHAPh, the family of all
hexagonal array languages XPECHAL(

∏
) and YPECHAL(

∏
) generated by the

X-direction and Y-direction parallel external contextual hexagonal array P sys-
tems with at most h membranes, respectively.

Example 2. Consider the parallel external contextual hexagonal array P-
system,

∏
= (V, T, μ,XY, Y Z,ZX,M1,M2,M3,M4, (R1, ϕ1), (R2, ϕ2), (R4, ϕ3),

(R4, ϕ4), 1)
where,
V = T = {a}
μ = [1[2]2[3]3[4]4]1

XY =
{

[ a
a ] $xy [ a a ] , [ a a ] $yx [ a

a ]
}

Y Z =
{

[ a a ] $yz [ a a ] , [ a a ] $zy [ a a ]
}

ZX =
{

[ a a ] $zx [ a
a ] , [ a

a ] $xz [ a a ]
}

M1 = ∅
M2 =

{
a a

a a a
a a

}

M3 = ∅
M4 = ∅
R1 = ∅
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R2 =
{({

ϕxy

( [
ai

ai+1

]

i≥n

)
= [ a

a ] $xy [ a a ] , ϕyx

([
ai+1

ai

]

i≥n

)
=

[ a a ] $yx [ a
a ]

}
, in3

)}

R3 =
{({

ϕyz

(
[ aj aj+1 ]j≥l

)
= [ a a ] $yz [ a a ] , ϕzy

([
aj+1

aj

]

i≥l

)
=

[ a a ] $zy [ a a ] , ϕ′
zz

(
[ aj aj ]j=n−1 = [ a a ] $zz [ a a ]

}
, in4

)}

R4 =
{({

ϕzx

(
[ ak+1 ak ]k≥m

)
= [ a a ] $zx [ a

a ] , ϕxz

([
ak+1

ak

]

k≥m

)
=

[ a
a ] $xz [ a a ]

}
, α

)}
, α ∈ {out, in2}

Membrane labeled 1 i.e., the skin membrane is the output membrane.
Each hexagonal array obtained after each computation is of size (l,m, n).
The language generated by this P system is the set of hexagonal arrays over

{a} of sizes (2l, 2m, 2n), l,m, n ≥ 2 with l = m = n.

5 Properties of Parallel Contextual Hexagonal Array P
Systems

In this section we give some basic properties of parallel contextual hexagonal
array P systems.

If H is a hexagonal array of size (l,m, n), then let |H|X = l, |H|Y =
m, |H|Z = n. If X is a xy arrow head, then |X|Z denotes the number of elements
in the border of X in Z-direction. If X is a xy arrow, then |X|Z=1. We can give
similar type of notions for yx, yz, zy, zx, xz arrow-heads or arrows.

Definition 11. A language M ⊆ Σ∗∗H has the Z-internal bounded step property
(ZIBS) if there is a constant p such that for each H ∈ M , |H|Z > p, there
is a H ′ ∈ M such that H ′ = X1©<X2©>X3, H = X1©<L©<X2©>R©>X3, and
|L|Z + |R|Z ≤ p.

Similarly we can define X-internal bounded step property (XIBS) and Y-internal
bounded step property(YIBS)

Definition 12. A language M ⊆ Σ∗∗H has the Z-external bounded step property
(ZEBS) if there is a constant p such that for each H ∈ M , |H|Z > p, there is a
H ′ ∈ M such that H = L©<H ′©>R, and |L|Z + |R|Z ≤ p.

Similarly we can define X-external bounded step property (XEBS) and Y-
external bounded step property (YEBS)
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Note 1. For theorems 1 & 2 we consider, R′ =
{

ϕxy(xyTri) = [ ui
ui+1 ] $xy [

vi
vi+1 ],

ϕyx(yxTri) =
[
u′
i

u′
i+1

]
$yx

[
v′
i

v′
i+1

]
, ϕ′

xx(xxPzAj) =
[ uj
uj+1

]
$xx

[ vj
vj+1

]
,

ϕ′
yy(yyPzAk) = [ uk

uk+1 ] $yy [
vk

vk+1 ]
}
, 1 ≤ i ≤ m − 1 if l > m or 1 ≤ i ≤ l − 1

if m ≥ l, j = 1, 2, . . . , l − m if l > m and k = 1, 2, . . . , m − l if m > l.

Theorem 1. A language generated by a parallel internal contextual hexagonal
array P system

∏
, satisfies ZIBS property, if for every rule (R′, here) in Ri,

there is a rule (R′, out) in Ri.

Here, xyTr1 =
a11p · · · a11q

a12(p−1) a12p · · · a12q

, 1 < p < q < n.

Proof. Let M be a language generated by a internal parallel contextual hexag-
onal array P system,

∏
= (V, T, μ,XY, Y Z,ZX,M1,M2, . . . , Mh, (R1, ϕ1), (R2,

ϕ2), . . . , (Rh, ϕh), i0)
Let p1 = max{|H|Z/H ∈ Mi} and

p2 = max

{
|L|Z + |R|Z

∣∣∣∣

({
ϕxy(xyTri) = [ ui

ui+1 ] $xy [
vi

vi+1 ], ϕyx(yxTri) =
[
u′
i

u′
i+1

]
$yx

[
v′
i

v′
i+1

]
, ϕ′

xx(xxPzAj) =
[ uj
uj+1

]
$xx

[ vj
vj+1

]
, ϕ′

yy(yyPzAk) =

[ uk
uk+1 ] $yy [

vk
vk+1 ]

}
,here

)
,
({

ϕxy(xyTri) = [ ui
ui+1 ] $xy [

vi
vi+1 ], ϕyx(yxTri) =

[
u′
i

u′
i+1

]
$yx

[
v′
i

v′
i+1

]
, ϕ′

xx(xxPzAj) =
[ uj
uj+1

]
$xx

[ vj
vj+1

]
, ϕ′

yy(yyPzAk) =

[ uk
uk+1 ] $yy [

vk
vk+1 ]

}
,out

)
∈ Ri

}
where L is either a xy arrow-head or a xy ar-

row and R is either a yx arrow-head or a yx arrow obtained from some H,H ′ ∈ M
with H ′ = X1©<X2©>X3, H = X1©<L©<X2©>R©>X3 and H ′ ⇒in H.

Let p = max{p1, p2}. If H ∈ M is such that |H|Z > p then H /∈ Mi. Hence
H = X1©<L©<X2©>R©>X3, for some L and R and H ′ = X1©<X2©>X3 with
H ′ ∈ M .

Hence there is a constant p such that for each H ∈ M with |H|Z > p there
exists H ′ ∈ M with H ′ = X1©<X2©>X3 such that H = X1©<L©<X2©>R©>X3

and |L|Z + |R|Z ≤ p. Hence M satisfies the ZIBS property. �
Similar results can be shown for parallel internal contextual hexagonal array

P systems with respect to the XIBS property and the YIBS property respectively.

Theorem 2. A language generated by a parallel external contextual hexagonal
array P system

∏
, satisfies ZEBS property, if for every rule (R′, here) in Ri,
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there is a rule (R′, out) in Ri.

Here, xyTr1 =
a111 · · · a11n

a211 a121 · · · a12n

The proof is similar to Theorem1, and hence omitted.
Similar results can be shown for parallel external contextual hexagonal array

P systems with respect to the XEBS property and the YEBS property respec-
tively.

Theorem 3. If a language M ⊆ Σ∗∗H satisfies XIBS, YIBS and ZIBS property,
then that language M is generated by a parallel internal contextual hexagonal
array P system.

Theorem 4. If a language M ⊆ Σ∗∗H satisfies XEBS, YEBS and ZEBS prop-
erty, then that language M is generated by a parallel external contextual hexag-
onal array P system.

The proofs for Theorems 3 and 4 are straight forward.

Note 1. Hexagonal arrays produced in intermediate steps during computation
while generating a hexagonal array belonging to the language are called as hexag-
onal array sentential form.

Definition 13. A language M ⊆ Σ∗∗H has the Weak Z-internal bounded
step property (WZIBS) if there is a constant p such that for each H ∈ M ,
|H|Z > p, there is a hexagonal array sentential form H ′ such that H =
X1©<L©<X2©>R©>X3, H ′ = X1©<X2©>X3 and |L|Z + |R|Z ≤ p.

Similarly we can define Weak X-internal bounded step property(WXIBS) and
Weak Y-internal bounded step property(WYIBS)

Definition 14. A language M ⊆ Σ∗∗H has the Weak Z-external bounded step
property (WZEBS) if there is a constant p such that for each H ∈ M , |H|Z > p,
there is a hexagonal array sentential form H ′ such that H = L©<H ′©>R, and
|L|Z + |R|Z ≤ p.

Similarly we can define Weak X-external bounded step property(WXEBS) and
Weak Y-external bounded step property(WYEBS)

Theorem 5. A language generated by a parallel internal contextual hexagonal
array P system, satisfies the WZIBS property.

Proof. Let M be a language generated by a internal parallel contextual hexag-
onal array P system,

∏
= (V, T, μ,XY, Y Z,ZX,M1,M2, . . . , Mh, (R1, ϕ1),

(R2, ϕ2), . . . , (Rh, ϕh), i0)
Let p1 = max{|H|Z/H ∈ Mi} and
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p2 = max

{
|L|Z + |R|Z

∣∣∣∣

({
ϕxy(xyTri) = [ ui

ui+1 ] $xy [
vi

vi+1 ], ϕyx(yxTri) =
[
u′
i

u′
i+1

]
$yx

[
v′
i

v′
i+1

]
, ϕ′

xx(xxPzAj) =
[ uj
uj+1

]
$xx

[ vj
vj+1

]
, ϕ′

yy(yyPzAk) =

[ uk
uk+1 ] $yy [

vk
vk+1 ]

}
,α

)
∈ Ri and α ∈ {here, out, int}

}
where L is either a xy

arrow-head or a xy arrow and R is either a yx arrow-head or a yx arrow obtained
from some H ∈ M with H = X1©<L©<X2©>R©>X3 and H ′ = X1©<X2©>X3 is a
hexagonal array sentential form.

Let p = max{p1, p2}. If H ∈ M is such that |H|Z > p then H /∈ Mi. Hence
H = X1©<L©<X2©>R©>X3, for some L and R and H ′ = X1©<X2©>X3 is a
hexagonal array sentential form.

Hence there is a constant p such that for each H ∈ M with |H|Z > p there
is a hexagonal array sentential form H ′ with H ′ = X1©<X2©>X3 such that
H = X1©<L©<X2©>R©>X3 and |L|Z + |R|Z ≤ p. Hence M satisfies the WZIBS
property. �

Similar results can be shown for parallel internal contextual hexagonal array
P systems with respect to the WXIBS property and the WYIBS property respec-
tively.

Theorem 6. A language generated by a parallel external contextual hexagonal
array P system, satisfies the WZEBS property.

The proof is similar to Theorem5, and hence omitted.
Similar results can be shown for parallel external contextual hexagonal array

P systems with respect to the WXEBS property and the WYEBS property
respectively.

Theorem 7. If a language M ⊆ Σ∗∗H satisfies WXIBS, WYIBS and WZIBS
property, then that language M is generated by a parallel internal contextual
hexagonal array P system.

Theorem 8. If a language M ⊆ Σ∗∗H satisfies WXEBS, WYEBS and WZEBS
property, then that language M is generated by a parallel external contextual
hexagonal array P system.

The proofs for Theorems 7 and 8 are straight forward.

6 Comparison Results

In this section we give the comparison between the family of hexagonal array
languages generated by the internal and external parallel contextual hexagonal
array P system with families of local hexagonal array languages and other hexag-
onal array generating P systems [3]. For notions related to HLOC, we can refer
to [4].

Theorem 9. PICHAPh is incomparable with HLOC but not disjoint.
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Proof. Consider the language L1 to be a set of hexagonal arrays over {a} of sizes
(2l, 2m, 2n), l,m, n ≥ 2 with l = m = n. This language is in PICHAPh, as can
be seen in example 1. But this language is not in HLOC as can be seen in [4].
Consider the hexagonal local language given in example 4 of [4]. This language
of hexagonal pictures of sizes (l,m, n) where l = m = n, a member of which

is,
1 0 0

0 0 1 0
0 1 0 0 1
0 0 1 0
1 0 0

does not belong to PICHAPh because the xy, yx, yz, zy, zx, xz

trapezium arrays and also their respective parallelogram arrays cannot be fixed
for performing the parallel internal contextual operations.

Consider the language L2 to be a set of hexagonal arrays over {1, 2, 3} of
sizes (2, 2, k), k ≥ 2. This language is in PICHAP2 and is generated by the P
system,∏

= (V, T, μ,XY, Y Z,ZX,M1,M2, (R1, ϕ1), (R2, ϕ2), 1) where,
V = {1, 2, 3}
T = {1, 2, 3}
μ = [1[2]2]1

XY =
{

1
2

$xy ε
ε
, 2

3
$yx ε

ε

}

Y Z = ∅
ZX = ∅
M1 = ∅
M2 =

{
1 1 1 1

2 2 2 2 2
3 3 3 3

}

R1 = ∅

R2 =
{({

ϕxy

(
1 1

2 2 2

)
= 1

2
$xy

ε
ε , ϕyx

(
2 2 2
3 3

)
= 2

3 $yx
ε

ε

}
, α

)}
, α ∈

{here, out}

Clearly L2 is in HLOC, as we have Δ =

{
# #

# 1 1
2 2

,
# #
1 1 1
2 2

,
# #
1 1 #
2 2

,

# 1
# 2 2
# 3

,
1 1

2 2 2
3 3

,
1 #

2 2 #
3 #

,
2 2

# 3 3
# #

,
2 2

3 3 3
# #

,
2 2

3 3 #
# #

}
and L(Δ) = L2.

�
Theorem 10. 1. PECHAPh − EPHACPh �= ∅
2. PECHAPh − IPHACPh �= ∅
Proof. Consider the language L to be the set of all hexagonal arrays over {a, b, c}
of sizes (l,m, n) with l = m = n > 2, such that every member of L possesses
the property that no two neighboring pixel letters are the same. For example,
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a b c a b
b c a b c a

c a b c a b c
a b c a b c a b

b c a b c a b c a
a b c a b c a b
c a b c a b c
b c a b c a
a b c a b

is a member of L. Based on the construction of external

and internal hexagonal array contextual P systems in [3], we can clearly see that
the language L is not in EPHACPh and IPHACPh. But the language can be
generated by a parallel external contextual hexagonal array P system,

∏
and

hence in PECHAPh. The construction of
∏

for generating the language L is
omitted.

7 Conclusion

In this paper, we have introduced parallel internal and external contextual hexag-
onal array P systems based on the contextual style of external and internal
parallel contextual hexagonal array grammars. We have listed out some basic
properties of these hexagonal array generating P systems. It is worth examining
further properties of these P system models and also comparing these P sys-
tems models with certain other hexagonal array generating systems and finally
studying their applications in some related areas.
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Abstract. Stimulated Raman Adiabatic Passage is an important
process for population transfer as well as for implementing quantum
gates. This process requires large Rabi frequencies, which is an unde-
sirable in many experimental applications. To overcome this problem
transitionless (superadiabatic) STIRAP was proposed. In this paper we
study the role of superadiabatic STIRAP in two examples, population
transfer and quantum rotation gates. The effect of dephasing was also
investigated by computing the fidelity. We have shown that the damping
of the excited state has a little effect but the dephasing of the ground
state leads to imperfect population transfer and imperfect rotation gates.

Keywords: Superadiabatic · Stirap · Tripod · Adiabatic theorem

1 Introduction

The adiabatic theorem describes the evolution of a system when the Hamiltonian
is slow varying function of time [16]. It states that if a system starts in one of
its eigenstates, it will follow adiabatically this initial eigenstate. The process of
Stimulated Raman Adiabatic Passage (STIRAP) is based on this theorem. It
is a simple and effective process used to transform population in three-level Λ
system and to implement robust quantum gates [20]. This process requires large
Rabi frequencies, which is an undesirable in many experimental applications. To
overcome this problem a transitionless (superadiabatic) STIRAP was proposed
[1,8]. It has been shown in [8] that transitionless quantum driving can produce a
perfect transfer of the population in three-level Λ and cascade systems. Another
alternative approach to transitionlessness was proposed in [6]. It is a technique
based on parallel adiabatic passage, which leads to ultrafast population transfer.

It is well known that the interaction of a system with its surroundings leads
to decoherence (dissipative effects). This decoherence has a negative impact on
the manipulation of quantum systems. Recently, a design of fast and robust
population transfer with dephasing and/or systematic frequency errors has been
proposed in [15]. Moreover, different transitionless corrections were discussed
recently in three-level Λ system [8]. Each correction leads to a different additional
pulse which couples between the two lower states.
c© Springer Nature Singapore Pte Ltd. 2016
M. Gong et al. (Eds.): BIC-TA 2016, Part I, CCIS 681, pp. 299–313, 2016.
DOI: 10.1007/978-981-10-3611-8 25
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In this paper we will study the role of superadiabatic process in two exam-
ples, population transfer (in three level system) and quantum rotation gates
(tripod system). The paper is organized as follows. In Sect. 2 we describe the
equation of motion and reviewing briefly the superadiabatic Hamiltonian. In
Sect. 3 we investigate the role of superadiabatic STIRAP in population transfer
and the effect of dephasing. In Sect. 4 we explore the quantum rotation gates
with Superadiabatic STIRAP and in the last section we give a conclusion.

2 Model and Equation of Motion

Our model in the first example is a three-level Λ system and a tripod in the
second example. In both models and in the absence of decoherence (close system)
the evolution of the system is governed by the Schrödinger equation

i
d

dt
|Ψ(t)〉 = (H0 + Hc) |Ψ(t)〉, (1)

where H0 is the Hamiltonian of the system, and Hc is the superadiabatic cor-
rection which is defined by [1,4,8]

Hc(t) = i
∑

n

(|∂tn〉〈n| − 〈n|∂tn〉|n〉〈 n|), (2)

where the summation is over all the eigenstates of the Hamiltonian H0. It is
well know that close system is an ideal model since it is always interacting
with the environment and it is subject to different types of decoherence. So, the
Schrödinger equation (1) is replaced by the Lindblad master equation

ρ̇ = −i [H, ρ] +
1
2

∑

i

(
2CiρC†

i − C†
i Ciρ − ρC†

i Ci

)
, (3)

where ρ is the atomic density operator, H = H0 + Hc is the total Hamiltonian
operator for the close system, and Ci are the collapse operators associated with
the decoherence.

In the next section we will focus on the role of Superadiabatic process in our
first example, population transfer.

3 Example 1: Population Transfer

In our first example we use a three-level Λ system with two lower states {|0〉, |1〉}
and an excited state |e〉. The system is driven by two lasers, a pump beam Ωp

and a Stokes beam Ωs. The pump beam acts on the transition |0〉 ↔ |e〉, while
the Stokes beam acts on |1〉 ↔ |e〉. The dipole transition |0〉 ↔ |1〉 is a forbidden
transition. We assume that two-photon resonance condition is fulfilled. In the
rotation wave approximation, the Hamiltonian of the system can be expressed
in the atomic basis {|0〉, |1〉, |e〉} in a matrix form
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H0 =
1
2

⎡

⎣
0 0 Ωp

0 0 Ωs

Ω∗
p Ω∗

s 2Δ

⎤

⎦, (4)

where Δ is the common one-photon detuning of the two laser fields (see Fig. 1).

>1|>0|

|e>

Ωp Ωs

Δ

Fig. 1. Three-level Λ system driven by two coherent fields, a pump (Stokes) beam with
Rabi frequency Ωp(s). The two fields have the same detuning Δ.

The instantaneous adiabatic eigenvalues of the Hamiltonian H0 are given by

λ0 = 0, λ± =
1
2

[
Δ ±

√
Δ2 + Ω2

0

]
, (5)

where Ω0 =
√|Ωp|2 + |Ωs|2, and their corresponding eigenstates are given by

the following states [13]

|Ψ0〉 = cos θ |0〉 − eiφ sin θ|1〉,
|Ψ+〉 = sin θ cos ψ |0〉 + eiφ cos θ cos ψ |1〉 + sinψ |e〉,
|Ψ−〉 = sin θ sin ψ |0〉 + eiφ cos θ sin ψ |1〉 − cos ψ |e〉,

(6)

where φ is the relative phase and

tan θ =
|Ωp|
|Ωs| , tan ψ =

Δ +
√

Δ2 + Ω2
0

Ω0
.

In our model, the states |n〉 used in Eq. (2) are members in {|Ψ0〉, |Ψ−〉, |Ψ+〉}
which are given in Eq. (6). For simplicity we assume that the relative phase
φ = 0, that is, real Rabi frequencies. So, this additional Hamiltonian Hc can be
written in a matrix form [8]

Hc =

⎡

⎣
0 iθ̇(t) iΩ0e

−iθ̇(t) 0 iΩ1e

−iΩ0e −iΩ1e 0

⎤

⎦, (7)
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where,

θ̇ =
Ω̇pΩs − ΩpΩ̇s

Ω2
0

, (8)

Ω0e =
Ωp(Δ̇Ω0 − ΔΩ̇0)
2Ω0(Δ2 + Ω2

0)
, (9)

Ω1e =
Ωs(Δ̇Ω0 − ΔΩ̇0)
2Ω0(Δ2 + Ω2

0)
. (10)

If the fields are resonant with their respective atomic transitions, Δ = 0, both
terms Ω0e and Ω1e are zero. Hence, the additional Hamiltonian plays a role of an
additional field that acts on the forbidden transition |0〉 ↔ |1〉. This additional
interaction can be implemented, for example, by a magnetic dipole interaction
between the angular momentum of the atom and an external magnetic field [8].
For Gaussian pulses Eq. (8) becomes

θ̇ =
2τ

T 2 cosh (4τ t/T 2)
. (11)

In our numerical results we always consider resonant fields (Δ = 0), i.e.,
Ω0e = Ω1e = 0.

In the absence of decoherence, the evolution of the system is governed by
Eq. (1). Using Einstein convention |Ψ(t)〉 = cj |Ψj(t)〉, we get

i
d

dt
[cj |Ψj(t)〉] = i

[
ċj |Ψ(t)〉 + cj |Ψ̇j(t)〉

]
, (12)

with j = 0,+,−.

Making use of

H0|Ψ(t)〉 = cjλj |Ψj(t)〉, (13)

Hc|Ψ(t)〉 = icj

[
|Ψ̇j(t)〉 − 〈Ψj(t)|Ψ̇j(t)〉|Ψj(t)〉

]
, (14)

and projecting the Schrödinger equation (1) on the eigenstate |Ψk(t)〉, we obtain

iċj〈Ψk(t)|Ψ(t)〉 = cjλj〈Ψk(t)|Ψj(t)〉 −
〈Ψj(t)|Ψ̇j(t)〉〈Ψk(t)|Ψj(t)〉, (15)

which leads to

iċk = ckλk. (16)

Finally, we obtain three uncoupled differential equations

i
d

dt

⎡

⎣
c0
c−
c+

⎤

⎦ =

⎡

⎣
0 0 0
0 λ− 0
0 0 λ+

⎤

⎦

⎡

⎣
c0
c−
c+

⎤

⎦ . (17)
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Thus, if the system starts at time ti in the dark state |ψ(ti)〉 = |Ψ0〉 it remains
in this dark state at later time

|Ψ(t)〉 = |Ψ0〉 = cos θ(t) |0〉 − sin θ(t)|1〉. (18)

To transfer completely the population to the state |1〉 at time tf , it is enough
to have | sin θ(tf )| = 1. In Fig. 2 we show the population transfer from the state
|0〉 to the state |1〉.

Fig. 2. Superadiabatic STIRAP, The upper figure represents the Rabi frequencies for
Gaussian pulses. Ωs (Solid line), Ωp (Dashed line) and θ̇ (Long dashed line). The
lower figure represents population transfer. The atom is initially in the state |0〉. The
population of states |0〉 (dashed line), |1〉 (solid line) and |e〉 (long-dashed line). The
parameter are T = 3, τ = 1, and Ω = 1.
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3.1 Effect of Dephasing on Population Transfer

As we mention before, the close system is an ideal model. The Schrödinger equa-
tion (1) is replaced by the Lindblad master equation (3). Moreover, the popula-
tion of the exited state |e〉 is barely populated during the evolution (see Fig. 2).
Thus, the decay rate of this state has a little effect on the evolution of the sys-
tem. However, dephasing caused by collisions or phase fluctuations of the fields
produce important effects. It breaks the superposition of the states (coherence)
and decreases exponentially the population transfer efficiency [11,12].

Let Γi is the dephasing of the state |i〉. The collapse operator is given by

C =
∑

i

C†
i Ci.

The first dephasing for the state |0〉 is described by the Lindblad operator
C0 =

√
2Γ0|0〉〈0|, while the dephasing for |1〉 is given by C1 =

√
2Γ1|1〉〈1|. The

non Hermitian effective Hamiltonian is then given by

Heff = H − i

2
C†

0C0 − i

2
C†

1C1, (19)

which can be put in a matrix form as

Heff =
1
2

⎡

⎣
−2iΓ0 0 Ωp

0 −2iΓ1 Ωs

Ω∗
p Ω∗

s 2Δ

⎤

⎦ . (20)

Using

Tl =

⎡

⎣
eΓ0(t−ti) 0 0

0 eΓ1(t−ti) 0
0 0 1

⎤

⎦, (21)

Tr =

⎡

⎣
e−Γ0(t−ti) 0 0

0 e−Γ1(t−ti) 0
0 0 1

⎤

⎦, (22)

our Hamiltonian (in the interaction picture) becomes

Hi = Tl · Heff · Tr,

=
1
2

⎡

⎣
0 0 Ωpe

Γ0(t−ti)

0 0 Ωse
Γ1(t−ti)

Ω∗
pe−Γ0(t−ti) Ω∗

se−Γ1(t−ti) 2Δ

⎤

⎦ .

(23)
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Here we follow [5]. Since the effective Hamiltonian Hi is not Hermitian, it
has right instantaneous adiabatic eigenstates

|ψ0〉r = eΓ0(t−ti) cos θ |0〉 − eΓ1(t−ti)eiφ sin θ|1〉,
|ψ+〉r = eΓ0(t−ti) sin θ cos ψ |0〉 + eΓ1(t−ti)eiφ cos θ

cos ψ |1〉 + sin ψ |e〉,
|ψ−〉r = eΓ0(t−ti) sin θ sin ψ |0〉 + eΓ1(t−ti)eiφ cos θ

sin ψ |1〉 − cos ψ |e〉, (24)

and left instantaneous adiabatic eigenstates

l〈ψ0| = e−Γ0(t−ti) cos θ 〈0| − e−Γ1(t−ti)e−iφ sin θ〈1|,
l〈ψ+| = e−Γ0(t−ti) sin θ cos ψ 〈0| + e−Γ1(t−ti)e−iφ cos θ

cos ψ 〈1| + sin ψ 〈e|,
l〈ψ−| = e−Γ0(t−ti) sin θ sin ψ 〈0| + e−Γ1(t−ti)e−iφ cos θ

sin ψ 〈1| − cos ψ 〈e|. (25)

If we take eΓ1(t−ti) as a common factor, the right eigenstates can be written
as

|ψ0〉r = e(Γ0−Γ1)(t−ti) cos θ |0〉 − eiφ sin θ|1〉,
|ψ+〉r = e(Γ0−Γ1)(t−ti) sin θ cos ψ |0〉 + eiφ cos θ cos ψ |1〉

+e−Γ1(t−ti) sin ψ |e〉,
|ψ−〉r = e(Γ0−Γ1)(t−ti) sin θ sin ψ |0〉 + eiφ cos θ sin ψ |1〉

−e−Γ1(t−ti) cos ψ |e〉. (26)

In similar way we can do for the left eigenstates. Since the population of
the excited state is negligible, the last terms in Eq. (26) which are proportional
to e−Γ1(t−ti) will not have a significant effect on the evolution of the system.
So, we can neglect that exponent and keep the exponent which depends on
Γ0 − Γ1. In this case, the right eigenstates depend only on Γ0 − Γ1. So, all the
calculations based on two dephasing rates Γ0 and Γ1 can be obtained from the
dephasing of the state |0〉 but with the effective rate Γ0 − Γ1. Then, without
loss of generality we consider only the dephasing of the ground state |0〉. For
small dephasing rates we can unravel the master equation by using quantum
trajectory approach [2,3,5,17–19]. This approach was introduced by Carmichael
and it is based on the master equation (3). It is composed of two evolutions.
The continuous coherent evolution (nonjump evolution) and quantum jump. The
nonjump evolution is based on an effective non-Hermitian Hamiltonian operator

i
d|ψ(t)〉

dt
= Heff(t)|ψ(t)〉,
= [H − i Γ0|0〉〈0|] |ψ(t)〉. (27)
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Thus the uncoupled system of differential equations (17) becomes

i
d

dt

⎡

⎣
c0
c−
c+

⎤

⎦ =

⎡

⎣
0 0 0
0 λ− 0
0 0 λ+

⎤

⎦

⎡

⎣
c0
c−
c+

⎤

⎦− i
Γ0

2

⎡

⎣
2 cos2 θ sin 2θ cos ψ sin 2θ sin ψ

sin 2θ cos ψ 2 cos2 θ cos2 ψ sin2 θ sin 2ψ
sin 2θ sin ψ sin2 θ sin 2ψ 2 sin2 θ sin2 ψ

⎤

⎦

⎡

⎣
c0
c−
c+

⎤

⎦ .

(28)

Note that the solution of Eq. (28) should be normalized due to the fact that
the effective Hamiltonian is not Hermitian. It is clear that there is coupling
between all three instantaneous eigenstates. So if the system starts in the dark
state, it will evolve at a later time to a state which is a superposition of all the
three adiabatic eigenstates. In addition to the non-jump evolution, the system
may randomly jump to the ground state |0〉 due to the collapse operator C0.
This is the so-called jump evolution. If a jump occurs at time tj , the states of
the system collapses to the state |0〉 which is given in term of instantaneous
eigenstates by

|0〉 = cos θ(tj)|Ψ0(tj)〉 + sin ψ(tj) sin θ(tj)|Ψ−(tj)〉
+ cos ψ(tj) sin θ(tj)|Ψ+(tj)〉. (29)

According to the quantum trajectory theory, the average over all trajectories
gives the same result as the master equation (3). If the dephasing rate is small,
the probability for a system to have more than one jump is negligible. So, the
non-jump evolution given by Eq. (28) is a good approximation to the master
equation and gives a clear picture on the evolution of the system in terms of the
adiabatic eigenstates.

In quantum computation what one is concerned with is how to reach the
high fidelity target F > 0.999. Now we are ready to investigate the robustness
to the dephasing of the ground state by computing the fidelity and compare it
with the quantum computation target.

The fidelity is given by the probability to transfer the population at time tf
to the final state |1〉. It is given by F = |〈1|Ψ(tf )〉|2. It has been shown [8] that
the condition to have high fidelity is verified for superadiabatic STIRAP even
when the decay rate Γ of the exited state is much larger than the pulse width.

In Fig. 3, we plot the maximum fidelity as a function of dephasing in the
presence of damping rate. The condition for obtaining high fidelity is Γ0 < 0.002.
Within this region the maximum fidelity does not depend on Γ , which indicates
that the dephasing is more important factor than the damping rate [9]. This is
why we did not consider the damping of the excited state in our Eq. (28).

Our calculations were based on Gaussian pulses. Furthermore, it is straight-
forward to generate them to different schemes of driving lasers. For more infor-
mation on other pulses one can refer to [7,14].
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Fig. 3. Maximum fidelity as function of dephasing rate Γ0 for τ = 0.5. The damping
rate of the excited state is Γ = 0 for solid line and Γ = 10 for dashed line. (Color figure
online)

4 Example 2: Quantum Rotation Gates

The process of stimulated Raman adiabatic passage is one of the important tech-
niques used to implement quantum gates. Lacour et al. [13] proposed an elegant
experiment technique to implement generalized single-qubit rotation gates in
three-level Λ system

R(a, φ) =
[

cos a eiφ sin a
−e−iφ sin a cos a

]
, (30)

where a is the angle of rotation and φ is the phase of the gate. Their technique
uses two STIRAPs. The first STIRAP is a reversed STIRAP, while the second
STIRAP is a standard STIRAP. Each STIRAP has two pulses separated in time.
For large detuning, the excited state |e〉 can be adiabatically eliminated. If the
two f-STIRAP have the same pulse shapes with the same delay, the dynamical
phases acquired by the bright states at the end of the two f-STIRAP are the
same. Thus, a compensation of the dynamic phase is achieved. Therefore, a
generalized rotation gate is obtained up to a global dynamical phase.

In what follows we use their idea and apply it to a tripod system rather than
a three-level Λ system. The tripod consists of four-level systems driven by three
resonant laser fields with Rabi frequencies Ω0, Ω1, Ω2. These laser fields couple
the three lower levels |0〉, |1〉, and |2〉 to the upper level |e〉 as depicted in Fig. 4.
The laser fields are modulated by Gaussian pulses with width δ, amplitudes Aj ,
phase φj , and time delay tj

Ωj(t − tj) = Aje
iφj e

− (t − tj)2

δ2 . (31)

All parameters are scaled with respect to the width of the Gaussian pulses.
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Fig. 4. Energy level for a four-level tripod. The three ground levels |0〉, |1〉 and |2〉 are
coupled to the excited level |e〉 by three different lasers. The two ground states |0〉 and
|1〉 are the states of the desired qubit.

We choose the two Rabi frequencies Ω0 and Ω1 as follows.

Ω0 = Ω(t + T − τ) + Ω(t + T + τ) cos a,

Ω1 = Ω(t + T + τ) sin a.

(32)

These fields represent two STIRAP processes separated by T in time, and
each STIRAP has two pulses separated by τ in time. The first STIRAP is a
reversed STIRAP starting with a constant ratio Ω0/Ω1 → cot a, while The
second STIRAP process is a standard STIRAP where the pulses are switched
on counter-intuitively and switched off in a given constant ratio Ω0/Ω1 → tan a.
In addition to these STIRAP processes another STIRAP which consists of two
pulses separated in time such that it starts before the two STIRAPs and ends
after them (see Fig. 5).

Fig. 5. The Rabi frequencies Ω0 (solid line), Ω1 (dashed line), and Ω2 (dotted line), as
a function of time. The parameters are: A0 = A1 = A2 = 1, τ = 0.5, T = 2, a = π/8.
The time delay of the first(second) pulse of Ω2 is −3.5(3.57).
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The Hamiltonian H0 of the tripod is then given by

H0 =
1
2

⎡

⎢⎢⎣

0 0 Ω0 0
0 0 −Ω1 0

Ω0 −Ω1 0 Ω2e
−iφ2

0 0 Ω2e
iφ2 0

⎤

⎥⎥⎦, (33)

where all the Rabi frequencies Ωi are considered to be real numbers. This Hamil-
tonian was considered in [5]. It has four eigenvalues. They are called the instan-
taneous adiabatic eigenvalues [5]

λ± = ±1
2

√
Ω2

0 + Ω2
1 + Ω2

2 , λi = 0 (i = 1, 2). (34)

The eigenstate corresponds to zero energy is a degenerate state. It is com-
posed of two dark states which can be written in the form

|D1〉 = − cos θ1 sin θ0 |0〉 + cos θ1 cos θ0 |1〉
+ sin θ1e

iφ2 |2〉,
|D2〉 = cos θ0 |0〉 + sin θ0 |1〉, (35)

where

tan θ0 =
Ω0

Ω1
, tan θ1 =

√
Ω2

0 + Ω2
1

Ω2
. (36)

The two other states are bright states which correspond to the non zero
eigenvalues λ±

|±〉 =
1√
2

[− sin θ1 sin θ0 |0〉 − sin θ1 cos θ0 |1〉

±|e〉 + cos θ1e
iφ2 |2〉 ] . (37)

According the adiabatic theorem, if the tripod system starts in the superpo-
sition of the two dark states it remains in that superposition at later time.

To measure the performance of the rotation gate we use the fidelity which is
given by

F = |〈ψ(tf )|R(a, φ)|ψ(ti)〉| , (38)

where |ψ(ti)〉 represents the initial state at time ti and |ψ(tf )〉 is the final state at
time tf . For numerical computations we focus on the generation of the rotation
gate R(π/4, 0) and we set φ2 = 0.

In Fig. 6 we plot the maximum, minimum and average fidelity as a function
of the common amplitude A of the Gaussian pulses for the rotation gate with
angle a = π/4 and phase φ = 0. The fidelity are computed numerically for 1000
initial random states uniformly distributed on the Bloch Sphere

|ψ(ti)〉 = cos(πu)|0〉 + sin (πu) ei arccos(2 v−1)|1〉,
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Fig. 6. Fidelity for rotation gate R(π/4, 0). The Maximum (solid line), the average
(dotted line) and the minimum (dashed line) fidelity as a function of A. The fidelity
for the STIRAP process approaches 1 only for high Rabi frequencies. (Color figure
online)

where u and v are two random numbers uniformly distributed on [0, 1]. It is clear
that the fidelity is close to 1 only for large values of A. Large Rabi frequencies
is a disadvantage in many experimental applications. Now, we study the role of
superadiabatic process in implementing quantum rotation gates R(π/4, 0).

The additional Hamiltonian can be written in a matrix form as

Hc =

⎡

⎢⎢⎣

0 h0,1 0 h0,2

h∗
0,1 0 0 h1,2

0 0 0 0
h∗
0,2 h∗

1,2 0 0

⎤

⎥⎥⎦ . (39)

where

h0,1 = i
Ω0Ω̇1 − Ω1Ω̇0

Ω2
0 + Ω2

1

,

h0,2 = iΩ0
(Ω0Ω̇0 + Ω1Ω̇1)Ω2 − (Ω2

0 + Ω2
1)Ω̇2

(Ω2
0 + Ω2

1)(Ω
2
0 + Ω2

1 + Ω2
2)

,

h1,2 = iΩ1
(Ω0Ω̇0 + Ω1Ω̇1)Ω2 − (Ω2

0 + Ω2
1)Ω̇2

(Ω2
0 + Ω2

1)(Ω
2
0 + Ω2

1 + Ω2
2)

.

With our Gaussian pulses the term h0,1 = 0. That is, the Hamiltonian Hc is
equivalent to additional driving fields which couple the two lower levels |0〉 and
|1〉 to the level |2〉.

In Fig. 7 we plot the fidelity as function of the amplitude A. It shows that
superadiabatic STIRAP leads to a perfect rotation gates for all Rabi frequen-
cies. This is an important improvement over STIRAP which needs high Rabi
frequencies.
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Fig. 7. Fidelity for rotation gate R(π/4, 0) as a function of A. The fidelity is 1 for all
Rabi frequencies.

4.1 Effect of Dephasing

It is interesting to check the robustness in the presence of dephasing caused by
collisions or phase fluctuations of the fields [10]. Here we restrict ourselves to
the dephasing of the ground state |0〉 which can be described by the Lindblad
operators C0 =

√
2Γ0|0〉〈0|, where Γ0 is the dephasing rate. Figure 8 shows

the fidelity as a function of the dephasing rate Γ0 for A = 1. One can see
that the fidelity decrease linearly and the rotation gate becomes imperfect. So,
the dephasing caused by collisions or phase fluctuations of the fields produces
significant effect on the performance of the rotation gate.

Fig. 8. Fidelity for rotation gate. The maximum, the average and the minimum fidelity
as a function of Γ0 for A = 1.
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5 Conclusion

In this paper we have discussed the role of superadiabatic STIRAP in two exam-
ples, The population transfer and quantum rotation gates. In population trans-
fer, we have used the quantum trajectory to unravel the master equation in
order to understand clearly the evolution of the system in terms of the adiabatic
eigenstates. We have shown that if the dephasing rate Γ0 is larger than 0.002 for
Gaussian pulses with time delay τ = 0.5, the fidelity of the population transfer is
far from the quantum computation target. We also show that the dephasing rate
reduces the fidelity much more than the damping rate does. In other hand, we
have shown that superadiabatic STIRAP leads to a perfect population transfer
and it is robust when the dephasing rate is less than 0.002. Moreover, it does
not depend on the damping rate of the excited state because the excited state
is barely populated during the evolution. We have also focused on the quan-
tum rotation gate with angle a = π/4 and phase φ = 0. We have shown that
the STIRAP requires high Rabi frequencies to implement the rotation gates.
To overcome this disadvantage we use superadiabatic approach that leads to a
perfect gate for small Rabi frequencies. Moreover, we have explored the effect of
dephasing on the performance of the gate. The dephasing which cause by colli-
sions or phase fluctuations of the field can leads to imperfect gate. Therefore, to
get a perfect gate one must keep the dephasing as small as possible.
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Abstract. Membrane computing, a recent branch of natural comput-
ing, has been gaining momentum attention in the last few decades due
to its massive parallelism and efficient computation. Many researchers in
the field of membrane computing have proposed sophisticated techniques
inspired by cell biology for computer science applications, especially when
they considered cell organization in tissues, organs, and most recently,
from the organization of neurons. The interdisciplinary applications of
membrane computing include, but not limited to computer science, biol-
ogy, biomedicine, bioinformatics and several other fields such as mathe-
matics, artificial intelligence, automation, economics, to name but a few.
Their applications are pertaining to computer graphics, approximate
optimization, cryptography, parallel computing and image processing.
Hence, in this paper we present an up to date comprehensive literature
review pertaining to the application of membrane computing in the area
of digital image analysis, especially image segmentation, comprehensively
and systematically. We thoroughly investigate the recent advancement
in the field of image segmentation using membrane system. Furthermore,
we highlight the merits and demerits of various software tools and meth-
ods. Finally, we suggest some intuitive future directions in light of the
current limitations.
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1 Introduction

As a young branch of natural computing, membrane computing (MC) began in
1998 with its latest version that is related to the initial research studies published
in 2000 by Păun [1]. The primary models for MC began with a single cell and
its hierarchical structure of organized compartments called membranes, where
localized biochemistry took place. The resulting computing device comprised a
distributed parallel computing model with multi-sets of objects or chemicals that
placed in regions (tree-like nodes) processed as reactions similar to those of nat-
ural biochemistry. Motivated by biological membranes, we obtain a computing
device called a P system in honor of their initiator, Păun [1]. Coverage of the
domain can be found in [2].

The conventional P system model was variously extended and enhanced,
as per biological suggestion, to involve, for instance, the processing of objects
by means of operations patterned after bio-symport/antiport functions, or as
computational motivations extended from single cells to cell populations, or from
tree-like membrane arrangements to arbitrary graph techniques as well as other
biological processes such as neuro-pathways, etc.

The computing devices are verified to be quite powerful, equivalent with
Turing machines even when using feature groups offering certain restrictions,
and also computationally efficient (in certain cases, able to solve computation-
ally hard problems, typically, nondeterministic polynomial time (NP)-complete
problems, in a feasible/polynomial time) [3].

Interestingly, MC has been exploited in many real world applications includ-
ing digital imaging analysis. To the best of our knowledge, this paper represents
the first survey pertaining to the recent advancement of digital image analysis
using MC.

In this paper, the recent literature works pertaining to image processing
techniques using MC models are presented. In this regard, the presented works
were classified into two main categories, membrane rules (which use the typical
rules of P systems models) and membrane algorithms (which take inspiration
from P system models without using their rules explicitly) as will be discussed
in the following sections.

The remaining of the paper is organized as follows. In Sect. 2, an overview of
MC is outlined. In Sect. 3, the various applications of MC are briefly explained. In
Sect. 4, the different types of MC systems are explained. In Sect. 5, a presentation
of MC in image processing is given. In Sect. 6, a comprehensive review of MC
pertaining to image segmentation is presented. Section 7 concludes the paper
and suggests some future directions.

2 Membrane Computing Overview

MC has emerged as a recent branch of molecular computing as shown in the
taxonomy chart in Fig. 1. MC is mainly based on the assumption that the flow of
metabolites within the compartmental architecture and functioning of biological
cells can be interpreted as a flow of information for computations [4].
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Fig. 1. Taxonomy of natural computing branches [5].

The main components of P system are inspired by the structure and functions
of the biological cell that makes the P system computation devise consisting of;
membrane structure, set of evolution rules and multisets of objects.

The design of MC is presented in a hierarchically structured manner similar
to the structure of the cell. It is divided into many compartments (according
to the cell) and the external membranes look like plasma membrane in the cell
containing several sub-membranes called skin. Each membrane surrounding the
compartment is called a region (see Fig. 2).

Membranes, which do not have a sub-membrane inside it, are called elemen-
tary membranes. Usually, every membrane has a label starting from number 1
and the skin membrane, labeled by 0 [6]. The structure of the membrane can be
represented like a tree inspired from the vesicles where the root of the tree is the
skin membrane and the leaves are the elementary membrane. This tree structure
is represented by parentheses to explain the structure of membrane as shown in
Fig. 2. The motorists are the set of objects placed in the region, according to the
chemical objects in the cell compartment. These objects are described by the
symbolic alphabet [6–8].

3 Membrane Computing Applications

Several features of MC are of great interest as they suit many real world appli-
cations. These include [6]:

– Distribution (with significant systempart interactions as well as emergent
behaviors and non-linearity resulting from local behavioral composites).

– Discrete mathematics (continuous mathematics failed to prove adequate for
linguistics, and cannot cover more than local processes in biology because of
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Fig. 2. Membrane structure and its associated tree [6]

the complexity of the processes and, in many cases, because of the imprecise
character of the processes; The discrete nature of the biological reality is ruling
out the usefulness of many tools from continuous mathematics).

– Algorithmicity (hence, easy programmability),
– Scalability and extensibility (major challenges when using differential equa-

tions in biological applications).
– Transparency (multi-set rewriting rules are little more than equations that

mimic chemical reactions),
– Parallelism (a computer science dream, but commonly observed in biology).
– Nondeterminism (let us compare the program of a P system with the programs

written in typical programming languages).
– Communication (marvelous way, and yet not perfectly understood, the life

phenomenon that coordinates numerous processes within a cell. This stands
in stark contrast to the costly way of coordinating computations in parallel
electronic computing architectures, where the communication time becomes
unaffordable with the increase in the number of processors).

Most P systems have proven to be both universal [1,9–11] and efficient [12–
14]. Number of researches has been done on P systems with active membranes
where almost researchers reduced time complexity from exponential to polyno-
mial or linear time in an exponential workspace, by the so-called trading space
by time. This improvement in time complexity involved P systems with ‘division
rules’ showing that the NP-complete problem of Satisfiability (SAT) could be
resolved in case of linear time [12].

Along similar lines, P systems have also solved other problems (mostly NP-
complete) of linear or polynomial time complexity. These included, as instance,
the SAT problem [15–17]; the Graph problem [18]; the subset sum problem [19];
the Three Coloring problem (3-COL) [20] and the Vertex Cover problem [21].
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All researchers in this domain of study considered time units as steps of
computation in a P system that implemented in parallel, using evolution rules, in
all membranes of the system or its membrane divisions [22]. It has been claimed
that executing the P system in a sequential hardware did not get suitable results
unless it is implemented in parallel architecture. Therefore, the recent researches
are performed on the implementation of MC on parallel architecture devices [23–
27]. In all such studies, the speed of execution was impressively increased.

4 Types of Membrane Computing

Interestingly, researchers in the area of MC have been inspired by cell biology
to design several applications in the area of computer science. As of the present
writing, and according to membrane structure as so far introduced and investi-
gated, the P systems have been classified into three main categories [28]. The
first is called cell-like P system [1], the second is the tissue-like P system [29]
and the third is the spiking neural-like P system [30].

In the first category, the P system emulates the (eukaryotic) cell. The main
component of this type is the structure of membranes in a hierarchical arrange-
ment which is viewed as three dimensional vesicles, i.e., when the multisets of
objects are combined with other objects and the membranes are destructive
by division and modeled on bio-like processes such as exocytosis, endocytosis,
phagocytosis and others [1].

In the second category, tissue-like P systems, the membrane consists of sev-
eral cells which can evolve in the same environment and include object multisets
within an environment that also contains objects. The certain cell can be related
directly by supplying channels between them and also these cells can communi-
cate with the environment. These channels may be established in the beginning
or may be established dynamically evolved with the latest case utilized in known
as population P systems. Where in the case of simple cells and when the number
of contained objects and the used rules are limited, then the idea of P colony is
declared [29].

The third category of P systems is the neural-like P systems (see [30]). Variant
types of neural-like P systems were newly presented, called spiking neural P
systems, where this type uses just a single set of objects called the ‘spike’ in
which the utilized basic data is the distance between successive spikes [31].

5 Membrane Computing in Image Processing

MC is a methodology that uses a number of rules inspired by the behavior
and functioning of the biological cell to find the solution of popular problems
related to graphics, approximate optimization, cryptography, to name but a few.
MC has distinguishing characteristics such as the encapsulation of data and the
simple representation of information as well as parallelism, all of which are most
appropriate when dealing with digital images. Due to the fact that features in
the segmentation of digital images that are parallel and/or local can be solved
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regardless of the actual image size, its implementation becomes more practical in
parallel as they are independent. Furthermore, data can also be easily encoded
according to efficient bio-inspired representations.

Hence, in light of the above, the aforementioned features make digital imag-
ing more flexible and amenable for the implementation of techniques inspired by
nature. In the last few decades, many studies in digital images have been devel-
oped in large scope. In the literature, one can find several attempts for solving
problems from digital imagery with natural computing as presented in the work
of Ceterchi, et al. [32] or the work of Chao and Nakayama [33] where natural
computing and algebraic topology are linked together by the aid of Neural Net-
works [34]. The main goal of dealing the image in a digital form is to enhance the
quality or to obtain artistic effect. MC is used in image processing operations in
order to speed up and enhance the image operations such as smoothing which
is often used in digital image processing to improve image quality by reducing
the noise levels. For instance, a MC algorithm used to remove the noise was
presented in [35] to smooth the 2D images with a framework of tissue-like P sys-
tems implemented by the novel architecture of Compute Unified Device Archi-
tecture (CUDA), obtaining homology groups of 2D images [36–38], counting cell
[39], quantum-inspired sub-algorithms and its application to image processing
[40] presents a membrane algorithm, called MAQIS, by appropriately combin-
ing concepts and principles of MC and quantum-inspired evolutionary method,
skeletonizing images [41,42], thinning images based on MC [43], Corner Detec-
tion was presented in [44] in order to detect corners in digital images using MC
framework and image segmentation. The related work pertaining to the use of
MC on image segmentation operations will be illustrated in detail in the follow-
ing sections.

