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Abstract In design, proper parametrization is an important activity.
A straightforward parametrization using e.g. geometric dimensions directly seldom
achieves models that can be easily modified to respond different functional
requirements. A good parametrization contains some implicit information about the
design space, and automatically excludes invalid solutions by minimizing the
region of a design space that is unfeasible, e.g. by introducing parameters based on
dimensionless numbers. In this way, waste of design space is minimized, and it can
be quantified using design information entropy, so that different parametrizations
can be compared. This is particularly useful in design optimization, but it is equally
important in manual design. This is related to the independence axiom in Axiomatic
Design, where ideally each functional requirement (FR) should be depending on
only one design parameter (DP), but it is much more general, since it does not
implicitly assume that the functional requirements are independent, but instead
allows for correlation between them.

Keywords Design space � Singular value decomposition � SVD � Performance
estimation � Design information entropy

1 Introduction

In computer aided design parametrization is an extremely important activity. It is,
however, a mostly overlooked area and parametrization is mostly done on an ad hoc
basis. It is important when a flexible model is to be created that can be used in
conceptual design, where different dimensions and other parameters can be
explored. In [1] parametrization in aircraft design is thoroughly discussed and the
importance to separate size from function is emphasized. Furthermore, to have
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concise, flexible and robust parametrization is also underlined. This is also dis-
cussed in [2]. This corresponds to minimizing the design entropy as discussed in [3]
by having the smallest design space that includes as much as possible of the viable
design space, while avoiding constraints. This was also applied to the configuration
problem in [4]. In [6] axiomatic design is presented as a way to make a design that
not is so coupled, the same can be applied also to the parametrization.

In this paper singular value composition (SVD), see [5], is introduced for ana-
lytical parametrization of design, since the resulting parameters can be automati-
cally aligned around the feasible region of design. To do this a dataset with example
design points within the feasible design are used. This gives a parametrization with
a minimum number of parameters that can define a design within the design space.

It is, however, not always that the SVD parameters are intuitive from a user point
of view. The first parameter can usually be considered as a size or scaling parameter
but the other are not so clear. It can, however, also be used to test a given
parametrization by studying the correlation with the ideal SVD parameter set. This
is important since it is sometimes useful to have a parametrization that have a
clearer interpretation than the synthetic SVD parameter set can provide.
Interestingly, it is also possible to derive the number of driving requirement in a
product category by studying a number of instances of a particular kind of product.
This can be useful in order to understand a market.

Singular Value Decomposition (SVD) is a technique that is related to principle
component analysis. It is a method to achieve this that involves an elegant math-
ematical method to obtain a model that is aligned with the main axis of the data set.
Consider the data set X which is a matrix. Then there exist a decomposition
of the form.

X = U� W � VT ð1Þ

where W is diagonal. This is the Singular Value Decomposition, SVD. This can
look like this:
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The consequence of this operation is that if each row in the X and U matrix
represents a data set of the entity that should be modelled, any point in U is mapped
onto X trough the matrix product. In this example there are therefore four data sets,
each represented by three parameters. Usually the resulting matrices are arranged in
such a way that the diagonal elements of the W-matrix are in descending order.
Hence the influence of the u variables is in descending order in each row, which
means that the last ones can be omitted in order to get a simpler model without too
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much loss in accuracy. However, for this to be valid the dataset should first be
centered around the mean value. This can be done by subtracting the average of each
column in the x-vector from the values of each column. An interesting property of
the U matrix is then that the sum of the variance of each column is one. That is:

Xn
i¼1

u2ij ¼ 1 ð3Þ

This means that all columns (that is parameters) have the same deviation
r ¼ 1=

ffiffiffi
n

p
. The W matrix is then a weight matrix with only diagonal elements, and

VT is a matrix that rotates the coordinate system from the main axis into X (Fig. 1).
To estimate parameters and properties the following equation is used:

X = S � W � VT ð4Þ

Here the X and S are now vectors. S is the input vector with SVD-parameters
that are orthogonal and X is the estimated values of parameters and properties. This
can look like this:
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With

KT ¼ W � VT ð6Þ
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This can be written as
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TX=S×W×VS×WS

Fig. 1 The transformation
from the SVD parameters to
the X parameters
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or
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Note that since the orthogonal parameters are sorted in ascending order it is often
sufficient to use only a few input parameters. If it is reduced to just two parameters,
in this example, the system gets reduced to:
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The individual element in the k matrix is the same as before. The same result is
therefore achieved by just setting the last element in the input vector in Eq. (9) to
zero. The error introduced in this way are such that the square errors are minimized.

