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Abstract. Detecting small targets like vehicles in high resolution satel-
lite images is a significant but challenging task. In the past decade, some
detection frameworks have been proposed to solve this problem. However,
like the traditional ways of object detection in natural images those meth-
ods all consist of multiple separated stages. Region proposals are first
produced, then, fed into the feature extractor and classified finally. Multi-
stage detection schemes are designed complicated and time-consuming.
In this paper, we propose a unified single-stage vehicle detection frame-
work using fully convolutional network (FCN) to simultaneously predict
vehicle bounding boxes and class probabilities from an arbitrary-sized
satellite image. We elaborate our FCN architecture which replaces the
fully connected layers in traditional CNNs with convolutional layers and
design vehicle object-oriented training methodology with reference boxes
(anchors). The whole model can be trained end-to-end by minimizing a
multi-task loss function. Comparison experiment results on a common
dataset demonstrate that our FCN model which has much fewer parame-
ters can achieve a faster detection with lower false alarm rates compared
to the traditional methods.

1 Introduction

Recent advances in remote sensing imagery make high-resolution satellite images
more accessible. Detecting vehicle objects in those satellite images becomes an
essential and meaningful research field for it can provide important information
for homeland surveillance, intelligent transportation planning, disaster search
and rescue, etc. Although a lot of works have been done, there is no one that
takes efficiency, robustness and speed all in consideration.

Machine learning methods are widely utilised in the research of satellite image
vehicle detection in the past decade. Like traditional object detection frameworks
in natural images those methods mainly take three stages. Region proposals
(latent candidates) are first produced by certain proposal extracting algorithm
like selective search and BING, then, fed into the feature extractor and classified
finally. Zhao and Nevatia [1] take vehicle detection as a 3D object recognition
problem so they select the boundary of the car body, front windshield and the
shadow as features which are then integrated by a Bayesian network. Eikvil
et al. [2] utilise satellite image information like road information, geometric-
shape properties to assist their Hu moment-based detection method. Liang
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et al. [3] propose a detection scheme that uses multiple kernel SVM (MKL-
SVM) with HOG and Haar features. They trained MKL-SVM to learn an opti-
mal kernel with many base kernels in order to get the trade-off between HOG
and Haar features. Kembhavi et al. [4] construct an vehicle detection framework
by extracting HOG, color probability maps and pairs of pixel as features and
using a partial least square model.

All the detection framework we talk above are based on manual designed fea-
tures. Such hand-crafted features are “shallow” for they mainly consider color,
edge and general shape of the object and since real scene can be very complex
and various, those features reach a bottleneck in recognition discrimination and
robustness. Since Krizhevsky et al. [5] made a breakthrough using a convolu-
tional neural network (CNN) in ILSVRC [6] in 2012, CNN as an deep learning
model has been widely used in visual recognition tasks and yielded superior
performance. Deep convolutional neural networks can automatically learn rich
hierarchical features from raw data with its convolution layers and pooling lay-
ers and then send those self-learned features to an multiple layer perceptron
(MLP) for classification or regression. Jiang et al. [7] use graph-based superpixel
segmentation to extract region proposals and train a CNN to classify those pro-
posals. Chen et al. [8] slide a window to get vehicle proposals and train a hybrid
deep neural network (HDNN) to do the recognition work. Chen et al. [9] also
design another type of deep neural network called parallel deep convolutional
neural network to do the vehicle detection work.

Until now, all the detection framework we have discussed consist of at least
two stages which means complicatedly designed and time-consuming for proposal
generation process is hardly realized on GPU. For further acceleration, several
newly proposed proposal methods based on convolutional features, such as region
proposal network (RPN) [10], MultiBox [11] and DeepMask [12] are very suitable
for implementation on GPU. Inspired by region proposal network [10], we pro-
pose a unified single-stage vehicle detection framework using fully convolutional
network which can be trained end-to-end. We elaborate our FCN architecture
which can process arbitrary-sized images and design the training methodology
in experiment. The comparison results demonstrate that our method can achieve
a faster detection with lower false alarm rates and much fewer parameters com-
pared to traditional methods. The remainder of this paper is presented as follows.
Firstly, we explain our method in Sect. 2, in Sect. 3, we present and analyse our
experiment results. We conclude our work in Sect. 4.