6 Membrane Computing Pertaining to Image
Segmentation

Image segmentation is an important field of digital image processing that is rel-
evant to the area of computer vision. Several segmentation methods have been
proposed based on the two main attributes of pixels in relative with local neigh-
borhoods: the discontinuity and similarity methods. The former method was
known as boundary-based methods that depend on pixel discontinuity, and the
later method is called region-based which are based on similarity between pixel
regions. However, it is claimed that these kind of segmentation methods that
are based only on boundary or regional data, are usually tend to fail in achiev-
ing satisfactory results in a retail minute. Thus, the attention of the researchers
moved in recent years towards that use of new techniques based on the com-
plementary nature of such data [45]. The essential goal of image segmentation
procedure is to divide the input image into multiple regions that are visually
similar with respect to any property related to image such as gray level, image
texture or associated color.
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Segmentation process possesses several distinguishing features that enabled
the digital image to be easy and suitable for implementation in any technique
inspired by nature. Most importantly, it can be parallelized and locally resolved
without affecting the size of the image, and it can be implemented in multifari-
ous local areas. Furthermore, essential characteristic can easily encode the main
information by bio-inspired representation [46]. According to these features, MC
is used in image segmentation by an extensive number of researches as will be
shown in the related work. Figure 3 presents a taxonomy of MC techniques based
on published papers pertaining to MC-based image segmentation.

A comprehensive literature review pertaining to image segmentation using
MC models has been presented with the aid of the taxonomy chart as shown in
Fig. 3. According to the mechanism of how membrane systems employed, these
methods have been classified into membrane rules-based methods and membrane
algorithms-based methods. Those methods are further classified according to the
sequential/parallel execution.

Fig. 3. Taxonomy of MC based on published papers related to MC-based segmentation

6.1 Rules-Based Membrane Computing for Image Segmentation

MC models depend on a set of rules which are inspired by the function and
behavior of cell biology to solve many real world problems by employing impor-
tant features of P systems concerning the way rules are used in a maximally
parallel and non-deterministic manner [47]. In this section, related works per-
taining to image segmentation using membrane rules are presented. The first
part of this section presents the related works that have been done on sequential
computing platforms, whereas, the second part presents the related works that
have been done on parallel computing platforms.
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Membrane Computing Based on Sequential Computing Platforms.
The execution of P systems on sequential computing platforms is not feasible
due to their built-in parallelism which will not be fully exploited in such a case.
However, application software which simulates implementation sequentially is
widely available [48].

Tissue-like P System on Sequential Computing Platforms for Artificial Image
Segmentation. In the work of [49], P systems have been linked to computational
topology with digital images where this development paved way for a new and
promising line of research. Christinal et al. [49] designed a collection of tissue-
like P systems that used the communication rules of MC to perform edge-based
segmentation. This communication entails the discovery of adequate different
region boundaries among the input images. The experiment was conducted such
that the artificial 2D and 3D images, using 4-adjacency and 26-adjacency, respec-
tively, have been employed. Experiments show that results were obtained in a
fixed number of 9 and 26 steps pertaining to 2D and 3D images, respectively. It
is worth mentioning that the tissue simulator tool has been used in their work
for validation. The main shortcoming of such simulation is that the sequential
software used in edge-based segmentation could not utilize the full potential
parallelism of the model. Furthermore, this simulation restricted the use of the
input image to be manually codified, pixel by pixel, in the tissue simulator and
they did not comment on the time of segmentation in their experiments.

Christinal et al. [49] proposed that this strategy is not feasible when dealing
with large real images and only 4-adjacency relationship were considered when
using 2D images. It is worth mentioning that, in their work, no evaluation proce-
dure has been considered to validate the quality of segmentation which prevented
a comparison with this work. Christinal et al. [50] calculated some algebraic-
topological information for two-dimensional (2D) and three-dimensional (3D)
images in a general and parallel manner with P systems. First, they presented
another method to achieve homologous groups of 2D digital images in logarith-
mic time with respect to input data. In addition, this work paved the way for
another area of study in which efficiency and power were used in topological
processes for the first time. They have considered 4-adjacency relationships for
2D, whereas a 6-adjacency has been used for 3D digital images. The obtained
results demonstrated edge-based segmentation, but they did not comment on
the time of segmentation in their experiments. However, the main limitation of
this work is the lack of automation where the input image has to be entered
manually to the system to manually visualize the output.

Along similar lines, Reina-Molina et al. [51] developed the work of Carnero
et al. [52] by proposing a new version of tissue-like P system to replace the con-
cept of one cell with the concept of multiple auxiliary cells to deal with irrelevant
feature removal and homogenize colors with a general thresholding for color space
and segmentation problems. These processes are essentially applicable to use all
the available parallelization inherent in P systems models. Although the pro-
posed method of Reina-Molina et al. [51] exploited the full parallelism of MC,
the input image has been manually codified in the system. Furthermore, Molina
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et al. have not considered the same standard criteria to validate the accuracy of
their segmentation method that makes a comparison with their work infeasible.

Moving on, in the work of Christinal et al. [53], a tissue-like P system was
proposed with the use of MC rules for the design of a region-based segmentation
algorithm in a constant number of steps. In their work [53], 4-adjacency rela-
tionships between neighboring pixels were adopted for 2D digital images. They
proved that only 9 steps were sufficient to get a region-based segmentation for a
2D image. In addition, 26-adjacency relationships between voxel neighborhoods
were implemented for 3D digital images. They also proved that 26 steps are
required to get a region-based segmentation for a 3D image. Meanwhile, the
main weakness of their method is the fact that the image has been manually
codified in the tissue simulator as in their previous work. This leads to a lack
of efficiency in favor of expressiveness. Hence, experiments performed using this
software were very slow and at most could only use synthetic images of 30 x 30
pixels.

Recently, tissue-like P systems have been proposed for the parallel color seg-
mentation of simple artificial images [54]. The images were segmented such that
thresholding is employed to search for edge pixels. The tissue-like model for
P systems uses fewer computation elements compared to conventional models,
which is why it is the model of choice in this work. The work of Christinal et al.
[54] depicts that, in theory, if a general color alphabet is taken into considera-
tion, it is feasible to perform the parallel segmentation of an image. As such, if
pixels do not have different colors than their neighboring pixels, then their edges
are not selected. Therefore, a pixel is an edge if it is different from a neighboring
pixel.

Most recently, Isawasan et al. [55] proposed the tissue-like model of P system
to handle region-based segmentation based on the work in [53] of two-dimensional
(2D) hexagonal artificial images using 6-adjaceny. The segmentation was exe-
cuted using the official language of MC called P-Lingua. However, they used the
language without illustrating the details that backup this usage, and did not
consider the time of segmentation. Furthermore, no evaluation procedure has
been performed to validate the segmentation results.

In the work of Yahya et al. [8], a region-based segmentation with tissue-like
model of P system rules based on the work of Christinal et al. [53] was proposed.
Yahya et al. [8] implemented an uncomplicated artificial image with a detailed
illustration of how P system works which is more illustrative. In addition, vary-
ing color relationships have been explored to investigate the effect of color on the
process outputs. Most recently, Yahya et al. [56] proposed a tissue-like P system
with region-based and edge-based segmentations to segment two dimensional
hexagonal images, wherein P-Lingua programming language has been used to
implement and validate the proposed system. The achieved experimental results
clearly demonstrated the effectiveness of using hexagonal connectivity to seg-
ment two dimensional images in a less number of rules and computational steps.
The experimental results have shown that using the hexagonal connectivity is
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more efficient than the four connectivities, where the number of rules and com-
putational steps can been reduced from 9 to 7 steps.

Tissue-like P System on Sequential Computing Platforms for Real Image Seg-
mentation. Dı́az-Pernil et al. [46] presented an application for the edge-based
segmentation for 2D digital images based on a tissue-like P system. The C++
programming language was adopted in the execution of the software tool. How-
ever, the technicalities surrounding it were not clarified. The software tool used to
segment the 2D digital image is based on Christinals work [49] using 4-adjacency
connectivity. Dı́az-Pernil et al. [46] concluded that the problem of edge-based seg-
mentation in 2D images is solved in constant time with respect to the number
of steps of any computation model. The application program input constitutes
a digital 2D image format that can be of the most familiar raster image formats
such as jpg, png, gif, etc. Real medical images and artificial color images were
used in the work of Dı́az-Pernil et al. [46], but they did not compute the accuracy
of the segmentation to evaluate and validate their proposed method. Although
the input images were automatically codified in the system, no standard medical
dataset has been used for the experiments.

Along the same trend, Sheeba et al. [57] proposed tissue-like P systems for
segmentation the nuclei of the White Blood Cells (WBCs) for peripheral blood
smear images. The preparation process was such that the RGB image was con-
verted to a Hue-saturation-Value (HSV) image. Sheeba et al. [57] followed three
steps, namely: color-based, intensity-based and morphological-based step. In the
color-based step, the segmentation uses color as a set of predefined criteria,
whereas, in the intensity-based second step the partition image is based on a
haphazard altering of the intensity with the use of the gray values of the pixel.
However, there might be broken edges with a gulf after the use of intensity based
approach in the second step. In so doing, the morphological approach, which is
the third step, is employed to address this setback. MATLAB was used to run
the experiments. The technique of Christinal et al. [49] was adopted by Sheeba
et al. (see [57]), with the difference being that Christinal et al. [49] employed
4-adjacency, whereas, Sheeba et al. [57] employed 8-adjacency. However, the dif-
ference between both types of adjacency has not been illustrated in their work.
The resulting HSV image forms a network of points of N2 that are sets of pixels.
Findings from the experiments sample data show a percentage success rate of
75%. Conclusively, Sheeba et al. [57] suggested the need for advanced segmen-
tation techniques for segmenting images, e.g., basophils and eosinophils, having
granular complex structures. It is worth mentioning that a comparison with this
method cannot be performed for two reasons; First, different medical datasets
and different programming languages have been used in their method. Second,
the evaluation procedure and the method to compute the success rate have not
been mentioned.

Dı́az-Pernil et al. [58] proposed a novel application program that simulates
the behaviour of a tissue-like model for a MC device (P systems) as illustrated
in [49]. This is done in order to address segmentation in digital imagery. This
work adopted the work of Dı́az-Pernil, et al. [46] by adding a new extra image
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for the experiment. However, the proposed application program is a good tool
for the treatment of digital images since it was able to handle considerable image
sizes. The input image data to process a 2D image can be jpg, png, gif, etc. and
raster image formats. C++ programming language was the programing language
chosen for implementation. Although the input image was automatically codified,
their method lacks a proper evaluation procedure to make it comparable with
other methods in the literature.

Yang et al. [59] proposed a region-growing based image segmentation method
with a tissue-like P system. The MC model has a uniquely designed membrane
structure and evolving objects. It employs evolution and communication rules in
order to actualize regional growth. The membrane model was developed in such
a way that it performs image segmentation automatically. The 8-adjcency rela-
tionship was utilized in their work. For experimental purposes and evaluation,
it was restricted to gray-scale images. The results of the experiments revealed
that the proposed image segmentation technique has a better effect and perfor-
mance as compared with the conventional image segmentation techniques based
on region growing. The weakness of this principle and method is that it only
works for gray-scale images. Moreover, the programming language that has been
used in their work was not mentioned. The evaluation method that has been
adopted was the contrast across region.

Recently, Peng et al. [60] proposed a novel region-growing color image seg-
mentation for P systems. The tissue-like model of P system is developed such
that an adaptive selection of target regions is obtained. The method was eval-
uated on several real-life color images. In the experiment, the image segmen-
tation was evaluated with several color images that were randomly collected
from the international network. Experimental results of the method are closer
to the results obtained in the artificial segmentation. However, the proposed
segmentation technique has some irrelevant features or noise in the resulting
image. Meanwhile, the proposed image segmentation has the advantage of fast
segmentation based on tissue-like P systems. The experimental results also show
improved segmentation performance. They have not explained the programming
language that has been used in their work.

Carnero et al. [61] proposed a novel MC technique by using multiple mem-
branes to solve segmentation issues in real images using multiple membranes and
real images. The algorithm deals with cleaning, thresholding and edge-based seg-
mentation. It is implemented in Python.

Christinal et al. [62] proposed a novel definition for the interior of a partially
bounded region of an image. Christinal et al. [62] also proposed an algorithm for
automatically searching bounded regions using a MC model. A definition and an
algorithm are presented for determining whether a Black Connected Component
(BCC) encircles a section of a white region in a binary image. The empirical
implementation occurred at once, because BCC can be regarded as a closed
curve that is not perfect and the enclosed region as an imperfect topological
hole for the BCC. The definition of such partially bounded regions is a hard
task even for human experts. A real case study of defining partially bounded
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regions that is a solid task for human experts/professionals in the field is a
glomerulonephritis image (medical image).

Cell-like P System on Sequential computing Platforms for Artificial Image Seg-
mentation. Christinal et al. [36] designed a MC application to solve the thresh-
olding problem in linear time on a number of pixels. This is achieved using the
rules for a cell-like model P system. Interestingly, the massive parallelism char-
acteristics of MC aided the proposed work to be realized in linear time based on
the size of the input image. Christinal et al. [36] presented a new cell-like model
of the membrane system with two polarizations and dissolution. Artificial color
images were employed in the implementation of the membrane computation sys-
tem with the use of a tissue simulator. The work solved the traditional threshold
by adopting a high degree of parallel processes and the likelihood of presenting
the information in an uncomplicated way. However, the drawback of this work
is in the execution of the tissue simulator that did not depict how long it takes
to segment an image, and there was no evaluation procedure which makes their
model unsuitable for comparison.

Membrane Computing Based on Parallel Computing Platforms. MC
investigates models of computation inspired by the structural and functional
properties of biological cells. Because of their inherent large-scale parallelism,
MC models can be fully exploited only through the use of parallel computing
platforms [48].

The distinguishing feature of parallel computer architecture is that a number
of processors have the ability to share information and communicate with each
other in order to solve a relatively large problem as fast as possible. Here, parallel
architectures in the internal structure of the parallel platforms have been utilized.
However, parallel architectures and parallel platforms are used alternately. Note
that parallel architectures consist of variant memories and processors which are
connected to each other by the aid of interconnection networks [63,64].

Tissue-like P System on Parallel Computing Platforms for Artificial Image Seg-
mentation. Carnero et al. [52] presented an implementation of a membrane
solution for digital images for the removal of redundant and irrelevant features,
edge-based segmentation and thresholding using hardware programming. Field
Programmable Gate Array (FPGA) is incorporated into the hardware tool. It is
made up of logic blocks. This component enables configuration and reconfigura-
tion after fabrication. Base on image analysis, Carnero et al. [52] work is simple
and the time taken to execute the segmentation process is uniform irrespective
of image size. This confirms that it works specifically with high dimensional data
images. The first stage, which deals with irrelevant feature removal, is achieved
with the application of a fundamental irrelevant features filter. In so doing, the
system discards some noise that could hinder the process. In the second stage,
the system deals with the issue of degradation of colors for pixels with differ-
ent colors in the adjacent region boundary. Finally, the approach of Christinal
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et al. [49] was employed for the segmentation execution process. As their system
has been described by a hardware description language, a comparison with this
approach is not straightforward.

Tissue-like P System on Parallel Computing Platforms for Real Image Segmenta-
tion. In addition, a report is presented in [65] on a stage by stage implementation
of a hardware programming tool in FPGAs. This tool addresses the issue of seg-
mentation in digital images using a tissue-like model of P systems. Stage of work
deals with edge detection and focuses on particular image processing applica-
tions referred to as image segmentation [65]. Experiments were performed using
a 2D digital image (2D-ES problem). It is defined that the 2D digital image is
made up of different colors of pixels to obtain the boundaries of regions in the
2D digital image. The system first employs a fundamental irrelevant features
filter so that pickle noise would not affect the segmentation process. Then, the
system does a thresholding of the image in order to stop the occurrence of degra-
dation of colors of pixels in the boundary of adjacent regions with varying color
types. Carnero et al. [65] studied the advantages and limitations of working on
a hardware implementation of tissue-like P systems for segmentation in FPGAs.
The postulate work has been made via the language programming at the Very
High-level Design Language (VHDL). Similarly, because their system had been
described by a hardware description language, a comparison with this method
is not feasible.

Peña-Cantillana et al. [35] implemented a bio-inspired parallel algorithm in
a novel device architecture called CUDA. This algorithm addresses the issues
in thresholding with the help of a membrane algorithm. P systems are com-
putational device of MC. The model of P system that used in [35] is a tissue-
like P system. This tissue-like model addresses the problem by adopting a 4-
neighbourhood between pixels. This parallel application is a membrane algo-
rithm tool for image binarization and quantization. Experimental findings as
compared with time of traditional work in [66] indicated that the best option is
to employ the novel parallel device architecture CUDA in MC processing instead
of a single-processor device. By doing so, the full potential parallelism of MC
can be efficiently exploited.

Along similar lines, Dı́az-Pernil et al. [42] worked on digital images for the
aspect of segmentation. They proposed an algorithm in this aspect in relation
to gradient-based edge detection. This detection is achieved with the use of
bio-inspired parallel computing. In addition, Dı́az-Pernil et al. [42] followed the
aspect of MC to depict classical algorithm. CUDA was used to implement the
parallel algorithm. The execution was built on a MC device and P systems
were designed as a tissue-like model. The A Graphical P (AGP) Segmentor was
proposed. AGP segmentor is a new algorithm for edge detection. An experiment
was setup in parallel with a 3 × 3 and 5 × 5 Sobel operator. The experiment
results depict that the AGP segmentor enhances the classical version of the Sobel
operator. Dı́az-Pernil et al. [67] showed how to enhance conventional methods
for handling digital images and compare the results with time of traditional
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methods [68]. This is done by giving an example of a parallel implementation of
parallel naturally inspired computing algorithms.

6.2 Algorithms-Based Membrane Computing for Image
Segmentation

In recent decades, the focus in research in practical usage of computer sci-
ence entails optimization methods and effectiveness. This has been achieved by
appropriately merging meta-heuristic search methods and membrane systems
[2,69,70]. This new trend of optimization methods is referred to as MC algo-
rithms, first introduced by Nishida [71], or membrane algorithms. Interestingly,
Păun noted in several works [2,72,73] that MC algorithms are really power-
ful as they combine the advantages of both MC and evolutionary algorithms.
They (MC algorithms) are regarded as a hybrid optimization method class that
employs the principles and ideas of meta-heuristic search techniques. It also
applies the principles and ideas of hierarchical or network structures and the
rules of MC device (P systems) [70,74].

In order to address the traveling salesman (TSP) problem, the pioneer model
of MC algorithms was first introduced by Nishida [71]. The algorithm merged a
tabu search algorithm along with a Nested Membrane Structure (NMS) inspired
by the cell-like P system [75]. In this section, the related work pertaining to
image segmentation using membrane algorithm will be presented. The related
work that has been done only on sequential platforms will be presented in the
next sub-section.

Membrane Computing on Sequential Computing Platforms. Tissue-
like P System on Sequential Computing Platforms for Real Image Segmentation.
Peng et al. [76] proposed a novel work for a multi-level thresholding method
based on tissue-like P systems for image segmentation. The work is evaluated
using six standard test images to determine optimal segmentation thresholds.
In this work, they can effectively search the optimal thresholds for multi-level
thresholding based on fuzzy entropy. This is because of its parallel computing
capability and the particular mechanisms of tissue-like P systems. The method
has a fast convergence speed as compared with the Particle Swarm Optimiza-
tion (PSO)-based and Genetic Algorithm (GA)-based methods. This indicates
that membrane algorithms can achieve a good balance between exploration and
exploitation, thus preventing the search process being stuck in local minima.
Experiments also show that the method is more efficient and effective than other
optimization methods for multi-level thresholding.

Cell-like P System on Sequential Computing Platforms for Real Image Segmen-
tation. To enhance the computational efficiency of multi-level threshold, Peng
et al. [77] presented a novel three-level thresholding method for image segmen-
tation based on cell-like P systems. Essentially, the method can find optimal
values effectively using total fuzzy entropy because of the cell-like P system and
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its parallel processing capability. The proposed method is evaluated based on
applicability and efficiency on three standard test images. The proposed method
has been tested on the aforementioned images and compared with the GA and
PSO methods. The experimental results show that the method outperforms other
methods in terms of applicability and computational efficiency. Another advan-
tage of membrane algorithms is that they can maintain the diversity of the
population during the course of evolution and thus provide fast convergence
towards a global optimal. Peng et al. [77] did not illustrate the platform used in
their work.

In another work, Zhang and Peng [78] presented a novel infrared object seg-
mentation method using a MC model. The work is based on a uniquely designed
cell-like model P system for calculating optimal parameters quickly. The expe-
riential inspiration is to enhance the efficiency of thresholding methods based
on the fuzzy entropy that is achieved by applying parallel computing capabil-
ity as well as singularly designed structure and mechanisms of the systems.
The performance of the method is compared with existing entropy-based object
segmentation methods, GA and Ant Colony Optimization (ACO) methods on
different infrared images. Apart from the visual comparisons of segmentation
outputs, Zhang and Peng [78] also provided the accuracy of object segmenta-
tion. Meanwhile, absolute error ratio was utilized as the main comparison crite-
rion. Experimental outputs indicated that the proposed method (thresholding)
outperforms other existing methods in the aspect of efficiency for computation
and its applicability. Although an evaluation procedure based on segmentation
accuracy has been performed in their work, it is not comparable with our pro-
posed work as it uses a membrane algorithm that is implemented in MATLAB,
whereas, our work uses MC rules and P-Lingua programming language.

Along similar lines, most recently, Peng et al. [79] proposed a robust multi-
level thresholding and an efficient technique in MC. The computing framework
is a cell-like P system with a nested structure of three layers. However, from
the communication mechanisms and membrane structure of objects, they devel-
oped an enhanced velocity-position model that is similar to the velocity-position
model in the Particle Swarm Optimization (PSO) technique. Cell-like P sys-
tems efficiently utilizes the best multi-level magnitudes that must be exceeded
for an image to be administered by the evolution-communication mechanism of
objects. Experiments show that simulations on (9) standard images as compared
with several state-of-the-art methods reveal its ascendancy. These experiments
exhibited the influence of the proposed multi-level thresholding has enhanced
computation efficiency, robustness and improved quality.

Tables 1 and 2 summarize the previous works of the MC-based image segmen-
tation, for the two computation categories; rules and algorithms, respectively.
Some notes and comments on each previous work are presented in the tables.
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Table 1. Previous works of MC-based segmentation; MC rules category.

# Study Type of P
system

Type of
segmentation

Adjacent type Image type Platform Notes

1 [49] Tissue-like
P system

Edge-based
segmentation

4-adjacency in
2D image and
26-adjacency in
3D Image∗

Artificial Tissue
simulator

No evaluation procedure
has been considered

2 [50] Tissue-like
P system

Edge-based
segmentation

4-adjacency in
2D image and
26-adjacency in
3D image

Artificial Tissue
simulator

No evaluation procedure
has been considered

3 [36] Cell-like P
system

Threshold
segmentation

- Artificial Simulation
of cell-like
P system

No evaluation procedure
has been considered.

4 [52] Tissue-like
P system

Noise removal
Edge-based
and Threshold
segmentation

4-adjacency Real FPGA unit
in parallel

Design a new hardware
tools. No evaluation
procedure has been
considered

5 [51] Tissue-like
P system

Threshold seg-
mentation and
homology

- Artificial Simulation Multiple auxiliary cells.
No evaluation procedure
has been considered

6 [46] Tissue-like
P system

Edge-based
segmentation

4-adjacency Real C++ Pro-
gram
language

No evaluation procedure
has been considered

7 [53] Tissue-like
P system

Region-based
segmentation

4-adjacency in
2D image and
26-adjacency in
3D Image

Artificial Tissue
simulator

No evaluation procedure
has been considered

8 [65] Tissue-like
P system

Noise removal.
Edge-detection
Threshold seg.

- Real FPGA unit
in parallel

No evaluation procedure
has been considered

9 [35] Tissue-like
P system

Threshold seg-
mentation

4-adjacency Real C++ with
the plug-
ging Paral-
lel (CUDA)

Time-comparison with
traditional work (see
[66])

10 [57] Tissue-like
P system

Edge-based
segmenta-
tion and
morphology
segmentation

4-adjacency and
8-adjacency

Real MATLAB They compute the rate
of success the proce-
dures carried out with
the given samples was
75%

11 [37] Tissue-like
P system

Edge-based
segmentation

4-adjacency Real C++ pro-
gramming
language

No evaluation procedure
has been considered

12 [54] Tissue-like
P system

Threshold seg-
mentation

- Artificial Tissue sim-
ulator

No evaluation procedure
has been considered

13 [59] Tissue-like
P system

Region-grown
based segmen-
tation

- Real-gray MATLAB Compared with the tra-
ditional image segmen-
tation methods based on
region growing

14 [67] Tissue-like
P system

Edge-based
segmentation

- Real CUDA Time comparison with
traditional work (see
[68])

15 [60] Tissue-like
P system

Region-grown
based segmen-
tation

- Real - No evaluation procedure
has been considered

16 [54] Tissue-like
P system

Region-based
segmentation

6-adjacent Artificial P-Lingua No evaluation procedure
has been considered

17 [61] Tissue-like
P system

Cleaning noise.
Thresholding.
Edge-based
segmentation

- Real Python Using multi-membrane.
No evaluation procedure
has been considered

18 [62] Tissue-like
P system

Edge-based
segmentation

- Real - No evaluation procedure
has been considered

19 [8] Tissue-like
P system

Region-based
segmentation

4-adjacency Artificial Tissue sim-
ulator

No evaluation procedure
has been considered

20 [56] Tissue-like
P system

Region-based
and edge-based
segmentation

6-adjacent Artificial P-Lingua No evaluation procedure
has been considered

* For more information about the comparison between the 4 and 6-adjacency, see [56].
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Table 2. Previous works of MC-based segmentation; MC algorithm category.

# Study Type of P

system

Type of

segmentation

Adjacent

type

Image

type

Platform Notes

1 [77] Cell-like P

system

Threshold

segmentation

- Real - 1. Proposed three-level thresholding

2. Compared with PSO-based and

GA-based methods

2 [78] Cell-like P

system

Threshold

segmentation

- Real - 1. A special membrane structure with

three layers was designed

2. Compared with those of the exist-

ing entropy-based object segmenta-

tion methods as well GA-based and

ACO-based methods

3 [76] Tissue-like

P system

Threshold

segmentation

- Real - 1. Multi-level thresholding method

2. Compared with PSO-based and

GA-based methods

4 [79] Cell-like P

system

Threshold

segmentation

- Real - 1. Multi-level thresholding

2. Compared with PSO-based and

bacterial foraging (BF)-based multi-

level thresholding methods

7 Conclusion and Future Directions

In this paper, a comprehensive and an up to date survey pertaining to image
processing techniques using MC has been presented. The presented work has
been classified into two main categories, membrane rules and membrane algo-
rithms for the ease of presentation. Those categories have been further classified
into sequential simulation and parallel simulation. According to the deep inves-
tigation of the related works, the research gaps have been identified. Based on
the previously presented works, the main limitations with the current state-of-
the-art methods pertaining to image segmentation using MC are the manual
codification of the input image as long as the manual visualization of the out-
put image after segmentaion. It is worthwhile to mention that, the use of tissue
simulator affects the applicability of the proposed techniques as it is not flexible
enough to deal with large images. From a different angle, only few works consid-
ered the region-based segmentation, whereas the majority of the surveyed works
had focused on the edge-based segmentation. Furthermore, few related works
had considered the 6-adjacency and the 8-adjacency, whereas the majority of
the works had considered the 4-adjacency only. For the sake of further advance-
ment in this field, we outline a number of future directions which could help in
addressing the current state-of-the-art limitations as follows:

One of the major limitations of the majority of state-of-the-art methods is
that only a sequential architecture simulation was used, which in turn does not
exploit the massive parallelism inherited in P systems. To fully make use of the
MC parallelism, a parallel architecture such as CUDA is recommended to gain
higher performance speedups over the typical serial implantation.

There is clear evidence that MC has a potential to tackle real world problems
like medical image segmentation and cancer detection. Hence, the use of the large
standard medical dataset is recommended to help in advanced medical image
segmentation domain.
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Future works may find a way to automatic 2D hexagonal image segmentation.
i.e., no need for manual entering of the hexagonal image to the segmentation
system. This will definitely reduce the time and cost of segmentation.

Actually, segmentation of color images using P-Lingua requires large memory
due to the large number of rules needed, relatively, to test all the possibilities
of color relationships between the pixels. Consequently, this will increase the
computational time to achieve the segmentation. Hence, some sort of fuzzy logic
and artificial intelligence can be deployed to reduce the number of generated rules
and consequently reduce the memory requirements and time of the segmentation.
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73. Păun, G.: Tracing some open problems in membrane computing. Rom. J. Inf. Sci.
Technol. 10(4), 303–314 (2007)

74. Zhang, G., Liu, C., Gheorghe, M., Ipate, F.: Solving satisfiability problems with
membrane algorithms. In: Fourth International Conference on Bio-Inspired Com-
puting, BIC-TA 2009. IEEE (2009). doi:10.1109/BICTA.2009.5338159

75. Song, T., Pan, L.: Spiking neural P systems with request rules. Neurocomputing
193(12), 193–200 (2016)

76. Peng, H., Wang, J., Pereez-Jimenez, M.J., Shi, P.: A novel image thresholding
method based on membrane computing and fuzzy entropy. J. Intell. Fuzzy Syst.
24(2), 229–237 (2013). doi:10.3233/IFS-2012-0549

77. Peng, H., Shao, J., Li, B., Wang, J., Pereez-Jimenez, M.J., Jiang, Y., Yang, Y.:
Image thresholding with cell-like P systems. In: Proceedings of the Tenth Brain-
storming Week on Membrane Computing, vol. 2, p. 03 (2012)

78. Zhang, Z., Peng, H.: Object segmentation with membrane computing. J. Inf. Com-
put. Sci. 9(17), 5417–5424 (2012)

79. Peng, H., Wang, J., Pereez-Jimenez, M.J.: Optimal multi-level thresholding with
membrane computing. Digit. Sig. Process. 37, 53–64 (2015). doi:10.1016/j.dsp.
2014.10.006

http://dx.doi.org/10.1007/978-81-322-1602-5_9
http://dx.doi.org/10.1007/978-81-322-1602-5_9
http://dx.doi.org/10.1007/978-81-322-1771-8_5
http://dx.doi.org/10.1109/TNB.2016.2598879
http://dx.doi.org/10.1038/srep.27624
http://dx.doi.org/10.1007/3-540-29937-8
http://dx.doi.org/10.1016/j.mcm.2010.06.002
http://dx.doi.org/10.1016/j.mcm.2010.06.002
http://dx.doi.org/10.1016/j.biosystems.2006.02.001
http://dx.doi.org/10.1016/j.biosystems.2006.02.001
http://dx.doi.org/10.1109/BICTA.2009.5338159
http://dx.doi.org/10.3233/IFS-2012-0549
http://dx.doi.org/10.1016/j.dsp.2014.10.006
http://dx.doi.org/10.1016/j.dsp.2014.10.006


Integrated Membrane Computing Framework
for Modeling Intrusion Detection Systems

Rufai Kazeem Idowu1, Ravie Chandren Muniyandi2(B),
and Zulaiha Ali Othman3

1 Computer Science Department, College of Science and Information Technology,
Ijagun, Ogun-State, Nigeria
rufaiki@tasued.edu.ng

2 Centre for Software Technology and Management,
Faculty of Information Science and Technology,

Universiti Kebangsaan Malaysia (UKM), Bangi, Malaysia
ravie@ukm.edu.my

3 Centre for Artificial Intelligence Technology,
Faculty of Information Science and Technology,

Universiti Kebangsaan Malaysia (UKM), Bangi, Malaysia
zao@ukm.edu.my

Abstract. Several activities take place within a network environment
which include (but not restricted to) movement of traffics (packets)
among the nodes. An Intrusion Detection system (IDS) which is pri-
marily concerned with the monitoring of an information system with
the sole aim of reporting activities which are symptomatic of an attack,
needs constant review and upgrade to enhance its operations. In this
work, we argue that two of the variants of Membrane computing (MC);
spiking neural P (SNP) system and tissue-like P system could best be
used as tools to enhance the activities and security properties of any
computer network system. Therefore, this paper proposes an alternative
but dependable integrated modeling framework which applies membrane
computing paradigms to intrusion detection systems. This framework
combines the membrane systems model for rule-based intrusion detection
systems as well as attack detection model implemented on GPU for high
throughput and detection speedup for checkmating packet loss/drop.
MC is a newly introduced but yet to be fully explored technology in
the area of network/information system security. It is a versatile, non-
deterministic and maximally parallel computing model.

1 Introduction

Membrane Computing (MC), otherwise called P systems was introduced by
Gheorghe Păun over a decade ago Paun (2006), Paun and Rozenberg (2002).
Since then, application of MC has cut across several fields because of its great
parallelism which leads to reduction in computational time complexity. Basi-
cally, a MC is made up of three distinct features which mimic the structure and
functionality of the biological living cell. These are; membrane structure, objects
c© Springer Nature Singapore Pte Ltd. 2016
M. Gong et al. (Eds.): BIC-TA 2016, Part I, CCIS 681, pp. 336–346, 2016.
DOI: 10.1007/978-981-10-3611-8 27



Integrated MC Framework for Modeling Intrusion Detection Systems 337

found within the membranes and the operational rules which guide the activities
within the membranes. Although presently, there are so many variants of P sys-
tems, but the well-known P systems types are; Cell-like P systems, Neural-like P
systems and Tissue-like P systems. Whereas a cell-like P System has hierarchi-
cally arranged set of membranes which could be described by a tree, a tissue-like
has its membranes placed in the nodes of arbitrary graph. A neural-like P system
has neurons (cells) which are linked by a specific set of synapses Paun (2006).
However, as part of this research work, we focus on the use of Tissue-like P sys-
tem with the application of an embedded recognizer P system defined as having
a total Boolean function over a halting computation

∏
Perez et al. (2003).

On the other hand, Intrusion or Attack Detection System (IDS, ADS) is a
security measure usually deployed on a network or host based system to check-
mate the activities symptomatic of attack. IDS may also be said to be a system
which frequently oversees a networked environment for the sole purposes of flag-
ging and reporting events which are capable of (i) compromising the systems
integrity, (ii) denying its availability and (iii) rendering it inefficient in its per-
formance Venter and Eloff (2003), Uma and Padmavathi (2013), Folorunso et al.
(2010).

From literature, it has been observed that most of these detection systems
were implemented using the conventional CPUs which were characterized by
their inability to handle increasingly large data found within extremely high
speed networks Giorgos et al. (2011), Bul’ajoul et al. (2014), Rietz et al. (2014).
This main deficiency leads to the problem of packet dropping and eventual defec-
tive detection and false alarm rates.

However, with the myriad of detection methods available, while relatively
very few have explored the parallelization offered by GPU, not a single one
has delved into investigating how MCs inherent advantages coupled with that
of GPU could be deployed in this regards. Consequently, this research work
presents a novel approach in the use of MC for attack detection on GPU.

In the literature, many approaches abound as regards the provision of solu-
tions to various intrusion detection systems concerns. These challenges which
often result in poor quality (high false alarm and low detection rates) and inef-
ficiency (low processing speed and throughput) are primarily caused by curse of
dimensionality, boundary problem and huge real-time traffics. Constantly there-
fore, there is the need to improve these existing approaches with a view to
fortifying them. So, in this paper we are proposing an integrated framework of
Membrane computing (MC) approaches to further improve the existing Intrusion
Detection systems (IDS).

Therefore, this integrated framework for modeling intrusion detection sys-
tems using membrane computing is considered highly desirable in order to assist
researchers and especially other network security administrators who may wish
to consider MCs paradigms as alternative tool.

The following sections of the paper are arranged thus: Sect. 2 presents the
modeling framework of signature-based IDS with the application of trapezoidal
Fuzzy Reasoning Spiking Neural P (tFRSN P) System to Denial of Service
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Attack (DoS). While Sect. 3 gives a detailed overview of our attack detection
P systems model implemented on GPU, the fourth section evaluates the models.
Section five however presents the integrated framework for enhancing IDS using
MCs paradigms. Section 6 concludes the work.

2 Membrane Computing and Signature-Based IDS

A variant of MC called trapezoidal fuzzy reasoning spiking neural P (tFRSN
P) system proposed by Peng et al. (2013) was employed to model a denial-of-
service (DoS) attack. tFRSN P system is a decision fusion model between fuzzy
system and spiking neural P (SN P) system. With this combination, the system
is capable of overcoming the boundary problem of intrusion detection as well as
detecting attacks quickly. Also, because of the inherent parallelism advantage
in SN P system it could as well be well suited for real time detection. The
option of using trapezoidal fuzzy set in this model was to considerably reduce
the false positives by enhancing the computation scenario with large range of
fuzzy membership which is not possible with triangular fuzzy set and others
Terrence (2010).

2.1 tFRSN P System Model for Denial-of-Service Attack

In configuring tFRSN P system model for the detection of Denial-of-Service
(DoS) attack, it is important to identify significantly useful features (which Lee
& Salvatore 2000 called cheap but necessary conditions). However, from litera-
ture, there are no agreed features for detecting DoS attack. For example, while
Mukkamala and Andrew (2003) opined that eleven features {1, 5, 6, 23, 24,
25, 26, 32, 36, 38, 39} are those that are important for flagging a DoS attack,
Lee & Salvatore 2000 submitted that only three features; count, srv count and
service are essential to determine a smurf (DoS) attack. So, as explained in
chapter three, four features of duration, src byte, dst byte and count were used
for defining the fuzzy production rules which were subsequently applied for the
modeling.

2.2 Defining the Fuzzy Production Rules for DoS

For adapting tFRSN P system to model DoS attack, rules of the type below
were generated using the four identified features and the nine trapezoidal fuzzy
membership set. Given that ci = 1, these rules include:

(i) If duration = L, src bytes = E, dst bytes = Ms and count = E,
⇒ Then DoS is highly likely (Mt).

(ii) If duration = Ml, src bytes = Me, dst bytes = M and count = S,
⇒ Then DoS is not suspected (L).

(iii) If duration = M , src bytes = Me, dst bytes = M and count = Me,
⇒ Then DoS is probable (M).
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(iv) If duration = Vl, src bytes = Ve, dst bytes = S and count = E,
⇒ Then DoS is indisputably confirmed (At).

(v) If duration = Ml, src bytes = E, dst bytes = Ms and count = Me,
⇒ Then DoS is very unsuspected (Vl).

2.3 The Modeling of DoS Attack

As depicted in Fig. 1, the tFRSN P systems model for DoS attack is a construct:
∏

= (O, σ1, . . . , σ18, σ19, . . . , σ23, syn, in, out) (1)

Where

(1) O = {a}
(2) σ1, . . . , σ17 are proposition neurons having fuzzy truth values p1, . . . , p17

respectively.
(3) σ18, . . . , σ21 are “AND”–type rule neurons associated with production rules

R1, . . . , R5 respectively.
(4) syn = {(1,19), (2,20), (2,23), (3,21), (4,22), (5,19), (5,23), (6,20), (6,21),

(7,22), (8,19), (8,23), (9,20), (9,21), (10,22), (11,19), (11,22), (12,20), (13,21),
(13,23), (19,14), (20,15), (21,16), (22,17), (23,18)}.

(5) in = {σ1, σ2, σ3, σ4, σ5, σ6, σ7, σ8, σ9, σ10, σ11, σ12, σ13}
(6) out = {σ14, σ15, σ16, σ17, σ18}

Fig. 1. tFRSN P model for DoS attack
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3 Attack Detection P Systems Model on GPU

3.1 The
∏

AD P Model

This computational model was configured along a recognizer tissue P systems
because it is a decision making model (which distinguishes normal connection
records from anomalous types) and has only the accepting computational halting
modes of releasing anomalous traffics to the environment. In this work, network
connection information was modeled as multiset of objects and the parameters of
P system were defined in this respect. Objects were placed in different compart-
ments using two types of rules namely communication and classification rules.
While the execution of the communication rules were premised on symport rules
application Prez–Hurtado et al. (2014), the classification rules which were gener-
ated using the 41 features of the KDD cup dataset, were conditioned by guards
Ipate et al. (2012).

The Attack Detection P system (
∏

AD P) is formally defined as a system of
degree m ≥ 1 of the form:

ΠAD P = (O, Y1 · · · Ym, r, β, l) (2)

Where

• O is set of objects. An object represents a connection record in O, whereby
O| ∈ [0, 4898430]. So, ⇒ Oa ⊆ O where Oa denotes arbitrarily many copies
of anomalous connection record found in β.

• Y1, . . . , Ym are membranes (cells) representing the zones of a network.
• r is a finite set of rules which is made up of types; r1 and r2 and defined thus:

(i) r1 are classification rules with guard and are of the type:

Ri = ai23 ai6 ai27 → si1; (ai23 > 76.5 and ai6 ≥ 40.5
and ai27 > 0.45) ; 1 ≤ i ≤ MaxPac

(3)

Where (ai23 > 76.5 and ai6 ≥ 40.5 and ai27 > 0.45) represents the condi-
tional guard derived from the classification tree and si = {0, 1} denotes
the status of the connection record which may either be intrusive (0) or
non-intrusive (1) determined by the features 23, 6 and 27.

(ii) r2 are symport communication rules of the type:

Oi → (anomaly , β); (4)

This rule is applied to release anomaly traffics to the environment
through the individual membranes. It implies that if anomalous con-
nection record is detected, the rule would be used to transport affected
object O within Y1 . . . Ym to the environment, β.

Rules were used in non-deterministic and maximally parallel manner as tra-
dition with computation in membrane systems. In each step, all objects and
all cells which can evolve must evolve.
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• β = O − {Anomaly}; is the environment/zone. This external membrane
environment is where the results of computation are obtained and so, it is
called the output region. It does not hold any rule. Since the working packets
are either normal or anomaly, hence the computation of

∏
AD P system halts

in the accepting mode if only anomalous packets Oa (and strictly excluding
normal connection records (On)) are sent to the environment, otherwise, it
is a rejecting computation. This stage signifies the end of computation (i.e.
final configuration). Please note that (On, Oa ⊆ O).

• l ⊆ {1, 2, · · · , m}x {β} which is a link (also known as channel or synapse)
between the membranes and the environment, β.

3.2 Membrane Structure, Membrane/Object Representation in the∏
AD P Model

The structure of the membranes and how the objects are represented in the∏
AD P model are depicted in Fig. 2. Several one-membrane cells (ovals) are con-

sidered as evolving in a common external environment (β) where results are
obtained. No direct communication exists in between the cells, but all the cells
communicate with the environment since channels for transportation of such
were specified in advance as l ⊆ {1, 2, · · · ,m}x {β}. These ovals were labelled
with 1, 2, . . . ,m and objects with distinctive embedded 41 elements (features)
and applicable set of rules were equally specified. However, the arrows indi-
cate that the decided instances of ‘anomaly’ obtained by the application of
the classification rules, leave the cells in maximal mode through the channels
( 1, β ), (2, β ), . . . , (m, β ) to the external environment using symport rules.
The dimension of the cells in the

∏
AD P model is determined based on the

number of thread blocks available on the GPU.

Fig. 2. Membrane/object representation in
∏

AD P model

(a) The rules with guards for classification:
Referred to as classification rules conditioned with guards are applied at
the classification stage and they include:
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R1 = γi23 γi6 γi27 γi5 → si1 ; (γi23 > 76.5 and γi6 ≥ 40.5 and

γi27 > 0.45 and γi5 > 0.495); 1 ≤ i ≤ MaxPac
(5)

R2 = γi34 γi37 γi13 γi40 → si0 ; (γi34 ≥ 0.015 and γi37 < 0.495 and

γi13 < 0.5 and γi40 ≥ 0.89) ; 1 ≤ i ≤ MaxPac
(6)

Where:

(γi23 > 76.5 and γi6 ≥ 40.5 and γi27 > 0.45 and γi5 > 0.495 and

γi34 ≥ 0.015 and γi37 < 0.495 and γi13 < 0.5 and γi40 ≥ 0.89)

represent some of the conditional guards derived from a classification tree
and si = {1, 0} denotes the status of the connection record Oi, which may
either be intrusive (0) or non-intrusive (1) determined by the features 23,
6, 27, 5, 34, 37, 13 and 40.

(b) The symport (transportation) rule:
Basically, symport rules move objects across membranes together in one
direction, and in this case, they move the objects toward the external envi-
ronment. So, the rules are formulated in such a way that intrusive connec-
tions enjoy permeability through the membranes.

Oi → (anomaly, β); (7)

Where:
i denotes the membranes which release only anomalous connection

record into the environment (β) after the invocation and execution of the
classification rules.
Succinctly therefore, the rules were stated using the format:

Rulesymp(i) : [Oanomaly]i → []iOanomaly (8)

4 Evaluation of the tFRSNP System and the
∏

AD P

Model

To establish the effectiveness of the two models, the KDD Cup dataset was used.
While almost all the 5 million connection records in the dataset were used for
evaluating the throughput of the

∏
AD P model, 10 % of the dataset was used

for evaluating the tFRSN P System in detecting DoS attacks.

4.1 Improving Throughput with
∏

AD P Model

Since one of the key performance metrics for a network intrusion detection system
is a sustainable throughput Subhan et al. (2010). The

∏
AD P model achieved

very good results in that regard.
As presented in Table 1, by initially using 314572 as tested packets, columns

1 shows all the randomly applied membranes. Similarly, columns 4 and 5 show
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Table 1. Throughput of CPU and GPU using
∏

AD P model

Membrane
number
used

Time(s)
GPU

Time(s)
CPU

Throughput
(GPU)
Pac/Sec

Throughput
(CPU)
Pac/Sec

128 9.3 34.7 33696.3 9039.7

256 7.5 34.7 41853.9 9039.7

512 6.6 34.7 47580.1 9039.7

1024 6.1 34.7 50944.9 9039.7

2048 5.9 34.7 53102.6 9039.7

the throughputs for both the GPU and CPU respectively which were obtained
by dividing the packet size with the processing time.

It could be observed the highest throughput was recorded when membranes
used were 2048. This is closely related to the increase in multiprocessor occu-
pancy of the GPU which ultimately improves the systems efficiency by check-
mating packet drop/loss.

4.2 Evaluating the tFRSN P System Model

The efficiency of trapezoidal fuzzy reasoning spiking neural P system model for
detecting DoS attack was also evaluated using the KDD Cup dataset. The results
obtained are here-under presented:

For the DoS attacks, the results obtained after implementation (as shown in
the confusion matrix below), establish that the tFRSN P system performed well
in the detection process. The 10% of the almost 5 million connection records
in KDD cup dataset gives 494021 in which 97278 constitutes the non-intrusive
event and 396743 are the attacks with DoS having the highest percentage.

Table 2. Confusion matrix

Predicted normal Predicted attack

Actual normal TP (19.35%) 77400 FP (0.25%) 1000

Actual attack FN (0.02%) 80 TN (80.38%) 321520

As shown in Table 2 above, while 0.02% and 0.25% were flagged as false
negatives and positives respectively, 19.35% and 80.38% were returned as true
positives and negatives respectively. Our experiments which were done by apply-
ing decision fusion of SN P systems combined with fuzzy logic, captured many
real attacks in the dataset used (as TN returns the highest value). Furthermore,
the percentage of most dangerous, i.e. FN, which managed to escape undetected
by this system was just 0.02%.



344 R.K. Idowu et al.

5 The Integrated Framework for Enhancing IDS Using
MC’s Paradigms

From the literature, several issues may be responsible for the poor performance
of an intrusion detection system depending on whether the detection technique is
anomaly-based or signature-based. Researches have shown that majority of IDSs
suffer from three main problems which are: (i) curse of dimensionality, (ii) blur-
riness of mid-point between intrusive and non-intrusive connection records and
(iii) packet drop. These three identified problems usually lead to the challenges
of low detection rate, high false positives/negatives, low classification accuracy
rate, and above all, increase in computational cost.

The problem of curse of dimensionality has been recognized to be the bane of
unsupervised learning in IDS because a linear increase in the number of dimen-
sions leads to exponential increase in the number of training dataset (examples)
Dash and Liu (2008), Lin et al. (2012). Therefore, in order to reduce the adverse
impact of this problem on IDS, the thesis harnessed the communication benefit
of membrane system (combined with Bee algorithm) in selecting relevant and
effective features. So, when the features selected through this approach were
evaluated in an anomaly-based IDS, it was discovered that high efficiency with
remarkably low false alarm rate was achieved.

Another issue the thesis focused at is the boundary problem in IDS. Blurri-
ness of the mid-point between normal and anomaly behaviours has been a source
of major concern to network security experts over the years. This problem has
been said to be responsible for high false positives/negatives in IDSs El-Hajj
et al. (2008), Alheeti and Hamed (2012). This concern was handled through a
means called decision fusion approach which enabled the synthesis of the method
of fuzzy logic in the detection process with that of SN P system. In using this
technique, a fuzzy space of nine sets was deployed. So, trapezoidal fuzzy reason-
ing spiking neural P (tFRSN P) system was applied in a signature-based IDS
for the detection of denial-of-service and brute force attacks.

More importantly however, as network traffics grow heavy, IDSs are con-
stantly faced with the challenge of loss of attack information because the peak
processing throughput may be incapable to support it. This implies that with
high volume of traffics, it becomes greatly expedient to design a detection system
which would be able to cope with the capturing and processing of these large
traffic volumes so as to prevent the problem of packet dropping Papadogiannakis
et al. (2010), Schaelicke and Freeland (2005), Subhan et al. (2010). Also, Fig. 3
further depicts how membrane system was utilized through the introduction
of the

∏
AD P model and implemented on a GPU. With this approach, the

parallelism architecture of P system and GPU were explored to achieve high
throughput and speedup, and were ultimately utilized to remarkably decrease
the computational cost.