One issue with this model is that the elements variance of the S-vector is
dependent on the number of data set, and hence also the K-matrix. Therefore, it can
be suitable to normalize the S-vector so that the variance of the elements is one.
This is simply done by dividing each element with the deviation and then conse-
quently multiplying the elements in the K-matrix with the same value.
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where

s0;j ¼ sj
rS

¼ sj
ffiffiffi
n

p ð12Þ

And consequently

k0;ij ¼ rSkij ¼ kijffiffiffi
n

p ð13Þ

1.1 Design Space for Parameterization

The following example of parametrization of an aircraft wing planform was dis-
cussed in [3]. It is a well-known parameterization of aircraft wing used in literature
e.g. in [7]. The planform for a wing can be defined with three parameters (disre-
garding wing sweep). These are wing span, b, root cord, cr, and tip cord, cr as
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defined in Fig. 2. These are here referred to as the primary parameter set. In general,
however, it is common to use wing area, S, aspect ratio, AR, and tapering, k, as
parameters instead. See e.g. [7]. These are here referred to as the secondary
parameter set. The relationships between these are:

S ¼ b
2 ðcr þ ctÞ

AR ¼ b2
S

ct ¼ crk

ð14Þ

To study the design space a data set of existing aircraft are shown in Table 1.
Plotting the region spanned by the extreme values in the secondary parameter

set, in the coordinates of the primary parameter set gives Fig. 3.
In order to be able to deal with large variation of parameter values it is con-

venient to use the logarithm of the parameters instead.
This is justified by the fact that it is more relevant to define parameter tolerance

in relative terms of the nominal parameter value. In the left part of Fig. 4. The

crct

b

Fig. 2 Wing parameters

Table 1 Parameter values for existing aircraft

b cr ct S AR λ

AN225 88.4 16.5122 3.96293 905 8.63487 0.24

A380 79.75 17.6594 3.53187 845 7.5267 0.2

A320 34.09 5.99394 1.19879 122.6 9.47902 0.2

Gulfstream IV 23.7 5.73191 1.71957 88.3 6.36116 0.3

U2 32 4.83333 0.966667 92.8 11.0345 0.2

F-16 9.96 4.47711 1.11928 27.87 3.55944 0.25

Mirage 2000 9.13 8.5537 0.427685 41 2.0331 0.05

Cessna 172 11 1.59214 1.35332 16.2 7.46914 0.85

Max value 88.4 17.6594 3.96293 905 11.0345 0.85

Min value 9.13 1.59214 0.427685 16.2 2.0331 0.05

Data is from open literature such as Wikipedia and might be inexact, but are just used as an
illustrative example
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design space defined by the logarithm of the secondary parameters is shown as the
slanted block. The parameters of all the studied aircraft are fitted inside this box. To
the right, the outer box represents the design space defined by the primary
parameters. As can be seen there is some part of the design space of the secondary
parameters that is outside. This represents an empty part of the design space, which
can be regarded as a sort of “waste” of design space. Using the primary parameter
set all of the volume outside the slanted block in the right in Fig. 4 is also wasted
design space.
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log2(cr)

lo
g 2
(b
)

log2(ct)

log2(cr)

lo
g 2
(b
)

Fig. 4 Design space defined by the logarithms of the secondary parameter set, displayed in the
logarithms of the primary parameter set. To the right the outer box represents limitations on
primary parameters

cr

ct

b

Fig. 3 Design space using the secondary parameter set
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1.2 Analytical Parametrization of Wing

If the primary parameters are used and used to formulate an SVD parametrization
the following model is obtained.

Offset s1 s2 s3

b 1.41 1.002 0.225 0.092

cr 0.81 0.725 −0.115 −0.498

ct 0.16 0.700 −0.203 0.384

It can be seen that the all the primary parameters are strongly dependent on the
first SVD parameter. This is natural since the first SVD parameter is related to size.

If the secondary parameters are used to formulate an SVD parametrization the
following model is obtained.

Offset s1 s2 s3

S 2.02 0.598 −0.003 −0.024

AR 0.80 0.105 0.176 0.103

λ −0.65 −0.055 0.303 −0.061

Here it can be seen that the first SVD variable have a strong influence on S
which is the dimensional parameter. The influence on the dimensionless number
has only small influence on the first SVD variable but much higher in the second
(AR) and third (λ).

The design space is considerably smaller than for the other parametrizations. The
result from calculating the volumes of the design spaces yields the results in the
Tables 1, 2 and Fig. 5.