2 Method

In this section, we explain our model architecture and learning methodology
respectively. We use a fully convolutional network (FCN) [13] which takes a
satellite image of any size as input and generates feature maps. Then the feature
maps are sent to two sibling convolutional layers: a classification layer (cls.) and
a box-regression layer (reg.). To reduce the number of candidate windows, like
RPN [10] We use n reference boxes (also called anchors [10]) to hypothesize
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the vehicle objects’ positions. The classification layer outputs the probability
how likely one anchor covers an object and the box-regression layer outputs the
regressed positions.

Fig. 1. Our FCN-based detection framework. The input is a arbitrary-sized raw satellite
image of 3 channels. A CNN of 6 convolution layers acts as a feature extractor. The
two sibling parts, classification layer and regression layer do the following detection
work. We use k anchors to hypothesize the vehicle locations

2.1 Architecture of FCN

The architecture of FCN used in this paper is showed in Fig. 1. It consists of
an feature extraction part and two sibling parts: classification and regression.
In our experiments we investigate Zeiler and Fergus’s model [14] which has 5
convolutional layers and 2 fully connected layers. ZF-net is designed for the
ILSVRC classification competition [6] which has 1000 categories. As for detection
task, it is not suitable for fully connected layers lose spatial information. So we
replace the fully connected layers with convolutional layers, forming a single fully
convolutional network. For clarity we demonstrate our FCN in Table 1. The FCN
model has six 3× 3 convolutional layers and 2 sibling 1× 1 convolutional layers.
Every spatial position (corresponding to a region of the input image) of conv6
feature map obtains a 256-d feature vector, which is fed into the box-classification
layer (cls.) and box-regression layer. Our model has the same depth with ZF-net
but much fewer parameters. In practice, we compared our fully convolutional
network model with ZF-net model and found that our model is 14 times smaller.

2.2 Learning Methodology

To narrow the vehicle object searching space, we use several reference windows
(anchors [10]) instead of searching every scale and aspect ratio. At training
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Table 1. FCN configurations. For each convolutional layer “parameters” gives the
filter size and the stride which the filter is sliding with and “filter numbers” gives the
convolution kernel numbers of that layer. The pooling layers, LRN layers and ReLU
activation layers are not shown for brevity

Layer conv1 conv2 conv3 conv4 conv5 conv6 cls reg

Parameters 3 × 3, 2 3 × 3, 2 3 × 3, 1 3 × 3, 1 3 × 3, 1 3 × 3, 1 1 × 1, 1 1 × 1, 1

Filter numbers 96 256 384 384 256 256 18 36

stage, our FCN model takes an arbitrary-sized image of 3 channels as input and
generates feature maps of 256 channels after layer conv6. So in each position
(x, y) of those features maps we can extract a 256-dimension vector correspond-
ing to k anchors in the original image. If one anchor has intersection-over-union
(IoU) overlap with any ground-truth box higher than 0.75 we take it as a positive
sample and similarly, if the IoU is lower than 0.3 we consider it as a negative
sample. Other reference boxes do not server as training examples. For anchors
we use three 3 scales with box areas of 36× 36, 44× 44, and 50× 50 pixels, and
3 aspect ratios of 2:1, 1:1, and 1:2. The 9 anchors we use are shown in Table 2.