Please note: The MS-B Algorithm which is one of the identified methods of
using membrane system for intrusion detection is not discussed here because it
is not within the scope of the paper.
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Fig. 3. Integrated framework architecture.

6 Conclusion and Future Works

This framework is a conglomerate of three distinct projects. Since each project
within this framework implements a unique strategy and solves a particular
problem then, a (modular) disjointed/peculiar method of evaluation is proposed.
Consequent upon this, a testing framework which is project dependent is recom-
mended which would be able to show a clear benefit of each project and how it
could be achieved. However, two of the models were evaluated using KDD Cup
dataset.

So, the future works would consider evaluating the other model of the frame-
work using case studies and simulating it with the real-world problems. Also, it
is envisioned for future research to investigate the application of the framework
to other attacks in a rule-based environment.
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Abstract. Convolutional neural networks (CNNs), as one of the most
classic representatives supervised deep learning, has been widely used
for pedestrian tracking, voice recognition and image recognition. This
paper innovatively proposes to apply CNNs to the detection of pul-
monary nodules. For big data samples of thin slice scan CT images, we
proposed model of pulmonary nodules detection based on user-defined
convolutional neural networks (PndCnn-7). Our proposed method takes
the CNNs advantages of the weights shared and automatic learning fea-
tures. Firstly, the original CT images obtained lung parenchyma segmen-
tation images through region growing and the images are stored into the
sample library. Because CNNs can automatically learn image features,
next, select the samples directly to train and test user-defined PndCnn-
7 model, making it possible to detect pulmonary nodules accurately.
Experimental results on sample library of this article indicates, the cor-
rect rate of identifying PndCnn-7 model can reach 99.66 ± 0.3%, which
is significantly better than traditional detection algorithm of pulmonary
nodules.

Keywords: Convolutional neural networks · Detection · Pulmonary
nodules

1 Introduction

Lung cancer, in the early stages, appears predominantly as pulmonary nodules.
The pulmonary nodules, which are smaller than 3 cm diameter circular or exist-
ing oval opaque shadow, with moderate definite edge, may result in lung cancer
[1]. With the rocketing development of medical imaging, computer tomography
(CT), magnetic resonance (MR), B ultrasound, positron-emission tomography
(PET) and other imaging tools play important roles for early lung cancer diag-
nosis. By contrast between many other chest imaging methods from chest X-rays
to CT, we found that CT is a better imaging methods of detecting pulmonary
nodules. In large hospitals, there are hundreds of patients everyday who need to
diagnose diseases with CT scan. Because pulmonary nodules have complicated
c© Springer Nature Singapore Pte Ltd. 2016
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shapes, and they are easy to adhere with other organizations, pulmonary nodules
in visual always will be confused with protruding veins in CT. Distinguishing
pulmonary nodules and artery need a doctors artificial analysis in a large num-
ber of multi-slice CT and volume. This long-term process will lead to eye fatigue
or distractions, and there are other interferences, therefore, even experienced
doctors may be difficult to make accurate judgments, inevitably results in cases
of misdiagnosis and missed diagnosis.

With the continuous development of CT technology, especially the applica-
tion of spiral technology, the detection accuracy is improved, scanned image of
1 mm thickness reached 400 to 500 layers, and 2 mm thickness of CT scan images
reached 100 to 200 layers. Although thin slice scan CT can improve the detection
rate of the nodule [2], and diminish missing small lesions, but, the large amount
of heavy reading piece may cause radiologist subjective misdiagnosed, instead
increasing the rate of misdiagnosis and missed diagnosis. Although most detected
pulmonary nodules are benign, improving the detection rate of pulmonary nod-
ules for improving the survival rate of early stage lung cancer patients lives
is significant. Moreover, the false positive detection of nodules may result in
increased costs, and bring serious anxiety for patients.

Artificial intelligence appears to solve the trouble to doctors caused by the
thin slice scan CT, and reduce the workloads of doctors.

The remainder of this paper is organized as follows: Sect. 2 introduces previ-
ous work related to detection and diagnosis pulmonary nodules. Section 3 pro-
vides a detailed description of our method. The experimental results are pre-
sented with a detailed discussion in Sect. 4. And the conclusion is given in Sect. 5.

2 Related Works

With the rise of artificial intelligence in the computer field, the neural networks
was once a hot point in field of machine learning. In 1980s, American scholar,
Hinton et al. proposed completely a back-propagation algorithm (BP algorithm)
[3] for artificial neural networks, injecting new blood to study machine learning.
Carreira [4], who used two artificial neural networks to detect pulmonary nod-
ules, with fewer features to determine pulmonary nodules, but detected effect
is not ideal. Lin [5] defined the membership function with maximum gradient
descent algorithm, and he proposed fuzzy system based on artificial neural net-
works in order to detect pulmonary nodules. There are some other people using
artificial neural networks to analyze data pulmonary nodules on CT images,
achieving matching good results, but it takes too long time. And BP algorithm
while increasing the number of layers of neural networks is very easy to fall
into local optimum or over-fitting. This phenomenon finally was broken in 2006.
Hinton, Professor at the University of Toronto, Canada, the leader in the field
of machine learning, with the help of his students, Salakhutdinov, published
an article which presents the concept of the deep network and the deep learn-
ing in leading academic journal “Science”, resulting in a research boom of deep
learning.
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With the propose of deep learning, convolutional neural networks (CNNs) [6],
as one of the most classic representatives supervised deep learning, once again,
become one of the hotspots of many subject areas. Le Net-5 model, proposed
by Lecun et al. 1995, is a successful application of the earliest CNNs. With
the reference of the theory of deep model, After CNNs was first proposed, it
initially was applied in recognition of handwritten character. In recent years,
it was gradually applied to various fields, such as pedestrian tracking, image
recognition, voice recognition, natural language processing, etc. Though CNNs
has broadly used, it is still not applied to pulmonary nodules detection.

This paper innovatively proposes to apply CNNs to the detection of pul-
monary nodules. First of all, weight shared network structure, which makes
CNNs more similar to biological neural networks, reduces the complexity of
the network model and the number of weights. These advantages, which per-
form more obvious when the network operating multi-dimensional images, make
images be used directly as input network, avoid the complex feature extrac-
tion and data reconstruction in traditional recognition algorithms. Secondly,
in the field of image recognition, because CT images can be inputted directly
as CNNs without the complex pre-operation, CT images are more suitable for
detection of pulmonary nodules. In addition, there exists many CT image data,
batch processing for dealing with big data uniquely can adapt to technological
developments.

3 Method

3.1 Proposed Method of Detection

CNNs synthesize the advantages of previous detection algorithms, reducing the
misdiagnosis rate effectively and improving learning efficiency. In addition, while
adding a new learning sample, adjusting the weights of neuron only can signifi-
cantly improve the diagnostic rate with the original study the results unchanged.
We define this model as PndCnn-7 (Pulmonary nodules detection - Convolution
neural network-7). The flowchart of the algorithm is shown in Fig. 1.

The process of applying the PndCnn-7 to detect pulmonary nodules follows:
Firstly, the original CT images obtained lung parenchyma segmentation images
through region growing and the images are stored into the sample library, we
can apply the training samples to train forward propagation and error feed-
back propagation of PndCnn-7 model. Then adjust the parameters of PndCnn-7
model, when the error reaches the desired value, using testing samples to test
PndCnn-7 model, and output the final classification results of the pulmonary
nodules.

3.2 Pretreatment in CT

We can learn from the basic process of detection and identification of pulmonary
nodules that the area of the lung parenchyma region just spans only about 15%
of the total area of the lung CT images. Pulmonary nodules area is much smaller.
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Fig. 1. The flowchart of the algorithm.

To accelerate the detection of pulmonary nodules and to prevent the impacts
of extra pulmonary organs on testing, CT images requires lung segmentation
before the detection of pulmonary nodule.

Firstly, segmenting lung parenchyma by the region growing. Region growing
(RG), a classical image segmentation method, is to collect similar properties
pixels into one region. The algorithm is shown in Algorithm1.

Algorithm 1. Region Growing
1: Repeat
2: Select the seed region U and seed point x, computing region pixel grayscale average

?U and standard deviation σ, defined deviation factor f.
3: for Look seed point eight points in the neighborhood t, do
4: Computing the absolute value m of pixel gray scale value difference between

point t and seed point x.
5: if m ∈ [U − fσ, ?U + fσ] then
6: Merge neighborhood point t to the region U
7: else
8: Abandon neighborhood point t from the region U
9: end if

10: The new merger t as the seed point x.
11: end for
12: Until no new pixel point added the divided region.

If directly output the lung parenchyma segmentation of CT images (512 ×
512) to the input layer (64 × 64) of PndCnn-7 model, it will lose potential
significant characteristics in CT images, leading to extra training time and low
accuracy of the detection. So segment the images to the minimum circumscribed
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rectangle of lung parenchyma, ensuring pulmonary nodules features relatively
more pronounced.

Fig. 2. Segmentation of region growing (a) The original CT images (b) segmentation
images by region growing (c) Cropped images.

As shown in Fig. 2, (a) selected from the original CT image with 10 pic-
tures interval, (b) lung parenchyma segmentation images by region growing (c)
cropped images.

3.3 Build a Deep Belief Network

LeNet-5 – a classic CNNs – is used to identify number, which achieve a good
detection results in handwriting digital databases Mnist sample set. The net-
work consists of five layers, an input layer, an intermediate layer, which includes
convolution layers and down-sampling layers, and an output layer. Each layer
comprises training parameters, the size of convolution kernel is 5 × 5. Early
experiments, directly put LeNet-5 to test pulmonary nodules sample set, the
network can not find convergence, can not complete the detection of pulmonary
nodules. After several tests analysis, the main reasons are as follows:

(1) In classic network model, the size of convolution kernel (5 × 5) can effectively
extract the local features for the image of the sample set Mnist, but for CT
sample set (64 × 64), convolution kernel is too small that the convolution
results can not contain valid information of express local features. To solve
this problem, by many experiments, we will define convolution kernel as 13
× 13 in PndCnn-7 model.

(2) Due to the nature of the last layer is a classifier, the size of the Mnist sample
set image is 28 × 28, and the size of the pulmonary nodules sample set image
is 64 × 64, the increasing image size leads to the output characteristic dimen-
sion of the hidden layer is too high, categorizer can not make the correct
classification based on the high-dimensional features which its descriptive
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power is limited. In order to avoid the loss of features and improve the clas-
sification accuracy, we will define convolution kernel as 13 × 13 in PndCnn-7
model.

(3) The traditional neural networks commonly uses nonlinear function, which
enables network model to train slowly and easily falls into overfitting. In this
paper we use the ReLU for the activation function. It can greatly shorten
the learning curve while improving the accuracy of learning, and sparse
extraction feature better as well as faster.

Network detection accuracy have a great relationship with constitute the
number of neuronal, with the increase of neuron, the performance of the net-
work will also improve. Due to the convolution kernel has a large amount of
computation, if a large-scale network is simply constructed, it may increase the
lung cancer detection rate, but sacrifices a lot of inspection time. After several
experiments comparing, this paper proposes a seven-layer model of pulmonary
nodules detection based on convolution neural networks (PndCnn-7). The hid-
den layer includes two convolution layers and two down-sampling layers, and
each layer contains training parameters, the size of convolution kernel is 13 ×
13, the basic structure is shown in Fig. 3.

Fig. 3. The structure of PndCnn-7.

PndCnn-7 model is hierarchical model of automatic learning in a super-
vised manner. Input is the 64 × 64 image and output constituted by the three
labels that represent normal nodules, benign nodules and malignant nodules.
The PndCnn-7 model consists of two parts, the first part is a multi-level feature
extraction, and the second part is a classifier.

The PndCnn-7 model can fully study the features, because its first party
features are extracted from the low level to the high level [7], operated by con-
volution and down-sampling alternately. This process has a number of different
with the traditional CNNs. First, through experience and comparison we use
the convolution kernel which is 13 × 13. The purpose of this definition is to be
able to extract the potential significant characteristics in CT image, as well as
the effective local characteristics. As the deep increases, the extracted feature is
more abstract and has a better expression ability. Secondly, the deep has great
influence on the performance of the convolution neural networks, insufficient
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depth will weaken capability of the CNNs extraction feature. But too much net-
work layer can lead to complicated network structure and the overfitting easily
appears because of the increasing training time. Based on existing samples, we
trained and finally adopted PndCnn-7 frame shown in Fig. 2.

3.4 The Training Process of PndDBN-5

Constructing PndCnn-7 model includes training that includes forward propaga-
tion and back propagation and testing process. First, the sample is taken 10000
from the sample library as training samples, leaving 8000 as the test samples.
Samples by bilinear difference algorithm to scale the image to 64 × 64, constitute
64 × 64 one-dimensional array as input of PndCnn-7. At the same time define
the parameters: learning rate (lr) = 0.75, batchsize = 100, the number of training
epoch = 50, convolution kernel = 13 × 13, down-sampling kernel = 2 × 2.

Forward Propagation. When calculation in the kth layer where k = 1,
2,3,4,5,6, suppose the input feature maps is xk = {xk

m|m = 1, ...,M}, output
mapping feature have yk = {yk

n|n = 1, ..., N} and zk = {zkn|n = 1, ..., N}, where
M and N respectively represent the maximum number of dimensions xk and yk

or zk. In convolution layer, each feature map yk
n as

yk
n = F (

M∑

m=1

Convn(xk
m, fCk

m, 1) + bkn

Where, Convn as convolution operation between feature maps xk and con-
volution kernels fCk

m, bkn as a bias and 1 represents the steps of 1. Nonlinear
Rectified Linear Units (ReLU) function F (x) = max(0, x) as activation func-
tion. After convolution layer, each downsampling layer have adopted a fixed size
kernels fSk

nm downsampling yk [8], getting feature mapping zkn

zkn = downsampling(yk
n) = mapping(yk

n, fSk
nm, 2)

Where, downsampling on behalf of down-sampling operation, 2 for step 2.
After down-sampling, through activating the function Sigmoid (x) = 1

1+e−x ,
getting output net.o.

net.o = Sigm(zkn · w + bkn)

In the hidden layer, we choose ReLU activation function instead of the tra-
ditional nonlinear activation function.

ReLU

{
f(x) = ln1+ex

f ′(x) = 1
1+e−x

Firstly, ReLU function can better learn from the dimension of valid data to
the relatively sparse features, plays automation dissociation effect. Secondly, in
the deep network, because the illusion that the nonlinear activation function
more advanced than of a linear activation function, we rely too much non-linear
activation function. Based on the above, in PndCnn-7 model, use a simple and
fast linear activation function may be more appropriate.
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Back Propagation. Due to PndCnn-7 model using classical error back-
propagation algorithm [4]. According to BP algorithm, as follows:

If it is the last layer, the input x should has a desired output Y, then the
error and residuals are respectively define as:

net.e = net.o − Y, od = ε ∗ (net.o ∗ (1 − net.o))

The od pass back through a reverse gradient way to the level, lr as learning
rate, updated output layer weights w and bias b as:

w = w − lr ∗ od, bk = bk − lr ∗ odk

If it is the downsampling layer, od define as:

odk = up(odk+1, wk)

where up as up-sampling function. Because this layer has no right weight w and
bias b, it does not need to be updated.

If it is a convolution layer, od define as:

odk = odk+1 ∗ MaxGrad(Y ))

where MaxGrad as derivative of the ReLU activation function. According to the
formula, update the weights w and bias b.

A batchsize samples do once error back propagation. CNNs trained a large
data sample, the error value tends to be stable and weights and bias are no
longer updated, this model finally attained stabilize.

4 Experimental Result

4.1 Data Set

The data used in this paper are all selected from The Lung Image Database
Consortium and Image Database Resource Initiative (LIDC-IDRI) [7] which is
the world’s largest database of pulmonary nodules. We selected 300 cases of
LIDC-IDRI, including lung CT images 18000 pieces, of which 6000 include nod-
ules, and 2183 with benign pulmonary nodules, 3217 with malignant pulmonary
nodules.

4.2 Test Results

In this paper, assessing performance that detection of pulmonary nodules by
PndCnn-7 model through each category recognition accuracy and overall accu-
racy. First, setting the basic parameter that indicates the performance, the
benign pulmonary nodules as negative class, malignant pulmonary nodules as
positive class. As shown in Table 1, TP, TN, FP, FN respectively are true posi-
tive, true negative, false positive and false negative [10].

Detection of pulmonary nodules algorithm mainly have four evaluation indi-
cator: accuracy, sensitivity, specificity and false positive rate. According to the
above performance parameters, the evaluation index can be defined as:
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Table 1. The mixing matrix of predicated results and detection results

Mixing matrix (P, positive; N, negative) Predicated results

P N

Detection results P True Positive (TP) False Positive (FP)

N False Negative (FN) True Negative (TN)

1. Accuracy: In detection results, the percent of correctly detected samples in
all detected samples, reflects the quality of detection.

Accuracy =
TP + TN

TP + TN + FP + FN

2. Sensitivity: In detection results, the percent of correctly detected malignant
nodules in all detected malignant nodule samples, reflects whether there are
undetected.

Sensitivity =
TP

TP + FN

3. Specificity: In detection results, the proportion of correctly detected benign
nodules in all detected benign nodular samples, reflects whether there are
wrong detected.

Specificity =
TN

TN + FP

4. FPF(False Positive Fraction):

FPF =
FP

FP + TN
= 1 − Specificity

We select 8 sets of data as the test samples to test the PndCnn-7 model, each
group randomly selected 1,000 CT images of test samples. Test results shown in
Table 3.

According to Table 2, average accuracy of PocCnn-7 model can reach 0.997,
indicating that this model can effectively detect and classify pulmonary nodules.

4.3 Experimental Discussion

In this paper, training process of the PndCnn-7 model uses four parame-
ters:learning rate (lr), convolution kernel, batchsize and epoch, the values of
these four parameters will directly affect the accuracy of the detection of pul-
monary nodules and training time of he PndCnn-7 model. Due to the limited
number of training sample set, selecting same sample (train x = 10000), finding
the best value by adjusting the parameters, the following is a discussion of the
different parameters. epochs = train x

batchsize × epoch, where, pochs represents the
total training batchsize.
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Table 2. The detection results of pulmonary nodules

Number TP FP TN FN Accuracy Sensitivity Specificity FPF

1 998 2 996 4 0.997 0.996 0.998 0.002

2 995 5 998 2 0.9965 0.997 0.995 0.005

3 999 1 997 3 0.998 0.997 0.999 0.001

4 997 3 997 3 0.997 0.997 0.997 0.003

5 998 2 999 1 0.9985 0.999 0.998 0.002

6 999 1 993 7 0.996 0.993 0.998 0.002

7 997 3 996 4 0.9965 0.996 0.997 0.003

8 994 6 999 1 0.9965 0.999 0.994 0.006

Average 997 3 997 3 0.997 0.997 0.997 0.003

1. Analysis of Experimental Parameters.

(1) Learning rate lr. Learning rate lr is an important parameter affecting the
performance and the convergence of the network. The lr value determines
the size of the impact of the error on the weights. If lr too small, will makes
slow convergence and easy falling into local optimum. If lr too large, it may
lead to shock or divergence, affecting convergence stability. In conditions of
train x= 10000, batchsize = 100, convolution kernel = 13 × 13. When the
error rate to 0.02, the test is stopped. A contrast experimental results are
shown in Fig. 4.

Through experiment results found when lr between in [0.4,1.05], minimum
batch processing, shorter training time, the network will not occur shock.
Therefore, we chose = (0.4 + 1.05)/2 = 0.75 in this paper.

(2) Convolution kernel. Due to the size of the sample for 64 × 64, the tradi-
tional 5 × 5 convolution kernel is too small, it can not extract effective
local characteristics, but if the convolution kernel is too large, the com-
plexity of extracted feature may far exceed the convolution kernel ability of
express. Thus, the size of convolution kernel has a crucial impact on entire
network performance. In conditions of train x = 10000, batchsize = 100,
epoch = 50 and lr = 0.75. A contrast experimental results are shown in
Fig. 5.

Through experiment results found 13 × 13 convolution kernel makes the
network quickly and smooth convergence, the shock does not occur. There-
fore, we chose 13 × 13 as the size of convolution kernel.

(3) Batch number: batchsize. In PndCnn-7 model, back-propagation ways select
batch processing mode, each pick batchsize size samples to train, then adjust
the value of a weight, rather than read into a sample to calculate and adjust
weights again. One hand, batchsize set too large, it may weight adjustment
is not complete and resulting in the error is too large. On the other hand,
batchsize set too small, the number of error propagation is more, long train-
ing time, waste of resources. In conditions of train x = 10000 lr = 0.75,
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epoch = 50 and convolution kernel = 13 × 13, a contrast experimental
results are shown in Fig. 6.

Fig. 4. Experimental comparison figure of different learning rate.

Fig. 5. Experimental comparison figure of different convolution kernel.

In image A = 1
5 × epochs,B = 2

5 × epochs, and so on. After the experimental
comparison, in the sample of the same, when batchsize = 100, the traintime is
almost same, and makes the network more rapid and smooth convergence.

4.4 Analysis of Technical

The basic idea of the traditional method of detection pulmonary nodules is to
extract characteristic values of suspected pulmonary nodules, and selects the
relative classifier, by analysis characteristic values to determine whether the
target image pulmonary nodules. This paper proposed PndCnn-7 model has a
different place that input is CT images but the output is the classfication, no
required to calculate characteristic values of the target area. Table 3 shows the
difference between compares traditional methods, such as CAD systems, and
PndCnn-7 model on the recognition process and performance.
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Fig. 6. Experimental comparison figure of different batchsize.

Table 3. Traditional method compared with PndCnn-7

Traditional method of detec-
tion pulmonary nodules

PndCnn-7 model

Pulmonary
nodules
segmentation

Segmentation method
based on a threshold,
regional law, edge and
a specific theory, etc.

Do not need to
segment

Characteristic
analysis

Geometry, edge feature,
gray value
characteristics, etc.

Pixel gray value
of the local sub-
region

Classifier Linear classifiers, SVM,
random forests, neural
networks, etc.

Convolution
neural networks

5 Conclusions

The basic idea of the traditional method of detection pulmonary nodules is to
extract characteristic values of suspected pulmonary nodules, and selects the
relative classifier, by analysis characteristic values to determine whether the
target image pulmonary nodules. This paper proposed PndCnn-7 model has a
different place that input is CT images but the output is the classfication, no
required to calculate characteristic values of the target area. Table 3 shows the
difference between compares traditional methods, such as CAD systems, and
PndCnn-7 model on the recognition process and performance.
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Abstract. High resolution remote sensing images can describe the geo-
metric features, spatial features and texture features of objects more
accurately, which are widely used in various fields. How to get more
useful information from the remote sensing image, and then the recog-
nition and classification of the image from the information has become
one of the hot spots in the field of high resolution remote sensing image
research. Deep learning is a learning algorithm based on the depth net-
work structure, which can better fit the intrinsic structure of the sample,
compared with the traditional shallow classifier. Depth of learning in a
deep belief network model is based on single-layer Boltzmann machine
learning algorithm, each layer is made up of the generation and cognition,
and make the bidirectional weight updatin g come true, the net output
of each layer can be reduced to the input signal, so that the model can
be infinitely close to the global optimum in the pre training stage. The
author propose an improved dropout strategy based on the study of deep
belief network model, this strategy only chooses partial local area data
to zero out the weight at each time. It not only maintains the local infor-
mation of the image itself, but also enhances the generalization ability
of the model. The experimental results show that the improved dropout
strategy improves about 2.5% of the classification accuracy, and it has
better classification performance.

Keywords: High resolution remote sensing image · Deep belief
network · Dropout strategy · Classification

1 Introduction

Classification and recognition of remote sensing image is the basis of information
extraction, which is helpful for the further understanding and analysis of remote
sensing data. Through the identification of buildings, roads, vegetation and other

c© Springer Nature Singapore Pte Ltd. 2016
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targets, people can do something like urban planning, military reconnaissance,
environmental monitoring, resource exploration, the detection of various natural
disasters. At present, there are some common and effective methods, such as sup-
port vector machine classifier, random forest classifier, extreme learning machine
and so on. In 2015, Xiang proposed the best band selection method for the high
resolution remote sensing image [1], fusion technology multispectral image [4].
According to the recognition of bad geological body, Li compared several com-
mon classification methods, and analyzed the advantages and disadvantages of
several methods in remote sensing classification [5,6]. Then a SVM classification
algorithm based on feature fusion is proposed to explore the vegetation recogni-
tion in remote sensing images [7]. A set of perfect classification method for the
classification of high resolution remote sensing images is then shaped based on
the works introduced above.

Deep learning is a new direction of machine learning research in recent years,
the main working principle of Go Alpha, which has been very concerned recently,
is deep learning. Deep learning originates from the neural network which is imi-
tating the basic structure of neurons of the brain, extracts feature of data from
the lower layer to the top layer by exploring the characteristics of the data in
time and space, it can improve the accuracy of recognition [10]. The deep belief
network (DBN) was proposed by Hinton, a professor at University of Toronto,
and his students in 2006, then they triggered a wave of deep learning [11]. DBN is
a deep learning model which combined the advantages of supervised and unsu-
pervised classification. It is made up of restricted Boltzmann machine. It can
achieve data classification and dimensionality reduction, and also make maxi-
mize use of deep network to fit the linear and nonlinear classification problems,
reducing the classification error. In 2010, Professor Hinton proposed to detect
airborne remote sensing image in the road with the DBN model, it was the
first time that Deep learning has been applied in the field of remote sensing
[12]. In 2012, Professor Hinton put forward the theory of dropout. By join the
dropout strategy in Deep learning, and introduce the concept of weight decay
in the network, the network can prevent over fitting. This makes Deep Learn-
ing caused people’s attention in image recognition [13]. Compared with shal-
low machine model, the Depth learning model can achieve the complex func-
tion approximation and learn the essential characteristic of the data with fewer
parameters [3].

In this paper, the author proposes an improved stochastic Dropout strategy
in the DBN model based on a classification method of remote sensing image of
DBN model. The experimental results show that the improved DBN model can
achieve better classification effect.

2 Stochastic Dropout Strategy

DBN is a deep layer modelwhich constituted by multiple restricted Boltzmann
machine (RBM) [11]. Using layer by layer separated training, The network model
accomplish the training process of the whole network, and make the system’s
ability of handling complex classification problems greatly ascend.
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Dropout is randomly make some of the hidden layer nodes not working during
the model training. Those nodes do not work temporarily, we can consider those
nodes as not a part of the network structure, but its weight was retained (only
temporarily not update it), because it may have to work when the next sample
inputted. It will solve the problem of over fitting which is caused by too little
training samples, and can also reduce the time complexity of the model. After
each finished dropout, we get a thinner network from the original network. For
a neural network with N nodes, with dropout, it can be seen as a collection of
2n models, but the number of parameters needed to be trained is unchanged. So
it solved the time consuming problem [2,8] (Fig. 1).

Fig. 1. DBN-network, DBN-network with dropout and DBN-network with stochastic
dropout

Based on dropout, Author make some further improvement by adding a layer
of randomization process which can further prevent over fitting problem. Train-
ing process in dropout have a fixed probability value P (such as 0.5) which will
not change if it is defined. While the probability value of random dropout is not
fixed, which makes the randomization more thoroughly.

3 Recognition and Classification of Remote Sensing
Image

The experimental area is shown in Figure 2, combination of RGB432 was chosen
by band. This picture is part of area sub-image of High-resolution II Satellite
remote sensing image in Wuhan area, Wuhan city February, 2015. The selected
area is 2520 * 2400 and contains 6048000 pixels. There abundant information in
Image region.

According to Envi soft selecting the experimental sample from picture RGB,
the author obtains the area of interest to define the training samples. In the Tool
ROI dialog, the 6 sample names are defined as buildings, roads, vegetation, bare
land, playground and other. Then these samples are assigned to different colors,
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Fig. 2. Obtains the area of interest to define the training samples (Color figure online)

and respectively, in the main image window to draw the area of interest, ROI
choose as shown in Fig. 2.

The author takes the training data and test data in accordance with the
principle of 5/5, namely the pickup half, training data used for model training,
and test data used for model evaluation. Spectral features for the image of R
band and G band and the B band.

4 Remote Sensing Image Classification Based on Deep
Belief Network

4.1 Parameter Sensitivity Test of Deep Belief Network

An important part of the DBN network is the RBM structure. Here is the first
layer of the weight graph, the size of hidden layer of the first layer is 100, the
dimension of the input signal is 3, the specific results are shown in Fig. 3. The
horizontal coordinate is the size of the hidden layer, and the vertical coordinate

Fig. 3. The weight of single-layer network diagram
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is the dimension of the input signal. Weight graph shows the weight of different
dimensions of the signal size.

The main parameters of the DBN network are the number of iterations of
the network, the size of the hidden layer, the layer number of the hidden layer.
Then respectively verify what about the result of the classification when these
parameters are changed.

Fig. 4. The influence of the number of iterations of the DBN network

Fig. 5. The influence of the hidden layer size of DBN network

The influence of the number of iterations of the DBN network on the classi-
fication error is shown in Fig. 4, in the experiment, 10000 samples are selected,
the hidden layer number is set to 3, the hidden layer size is set to 100, and the
number of iterations are increased from 1 to 200. Through the analysis of the
curve graph, the author found that when the number of training is smaller, the
error is larger. This is because the number of training is less, at this time it
did not fit into the real data characteristics. With the increase of the number of
training, the network structure gradually learn the internal structure of the data,
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so the error is smaller and smaller, when the number reached 80, the change is
not large. The number of iterations is set to 100 in the experiment.

The influence of the hidden layer size of DBN network on the classification
accuracy is shown in Fig. 5. Through the analysis of the curve graph, the author
found that when the size of the hidden layer is smaller, the error is larger. When
the hidden layer of the size is on the 50 to 180, classification accuracy is little
changed. The results show that the training results are stable at this time. The
size of hidden layer is set to 100 in the experiment.

Fig. 6. The influence of the hidden layer number of DBN network

Fig. 7. Compared with the results before and after the improvement of dropout

The influence of the hidden layer number of DBN network on the classifi-
cation accuracy is shown in Fig. 6. Through the analysis of the column chart,
the author finds that when the hidden layer number is 1, 2, 3, 4, 5 layer, the
recognition accuracy and kappa coefficient are increased layer by layer, with the
increase number of layers of hidden layer, the network fitting ability is stronger,
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the more able to display the true characteristics of the target, so the classifica-
tion ability of data is stronger, the accuracy of the data is higher. However, with
the increase of the number of layers, the training time is greatly increased, so
the Hidden layer number is set to 3 in the experiment.

Finally compared with the results before and after the improvement of
Dropout, the results are shown in Fig. 7. By analyzing the column chart, the
author found that the improved drop out strategy is more accurate than the
original dropout strategy.

4.2 Sorting Results and Evaluation of Deep Belief Network

The author use deep belief network model to classify Remote sensing image, the
parameters of the model: The hidden layer of the network is 3, the sizes are
100, 100, 100 respectively, numepochs is 100, the number of samples for each
treatment is 400, momentum is 0.2, and activation function is sigma function.

Fig. 8. The segmentation result of the deep belief network (Color figure online)

Table 1. DBN classification results of remote sensing images

Category Buildings Roads Vegetation Bareland Playground Other

Buildings 0.8940 0.2068 0.0015 0.0043 0.0004 0.3071

Roads 0.0699 0.7306 0.3063 0.0243 0.0120 0.0010

Vegetation 0.0037 0.0351 0.6594 0.0160 0.0000 0.0000

Bareland 0.0062 0.0214 0.0328 0.9523 0.0684 0.0161

Playground 0.0042 0.0061 0.0000 0.0032 0.9193 0.0000

Other 0.0221 0.0000 0.0000 0.0000 0.0000 0.6758

Total classification accuracy = 0.8448 Kappa coefficient = 0.7911

The segmentation result of the deep belief network is shown in Fig. 8.
Among them (a) is the original remote sensing image. Different color markers in



Classification Method of Remote Sensing Image Based on DBN 369

(b) represent different samples. (c) is deep belief network segmentation result,
in which the segmentation accuracy of building, bare land and playground in
remote sensing image is the highest.

DBN classification results of remote sensing images are shown in Table 1.

5 Conclusion

Deep belief network overcomes so many problems such as the noise sensitivity
of the traditional neural network classifier, easy to fall into the local minimum,
error gradient dispersion. It improves the DBN model mainly according to the
weight loss. In the output of the DBN model add drop out strategy, and improved
drop out strategy: only select some data to clear the weight for each time, the
improved drop out strategy is more accurate than the original dropout strategy,
the degree which is about 2.5%. It also makes sensitivity experiments on the
main parameters of the DBN network, such as the number of iterations, the
hidden layer size, and the number of hidden layers. The results show when the
number of iterations and the hidden layer of DBN network can reach a certain
number, the results will remain stable, the accuracy of the change is not large,
but the more number of network layers, the more complex of structure, and the
higher of the accuracy form SN P systems [9,14].
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Abstract. As one of the important issues of data classification, clas-
sification has attracted the attention of many researchers in the field
of data mining. Different from clustering research issues, in classifica-
tion research issues, evolutionary clustering algorithms (EAs) were only
used to improve the performance of classifiers either by optimizing the
parameters or structure of the classifiers, or by pre-processing the inputs
of the classifiers. Lots of evolutionary algorithms are employed to solve
unsupervised classification, i.e., clustering. In this article, we will create
a new mathematical model for supervised classification problem and use
brain storm optimization algorithm (BSO) to search the global optimal
solution, which resolved the problem of supervised classification with
new ideas. The main objective is to find a better method. By using a
new classification algorithm based on BSO, we are looking forward to
optimizing the result.

Keywords: Data classification · Evolutionary classification algo-
rithm · Evolutionary algorithm · Evolutionary training · Brain storm
optimization algorithm (BSO)

1 Introduction

Optimization is a mathematical basic application of computer technology, which
to find the optimal solution or satisfactory solution of many practical prob-
lems for the ultimate goal, usually used in scientific research and engineering.
Data classification is a main research issue in machine learning and data min-
ing. The purpose of classification is to correctly predict the classification labels
of instances according to the properties of these instances. Classification can be
classified into two categories, i.e. unsupervised classification and supervised clas-
sification. Unsupervised classification is often called clustering. The main meth-
ods are K-means [1], Fuzzy c-means (FCM) [2], and evolutionary algorithms
(EAs) [3–5], with the goal of finding the optimal solution.
c© Springer Nature Singapore Pte Ltd. 2016
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However, lots of them can easily fall into local optimum. Fortunately, EAs
can be employed to search global optimization solution. To my surprise, almost
no EA has been employed to solve supervised classification problem. Thus, we
intend to use EAs to improve the performance of supervised classification. BSO
[6] is an algorithm optimization. It has advantages like simple thought and clear.
A simple algorithm gathers scattered thoughts from either a superior, by find
local optimal clustering in local optimum on the basis of a new generation by
individual variation.

In this paper, we introduce the feasibility of using BSO to solve some of the
supervised classification problems. Besides, a new mathematical model frame-
work for supervised classification was proposed and six data sets from UCI were
applied.

2 Brain Storm Optimization Algorithm

BSO is simple to think, but with more implementation process parameters. And
at different stages of optimization, it is difficult to determine the parameters.
This algorithm uses clustering to find local optima. And produce new individuals
by mutation and in the locally optimal basis. Therefore, clustering and variation
played an important role in the algorithm process.

BSO mainly consists of clustering module learning modules and two modules.
Clustering algorithm using clustering method module will gather information
for the K classes. Each class cluster center is the optimal value of the class.
Algorithm optimizing information amount through learning, for each category
of information in parallel. This promotes local search. Algorithm makes itself
out of mutual cooperation through local optimum between classes and mutation
operations, to promote global search.

Optimization algorithm cluster centers to ensure its convergence. Variation
of class information process Optimizing algorithm to ensure the diversity of the
population.

The algorithm is shown in Algorithm1.
Step 6 is a process to generate new information, the selected information is

worth adding to a Gaussian random new information, Eq. (1) described below:

Xd
new = Xd

selected + ξ ∗ n (μ, σ) (1)

Where Xd
selected is the amount of information to select the first dimension d,

Xd
new is newly generated information section dimension d, n (μ, σ)is the mean μ

and variance σ Gaussian function; ξ is a weighting factor, ξ can be described by
Eq. (2) Description:

ξ = log sig ((0.5 ∗ max iteration − current iteration) ÷ k) ∗ rand() (2)

Where log sig() is S-type logarithmic transfer function, max iterattion is
the maximum number of iterations, current iterattion is the current iteration
number, k can change the function of the slope of the log sig(), rand() is a
random value between (0, 1).
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Algorithm 1. Procedure of BSO
1.Randomly generate n potential solutions (individuals);
2. Cluster n individuals into m clusters;
3. Evaluate the n individuals;
4. Rank individuals in each cluster and record the best individual as cluster center

in each cluster;
5. Randomly generate a value between 0 and 1;

a) If the value is smaller than a pre-determined probability p5a,
i. Randomly select a cluster center;
ii. Randomly generate an individual to replace the selected cluster center;

6. Generate new individuals;
a) Randomly generate a value between 0 and 1;
b) If the value is less than a probability p6b,

i. Randomly select a cluster with a probability p6bi;
ii. Generate a random value between 0 and 1;
iii. If the value is smaller than a pre-determined probability p6biii;

1) Select the cluster center and add random values to it to generate new
individual;

iv. Otherwise randomly select an individual from this cluster and add random
value to the individual to generate new individual;

c) Otherwise randomly select two clusters to generate new individual
i. Generate a random value;
ii. If it is less than a pre-determined probability p6c, the two cluster centers are

combined and then added with random values to generate new individual;
iii. Otherwise, two individuals from each selected cluster are randomly selected

to be combined and added with random values to generate new individual;
d) The newly generated individual is compared with the existing individual with

the same individual index, the better one is kept and recorded as the new
individual;

7. If n new individuals have been generated, go to step 8; otherwise go to step 6;
8. Terminate if pre-determined maximum number of iterations has been reached;

otherwise go to step 2;

3 Classification Method Based on EA

Given a data set D = {x1, x2, . . . , xm} and a training set T = {(x1, y1), · · · ,
(xm, ym)}, where (xi, yi) is the ith example, xi = xi1, xi2, . . . , xid ∈ X = Rd is
the ith sample, yi ∈ Y = {1, 2, · · · , l} (i = 1, 2, · · · ,m) is the label of the ith

sample. The object of classification is to learn a model f(x) : X → Y from the
training set T .

The examples of training data can be written as
⎡

⎢⎢⎣

x11, x12, . . . , x1d, y1
x21, x22, . . . , x2d, y2
. . . , . . . , . . . , . . . , . . .
xm1, xm2, . . . , xmd, ym

⎤

⎥⎥⎦ (3)
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First, we introduce a weight vector W = (w1, w2, . . . , wd), and let
⎧
⎪⎪⎨

⎪⎪⎩

w1x11 + w2x12 + . . . + wdx1d = y1
w1x21 + w2x22 + . . . + wdx2d = y2
. . . + . . . + . . . + . . . = . . .

w1xm1 + w2xm2 + . . . + wdxmd = ym

(4)

We observed that if we can find a vector W which could satisfy Eq. (4), we
could use this model to do classification. So we can transform the classification
problem into solving a linear equation problem. Generally speaking, this kind
of problems can be solved by EAs [7]. But, if these equations are uncorrelated
and the number of the equations is more than the number of the weights, this
problem will be a so called inconsistent equation. So there is no exact solution for
these linear equations, and there is no exact method for solving such a problem.
Fortunately, it is a classification problem in fact, so it is not necessary to find the
exact solution. For classification problems, it is enough to find an approximate
solution of the following equations:

⎧
⎪⎪⎨

⎪⎪⎩

w1x11 + w2x12 + . . . + wdx1d ≈ y1
w1x21 + w2x22 + . . . + wdx2d ≈ y2
. . . + . . . + . . . + . . . ≈ . . .

w1xm1 + w2xm2 + . . . + wdxmd ≈ ym

(5)

Obviously, EAs can be employed to solve this kind of problems. The objective
function can be defined as follow:

min(f(W )) =

√√√√
m∑

i=1

d∑

j=1

(wj · xij − yi)
2 (6)

This is a continuous numerical optimization problem. There is a lot of meth-
ods to ensure lower boundary and upper boundary of wi, i = 1, 2, . . . , d.

In fact, this model is feasible when the following equations are satisfied.
Because we can predict label of xi belong to yi when yi + δ ≤ w1xi1 + w2xi2 +
. . . + wdxid < yi + δ.

⎧
⎪⎪⎨

⎪⎪⎩

y1 + δ ≤ w1x11 + w2x12 + . . . + wdx1d < y1 + δ
y2 + δ ≤ w1x21 + w2x22 + . . . + wdx2d < y2 + δ
. . . ≤ + . . . + . . . + . . . . < . . . .

ym + δ ≤ w1xm1 + w2xm2 + . . . + wdxmd < ym + δ

(7)

In this paper, we estimate the lower boundary and upper boundary by fol-
lowing equations:

± σ

N∑
i=1

yi

N∑
i=1

d∑
j=1

xij

(8)
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4 Experiments and Comparisons

4.1 Data Sets Used in Classification

The classification data set is taken from the Machine learning repository [8]. The
number of cluster k is 3, the objects of each data set n is 150 and the number of
numeric attributes of each data set p is 4.

4.2 Setting for BSO

BSO was employed to find W to minimize

√
m∑
i=1

(
d∑

j=1

wj · xij − yi)2 on each data.

For the BSO, run time is set to 20. The maximum number of iterations is set
up to 2000. The other settings of BSO are in Table 1 which is applied in all the
comparison experiments.

Table 1. Description of data

n m P5a P6b P6biii P6c Max iteration

100 3 0.2 0.8 0.4 0.5 2000

4.3 Experimental Results and Analysis

The results of the experiment are listed as the following:

Table 2. Classification accuracy on iris and thyroid data set

Classification accuracy Iris

Min Max Mean Std

Test data 80% 96.67% 93.25% 0.0680

“min” and “max” means the minimum and maximum value of classifica-
tion accuracy, mean and std denote the average and standard deviation of the
corresponding classification accuracy obtained in 20 runs.

We use data collection to 70% of its solution to do training, and the remaining
30% of the data set do data classification test. From Table 2, we can see that the
classification algorithm has a good performance in the experiment using data
set iris.
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5 Conclusion

Data classification is a classical problem in the field of machine learning and data
mining research. Many researchers have proposed many great methods solving
unsupervised and supervised classification problems. However, falling into local
optimal solutions can easily occurred on traditional methods. Thus, we introduce
EA to improve the performance of supervised classification. After a series of
experiments, the data indicates that the EA make BSO play a significant role in
optimization. It enables the BSO can generate more efficient, more acceptable
results.
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Abstract. Auto-encoder plays an important role in the feature extrac-
tion of deep learning architecture. In this paper, we present several vari-
ants of stacked auto-encoders for feature extracting with neural networks.
In fact, these stacked auto-encoders can serve as certain biologically
plausible filters to extract effective features as the input to a particu-
lar neural network with a learning task. The experimental results on the
real datasets demonstrate that the convolutional auto-encoders can help
a supervised neural network to get the best performance of classification
or recognition.

Keywords: Auto-encoder · Feature extraction · Deep learning · Neural
networks · Classification

1 Introduction

Feature extracting or learning, especially in a deep learning architecture, has
been playing an important role in pattern recognition and machine learning. The
aim of unsupervised feature learning is to detect and remove input redundancies,
to extract generally useful features from unlabelled data, and to preserve only
essential aspects of the data in robust and discriminative representations [1].

In the neural network architectures, unsupervised layers could be stacked to
build deep hierarchies on top of each other [2]. For all layers in the hierarchy
system, input layer activations feeds the next which are fed to the first layer. Deep
architectures with being fine-tuned later by back-propagation can be trained to
become classifiers in an unsupervised layer-wise fashion [3]. Most methods are
based on the encoder-decoder paradigm [4] to avoid local minima and increase
the networks performance stability in unsupervised initializations [5]. The input
is first transformed into a typically lower-dimensional space expressed as encoder,
and then expanded to reproduce the initial data expressed as decoder. Once a
layer is trained, its code is fed to the next, to better model highly non-linear
dependencies in the input. The focus of this approach is to build high-level,
class-specific feature detectors.
c© Springer Nature Singapore Pte Ltd. 2016
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Much recent peering works in machine learning have focused on auto-
encoders which have taken center stage again in the deep architecture approach
[5–10]. Auto-encoders are simple learning circuits which aim to transform inputs
into outputs with the least possible amount of distortion, which are stacked and
trained bottom up in an unsupervised fashion, followed by a supervised learning
phase to train the top layer and fine-tune the entire architecture [11]. In a great
many challenging classification and regression problems, these deep architectures
have been shown to lead to state-of-the-art results. In this paper, we present the
possible variants of stacked auto-encoders in the deep learning architecture and
compare their performances of feature learning on the deep learning system.

The rest of this paper is organized as follows. In Sect. 2, we describe three
kinds of auto-encoders which can be stacked together for feature learning.
Section 3 contains the comparative experiments of deep learning systems with
different stacked auto encoders. Finally we conclude briefly in Sect. 4.

2 Auto-Encoders and Their Stacked Deep Hierarchy

2.1 Basic Auto-Encoder

An auto-encoder neural network [12] is essentially a supervised learning archi-
tecture of three forward layers that utilizes the back-propagation learning algo-
rithm, setting the target values to be equal to the inputs. In fact, the auto-
encoder takes an input x ∈ Rd and first maps it to the latent representation
h ∈ Rd using a deterministic function of the type h = fθ = σf (Wx + b) with
parameters θ = {W, b} and σ(z) = 1/(1+ exp(−z)) which is the logistic sigmoid
function. This representation or code is then used to reconstruct the input by a
reverse mapping of g: x′ = gθ′(h) = σg(W ′h + b′) with θ′ = {W ′, b′}. The two
sets of parameters are usually constrained to be of the form W ′ = WT , using
the same weights for encoding the input and decoding the latent representation.
Each training pattern xi is then mapped onto its code hi and its reconstruction
xi

′. The parameters are optimized by minimizing an appropriate loss function
as follows:

JAE+wd(θ) =
∑

x∈Rd

L(x, g(f(x))) + λ
∑

i,j

W 2
i,j . (1)

2.2 Sparse Auto-Encoder (SAE)

The basic auto-encoders learn the identity mapping without any additional con-
straints. This problem can be circumvented by using a probabilistic RBM app-
roach, or sparse coding, or denoising auto-encoders trying to reconstruct noisy
inputs [13]. By imposing certain sparsity on the hidden units during the training,
a Sparse Auto-Encoder (SAE) can learn useful structures in the input data which
allows sparse representations of inputs. These are useful on the pretraining for
classification tasks. The sparsity (Eq. 2) can be achieved by adding an additional
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relative entropy function KL(ρ||ρ̂j) in the loss function during the training, or
by manually zeroing all but the few strongest hidden unit activations.

JAE+wd+sp(θ) =
∑

x∈Rd

L(x, g(f(x))) + λ
∑

i,j

W 2
i,j + β

∑

j

KL(ρ||ρ̂j). (2)

2.3 Convolutional Auto-Encoder (CAE)

For supervised image classification, Convolutional Neural Networks (CNNs)
are among the most successful models and set the state-of-the-art result in
many benchmarks [14]. The network architecture of Convolutional Auto-Encoder
(CAE) consists of three basic building blocks which are respectively the convolu-
tional layer, the max-pooling layer and the classification layer [14] to be stacked
and composed as needed. CNNs are hierarchical models whose convolutional lay-
ers alternate with subsampling layers, reminiscent of simple and complex cells
in the primary visual cortex [15].

CAE is a discriminative graphical model that takes feature maps as input
and attempts to reconstruct them via minimizing an appropriate loss function
over the training samples. Ignoring the 2D image structure in fully connected
AEs could not only result in difficulty in dealing with realistically sized inputs,
but also introduce redundancy in the parameters and force each feature to be
global. However, CAEs differs from conventional AEs as their weights are shared
among all locations in the input, preserving spatial locality. The detailed process,
please refer to [1]. As for standard networks, the weights are then updated using
stochastic gradient descent, while the back-propagation algorithm is applied to
compute the gradient of the loss function.

For hierarchical networks in general and CNNs in particular, the input fea-
ture maps are convolved with the input kernels in the convolution layer and then
pass through the max-pooling layer. The max-pooling layer is often introduced
to obtain translation-invariant representations. Max-pooling down-samples the
latent representation by a constant factor, usually taking the maximum value
over non overlapping sub-regions. Especially over the hidden representation,
Sparsity CAE (SCAE) can erase all non-maximal values in non overlapping
subregions, which forces the feature detectors to become more broadly applica-
ble and avoid trivial solutions. During the reconstruction phase, such a sparse
latent code decreases the average number of filters contributing to the decoding
of each pixel, forcing filters to be more general.

2.4 Stacked Deep Hierarchy

Several auto-encoders can be stacked (just as shown in Fig. 1) to form a deep
hierarchy [13]. Each layer receives its input from the latent representation of
the layer below. As for deep networks, unsupervised pre-training can be done in
greedy, layer-wise, bottom-up fashion, and the top level activations can be used
as feature vectors for SVMs or other classifiers. Afterwards the weights of the
entire architecture can be trained and fine-tuned using back-propagation.



380 S. Liu et al.

Fig. 1. Stacked auto-encoder structure

3 Experimental Results and Analysis

In this section, we conduct the experiments of deep learning systems with differ-
ent stacked auto encoders on MNIST dataset to compare their performances of
feature learning on the classification. Our experiments are implemented in the
Linux system (Ubuntu 14.04.3) with gpu (device 0: GRID K520), and 16.00 GB
RAM with running Python3.5 source codes.