Apparently the analytical parametrization using SVD has the smallest volume,
while still including all the samples. It is not surprising since this is the design space
most aligned with the samples. This means that in order to be able to have a design
space that can reach all designs, the SVD parametrization generates the smallest
one. It can be interpreted such as information about the design is imprinted already
in the design space, since some of the unviable solutions are removed already from
the design space, and less information is needed to reach a specific part of the
design space.

Table 2 Design space
volumes of the different
parameter sets

Parameter set Design space volume

b, cr, ct 0.914

S, AR, λ 0.877

SVD 0.25
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It also means that using the primary parameter set would waste design entropy
according to [3] the difference in design information entropy needed to define a
design within a certain tolerance s, for these two different design spaces is simply:

Hw ¼ H1 � H2 ¼ log2
S1=s
S2=s

¼ log2
S1
S2

¼ log2
0:914
0:25

¼ 1:87bits ð15Þ

Hence if optimization is used to define the design, less effort is needed to arrive
at the optimal design. Even though this is not to significant in this case with three
parameters, it can significantly reduce the effort for large problems. Furthermore,
this can also be used to reduce the number of parameters for optimization. E.g. the
thirds SVD variable have a rather small impact on any of the parameters and could
be considered to be dropped to further speed up optimization.

1.3 Singular Value Decomposition for Estimation
of System Characteristics

If also other attributes such as functional characteristics, are added to the data set,
they can also be mapped onto the design space, and an estimate of system char-
acteristics can be obtained directly. As an example a parameter set of 400 jet
engines where used.

The result is a model that can predict the relation between geometrical dimen-
sion, diameter and length, bypass ratio, mass, and thrust and specific fuel con-
sumption (Figs. 6 and 7).

Fig. 5 Design space defined by the logarithms of the SVD parameter set, displayed in the
logarithms of the primary parameter set. To the right the outer box represents limitations on
primary parameters

22 P. Krus



Since the two first parameters are dominant a reduced model base on this is:

Bpr¼100:67þ 0:106s1�0:208s2 ¼ 4:68� 10s10:10610s2ð�0:208Þ ¼ 4:68� S0:1061 S�0:208
2

T ¼ 87:1� 10s10:48310s20:025 ¼ 87:1S0:4831 S0:0252

Sfc ¼ 0:457S�0:074
1 S0:1012

m ¼ 1737S0:4631 S0:0422

d ¼ 1:77S0:2131 S�0:042
2

l ¼ 1:41S0:1581 S0:0422

ð16Þ

Here we have also introduced Si ¼ 10si . Varying s between −1 and 1 means that
S would vary between 0.1 and 10, to stay within the standard deviation of the
dataset. Note that setting both S to one means that the average engine is obtained.

The error when using just two parameters instead of the full set of six parameters is
small, although for one or two characteristics that can be up to 30% for some of the
engines. It can also be interpreted such that some engines are slightly outside the
design space created. Even so, this must be considered a good fit since the engines are
so diverse, and it gives an indication of what typical engine characteristics that are
reasonable when different concepts are studied in early aircraft design, where typi-
cally only desired thrust is known and one more degree of freedom is useful to get the
proper balance between weight (m), specific fuel consumption (SFC) and size (l, d).

This type of model can be used in e.g. conceptual design stage to quickly get
estimates of component characteristics in a system. Models can be used for any
kinds of components such as electric motors, hydraulic, pumps and motors etc. It is

Fig. 6 SVD-model for aero engines. Showing values for the Pratt & Whitney PW2040 for
reference

Fig. 7 Influence of the SVD
parameters
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possible to use e.g. one more parameter to get an additional degree of freedom and
optimize an engine also for e.g. low weight. This will produce a plausible engine
that is likely to be produced with modern technology since some of the engines in
the dataset are quite old and will bias the dataset towards to an engine of average
age, and not the most modern one.

2 Conclusions

In this paper it has been shown how analytical parametrization of a design using
sample designs to span the design space. The resulting parametrization will have a
minimum of parameters, and still be able to reach the sample designs, and also to
interpolate in between. In some sense it can be regarded as the ideal parameter set.
However, these parameters are seldom intuitive except one that the first can be
interpreted as a measure of size or scale. Therefore, other parameter sets are often
formulated. These can, however, be compared to the analytical parameter set.
Singular value decomposition of sets of products or components can also be used to
create very simple fast models of components that can be used in initial stages of
design to get quick estimates of component characteristics.
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