3.1 Feature Extraction Using Stacked Auto-Encoders

We begin by visually inspecting the filters of various AEs, trained in various
setups on MNIST dataset and vehicle images which are courtesy of German
Aerospace Center (DLR). As shown in Figs. 2 and 3, we compare the source
image with 5 different representations using the stacked CAEs of the same topol-
ogy, but trained in different epochs. The structure of CAE is convolution layer
(32 kernel of 3 × 3) → MaxPool (2 × 2) → Dense (10) → DePool (2 × 2) →
DeConv layer (32 kernel of 3 × 3). The weights of the Convolution and Decon-
volution layers are tied; MaxPool and DePool shares the activated neurons. The
CAE without any additional constraints learns trivial solutions. Interesting and
biologically plausible filters only emerge once the CAE is trained with a max-
pooling layer which makes the filters become more localized. For this particular
example, max-pooling yields the visually nicest filters which is an elegant way of
enforcing a sparse code required to deal with the overcomplete representations
of convolutional architectures.

3.2 Stacked Auto-Encoders in the Deep Learning System

We further use the stacked CAEs in the deep learning system for feature
extraction with a MLP/CNN as the classifier. We investigate the benefits of
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(a) Source (b) epoch = 1 (c) epoch = 20

(d) epoch = 40 (e) epoch = 60 (f) epoch = 80

Fig. 2. A randomly selected subset and representation results (a)∼(f) of CAE learned
on MNIST dataset

(a) Source (b) epoch = 1 (c) epoch = 20

(d) epoch = 40 (e) epoch = 60 (f) epoch = 80

Fig. 3. A randomly selected subset and representation results (a)∼(f) of CAE learned
on CARs dataset.
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Table 1. The experiment results on MNIST data: CARS, time consumption of each
epoch, the total number of network parameters.

MNIST Nan AE SAE CAE SCAE

MLP 98.53% 97.09% 97.69% 98.61% 98.66%

0 + 1 s 2 + 2 s 4 + 3 s 39 + 20 s 56 + 38 s

669706 1227146 1227146 3740106 3740106

CNN 99.26% 98.05% 97.87% 98.83% 98.79%

0 + 24 s 2 + 16 s 3 + 16 s 39 + 33 s 56 + 52 s

600810 1031930 1031930 3690426 3690426

(a)

(b)

Fig. 4. (a) Training accuracy curves on MNIST dataset with ten deep neural networks
algorithms; (b) validation accuracy curves on MNIST dataset with ten deep neural
networks algorithms.



Stacked Auto-Encoders for Feature Extraction with Neural Networks 383

Fig. 5. Classification error digit on MNIST dataset. The top right corner digit is the
correct class label; the lower right corner digit is the result of classification error.

unsupervised pre-training through comparisons with randomly initialized
MLPs/CNNs. We begin with the well established MNIST benchmark [14] to
show the effect of pre-training for the datasets. Classification results in Table 1
are based on the complete test set and the output layer has a softmax activation
function with one neuron per class.

Table 1 shows the results of all the experiments which are combined differ-
ent AEs and MLP/CNN, and the contents are the classification accuracy rates
(CARS), the time consumption of each epoch (time consumption of auto-encoder
training before “+” and time consumption of the whole neural network after
“+”) and the total number of neural network parameters.

From this table, we can see that (S)AE + MLP/CNN is not better than the
original network on account of information loss by the basic AE. CAE and
SCAE are better than the other algorithms except the basic CNN, because it
uses all the pixels of the image. The time cost is proportional to the complex-
ity of the network. Moreover, it can be seen from Fig. 4 that the convergence
rates of CAE and SCAE are faster than other AEs on the training set, and their
convergence behaviors are more stable. The performance improvement is so big
on MNIST dataset because this classification problem is much harder and the
network profits more from unsupervised pre-training. Figure 5 shows 36 samples
of handwritten digits which are hard to recognize even with human eyes, not to
mention machines. The top right corner digit is the correct class label, while the
lower right corner digit is the result of classification error. It is shown by the
experimental results that, contrary to the ordinary auto-encoders, the convolu-
tional auto-encoders are able to learn edge detectors from natural image patches
and larger stroke detectors from digit images effectively.

4 Conclusion

We have described different stacked auto-encoders and compared their perfor-
mances of feature extraction in a deep learning system, which can be learned
as certain biologically plausible filters for a learning task. While the convolu-
tional auto-encoders’ overcomplete hidden representation makes the learning
even harder than that of standard auto-encoders, good filters emerge when we
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use a max-pooling layer. The experimental results show that the best perfor-
mance of the deep learning system can be obtained with the stacked convolu-
tional auto-encoders which actually establishes a tractable learning paradigm of
useful higher level representations.

Acknowledgments. This work was supported by the Natural Science Foundation of
China for Grant 61171138.
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Abstract. Based on triangular fuzzy spiking neural P systems (TFSNP
systems, in short), a fault diagnosis method for power system is presented
in this paper. First, triangular fuzzy number (TFN) is integrated into
spiking neural P systems (SNP systems, in short) to propose the TFSNP
systems. Afterward, modeling and fuzzy reasoning methods based on
TFSNP systems are developed. Finally, TFSNP systems are used for
fault diagnosis in power system. A fault diagnosis example for ring net-
work of the voltage level with 220 kV is used to demonstrate the avail-
ability and effectiveness of the proposed fault diagnosis model.

Keywords: Spiking neural P systems · Triangular fuzzy spiking neural
P systems · Power systems · Fault diagnosis

1 Introduction

When a fault occurs in power systems, protective relays operate such that circuit
breakers to isolate cause normal area and fault section and reduce the loss caused
by the fault. Literatures [1–3] have discussed the fault diagnosis of power trans-
mission networks with 35 kV and below. However, with the gradual development
of economy and society, the voltage level continuously improves and users rely
more and more on the power supply. Therefore, improving the reliability and
the quality of power supply becomes more and more important. Obviously, cur-
rent protection of this level has been unable to satisfy this demand. For power
networks of the voltage level with 220 kV and above, longitudinal differential
protection can quickly remove faulty high-voltage network, so it has been widely
used.

In recent years, different methods have been developed for the fault diagnosis
of power systems, for example, expert system (ES) [4], fuzzy logic (FL) [5], artifi-
cial neural network (ANN) [6], Petri nets (PN) [3], optimization algorithm [7] and
c© Springer Nature Singapore Pte Ltd. 2016
M. Gong et al. (Eds.): BIC-TA 2016, Part I, CCIS 681, pp. 385–398, 2016.
DOI: 10.1007/978-981-10-3611-8 32
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so on. However, each method has its own disadvantages: expert system is difficult
to deal with the problem of multiple faults; artificial neural network is suitable
for the fault diagnosis of small and medium power systems, but has a poor ability
to get new data and is difficult to obtain the training samples; optimization algo-
rithm has the characteristics of slow diagnosis and can not accurately diagnose in
the case of inaccurate information and the loss of information.

Membrane computing is a class of distributed parallel computing models
inspired by the structure and functioning of living cells as well as interaction of
living cells in tissues and organs [8,9]. In past years, a various of P systems and
variants have been proposed [10–15]. Spiking neural P system (SNP systems,
in short) is one of main forms of P system. A SN P system can be viewed as a
directed graph whose arcs represent the synaptic connections among the neurons
[16–18]. In recent years, integrated different fuzzy logics into SNP systems, a
class of extended SNP systems are developed, called the fuzzy spiking neural
P system (FSNP systems, in short) [19–22]. There are a lot of uncertain and
incomplete information in the fault diagnosis problem of differential protection
technology. In order to deal with the uncertainty information of fault diagnosis,
a triangular fuzzy spiking neural P system (TFSNP systems, in short) and the
corresponding fault diagnosis model is proposed to deal with fault diagnosis of
high voltage network in this paper.

The rest of paper is organized as follows. Section 2 describes the definition,
the method of model-building and fuzzy reasoning algorithm based on triangular
fuzzy spiking neural P system. In Sect. 3, we firstly state considerate problem,
and then give examples and analysis of fault diagnosis. Finally, conclusions are
drawn in Sect. 4.

2 Triangular Fuzzy Spiking Neural P Systems

In this section, the proposed triangular fuzzy spiking neural P systems (TFSNP
Systems, in short), which are a kind variant of original SNP Systems, will be
presented and used to deal with fault diagnosis of power systems in detail.

2.1 Definitions

Definition 1. A TFSNP system of degree m ≥ 1 is the following construct

Π = (A, σ1, . . . , σm, syn, I, O) (1)

where

(1) A = {a} is a singleton alphabet (the object a is called the spike);
(2) σ1, . . . , σm are neurons of the form σi = (αi, βi, ri), 1 ≤ i ≤ m, where

(a) σi is a triangular fuzzy number representing the potential value of spikes
contained in neuron σi.

(b) βi is a real number in [0, 1] corresponding to neuron σi.
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(c) ri represents a firing (spiking) rule associated with neuron σi, of the form
aα → aa or aα → aa′

, where α and α′ are two triangular fuzzy numbers.
(3) syn ⊆ {1, 2, . . . , m} × {1, 2, . . . , m} denotes the synapse connections

between the neurons, and for all 1 ≤ i ≤ m, (i, i) /∈ syn;
(4) I,O ⊂ {1, 2, . . . , m} represent the sets of input neurons and output neu-

rons, respectively.

Different from original SNP systems, the pulse value of each neuron in the
TFSNP system is represented by a triangular fuzzy number. The triangular
fuzzy number (TFN) is usually expressed by a triple A = (a1, a2, a3). Figure 1
shows a triangular fuzzy number, where a1, a2 and a3 are real number such
that 0 < a1 ≤ a2 ≤ a3. The membership function μA(x) of the triangular fuzzy
number is defined as follows.

μA(x) =

⎧
⎪⎪⎨

⎪⎪⎩

0, x < a1
x−a1
a2−a1

, a1 ≤ x ≤ a2
x−a3
a2−a3

, a2 ≤ x ≤ a3

0, x > a3

(2)

where a1, a3 are the minimum and the maximum values of triangular fuzzy
number A respectively, while a2 represents the middle value.

0

1
(  )A x

x1a 2a 3a

Fig. 1. A triangular fuzzy number

Definition 2. Let A and B be two triangular fuzzy numbers, A = (a1, a2, a3)
and B = (b1, b2, b3) and λ is a real number. Then five kinds of operations are
defined as follows [23]:

(1) λA = λ(a1, a2, a3) = (λa1, λa2, λa3)
(2) A � B = (a1, a2, a3) � (b1, b2, b3) = (min(a1, b1),min(a2, b2),min(a3, b3))
(3) A � B = (a1, a2, a3) � (b1, b2, b3) = (max(a1, b1),max(a2, b2),max(a3, b3))

In TFSNP systems, neurons are divided into proposition neurons and rule
neurons. Proposition neurons are a kind of neurons, which correspond to the
propositions in fuzzy knowledge base. Figure 2(a) shows a proposition neuron.
There exist two class of rule neurons: “and”-type rule neurons and “or”-type
rule neurons, which are labeled by � and � respectively. Figure 2(b) and (c)
show an “and”-type rule neuron and an “or”-type rule neuron, respectively.
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a

R( )

)c()b(

a

P(c)

(a)

a

R( )

Fig. 2. (a) proposition neuron; (b) “and”-type rule neuron, and (c) “or”-type rule
neuron.

2.2 Modeling Fuzzy Production Rules and Fuzzy Reasoning Based
on TFSNP Systems

We use TFSNP systems to model the fuzzy production rules and consider the
following fuzzy production rules of two types:

Type 1: IF p1 AND p2 AND . . . AND pk−1 THEN pk (CF = β);
Type 2: IF p1 OR p2 OR . . . OR pk−1 THEN pk (CF = β).

where p1, p2, . . . , pk−1, pk are k propositions, and β is a real number in [0, 1]
representing the confidence factor (CF) of the fuzzy production rule.

Fuzzy production rule of type 1 can be represented by a TFSNP system,
shown in Fig. 3(a). Initially, we provides a spike for each proposition neuron
σi(i = 1, 2, . . . , k − 1), with values σ1, σ2, σ3, . . . , σk−1 respectively. Secondly,
the k-1 spikes of the initial proposition neurons are received by �-type rule
neuron σk+1. Then, the rule neuron fires and emits a spike into the successive
proposition neuron σk. Finally, σk receives the spike with value(α1�· · ·�αk)⊗β.

R( )

( )a

pk ( )k( )1
1p

( )1k
1pk

1

1k 1k k

= 1     … k
( )1k

R( ) pk ( )k( )1
1p

1pk

1

1k 1k k

= 1   … k

( )b

Fig. 3. (a) Fuzzy production rule of type 1; (b) Fuzzy production rule of type 2.

Fuzzy production rule of type 2 can be represented by a TFSNP system,
shown in Fig. 3(b). Initially, we provides a spiking for each proposition neuron
σi(i = 1, 2, . . . , k−1), with values σ1, σ2, σ3, . . . , σk−1 respectively. Secondly, the
k − 1 spikes of the initial proposition neuron are received by �-type rule neuron
σk+1. Then, the rule neuron fires and emits a spike into successive proposition
neuron σk. Finally, σk receives the spike with value (α1 � · · · � αk) ⊗ β.

Usually, fuzzy truth values of propositions in fuzzy production rules can
be expressed by linguistic values. The linguistic values and the corresponding
triangular fuzzy numbers are provided in Table 1.
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Table 1. Linguistic values and corresponding triangular fuzzy numbers.

Linguistic variables Fuzzy numbers

Extremely poor (EP) s0 (0, 0, 0)

Very Very poor (VVP) s1 (0, 0, 0.125)

Very poor (VP) s2 (0, 0.125, 0.25)

Poor (P) s3 (0.125, 0.25, 0.375)

Slightly poor (SP) s4 (0.25, 0.375, 0.5)

Fair (F) s5 (0.375, 0.5, 0.625)

Slightly good (SG) s6 (0.5, 0.625, 0.75)

Good (G) s7 (0.625, 0.75, 0.875)

Very good (VG) s8 (0.75, 0.875, 1)

Very Very good (VVG) s9 (0.875, 1, 1)

Extremely good (EG) s10 (1, 1, 1)

In the following, fuzzy reasoning algorithm based on TFSNP systems will be
discussed. For clarity, the following symbols are firstly introduced.

(1) α = (α1, α2, . . . αs)T is the fuzzy value vector of s proposition neurons, where
αi is a triangular fuzzy number representing the spike value contained in ith
proposition neuron.

(2) δ = (δ1, δ2, . . . δt)T is the fuzzy value vector of t rule neurons, where δj is a
triangular fuzzy number representing the spike value contained in jth rule
neuron.

(3) β = diag(β1, β2, . . . βt) is a diagonal matrix, where βj is a real number
representing the confidence factor of the jth fuzzy production rule.

(4) D1 = (dij)s×t is a two-dimensional matrix representing the directed con-
nections from proposition neurons to �-type rule neurons. If proposition
neuron δi has a synaptic connection with �-type rule neuron δj , dij = 1;
otherwise, dij = 0.

(5) D2 = (dij)s×t is a two-dimensional matrix representing the directed connec-
tions from proposition neuron to �-type rule neuron. If proposition neuron
δi has a synaptic connection with �-type rule neuron δj , dij = 1; otherwise,
dij = 0.

(6) E = (eij)t×s is a two-dimensional matrix representing the directed con-
nections from rule neurons to proposition neurons. If rule neuron δj has a
synaptic connection with proposition neuron δi, eij = 1; otherwise, eij = 0.

At the same time, the following three kinds of operations is introduced.

(1) β � δ = (β1 � δ1, β2 � δ2, . . . , βt � δt)T . Similarly, D � α = (d1, d2, . . . , dt)T ,
where dj = d1jα1 ⊕ d2jα2 ⊕ · · · ⊕ dsjαs, j = 1, 2, . . . , t.
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(2) DT 
 α = (d1, d2, . . . , dt)T , where dj = d1jα1 � d2jα2 � · · · � dsjαs, j =
1, 2, . . . , t.

(3) ET
� δ = (e1, e2, . . . , et)T , where ej = e1jα1 � e2jα2 � · · · � esjαs, i =

1, 2, . . . , t.

The main steps of the fuzzy reasoning algorithm based on TFSNP system can
be described as follows. Note that the inputs are the triangular fuzzy numbers
of propositions associated with the input proposition neurons, and reasoning
output is the fuzzy value associated with the output proposition neuron.

(1) Set g = 0
(2) Assign C,D1,D2, E and the termination condition. Initial values of α and δg

are separately set to be αg = (α1g, α2g, . . . , αsg) and δg = (δ1g, δ2g, . . . , δtg).
(3) g = g + 1.
(4) Evaluate firing states of input neurons and proposition neurons. If the states

are satisfied, proposition neurons fire and simultaneously each emit a spike.
(5) Compute δg = (DT

1 
 αg−1) ⊕ (DT
2 � αg−1).

(6) If δg satisfies the termination condition, the system halts and the reasoning
result is in output neuron; otherwise, go to step (7).

(7) Evaluate firing condition of each rule neuron. If the condition is satisfied, rule
neuron fires and simultaneously emits a spike to its subsequent proposition
neuron.

(8) Compute αg = ET
� (c � δg), and go to step (3).

3 Fault Diagnosis of Power Systems Based on TFSNP
Systems

3.1 Problem Description

Generally speaking, fault diagnosis has five steps: fault detection, fault section
identification, fault type evaluation, fault isolation and recovery. Especially, fault
section identification is extremely important in these steps. The data of relays
and circuit breakers which are read from supervisor-control and data-acquisition
(SCADA) system can be used to diagnose the fault of lines, buses and trans-
formers in power systems. Usually, current protection is used to protect the
fault area. However, the current protection is not fast to remove all faults in the
faulty area and can only be used in power system below 35 kV. The faults of
extra-high-voltage transmission line with 220 kV and above have to be quickly
removed. Hence, current protection is no longer adapted to the power systems of
the 220 kV and above. Therefore, longitudinal differential protection can quickly
remove the high voltage fault. In the meantime, the relays of longitudinal differ-
ential protection contain the main protection relays and the backup protection
relays. In other words, if the longitudinal differential protection is not operated,
backup protection will operate around the fault area. Figure 4 shows a schematic
of a ring network with sections and protection relays.

The power system in Guangdong Province is composed of 25 substations,
25 substations, 57 transformers, and 73 transmission lines with a voltage level
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Fig. 4. Schematic illustration of a ring network with sections and a protection relays
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Fig. 5. Schematic illustration of ring network in power system

of 500 kV, and 511 substations, 511 transformers and 594 transmission lines
with voltage level of 220 kV. And the operation rules of protective relays and
circuit breakers are illustrated in [7,27,28]. For simply, some of the symbols
are described as follows. A single bus, double bus, transformer, line, circuit
breaker and generator are expressed by A,B, T, L,CB and G respectively,
and main protection and backup protection are respectively represented by m
and s. Figure 5 include circuit breakers CB2201, CB2202, CB501, CB2387 −
1, CB2387− 2, CB2012−QY,CB2289− 1, CB2289− 2, CB2722− 1, CB2722−
2, CB2012−KL,CB2855−1, CB2855−2, CB2012−HL,CB2715−1, CB2715−
2, CB2290 − 1, CB2290 − 2, CB2012 − LY , buses B1, B2, B3, B4, B5, B6, B7,
B8, B9, lines L2387, L2289, L2722, L2855, L2715, L2715, L2290, generators G1, G2,
G3 and transformers T1, T2.

In the following, we describe operational rules of the protection relays for
lines, buses and transformers.



392 C. Tao et al.

(1) Protection relays of line
Both ends of the line have its own main protection and backup protection.
When the main protective relays of the line operate, the circuit breakers
trip at both ends of the line. For example, if line L2387 faults, main pro-
tection relay of L2387 will make the CB2387 − 1 and CB2387 − 2 to trip
simultaneously. Likewise, if main protective relays of the line fail to operate,
its backup relays will operate and circuit breakers related to L2387 will trip.
Similarly, if CB2387−1 trips and CB2387−2 fails to operate, the relay con-
nected to B3 will make CB2012 − QY , CB2855 − 1, CB2202, CB2722 − 1,
CB2722−2, CB2855−2 trip. Also, if the CB2387−2 trips and CB2387−1
fails to operate, CB501 will trip. If CB2387−1 and CB2387−2 are both not
operating, the relay connected to B3 will make CB2012−QY , CB2855−1,
CB2202, CB2722 − 1, CB2722 − 2, CB2855 − 2 and CB501 trip.

(2) Protection relays of bus
Both ends of the bus have its own main protection and backup protec-
tion. Differential protection of bus depending on simultaneous operation of
large/small differential protection is related to the connection and num-
bers of bus. Large differential protection is used to distinguish whether
the fault is internal or external, while small differential protection is used
to select faulted bus [24]. Normally, if B8 faults, large differential pro-
tection is unbalanced at the area of B8 and B9. Small differential pro-
tection of B8 is not balanced while small differential protection of B9 is
balanced. Therefore, the switches connected to B8 trip, including bus tie
switch, namely, CB2715 − 1, CB2290 − 2, CB2012 − LY , CB2203. Abnor-
mally, when B8 faults, CB2012 − LY and CB2203 trip, while CB2715 − 1
and CB2290 − 2 are not operated. Thus, backup protection of bus makes
CB2290−1 to trip. When B8 faults, CB2012−LY , CB2203 and CB2290−2
trip, while CB2715 − 1 is not operated. Hence, backup protection of bus
makes CB2715 − 2 to trip.

(3) Protection relays of transformer
As the branch connected to the transformer is not fully displayed, the pro-
tection of the transformer in this paper is not introduced in detail. On the
whole, operation of the differential protection of the transformer is roughly
the same to that of the line and the bus.

In this paper, TFSNP systems are used to diagnose the fault of bus, line
and transformer in the ring network when the protective relays and circuit
breakers detect incomplete and uncertain signals. Main steps of fault diag-
nosis are described as follows. First of all, we read the operated information
from the SCADA system. Secondly, the possible fault components are judged.
Thirdly, fault diagnosis models are established for the most likely faulted posi-
tion. Fourthly, fuzzy reasoning algorithm is used to calculate confidence level.
Finally, faulted position is found by calculating confidence level.
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3.2 Setting

Because the longitudinal differential protection can not be used as the backup
protection of the adjacent elements (except for longitudinal differential protec-
tion of transformer). For example, the longitudinal differential protection of the
line can not be used as backup protection for the line. Assume that the longitu-
dinal differential protection of a device can not be used as the backup protection
of the device. For example, backup protection of the faulted line is realized by
the main protection of the bus. According to [25,26], we use such a result that
the average correct operating rate of lines, bus, transformers and circuit breakers
with 220 kV and above are respectively 0.98902, 0.85128, 0.74855 and 0.98292
from 1999 to 2003. In this paper, data obtained from differential protection of
the lines, bus, transformer and circuit breaker with 220 kV and above are used
to ensure confidence levels of operated protection devices [2].

As stated above, the confidence levels of the operated and not operated circuit
breakers as well as protective relay shown in Tables 2 and 3 are obtained from
the reference [2]. There is only the main protection in differential protection of
line and bus.

Table 2. Confidence value of the operated protective devices.

Main First backup Second backup

Relay CB Relay CB Relay CB

L EG(0.98902) EG(0.98902) – – – –

B VG(0.85128) EG(0.98902) – – – –

T VG(0.85128) EG(0.98902) – – – –

Table 3. Confidence value of the not operated protective devices.

Main First backup Second backup

Relay CB Relay CB Relay CB

L SP(0.2) SP(0.2) – – – –

B F(0.4) SP(0.2) – – – –

T F(0.4) SP(0.2) – – – –

According to the hypothesis in this paper, longitudinal differential protection
for B,L, T are divided into two types. The fault fuzzy production rule set for
B,L, T contains two rules, in which the meaning for each proposition is provided
in Table 4.

R1 (c1 = 1): (p1 operate) � (all or partial CB1 trips), B, L, T fails.
R2 (c2 = 0.875): (p2 operate) � (CB2 trips), B, L, T fails.
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Table 4. Meaning of each proposition in rule set of B,L, T .

P1 Main of B, L, T CB1 CBs related to P1

P2 Backup protection of B, L, T CB2 CBs related to P2

3.3 Case Studies

Two cases are proposed to verify the availability and effectiveness of the method
presented in this paper. According to the experience, if confidence level α satisfies
the condition α ≥ (0.625, 0.75, 0.875), the section is faulty; If confidence level α
satisfies the condition α ≤ (0.25, 0.375, 0.5), the section is not faulty; otherwise,
the section may be faulty. Two case studies are discussed as follows.

(1) Case I
Complete information is acquired from SCADA system: operated relays:
L2387m, B3S , L2722S , L2855S , and tripped CBs: CB2837−1, CB2012−QY ,
CB2855 − 1, CB2202, CB2722 − 1, CB2722 − 2, CB2855 − 2. According
to operation of the circuit breaker and relay and the basic knowledge of the
power system, it can be inferred that the fault section is most likely to be
L2387. In the following, we apply to the method mentioned in this paper to
analyze L2387. Based on TFSNP system, the fault diagnosis model of line
L2387 that consists of 28 proposition neurons and 14 rule neurons is shown
in Fig. 6. The fuzzy reasoning rules are described as follows.
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Fig. 6. The fault diagnosis model of L2387 based on TFSNP system
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According to the alarm information of case I as well as Tables 1, 2 and 3, we
can determine triangular fuzzy number α0 and δ0. In this case, δ is a vector
of dimension 28, δ is a vector of dimension 14:

α0 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(0.875, 1, 1)
(0.25, 0.375, 0.5)

(0.875, 1, 1)
(0.875, 1, 1)
(0.875, 1, 1)
(0.875, 1, 1)
(0.875, 1, 1)
(0.875, 1, 1)

(0.25, 0.375, 0.5)
(0.875, 1, 1)

(0.75, 0.875, 1)
(0.875, 1, 1)
(0.875, 1, 1)

(0.375, 0.5, 0.625)
0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, δ0 =
(
0
)

When g = 1, we get the results

α1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
(0.875, 1, 1)

(0.25, 0.375, 0.5)
(0.65625, 0.765625, 0.8575)
(0.65625, 0.765625, 0.8575)
(0.65625, 0.765625, 0.8575)
(0.65625, 0.765625, 0.8575)

(0.765625, 0.875, 0.875)
(0.765625, 0.875, 0.875)

(0.21875, 0.328125, 0.4375)
0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, δ1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(0.875, 1, 1)
(0.25, 0.375, 0.5)
(0.75, 0.875, 1)
(0.75, 0.875, 1)
(0.75, 0.875, 1)
(0.75, 0.875, 1)
(0.875, 1, 1)
(0.875, 1, 1)

(0.25, 0.375, 0.5)
0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

When g = 2, we get the results

α2 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
(0.66992188, 0.765625, 0.765625)

(0.875, 1, 1)
(0.875, 1, 1)

(0.25, 0.375, 0.5)
(0, 0, 0)

0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

, δ2 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
(0.765625, 0.875, 0.875)

(0.875, 1, 1)
(0.875, 1, 1)

(0.25, 0.375, 0.5)
(0, 0, 0)

0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠
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When g = 3, we get the results

α3 =
(

0
(0.875, 1, 1)

)
, δ3 =

(
0

(0.875, 1, 1)

)

When g = 4,we get the results

δ4 =
(
0
)

Therefore, the termination condition is satisfied, the reasoning process stops.
The fuzzy value of output neuron δ28 is (0.875, 1, 1). So, from confidence
condition of fault judgement, confidence level of L2387 to be a fault is VVG.

(2) Case II
Incomplete information is acquired from SCADA system: operated relays
are B3S , L2722S , L2855S , and tripped CBs are CB2837 − 1, CB2012 − QY ,
CB2855 − 1, CB2202, CB2722 − 1, CB2722 − 2, CB2855 − 2. In addition,
information of relay about L2387 is lost in this case. According to the alarm
information of case II, Tables 2, 3 and 4, triangular fuzzy numbers α0 and
δ0 can be determined as follows.

α0 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(0.875, 1, 1)
(0.25, 0.375, 0.5)

(0.875, 1, 1)
(0.875, 1, 1)
(0.875, 1, 1)
(0.875, 1, 1)
(0.875, 1, 1)
(0.875, 1, 1)

(0.25, 0.375, 0.5)
(0.25, 0.375, 0.5)
(0.75, 0.875, 1)
(0.875, 1, 1)
(0.875, 1, 1)

(0.375, 0.5, 0.625)
0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, δ0 =
(
0
)

According to reasoning algorithm discussed above, the final reasoning result
is that the fuzzy value of output neuron δ28 is (0.765625, 0.875, 0.875). So, from
confidence condition of fault judgement, confidence level of L2387 to be a fault
is VG. In summary, the fault location can be accurately diagnosed based on
TFSNP system, and the location of the fault can be also diagnosed correctly in
the case of the missing information.

4 Conclusions

In this paper, a new fault diagnosis method based on TFSNP system is proposed,
which is used to diagnose fault of the ring network. Comparing with the method
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proposed in [7], the proposed method not only can determine the location of the
fault, but also can diagnose the confidence of the fault. Meanwhile, the method
of this paper is simpler compared with the method proposed in the literature
[7]. Besides, the method is able to deal with the incomplete and uncertain infor-
mation which can not be processed in [7]. Moreover, for the fault diagnosis of
ring network with 220 kV and above, compared with the literatures [1,2], the
proposed algorithm for the longitudinal differential protection has faster speed
and higher accuracy.
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Abstract. Given the popularity of hand gesture sign language, auto-
matic interpretation of different gestures has received ever increasing
interests. However, owing to the complex of background and similarity
between different gestures, a more robust method is needed for effective
gesture recognition. In this paper, given the robustness of depth image, a
depth image based segmentation is designed to extract the gesture region,
while Convolutional Neural Network (CNN) and support vector machine
(SVM) are trained respectively for feature extraction and gesture recog-
nition. Experiments on America Sign Language dataset demonstrate that
our method is promising and more efficient than some existing methods
like HSF + RDF, SIFT + PLS, MPC and classical CNN.

Keywords: Depth image · Convolutional neural networks · Support
vector machine · Hand gesture recognition

1 Introduction

Sign languages are presented at the beginning of the human communication,
which are usually used by both deaf and non-deaf people. Similar as the spoken
language, sign language is also a rich and complex way in communication. As
an important way to express the sign language, hand gesture can help people
to understand each other very well. Thus, if human beings’ hand gesture can
be well recognized by computer, some more friendly automatic services will be
provided to people, especially for the deaf mute. Recently, hand gesture recog-
nition technology is getting more and more attentions and has been applied in
our daily life. However, given the complex background and the large variations
among the hand gestures that are of the same meaning, a more robust gesture
recognition method is very necessary in our lives.

In the literature, to erase the influence of background on the gesture recogni-
tion, the gesture region is usually segmented in advance. Commonly, the region
segmentation methods can be divided into four categories: (1) Pixel value based
segmentation [1]. This kind of method treats every pixel in the picture as a clas-
sifiable object and divides all pixels into two categories: gesture region pixels and
c© Springer Nature Singapore Pte Ltd. 2016
M. Gong et al. (Eds.): BIC-TA 2016, Part I, CCIS 681, pp. 399–404, 2016.
DOI: 10.1007/978-981-10-3611-8 33
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non-gesture region pixels. (2) 2D shape based segmentation [2]. It is built on the
fact that there are five fingers on one hand and each finger could bend. As the
shape of fingers is used in the detection of gesture region, this kind of method
is more robust on the influence of similar skin color and lightness. (3) Skin color
based segmentation [3]. The assumption adopted in this kind of method is that
the skin color of a hand is distributed in a certain range. So, the pixel whose color
is distributed in this range would be treated as a gesture region pixel. It means
that this kind of method is susceptible to lightness, ethnicity and similar back-
ground. (4) Depth information based segmentation [4]. These methods postulate
the depth of each pixel in gesture region varies little. So, using a depth thresh-
old and a reference point of the gesture region, the gesture region is properly
determined.

After the extraction of gesture region, some features are computed on the
regions for gesture recognition, such as local gradient features [7], SIFT point [8]
and depth difference based features [1]. Recently, with the development of neural
network, several deep neural network schemes have been proposed [4,10,12].
For the usage of data dependent feature learning scheme in CNN, CNN has
shown good performance in various applications, such as character recognition
[4], traffic sign recognition and gesture recognition [10–12].

However, by using a fix number of neural units in each layer, a deeper CNN
is usually needed to obtained a satisfied result, which also causes a expensive
time-cost. In our method, a simple depth image based pre-segmentation method
is designed and combined with CNN for American Sign Language (ASL) dataset,
with which the features of the gesture region are robustly extracted. And then,
using the learned features, a support vector machine (SVM) is trained and
adopted for gesture recognition.

The rest of this paper is unfolded as follows: in Sect. 2, the procedure of our
method is given in detail. Using ASL dataset, the performance of our method
is analyzed and compared with several well-known methods in Sect. 3. Finally,
some conclusions are derived in Sect. 4.

2 Our Method

2.1 Gesture Segmentation

As the depth information implies the distance between the imaged object and the
image acquisition device, a simple depth image based segmentation is designed
in our method for the extraction of gesture region. The main steps are listed as:

1. Assuming the gesture region lies at the middle of the image, the center pixel
(named as m) of the depth image is adopted as the reference pixel, whose
value is modified as Dm which is the average of 8-neighbor pixels around m;

2. Using a threshold T , a binary map is formed via Eq. (1), where the region
consisting of the pixels marked with 1 corresponds the gesture region.

IsHand(x, y) =

{
0,if |D(x, y) − Dm| > T,

1,if |D(x, y) − Dm| ≤ T.
(1)
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where D(x, y) indicates the pixel value of the depth image.
3. To fill the small holes in the binary map, closed operation (defined as Eq. (2))

is used to obtain the final mask.

Mask(x, y) = (IsHand(x, y) ⊕ SE) � SE (2)

where SE is a structural element whose size is 9 × 9.
4. Using Eq. (3), corresponding gesture region is extracted from the luminance

image (I) obtained from an original RGB image.

HandRegion(x, y) =

{
0,if Mask(x, y) = 0,

I(x, y),if Mask(x, y) = 1.
(3)

In Fig. 1, a luminance image and the corresponding depth image are given. Using
Eq. (3), the obtained binary map is also given as Fig. 1(c). Visually, the obtained
binary map is reasonable for the extraction of gesture region.

(a) (b) (c)

Fig. 1. Binary map obtained for a luminance image via its depth image. (a) Luminance
image; (b) Depth image; (c) Obtained binary map.

2.2 CNN-SVM

In Fig. 2, the structure of CNN used in our method is given, which is composed
of two convolution layers and two sampling layers. And, the convolution kernel
is fixed as 5 × 5. Moreover, the number of neural units is set as 6 for the first
convolution layer (C1) and sampling layer (S1), while it is 12 for the second
convolution layer (C2) and sampling layer (S2).

Fig. 2. Structure of CNN used in our method.
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Fig. 3. Different maps of learned feature vectors. (a) Map of the same category;
(b) Map of the different categories.

In Fig. 3, using the designed CNN, the features of some samples are given,
form which we can find the extracted features (300 dimensions) are very similar
at some dimensions for the different categories. This means a powerful classifier
is very necessary for the designed CNN. In our method, the SVM is built with
RBF kernel function and used for gesture recognition, whose training samples
are the same as those used for CNN.

To sum up, the flow chart of the training stage is shown in Fig. 4. For the
testing stage, its process is very similar to that of the training stage, in which
no updating process is involved.

Fig. 4. Training process of CNN-SVM.

3 Experiments

In this section, ASL dataset is adopted to analyze the performance of our
method, which contains about 60000 static gesture images indicating twenty-
four English letters (except ‘j’ and ‘z’). And, each gesture is recorded via Kinect
and from five different persons under different light conditions and backgrounds.
Thus, one RGB image and one depth image are provided for each record in ASL
dataset. In the experiment, all RGB images are transformed into gray images,
where 50,400 images are used as the training sample and 6000 images are used
as the testing sample.

Besides, HSF-RDF [7], SIFT-PLS [8] and MPC [17] are chosen as comparison
methods. For HSF-RDF, RGB images and depth images are both used, while
Random Forest (RDF) is used for classification. In SIFT-PLS, SIFT feature is
extracted and partial least squares (PLS) based classifier is adopted for gesture
recognition. For MPC, Blob and Crop operators are used to extract the regions
of interest, while Sobel operator is adopted subsequently to extract the ges-
ture region whose centroid and area are used as features for gesture recognition.
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Besides, the CNN model used in our method is also used as a comparison method
whose classifier is Soft-Max. Among the comparison methods, the highest accu-
racy is achieved by our method (96.1%), the lowest is obtained by HSF-RDF
(75%). For the rest, the second is CNN (92.55%) and the third is MPC, while
the accuracy of SIFT-PLS is 71.51%.

To make a further analysis, the accuracy of our method on each category is
given in Fig. 5(a). Moreover, the performance improvements of the usages of pre-
segmentation and SVM are given in Fig. 5(b). Obviously, with the introduction of
the pre-segmentation, the accuracy increases about 4%, while the performance is
improved more than 3% by sequentially replacing Soft-Max classifier with SVM.
Besides, by using SVM, our method becomes stable after 30-th iteration. So,
the usages of pre-segmentation and SVM are very necessary and effective in our
method.

(a) (b)

Fig. 5. Experiments on our method. (a) Accuracy of our method for different letters;
(b) Effects of pre-segmentation and SVM.

4 Conclusion

In this paper, a CNN based method is proposed for the hand gesture recogni-
tion, where a depth image based segmentation is employed to extract the ges-
ture region while CNN and SVM are trained respectively for feature extraction
and gesture recognition. Experimental results imply that the usage of depth
image based segmentation and SVM in the designed CNN model can signifi-
cantly improve the recognition performance. Moreover, for the usage of SVM,
our method can be stable quickly. This means the scheme of our method is rea-
sonable and promising. Some more experiments and more complex CNN models
will be studied in our further studies.
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Abstract. With the explosive growth of multimedia data, different
types of media data often coexist in web repositories. Accordingly, it
is more and more important to explore underlying intricate cross-media
correlation so as to improve the retrieval results from cross-media data.
However, how to effectively discover the correlations between multi-
modal data has been a barrier to successful retrieval of cross-media
information. To address the above problems, we propose a novel model
projecting both the text modality and the visual modality into a com-
mon semantic feature space with the convolutional neural network fea-
ture. Unlike the existing approaches, the proposed model learns the high-
level feature representation shared by multiple modalities for cross-media
information retrieval. Experiments are conducted on public benchmark
dataset, and results show the effectiveness of our approach.

Keywords: Cross-media retrieval · Two-stream network · CNN

1 Introduction

Nowadays, multimedia documents play a wide role in daily life applications by
various forms of video, web pages, multimodal corpus, and even mobile document
services. It is more and more difficult for users to obtain useful and valuable
information from “information ocean”. The phenomenon has attracted much
attention from information retrieval (IR) research community. In this work, we
consider this problem as cross-media IR, where for an image query we search for
the relevant text, and vice versa.

Cross-media IR is a challenging research topic due to the so-called semantic
gap, that is, the query and the result belong to different modalities, and they
cannot be directly comparable. Therefore, the key problem in this task is how
to measure distances or similarities between multiple modalities. The original
works use the low-level feature space as they only use the simple visual descrip-
tors and the individual keywords. However, the simple features cannot represent
the semantic meaning in the visual and textual fields, leading the semantic gap
between the modalities maximized. Therefore, the advanced visual and textual
c© Springer Nature Singapore Pte Ltd. 2016
M. Gong et al. (Eds.): BIC-TA 2016, Part I, CCIS 681, pp. 405–410, 2016.
DOI: 10.1007/978-981-10-3611-8 34
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features produced by multi-modal topic models [1] and latent Dirichlet allocation
(LDA) [2] are extracted to construct the mid-level feature space so as to improve
the effects. Recently, with deep learning methods having major breakthroughs
in variety of fields in artificial intelligence, there has been a trend of developing
a common feature space with deep learning features. A deep visual-semantic
embedding model was introduced to identify visual objects using labeled image
data as well as semantic information gleaned from unannotated text [3]. Simi-
larly, Socher et al. proposed a Dependency Tree Recursive Neural Network (DT-
RNN) to process textual information [4]. Recently, Karpathy et al. proposed a
model which works on a finer level and embeds fragments of images and sentences
into a common space [5].

Fig. 1. Overview of the proposed model

In this work, we introduce a novel deep model, illustrated in Fig. 1, which
learns mixed features in a common feature space from visual and textual repre-
sentations respectively. Our contributions are three-fold. The primary one is that
we introduce a deep convolutional neural network to map the cross-media data
into a common feature space. Unlike the existing work, mixed features extracted
here perform well in representing texts and images. Second, we use the CNN-like
model to analyze the textual information and extract features. Furthermore, the
approach proposed in this work is validated by extensive empirical evaluation.
In particular, the deep network achieves convincing performance on Flickr30K
dataset [6] for cross-media information retrieval.
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2 Model

As shown in Fig. 1, our model can be divided into three parts. The first one
is for training textual data with CNN and extracting the textual features. The
second is to map the images into a common space where textual information has
been embedded. The combination part includes a max-margin function with the
purpose of making these relevant pairs to get a high inner product. Finally, we
back propagate the whole network with SGD method. These three phases and
optimization process are described respectively in the following sections.

2.1 Textual CNN

Deep semantic similarity model (DSSM) [7] has been proved to lead significant
quality improvement on automatic highlighting and contextual entity search.
This model can extract local and global features from a sentence. However,
the convolutional layer sets a fixed number of words as a group of input, which
limits its function in fact since these descriptions would possibly contain multiple
adjective and a noun. Thus, we improve the model, especially in the step of
extracting a more “localized” feature of a sentence. The overview of the textual
model is showed in Fig. 2.

Fig. 2. The network architecture and information flow of the textual model

This model is based on a CNN. In the hashing layer, we build a vector of
letter 3-grams (tri-letter vector) for each word so that all the words in the textual
data are converted to tri-letter vectors. Then, the vectors are the input of the
convolutional layer, in which the local features in the sentence are extracted. In
this layer, we set a window to concatenate words in the window to generate a
new vector as the input to a linear function and tanh activation. The size of
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window is varied from 1 to the number of words in the sentence. It is necessary
to change the size of window rather than using a fixed-size window since the
length of phrase is not certain. The followed layer is a max-pooling layer, and
its aim is to globalize the local feature vector extracted from the convolutional
layer. To reach the aim, we adopt the maximum operation to encourage the
network to keep the most useful local features and form the mixed feature for
each sentence. At the end of textual model, there are two fully-connected layers
to reduce the dimension of the extracted mixed features. Finally, the initial
description sentence is converted to a vector in a fixed-dimensional space.

2.2 Visual CNN

The visual model architecture used in this work is based on the network described
in [8]. The network produced the best performance in ILSVRC in 2012. The deep
neural network consists of several convolutional filters, local contrast normaliza-
tion, and max-pooling layers, followed by several fully-connected layers and non-
linear activation function trained using the dropout regularization technique to
avoid overfitting. We remove the softmax prediction layer from this core visual
model and add a linear layer that projects the 4096-D representation at the top
of the model into the feature space where textual information has embedded.
Finally, we fine-tune the entire CNN model with the experimental dataset.

2.3 Common Feature Space

The aim of the objective function is to make the corresponding pairs of images
and sentences have a higher inner product than other pairs. We take the mea-
sure of max-margin objective function to force the difference between the inner
products of correct pairs and other pairs to reach a fixed margin, which has been
shown as follows:

loss =
∑

(i,j)∈P

∑

(i,k)/∈P

max(0,margin − v
T
i tj + v

T
i tk)+

∑

(i,j)∈P

∑

(k,j)/∈P

max(0,margin − v
T
i tj + v

T
k tj) (1)

In the equation, vi is a column vector denoting the output of our visual model
for the given image, tj is a column vector representing the output of textual
model for the given sentence. We also define P is the set of all the corresponding
image-sentence pairs (i,j ). To avoid time-consuming, we randomly select nine
false samples for one true sample to restrict the scale of the training dataset.
The margin is empirically set to 0.5.

3 Experiments

Experiments are conducted on the dataset of Flickr30K [6] which consists of
30000 images, each with 5 sentences.

In the textual model, we directly use the existing tri-letters dictionary pre-
pared by the open source demo “sent2vec”. The dictionary includes about 50
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thousand tri-letters. After removing the punctuation mark, the captions are
mapped into the tri-letter vectors. If there are new tri-letters vector appearing,
we add them in the dictionary. For images in Flickr30K, to separate luminance
information from color information, we map them into YUV space. Then, color
channels are normalized globally in the entire dataset so that each color compo-
nent has 0-mean and 1-norm in the dataset. Furthermore, we set the dimension
of the common feature space as 20 empirically.

3.1 Textual Feature

This part focuses on the mixed feature of textual model. First of all, all the
sentences in the test dataset are mapped into the multi-modal space. Then, we
can find which words or phrases are extracted by the network. A simple result is
showed in Fig. 3. In the textual model, a 100-D mixed feature is extracted for each
sentence through convolutional and max-pooling layers. Some words or phrases
would keep more information in the global feature while others only keep a very
low proportion of their own features. An example is illustrated in Fig. 3, the
first underlined words (blue) are the main source of the global features, followed
by the second underlined words (green), then the third lines (red). There are
still other words existing in the final global feature, which only take up a low
proportion. Therefore, we can find that the global feature repeat the keywords
in order to keep the features, which satisfies our needs and demands.

Fig. 3. Example of the textual feature. (Color figure online)

3.2 Image Annotation and Image Search

This experiment focuses on evaluating how well we can find textual or visual
information that describes the content of the given image or sentence. Experi-
mental results are showed in Table 1. From the table, we can find that our model
outperform the state-of-the-art, especially in the index of R@10. The main rea-
son we suggest is that the work [5] requires the fragments of images and sentences
to be matched exactly to each other, which is hard to satisfy especially when the
sentences may only focus on a part of contents in the images. So it would lead a
wrong match in the test dataset. However, in our model, the mixed features are
extracted according to the information in the sentence, and it is more likely to
match the global feature of the corresponding image.
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Table 1. Result comparison on Flickr30K data

Flickr30K

Model Image annotation Image search

R@1 R@5 R@10 Med r R@1 R@5 R@10 Med r

Random ranking 0.1 0.5 1.0 635 0.1 0.5 1.0 537

DeViSE [3] 4.5 18.1 29.2 26 6.7 21.9 32.7 25

SDT-RNN [4] 9.6 29.8 41.1 16 8.9 29.8 41.1 16

Karpathy et al. [5] 16.4 40.2 54.7 8 10.3 30.8 44.2 14

Our model 15.1 41.3 54.5 8 10.0 31.1 44.1 13

4 Conclusion

In this paper, we introduced a novel two-stream network model to solve the task
of bidirectional cross-media information retrieval. Specifically, the textual and
visual data is mapped into a common feature space and evaluate whether cross-
media pair is relevant by the means of inner product. The new model outperforms
baselines and other commonly used methods that carry out the same task. The
mixed features extracted by the model are also proved to be robust to process
different images and sentences.
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Abstract. Diameter is an important index measuring the connectiv-
ity and the transfer efficiency of networks. In the process of minimizing
APL (Average Path Length) by adding edges, we find that APL begins
to decline linearly when the number of added edges increases to a turning
point and the network diameter decreases to 2. We define this point as
the critical state. Furthermore, we put forward the new concept of crit-
ical diameter and explore its properties. Memetic Algorithm combined
with advantages of genetic algorithm and local search has shown good
performance in solving combinational explosion problems. We propose
an algorithm based on memetic algorithm in this paper to transform the
network diameter into the critical diameter. The experiment results show
that our proposed algorithm can efficiently transform the diameter into
critical diameter.

Keywords: Networks · Optimization · Diameter · Memetic algorithm

1 Introduction

Network diameter and APL (Average Path Length) are both important indexes
in network analysis. Based on the closeness between diameter and APL, the
optimization of APL can be transferred to the optimization of network diameter
to some extent [1–10]. As a result of the experiment in minimizing APL by adding
edges, we find that there exists a turning point which relates to network diameter.
As shown in Fig. 1, APL begin to decline linearly as the number of added edges
increases when network reaches the turning point. In this paper we define the
turning point as critical state. From the graph we can see that D = 2 when
network diameter reaches critical state. When network has reached the critical
state, but has not become full-connected yet, any new connection cannot make
the network diameter decrease, under which circumstance diameter optimization
does not make sense. Therefore, the optimization of APL can be transferred into
the problem of network diameter optimization, and the optimization of diameter
should focus on how to decrease diameter efficiently before network reaching the
critical state.

c© Springer Nature Singapore Pte Ltd. 2016
M. Gong et al. (Eds.): BIC-TA 2016, Part I, CCIS 681, pp. 411–416, 2016.
DOI: 10.1007/978-981-10-3611-8 35
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Fig. 1. The value of APL and network diameter D as the number of added edges
increases.

2 Critical Diameter and Its Optimization

Based on the findings narrated above, we propose theorems about the critical
state and define the critical diameter as follows.

Theorem 1. In the process of optimizing APL by adding edges, the network
reaches the critical state only if the network diameter declines to 2 (i.e. D = 2).

Definition. For a network G = (V,E), the network diameter declines to 2 only
in the case of one more edge being added to G. The network diameter in this
state is defined as Critical Diameter, denoted as Dc.

Theorem 2. For a network with the size of N , the biggest degree in the network
is kmax. If we are minimizing APL by adding edges, there must be a way of
transforming the network diameter into critical diameter by adding N −1−kmax

edges.

In this paper, we propose the method of connecting the Biggest-Degree Node
to all the other nodes to transform the network diameter into the critical diame-
ter, named as BDN. BDN is undoubtedly an effective way to reduce the network
diameter, but it fails to create the global optimal solution. We hope to design a
more effective method to cause the network to reach critical state compared to
BDN. We focus on optimizing the process of bringing about critical state in the
network and we call this the optimization of critical diameter. This problem can
be formulated as:

min k (1)
s.t.∀i �= j, dij ≤ 2

In Eq. (1), k is the number of the added edges, dij represents the path length
between node i and j.
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3 Algorithm

Memetic Algorithm (MA) combined with advantages of genetic algorithm and
local search methods has shown good performance in both long-distance and
short-distance search, so that we propose an algorithm based on memetic algo-
rithm in this paper. And it has been proved to solve several combinatorial explo-
sion problems effectively. Thus in this paper, we propose a Memetic Algorithm
to optimize the Critical Diameter (MA-CD). Algorithm 1 shows the framework
of MA-CD.

Algorithm 1. Framework of our algorithm

1: Input: maximum number of iterations: Imax; size of population: Spop; size of mat-
ing pool: Spool; size of tournament: Stour; probability of crossover: Pc; probability of
mutation: Pm; the initial network adjacency matrix: A.
2: P ←Initial Population(Spop);
3: Repeat
4: Pparent ←Tournament Selection(P , Spool, Stour);
5: Poffspring ←Genetic Operation(Pparent, Pc, Pm);
6: P ′

offspring ←Local search(Poffspring);
7: P ←Update Population(P , P ′

offspring);
8: Until Termination(Imax)
9: Output: the number of added edges, the position of added edges.

4 Experiments and Results

In experiment section, we perform MA-CD on generated random networks and
regular networks respectively to test its performance in different network struc-
tures. Specifically, we apply two methods to generate networks: (1) Generate
random networks and regular networks with node size N ranging from 20 to 50
and the number of edges ‖E‖ = N · 4 to examine the performance of MA-CD
as the network density decreases. (2) Generate random networks and regular
networks with node size N ranging from 20 to 50 and the number of edges
‖E‖ = ρ·N(N−1)

2 (ρ is the network density). We record the number of added
edges k as the optimal networks reach critical state, and compare the optimal
solutions by strategies of MA-CD with Greedy Algorithm and BDN.

4.1 Experiments of Critical Diameter Optimization in Random
Networks

As shown in Fig. 2(a), Greedy Algorithm could make network get critical state
by less edge than MA-CD and BDN in small network sizes. But for bigger net-
works, MA-CD and BDN show better performance. Figure 2(b) shows that the
number of added edges of the BDN optimal networks increase as the network
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size increases. However, the number of added edges of the MA-CD optimal net-
works fluctuates and is smaller than that of the BDN optimal networks. Though
Greedy Algorithm performs better than BDN when the network size N is big,
but it still does not exceed MA-CD. Overall, the experiment shows that MA-CD
has excellent performance in optimizing critical diameter in random networks.
Furthermore, we explore the difference in networks topologies between BDN and
MA-CD. By computing the initial path length between the pairs of nodes con-
nected by added edges, MA-CD prefers connecting long-distance pairs of nodes,
which will reduce the network diameter effectively.

(a) Result of critical diameter optimization in random networks which are gen-
erated by method 1

(b) Result of critical diameter optimization in random networks which are
generated by method 2

Fig. 2. Result of critical diameter optimization in random networks
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4.2 Experiments of Critical Diameter Optimization in Regular
Networks

Figure 3(a) shows that Greedy Algorithm fails to show good performance in crit-
ical diameter optimization of regular networks, especially when network size N is
large. MA-CD and BDN could use less edge to make network get critical state.
As shown in Fig. 3(b), the number of added edges of BDN optimal networks
shows step growth with the increasing network size N . Since the inefficiency of
the Node-Learning, results of MA-CD in regular networks are worse than that in
random networks. Greedy Algorithm still fails to show good performance. Gener-
ally Speaking, MA-CD still has higher efficiency of critical diameter optimization

(a) Result of critical diameter optimization in regular networks which are gen-
erated by method 1

(b) Result of critical diameter optimization in regular networks which are gen-
erated by method 2

Fig. 3. Result of critical diameter optimization in regular networks
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relatively. Furthermore, the network optimized by MA-CD has the small-world
feature, in the sense that optimizing the critical diameter in regular networks by
MA-CD will construct small-world networks.

To conclude, MA-CD is an efficient method to optimize critical diameter.
Specifically, MA-CD is good at optimizing networks with different node degrees.
MA-CD appears to be disassortative in the optimizing process of random net-
works, but appears to be assortative in regular networks. In addition, the network
density may affect the performance of MA-CD.

5 Conclusion

Generally speaking, we focus on the network diameter in the process of optimiz-
ing APL by adding edges in this paper. We find a critical state when APL begins
to decline linearly, in which case the network diameter is equal to 2. We propose
several theorems based on this phenomenon and prove the existence of critical
state in optimizing APL. To improve the connectivity and transfer efficiency of
networks, the optimization of APL can be transformed to the optimization of the
network. In this paper, we focus on the optimization of the network structure
in terms of causing the network to reach the critical state at the lowest cost.
A memetic algorithm is proposed to solve this problem, and the experimental
results show the efficiency of our proposed algorithm. However our algorithm
shows less efficiency in regular networks, the optimizing algorithm with better
priori knowledge needs to be designed in our future work. And the application
of our algorithm on the real world networks should also be explored.
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Abstract. In conventional image compression algorithms, a high com-
pression ratio can be obtained but at the cost of loss of details. In this
paper, a new image compression algorithm is proposed. It is based on
recently established deep learning model: deep auto encoder (DAE). We
adopt the genetic algorithm to find optimal initial network weights to
construct a DAE with multiple hidden layers for image compression.
With the optimized network, the essential information from the input
image can be extracted and represented. Experiments on typical images
show that the proposed algorithm obtains higher Peak Signal to Noise
Ratio (PSNR), and superior image quality is preserved at both low and
high compression ratio compared with the existing algorithms.

Keywords: Image compression · Genetic algorithm (GA) · Deep neural
network (DNN)

1 Introduction

As the advances of the computer networks and communication technologies, the
demands on multimedia, such as texts, images and videos increase every day.
Although images play important role in a variety of fields: politics, economics,
military affairs and medical care, the large amount of information limits its
storage, processing and transmission. Image compression becomes significant in
this case. It is to develop different compression schemes that provide good visual
quality with fewer bits to represent digital images.

Nowadays, there are a number of image compression [1] techniques. In gen-
eral, they fall into two categories: the lossless and the lossy compression. The
former always can not achieve high compression ratio. The latter although has
flaws in completely recovering the original images, this is acceptable for human
vision which is fault-tolerant. Therefore, the lossy compression is more popular.

Several methods were proposed, such as directionlets based [2], and hybrid
methods that integrate Discrete Wavelet Transform (DWT), Fractal Coding [3]
c© Springer Nature Singapore Pte Ltd. 2016
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and Discrete Cosine Transform (DCT) [4]. The DCT is well established encoding
technique, and it is the core of the Joint Photographic Experts Group (JPEG)
which is an international standard for static images. It is still being investigated
to achieve high compression ratios without noticeable loss in the image quality.
Delaunay et al. [5] suggested the use of an image compression scheme with a tun-
able complexity-rate-distortion trade-off and wavelet transform. Their technique
was applied for the compression of satellite images. While Bita et al. [6] showed
the criterion satisfied by an optimal transform of a JPEG2000 compatible com-
pression scheme, using high resolution quantization hypothesis and without the
Gaussian assumption.

Recently, the Artificial Neural Networks (ANNs) have also been used for
image compression. They are a family of models inspired by biological neural
networks which are used to approximate the functions of the central nervous
systems in brain. As the development of the theory and techniques of ANN,
it has been widely applied to damage identification, fault diagnosis, economy
prediction, and image processing, etc. Similar to the human NN that has the
extraction ability, ANN has provided a new way for image compression and
reconstruction as shown by the studies [7–10]. The typical method is to use the
error back propagation (short as BP) network [10] for image compression. The
BP is a generalization of the learning rule to multi-layer feed forward networks
ANNs, and by using the chain rule to iteratively compute gradients for each
layer. The image data is input to the BP network, and through the non-linear
transformation by the hidden layers and finally mapped to the output layer.
These hidden layers always have less units and can represent the input image
data, Its yielding is the compression, while the output layer designed with the
identical number of units to that the input layer produces the recovered images.
Although it achieves relative sound results, it is limited by inherent flaws: the
conventional ANN easily falls into local minimum value and has low convergence.

Addressing the above flaws, we propose the genetic algorithm (GA) and the
deep auto encoder (DAE) based image compression method, named as GAAE.
As it is known that, a GA is a search heuristic which generate solutions to opti-
mization problems using techniques inspired by natural evolution, such as inher-
itance, mutation, selection and crossover. The advantage is that it can obtain
global optimal solution. We introduce it for the initial optimization of weight val-
ues in ANN. Moreover, as we know, deep learning [11,12] as one of the attracting
nonlinear techniques which is implemented by a deep neural network (DNN), has
multi-layers, and nonlinear transformation functions allowing it to compactly
represent highly nonlinear and varying data. Considering the higher extraction
ability on the data compared with the conventional NNs, we adopt the widely
used DAE for image compression. In the proposed GAAE, original images are
input to the network, the initial weights are optimized by GA, namely encoded
as population, excellent individuals selected, crossover, mutated, and decoded.
Then through the nonlinear transformation by the multiple hidden layers, the
images are compressed. By utilizing the global optimization of GA, the DAE is
expected to have powerful compression capability.
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The remainder of this paper is organized as follows. Section 2 presents the
proposed GAAE in details. Section 3 shows the experimental results in. Section 4
gives conclusions.

2 The Proposed Method

The key idea of the proposed GAAE is described in details in this section.
Figure 1 shows the flowchart of GAAE. The GA is utilized to search the opti-
mized weight values to initialize the DAE, which will overcome the flaws of the
DAE and enhance the performance for compression and reconstruction. The
details are explained as follows.

Fig. 1. The flow chart of the proposed GAAE.

Let xj be the j-th input to the DAE, W k−1,i
j represent the weight associated

with the connection between unit j in layer k − 1 and unit i in layer k(k ≥ 2)).
bk−1
i is the bias associated with unit i in layer k− 1. hk

i (·) is the output of unit i
in layer k (namely hidden layer k−1), and sk is the number of units in this layer.
f represents the activation function. The common sigmoid function is used here:
f(z) = 1/1(1 + exp(−z)). zki denote the total weighted sum of inputs to unit i

in layer k, including the bias term (e.g., z2i =
∑
j

W 1,i
j xj + b1i (i = 1, 2, ..., s1)).

Then the computations in each layer are as follows.

The input layer (layer 1/hidden layer 0) is

z1i = xi (i = 1, 2, ..., s1). (1)

The hidden layers (layer k/hidden layer k − 1) are

hk
i (xi) = f(zki ) = f(

∑

j

W k−1,i
j hk−1 + bk−1

i ) (i = 1, 2, ..., sk). (2)
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The output layer nk (layer 1/hidden layer nk − 1) is

hnk
i (xi) = f(znk

i ) = f(
∑

j

Wnk−1,i
j hnk−1

j + bnk−1
i ) (i = 1, 2, ..., snk

). (3)

The layer-wise pre-training is conducted for DAE to better initialize the
weight W and bias b. Thus the cost function C(W, b) which should be minimized
is given by

C(W, b) =
N∑

i=1

1
2

∥∥hk (xi) − hk−1 (xi)
∥∥2

. (4)

And we denote the training error of DAE as EAE , and if C(W, b) is not
smaller than EAE , we utilize the GA to optimize the weights, that is to start
the following procedures.

Encode the weight W . Each individual corresponds to a weight in the DAE,
and generally 3N individuals are necessary candidates to guarantee the final N
sound individuals;

Compute the fitness. We use the following function to select N individuals
which are with larger fitness:

Fit =
1

exp(
N∑
i=1

(hnk
i − xi)

2)
. (5)

Conduct crossover on the weight at a probability of Pc;
Perform mutation on the weight at a probability of Pm;
Then the fitness is calculated again by Eq. (5), and if the square sum of error

(SSE) is smaller than the predefined error EGA, then superior weight values are
obtained and send to DAE for the subsequent fine-tuning.

3 Experimental Results

To evaluate the performance of the proposed GAAE, we compare it with the
conventional DCT and the DAE based compression.

All the experiments are performed under MATLAB 2012a environment on a
PC with 2.6 GHz Intel Core i5 processor with 4 GB memory. Each experiment is
repeated 10 times to reduce the randomness and bias in results, and the average
result is reported. The quality of the reconstructed image is measured by the
metrics of Peak Signal to Noise Ratio (PSNR) and normalized mean square of
the error (NMSE) NMSE is the normalized mean square of the error between
the original and the reconstructed images.

The data for test are several typical grayscale images: Cameraman, Lena,
Circuit, Rice, Cell, and Eight. All of them are with size 256 * 256. In order to
reduce the complexity of computation, the images are divided into 8 * 8 blocks,
thus there are 1024 blocks for input to the network. The parameters for the
methods are listed below. For GAAE: the learning rate is 0.01; the EAE is
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(a0) Original

(a1) GAAE (b1) DCT (c1) DAE

(a2) error image (b2) error image (c2) error image

Fig. 2. The compression results for Camera image at 8:1 ratio using different algo-
rithms. (a0) The original image (a1) The compressed image using GAAE algorithm
(a2) The error for reconstruction with GAAE (b1) The compressed image using DCT
algorithm (b2) The error for reconstruction with DCT (c1) The compressed image
using DAE algorithm (c2) The error for reconstruction with DAE.

0.001; EGA is 0.001; The probability Pc is 0.3; The probability Pm is 0.01; The
structure for AE in GAAE are the same for that DAE for fair comparison, and
they are 1024-512-128-512-1024 (4 hidden layers) for 8:1 compression, and 1024-
256-64-256-1024 for 16:1.

The visual results for compression of image Cameraman with ratio 8:1 are
shown in Fig. 2. The reconstructed images and the error for reconstruction
using GAAE are shown in Fig. 2(a1) and (a2), respectively. Among the three
reconstructed images, the GAAE obtains superior results. It has much less
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(a0) Original

(a1) GAAE (b1) DCT (c1) DAE

(a2) error image (b2) error image (c2) error image

Fig. 3. The compression results for Lena image at 8:1 ratio using different algorithms.
(a0) The original image (a1) The compressed image using GAAE algorithm (a2) The
error for reconstruction with GAAE (b1) The compressed image using DCT algorithm
(b2) The error for reconstruction with DCT (c1) The compressed image using DAE
algorithm (c2) The error for reconstruction with DAE.

reconstruction errors than the DCT and DAE. This can be explained by the
optimization of the weights using GA which is better than the single application
of DAE.

The visual results for compression of image Lena with ratio 8:1 are also shown
in Fig. 3. It can be seen from the reconstructed images that GAAE obtains more
clear results especially for the streaks on the hat. And this is verified by the
reconstructed error image in Fig. 3(a2).
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In addition, the PSNR and NMSE for the reconstructed Cameraman, Lena,
and other four images at compression ratio 8:1 and 16:1 are shown in Tables 1
and 2 respectively. For the higher ratio, the proposed GAAE obtains highest
PSNR and lowest NMSE for all the reconstructed images compared with DCT
and DAE. These verify the effectiveness of the genetic algorithm optimized deep
network.

Table 1. Comparison of the PSNR and NMSE for the reconstructed images (compres-
sion ratio 8:1) by different algorithms

Images GAAE DCT DAE

PSNR NMSE PSNR NMSE PSNR NMSE

Camera 46.5096 0.0721 42.281 0.0822 44.5992 0.0801

Lena 52.3128 0.1042 48.406 0.1184 49.774 0.1106

Circuit 50.2776 0.083 45.625 0.0682 47.0287 0.0985

Rice 47.8258 0.0031 41.5737 0.0952 43.7126 0.0267

Cell 60.0173 0.0125 52.4389 0.051 54.1529 0.0381

Eight 51.2801 0.0618 46.283 0.1134 48.1371 0.0698

Table 2. Comparison of the PSNR and NMSE for the reconstructed images (compres-
sion ratio 16:1) by different algorithms

Images GAAE DCT DAE

PSNR NMSE PSNR NMSE PSNR NMSE

Camera 45.9829 0.0798 40.3475 0.0978 42.9854 0.0899

Lena 50.3436 0.1154 47.8753 0.1321 48.4386 0.1294

Circuit 48.7916 0.0987 44.3092 0.079 46.3427 0.0703

Rice 46.2871 0.0098 40.0436 0.0998 44.7981 0.0384

Cell 58.0322 0.0246 50.9861 0.0687 52.853 0.0563

Eight 50.5799 0.0708 44.8217 0.1325 46.6512 0.0982

4 Conclusions

In this paper, a new image compression algorithm, named as GAAE is proposed.
The implementation of deep auto encoder (DAE) combined with the optimal
network weights using genetic algorithm constructs superior network structure
which can extract the abstract information from the input images. The exper-
iments on typical images indicated that higher PSNR and lower NMSE are
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obtained with the proposed GAAE. The details of the images are preserved at
both low and high compression ratio compared with the conventional methods.
In the future, the proposed algorithm will be evaluated on more images.
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Abstract. In this paper, we propose a novel joint classification frame-
work for multi-source image change detection, the multi-source image-
pair is generated by different sensors, such as optical sensor and synthetic
aperture radar, respectively. This framework is established for feature
learning, which is based on deep neural networks. Firstly, in order to
segment the optical image, deep neural networks are essential to extract
deep features for clustering segmentation. Then the stacked denoising
autoencoders is trained to learn capability of classification via choosing
part of reliable segmentation results of optical image as labels. Next, the
other image of the image-pair is entered in the trained stacked denois-
ing autoencoders to classification automatically. Afterwards, two images
passed joint classification are obtained. Finally, the difference image is
produced by comparing the two images passed joint classification. Exper-
imental results illustrate that the method can be applied to multi-source
image and outperforms the state-of-the-art methods.

Keywords: Change detection · Multi-source image · Deep neural
networks · Feature learning

1 Introduction

The technique of image change detection is used in same surface area covered by
different historical periods. It combines corresponding characteristics and remote
sensing imaging mechanism to identify and analyze the regional characteristics
change, including changes in object location, scope changes and surface prop-
erties. Different sensors present multiple information of terrestrial globe for the
ground, oceans, monitoring research [1].

In this paper, we propose a novel method to solve the issue of multi-source
image change detection. The method described here is called deep neural net-
works (DNN)-based joint classification (DBJC) for multi-source image change
detection. The method we proposed is joint classification based on DNN, which
is taking results of one image clustering segmentation as labels to train DNN for
the other image classification.

c© Springer Nature Singapore Pte Ltd. 2016
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The rest of this article is divided into four parts as follows: Sect. 2 suggests the
description of the problem and our motivations for multi-source image change
detection. Section 3 exhibitions the application details of the proposed technique.
Experimental results on real dataset and synthetic images are shown in the
Sect. 4. Lastly, Sect. 5 summarizes the conclusion of our work.

2 Problem and Motivation

In this paper, the proposed of multi-source image change detection is to find out
the changed areas of the given image-pair derived from different sensors. One
co-registered multi-source image-pair is considered, one is SAR image denoted
by: IS = {I (x, y) |1 ≤ x ≤ M, 1 ≤ y ≤ N}, and the other one is optical image
denoted by: IO = {I (x, y) |1 ≤ x ≤ M, 1 ≤ y ≤ N}, SAR and optical images
are of size M × N and are obtained in the same area at different times t1
and t2. The change detection results are presented in the form of binary image
DI = {di (x, y) ∈ {0, 1} |1 ≤ x ≤ M, 1 ≤ y ≤ N}, where di (x, y) = 0 represents
that the pixel at location (x, y) is unchanged, while di (x, y) = 1 is changed.

The flowchart of the method in this article can be expressed in Fig. 1. We
use clustering results of one image to guide the classification of another image,
aimed at converting two images with different types of data into the same type
of data.

Extract features 
by DNN

3

Segmentation 
based features

Select reliable 
samples 

Preprocessing

Pixel is represented 
by a column vector

Training SDAE 
for classification

The trained SDAE

1'
2'
3'

Post-classification 
SAR imageInput

Preprocessing

21

321

Fig. 1. Flowchart of our method

2.1 Unsupervised Feature Learning and Clustering

Artificial neural network has good performance in pattern recognition and
machine learning [2], and has the capability of representing non-linear function.
Stacked denoising autoencoders (SDAE) are deemed to have high-performance
in learning edge features of image patches via training it unsupervised.
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2.2 Joint Classification

As shown Yellow-River image in Fig. 2, the left SAR image is low resolution with
ambiguous spatial details, however, the right optical image display its high res-
olution. Obviously, the two images are incommensurability directly. The model
of SDAE contained a classifier shows lower classification error in classification
problem via learning useful high-level representation in image patches [3].

(a) (b)

Fig. 2. Example of multisource image-pair obtained by different sensors, at different
times. (a) The SAR image obtained by Radarsat. (b) The optical image acquired from
Google Earth. (Color figure online)

3 Methodology

In this chapter, we will introduce the specific application of the proposed method
in this paper. For two co-registered images obtained by different sensors, optical
and SAR images are image-pair in this paper. First, image preprocessing should
be taken in image-pair, and it mainly includes filtering and divides the image into
patches. Second, learning deep level features is the key point for clustering optical
image. The clustering algorithm used for the segmentation of optical image is
features clustering, which based the extracted feature previously. Then we choose
part of reliable pixels in the optical clustering results as labels, and the pixels in
the SAR image corresponding position is the input of SDAE contained classifier,
which is learning the capability of classification. After training SDAE, we input
the SAR image patches to the trained SDAE for classifying SAR image. Finally,
the difference image (DI) is produced by comparing the image-pair passed joint
classification.

3.1 Stacked Denoising Autoencoders

SDAE, a fully connection multilayer networks, is built to learn the local repre-
sentation of each pixel in our method. The features of two images are extracted
at different stages. For optical image, features are extracted before clustering
segmentation. The neighbor pixels of each central pixel are converted to raw
vector, which is the input of SDAE, and the output is a feature vector.



428 W. Ma et al.

In our method, the networks are fully connected multi-hidden layer SDAE,
which is built for learning the local features. Multi-hidden layer SDAE includes
multiple autoencoders. The training process is that each layer of the network
is trained in layer-wise, and then whole deep neural network is trained. The 2-
hidden-layer SDAE with structure 6-3-4 is presented in Fig. 3, where the deep
neural networks with full structure 6-3-4-3-6. 6, 3 and 4 is the number of neu-
rons in each layer. In our method, the second order representation is the useful
features for joint classification.

Features FeaturesInput Output

Fig. 3. 2-layer SDAE with structure 6-3-4-3-6

3.2 Classifier and Fine-Tuning

Fine-tuning is a common strategy in deep learning, it can significantly enhance
the performance of stacked denoising autoencoders neural networks. Form a
higher perspective, the process of fine-tuning treat all layers in stacked denoising
autoencoders as a model, so the value of weight in networks can be optimized in
each iteration. In this paper, we use softmax regression as the final classifier.

4 Experiments

In order to demonstrate the effectiveness of the proposed method, we experience
two pairs of real dataset in multi-source image change detection problem in this
article. The method of mapping-based feature change analysis (MBFCA) and the
post-classification comparison (PCC) [4] are selected as the compared methods
in this paper. In our method, the major parameters we set as the follow: the size
of field window in the image block is 3 × 3, the number of hidden layer in multi-
layer structure is 2, the structures which are 9-60-9 and 60-15-60, respectively.
So, the 2-layer SDAE is fully connected with structure 9-60-15-60-9.
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4.1 Evaluating Index

False negative (FN) represents the number of pixels which is sort out the
unchanged areas but changed in the reference image. False positive (FP) repre-
sents the number of pixels which is classified into the change area but unchanged
in the reference image. Then we calculate the overall errors (OE) and the cor-
rect classification rate (CCR), which is calculated by OE = FN + FP and
CCR = TP+TN

TP+TN+FP+FN , where TP represents the true positives, the number of
pixels are correctly classified into the changed, TN represents the true negative,
the number of pixels are correctly classified into the unchanged.

5 Results and Analysis

In our experiment, The first dataset is Sardinia region, the final change detection
results shown in Fig. 4. In Fig. 4(a), the DI produced by PCC, which contained
large amount of noise. While the change detection results in Fig. 4(b), which is
produced by MBFCA, it have less noise. However, the change detection results
generated by DBJC is shown in Fig. 4(c), and it demonstrated the performance of
suppressing the noise significantly in our method. Table 1 shows the quantitative
results for Sardinia dataset.

(a) (b) (c)

Fig. 4. Change detection results by using different method on the Mediterranean Sar-
dinia dataset. (a) PCC. (b) MBFCA. (c) DBJC.

Table 1. Comparison of change detection results on Sardinia region dataset

Method FN FP OE CCR(%) KAPPA

PCC 1249 8955 10204 91.74 0.516

MBFCA 1641 3411 5052 95.91 0.872

DBJC 1641 2561 4202 96.60 0.717

In the experiments of Yellow-River, the final change detection results shown
in Fig. 5. The change detection results produced by DBJC is shown in Fig. 5(c),
it have better performance compared with MBFCA, shown in Fig. 5(b), and
PCC, shown in Fig. 5(a). Table 2 shows the quantitative results for Yellow-River
dataset.
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(a) (b) (c)

Fig. 5. Change detection results by using different method on the Yellow-River dataset.
(a) PCC. (b) MBFCA. (c) DBJC.

Table 2. Comparison of change detection results on Yellow river dataset

Method FN FP OE CCR(%) KAPPA

PCC 513 1537 2050 97.92 0.783

MBFCA 919 925 1844 98.13 0.943

DBJC 500 720 1220 98.76 0.916

6 Conclusions

In this paper, a novel joint classification framework for multi-source image change
detection is proposed. Due to inconsistency of multi-source image in terms of
spatial resolution, the traditional change detection method is difficult to use
directly in multi-source image. Deep structure can find a better representation
for image texture information, and selecting reliable training sample is key for the
method. Experimental results on the real dataset illustrate that the method can
be applied to multi-source image and outperforms the state-of-the-art methods
in terms of detection accuracy.
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Abstract. This paper presents a completely unsupervised change detec-
tion approach for synthetic aperture radar (SAR) images based on
stacked autoencoders (SAE). The proposed method innovatively imple-
ments the change detection task by establishing a differencing neural
network with a novel cost function. Firstly, two SAR images are used
to pre-train two stacked autoencoders, then these two stacked autoen-
coders are unrolled to initialize the parameters of differencing neural
network. Next, a novel cost function, including the difference between
bi-temporal features and an initial difference image, is designed to fine
tune the networks for highlighting the changes. Finally, we can obtain
the detection results by measuring the Euclidean distance between the
outputs of the two neural networks. The experiments on real multitem-
poral SAR datasets prove the outstanding performance of the proposed
method.

Keywords: Differencing neural network · Image change detection ·
Stacked autoencoder · Cost function · Synthetic aperture radar (SAR)

1 Introduction

Image change detection is to recognize the changes between two images which are
taken over the same scene but at different times. Because of the independence of
time and weather condition, synthetic aperture radar (SAR) image has received
a lot of attention in recent years and is the main experimental object of the
change detection algorithm. Nevertheless, due to the presence of the speckle
noise, it is more difficult to achieve the change detection for SAR image [1].

In the last few decades, the common way to handle change detection for
SAR images is post-comparison analysis according to the existed literature [2].
It is called difference image (DI) analysis [3]. However, the quality of DI will
greatly affect result of change detection. In recent years, with the rise of neural
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networks, researchers have tried to use the neural networks to solve change detec-
tion problems, such as a Hopfield-type neural network proposed for multispectral
images [4].

This paper presents an unsupervised change detection approach for SAR
images based on stacked autoencoder (SAE). To implement the aim of change
detection, a novel cost function is designed to adjust the parameters of two
coupled neural networks. Finally the trained deep neural networks are used for
the classification of changed pixels by two original images directly. The whole
framework is called differencing neural network by ourselves.

The rest of this paper is organized as follows. Section 2 will describe the pro-
posed framework. In the next section, the proposed algorithm will be described in
details. Section 4 will show the experimental results on real SAR images. Finally,
conclusions are drawn in the last section.

2 Algorithm Framework

As mentioned in Sect. 1, this paper proposes an unsupervised change detection
framework based on SAE. Change detection results are obtained from two orig-
inal SAR images directly. In fact, there are two SAE networks included in the
algorithm, and one network is associated with one original image separately. In
order to get networks that have been trained, the process is divided into two
steps: (1) Using layer-wise strategy to train each SAE networks; (2) Designing
a novel cost function to fine tune the whole systems. After pre-training, each
network can gain an output of raw data, which is a kind of characteristic rep-
resentation of original image. The cost function is related to the two output of
networks.

3 Methodology

3.1 Samples Generation

The samples for training differencing neural network are from the two orig-
inal images. Let P I1

ij represents the neighborhood with center (i, j) and of
size n × n in images I1. Then converting the neighborhood patch, either in
row-major or column-major order, into a n2-dimensional vector V I1

ij to get a
training example XI1

(i−1)×col+j . Image I1 is of size row × col, which is equal
to Image I2. After visiting every pixel in Image I1, we can get a sample

matrix XI1 =
((

XI1
1

)T

,
(
XI1

2

)T

, . . . ,
(
XI1

(i−1)×col+j

)T

, . . . ,
(
XI1

row×col

)T
)T

,

i ∈ {1, 2, . . . , row}, j ∈ {1, 2, . . . , col}, which is the final training samples. In the
same way, we can obtain the samples XI2 from image I2. By the way, the values
of features lie between 0 and 1.

We can train many autoencoders connected together one by one. The hid-
den layer of previous networks is connected to the input layer of next network.
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In other words, all autoencoders without output layer are joined together. And
the output of each layer is actually more abstract representation in the differ-
encing neural network built.

3.2 Cost Function and Fine-Tune

We can pre-train two deep neural networks by two original images data sepa-
rately. For the final detection result is related to raw images data, the outputs
of two networks are taken account in fine-tune. As mentioned in Sect. 1, DI can
express the two original images to some extent, so it can be used to optimize
the network parameters. And with the optimization of network, DI will be also
updated. In order to reduce the influence of speckle noise, the logarithmic ratio
is widely used now [5,6]. Therefore, log-ratio image is adopted initially [7]. Given
that XI1 and XI2 represent the two original image, log-ratio image is defined by

XL =
∣∣∣∣log

XI1

XI2

∣∣∣∣ (1)

In addition, in order to reduce the influence of speckle noise, the neighbor-
hood information of each DI pixel should also be considered. It is measured
by the distance of the center pixel and the mean of all pixels in neighborhood
with the center. Finally, it is important to note that all values of DI will be
updated to 1, when output of the two coupled networks is very close to each
other. Therefore, a constraint term of DI should be included in cost function.

Summarizing the above content, the cost function is represented by

Jtune(W, b,XL) =
1
m

m∑

k=1

[
1

XL
k

· 1
2
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(
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k

)2
]

+ Jre (2)

Where DFk =
���f1

(
XI1

k

)
− f2
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2

, dk =
(
XL

k − XL
k

)2

. f1(XI1
k ) repre-

sents the output of the first deep neural network by the k-th sample with center
(i, j) in Image I1, and f2(XI2

k ) is similar to f1(XI1
k ). Therefore DFk shows the

output of the differencing neural network for k-th sample. XL
k is the mean of

all pixels in neighborhood with center (i, j). In order to prevent over fitting, the
regularization term Jre is considered.

Considering that the majority of regions in the images are unchanged pixels,
our aim is to optimize the network to minimize the cost function. Gradient
descent algorithm is commonly used. Similar to BP algorithm, the parameters
in proposed algorithm is updated by

δ(l) =
1

XL
k

·
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W (l) is a weight matrix between l-th layer and (l + 1)-th layer and b(l) is
the biase of l-th layer. a(l) represents the units in l-th layer of the deep neural
network. Note that in Eq. (3) XL

k = (XL
k ,XL

k , . . . , XL
k )T is a vector whose length

is equal to δ(l). The error term in the last layer is different. The network trained
by Image I1 is defined by

δ(nl) =
1

XL
k

·
(
f1
(
XI1

k

)
− f2

(
XI2

k

))
·
(
sigmoid

(
W (nl−1)a(nl−1) + b(nl−1)

))′
(5)

However the network trained by Image I2 is defined by

δ(nl) =
1

XL
k

·
(
f2
(
XI1

k

)
− f1

(
XI2

k

))
·
(
sigmoid

(
W (nl−1)a(nl−1) + b(nl−1)

))′
(6)

In fact, in (5) and (6) all symbols represent the different values, due to the
different training samples.

The whole fine-tune has three key points: (1) designing a novel cost function
which improves the efficiency of network optimization; (2) introducing initial DI
to optimize the networks; (3) adjusting the parameters of the two coupled deep
neural network each other.

After fine-tune has been completed, we can get change detection results by
Euclidean distance between the output of two networks.

4 Experimental Study

The quantitative analysis of change detection results is set as follow: (1) the
false negatives (FN); (2) the false positives (FP); (3) the true positives (TP);
(4) the true negatives (TN); and (5) the percentage correct classification (PCC).
For accuracy assessment, we introduce kappa statistic which is a measure of
accuracy or agreement based on the difference between the error matrix and
change agreement [8]. It indicates the degree of the change detection map and
the reference image in agreement.

The results on the Ottawa dataset: This experiment aims to compare
the proposed method with conventional algorithms, reformulated fuzzy local-
information c-means algorithm (RFLICM) [3], and supervised deep neural net-
works, BP algorithm. The change detection results generated by the proposed
method and the two comparative methods on Ottawa dataset are presented in
Fig. 1. The final map generated by RFLICM is polluted by many noise spots on
the black ground, because cluster methods are sensitive to noise. Deep neural net-
work has strong learning ability for unknown distribution, therefore BP neural
network can accomplish detection task very well. The PCC of the detection
result runs up to 98.4%, which is more than the result yielded by RFLICM as
shown in Table 1. However, many pixels, i.e. the region labeled by the red circle,
are wrongly detected because of the gradient dispersion. The proposed method
detects the changed region from the two original images entirely, and a new cost
function improves the performance of training networks.
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(a) (b) (c)

Fig. 1. Change detection results of the Ottawa dataset achieved by (a) RFLICM,
(b) BP neural network, (c) proposed method

(a) (b) (c)

Fig. 2. Change detection results of the Ottawa dataset achieved by (a) RFLICM,
(b) BP neural network, (c) proposed method

The results on the Coastline dataset: For the Coastline dataset, Fig. 2 shows
the final maps of the three methods. RFLICM presents the worst performance.
There are many noise spots on the black background, and the Kappa is just equal
to 59.98% as shown in Table 2. BP neural network is trained by samples with
labels, which is based on joint-classification and sample selection. As described
in Table 2, the OE yielded by BP neural network is significantly reduced. Mean-
while, Fig. 2(b) also declares the point by the number of noise spots. The PCC
yielded by the proposed method equals to 99.70% which is higher than 99.45%
by BP and it is a big promotion at this level. In addition, the PCC and Kappa
have the best performance in the overall context. Although FN of the proposed
method is more than that of other methods, FP has lower values.

Table 1. Change detection results on the Ottawa dataset by RFLICM, BP neural
network and proposed method

Criterion Method

RFLICM BP Proposed method

FN (%) 1.20 1.10 0.75

FP (%) 0.52 0.50 0.20

OE (%) 1.72 1.60 0.95

PCC (%) 98.28 98.40 99.05

Kappa (%) 92.90 93.81 95.02
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Table 2. Change detection results on the Coastline dataset by RFLICM, BP neural
network and proposed method

Criterion Method

RFLICM BP Proposed method

FN (%) 0.13 0.37 0.38

FP (%) 1.08 0.15 0.03

OE (%) 1.21 0.55 0.41

PCC (%) 98.79 98.45 99.70

Kappa (%) 59.98 78.90 81.27

5 Conclusion

This paper has presented a novel change detection algorithm for multitempo-
ral SAR images based on differencing neural network. The samples obtained
from the two original SAR images directly train two SAEs separately, then the
two SAEs having been trained are unrolled into two deep neural networks that
have the same parameters with corresponding layers. Next a novel cost function,
including the difference between the outputs of the two neural networks and an
initial DI, is designed to fine tune the networks. Meanwhile, the two networks
affect each other. Finally, we can obtain the detection results by the Euclidean
distance between the outputs of the two neural networks. The experiments on
real multitemporal SAR datasets prove the high performance of the proposed
method. Whether it is considered by the noise spots of result map or the evalua-
tion criteria, the proposed method shows a great advantage on change detection
compared with other methods.
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Abstract. Image Change Detection is a process to identify the changes
of two images of the same scene that were taken in different times.
In this paper, we propose a novel change detection approach based
on Fuzzy Restricted Boltzmann Machine. The approach applies Fuzzy
Restricted Boltzmann Machine as unsupervised feature learning algo-
rithm and Fuzzy Back Propagation as supervised fine-tuning algorithm.
Fuzzy Restricted Boltzmann Machine applying to change detection can
reduce the effect of speckle noise in Synthetic Aperture Radar Images, in
which the parameters governing the model are replaced by fuzzy num-
bers. Experiments on real data sets and theoretical analysis show the
proposed method can obtain promising results and outperforms some
other methods.

Keywords: Fuzzy Restricted Boltzmann Machine (FRBM) · Image
change detection · Synthetic Aperture Radar (SAR) image

1 Introduction

Image Change Detection is a technology to analyze and identify the change of
surface qualitatively or quantitatively from multi-temporal image of the same
scene but taken in different times. This technology is important and widely
used in some field, such as for resources and environment monitoring, forest and
vegetation coverage, the situation of urban expansion and agricultural survey.
It also plays a great role in military field and the monitoring and evaluation of
natural disaster [8].

Change detection in SAR images has classical three-step process including
(1) pre-processing, (2) producing a difference image (DI) between the multi-
temporal images, (3) analyzing the DI [8]. In respect of producing a DI, in order
to reduce the impact of speckle noise, some classical methods have been proposed
c© Springer Nature Singapore Pte Ltd. 2016
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such as Wavelet Fusion [2], etc. The methods to analyze the DI fall into four
major categories including thresholding based methods such as Reformulated
Fuzzy Local Information C-means (RFLICM) [5], and Markov Random Field
FCM (MRFFCM) [3], graph-cut based methods such as Local Fit-search and
Kernel-induced Graph Cut [6], level set methods such as CV model [7].

Neural network is used in image processing field as pattern recognition classi-
fier and clustering technology originally. Along with the further research, neural
network is fully applied to various fields. In addition, Gong et al. proposed a novel
framework for image change detection based on deep neural network in [4], and
the method of this paper is based on this framework.

This paper is organized into four section. In Sect. 2, the proposed method
will be described in detail. Section 3 will present the experimental results on real
multi-temporal SAR images to verify the feasibility of the method. Finally, the
conclusion is drawn in Sect. 4.

2 Methodology

The two co-registered intensity SAR images I1 = {I1 (i, j) , 1 ≤ i ≤ A, 1 ≤
j ≤ B} and I2 = {I2 (i, j) , 1 ≤ i ≤ A, 1 ≤ j ≤ B} are applied to change detec-
tion, which have same size A×B and are acquired over the same scene at different
times t1 and t2 respectively. Because of the contradiction between reducing the
effect of speckle noise and retaining detail information it is quite difficult to esti-
mate statistics item about changed and unchanged regions and carry out change
detection accurately. The change detection problem is to design a method to find
the change between the two images. The framework of the proposed method is
described in [4].

In proposed method, data preprocessing is the first part. Firstly, a joint
classifier of the two original images based on FCM (JFCM) is used as pre-
classification [4]. Secondly, in order to reduce the effect of speckle noise, according
to the result of pre-classification, selecting appropriate sample from two original
image is necessary. The selection criteria is described in [4].

In the proposed method, the key is to train neural network. This part is
made up of two steps, learning and fine-tuning. The learning step to learn the
representation of the relationships between the two images is crucial and we use
FRBM as the algorithm of the learning network. The FRBM model, in which
the connection weighs and biases between visible and hidden units are fuzzy
numbers, has rather powerful representation capability and robustness [1]. The
fuzzy numbers of the FRBM can reduce the effect of speckle noise in change
detection effectively. In addition, the FRBM belongs to unsupervised learning.
These means the FRBM is a good choice.

In FRBM, placing “bar” over a capital letter, such as W j , is called a fuzzy
number, which is defined as

W j (w) = max

{
1 − |w − wj |

∧
wj

, 0

}
. (1)
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The energy function for the FRBM is defined by E
(
x,h, θ

)
= −b

T
x − cTh −

hTWx, where E
(
x,h, θ

)
is a fuzzified energy function, and θ =

{
b,c,W

}
are

fuzzy parameters. The fuzzy conditional probabilities of FRBM is defined by

PL (hi = 1|x) = P (hi = 1|x; θL) = σ
(
cLi + WL

i x
)

PR (hi = 1|x) = P (hi = 1|x; θR) = σ
(
cRi + WR

i x
)

PL (xj = 1|h) = P (xj = 1|h; θL) = σ
(
bLj + WL

j h
)

PR (xj = 1|h) = P (xj = 1|h; θR) = σ
(
bRj + WR

j h
)

(2)

where lower bound of connection WL
ij , visible bias bLj , hidden bias cLi , and their

upper bounds WR
ij , bRj , cRi are six kinds of parameters for visible unit and hidden

unit in the FRBM model. The change in the lower and upper bound of connection
weight of FRBM is given by

ΔWL = ε(x(0) · PL(hL(0) = 1|x(0)) − xL(1) · PL(hL(1) = 1|xL(1)))
ΔWR = ε(x(0) · PR(hR(0) = 1|x(0)) − xR(1) · PR(hR(1) = 1|xR(1)))

(3)

Where ε is a learning rate.
After the learning of FRBM, in order to adjust weights further and adapt

to the structure of FRBM, we put the idea of fuzzy number of FRBM into BP,
which is called fuzzy BP (FBP). The change in the lower and upper bound of
output layer weight of FBP is derived as follows

ΔwL
jk = 1

2η (dk − ok) oLk
(
1 − oLk

)
yj

ΔwR
jk = 1

2η (dk − ok) oRk
(
1 − oRk

)
yj

(4)

The change in the lower and upper bound of hidden layer weight of FBP is
derived as follows

ΔvL
ij = 1

2η
l∑

k=1

(
δoLk wL

jk + δoRk wR
jk

)
yL
j

(
1 − yL

j

)
xi

ΔvR
ij = 1

2η
l∑

k=1

(
δoLk wL

jk + δoRk wR
jk

)
yR
j

(
1 − yR

j

)
xi

(5)

The major process of neural network training includes: (1) inputting neigh-
borhood features of each position, (2) constructing a stack of FRBM network to
learn the representation of the relationships between the two images, (3) fine-
tuning neural network by fuzzy BP.

After data preprocessing and neural network training, the last part is to orga-
nize original data and feed that data into trained neural network. The network
output is final change map of two images. The class label 0 represents that the
pixel belongs to unchanged regions, showing black in change map, and the class
label 1 represents the pixel belongs to changed regions, showing white in change
map.

3 Experimental Study

The quantitative analysis of change detection results is set by calculating some
values of criteria including: (1) the false negatives (2) the false positives (3)
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the percentage correct classification (PCC). For accuracy assessment, Kappa
statistic is a measure of accuracy or agreement based on the difference between
the error matrix and chance agreement.

In order to assess the effectiveness of the proposed approach, in this section,
two data sets are considered in the experiments. We will also introduce the
comparison experiments as well as some evaluation criteria of the experiment
results. In this experiment, PCC and Kappa, as main criterion, are larger, which
means the method is better.

Table 1. Values of the evaluation criteria of the Bern dataset

Method FP FN OE PCC Kappa

FLICM 190 349 539 0.9911 0.7464

RFLICM 723 61 784 0.9913 0.8132

MRFEM 6390 26 6416 0.9292 0.2436

MRFSM 651 45 696 0.9923 0.7576

MRFN 1756 36 1792 0.9802 0.5471

MRFFCM 364 47 411 0.9955 0.8413

RBM BP 124 156 280 0.9969 0.8755

The proposed method 115 155 270 0.9970 0.8795

Results on the Bern Data Set
The change detection results generated by the proposed method and the seven
comparative methods on the Bern data set are presented in Fig. 1 and Table 1.
The method called RBM BP is proposed by Gong et al. in [4], and the method
in this paper is based on that. As shown in Fig. 1, the final map generated by
RBM BP and the proposed method is better and have less white noise spots
than other six method. That by MRFEM has most white noise spots among
all present methods. From Table 1, the PCC and Kappa yield by the proposed
method are both higher than that yield by RBM. Although the PCC of them
approach each other, the Kappa of them, as accuracy assessment, are different
significantly. That means the proposed method has a promotion comparing with
RBM BP. In addition, serving as an overall evaluation, PCC and Kappa of the
proposed method exhibit best among all present methods, although FN of it is
not best. That means the proposed method for image change detection on the
Bern data set is best among.

Results on the Ottawa Data Set
The results of the experiment on the Ottawa Data set are shown and listed in
Fig. 2 and Table 2. There are eight comparative methods to verify the superiority
of the proposed method. In Fig. 2, the final map of the proposed method has little
white noise spots. However, in Table 2, the FN yield by the proposed method
is worse than that by seven method and is just lower than that by RBM BP,
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 1. Change detection results of Bern data set achieved by (a) FLICM; (b) RFLICM;
(c) MRFFCM; (d) MRFEM; (e) MRFSM; (f) MRFN; (g) RBM BP; (h) the proposed
method.

(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Fig. 2. Change detection results of Ottawa data set achieved by (a) FLICM; (b)
RFLICM; (c) MRFFCM; (d) MRFEM; (e) MRFSM; (f) MRFN; (g) GKI; (h) RBM BP;
(i) the proposed method.

which means there are many change pixels undetected by the proposed method.
The reason is the proposed method has a strong ability of reducing the effect
of speckle noise so that many isolated and smallscale change area are regarded
as noise. In spite of that, the OE is smallest among, because of the small FP.
Moreover, the PCC and Kappa yield by the proposed method is highest among.
That means not only the proposed method has promotion than RBM BP, but
also that is best. This experiment indicates the proposed method for image
change detection on the Ottawa data set is best among.
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Table 2. Values of the evaluation criteria of the Ottawa dataset

Method FP FN OE PCC Kappa

FLICM 2608 369 2977 0.9707 0.9052

RFLICM 2381 469 2850 0.9719 0.9075

MRFEM 5397 298 5695 0.9439 0.8133

MRFSM 2855 487 3342 0.9671 0.8833

MRFN 2642 414 3056 0.9699 0.8929

MRFFCM 1636 712 2348 0.9769 0.9151

GKI 2801 213 3014 0.9702 0.8949

RBM BP 389 1595 1984 0.9804 0.9239

The proposed method 557 1345 1902 0.9813 0.9282

4 Conclusion

This paper has presented a novel change detection method based on FRBM.
Since the rather powerful representation capability and robustness, the FRBM
can be applied to learn the representation of the relationships between the two
images, which can reduce the effect the speckle noise effectively. In order to
adapt to the structure of FRBM, we put the idea of fuzzy number of FRBM into
BP, which is to adjust weights further. The experiments on the two data sets
can demonstrate that the proposed method base on FRBM can achieve change
detection well and is more exceptional than other present method in this paper.
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Abstract. For multiobjective optimization problems with large-scale
decision variables, it is difficult to optimize all the decision variables
at the same time. With the divide and conquer strategy, the decision
variable analysis technique is applied to analyze the variables’ property
and divide the variables into subcomponents. However it takes too much
time to analyze a large-scale set of decision variables. In this paper, we
propose a distributed decision variable analysis algorithm. The proposed
algorithm divides all the variables into subcomponents assigns each of
them to a computation node. We test the proposed algorithm on some
popular multiobjcetive optimization problems with large-scale decision
variables and the results show that the proposed algorithm can boost
the analysis process effectively.

Keywords: Multiobjective evolutionary algorithm · Distributed
computing · Large-scale decision variables

1 Introduction

The multiobjective evolutionary algorithm (MOEA) has been widely used in solv-
ing complex multiobjective optimization problems (MOP) in the real world due to
its various advantages [1]. The MOEAs are able to provide a series of solutions for
decision makers to choose from in a specified number of iterations. Many MOEAs
perform well on test suites with small-scale set of decision variables, however there
are many MOPs that have a large-scale set of decision variables, which barricade
the application of MOEAs. To address this issue, the MOPs with high dimensional
decision variables attract much attention in these years [3–7]. With the divide and
conquer strategy, the decision variables are analyzed and divided into subcompo-
nents. And then the optimizers are applied on each of these subcomponents. How-
ever, with the increase of the number of decision variables, the decision variable
analysis consumes more and more time. Ma et al. [2] proposed a multiobjective
evolutionary algorithm based on decision variable analysis. However the sampling
strategy inevitably consume too much time when dealing large-scale decision vari-
able set. The distributed computing is an efficient way to deal with MOPs with
large-scale set of decision variables [11–13].
c© Springer Nature Singapore Pte Ltd. 2016
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In this paper, we investigate the parallel structure of the decision variable
analysis and propose a distributed decision variable analysis algorithm (DDVA)
based on Spark platform. The DDVA includes two parts. The first part is the dis-
tributed control variable analysis (DCVA), which classifies the decision variables
into two sets: distance variable set and diverse variable set. The second part is
the distributed variable dependency analysis (DVDA). The DDVA speeds the
analysis by dividing the tasks into small subcomponents. DDVA is tested on
some popular test problems compared with the sequential computation archi-
tecture using the same computation resource. The experimental results show
that the proposed DDVA can effectively improve the efficiency with the same
resource.

This paper is organized as follows. The multiobjective optimization problem
and decision variable analysis are introduced in Sect. 2. We describe the distrib-
uted decision variable analysis in Sect. 3. In Sect. 4, the proposed DDVA is tested
on some popular test problems and the experimental results are analyzed. We
conclude this paper in Sect. 5.

2 Background

In this section, we introduce the multiobjective optimization problem and deci-
sion variable analysis.

2.1 Control Property

For a certain MOP, the decision variables control different aspects of the evolu-
tionary process. We focus on a MOP described below:

{
min F (X) = (f1(X), f2(X) . . . , fm(X))
subject to: X ∈ Ω

(1)

where m is the number of objectives and n is the number of decision variables.
For a given solution X, if the change in a decision variable xi only generates

solutions that dominate or being dominated by X, then xi is a distance variable.
If the change in xi generates solutions that do not dominate or being dominated
by solution X, then xi is a position variable. xi is a mixed variable if the change
in xi can generate dominating, dominated or nondominated solutions. Examples
of distance variables and position variables of test problem ZDT1 are shown in
Fig. 1.

2.2 Variable Dependency

The large-scale set of decision variables makes it difficult to optimize the MOP.
In [14], the authors indicate that the difficulty can be reduced rapidly if the func-
tions can be transformed into a set of simpler functions. For an MOP with large-
scale set of variables, the dependency need to be learned to perform the division
as suggested in [15,16]. The dependency between two variables are defined as
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Fig. 1. The solutions obtained by changing decision variables. (a) Solutions obtained
by changing distance variables. (b) Solutions obtained by changing position variables.

below. For a given objective function fj(X), decision variables xi1 and xi1 are
interacted if there exists a1, b1, a2, b2 which satisfy:

{
f(x)|xi1=a2,xi2=b1 < f(x)|xi1=a1,xi2=b1

f(x)|xi1=a2,xi2=b2 > f(x)|xi1=a1,xi2=b2
(2)

That is to say, there are two values of xi2 where the monotonicity of the function
of xi1 is inversed.

There are many researches on the decision variable analysis. In [17], a prede-
fined number of decision variables of different types can be set. Many definitions
about the variables dependency is studied in [20]. The variable dependency and
the separability of the objective function is discussed in [21,22]. For variable
dependency detection, many methods like model building, interaction adapta-
tion method, random method and perturbation method has been studied. In [2],
the authors proposed a multiobjective evolutionary algorithm based on decision
variable analysis which divides the large-scale set of decision variables into small
subcomponents in a subsequential manner.

3 Distributed Decision Variable Analysis

In this section, we describe the detail of the distributed decision variable analy-
sis. To distribute the computation to different computation nodes, we have to
divide the whole computation task into small subtasks. Each of the subtask is
computed in a resilient distributed data set (RDD), and the computation process
is performed parallelly in each RDD.

The division of the distributed decision variable analysis is shown in Figs. 2
and 3. In Fig. 2, the decision variables are divided into a set of subtasks each
contains only the variables to be analyzed. To analyze the dependency of the
decision variables, each RDD contains all the variables, but only the dependency
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of the specified variable against all the other variables will be analyzed. The
process of the distributed decision variable analysis is shown in Algorithms 1
and 2.

Fig. 2. The division of decision variables for control property analysis. All the decision
variables are divided into s + 1 subtasks of size nd, and n = (s + 1)nd.

Fig. 3. The division of decision variables for dependency analysis. For a given objective,
the decision variables is divided into t + 1 subtasks of size ne, and (t + 1)ne = n. The
RDD includes all the decision variables so that the assigned decision variables can be
analyzed with all the other variables.

4 Experimental Result and Discussion

In this section, we test our proposed algorithms on some test problems of popular
test suit. The test problems are UF1, UF2, UF3, UF4, UF5, UF6, UF10 [18],
ZDT1 and ZDT4 [19].

To demonstrate the efficiency of the distributed decision variable analysis, we
compare the proposed algorithm with the sequential decision variable analysis.
Each instance are repeated 30 times and the averaged CPU time is calculated.
For each test problem, the number of decision variables is 100, 500, 1000, 10000
and 100000 respectively. For large-scale variable set, it takes too much time for
the sequential decision variable analysis, and the CPU time is omitted. The
experimental results is shown in Tables 1 and 2. The speed ratio is shown in
Figs. 4 and 5.

From Table 1, we notice that the time to perform the sequential control pros-
perity analysis is bearable for low dimension decision variables like 100, 500, 1000
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Algorithm 1. Distributed Control Property Analysis
1: Input: the size of decision variables: n, the number of sampling for each decision

variable: NSC and the other parameters.
2: Initialization: Initialize the empty sets as below. DistanceSet(s): records the

indexes of the distance variables in the sth subcomponent. DiverseSet(s): records
the indexes of the position variables and mixed variables in the sth subcompo-
nent. CombinedDistanceSet: combines the DistanceSet of all the subcomponents.
CombinedDiverseSet: combines the DiverseSet of all the subcomponents.

3: Parallelly processing each subcomponent, which includes decision variables of
{p, . . . , q} as below:

4: for i=p to q do
5: randomly generate a feasible solution: (x1, . . . , xp, . . . , xi, . . . , xq, . . . , xn).
6: for j=1 to NSC do

7: randomly sample a solution x
′
i in an interval: sample = (j − 1) × xU

i −xL
i

NSC
+

rand × xU
i −xL

i
NSC

, x
′
i = xL

i + sample. the xL
i and xU

i are the lower and upper
bounds of variable xi

8: calculate the objective values of the obtained solutions:
F (x1, . . . , xp, . . . , x

′
i, . . . , xq, . . . , xn) and add it to a sample set of vari-

able xi: Si.
9: end for

10: Use the nondominated sort to obtain a series of nondominated fronts of Si.
11: if there are NSC nondominated fronts then
12: Add i to the DistanceSet(s)
13: else
14: Add i to the DiverseSet(s)
15: end if
16: end for
17: Combine all the DistanceSet and DiverseSet and get CombinedDistanceSet and

CombinedDiverseSet.
18: Output: CombinedDistanceSet, CombinedDiverseSet and CPU time.

and 10000 decision variables. With the increase of dimension from 100 decision
variables to 1000 decision variables, there are not distinct difference between
CPU time for all the test problems. With respect to same number of decision
variables, the time consumed is different. It takes more time to analyze the vari-
able prosperity of UF3. UF4, UF5, UF6 and UF10 than ZDT1, ZDT4, UF1 and
UF4. This means that the time for the evaluation is comparable to the overhead
of the program. For different test problems, it also takes more time to evaluation
a solution for a more complex problems. As for 10000 variables, it takes at least
4 times for the program to analyze the decision variables. This indicates that the
sequential control prosperity analysis is faced with big time consumption when
dealing with large-scale decision variable set. It is even impossible to analyze a
test problem of 100000 decision variables. On the contrary, the distributed con-
trol prosperity analysis takes less time than the sequential counterpart, while
showing similar time consumption pattern for the test problems.
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Algorithm 2. Distributed Variable Dependency Analysis
1: Input: the size of decision variable set: n, the number of objectives: m, the set of

distance variables: CombinedDistanceSet, and the number of sampling for each
distance variable: NSD.

2: Parallelly processing each subcomponent including decision variables of {p, . . . , q}
as below:

3: for i=p to q do
4: for j=1 to n do
5: for k=1 to NSD do
6: randomly generate a feasible solution X =

(x1, . . . , xp, . . . , xi, . . . , xq, . . . , xj , . . . , xn), where xi = a1 and xj = b1.
7: randomly select a value a2 in the feasible domain of xi and a value b2 in the

feasible domain of xj .
8: calculate objective vectors of the four solutions: F (X1)|xi=a1,xj=b1 ,

F (X2)|xi=a1,xj=b2 , F (X3)|xi=a2,xj=b1 , F (X4)|xi=a2,xj=b2 .
9: for l=1 to m do

10: Calculate Δfl1 = fl(X
3) − fl(X

1), Δfl2 = fl(X
4) − fl(X

2).
11: if Δfl1 × Δfl2 < 0 then
12: There exists dependency between xi and xj .
13: end if
14: end for
15: end for
16: end for
17: end for
18: Combine the dependency analysis result of each subcomponent.
19: Output: The dependency analysis result and CPU time.

From Table 2, we notice that the variable dependency is more sensitive to
the number of decision variables. This is because the computation complexity is
O(n2), on the contrary the computation complexity of control prosperity analysis
is O(n). For sequential variable dependency analysis, it takes more time than
the distributed variable dependency analysis does. The difference is more distinct
than the time difference of control variable analysis. The time consumed by 10000
and 100000 variables is unbearable.

In Fig. 4, we notice that the speed of DCPA is at least two times faster than
the SCPA. The smallest speed-up ratio occurs on ZDT4 with 100 variables, and
the biggest speed-up ratio occurs on UF10 with 100000 variables. With more
variables, the speed-up ratio increases which means that the DCPA has bigger
advantage over SCPA when dealing with large-scale decision variables. In Fig. 5,
we notice that the smallest speed-up ratio is the test on ZDT1 with 1000 decision
variables. The biggest speed-up ratio is 8, which is achieved on ZDT4 with 100
variables. The overall speed-up ratio of DVDA is smaller than that of DCPA,
which results from the consumption of overhead.
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Table 1. The averaged CPU time of sequential decision variable analysis and distrib-
uted decision variable analysis

Variables Algorithms ZDT1 ZDT4 UF1 UF2 UF3 UF4 UF5 UF6 UF10

100 SCPA (ms) 15387 14561 11361 11880 19854 20315 21358 24621 27856

DCPA 3231 3429 5018 3021 5031 5246 6354 7652 8632

500 SCPA (ms) 16842 16215 13548 17892 20541 21502 22332 26482 29840

DCPA 5631 3564 5194 5988 5732 5864 6584 7956 9251

1000 SCPA (ms) 17896 17863 15684 18975 25462 26784 28520 29898 33650

DCPA 7219 3873 5378 6268 7428 6560 6915 8018 9820

10000 SCPA (ms) 60213 101548 153548 163251 201687 216803 223640 258870 298406

DCPA 15212 29043 27470 29315 30518 30538 32168 37561 40351

100000 SCPA (ms) NaN NaN NaN NaN NaN NaN NaN NaN NaN

DCPA 648825 192881 2065685 2296183 2387710 2653034 2754631 2914524 3502136

Table 2. The averaged CPU time of sequential variable dependency analysis (SVDA)
and distributed variable dependency analysis (DVDA)

Variables Algorithms ZDT1 ZDT4 UF1 UF2 UF3 UF4 UF5 UF6 UF10

100 SVDA 16845 18945 18742 19874 20154 23548 23481 24846 25680

DVDA 3391 2412 6113 6845 7502 7684 7945 8015 8866

500 SVDA 178650 54213 65431 75153 77685 84502 102180 121540 143250

DVDA 9991 12333 22573 24897 26458 24159 23648 26487 26982

1000 SVDA 189710 203154 124584 187865 235481 264810 302154 398100 456800

DVDA 13485 44764 89904 98520 102236 105798 112357 120258 145690

10000 SVDA 60213 101548 153548 163251 201687 216803 223640 258870 298406

DVDA 1357441 2031548 2354846 2459875 2543652 2758521 2987996 3021548 3535110

100000 SVDA NaN NaN NaN NaN NaN NaN NaN NaN NaN

DVDA 23054789 302154698 345132015 376894159 379965102 403154120 415689984 435687415 675484102
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Fig. 4. The speed ratio of DCPA over SCPA. (a). Problems with 100 variables. (b).
Problems with 500 variables. (c). Problems with 1000 variables. (d). Problems with
10000 variables.
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Fig. 5. The speed ratio of DVDA over SVDA. (a). Problems with 100 variables. (b).
Problems with 500 variables. (c). Problems with 1000 variables.
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5 Conclusion

For a multiobjective optimization problem with a large-scale set of decision vari-
ables, it is necessary to analyze the control prosperity and the variable depen-
dency to reduce the solving complexity. The present decision variable analysis
methods deals with this problem in a sequential manner, which takes too much
time for application in the real world. The inherent parallel structure of decision
variable analysis is suitable for distributed computing.

In this paper, we proposed a distributed decision variable analysis method
which based on Spark platform. The DDVA includes two main parts, the first
part analyze the control prosperity parallelly and the second part detects the
dependency between variables. The proposed algorithm is test on some popular
test problems with a large-scale set of decision variables, and the results show
that the proposed distributed variable analysis algorithm can effectively reduce
the time consumption.

In the future, the proposed algorithm will apply on popular test problems
with distributed evolution process. The distributed algorithm will be optimized
to reduce the time consumption of the overhead. We will dive into the setting of
the distributed program to study the influence of different parameters.
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Abstract. In multi-task learning, different but related tasks are solved
simultaneously. Extracting and utilizing relationships between these
tasks can be very helpful for learning predictors with strong general-
ization ability. Unfortunately, the optimization objectives of multi-task
learning are commonly non-convex. Traditional optimization methods
based on gradient are limited in those non-convex problems. Previous
studies mainly focused on transforming the objective function to be con-
vex. But those methods will distort the original intention. This paper
tries to solve the original optimization objective by applying derivative-
free methods, which is able to solve complex non-convex problems but
usually suffer from slow convergence speed. In this paper, we investigate
combining derivative-free and gradient optimization methods to inherit
the advantages of the both. We apply this mixed method to solve multi-
task learning problems with a low-rank constraint directly. Experiment
results show that this method can achieve better optimization perfor-
mance than the derivative-free and the gradient methods alone.

Keywords: Multi-task learning · Non-convex optimization · Derivative-
free optimization · Gradient descent

1 Introduction

Multi-task learning, which solves multiple learning tasks simultaneously, is
attracting researchers’ attention as a sub-field of machine learning increasingly.
In most cases, formalized objective function of multi-task learning is non-convex
and hard to be solved directly by traditional optimization method based on
gradient. Multi-task learners always relax original constraint and transform the
non-convex objective function to convex one [1,2,4,14,16]. It sacrifices the pre-
cision of model for the efficiency of optimization. It will have a negative effect
on the generalization performance of predictors.

Hence we want to solve the optimization problem under original constraint
directly. However existing non-convex optimization algorithms are suffering from
poor efficiency. Recently, a new algorithm RAndomized COordinate Shrinking
(Racos) [22] was proposed for solving non-convex optimization problems, and
guarantees that it can get approximate global optima within finite querying
c© Springer Nature Singapore Pte Ltd. 2016
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budget. In this paper, we propose an algorithm which combines Racos and
gradient method in a reasonable way (denoted as RacosGD). RacosGD can
solve multi-task learning problem with low-rank constraint directly.

The rest of paper is organized in 4 sections. In multi-task learning, we intro-
duce the background and formulate the objective function. In derivative-free
optimization, we introduce algorithm Racos and propose our algorithm accord-
ing to the objective function. In experiments, we prove that our algorithm
has better performance than other contrastive algorithms empirically. The last
section is conclusion.

2 Multi-task Learning

Multi-task learning (MTL) is a machine learning approach that learns predic-
tors for related problems simultaneously in shared feature space. Many applica-
tions can be regarded as multi-task learning problems, such as web image and
video search [20], disease prediction [7] and therapy outcome [24]. In these cases,
learning problem is composed of many sub-problems called tasks, and tasks are
related with each other objectively. A simple approach to solve it is to consider
every task is independent and solve them one by one. This approach is single-
task learning (STL). In MTL, multiple tasks learn simultaneously by extracting
and utilizing appropriate shared information across tasks. MTL makes full use
of the relationship between tasks. Obviously the predictor learned by MTL has
stronger generalization ability than the one obtained by STL.

2.1 Objective Function

In multi-task learning, previous works share same framework that objective func-
tion is combined with empirical loss and regularization term: minW L(W ) +
Ω(W ). Where W are the predictors of MTL that are estimated from the training
data, L is loss function, and Ω is regularization term that defines specific related-
ness between tasks. In fact, Ω is the assumptions on relatedness. The regulariza-
tion terms are different in different applications. There are many prior works on
modelling relationship among tasks using novel regularization [1–5,10,12,14,16].

In this work, we assume that tasks share same feature space and formal-
izing by low-rank constraint on W . Hence the objective function with specific
regularization term can be expressed as:

min
W

L(W ) + λrank(W ) (1)

Where λ is a hyper-parameter to trade off empirical loss and regularization
punishment. It has been proved that above optimization problem with low-rank
constraint is NP-hard [19]. Before proposing our method, we will explain the
symbols that appear in this paper.
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2.2 Formulation

Assuming that multi-task learning problem contains T tasks. The dataset in t-th
task can be denoted as Dt = {(xt,1, yt,1), (xt,2, yt,2), ..., (xt,mt

, yt,mt
)}. Where

t ∈ {1, 2, . . . , T}, xt,i ∈ Rd is the i-th instance in dataset corresponding to
t-th task, i ∈ {1, 2, . . . ,mt}, d is dimension size of instance, yt,i ∈ {−1,+1} is
label, mt is instance size in t-th task training dataset. In our work, we want
to learn T different linear predictors w1, w2, . . . , wT from T training datasets
D1,D2, . . . , DT . For predictor wt, the prediction can be given by ft(xt,i) =
sign 〈wt, xt,i〉. Where sign 〈·〉 is indicator function and 〈·, ·〉 is inner product.
Because predictors are learned simultaneous, our optimization objective is a
orthogonal matrix W = {w1, w2, . . . , wT }, W ∈ Rd×T . Each column vector in
W is a predictor. Considering low-rank assumption, W can be represented as
the product of two low-rank matrices: W = L×RT . Where L ∈ Rd×r, R ∈ RT×r

and r � min (d, T ). Low-rank assumption is satisfied naturally because of the
small integer r. The optimization objective is transformed from W into (L,R) by
decomposition. We select logistic loss as empirical loss and low-rank assumption
is constrained by decomposition. Hence learning problem in our work can be
represented as:

min
(L,R)

f(L,R) = min
(L,R)

T∑

t=1

mt∑

i=1

log(1 + exp(−Yt,i(L × RT )
T

t xt,i)) (2)

Where f(L,R) is our objective function, (L × RT )Tt is the predictor of t-th task.
If there is no other special instruction, (2) is the objective function which is
solved by optimization methods mentioned later.

2.3 Traditional Multi-task Learning Methods

The optimization problem represented by (1) is NP-hard. In traditional methods
trace norm [13] is introduced to (1) to simplify the complexity of optimization
[1,2,4,14,16]:

min
W

L(W ) + λ||W ||∗ (3)

Where ||W ||∗ is the trace norm of W , ||W ||∗ =
∑

i σi(W ), σi(W ) is a singular
value of W . Trace norm is a convex relaxation for rank constraint. Gradient-
based optimization methods can be applied to solving problem (3). The flaw of
the relaxation has been mentioned above.

2.4 Alternative Gradient Descent (GDO)

Because of the product of L and R, the optimization problem represented by
(2) is non-convex. But if we fix L as L̃, the optimization problem minR f(L̃, R)
is convex. Similarly, if we fix R as R̃, the optimization problem minL f(L, R̃) is
convex too. We denote this kind of property alternative convex property. Then
according to this property, the alternative gradient descent algorithm (GDO) is
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proposed to optimize problem (2). GDO fixes L and R alternatively and optimize
another one using gradient descent method (GD) [8]. Repeating this step several
times, we can get a pair solution (L̃, R̃) finally. But (L̃, R̃) is not the global
optimal solution with high probability [11].

3 Derivative-Free Optimization

Because (2) is non-convex, it can not be solved by gradient-based methods and
GDO can not get global optimal solution. Hence we want to introduce derivative-
free optimization methods to solve this problem.

There exist some derivative-free optimization methods now such as evolu-
tionary optimization algorithms and Bayesian optimization [9] etc. Evolution-
ary algorithms such as evolution strategy (ES) [6], particle swarm optimization
(PSO) [15] are always used to solve kinds of complex non-convex optimization
problems. Evolutionary algorithms are heuristic optimization algorithm. Com-
pared with gradient-based methods, evolutionary algorithms suffer from weak
theoretic foundation and poor efficiency. Recently a classification-based non-
convex optimization algorithm Racos was proposed to solve complex optimiza-
tion problems with high efficiency and theoretic guarantee [22]. Focusing on
multi-task learning problem represented by (2), we want to introduce Racos to
avoid falling into local optimum and utilize high convergence rate of gradient-
based methods. In this work we propose a reasonable strategy (RacosGD) of
combining Racos and gradient descent. Before giving details of RacosGD, we
will introduce Racos briefly.

3.1 Classification-Based Optimization

Racos [22] has be proposed for solving derivative-free optimization problem
through classification. Racos is an iterative algorithm, inspired from the sta-
tistical view of evolutionary algorithms [17,18,23] and is based on the sampling
and learning framework [21]. The approach that Racos generates offspring is
based on classification. That is to say Racos uses a classification learning model
to classify sample space into two categories, positive or negative by regarding
current population as training set. Then, sampling in the space with positive
label with probability λ, and in original space with probability 1 − λ to avoid
falling into local optimum.

Algorithm 1 is the pseudo-code of Racos. Labeling and Sampling are sub-
procedures of Racos. We use Labeling to label the samples in set Pi. For exam-
ple, Labeling labels one or several samples in Pi with smallest evaluation values
as +1 and labels others as −1 for minimization problem. If label is denoted
as y, Bi = {(x1, y1), (x2, y2), . . . , (xm, ym)} is training data in i-th iteration.
Sample(h, λ) is a sampling procedure. It samples from positive label space with
probability λ or original space with probability 1−λ. Racos initialize sample set
P0 by sampling from original space uniformly (step 1). Step 2 and 10 are used
to update the best solution x̃ so far. In each iteration (step 3 to 11), Racos
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Algorithm 1. Racos

Input:
f : Objective function to be minimized; λ: Balancing parameter;
C: A binary classification algorithm; N ∈ N: Number of iterations;
B: A set with labeled samples; m ∈ N: Sample size in each iteration.

Procedure:
1: Collect P0 = {x1, x2, ...xm} by i.i.d. sampling from UX

2: Let x̃ = argminx∈P0
f(x)

3: for i = 1 to N do
4: Bi = Labeling(Pi−1) using f
5: Let Pi = ∅

6: for j = 1 to m do
7: h = C(Bi)
8: xj = Sampling(h, λ), query f(x) and let Pi = Pi ∪ {xj}
9: end for

10: x̃ = argminx∈Pi∪x̃ f(x)
11: end for
12: return x̃

need to generate offspring set Pi with m new samples: firstly, Labeling is used to
evaluate each sample in Pi−1 and generates Bi (step 4). During step 6 to 9, A
unique sampling space is trained by C for each sample in Pi (step 7), and then
Sampling sub-procedure is called to get a new sample (step 8). At the end of
iterations, Racos returns the best solution that is found so far (step 12).

Algorithm 2. Querying
Input:

f : Objective function to be minimized;
R′: A fixed matrix of R.

Procedure:
1: L̃ =GD(L) for problem minL f(L, R′)
2: return f(L̃, R′)

Racos is based on sampling-querying framework and suitable for solving
black-box optimization problem. But in multi-task learning it is not necessary
to consider objective function as black-box. The gradient information in (2) can
be used to improve convergence rate.

3.2 RacosGD

RacosGD is not a simple combination of Racos and GD, but embedding GD
in Racos. Racos ensures that we can get approximate global optima with
high probability and GD can accelerate convergence through making full use of
gradient information in objective function. The main idea of RacosGD is that
we get a start point for GD from Racos and then get precise solution by GD.
Considering alternative convex property of (2), GD can also be used to simplify
optimization problem that Racos faces.
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Algorithm 3. RacosGD

Input:
f : Objective function to be minimized;
Querying: querying sub-procedure in Racos.

Procedure:
1: R′ =Racos(R,f) with Querying
2: repeat
3: L′ =GD(L,f), fix R as R′

4: R′ =GD(R,f), fix L as L′

5: until stopping criterion is satisfied
6: return (L′, R′)

There are two objectives in (2), L and R. If R is fixed as R′, we can get L̃
by applying GD to solve problem minL f(L,R′). Because GD can only get local
optima for non-convex function. f(L̃, R′) is lower bound function value decided
by R′ and means the potential of R′. Hence in Racos it is not necessary to
optimize L and R simultaneously. The optimization objective of Racos is only
R, and then we embed GD in evaluating each R according to objective function.
Algorithm 2 is the pseudo-code of querying sub-procedure. Algorithm 2 returns
objective function value with best L as evaluation value for each R′ generated
by Racos.

Overall, Algorithm 3 is pseudo-code of RacosGD. In the first phase (step 1),
we get start matrix R′ by Racos with Querying (Algorithm 2). The next phase is
alternative gradient descent algorithm starting from R′ (step 2 to 5). Finally we
can get the best solution (L′, R′) and the predictors of multi-task learning can be
recovered by W ′ = L′ ×R′T . There are some brief discussions about RacosGD.
R′ is the starting point of GD. If R′ does not fall into local optima, intuitively
there is no local optima between R′ and global optima, (L′, R′) generated by GD
is global optima. GD is used for several times in RacosGD, such as in Querying
and in alternative gradient descent. In different cases, the hyper-parameter set-
tings of GD are different. In Querying, GD is used to explore the potential of R′,
so the step size can be set slightly long and the stopping criterion can be slightly
easy. But in alternative gradient descent, GD is used to get a exact solution, so
step size and stopping criterion should be preciser than those in Querying.

4 Experiments

We selected four multi-label learning datasets from MULAN1. Table 1 shows the
details of datasets. Multi-label learning is a special multi-task learning problem,
because each label learning can be seen as a task.

Before presenting the details of our experiments, we will define the estimate
criterion for each multi-task learning predictor (L,R) and denote it per-loss (PL,
Definition 1). PL means loss for a solution in each task and each instance.

1 http://mulan.sourceforge.net/.

http://mulan.sourceforge.net/
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Table 1. Datasets information

Data set Task size Dimension size Instance size

Birds 19 260 322

CAL500 174 68 310

Emotions 6 72 391

Flags 7 19 129

Definition 1. Per-Loss (PL). Given a solution (L,R), f is objective function
of multi-task learning problem, T denotes the number of tasks and mt denotes
the number of instance in dataset corresponding to t-th task. PL can be expressed
as:

PL(L,R) =
f(L,R)
∑T

t=1 mt

4.1 Settings

We want to validate following conclusions through experiments:

1. The low-rank assumption is satisfied by decomposition of W . The low-rank
hyper-parameter r represents the relationships between tasks. Best settings
of r are different in different datasets. We want to find best r setting for each
dataset;

2. The solution obtained by RacosGD is global optimum with high probability
because of Racos. The predictors generated by RacosGD should be better
than those generated by GDO;

3. Racos performs stronger optimization ability than evolutionary optimization
algorithms. This conclusion should establish in this problem;

4. Traditional multi-task learning methods optimize relaxed constraint (3) to
get predictors. It will loss original assumption in this way. The predictors
generated by RacosGD will show stronger generalization ability than those
generated by traditional way.

According to the targets, we choose compared approaches as follows: alterna-
tive gradient descent (GDO), evolution strategy combined with gradient descent
(ESGD) and a traditional approach in multi-task learning (TNLL). GDO opti-
mize L and R using GD alternatively with a stochastic starting point. ESGD
is generated by replacing Racos with evolution strategy (ES) in Algorithm 3.
TNLL is implemented by a multi-task learning integration tool MALSAR2 for
problem (3). Then we design two groups of experiments to validate conclusions:

A For RacosGD, GDO and ESGD, we set r = 3, 5, 7, 9 to study influence of
r. For each r setting and dataset, each algorithm runs 5 times independently
and the best PL of each algorithm will be chosen and compared.

2 http://www.public.asu.edu/∼jye02/Software/MALSAR/.

http://www.public.asu.edu/~jye02/Software/MALSAR/
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B For RacosGD, GDO and TNLL, each algorithm runs 5 times in each dataset.
We compare the best accuracy in test dataset for each algorithm.

Experiment A is used to validate conclusions 1, 2 and 3. Experiment B is used
to validate conclusion 4.

4.2 Results

Figure 1 and Table 2 show the results of experiment A. From Fig. 1, in most cases
RacosGD can get the best solution (smallest PL) compared with other algo-
rithms. In birds and CAL500, the best r setting maybe greater than 9 because
PL has been reduced with increasing of r. In emotions and flags, the best setting
of r maybe 7. Those results validate conclusion 1. Comparing RacosGD with
GDO, RacosGD can get smaller PL than GDO in all datasets except emo-
tions. This result validates conclusion 2. Comparing RacosGD with ESGD,
RacosGD get smaller PL than ESGD in those four datasets. This result val-
idates conclusion 3. Table 3 shows the results of experiment B. The accuracies
obtained by RacosGD and GDO are far greater than those obtained by TNLL.
It means that relaxation of constraint has a negative effect on generalization
ability of predictors. This result validates conclusion 4.
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Fig. 1. Illustrating the PL changes with rank hyper-parameter r in each dataset.
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Table 2. The best PL value obtained by each algorithm in each dataset from experi-
ment A. The PL value in bold means the best (smallest) value in each dataset.

Algorithm Birds CAL500 Emotions Flags

RacosGD 0.0986 1.3568 2.0049 2.8631

GDO 0.1000 1.3586 1.8663 2.8813

ESGD 0.1065 1.3596 2.1029 2.8852

Racos 0.6398 2.9940 2.1146 2.8876

ES 0.7328 3.0757 2.6273 3.0917

Table 3. The testing accuracies for each algorithm in each dataset. The accuracy in
bold represents the best (greatest) in each dataset.

Algorithm Birds CAL500 Emotions Flags

RacosGD 0.9202 0.8586 0.7323 0.7467

GDO 0.8932 0.8467 0.8246 0.6976

TNLL 0.5232 0.5069 0.5140 0.6066

5 Conclusion

In this work, we propose a new optimization method RacosGD to solve multi-
task learning problem with low-rank constraint. It is different from tradition
multi-task learning methods because our method can optimize the original objec-
tive function without relaxation. RacosGD embeds GD into Racos in a rea-
sonable way. RacosGD uses Racos to find a suitable starting point and uses
GD to get precise optimal solution. From experiments RacosGD shows excel-
lent optimization performance in most cases, and the predictors generated by
RacosGD shows great generalization ability.
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Abstract. By mimicking the learning process of human in real-life,
teaching-learning-based optimization algorithm (TLBO) is proposed for
global optimization. Since then, it has been widely and effectively used
in kinds of fields. As a swarm intelligent optimization method, TLBO
has the virtue of fewer algorithm-parameters adjusting, easy to imple-
ment, and good convergence. However, there exist no advising directions
in the learning phase, which may result in a decrease of local search
ability of the TLBO when solving complex problems. In this paper, a
collaborative learning model (CLM) which modified learner phase and
novel self-studying phase is proposed to enhance both the global and
local searching ability. In CLM method, a collaborative pattern or com-
petitive pattern is probability chosen by learners in the learner phase. To
efficiently conduct learners, in the self-studying phase, teacher updates
his/her position according to neighborhood information adaptively. We
perform the CLM method on a series of real-world resource allocation
problem in multi-cell networks. Experimental results indicate that the
CLM method is able to achieve more satisfactory or at least comparable
solutions on most real-world problems.

Keywords: Teaching-learning-based optimization · Collaborative
learning · Neighborhood information · Resource allocation problem ·
Multi-cell network

1 Introduction

Global optimization problem which is defined as searching for the best solution
to satisfy the given objective function among all possible feasible solutions arises
frequently in every field of our real-world life [1]. Finding the global optima is
often difficult especially in some complex problems since there may exist many
c© Springer Nature Singapore Pte Ltd. 2016
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local optimal solutions. Furthermore, the derivative properties of some objective
functions are hard or impossible to get when using analytic or numerical method.
So plenty of intelligent algorithms which inspired by some natural situation
or process are designed to overcome this shortage, such as genetic algorithm
(GA) [2], simulated annealing (SA) [3], bat algorithm (BA) [4], particle swarm
optimization (PSO) [5], harmony search (HS) [6] and so on.

Teaching-learning-based optimization (TLBO) is a population-based intelli-
gent method which inspired by the learning process of a typical school studying
scenario [7]. Recently, TLBO has been widely and effectively used for numer-
ical functions and real-world optimization problems due to several appealing
advantages (i.e., fewer and simple working parameters, easy to implement, fast
convergence, etc.). Moreover, new learner or teacher phase and a set of other
meta-heuristics have been incorporated into teaching-learning-based optimiza-
tion to solve serials of discrete or mechanical problems [8–18]. In [9], a self-
learning phase is involved to improve the weakly local search ability of classical
TLBO.

In this paper, a collaborative learning model (CLM) that designed based on
the TLBO framework is proposed for global optimization. In CLM method, there
have three basic steps: the teacher phase, learner phase and self-studying phase.
The teacher phase adopts the same operator as the original TBLO to undertake
global searching mission. In learner phase, two learners are randomly chosen
by the current learner, which learns through collaborative pattern or compet-
itive pattern with a specified probability. In typical school teaching situation,
teachers not only teach learners to improve their knowledge, but also upgrade
own ability by self-studying or interaction simultaneously in order to give more
effective guidance to the learners. So the self-studying concept is introduced in
CLM, which utilize neighborhood information of the contemporary teacher to
enhance the local search ability then conduct learners exploring more promising
area. The performance of CLM is investigated on a series of resource allocation
problems in multi-cell networks. The results indicate that the CLM can achieve
more satisfactory or at least comparable solutions on most real-world problems
[10–14].

The remainder of this paper is organized as follows: Sect. 2 presents a detailed
description of the proposed CLM. Section 3 presents the experimental results and
related analysis. Finally, Sect. 4 gives the concluding remarks.

2 The Collaborative Learning Model

In the classical TLBO, both the teacher phase and learner phase have good global
searching ability. In the teacher phase, learners learn from the global optimal
individual; and in the learner phase, the individual, which the current learner
learns from is selected randomly. These may have the following drawbacks:

(1) Learning in the learner phase has no guiding direction;
(2) Too much emphasis in global performance causes weakly local searching

ability.
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To overcome these problems, novel learner phase and self-studying phase is
proposed in CLM which are detailed as follows:

2.1 Learner Phase of CLM

As we all known, collaboration and competition are two typical models used
in learning. Therefore, in the learner phase of CLM, two randomly selected
individuals choose from the two modes with a certain probability for the learner
to learn. In this work, a predefined probability PL determines which learning
mode will be adopted by a learner. The learning process is implemented as
follows:

Li,new =

{
L1
i,new, if rand ≤ PL (competition)

L2
i,new, otherwise(collaboration)

(1)

L1
i,new =

{
Li,old + r1 ∗ (Lbest − Li,old), if Lbest is better than Li

Li,old + r1 ∗ (Li.old − Lbest), otherwise
(2)

Lbest =

{
Lj , if Lj is better than Lk

Lk, otherwise
(3)

L2
i,new =

{
Li,old + r2 ∗ (Lj − Lk), if Lj is better than Lk

Li,old + r2 ∗ (Lk − Lj), otherwise
(4)

Where Lj and Lk (j �= k �= i) are chosen by current ith learner randomly;
r1 and r2 are randomly selected from range [0, 1]. Equations (2) and (3) is the
competitive model, which indicates that the learner will learn from the better
one between the two individuals. In the collaboration model shown as Eq. (4),
the difference of the two individual is mainly considered when learning. Since
this, by fully exploiting the information of the whole class, learning is always
toward to a better direction.

2.2 Self-studying Phase of CLM

In general, in the process of the teacher teaching, they also interact with others
or learn from themselves. The goal is to enhance their knowledge grade to give a
better guide to learners in order to improve the overall performance of the class.
In the proposed CLM method, to effectively enhance the local searching ability,
position of the current teacher is updated by searching in the neighborhood area
adaptively. The self-studying process is carried out as follows:

Tnew,j =

{
Told,j(g) + r3 ∗ TR, if rand ≤ PSL

Told,j(g), otherwise
(5)
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Where Told,j(g) and Tnew,j(g) are the jth component of the original and new
teachers after local updating. g indicates the current iteration number, PSL is a
predefined mutation probability. r3 is randomly selected from range [0, 1] and
TR is selected at random in the reasonable value range.

It is worth noticing that, in the later iteration of the algorithm, searching
generally focus on the local area, so the random step r3 used in Eq. (5) can ensure
a certain probability jump out of local optima when searching in the neighbor-
hood. In each iteration, the executing number of the self-studying process is
equivalent to the current iteration number g.

Fig. 1. Convergence curves of the CLM and TLBO on four benchmark problems.

3 Experimental Result

In this paper, we applied the CLM method to real-world resource allocation
problem in multi-cell networks [19,20], and compared the results with TLBO and
some related techniques [21,22]. The obtained comparison results indicate that
the CLM method provides effective solutions when solving the optimal resource
allocation problem. Detailed descriptions of the benchmark problem and resource
allocation problem can be referred as [9,21,22]. A comparison results with TLBO
and other two representative approaches [21,22] are presented in Table 1.

In this simulation, class size and maximum generations for TLBO and CLM
are set to 100 and 500. In addition to demonstrating the coverage of the CLM,
the comparison convergence curve of CLM and TLBO on two testing problems
is illustrated (Fig. 1). From Fig. 1, it is clearly shown that the proposed CLM
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has fast convergent speed than TLBO. For the easy problem p6, p8 and p10, the
CLM can reach the global optima within 10 generations. For the complex p10,
TLBO converge faster than CLM within 160 generations. However, in the later
generations, CLM can jump out to find global optimal solutions while TLBO is
still trapped into local optima.

Table 1. The comparison results of the eleven problems

Problem index Lower bound [21] Best [22] Best TlBO Best CLM Best/Mean

1 381 381 382 381 381/381

2 427 463 449 463 445/460

3 533 533 534 533 533/533

4 533 533 533 533 533/533

5 221 221 222 221 221/221

6 221 273 268 274 268/274

7 309 309 309 309 309/309

8 309 309 312 310 309/309

9 21 73 73 73 73/73

10 309 309 312 310 309/309

11 71 79 74 75 71/71.1

4 Concluding Remarks

In this paper, a collaborative learning model (CLM) is proposed for global
optimization. Different from TLBO, the CLM consists of three mainly phases:
teacher phase, learner phase and self-studying phase. To efficiently guide learn-
ers toward to a better direction, a competitive learning model and collabora-
tive learning model is probably chosen when leaning [23,24]. In addition, in
the self-studying phase, each teacher updates his position adaptively using the
neighborhood information, which is intended to enhance local search ability of
the algorithm. Through collaborative learning by teachers and learners, global
search ability and local search ability of the algorithm have been improved.
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Abstract. Concept drift is one of the biggest challenges in applying
incremental learning to real-world applications. A number of ensemble
methods, especially the chunk-based ones, have been proposed for con-
cept drift adaptation. To avoid the impact of the inconsistent information
in historical chunks, a novel approach named TransferIL is proposed. A
transfer method is used in TransferIL to extract the useful knowledge in
historical models, which is then integrated for learning the new chunk of
data. Empirical results, obtained from both synthetic data and real-world
data, have confirmed the effectiveness of the learning strategy.

Keywords: Concept drift · Incremental learning · Transfer learning

1 Introduction

Incremental learning, which trains a model to generalize the data distribution in
an incremental manner, has attracted growing attention in recent years. In real-
world applications, the environment, from which the examples are generated,
always changes. This phenomenon, caused by the change of the data distribution
p(x, y), where x stands for the feature vector and y stands for the class label, is
referred to as concept drift.

To deal with the challenge of concept drift, various works have been proposed,
which can generally be divided into three categories, i.e., sliding window, drift
detection method and ensemble method. Different from sliding window and drift
detection method, in the ensemble methods [1,2], the historical knowledge is used
to facilitate the learning of current data, instead of being dropped. To avoid the
inconsistent information from the historical knowledge caused by concept drift, a
novel approach, named as Transfer-based Incremental Learning (TransferIL), is
proposed in this work. TransferIL employs a transfer operation to each historical
models before using, to extract knowledge from historical models to facilitate the
learning of the current data distribution.

c© Springer Nature Singapore Pte Ltd. 2016
M. Gong et al. (Eds.): BIC-TA 2016, Part I, CCIS 681, pp. 473–479, 2016.
DOI: 10.1007/978-981-10-3611-8 43
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2 Problem Description and Related Work

In incremental learning, at each time step t, a chunk of data is received, denoted
as Dt = {(x1

t , y
1
t ), (x2

t , y
2
t ), · · · , (xn

t , yn
t )}. The i.i.d. assumption is assumed to be

held inside each chunk and the data distribution is denoted as pt(x, y) at step t.
Since concept drift may happen at each time step, the underlying distribution
may change at step t, i.e., pt(x, y) �= pt−1(x, y). The goal of incremental learning
with concept drift is to obtain a model Ft to minimize the expected loss on
distribution pt(x, y) at each time step t, as follow

Ft = argmin
f

∫
�(f(x), y)pt(x, y)dxdy (1)

where �(·, ·) is the loss function.
Sliding window, drift detection method and ensemble method are three typ-

ical strategies for concept drift adaptation. Both of sliding window and drift
detection method intend to ensure that the model is trained with the examples
from the current data distribution to fulfill the i.i.d. assumption. The potential
valuable information in historical knowledge is dropped, which may be utilized to
promote the learning performance. Ensemble model is another type of strategy
that is widely studied in incremental learning with concept drift, which combines
the historically trained models in current learning step.

To deal with concept drift, almost all the existing ensemble methods focus
on how to assign an appropriate weight for each model in ensemble, and differ-
ent weight assignment methods have been proposed. Uniform weight is a basic
weighting method, which is used in SEA [1]. Most of the ensemble models utilize
the weighting strategy that the highly performed model should be assigned a
high weight, such as AUE2 [2]. In [5], a dynamic weight assignment method, in
which the weight is determined by the local performance on the current data, is
proposed. In addition to using the performance, the age of the model has also
been considered to determine the weight as well (i.e., time-adjusted performance)
in Learn++.NSE [4].

In addition to assigning a proper weight to each model in ensemble, some
other techniques are also applied. For example in AUE2, the new chunk of data
is not only used to train a new model but also used to update the maintained
historical models. To deal with the inconsistent knowledge, a feature represen-
tation transfer approach, named as TIX model [3], is presented to convey the
useful historical knowledge.

3 The New Approach for Concept Drift Adaptation

Similar with the existing ensemble methods (e.g., [1]), TransferIL trains a model
with each chunk of data and assembles them with weighted majority voting for
classification. Different from these algorithms, TransferIL transfers the historical
models with the current chunk of data first, instead of utilizing them directly in
ensemble. The mining flow of TransferIL is shown in Fig. 1.
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Fig. 1. Illustration of the mining flow of TransferIL.

Algorithm 1. TransferIL
Input: D1, D2, · · · , Dt, · · · : the data stream in incremental learning, S: the historical model

set, m: the predefined archive size of S
Output: Ft: the predict model at learning step t

1 while data chunk Dt is available do
2 ft ← train a new model with Dt;

3 ft
i ← transfer all the maintained model fi in S with Dt;

4 wt
i ← evaluate all the transferred model ft

i ;
5 if |S| < m then
6 S ← S

⋃
ft;

7 else
8 ft

w ← the transferred historical model with worst performance;

9 remove the worst performed model ft
w;

10 S ← replace fw with ft in S;

11 Ft = (
∑

i wt
if

t
i + ft)/(

∑
i wt

i + 1)

To extract the consistent knowledge in historical models, the proposed Trans-
ferIL adapts historical models to the current data distribution by a transfer-like
update with fully respecting the current data distribution. Then, combine them
with weighted majority voting into an ensemble model for prediction. TransferIL
is described in Algorithm 1. The data stream can theoretically be infinitely long,
but only a limited number of historical models can be preserved due to the lim-
itation of memory size. Hence, a model selection is needed. In this framework,
three main elements are involved, i.e., model transfer, model selection and model
weighting.

In transfer operation in TransferIL, the inconsistent knowledge in historical
models should be guaranteed not to be introduced, and the current chunk of
data should be correctly expressed in the transferred models. For the case where
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all examples in data chunks could be perfectly classified by a regularized model,
the goal of the transfer operation in incremental learning can be expressed as

minimize
fi
t

‖fi
t − fi‖

subject to fi
t (x) = y, ∀(x, y) ∈ zt

(2)

where ‖a − b‖ represents the distance between two models a and b, and f i
t is

the transferred model of fi with data zt. For decision tree model, it could be an
operation to update the leaf nodes and construct new sub-tree with new data.
For linear model, the idea from the online passive-aggressive (PA) model could
be used herein. In the implementation, the decision tree is selected as the base
model. Specifically, drop the statistics of the historical data and place the new
chunk of data into the tree leaf nodes. For the leaf node with few examples,
adjust the original labels of the node to fit the current data, if no split needed.

To combine the models into an ensemble, weights are assigned to them. For
the transferred models, the weight is based on the relevance of a historical model
fi to the current chunk of data Dt. The transferred model from a relevant his-
torical data distribution will obtain a good performance on the current data
distribution. Therefore, the accuracy of the transferred historical model is eval-
uated and used as the weight in TransferIL. In incremental learning, the number
of historical models can be infinite, and a model selection is needed. Similar with
the existing algorithms, TransferIL selects the historical models by replacing the
model with the lowest weight with the current model, if the model set is full.

4 Experiment

The proposed TransferIL is compared with four state-of-the-art algorithms, i.e.,
SEA [1], Learn++.NSE [4], and AUE2 [2]. In order to comprehensively investi-
gating the performance of TransferIL, two sets of synthetic data streams (i.e.,
SEA and rotate) and three sets of real-world data streams (i.e., covertype, Poker
Hand, and CTR prediction) are tested. SEA data involve 3 features with value
between 0 and 10, and uses f1 + f2 ≤ θ to determine the class of a data point.
Rotate concept drift (ROT) simulates the change of data distribution by rotat-
ing the decision boundary. Covertype (COV) and Poker Hand (POK) datasets
are real-world datasets presented in the UCI Machine Learning Repository. CTR
prediction data (CTR) is a data set obtained from a real-world application of
Tencent company. The details of the datasets are described in Table 1.

To be fair, all of the compared algorithms use the model of decision tree as the
learner. Since AUE2 needs to use an on-line model as the learner, Hoeffding tree
model [6], an on-line version decision tree, is employed. For the other algorithms
in the experiment, the traditional decision tree model CART is used. The archive
model size, for the data of SEA, ROT, COV and POK, is set to 25 according to
the suggestion in [1]. Considering the number of chunks in CTR data is limited,
the archive size is set to 3 in the experiment on CTR data streams.

To investigate the ability of the algorithms in concept drift adaptation, the
error rates in each chunk of data are evaluated, as shown in Fig. 2. Generally,
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Table 1. Data streams in experiment. Size represents the chunk size.

Data #Example #Class #Label #Chunk Size Drift

SEA200A 24, 000 3 2 120 200 θ : 10 → 7 → 3 → 7 → 10 → 13 → 16 → 13

SEA200G 24, 000 3 2 120 200 θ : 10 → 8 → 6 → 8 → 10 → 12 → 14 → 12

SEA500G 60, 000 3 2 120 500 θ : 10 → 8 → 6 → 8 → 10 → 12 → 14 → 12

ROT200A 24, 000 2 6 120 200 rotate angle: 4 ∗ π

ROT200G 24, 000 2 6 120 200 rotate angle: 2 ∗ π

ROT500G 60, 000 2 6 120 500 rotate angle: 2 ∗ π

COV1000 581, 000 51 7 581 1, 000 real

COV2000 580, 000 51 7 290 2, 000 real

POK1000 1, 000, 000 10 10 1000 1, 000 real

POK2000 1, 000, 000 10 10 500 2, 000 real

CTR10000 600, 000 100 2 60 10, 000 real

CTR20000 600, 000 100 2 30 20, 000 real

Fig. 2. Error rate of chunks for the compared algorithms.
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TransferIL performs the best among the compared algorithms, with the lowest
error rate on most of the data chunks on both the synthetic data streams and
real-world data streams. The overall classification accuracy on each data stream
are also evaluated for comparison, as shown in Table 2. Generally, TransferIL
shows a big advantage compared with the compared algorithms, with obtaining
the highest accuracy in most of the data streams. In addition, the standard devi-
ation results of TransferIL are generally very low, which provides the evidence
of the ability of TransferIL in concept drift adaptation. The Wilcoxon rank-sum
test and the Friedman test are conducted on the accuracy results, as shown in
the last two rows in Table 2. As shown in the last row of Table 2, TransferIL per-
formed statistically significantly better than the other algorithms on the tested
data streams in pairwise comparisons. Furthermore, the Friedman test gives a
clear comparison of all the tested algorithms. The Friedman test result indicates
that the proposed TransferIL ranks the highest among the compared algorithms.

Table 2. Average accuracy (%) of every chunk (± the standard deviation of the accu-
racy for each chunk) for the tested algorithms. •/◦ indicates that TransferIL Is signifi-
cantly better/worse than the corresponding algorithm. The values in boldface indicate
the highest accuracy on the data stream. The last two rows provide the results of the
Friedman test (Nemenyi test, CD = 1.76 with a 0.05 significance level) and Wilcoxon
test (with a 0.05 significance level), where “w-d-l” indicates TransferIL is superior to,
not significantly different from or inferior to the corresponding compared algorithms.

Data TransferIL SEA Learn++.NSE AUE2 TIX Model

SEA200A 94.80 ± 3.03 86.31 ± 11.43• 89.07 ± 5.13• 94.66 ± 4.94 87.77 ± 3.97•
SEA200G 94.15 ± 2.55 88.90 ± 10.02• 90.02 ± 4.98• 94.58 ± 3.80◦ 86.90 ± 4.26•
SEA500G 96.39 ± 1.66 89.37 ± 10.17• 91.10 ± 3.45• 95.02 ± 4.05 88.85 ± 2.54•
ROT200A 71.59 ± 14.21 37.88 ± 18.17• 62.19 ± 11.49• 52.72 ± 9.99• 65.02 ± 11.45•
ROT200G 72.36 ± 14.48 54.61 ± 17.45• 63.41 ± 12.48• 55.43 ± 9.76• 64.97 ± 12.16•
ROT500G 83.92 ± 12.61 69.81 ± 14.29• 74.77 ± 11.57• 74.34 ± 11.34• 76.98 ± 10.44•
COV1000 91.44 ± 8.55 71.46 ± 15.14• 84.11 ± 12.45• 87.09 ± 8.74• 88.30 ± 9.19•
COV2000 87.91 ± 8.67 68.27 ± 15.17• 82.56 ± 11.22• 85.34 ± 8.98• 84.25 ± 8.82•
POK1000 51.95 ± 1.79 56.36 ± 2.54◦ 45.93 ± 1.78• 51.31 ± 1.79• 46.93 ± 1.77•
POK2000 55.59 ± 1.66 58.97 ± 3.20◦ 46.57 ± 1.40• 53.21 ± 1.58• 48.50 ± 1.28•
CTR10000 88.36 ± 19.67 66.08 ± 19.36• 77.13 ± 20.96• 80.57 ± 21.34• 80.57 ± 21.58•
CTR20000 69.05 ± 17.51 59.80 ± 20.96 62.80 ± 17.40 67.42 ± 19.81 63.27 ± 18.93

Friedman-Test 1.25 4.04 3.79 2.71 3.21

Wilcoxon-Test - 9/1/2 11/1/0 8/3/1 11/1/0

5 Conclusion

In this paper, a new chunk-based ensemble algorithm, named TransferIL, is pro-
posed for the problem of concept drift adaptation. TransferIL explicitly extracts
the useful knowledge in the historical models and then combines it with the
currently trained model to facilitate the learning. TransferIL guarantees not to
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introduce the inconsistent knowledge in current learning and ensures the current
chunk of data is correctly represented in the final model. The empirical studies
verify the reliability of TransferIL and show that it outperforms the compared
approaches in different kinds of concept drift scenarios.
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Abstract. In this paper, we propose a novel visual tracking method
based on ensemble learning using logistic regression model. We adopt
logistic regression to achieve ensemble classifier to deal with object track-
ing problem. By using fast computable features, our approach learns the
appearance of the target during tracking. And thus, the proposed method
is able to adapt online to target appearance changes and its surrounding
background. Moreover, ensemble learning converts rough rules of thumb
into highly accurate prediction rule. Experimental results show that our
method outperforms relative trackers.

Keywords: Visual tracking · Logistic regression · Ensemble learning

1 Introduction

In computer vision field, visual tracking has been an important branch and has
wide applications including video surveillance, robotics, autonomous navigation
and human computer interaction [1]. Based on the discriminative model, the
tracking problem can be treated as a classification task [2]. Hough-based tracking
of non-rigid objects (HBT) [3] locates the support of the target through back
projection from a Hough Forest. Multiple instance learning (MIL) [4] learns a
discriminative classifier from positive and negative bags of samples. Struck [2]
applies a structured output (support vector machine) SVM to directly predict
the change in object location between frames, instead of using a labeler. Because
of the strong convexity and probabilistic underpinnings, logistic regression (LR)
is widely studied and used in many applications [5]. Compared with support
vector machine, the advantages of LR are its posterior model for model selection
and its probabilistic output for uncertainty prediction [5], which can be used for
comparing classifier outputs. Different from the previously proposed methods,
we introduce ensemble learning based on logistic regression model to deal with
the visual tracking problem. The remaining part of this paper is organized as
follows: Sect. 2 discusses the proposed method. Experiment results are described
in Sect. 3, and Sect. 4 concludes this paper.
c© Springer Nature Singapore Pte Ltd. 2016
M. Gong et al. (Eds.): BIC-TA 2016, Part I, CCIS 681, pp. 480–486, 2016.
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2 The Proposed Method

2.1 Logistic Regression Classifier

Let x ∈ RN denote a vector of explanatory or feature variables, and y ∈
{−1,+1} denotes the associated binary output. Logistic regression attempts to
find a separating hyperplane in feature space, parameterized by normal vector
w ∈ RN , which separates the two classes [6]. The posterior label probability is
modeled as:

P (y|x,w) =
1

1 + exp(−yxTw)
(1)

Suppose we are given a set of training or observed examples x =
{x1, x2, ..., xM} and their label y = {y1, y2, ..., yM}, the model parameter w can
be found by maximum likelihood estimation from the observed examples. The
maximum likelihood estimate minimizes the average loss [7]:

lavg(w) =
1
M

M∑

i=1

log
(
1 + exp

(−yiw
Txi

))
(2)

In many cases, the maximum-likelihood estimator may overfit to the train-
ing data [6]. To reduce overfitting, penalized likelihood methods based on l2-
regularization seek to minimize a version of:

J(w) = lavg(w) + λ||w||22 (3)

where λ > 0 is the regularization parameter. There are many methods for train-
ing logistic regression models. In fact, most unconstrained optimization tech-
niques can be considered [8]. Quasi Newton [9,10] is used to solve the weight W
in our paper.

2.2 Weak Classifier

Haar-like feature is used in the proposed method. This feature is a simple rec-
tangle features proposed by [11,12]. Each weak classifier hk is composed of a
haar-like feature fk and four parameters (μ+, σ+, μ−, σ−) that are estimated
online [4]. The classifiers return the log odds ratio:

hk(x) = log[
P (y = +1|fk(x))
P (y = −1|fk(x))

] = log[
P (fk(x)|y = +1)P (y = +1)
P (fk(x)|y = −1)P (y = −1)

] (4)

where P (fk(x)|y = +1) ∼ N(μ+, σ+) and similarly for y = −1. We let P (y =
+1) = P (y = −1) and use Bayes rule to compute the above equation. When
the weak classifier receives new data {(x1, y1), (x2, y2), ..., (xM , yM )}, we use the
following update rules:
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μ+ ←− γμ+ + (1 − γ)
1
M

∑

i|yi=+1

fk(xi) (5)

σ+ ←− γσ+ + (1 − γ)

√√√√ 1
M

∑

i|yi=+1

(fk(xi) − μ+)2 (6)

where 0 < γ < 1 is a learning rate parameter. The update rules for μ− and σ−
are similarly defined.

2.3 Ensemble Learning Based on Logistic Regression Framework

The proposed ensemble learning method uses logistic regression to optimize their
weighs of weak classifiers. Figure 1 shows the relevant steps. Ensemble learning
refers to boosting the performance of a classifier by training many weak classifiers
and combining them with weights [13]. When it is difficult to design a high
performance classifier, boosting is particularly useful way for coping with the
problem and providing simple decision rules to perform slightly better than
random guessing. In general, the final strong classifier is a linear combination of
the weak classifiers. The boosting algorithm is to find a way to boost a set of
simple (weak) classifiers into a much stronger classifier through a certain learning
method [13].

x

Fig. 1. Tracking model based on ensemble learning with logistic regression

Considering the simplicity and computational efficiency, we crop out a set of
image patches within a test area based on the tracker location of previous frame
when a new (current) frame arrives. The image patch with the highest posterior
probability given by the boosting classifier is determined as object patch, and
its location is defined as the objection location. The prediction function in the
algorithm is

hstrong(x) =
K∑

i=1

wihi(x) = wTh(x) (7)

where hi(x), i = 1, 2, ...,K is the ‘better’ weak classifiers.
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Based on the objection location, we can acquire the positive and negative
samples by cropping out several image patches. Each image patch is viewed as
the training sample and corresponds to a feature vector in our case. The weak
classifier parameter is updated according to Eqs. 5 and 6. We select some better
weak classifiers and provide an appropriate weight for each of them by logistic
regression.

minw

M∑

i=1

log
(
1 + exp

(−yiw
Th(xi)

))
+ λ||w||22 (8)

Equation 8 reduces entirely the error between the predicted label and the
true label. Accordingly, the weights of weak classifiers are determined.

3 Experiments

We empirically set γ = 0.95, N = 250 and K = 100 in our experiments. To
evaluate the effectiveness of the proposed approach, we compare our tracker
against state-of-the-art algorithms (CT [2], CXT [14], DF [15], MIL [4], SCM
[16], Struck [2], TLD [17] and VTD [18]) on several publicly available challenging
image sequences. They cover various challenging situations (partial occlusion,
illumination variation, pose change, motion blur, etc.) for object tracking.

Table 1 reports the average center location errors (in pixels), where a smaller
value indicates a more accurate tracking result. Table 2 reports overlap suc-
cess rate (%) with a threshold of 0.5, where the larger average scores indicate
more accurate results. The provided qualitative comparison on seven challenging
sequences are shown in Fig. 2. It confirms that our tracer handles the following
situations:

Table 1. Average center location errors (in pixels). The red fonts and the blue fonts
indicate the best and the second best performances respectively.

Sequence CT CXT DF MIL SCM Struck TLD VTD Ours

Basketball 89 215 18 92 53 118 269 6 10

David3 89 222 51 30 73 107 281 67 13

Football 12 13 9 12 17 17 14 14 12

Jogging 92 6 31 96 132 62 7 83 5

Liquor 186 132 221 142 99 91 100 60 57

Occlusions and Deformation: Occlusion is one of the crucial problems
in visual tracking. Figure 2(a), (d) and (e) show the performance of all track-
ers when the tracking object suffers partial and heavy occlusions. Only CXT,
TLD and our method can keeps track of the target in the Jogging sequence.
Our method even successfully deals with twice occlusion while other approaches
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Table 2. Overlap success rate (%) with a threshold of 0.5. The red fonts and the blue
fonts indicate the best and the second best performances respectively.

Sequence CT CXT DF MIL SCM Struck TLD VTD Ours

Basketball 25.93 2.48 71.59 27.45 60.28 10.21 2.48 92.41 81.51

David3 34.92 13.89 74.21 68.25 48.02 33.73 10.32 48.41 84.52

Football 78.45 65.19 84.25 73.76 57.18 66.02 41.16 76.80 78.72

Jogging 22.48 95.44 21.50 22.48 21.17 22.48 96.74 21.50 95.11

Liquor 20.85 20.96 22.92 20.10 32.45 40.61 56.17 57.96 69.79

fail. Our local tracking model draws the visible part and keeps the track. The
Basketball sequence has many deformations, but we still track accurately in the
end.

Out of Plane Rotation: Tracking target rotation is also a big challenge
in the field of visual tracking. In Fig. 2(e), the object rotates 1/4 turn. More

#83 #350 #700

(a) Basketball

#93 #145 #239

(b) David3

#68 #144 #293

(c) Football

#84 #250 #307

(d) Jogging

#410 #840 #1418

(e) Liquor

Fig. 2. Representative frames from ten sequences. The results obtained by those ten
state-of-the-art algorithms and ours are shown in different colors: MIL in pink, VTD
in purple, CT in green, DF in black, SCM in gray, CXT in blue, TLD in turquoise,
Struck in orange, STC in dark red, ONNDL in cyan, and Ours in red. (Color figure
online)
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than half of trackers cannot handle with the situation, but our algorithm can
implement accurate tracking.

Background Clutter: In the four background clutter sequences (Basket-
ball, David3, Football and Liquor), our tracker performs more stable than other
trackers. In the Basketball and Football sequences, there are many players wear-
ing the same clothes. The background near the target has the similar color or
texture as the target in the David3 and Liquor sequence. Background clutter can
lead to drafting. However, our method achieves better tracking performance.

Both table and figures show that our method achieves favorable performance
against other state of-the-art methods.

4 Conclusion

In this paper, we present a new visual tracking algorithm based on ensemble
learning using logistic regression model. The sample is represented by haar-
like features. The logistic regression model is adopted to obtain the weights of
weak classifiers. The selection of weak classifier and weights of classifiers are
implemented simultaneously. The experimental results show the effectiveness of
the proposed method.
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Abstract. In the present article, we propose a new approach for the
segmentation of the MR images of the Multiple Sclerosis (MS) which
is an autoimmune inflammatory disease affecting the central nervous
system. Our algorithm of segmentation is composed of three stages: seg-
mentation of the brain into regions using the algorithm FCM (Fuzzy
C-Means) in order to obtain the characterization of the different healthy
tissues (White matter, grey matter and cerebrospinal fluid (CSF)), the
elimination of the atypical data (outliers) of the white matter by the opti-
mization algorithm PSOBC (Particle Swarm Optimization-Based image
Clustering), finally, the use of a Mamdani-type fuzzy model to extract
the MS lesions among all the absurd data.

Keywords: Multiple sclerosis · Magnetic resonance imaging · Segmen-
tation · Fuzzy C-means · Particle swarm optimization · Fuzzy controller

1 Introduction

Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the
central nervous system. Magnetic resonance imaging (MRI) detects lesions in
MS patients with high sensitivity but low specificity, and is used for diagnosis,
prognosis and as a surrogate marker in MS trials [1,2]. In this article, we are
interested in the brain MRI analysis within the context of following up the
patients suffering from Multiple Sclerosis (MS).

In this paper, we focus our studies to brain MR imaging where we propose a
new automated segmentation method that detects the lesions of MS. Our algo-
rithm of segmentation is composed of three stages: segmentation of the brain into
regions using the algorithm FCM (Fuzzy C-Means) in order on obtain the char-
acterization of the different healthy tissues (White Matter (WM), Grey Matter

c© Springer Nature Singapore Pte Ltd. 2016
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(GM) and CerebroSpinal Fluid (CSF)). In the second stage, we use a particle
swarm optimization-based image clustering algorithm to eliminate the atypical
data of the white matter. Finally, in the third stage, a decision-making whether
a given voxel is MS lesion is generated using a Mamdani-type fuzzy model.

The paper is organized as follows. First, related works are presented in Sect. 2.
Next, our approach of automatic MS lesion detection and its various steps are
highlighted in Sect. 3. Section 4 examines the results obtained on the MRI images.
Finally, a conclusion is reported in Sect. 5.

2 Related Work

A variety of approaches to MS lesion segmentation have been proposed in the
literature. Generally speaking, they can be classified into two groups: outlier-
based and class-based methods.

In outlier-based methods [3–7], MS lesions are treated and detected as the
outliers to the normal brain tissue distribution, which is usually modelled with
a Finite Gaussian Mixture (FGM) of CSF, GM and WM classes. Van Leemput
et al. [3] pioneered this approach where an (iterative) robustized expectation-
maximization like method was promoted such that contextual information were
incorporated.

Class-based methods [8–13] modeled the lesions as an independent class to be
extracted. In [9], a combination of intensity-based k-nearest neighbor classifica-
tion (k-NN) and a template-driven segmentation (TDS) was designed to segment
different types of brain tissue. Lesions were modeled as one of the expected tis-
sue types, and the class parameters were obtained through a supervised voxel
sampling scheme on two randomly selected scans. A similar approach was pro-
posed in [4] where the segmentation method determines for each voxel in the
image the probability of being part of MS-lesion tissue, and the classification
was conducted using K-NN algorithm.

3 Proposed Approach

In this study, we use information from T1-weighted, T2-weighted and proton
density-weighted (PD) images. This is motivated by the fact that T1-w, T2-
w and PD images contain information about white matter lesions [7]. Figure 1
summarizes the processing sequence proposed for the segmentation of MS lesions,
while details of the different stages are provided in the subsequent subsections.

3.1 Segmentation of the Brain Tissues

The segmentation of the brain tissues into different compartments (white mat-
ter (WM), gray matter (GM) and cerebrospinal fluid (CSF)) is a key step in
our study. Motivated by the lack of a fully comprehensive labeled database as
reported in [15], a non-supervised like strategy based on fuzzy c-means algorithm
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 Image weighted at ρ

Original MRI Image

 Image weighted at T2  Image weighted at T1

Segmentation of brain tissues 
using FCM algorithm

Segmentation of brain tissues 
using FCM algorithm 

Segmentation of brain tissues 
using FCM algorithm 

Elimination of atypical data of the WM 
using PSOBC algorithm

Enhanced Segmented image

Result1 (WM, GM and CSF) Result1 (WM, GM and CSF)Result1 (WM, GM and CSF)

Decision-making –Occurrence of MS

Knowledge base  
(Fuzzy inference rules 
(prior knowledge a priori 
to specify the lesions)) 

Fig. 1. General architecture of the steps of the automatic segmentation of MS lesions.

has been advocated. This is backed by its reported success in image analysis and
medical diagnosis including magnetic imaging regardless of the modality and
the type of acquisition (mono or multimodal) [14,16–20], its reduced complexity,
easy implementation [18]. The application of fuzzy c-means (FCM) approach for
clustering in our case yields three distinct classes corresponding to (white matter
(WM), gray matter (SG) and cerebrospinal fluid (CSF)).

3.2 Segmentation of the White Matter Using Particle Swarm
Optimization Based Image-Clustering

The next stage in our methodology consists in eliminating the atypical data in
previously identified WM voxels in order to highlight the different MS lesions.
This is because the lesions of the multiple sclerosis are not well contrasted due
to the partial volume in the surrounding tissues, which renders their segmen-
tation rather a difficult task. For this purpose, an optimization based approach
using particle swarm optimization based image-clustering algorithm (PSOBC)
has been adopted in our approach. This is motivated by its simplicity, ability to
deal with high dimension dataset, its proven efficiency in similar other segmen-
tation tasks as pointed out in [21–23].

3.3 Decision-Making

The last step determines whether a given WM voxel is MS lesion or not. For this
purpose, a Mamdani-type fuzzy inference system has been adopted. In the latter,
(global) information about the image contrast and signals type are used as global
variables. The outcome corresponds to the extent to which the MS attribute is
persistent in the underlying WM voxel. Especially, the weighted images in T2 and
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PD underline the myelin component in the lesions characterized by the edemas
with hyper-intense appearance in comparison to the white matter. Furthermore,
T1-w underlines the irreversible destruction of the tissues with the appearance
in the white matter of persistent “black holes” (Hypo-signal) [24].

T2-w

Fuzzy 

System 

T1-w MS 

PD-w

Signal’s type 

Exclusive 

Image contrast 

Fig. 2. Diagram of fuzzy system of the MS disease.

An instance of fuzzy rules is described below.

1. If [(the image contrast is T1-w active) AND (the signal is hyperintense)]
then (MS is low).

2. If [(the image contrast is T1-w active) AND (the signal is hyperintense)]
then (MS is normal).

3. If [(the image contrast is T2-w active) AND (the signal is hyperintense)]
then (MS is high).

4. If [(the image contrast is PD -w active) AND (the signal is hyperintense)]
then (MS is high).

5. If [(the image contrast is T1-w active) AND (the signal is hypointense)]
then (MS is low).

6. If [(the image contrast is T2-w active) AND (the signal is hypointense)]
then (MS is high).

7. If [(the image contrast is PD-w active) AND (the signal is hypointense)]
then (MS is high).

8. If [(the image contrast is T1-w active) AND (the signal is hyperintense after
injection of gadolinium)] then (MS is normal).

9. If [(the image contrast is T2-w active) AND (the signal is hyperintense after
injection of gadolinium)] then (MS is high).

10. If [(the image contrast is PD-w active) AND (the signal is hyperintense
after injection of gadolinium)] then (MS is high).
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4 Results and Discussion

The Fig. 3 shows the results obtained after segmentation of the images (a)
weighted T2 on axial plane. The images (b), (c), (d) and (e) are the results
of segmentation realized by the expert, FCM, PSOBC and the approach succes-
sively proposed.

Fig. 3. Pathological image (a) and its segmentation gotten by (b) segmentation by the
expert; (c) FCM; (d) PSOBC and (e) Proposed approach.

The interpretation of our results is done by an expert (hospital center of Ain
Naadja Algiers) on simulated and real images. By analyzing the images of the
Fig. 3, the expert has established the following statement:

• Image (b): The interpretation of the classes is totally improved in relation
to (FCM, PSOBC), we notice the distinction between the 03 classes of the
brain and the class of the pathology SEP.

• Image (c): The class CSF does not conform to the class of the original image.
The lack of information about the small grooves (image (a)) and the poor
discrimination CSF/GM make that the segmented CSF class does not well
represent the fluid distribution. The detection of the pathology is indicated
according to the expert but the details are not well expressed.

• Image (d): PSOBC is unsuitable in this segmentation in relation to the
image (o).

• Image (e): the proposed approach brings a great performance to the
segmenta-tion for the three classes and especially for the fourth one which is
the pathology that specifies well the size and the details about this later.

Next, we compared in Table 1 the segmentation of T2-w RMI performed by
the expert and that achieved using our automated approach for a given time of
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Table 1. Comparison of the results gotten by different algorithms.

GM (%) CSF (%) WM (%) MS (%)

Segmentation by the expert 93 69 95 97

FCM 71 55.9 79.6 74

PSOBC 80.2 64 85 68

Proposed approach 88.7 66 90.5 95.8

acquisition. The results highlighted in Table 1 underline the advantages of the
proposed approach in comparison to the segmentation by FCM and PSOBC for
all tissues CSF, WM, GM and MS lesions.

5 Conclusion

In this article, we have proposed a new automatic approach of segmentation
of the MS lesions’ images. We have firstly split up the process of automatic
segmentation of the MS lesions into three fundamental stages:

Firstly, we segmented the brain into regions by using the algorithm FCM
(Fuzzy C-Means) in order to obtain the characterization of the different healthy
tissues (White matter, Grey matter and cerebrospinal fluid (CSF)). Secondly, we
eliminated of the atypical data of the white matter by the optimization algorithm
PSOBC (Particle Swarm Optimization-Based image Clustering). Finally, in the
framework of our application on the MS disease, we used a Mamdani-type fuzzy
model to make decision of the MS disease. We presented the results of our work
consisting in the use of an algorithm for the segmentation if medical images in
order to improve the quality of the MS lesions’ detection.
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Abstract. The paper aims to focus on a well-known topic in the finan-
cial literature: the relation between diversification strategy and capital
structure. The investigation has been performed using panel data pro-
cedure for a sample of 320 Chinese companies listed on the Shanghai
Stock Exchange during a three-year period. Using various measures of
diversification, the regression results of this study reveal a significantly
negative relation between diversification and capital structure. The result
supports agency cost theory. The results also indicate that, firm size and
growth opportunity have significantly positive effects on capital struc-
ture; profitability and liquidity have significantly negative relation with
capital structure. Year and industry are also important impact factor of
capital structure.v abstract environment.

Keywords: Diversification strategy · Capital structure · Agency cost
theory

1 Introduction

The capital structure has a significant impact on the corporate operations. It
can create opportunities to accelerate the company’s development, but also limit
and even hinder the company’s growth. Starting from the provocative work of
Modigliani and Miller (1958), capital structure became one of the main elements
that following studies have shown as being essential in determining value. The
capital structure of affirm is a specific mixture of debt and equity the firm
uses to finance its operations. Capital structure decisions are crucial for any
business organisation. The decision is important because of the need to maximize
returns to various organisational constituencies an also because of the impact
such a decision has on an organisation’s ability to deal with its competitive
environment (Abor and Biekpe 2005). In general, a firm can choose among many
alternative capital structures. The firm can issue a large amount of debt or very
little debt. It can issue dozens of distinct securities in countless combinations.
A number of theories have been advanced in explaining the capital structure of
firms. However, the impact of corporate strategies on capital structure is still
unknown (Harris and Raviv 1991). Barton and Gordon (1987) pointed out that
corporate strategies complement the traditional financial model, and enrich the
c© Springer Nature Singapore Pte Ltd. 2016
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understanding of determinants of capital structure. Burgman (1996), Chen et al.
(1997) and Chuang et al. (1999) find that diversification strategy is an important
determinant of capital structure.

Until very recently, the studies of the diversification-capital structure rela-
tionship was rather scarce, so we know little about the strategic value of diver-
sification in developing country such as China. The objective of this paper is
the analysis of the effect of diversification strategy on capital structure form
the Chinese perspective. To the end, the empirical results show statistically sig-
nificant and negative associations between diversification and capital structure.
The results also indicate that, firm size and growth opportunity have positive
and significant effects on capital structure; profitability and liquidity have nega-
tive and significant relation with capital structure. Industry is also an important
impact factor of capital structure.

The rest of the paper is organized as follows: the next session gives a review of
the extant literature on the subject. Section 3 describes the methodology used for
the study. Section 4 presents and discusses the results of the empirical analysis.
Finally, Sect. 5 presents some conclusions.

2 Literature Review

In response to increasingly competitive business environment, diversification has
become a major strategic initiative in the hospitality industry. This strategy has
been widely applied in various business fields (Chang and Wang 2007). More
than a tool for reducing business risks and uncertainties, diversification enables
firms to gain, and more importantly, secure competitive advantages and market
dominance that would otherwise be unattainable. In addition, from a resource-
based perspective, diversification enables firms to exploit intangible resources
(Andreu et al. 2009) and generates economies of scale and scope (George and
Kabir 2012; Wang et al. 2014).

Diversification plays key roles in the strategic behavior of large corporate.
Diversification strategy has also been shown to be an import determinant of
capital structure. Dispersion risk theory argues that diversified firms can reduce
the risk of operating risks, leading to enhance the debt capacity. Many strate-
gic management scholars have studied the relationship between diversification
strategies and capital structure. Chkir and Cosset (2001) think that the com-
pany’s product diversification can reduce business risks, resulting in increased
financial leverage. Barton and Gordon (1988) also confirm that the relation-
ship between risk and diversification is a negative correlation, which leads to a
positive correlation between diversification and debt levels. Studies have shown
that diversification operations result in reduced risk. Diversification leads to a
lower volatility of earnings as the diversified firms have cash flows in imperfectly
correlated markets. This leads to reduction in bankruptcy risk and enables the
diversified firms to utilize more leverage in their capital structure.

Berger and Ofek (1995) and Comment and Jarrell (1995) think that, with
business across several product lines, the less than perfectly correlated income
streams from different product lines reduce the volatility of returns, this coin-
surance effect of debt gives diversified firms greater debt capacity than focused
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firms of similar size. Using United States data, Barton and Gordon (1988) pro-
vide evidence that diversification strategy is an important determinant of capital
structure, the relationship between diversification strategy and capital structure
is positive. Lowe et al. (1994) draw the same conclusion using Australian data.
However, using small- and medium-sized firms (SMEs) data, Jordan et al. (1999)
argue, contrary to the results found using large firms, that corporate strategy
has no effect on the capital structure of SMEs.

However, agency cost theory suggests that, as owners and operators, owners
and creditors, the general manager and manager exist agent problem, there will
inevitably bring about the decrease in value. Due to agency cost, debt providers
will require higher returns to finance diversified firms, which lead to an increase
of the debt financing cost for these firms and therefore reduces their leverage.
So, according to agency cost theory, the relationship between diversification and
capital structure should be significantly negative.

3 Research Methodology

We investigate the relationship between diversification and capital structure of
Chinese listed companies for the period from 2004 to 2006. All the companies
included in the sample fulfill the following some criteria: they were all listed
in the market before 2001; none of them was expelled from Shanghai Stock
Exchange during the period 2004–2006; the sample companies only include the
listed companies which issued A shares, not include financial listed companies
and they also do not include ST or PT type of the listed companies.

We form our variables using data derived from China Center for Eco-
nomic Research (CCER) database. The final samples, after considering above-
mentioned criteria, consist of 960 observations, 320 listed companies.

Table 1 summarizes the dependent, independent and control variables.

Table 1. Summarizes the dependent, independent and control variables

Variable Sign Definition

Capital structure LEV Total debt/total assets

N The number of segments

Diversification DUM Dum is 1 for firms reporting multiple segments; otherwise 0

HI Herfindahl index

DT Entropy index

Firm size SIZE LN (total assets)

Profitability ROE Net profit/equity

Growth opportunity GROW Sales growth rate

Liquidity LIQU Current assets/current liability

Year dummy YEAR Belonging to a certain year, equal to one; otherwise 0

Industry dummy INDU Belonging to a certain industry, equal to one; otherwise 0
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3.1 Dependent Variables: Debt Ratio

The dependent variable is debt ratio. We use debt ratio as measure of capital
structure. We define debt ratio as the ratio of total debt to total assets.

LEV =
Total debt

Total asset
(1)

3.2 Independent Variables: Diversification

We measure a firm’s diversification with four indices popular in the diversifica-
tion literature: the number of segments (N), dummy of diversification (DUM),
Herfindahl index (HI) and Entropy index (DT).

1. The number of segments (N): The more the number of segments of the cor-
poration is, the higher the degree of the diversification.

2. Dummy of diversification (DUM): Dum is 1 for firms reporting multiple seg-
ments, otherwise 0.

3. Herfindahl index (HI): The Herfindahl index is calculated for all firms based
on the distribution of the firm’s sales across its various business segments.
The Herfindahl index is calculated as:

HI =
∑

P 2
i (2)

where Pi represents the sales of a firm’s operations in segment i, in propor-
tion to the total sales of the firm. The Herfindahl index is inversely related
to diversification. It takes one for firms specialized in a single industry and
approach toward zero as a firm diversifies across many industries. Smaller
levels of HI correspond to less industry focus and greater diversification.

4. Entropy index (DT): Entropy index has been widely used in measuring prod-
uct diversification in the literature. One of the most important advantages
of the entropy approach in measuring product diversification is that it allows
for the decomposition of total diversification into the components of related
and unrelated. The entropy measure takes the form of:

DT =
∑n

i=1
Pi ln(1/Pi) (3)

where Pi is the ith business segment’s sales divided by the firm’s total sales,
and n is number of the firm’s business segments. Bigger levels of DT corre-
spond to less industry focus and greater diversification.

3.3 Control Variables

There are other relevant variables which can affect capital structure: such as firm
size, profitability, growth opportunities, liquidity and industry. These are briefly
explained in turn.
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(1) Firm size: We use the natural logarithm of total assets as a proxy for firm
size.

(2) Profitability: According to pecking order theory, profitable firms tend to
have less debt. In this study, profitability will be defined as net profit scaled
by equity.

(3) Growth opportunity: According to the trade-off theory, firms holding future
growth opportunity tend to borrow less than firms holding more tangible
assets because growth opportunity cannot sever as collateral. In this paper,
we proxy our growth opportunity measurement as sales growth rate.

(4) Liquidity: Pecking order theory thinks that firms with high liquidity will
borrow less. In this paper, we proxy the liquidity of the firm considering its
current ratio which is equal to current assets divided by current liabilities.

(5) Industry: This study pursues an investigation of the diversity-leverage rela-
tionship independent of industry effects. Firms in the data set were classi-
fied according to their sector of operations as listed on the Shanghai Stock
Exchange.

3.4 Methodology

The model for the empirical investigation can be stated as follow:

LEVi,t = αi + β1DIVi,t + β2SIZEi,t + β3ROEi,t

+ β4GROWi,t + β5LIQUi,t + β6YEAR
+ β7INDU + εi,t. (4)

where: DIVi,t = N, DUM, HI, and DT, respectively;
SIZEi,t = firm size (log of total assets) for firm i in time t;
ROEi,t = net profit///equity for firm i in time t;
GROWi,t = sales growth rate for firm i in time t;
LIQUi,t = current assets/current liabilities for firm i in time t.

4 Empirical Results

4.1 Descriptive Statistics

Table 2 shows the process of change on diversification for Chinese listed firms
from 2004–2006.

Summary statistics of diversification for our sample are reported in Table 2.
From Table 2, we can see that the number of segments is gradually increased,
from 1.61 in 2004 to 1.64 in 2006, dummy of diversification and Entropy index
are also gradually increased, form 0.46 to 0.49 and form 0.32 to 0.35 during
the period from 2004 to 2006 respectively, while Herfindahl index is gradually
decreased, from 0.75 in 2004 to 0.73 in 2006. Table 2 shows that, for Chinese listed
companies in our sample, there is a discernible upward trend in diversification,
despite the magnitude of change is not too great.
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Table 2. The process of change on diversification

Year N DUM HI DT

2004 1.609 0.459 0.750 0.328

2005 1.634 0.478 0.739 0.345

2006 1.646 0.491 0.734 0.352

Table 3 provides a summary of the descriptive statistics of the dependent and
independent variables for the sample of firms. This shows the average indicators
of variables computed from the financial statements. Capital structure, given as
the ratio of total debt to total assets, reveals an average of 47.5%. This suggests
that about 47% of total assets are financed by debt capital. The average value
of the number of segments, dummy of diversification, Herfindahl index, and
Entropy index is 1.601, 0.467, 0.133, and 0.327 respectively.

Table 4 presents the correlation matrix of dependent and independent vari-
ables. Table 4 shows that leverage ratio and the degree of diversification are
negatively correlated. The correlation between leverage ratio and the other vari-
ables is fairly low. The highest cross-correlation, between leverage ratio and firm
size, is fairly moderate (Pearson: 0.29).

Table 3. Descriptive statistics of dependent and independent variables

Variable Minimum Maximum Mean Std. Dev.

LEV 0.028 1.685 0.475 0.174

N 1 5 1.601 0.745

DUM 0 1 0.467 0.493

HI 0.029 4.934 0.133 0.285

DT 0 1.538 0.327 0.359

SIZE 19.573 25.145 21.366 0.785

ROE −1.173 1.627 0.058 0.147

GROW −0.832 10.634 0.236 0.538

LIQU 0.075 36.762 1.467 1.712

To check whether independent variables are collinear, we perform a collinear-
ity diagnostic. The values of our VIF tests are substantially lower than 5, so
collinearity should not constitute a problem.
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Table 4. The correlation matrix of dependent and independent variables

Variable LEV N DUM HI DT SIZE ROE GROW LIQU

LEV 1

N −0.03 1

DUM −0.04* 0.85*** 1

HI 0.03* −0.89*** −0.89*** 1

DT −0.07* 0.95*** 0.89*** −0.97*** 1

SIZE 0.29*** −0.05* −0.06** 0.03 −0.04* 1

ROE −0.06*** −0.03 −0.02 0.03 −0.03 0.06*** 1

GROW 0.07*** −0.01 −0.02 0.03 −0.02 0.04 0.13*** 1

LIQU −0.11*** −0.06** −0.05** 0.05** −0.06** −0.12*** 0.03 −0.01 1

4.2 Regression Results

(1) Univariate test

Table 5 presents univariate test statistics of all variable. The differences in mean
tests (t-statistics) are reported. The average leverage ratio is 0.47 for diversified
firms, and 0.48 for focused company. The mean difference is 1.4 moreover, Table 5
also indicates that diversified firms are less firm size and less liquidity than
focused firms, but their average profitability and growth opportunity are not
significantly different from that of focused firms. Yet, these results do not control
other confounding effects to examine the pure diversification effect. Thus, we
estimate the multivariate regression model with other control variables.

Table 5. The correlation matrix of dependent and independent variables

Variable Diversified Focused Mean difference t-value

LEV 0.477 0.489 −0.142* −1.853

ROE 0.063 0.069 −0.008 −1.014

SIZE 21.432 21.593 −0.095** −2.463

GROW 0.236 0.248 −0.024 −0.832

LIQU 1.473 1.662 −1.236** −2.368

(2) Multivariate Regression result

Table 6 show the effects of the degree of diversification on capital structure after
controlling for firm size, profitability, growth opportunity, liquidity, year and
industry.

Regression analysis is used to investigate the relationship between diversifica-
tion and capital structure. Generalized least square (GLS) regression results are
presented in Table 6. The results denote that the independent variables explain
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Table 6. The correlation matrix of dependent and independent variables

Variable Coefficient t-stat Coefficient t-stat Coefficient t-stat Coefficient t-stat

Intercept −0.78** −10.22 −0.77*** −9.61 −0.81*** −11.04 −0.78*** −10.58

N −3.19

DUM −0.01*** −3.92

HI 0.03*** 3.53

DT −0.02*** −3.45

SIZE 0.07*** 17.87 0.07*** 17.96 0.068*** 20.53 0.07*** 19.46

ROE −13.46 −0.15*** −13.17 −0.15*** −13.52 −0.15*** −13.81

GROW 0.03*** 7.68 0.03*** 8.25 0.029*** 7.879 0.03*** 7.53

LIQU −0.06*** −24.96 −0.05*** −24.67 −0.05*** −26.19 −0.06*** −25.32

YEAR Yes Yes Yes Yes

INDU Yes Yes Yes Yes

R2 0.704 0.698 0.703 0.701

Adj. R2 0.701 0.694 0.699 0.696

F-statistic 187.01 182.15 186.81 184.78

Prob. (F) 0.00 0.00 0.00 0.00

diversification at 70.1, 69.4, 69.9, and 69.6%, respectively. The F-statistics prove
the validity of the estimated models. Also, the coefficients are statistically sig-
nificant in level of confidence of 99%.

The results as illustrated in Table 6 indicate that the number of segment,
dummy of diversification, and Entropy index are significantly and negatively
related to debt ratio. The regression results also show that Herfindahl index
is significantly and positively related to leverage ratio, while higher levels of
Herfindahl index correspond to less diversification. So the regression results indi-
cate that diversification reduces the company’s debt capacity, diversified firms
have lower debt ratio than focused firms.

According to univariate test and multiple regression analysis results, we can
be concluded that, for China’s listed companies, diversification not only fails to
reduce the company’s business risk, but increases the company’s business risk,
reducing the company’s debt capacity.

One possible explanation for this is that diversification exists the risk of
economic of scope. Diversified firms enter into new business areas, and there are
many uncertainties of new areas. New business areas may even pose a threat
to the main industry. Diversification should disperse enterprise resources, while
enterprises resources are always limited. New business expansion will compete
with the core business for limited resources and even decline in growth of their
core business, which weaken core competitiveness of companies.

Second possible explanation is that diversification exists the risk of man-
agement efficiency. Managers may be not familiar with market conditions and
the technical characteristics of new industries. This increases the difficulty of
the internal management of enterprises, which would bring about management
inefficiency.
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Third possible reason is that diversification has entrance risk. Diversified
firms have more barriers and more cost to enter into new business, which damages
the value of the enterprise.

5 Conclusion

One important financial decision firms are confronted with is the capital struc-
ture choice. This decision is particularly crucial given the effect it has on the
value of the firm. This study has examined the relationship between diversi-
fication and capital structure of Chinese listed companies during a three-year
period, 2004–2006.

The results obtained using Generalized Least Square (GLS) panel model.
The characteristics of diversification used for this study include the number of
segments, dummy of diversification, Herfindahl index, and Entropy index.

The empirical results indicate that diversification is significantly and nega-
tively related to debt ratio, which shows for Chinese listed companies that the
higher the degree of diversification, the lower its debt level. The result supports
agency cost theory. For Chinese listed companies, we should adopt the specialized
management and reduce the diversification management in order to reduce the
financial risk. The results also indicate that, firm size and growth opportunity
have significantly positive effects on capital structure; profitability and liquidity
have significantly negative relation with capital structure. Year and industry are
also important impact factor of capital structure.
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Abstract. A new metaheuristic, bat algorithm, inspired by echolocation
characteristics of micro-bats has been extensively applied to solve vari-
ous continuous optimization problems. Numerous intelligent techniques
are hybridized with bat algorithm to optimize its performance. However,
there are only two discrete variants have been proposed to tune the basic
bat algorithm to handle combinatorial optimization problems. However,
both of them suffer from the inherited drawbacks of the bat algorithm
such as slow speed convergence and easy stuck at local optimal. Moti-
vated by this, an improved hybrid variant of discrete bat algorithm, called
IHDBA is proposed and applied to solve traveling salesman problem.
IHDBA achieves a good balance between intensification and diversifica-
tion by adding the evolutionary operators, crossover and mutation, which
allow performance of both local and global search. In addition, 2-opt and
3-opt local search techniques are introduced to improve searching perfor-
mance and speed up the convergence. Using extensive evaluations based
on TSP benchmark instances taken from TSPLIB, the results show that
IHDBA outperforms state-of-the-art discrete bat algorithm i.e. IBA in
the most of instances with respect to average and best solutions.

Keywords: Hybrid Bat Algorithm · Crossover operator · Mutation
operator · Discrete bat algorithm · TSP · Intensification and diversi-
fication

1 Introduction

Many computational optimization problems remain difficult to solve in a poly-
nomial time and, therefore, they are classified as non-polynomial hard problems
(NP-hard problems) [1]. In this context, traveling salesman problem, or TSP for
short, is one of the most famous cases of NP-hard problems [2]. Given a set of
cities, TSP aims to minimize the overall trip cost that a salesperson may need
for traveling from one city to visit each city in the set only once and return
back to the start one. TSP is often used for testing optimization algorithms as
a benchmark to measure their abilities to solve other NP-hard problems [3,4].

Recently, a new meta-heuristic method, bat algorithm, has been successfully
applied to solve several optimization problems including TSP [5]. In addition to

c© Springer Nature Singapore Pte Ltd. 2016
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its advantages of simplicity, easy implementation and its higher stability mecha-
nism, BA has the ability of dealing with non-linear, multi-modal and large scale
optimization problems. However, BA still has some limitations. (i) It may suffer
from stagnation in the early stages when Ai and ri vary too quickly. (ii) BA
also loses its exploration as the iterations flow since ri exponentially increased;
hence, its condition becomes less probable to be satisfied. (iii) BA may not be
able to perform global search because it suffers from premature convergence in
some cases and may be trapped into local optima.

To enhance the performance of basic BA [6], several hybrid variants were
proposed to solve both continuous and combinatorial optimization problems such
as in [7–18]. It is worthy to note that the enhancement of BA by hybridization to
solve combinatorial problems has not been explored enough. To address TSP, two
papers were introduced. Yassine Saji et al. [19] proposed a discrete version of BA.
Then, Eneko Osaba et al. also introduced an improved discrete bat algorithm
for both symmetric and asymmetric TSP called IBA [20].

In this paper, we proposed an improved hybrid discrete BA variant to solve
TSP problem to solve the premature convergence, stagnation problem and speed
up the convergence.

2 Background

In the following subsections, we briefly review the bat algorithm and its IBA
discrete variant.

2.1 Bat Algorithm

Bat algorithm was initiated by Yang 2010 [6] as a relatively new meta-heuristic
to solve hard optimization problems. An overview of BA, its inspiration idea, its
variants and application domains is shown in [5]. BA was inspired by micro-bats
behavior when they search for prey. The three idealization rules of bat-inspired
algorithm can be summarized as follows: (i) all bats sense their direction and
the distance of obstacles/prey using echolocation; (ii) each bat i flies randomly
with velocity vi at position (solution) xi with a fixed frequency fmin, varying
wavelength λ and loudness A0. Bats can adjust the frequency of their emitted
pulses rate in the range of r ∈ [0, 1] when searching for prey depending on the
proximity of their target; and (iii) the loudness can vary in many ways; it was
assumed that it varies from a large positive A0 to a minimum constant value
Amin. The main steps of BA are illustrated as follows:

Step1 (Initialization): an initial population X = [x1, x2, . . . , xn] of n bats is
generated randomly. Each bat i in the population represents a potential location
(solution of the problem under consideration) with random rate of pulse ri,
random loudness Ai and initial frequency fi; each of which is evaluated using
fitness function.
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Step2 (Generation of new solutions): During each iteration, every bat i
updates its frequency fi, velocity vi and position (solution) xi at iteration t
according to Eqs. 1, 2 and 3 respectively.

fi = fmin + (fmax − fmin)β (1)

vt
i = vt−1

i + (xt−1
i − x∗), (2)

xt
i = xt−1

i + vt
i , (3)

where β is a random vector in the range of [0,1] drawn from a uniform
distribution; and x∗ is the current global best location (solution) among all
solutions in the population.

Step3 (Local Search): After that, with some probability of pulse rate ri, a
solution is selected among the best solutions and random walk is applied to
generate a local solution around the selected one according to Eq. 4:

xnew = xold + εAt
i, (4)

where the random number ε is a scale factor drawn from [−1, 1] and At
i is the

average loudness of all bats. Then, the new solutions will be accepted if they are
improved or by flying randomly with some probability depending on Ai.

Step4 (Loudness and Pulse Emission): If the solution is accepted, the pulse
emission rate ri increases and the loudness Ai decreases like what happen when
natural bat finds its prey. Mathematically, this is defined using Eqs. 5 and 6:

At+1
i = αAt

i, (5)

rt+1
i = r0i [1 − exp(−γt)], (6)

Step5 (Finding the global best solution ): Finally, rank the solutions and
find the current global best solution(s). Steps 2–5 continue until the termination
condition is satisfied.

2.2 An Improved Bat Algorithm (IBA) for TSP

Eneko Osaba et al. presented an improved discrete version for bat algorithm
called IBA [20]. It was used to solve TSP but it failed to reach the optimal
solution in the most of instances. IBA used the same philosophy for the basic
BA parameters ri and Ai. Velocity parameter vi is calculated according to Eq. 7:

vt
i = random[1;hammingDistance(xt

i, x
∗)], (7)

where vi of a bat i at iteration t is a random number between 1 and the difference
between the current bat position xi and the best bat position x∗ in the population
calculated by hamming distance. The modification in IBA was based on the
movement behavior of bats in which all bats were given some kind of intelligence
so that each bat moves differently depending on how far away it is from the best
bat of the population. In this way, when one bat moves, it will first examines its
velocity vt

i . If the velocity value is less than the half of cities, the bat i performs
short move using 2-opt local search; otherwise, it performs long move using 3-opt.
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3 Improved Hybrid Bat Algorithm (IHDBA)

In this section, we will present an improved hybrid discrete BA, called IHDBA,
to overcome the shortcomings of bat algorithms mentioned above. Combining
crossover and mutation operators of EA has achieved the purpose of improved
BA. Furthermore, two local search strategies (2-opt and 3-opt) are employed to
speed up the convergence. IHDBA can increase the diversity of BA and alleviates
the effect of premature convergence. The following are the steps of IHDBA:

Step 1 Initialization: Generate the initial population of BA with n bats. Each
bat consists of m cities from TSP instance. Assign the initial values of pulse rate
ri, loudness Ai and velocity vi for each bat. Then, evaluate the length of the
routes completed by the bats. After that, calculate the velocity of each bat i
by calculating its hamming distance from the current global best solution and
choosing the velocity as a random number between 1 and the hamming distance.

Step 2 Crossover: Perform the crossover operation between the current bat
position xi and the current global best bat position x∗. After the crossover, the
fitness of current bat position xi is compared with the two offspring produced
after crossing. And then, we choose the best one as the new bat position xi.

Step 3 Local Search: If the velocity is small (vi ≤ number of cities/2), per-
form 2-opt move for current bat position xi; otherwise, do 3-opt move.

Step 4 Random Walk: With probability of pulse ri, solution is selected among
the ten best solutions in its neighborhood and random walk is applied to generate
a local solution around the selected one. And then, it is improved using 2-opt or
3-opt according to the velocity vi.

Step 5 (Loudness and Pulse Emission): If the solution is accepted, the
pulse emission rate ri increases and the loudness Ai decreases according to Eqs. 5
and 6.

Step 6 (Mutation): If the diversity is less than 0.5, it means that the algo-
rithm will loose the diversity and may get stuck in the local minima. Therefore,
BA needs to increase the diversity by applying the mutation operation with
predefined probability.

Step 7 Finding the global best solution: Sort out solutions and assign the
current global best solution. Steps 2–7 continue until the termination condition
is satisfied, either the optimal solution is found or the maximum number of
iteration is reached.

4 Experimental Results

In order to test the performance of IHDBA, it was initialized with a population
of 50 bats with initial random values in the range 0.7–0.1 and 0.0–0.4 for the
loudness and pulse parameters respectively. Alpha and gamma were set to 0.98
and the maximum number of iterations was 1000.
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IHDBA implemented in Java with different data structures using an Intel
Core-i5 PC. The experiments were conducted using twenty symmetric TSP stan-
dard benchmark problems, with different lengths obtained from TSPLIB (http://
comopt.ifi.uni-heidelberg.de/software/TSPLIB95/).

To evaluate the proposed hybrid bat algorithm, three bat variants with differ-
ent strategies are implemented. The first one is a standard discrete bat algorithm
with the 2-opt and 3opt strategies (denoted by BA-opt); the second is BA-opt
with crossover operation (denoted by BA-xover); and the third is BA-opt-xover
with the mutation operation (denoted by IHDBA). Table 1 shows the improve-
ment of the computational results over the evolution of algorithm.

Table 1. Computational results using BA-opt, BA-xover and IHDBA. All of the results
are taken from 10 runs. The best results are given in bold.

Instances Optimal BA-opt BA-xover IHDBA

Average best Average best Average best

Oliver30 420 420 420 420 420 420 420

berlin52 7542 7542 7542 7542 7542 7542 7542

St70 675 676.8 675 678.3 675 675 675

Eil51 426 427.1 426 427.1 426 426.4 426

Eil76 538 544.6 538 542 538 538 538

Eil101 629 636.2 631 636.4 631 629 629

KroA100 21282 21335.3 21282 21311.2 21282 21282 21282

Krob100 22141 22245.4 22141 22200.2 22193 22141 22141

Kroc100 20749 20769.3 20749 20778 20749 20749 20749

Krod100 21294 21428.6 21309 21348.6 21294 21309.3 21294

Kroe100 22068 22143.4 22068 22121.7 22068 22094.5 22068

Pr107 44303 44432.4 44303 44401.6 44303 44316.5 44303

Pr124 59030 59065.7 59030 59139.1 59030 59030 59030

Pr136 96772 97654.8 97007 97603.3 96861 96850.8 96785

Pr144 58537 58676.4 58537 58631.5 58537 58537 58537

Pr152 73682 74354.2 73818 74151.8 73840 73822.8 73682

Pr264 49135 49410 49135 49401.1 49235 49135 49135

Pr299 48191 48903.5 48609 48687.6 48372 48273.5 48197

Pr439 107217 109232.5 108524 109058.6 108387 107815.1 107408

Pr1002 259047 267616.1 266302 266719.8 265459 266433.0 264288

Table 2 shows the comparison results between IBA and IHDBA with respect
to best solution, average solution, percentage deviations of the average solu-
tion PDavg to the best known solution shown in the TSPLIB web site and the

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
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percentage deviations of best solution PDbest to the best known solution shown
in the TSPLIB.

In summary, numerical results show that IHDBA is able to solve small and
large size problems better than IBA. It is worthy to mention that incorporation
of the evolutionary operators, crossover and mutation, and the local search tech-
niques, 2-opt and 3-opt, to BA improves the results significantly which means
that combining these operators into BA is effective, feasible and promising.

Table 2. Computational results of IHDBA in comparison with IBA. All of the results
for IHDBA are taken from 10 runs. The best results are given in bold.

Instances Optimal IHDBA IBA

average best PDavg PDbest average best PDavg PDbest

Oliver30 420 420 420 0 0 420 420 0 0

berlin52 7542 7542 7542 0 0 7542 7542 0 0

St70 675 675 675 0.0000 0 679.1 675 0.0061 0

Eil51 426 426.4 426 0.0009 0 428.1 426 0.0049 0

Eil76 538 538 538 0.0000 0 548.1 539 0.0188 0.1859

Eil101 629 629 629 0.0000 0 646.4 634 0.0277 0.7949

KroA100 21282 21282 21282 0 0 21445.3 21282 0.0077 0

Krob100 22141 22141 22141 0.0000 0.0000 22506.4 22140 0.0165 −0.0045

Kroc100 20749 20749 20749 0.0000 0 21050 20749 0.0145 0

Krod100 21294 21309.3 21294 0.0007 0 21593.4 21294 0.0141 0

Kroe100 22068 22094.5 22068 0.0012 0 22349.6 22068 0.0128 0

Pr107 44303 44316.5 44303 0.0003 0 44793.8 44303 0.0111 0

Pr124 59030 59030 59030 0.0000 0 59412.1 59030 0.0065 0

Pr136 96772 96850.8 96785 0.0008 0.0134 99351.2 97547 0.0267 0.8009

Pr144 58537 58537 58537 0 0 58876.2 58537 0.0058 0

Pr152 73682 73822.8 73682 0.0019 0 74676.9 73921 0.0135 0.3244

Pr264 49135 49135 49135 0.0000 0 50908.3 49756 0.0361 1.2639

Pr299 48191 48273.5 48197 0.0017 0.0125 49674.1 48310 0.0308 0.2469

Pr439 107217 107815.1 107408 0.0056 0.1781 115256 111538 0.0750 4.0301

Pr1002 259047 266433.0 264288 0.0285 2.0232 274420 270016 0.0593 4.2344

5 Conclusion

In this paper, we have introduced a hybrid variant of bat algorithm combined
with two evolutionary operators (crossover and mutation) and two local search
strategies (2-opt and 3-opt). The evolutionary operators strike a balance between
diversification and intensification and enable algorithm to escape from local
optima. The local search strategies (2-opt and 3-opt) speed up the BA conver-
gence. IHDBA is applied to solve the traveling salesman problem. Experiments
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conducted using twenty instances obtained from the TSPLIB The results show
that IHDBA outperformed the recent BA variant i.e. IBA with respect to average
and best solution and is able to obtain the optimal solution for most instances.
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Abstract. In any corporation and organizations, the owner wants to
introduce a best and efficient security solution with low cost and wants
to get the high efficiency. In this paper, we suggest a method to select
the best security solution among various security solutions using multi-
objective genetic algorithm that considers the trade-off between cost and
security. The designed system can support the best security solution from
various aspects of security concerns. We use NSGA-II algorithm that is
verified in various fields, and provide comparison results with the existing
genetic algorithm.

Keywords: Information security · Machine learning · Evolutionary
algorithm · Genetic algorithm · AI

1 Introduction

Information technology system and Internet get interconnectivity so that pro-
ductivity of corporation and market value are very increased. But it also causes
negative effects like cyber attack that hampers the corporations development [1].
To prevent it, each corporation and organization makes security solutions on the
sidelines of their common business. Security solution generally means physical
or logical action against the trouble of the information system [2]. But in most
cases, companies do not want to invest a lot of money for the security solution.
Because security solution cannot show tangible achievement in short time. Fur-
thermore, to increase the security of the company, they should sure that how
much cost will they invest for it and decide that which security solution will be
selected.

In this paper, we design a selecting security solution system by using multi-
objective genetic algorithm. It will help to select the best security solution among
the candidates for any organization.

The remainder of this paper is organized as follows: in Sect. 2, we explain
the genetic algorithm (GA) and Pareto-optimization. And in Sect. 3, we explain
the multi-objective genetic algorithm. We will design a creating security solu-
tions and weakness decrease point and explain the program code in Sect. 3. Our
proposed system is presented in Sect. 4 by using the multi-objective genetic algo-
rithm to select security solution. Section 5 concludes the paper.
c© Springer Nature Singapore Pte Ltd. 2016
M. Gong et al. (Eds.): BIC-TA 2016, Part I, CCIS 681, pp. 512–517, 2016.
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2 Related Works

This section will describe Pareto-optimality after the simple description on
genetic algorithm and knapsack problem.

2.1 Genetic Algorithm and Pareto-optimality

A genetic algorithm is a heuristic search that mimics the process of natural
selection [3].

Table 1. The list of solution sets that generated randomly

Name 250 - cost Value

A 104 84

B 206 72

C 94 112

D 213 16

E 208 18

F 15 190

G 146 200

H 157 114

I 181 80

J 176 16

K 201 12

Generally, we use the concept of “Pareto-optimality” for solving the problem
when there are multi-objectives to achieve the best result. For example, the list
of solutions for the security plan for an organization is shown in Table 1. We can
make a chart for the solutions as shown in Fig. 1. In the chart, the x-axis means
(250 - cost) and the y-axis means a decrease of danger in security.

Fig. 1. Chart to select best solution from various candidates.
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From the chart in Fig. 1, we can say the solution positioning right side and
upper is good and efficient. The optimal solution is a solution that locates at
uppermost and most right side, but generally, the cost is proportional to value
so it is so hard to find an optimal solution like that. Instead, it is possible to
find Pareto-optimal set that has the upper hand than the other solutions [4].
Quadrangles in the chart show the relationship about Pareto-dominance. For
example, the solution E has a very high value, but there is a solution that has a
higher value and a less cost than the solution E, that is named the solution F.
In other word, the solution F is perfectly superior to the solution E. We can say
this situation as Pareto-dominated. When we make a chart like Fig. 1, we call the
set of solutions that does not dominated by any other solutions Pareto-optimal
set, and the line that connects the elements of Pareto-optimal set is called by
Pareto-frontier. In conclusion, the thing we finally have to find is Pareto-optimal
set.

3 NSGA-II Multi-objective Genetic Algorithm

There are many kinds of multi-objective genetic algorithms (MOGA) to solve
the problem. NPGA, NSGA and SPEA are the most popular MOGA, and in
this paper, we use the NSGA-II algorithm for solving the problem. NSGA-II
is the algorithm that is upgraded from the existing multi-objective algorithm
NSGA, which has less complexity metric for non-dominated solutions sorting
method. NSGA-II introduced the new method that named Crowding Distance
so it can distribute each resource much efficiently than the existing algorithm.
Furthermore, NSGA-II introduced elitism, which is the method that helps to
maintain best solutions to next generation so high fitness solutions cannot be
eliminated easily [5]. NSGA-II algorithm is easy to use and efficient way to find
high fitness solution. It also shows high performance and so this algorithm is
very widely and generally used [6].

Fig. 2. Flowchart for NSGA-II algorithm.

NSGA-II algorithm follows the process in Fig. 2 [7]. Non-dominated rank
means the rank that how many other solutions are dominating than a solution.
In other word, if any solution is dominating one solution, the solutions non-
dominated rank is zero. So in some generation, Pareto-optimal solution has most
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high order of priority, and the solution that located far from the other solutions
has more and more low order of priority. Like this, non-dominated rank sorting
process induces the set of solution to convergence to Pareto-optimal set. And
Crowding-distance means how many solutions are located in the same area. It
is the index for evaluating the diversity of solution set which one has same
non-dominated rank. Each solution gets high crowding-distance if it has less
similarity with near solutions. This is the method for selecting the solution that
has a different attribute in the set of gene individual that belongs to same non-
dominated rank group [5]. The process of crossover and mutation is the same as
in the existing simple genetic algorithm [6].

We also have to create some samples of the best security solution for experi-
ments and each security solution should have a cost for introducing and weakness
decrease point. But weakness decrease point cannot be digitized easily. There-
fore, in this paper, we will use the meaningful random number to weakness
decrease point for creating the sample of security solutions. We can make the
meaningful random weakness decrease points with our made program. Weakness
decrease point will almost be proportional to security solutions cost. But there
can be rarely too high weakness decrease point than security solutions cost or
the opposite case.

4 Selecting Security Solution Using Multi-objective
Genetic Algorithm

In this section, we will suggest a scheme to select the best security solution
among candidates using NSGA-II MOGA mentioned in the previous sections.
Park et al. proposed a solution for this with simple genetic algorithm [8]. They
tried to solve this problem with a simple genetic algorithm and used a list of
ten virtual solutions. For the comparison with the solution, we materialized
the program as the same with the simple genetic algorithm used in Park et
al.’s solution. And we compare the result with the case of using newly created
solution sets. From the results, we can find a set with 3 optimal solutions. The
first solution set has 55,036 weakness decrease points and needs 36,217 cost. And
the second one has 51,048 decrease points and needs 33,137. The last set has
56,637 decrease points and needs 37,237 cost.

And in the simple genetic algorithm, we use the single fitness function for
evaluating solutions fitness or value, but in MOGA, we can use multiple fitness
functions for evaluating solutions fitness or value.

f1 =
n∑

i=1

(100000 − vci.c× vci.s) (1)

f2 =
n∑

i=1

vci.d× vci.s (2)

In this paper, we use two fitness functions like in Eqs. 1 and 2. The Eq. 1 uses
the value (100,000 - solutions whole cost) for evaluation measure. The Eq. 2 uses
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the value about whole solutions security weakness decrease points for evaluation
measure. n is the number the of whole chromosomes, in other word, n means
the number of solutions. vc means each chromosome structure. vc.d includes the
decrease point of security weakness, and vc.c includes the cost for selecting that
solution. vc.s includes the binary number for check whether each solution was
selected or not selected. So if vc.s’s value is 0, that means the solution was not
selected.

And the things that make a difference of performance are the type of muta-
tion and crossover. This is an important element of the genetic algorithm. There
are many types of mutation and crossover like Uniform Mutation, Parent-Centric
Crossover, Bit Flip Mutation, Half-Uniform Crossover and etc. In this paper, we
will use the Simulated Binary Crossover (SBX) for crossover process and Poly-
nomial Mutation (PM) for mutation process in NSGA-II. SBX is the operator
that has search ability similar to that of a single-point binary-coded crossover
operator [9]. And the PM is the operator that is widely used in evolutionary
optimization algorithms as a variation operator [10]. It attempts to simulate the
offspring distribution of binary-encoded bit-flip mutation on real-valued decision
variables. Of course, the variable type that is used in our process is binary but
PM shows better performance than Bit Flip Mutation so we used it for the test.
PM is similar to SBX, it favors offspring nearer to the parent [11].

Finally, we set the population size for the genetic algorithm to 5,000 and
fixed generation number to 150.

Fig. 3. The graph about selecting security solution using NSGA-II

Figure 3 shows a graph of result values on selecting security solutions found
by an experiment using NSGA-II algorithm. Horizontal axis is f1 value, and
vertical axis is for f2 value. In a case of existing researchs result, we reversed the
cost value for easy comparison. So the cost value of original researchs result was
replaced to (100,000 - original cost) value. And for dividing, we drew the original
researchs result with quadrangle, and this papers result with dots. We can find
the fact that Pareto-optimal sets found by NSGA-II algorithm are perfectly
dominating the result of original research that used a simple genetic algorithm
in the graph. The result of this paper provides various solution sets from the
solution set that use low cost to the solution set that uses high cost and gets
high weakness decrease points.
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5 Conclusion

In this paper, we suggested a new method of selecting the best security solution
among candidates, which is necessary in corporations and organizations. It used
NSGA-II MOGA. The proposed method considered more objectives than the
existing schemes that use the simple genetic algorithm for evaluating fitness. It
could provide more various solution sets in a short time than the original scheme.
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Abstract. In this paper, we proposed a multi-agent system for creating
art that can produce a set of abstract and complex style images given
an input image. The proposed system consists of Boids, and each Boid
object contains the genetic programming trees and neural networks. The
role of genetic programming is to create unique color patterns, which will
be embellished to the input image. And neural networks in each agent
adjust its Boids properties, to perform more emergent group behavior
in the progress of art creating. The results of the proposed system can
show abstractly and complexly embellished images given an input image
in each run.

Keywords: A-Life Art · Multi-agent systems · Boids · Evolutionary
algorithms · Neural networks

1 Introduction

Artificial life (A-Life) is a research area to study life-as-it-might-be [1,2]. One of
the key aspects within A-Life is emergent properties that can present complex
and unpredictable behaviors from their interactions. Artists and scientists com-
bined A-Life with art and design fields that resulted in the birth of Artificial Life
Art (A-Life Art) [3–5]. The composition of A-Life and art might be considered
as living artworks, which can make users immersed in an artwork and provide
amusement.

In this paper, we proposed a new A-Life Art based on multi-agent systems
[6–8]. The proposed system receives an input image and gives back to an image
that modified with abstract and complex styles. Also, the proposed system can
exhibit the progress of creating art, which shows an emergent group behavior
of Boids [9]. In the proposed system, each Boid object has a neural network
and three genetic programming trees. The neural network is used to adjust the
behavior properties of Boids such as the maximum force, the maximum speed,
and the ranges of three steering rules. The three genetic programming trees are
used to create color patterns, which will be embellished to the input image.
Therefore, each Boid object contains its unique behavior properties and color
c© Springer Nature Singapore Pte Ltd. 2016
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patterns, which make it possible to embellish the input image with different
styles in each run.

As a result, by combining the Boids model with genetic programming and
multilayer perceptron, the proposed system can possess more improved emergent
properties. To the best of our knowledge, the proposed system is the first attempt
to incorporate the Boids model with both evolutionary algorithms and neural
networks to create and provide abstractly and complexly embellished artworks.

2 Boids

Craig Reynolds proposed a computer model that can emulate the behavior of
bird flocks or fish schools called Boids [9]. The simulation model contains the
population of Boid objects and each Boid object maneuvers through three basic
steering rules (Fig. 1) based on its neighbors positions and velocities. Although
these steering rules are fairly simple and straightforward, the Boids model can
present complex and unpredictable the group behavior.

(a) Alignment (b) Cohesion (c) Separation

Fig. 1. The basic steering rules of Boids

3 The Proposed System

In this paper, we proposed a new A-Life Art based on multi-agent systems. The
proposed system receives an input image and gives back to an image that mod-
ified with abstract and complex styles. Also, the proposed system can exhibit
the progress of creating art, which shows an emergent group behavior of Boids.
We designed the proposed system to use the Boids model with genetic pro-
gramming [10] and multilayer perceptron. By combining the Boids model with
genetic programming and neural networks, each Boid object can perform not
only evolution but also learning. The combined Boid object moves around the
white canvas image that has the same size with the input image based on its
behavior properties and leaves its unique color that provided by its genetic pro-
gramming trees. The Boids model can exhibit emergent group behavior based
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Fig. 2. Genetic programming embedded Boid agents (Color figure online)

on basic steering rules. Therefore, by applying the Boids model, the proposed
multi-agent systems for creating art can generate an image with unpredictable
behavior.

In the proposed system, each Boid object has three genetic programming
trees, which represents an RGB color. Also, each Boid object has a fitness value.
When a Boids object possessed better RGB color than the color of the corre-
sponding position in the canvas image when it compared to the input image, then
the Boid object leave its RGB color in that position and increase its fitness value.
Otherwise, the Boid object just passes the position and moves another position.
Figure 2 shows the example of two Boid objects with their genetic programming
trees. In the proposed system, the terminal nodes of our genetic programming
are X, Y, R, where X and Y are the locations of a Boid object and R, is a real
value. The non-terminal nodes of our genetic programming are as follows:

1. Bit-wise AND: X&Y (or R)

2. Bit-wise OR: X‖Y (or R)

3. Bit-wise XOR: X ⊕ Y (or R)

4. NOT: !X

5. Left-shift: X � 2 (multiplied by 2)

6. Right-shift: X � 2 (divided by 2)

7. ADD: X + Y (or R)

8. SUB: X − Y (or R)

9. MUL: X · Y (or R)
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10. DIV: X/Y (or R) if Y > 0.0001

11. SIN: sin(X) · 255

12. COS: cos(X) · 255

13. TAN: tan(X) · 255

The proposed system evaluates our Boid objects every predetermined period
and finds the best Boid object. After that the population of the Boid objects
undergoes the crossover and mutation operators with the best Boid object in
the manner of genetic programming [5].

Fig. 3. Multilayer perceptron for the unique behavior properties of Boid agents

Neural networks are considered as a non-linear processing system that can
be applied to many practical problems. Especially, when there is only a little
information about a problem, neural networks are suitable for the situation. The
strength of neural networks is that they perform well on many problems because
it does not require any pieces of knowledge such as continuity or differentiability,
similar to EA.

In the proposed system, each Boid object contains multilayer perceptron
to hold its unique behavior of Boids properties (Fig. 3). Therefore, each Boid
object has not a unique color but also unique behavior, which can promote more
emergent properties. The neural networks are also undergoing to evolve every
predetermined period. The population of the Boid objects evolves based on the
best objects network weights. In detail, the network weights of the best object
are extracted and are used to the extended line crossover [11] with other objects
network weights.

As a result, by using genetic programming and multilayer perceptron with
the Boids model, the proposed system can embellish a received input image to
provide abstract and complex images.
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4 Results

In this section, we present the several outcomes of the proposed system. Figure 4
is the input image (a) and the set of results (b), (c), (d) of the proposed system.
The outcomes of the proposed system embellished the original input image in
each run. As we can see from these results, the proposed system can embellish
the given input image as abstract and complex images and every time it provides
a different image. Each Boid object contains its unique behavior properties and
color patterns, which make it possible to embellish the input image with different
styles in each run. As a result, by combining the Boids model with genetic
programming and multilayer perceptron, the proposed system can possess more
improved emergent properties.

(a) (b)

(c) (d)

Fig. 4. The outcome images

5 Conclusion

In this paper, we proposed a multi-agent system for creating abstract and com-
plex art given an input image. The proposed system can embellish the given
input image with abstract and complex styles. Also, the creating progress of the
proposed system can exhibit emergent properties, which different and diverse in
each run. We combined the Boids model with evolutionary algorithms and neural
networks. The proposed system is designed to boost the emergent properties by
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incorporating the Boids model with genetic programming and multilayer per-
ceptron, and hence, can take advantage of these approaches to create abstract
and complex artworks. We believe that the proposed system can be used for not
only creating art but also in a variety of creating digital contents.

Acknowledgments. This research was supported by Basic Science Research Program
through the National Research Foundation of Korea (NRF) funded by the Ministry of
Education (NRF-2015R1D1A1A02062017).

References

1. Langton, C.G.: Artificial Life. Addison-Wesley Publishing Company, Redwood City
(1989)

2. Langton, C.G.: Artificial Life: An overview. MIT Press, Cambridge (1997)
3. Eldridge, A.: You pretty little flocker: exploring the aesthetic state space of creative

ecosystems. Artif. Life 21, 289–292 (2015)
4. Greenfield, G., Machado, P.: Ant-and ant-colony-inspired alife visual art. Artif.

Life 21, 293–306 (2015)
5. Boden, M.A.: Creativity and alife. Artif. Life 21, 354–365 (2015)
6. Wooldridge, M.: An Introduction to Multiagent Systems. Wiley, Chichester (2009)
7. Weiss, G.: Multiagent Systems: A Modern Approach to Distributed Artificial Intel-

ligence. MIT Press, Cambridge (1999)
8. Sycara, K.P.: Multiagent systems. AI Mag. 19(2), 79 (1998)
9. Reynolds, C.W.: Flocks, herds and schools: a distributed behavioral model. ACM

SIGGRAPH Comput. Graph. 21(4), 25–34 (1987)
10. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means

of Natural Selection, vol. 1. MIT Press, Cambridge (1992)
11. Yoon, Y., Kim, Y.-H.: The Roles of Crossover and Mutation in Real-Coded Genetic

Algorithms. INTECH Open Access Publisher (2012)



Author Index

Ahn, Chang Wook I-512, I-518
Ai, Jian I-64
Aljoby ßer, Walid I-504
Al-Khafaji, Ghada I-314
Al-Salibi, Bisan I-314
Al-sorori, Wedad I-504

Bai, Liang I-405

Cai, Xinye II-316
Cai, Zhaoquan II-400
Cao, Xiaochun II-379
Ceterchi, Rodica I-54
Chandra, P. Helen I-142, I-200
Chandrasekaran, K. I-249
Chen, Feng I-431
Chen, Guangchun I-187
Chen, Guanyu I-362
Chen, Hanning II-101, II-231, II-241, II-247
Chen, Jianrui II-394
Chen, Ke I-385
Chen, Liwan II-513
Chen, Qiang II-513, II-530
Chen, Qinqun II-135
Chen, Shaohua II-114
Chen, Weiguang II-179
Chen, Xing I-226
Chen, Yan II-179, II-518
Chen, Yuning II-265
Chen, Yuqiang II-254
Chen, Zhenghan II-173
Chen, Zuxue I-399
Choi, Tae Jong I-518
Cui, Guangzhao I-21, I-30, I-39, I-64, II-141

Deng, Haisheng I-417
Ding, Wangtong II-86
Ding, Xin II-413
Dong, Bei I-466
Dong, Junyu II-343, II-373
Dong, Wenbo II-285
Dong, Yonghui II-362
Du, Haifeng I-411

Du, Wei I-411, II-355
Duan, Lianghua II-343
Duan, Yingying I-118

Fan, Xiaodan II-420
Fan, Zhun II-316
Fang, Hui II-163
Fang, Wei II-86
Fang, Yangwang II-114
Fu, Qinhong II-204

Gan, Jianhou II-379
Gao, Shangce II-185
Gao, Tianhan II-271
Gong, Maoguo I-431, I-438, I-447, II-47,

II-467
Gong, Wenyin II-73
Guo, Jinlin I-405
Guo, Ping I-133, I-155
Guo, Yangzhi II-41

Hao, Ying II-107
Hao, Zhifeng II-135, II-151
Hasan, Shafatnnur I-314
He, Cheng II-285
He, Juanjuan II-278
He, Jun II-518
He, Maowei II-231, II-241, II-247
He, Qiang II-271
He, Sicheng II-420
He, Xiaochen I-411, II-355
He, Yangyang I-109
Hu, Chengyu II-80
Hu, Juan I-187
Hu, Junyi II-86
Hu, Tianyu I-425
Hu, Yiqi I-456
Huang, Chun I-21, I-30
Huang, Han II-135, II-151, II-400, II-497
Huang, Kang I-109
Huang, Xiangnian I-187
Huo, Chao II-10



Idowu, Rufai Kazeem I-336
Issoufa, Youssouf Hamidou I-299

Jayasankar, S. I-278
Jayaseeli, A. Mary Imelda I-142
Jeong, Jaehun I-518
Jian, Muwei II-373
Jiang, Xiangming II-3, II-20
Jiang, Yun I-75, II-420
Jiao, Licheng I-480, II-173, II-388, II-413
Juanjuan, He II-441
Jung, Jaehun I-512

Kai, Zhang II-441
Kalavathy, S.M. Saroja Theerdus I-142,

I-200
Kalyani, M. Nithya I-200
Karoline, J. Philomenal I-142
Kong, Weiren II-54

Lee, Yunghee I-512
Lei, Chao II-3, II-20, II-41
Lei, Yu II-47, II-54, II-310, II-461, II-467
Li, Changhe II-60
Li, Chao II-254
Li, Gang II-135
Li, Hao II-328
Li, Hongbing II-513
Li, Kangshun II-95, II-179, II-407, II-518
Li, Mengmeng II-362
Li, Na I-438
Li, Qingchun II-302, II-507
Li, Rui II-219
Li, Shanshan II-420
Li, Wei II-179
Li, Xiang I-362
Li, Xing I-21, I-30
Li, Xu II-271
Li, Xuefeng I-494
Li, Yangyang II-173, II-388
Li, Zheng II-322
Li, Zhizhou I-425
Li, Zhongwei I-75
Li, Ziyu II-507, II-524
Liang, Xiaodan II-231, II-241
Liang, Yihui II-400
Liu, Dongyue II-219
Liu, Fangqing II-151
Liu, Hongmin II-328

Liu, Hongying I-417
Liu, Hua I-39
Liu, Huiping II-219
Liu, Jiangrong II-489
Liu, Ling I-362
Liu, Min II-54
Liu, Panpan II-507
Liu, Peipei II-54
Liu, Ruyi II-120
Liu, Shuanglong I-377
Liu, Shuo I-85, I-226
Liu, Suping II-448
Liu, Xiyu I-95, I-168
Liu, Ying II-271
Lu, Erang II-497
Lu, Gao II-388
Lu, Zhanqing II-278
Luo, Chaomin II-334
Luo, Xiaohui I-187
Lv, Liang II-400

Ma, Jingjing II-3, II-20
Ma, Jinwen I-377
Ma, Lianbo II-271
Ma, Miao I-399
Ma, Tinghuai I-371, II-35
Ma, Wenping I-425, II-322
Mei, Zhiwei II-316
Messikh, Azeddine I-215, I-299
Miao, Qiguang II-120
Ming, Jun I-237, I-385
Mo, Hongwei II-334
Mohamad Zulkufli, Nurul Liyana I-215
Mohsen, Abdulqader I-504
Moussaoui, Abdelouahab I-487
Mu, Nan II-454
Muniyandi, Ravie Chandren I-336

Nagar, Atulya K. I-278
Nie, Kai I-12
Niu, Ying I-39, II-141
Niu, Yunyun II-278

Othman, Zulaiha Ali I-336
Oussalah, Mourad I-487

Pan, Linqiang I-54
Peng, Guang II-114
Peng, Hong I-187, I-237, I-385

526 Author Index



Peng, Weishi II-114
Peng, Xiaoqi II-151

Qi, Huaqing I-85, I-118, I-226, II-204,
II-285, II-475, II-489

Qiang, Yan I-349

Raghavan, S. I-249
Rong, Haina I-109

Sang, Haifeng II-302, II-507, II-524
Shamsuddin, Siti Mariyam I-314
Shang, Mingsheng II-10
Shang, Zhigang II-362
Shangyi, Li II-441
Shi, Jiao I-431, I-438, II-310, II-461
Song, Bosheng I-54, II-285, II-475, II-489
Song, Jianfeng II-120
Su, Weixing II-231
Subramanian, K.G. I-54
Sun, Beibei I-75
Sun, Junwei I-21, I-30
Sun, Liling II-101
Sun, Limin II-127
Sun, Wenxing I-95
Sun, Yifei I-466
Sun, Yu I-473
Sun, Yujuan II-373
Sun, Zhang I-237
Suseelan, James Immanuel I-278

Taleb-Ahmed, Abdelmalik I-487
Tamrin, Mohd Izzuddin Mohd I-215
Tang, Ke I-473
Tang, Tao I-371
Tang, Zedong II-47
Tao, Chengyu I-385
Thamburaj, Robinson I-278
Thomas, D.G. I-278
Tian, Xiaolin I-480, II-413
Turaev, Sherzod I-215

Uliji II-394

Wang, Bin I-3
Wang, Fangxiu II-475
Wang, Feixiang I-417
Wang, Hua II-394

Wang, Jiahai II-185
Wang, Jingjing I-411
Wang, Jun I-187, I-237, I-385
Wang, Liang II-73
Wang, Mingwei II-513
Wang, Pei II-265
Wang, Shanfeng II-322
Wang, Shengke II-343
Wang, Shudong II-420
Wang, Tao I-109
Wang, Wenping I-168
Wang, Xi I-39
Wang, Xiaoxiao II-141
Wang, Xinzeng II-420
Wang, Xun I-75
Wang, Yanfeng I-12, I-21, I-30, I-64
Wang, Yang II-10, II-173
Wang, Yiding II-120
Wang, Yikai I-417
Wang, Zhao I-447
Wang, Zhi I-417
Wang, Zicheng I-64
Wei, Hang II-135
Wei, Xiaoguang I-109
Wen, Bin II-379
Wen, Zhichao II-95
Wu, Hongyue II-151
Wu, Jie I-399
Wu, Qinghua II-107
Wu, Tao II-461, II-467
Wu, Tingfang I-85, II-204, II-489
Wu, Xiaojun I-466
Wu, Ziheng II-497

Xia, Shengyu I-75
Xiao, Chaoting II-379
Xiao, Su II-431
Xiao, Xiaojiao I-349
Xie, Tian I-447
Xie, Yuxiang I-405
Xin, Yuezhen I-75
Xing, Lining II-191, II-265
Xiong, Lu II-95, II-407
Xu, Lifang II-334
Xu, Wei I-155
Xu, Xin II-454
Xu, Yueting II-497
Xue, Yu I-371, II-35

Author Index 527



Yahya, Rafaa I. I-314
Yahya, Salah I. I-314
Yan, Jianan II-41
Yan, Xuesong II-80, II-107
Yang, Dandan II-114
Yang, Guangming II-271
Yang, Hua II-454
Yang, Jing I-47
Yang, Shuling II-179
Yang, Tianxiong II-497
Yang, Xing II-185
Yang, Yunying I-237
Yang, Zheng I-405
Yao, Lina I-64
Ye, Lian I-133
Yin, Jian II-185
Yin, Zhixiang I-47
Yu, Jing II-191
Yu, Pan II-497
Yu, Tianyuan I-405
Yu, Wenping I-237, I-385
Yu, Yang I-456
Yuan, Fayou II-420
Yunyun, Niu II-441

Zeng, Dong II-513
Zeng, Rongqiang II-10
Zeng, Shan I-85, I-226, II-489
Zhang, Chao I-377
Zhang, Chunjiong II-513
Zhang, Cong II-127
Zhang, Dongbo II-407, II-448
Zhang, Gexiang I-109
Zhang, Guixu II-163
Zhang, Jun II-285

Zhang, Kai II-278
Zhang, Kun II-54, II-310
Zhang, Puzhao I-425
Zhang, Shanqiang II-420
Zhang, Wei II-379
Zhang, Xuncai I-39, II-141
Zhang, Zhiqiang I-118
Zhang, Zhongshan II-265
Zhao, Binping II-35
Zhao, Chunxia II-394
Zhao, Jing II-80
Zhao, Juanjuan I-349
Zhao, Pengfei I-349
Zhao, Sujie I-480
Zhao, Wei II-41, II-328
Zhao, Xinchao II-219
Zhao, Yan II-420
Zhao, Ying II-524
Zhao, Yong II-343
Zhao, Yuzhen I-95, I-168
Zheng, Xiaolong II-47
Zheng, Xuedong I-3
Zhou, Aimin II-163
Zhou, Changjun I-3
Zhou, Kang I-85, I-118, I-226, II-204,

II-285, II-475, II-489
Zhou, Qinglei I-12
Zhou, Shihua I-3
Zhou, Yalan II-185
Zhu, Weijun I-12
Zhu, Xinjie II-420
Zhu, Zhibin II-127
Zou, Jie II-54
Zouaoui, Hakima I-487
Zuo, Xingquan II-219

528 Author Index


	Preface
	Organization
	Contents – Part I
	Contents -- Part II
	DNA Computing
	DNA Self-assembly Model to Solve Compound Logic Operators Problem
	1 Introduction
	2 The Principle of DNA Self-assembly
	3 Compound Logic Operators
	4 Theoretical Model of Compound Logic Operators
	4.1 Initial Tile
	4.2 Process Tile
	4.3 Operation Tile
	4.4 End Tile
	4.5 Boundary Tile

	5 The Model Instance of Compound Logic Operators
	6 Conclusions
	References

	Model Checking Computational Tree Logic Using Sticker Automata
	1 Introduction
	2 Preliminary
	2.1 The Basic Constructs in CTL 1
	2.2 Finite State Automata and Model Checking
	2.3 Sticker Automata and DNA Model Checking

	3 The DNA Model Checking Method for the Basic CTL Constructs
	3.1 The DNA Model Checking for the Four Universal Formulas
	3.2 The DNA Model Checking for the Four Existence Formulas
	3.3 The DNA Model Checking for the Basic CTL Constructs

	4 Simulated Experiments
	5 Conclusions
	References

	Two-Digit Full Subtractor Logical Operation Based on DNA Strand Displacement
	1 Introduction
	2 DSD and Seesaw Motif of Basic Gates
	3 Binary Two-Digit Subtractor and Dual-Rail Circuit
	4 Seesaw Circuit and Simulation in Visual DSD
	5 Conclusion
	References

	One-Bit Full Adder-Full Subtractor Logical Operation Based on DNA Strand Displacement
	1 Introduction
	2 The Background of DNA Strand Displacement
	3 The Digit Circuit and Dual-rail Circuit
	4 Seesaw Circuit and Simulation with Visual DSD
	5 Conclusion
	References

	Logic Gate Based on Circular DNA Structure with Strand Displacement
	1 Introduction
	2 Design and Construction of Logic Gate Model
	2.1 Principle of the Proposed Method: XOR Gate
	2.2 Principle of the Proposed Method: AND Gate

	3 Result and Discussion
	4 Conclusions
	References

	The Working Operation Problem Based on Probe Machine Model
	1 Introduction
	2 The Probe Computing Principles
	3 The Working Operation Problem Description
	4 Conclusion
	References

	Matrix Flat Splicing Systems
	1 Introduction
	2 Preliminaries
	3 Matrix Flat Splicing System
	4 Application to Chain-Code Pictures
	5 Conclusions and Discussions
	References

	A Universal Platform for Building DNA Logic Circuits
	1 Introduction
	2 Design and Construction of Half-adder and Half-subtract Model
	2.1 Materials and Analysis
	2.2 Design of Half-adder
	2.3 Design of Half-subtract

	3 Result and Discussion
	4 Conclusions
	References

	Membrane Computing
	A Hybrid ``Fast-Slow'' Convergent Framework for Genetic Algorithm Inspired by Membrane Computing
	1 Introduction
	2 Related Technologies
	2.1 Genetic Algorithm
	2.2 Membrane Computing Inspired Algorithm

	3 The Model and Data Experiments
	3.1 GA Program
	3.2 Membrane Structure
	3.3 Data Experiments

	4 Conclusion
	References

	An Image Threshold Segmentation Algorithm with Hybrid Evolutionary Mechanisms Based on Membrane Computing
	1 Introduction
	2 Principle of Threshold Images Segmentation
	3 Threshold Segmentation Membrane Algorithm
	3.1 Object of the Tissue-Link Membrane System
	3.2 Hybrid Evolutionary Rule and Communication Rules

	4 Experiment Analysis
	4.1 Data Sets Used in the Experiments
	4.2 Parameter Configuration in Experiments
	4.3 Algorithm Analysis and Comparison

	5 Conclusion
	References

	K-Medoids-Based Consensus Clustering Based on Cell-Like P Systems with Promoters and Inhibitors
	1 Introduction
	2 Preliminaries
	2.1 The K-Medoids Algorithm
	2.2 The Consensus Clustering
	2.3 Cell-like P System with Promoters and Inhibitors

	3 The K-Medoids-Based Consensus Clustering Based on Cell-like P Systems with Promoters and Inhibitors
	3.1 The Cell-like P System for CPPI-KMCC
	3.2 Time Complexity Analysis

	4 Experiments and Analysis
	5 Conclusions
	References

	Fault Classification of Power Transmission Lines Using Fuzzy Reasoning Spiking Neural P Systems
	1 Introduction
	2 Fault Classification with FRSNPS
	2.1 Fuzzy Production Rules of Fault Classification
	2.2 Fault Classification Models

	3 Experiments
	4 Conclusions
	References

	Membrane Algorithm with Genetic Operation and VRPTW-Based Public Optimization System
	1 Introduction
	2 Definition and Mathematical Mode for VRPTW
	2.1 Definition for VRPTW
	2.2 Mathematical Model for VRPTW

	3 Membrane Algorithm with GA Evolution Machanism
	3.1 Membrane Configuration of MGA
	3.2 Coding for Objects
	3.3 The Rules in Membranes
	3.4 Transportation Mechanism of MGA
	3.5 Termination Condition and Output

	4 Application of MGA in VRPTW
	5 Simulation Experiment
	5.1 Results for Parameters Tuning
	5.2 Analysis of Experiment Results for Different Scales

	6 Conclusion
	References

	An Immune Algorithm Based on P System for Classification
	1 Introduction
	2 Related Works
	2.1 Cell-Like P System
	2.2 Negative Selection

	3 NS for Classification
	3.1 Definition
	3.2 Rule Set
	3.3 Algorithm Implementation
	3.4 Analyses

	4 Conclusion
	References

	Simulation of Fuzzy ACSH on Membranes with Michaelis-Menten Kinetics
	1 Introduction
	2 Preliminaries
	2.1 Kinetic Studies of the Sulfoxidation Reactions 
	2.2 P System with Proteins on Membranes 
	2.3 Fuzzy Artificial Cell System with Proteins on Membranes 

	3 Simulation of FACSP
	3.1 FACSP in Oxidation of Sulfides
	3.2 Behaviour of FACSP
	3.3 Mathematical Modeling and Simulation of FACSP

	4 Conclusion
	References

	A Family P System of Realizing RSA Algorithm
	1 Introduction
	2 RSA Algorithm
	3 Design of the P System
	3.1 The Definition of the RSA P System
	3.2 Key Generation Membrane A2
	3.3 Encryption and Decryption Membrane A3
	3.4 Skin Membrane A1

	4 Instance
	4.1 Key Generation
	4.2 Encryption and Decryption

	5 Conclusions
	References

	A General Object-Oriented Description for Membrane Computing
	1 Introduction
	2 Preliminaries
	3 The Object-Oriented Description of Membrane Computing
	4 The Data Structure of Membrane Computing
	5 An Object-Oriented Static Model of Membrane Computing
	6 Object-Oriented Dynamic Model of Membrane Computing
	6.1 The Activity Diagram
	6.2 The Sequence Diagrams
	6.3 The Use-Case Diagram

	7 Conclusion and Discussion
	References

	Matrix Representation of Parallel Computation for Spiking Neural P Systems
	1 Introduction
	2 SN P Systems
	3 Matrix Representation of SN P Systems with Delay
	4 Two Illustration Examples
	5 Conclusions and Future Work
	References

	The Computational Power of Array P System with Mate Operation
	1 Introduction
	2 Preliminaries
	2.1 Array P System [10]
	2.2 Mate Operation [3]

	3 Array P System with Mate Operation
	3.1 Definition
	3.2 Example
	3.3 Theorem

	4 Closure Properties
	4.1 Theorem
	4.2 Theorem

	5 Generative Power
	5.1 Theorem
	5.2 Theorem
	5.3 Theorem
	5.4 Definition
	5.5 Theorem

	6 Conclusion
	References

	The Computational Power of Watson-Crick Grammars: Revisited
	1 Introduction
	2 Preliminaries
	3 The Computational Power
	4 Conclusions
	References

	An Improvement of Small Universal Spiking Neural P Systems with Anti-Spikes
	1 Introduction
	2 Prerequisites
	2.1 Universal Register Machine
	2.2 Spiking Neural P Systems with Anti-Spikes

	3 A Small Universal SN P System with Anti-Spike
	3.1 The Structure of Neuron state
	3.2 The Structure of Auxiliary Neurons a

	4 Proof and Conclusion
	4.1 Module ADD (Simulating li:(ADD(r),lj,lk))
	4.2 Module SUB (Simulating li:(SUB(r),lj,lk))
	4.3 Module OUTPUT

	5 Conclusions and Remark
	References

	The Implementation of Membrane Clustering Algorithm Based on FPGA
	1 Introduction
	2 Membrane Clustering Algorithm
	2.1 Structure of Membrane Clustering Algorithm
	2.2 Object Representation in the Structure of the Membrane Clustering Algorithm
	2.3 Learning Algorithm

	3 Parallel Implementation of the Membrane Clustering Algorithm on FPGA
	3.1 FPGA Parallel Computing Principle
	3.2 Implementation Process of Membrane Clustering Algorithm on FPGA
	3.3 Implementation Program Module Partitioning of Membrane Clustering Algorithm on FPGA

	4 Experiment Results and Analysis
	5 Conclusions
	References

	Tools and Simulators for Membrane Computing-A Literature Review
	1 Introduction
	2 Classification of Membrane Computing Tools
	3 P System Tools that are Specific to a Particular Application or Type
	3.1 Membrane Computing in Prolog
	3.2 On a LISP Implementation of a Class of P Systems
	3.3 Membrane Simulator
	3.4 A CLIPS Simulator for Recognizer P Systems with Active Membranes
	3.5 A MzScheme Implementation of Transition P Systems
	3.6 Simulation of Transition P System Using Haskell
	3.7 Distributed Simulator for Transition P System
	3.8 SubLP-Studio
	3.9 A Prolog Simulator for Deterministic P Systems with Active Membranes
	3.10 Modelling Biological Processes by Using a Probabilistic P System Software
	3.11 P Systems Running on a Cluster of Computers
	3.12 SimCM
	3.13 Conformon P System
	3.14 Simulator for Confluent P Systems
	3.15 Simulator for Dynamical Probabilistic P System
	3.16 Tissue Simulator: Tissue Based P System
	3.17 DasPSimulator
	3.18 A Tool for Using the SBML Format to Represent P Systems Which Model Biological Reaction Networks
	3.19 A Software Tool for Dealing with Spiking Neural P Systems
	3.20 MetaPlab
	3.21 Simulation of P Systems with Active Membranes on CUDA
	3.22 P-Lingua Based Tissue Simulator
	3.23 Parallel Simulation of Probabilistic P Systems on Multicore Platforms
	3.24 SNUPS
	3.25 A P-Lingua Based Simulator for Spiking Neural P Systems
	3.26 JPlant
	3.27 A C++ Simulator for PGSP Systems
	3.28 A P-Lingua Based Simulator for Tissue P Systems with Cell Separation
	3.29 A Membrane Computing Simulator of Trans-Hierarchical Antibiotic Resistance Evolution Dynamics in Nested Ecological Compartments (ARES)
	3.30 Lulu - A Software Simulator for P Colonies

	4 P System Tools That Are Generic in Nature
	4.1 Web-PS: Web Based P-System Simulator with Query Facility
	4.2 SL_P Simulator
	4.3 C_P Simulator
	4.4 Psim
	4.5 P-Lingua
	4.6 Cyto-Sim
	4.7 MeCoSim: Membrane Computing Simulator
	4.8 The Infobiotics Workbench
	4.9 MeCoGUI: A Simple, Java-Based Graphic User Interface for P-Lingua

	5 P System Tools That Have Biological Application
	6 Analysis
	7 Conclusion
	References

	Parallel Contextual Hexagonal Array P Systems
	1 Introduction
	2 Preliminaries
	3 Parallel Internal Contextual Hexagonal Array P Systems
	4 Parallel External Contextual Hexagonal Array P Systems
	5 Properties of Parallel Contextual Hexagonal Array P Systems
	6 Comparison Results
	7 Conclusion
	References

	Superadiabatic STIRAP: Population Transfer and Quantum Rotation Gates
	1 Introduction
	2 Model and Equation of Motion
	3 Example 1: Population Transfer
	3.1 Effect of Dephasing on Population Transfer

	4 Example 2: Quantum Rotation Gates
	4.1 Effect of Dephasing

	5 Conclusion
	References

	Image Segmentation Using Membrane Computing: A Literature Survey
	1 Introduction
	2 Membrane Computing Overview
	3 Membrane Computing Applications
	4 Types of Membrane Computing
	5 Membrane Computing in Image Processing
	6 Membrane Computing Pertaining to Image Segmentation
	6.1 Rules-Based Membrane Computing for Image Segmentation
	6.2 Algorithms-Based Membrane Computing for Image Segmentation

	7 Conclusion and Future Directions
	References

	Integrated Membrane Computing Framework for Modeling Intrusion Detection Systems
	1 Introduction
	2 Membrane Computing and Signature-Based IDS
	2.1 tFRSN P System Model for Denial-of-Service Attack
	2.2 Defining the Fuzzy Production Rules for DoS
	2.3 The Modeling of DoS Attack

	3 Attack Detection P Systems Model on GPU
	3.1 The AD_P Model
	3.2 Membrane Structure, Membrane/Object Representation in the AD_P Model

	4 Evaluation of the tFRSNP System and the AD_P Model
	4.1 Improving Throughput with AD_P Model
	4.2 Evaluating the tFRSN P System Model

	5 The Integrated Framework for Enhancing IDS Using MC's Paradigms
	6 Conclusion and Future Works
	References

	Neural Computing
	A Deep Learning Model of Automatic Detection of Pulmonary Nodules Based on Convolution Neural Networks (CNNs)
	1 Introduction
	2 Related Works
	3 Method
	3.1 Proposed Method of Detection
	3.2 Pretreatment in CT
	3.3 Build a Deep Belief Network
	3.4 The Training Process of PndDBN-5

	4 Experimental Result
	4.1 Data Set
	4.2 Test Results
	4.3 Experimental Discussion
	4.4 Analysis of Technical

	5 Conclusions
	References

	A Study on the Recognition and Classification Method of High Resolution Remote Sensing Image Based on Deep Belief Network
	1 Introduction
	2 Stochastic Dropout Strategy
	3 Recognition and Classification of Remote Sensing Image
	4 Remote Sensing Image Classification Based on Deep Belief Network
	4.1 Parameter Sensitivity Test of Deep Belief Network
	4.2 Sorting Results and Evaluation of Deep Belief Network

	5 Conclusion
	References

	Classification Based on Brain Storm Optimization Algorithm
	1 Introduction
	2 Brain Storm Optimization Algorithm
	3 Classification Method Based on EA
	4 Experiments and Comparisons
	4.1 Data Sets Used in Classification
	4.2 Setting for BSO
	4.3 Experimental Results and Analysis

	5 Conclusion
	References

	Stacked Auto-Encoders for Feature Extraction with Neural Networks
	1 Introduction
	2 Auto-Encoders and Their Stacked Deep Hierarchy
	2.1 Basic Auto-Encoder
	2.2 Sparse Auto-Encoder (SAE)
	2.3 Convolutional Auto-Encoder (CAE)
	2.4 Stacked Deep Hierarchy

	3 Experimental Results and Analysis
	3.1 Feature Extraction Using Stacked Auto-Encoders
	3.2 Stacked Auto-Encoders in the Deep Learning System

	4 Conclusion
	References

	Fault Diagnosis of Power Systems Based on Triangular Fuzzy Spiking Neural P Systems
	1 Introduction
	2 Triangular Fuzzy Spiking Neural P Systems
	2.1 Definitions
	2.2 Modeling Fuzzy Production Rules and Fuzzy Reasoning Based on TFSNP Systems

	3 Fault Diagnosis of Power Systems Based on TFSNP Systems
	3.1 Problem Description
	3.2 Setting
	3.3 Case Studies

	4 Conclusions
	References

	A Recognition Method of Hand Gesture with CNN-SVM Model
	1 Introduction
	2 Our Method
	2.1 Gesture Segmentation
	2.2 CNN-SVM

	3 Experiments
	4 Conclusion
	References

	Cross-Media Information Retrieval with Deep Convolutional Neural Network
	1 Introduction
	2 Model
	2.1 Textual CNN
	2.2 Visual CNN
	2.3 Common Feature Space

	3 Experiments
	3.1 Textual Feature
	3.2 Image Annotation and Image Search

	4 Conclusion
	References

	Exploration of the Critical Diameter in Networks
	1 Introduction
	2 Critical Diameter and Its Optimization
	3 Algorithm
	4 Experiments and Results
	4.1 Experiments of Critical Diameter Optimization in Random Networks
	4.2 Experiments of Critical Diameter Optimization in Regular Networks

	5 Conclusion
	References

	Image Compression Based on Genetic Algorithm and Deep Neural Network
	1 Introduction
	2 The Proposed Method
	3 Experimental Results
	4 Conclusions
	References

	DNN-Based Joint Classification for Multi-source Image Change Detection
	1 Introduction
	2 Problem and Motivation
	2.1 Unsupervised Feature Learning and Clustering
	2.2 Joint Classification

	3 Methodology
	3.1 Stacked Denoising Autoencoders
	3.2 Classifier and Fine-Tuning

	4 Experiments
	4.1 Evaluating Index

	5 Results and Analysis
	6 Conclusions
	References

	Differencing Neural Network for Change Detection in Synthetic Aperture Radar Images
	1 Introduction
	2 Algorithm Framework
	3 Methodology
	3.1 Samples Generation
	3.2 Cost Function and Fine-Tune

	4 Experimental Study
	5 Conclusion
	References

	Change Detection in Synthetic Aperture Radar Images Based on Fuzzy Restricted Boltzmann Machine
	1 Introduction
	2 Methodology
	3 Experimental Study
	4 Conclusion
	References

	Machine Learning
	Decision Variable Analysis Based on Distributed Computing
	1 Introduction
	2 Background
	2.1 Control Property
	2.2 Variable Dependency

	3 Distributed Decision Variable Analysis
	4 Experimental Result and Discussion
	5 Conclusion
	References

	A Multi-task Learning Approach by Combining Derivative-Free and Gradient Methods
	1 Introduction
	2 Multi-task Learning
	2.1 Objective Function
	2.2 Formulation
	2.3 Traditional Multi-task Learning Methods
	2.4 Alternative Gradient Descent (GDO)

	3 Derivative-Free Optimization
	3.1 Classification-Based Optimization
	3.2 RacosGD

	4 Experiments
	4.1 Settings
	4.2 Results

	5 Conclusion
	References

	A Collaborative Learning Model in Teaching-Learning-Based Optimization: Some Numerical Results
	1 Introduction
	2 The Collaborative Learning Model
	2.1 Learner Phase of CLM
	2.2 Self-studying Phase of CLM

	3 Experimental Result
	4 Concluding Remarks
	References

	Incremental Learning with Concept Drift: A Knowledge Transfer Perspective
	1 Introduction
	2 Problem Description and Related Work
	3 The New Approach for Concept Drift Adaptation
	4 Experiment
	5 Conclusion
	References

	Visual Tracking Based on Ensemble Learning with Logistic Regression
	1 Introduction
	2 The Proposed Method
	2.1 Logistic Regression Classifier
	2.2 Weak Classifier
	2.3 Ensemble Learning Based on Logistic Regression Framework

	3 Experiments
	4 Conclusion
	References

	A New Optimal Neuro-Fuzzy Inference System for MR Image Classification and Multiple Scleroses Detection
	1 Introduction
	2 Related Work
	3 Proposed Approach
	3.1 Segmentation of the Brain Tissues
	3.2 Segmentation of the White Matter Using Particle Swarm Optimization Based Image-Clustering
	3.3 Decision-Making

	4 Results and Discussion
	5 Conclusion
	References

	The Influence of Diversification Strategy on Capital Structure
	1 Introduction
	2 Literature Review
	3 Research Methodology
	3.1 Dependent Variables: Debt Ratio
	3.2 Independent Variables: Diversification
	3.3 Control Variables
	3.4 Methodology

	4 Empirical Results
	4.1 Descriptive Statistics
	4.2 Regression Results

	5 Conclusion
	References

	An Improved Hybrid Bat Algorithm for Traveling Salesman Problem
	1 Introduction
	2 Background
	2.1 Bat Algorithm
	2.2 An Improved Bat Algorithm (IBA) for TSP

	3 Improved Hybrid Bat Algorithm (IHDBA)
	4 Experimental Results
	5 Conclusion
	References

	Design of Selecting Security Solution Using Multi-objective Genetic Algorithm
	1 Introduction
	2 Related Works
	2.1 Genetic Algorithm and Pareto-optimality

	3 NSGA-II Multi-objective Genetic Algorithm
	4 Selecting Security Solution Using Multi-objective Genetic Algorithm
	5 Conclusion
	References

	A Multi-agent System for Creating Art Based on Boids with Evolutionary and Neural Networks
	1 Introduction
	2 Boids
	3 The Proposed System
	4 Results
	5 Conclusion
	References

	Author Index