Table 2. anchors

362, 2:1 362, 1:1 362, 1:2 442, 2:1 442, 1:1 442, 1:2 502, 2:1 502, 1:1 502, 1:2

50 × 26 36 × 36 26 × 50 62 × 31 44 × 44 31 × 62 70 × 36 50 × 50 36 × 70

Our FCN model is trained end-to-end by back-propagation (BP) [15] and the
optimization scheme we use is stochastic gradient descent (SGD) [15]. We define
our multi-task loss function following [16]:

�L({pi} , {ti}) =
1

Ncls

∑

i

Lcls(pi, p∗
i ) + λ

1
Nreg

∑

i

p∗
i Lreg(ti, t∗i ). (1)

Here, i is the index of anchors in a mini-batch and pi is the predicted probability
of anchor i being an object. The corresponding ground-truth label of pi is p∗

i

which is 1 if the anchor is positive and 0 otherwise. Similarly, ti is the 4 predicted
parameterized coordinates of the predicted bounding box and t∗

i the ground-
truth. The classification loss Lcls is a vehicle vs. non-vehicle log loss and we
use smooth function defined in [16] for regression loss Lreg. The hyperparameter
λ controls the balance between the two task losses. We find that satisfactory
results can be obtained for vehicle detection by setting λ = 10. Thus we keep
this parameter fixed in the following experiments. Our implementation is based
on Caffe [17] and Python.
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3 Experiment

This part dispatches details of our experiment results. Specifically, we first intro-
duce our dataset and then we compare the detection accuracy of our method
with that of some typical methods. Finally our method is compared to other
DNN-based methods on the subject of size and speed.

The dataset we use is that of [8] which includes 63 satellite images (1368 ×
972) from google earth of San Francisco city containing 6887 vehicle samples.
To guarantee adequate training data, we split the dataset to 46 and 17 for
training and testing randomly. At training stage, we augment the training set
by rotating the images by 90◦, 180◦, 270◦ and flipping the images horizontally. No
further data augmentation is done. When training, parameters of conv1-conv5
are initialized from a pre-trained model on PASCAL VOC2007 detection task.
We iterate 10000 times with learning rate 0.001 for the first 7000 mini-batches
and 0.0001 for the next 3000 mini-batches on our training set. The momentum
and weight decay we use are 0.9 and 0.0005 respectively [5].

Here the false alarm rate (FAR), precision rate (PR), and recall rate (RR)
are defined as

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

FAR =
number of false alarms

number of vehicles
× 100%

PR =
number of detected vehicles

number of detected objects
× 100%

RR =
number of detected vehicles

number of vehicles
× 100%

. (2)

Table 3. FAR and processing time of our method and other methods on vehicle
test set

Method FAR at given RR (%)

95% 90% 85% 80% 75% 70%

Proposed 19.3 9.38 5.42 3.53 2.27 1.63

HDNN [8] 20.2 9.57 5.49 3.57 2.31 1.65

HOG+SVM [18] 67.5 43.4 29.3 20.2 14.3 10.3

LBP+SVM [19] 87.6 59.2 43.0 32.8 24.5 19.4

Adaboost [20] 91.6 65.3 49.1 40.1 31.6 25.8

Test time for one image (s)

Proposed GPU 0.2

HDNN [8] GPU 8

In Table 3, we list the FAR at given RR of our method and 4 other typical
methods. Our method outperforms other methods. It means our detector is more
robust for it can detect objects which are very hard for the rest methods and
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that proves the benefits of deep convolutional features and position regression.
In Fig. 2, we give some detection results samples. The testing images cover scenes
from road with many trees to parking lot. Our detector performs very well even
vehicle objects are quite dense on parking pot or sheltered by trees.

Fig. 2. Some detection results in San Francisco. The four images cover scenes from
road with trees to parking lot

Since our detection framework is designed to be a single-stage detector, it
also has a very fast speed. In Table 3, we give the processing time of one image of
FCN and traditional DNN method. Our detector achieves a frame rate of 5 fps
on a computer with NVIDIA GTX960. There are two main reasons that our
method is superior in speed. One is discarding proposal extraction stage which
is an essential step of the rest methods and the other is that we do convolutions to
the whole original image to extract features rather than one proposal by another.
So for one testing image, our network does forward propagation only once while
the other methods need to do it hundreds or thousands times depending on how
many region proposals they extract in the region proposals extracting stage.

Table 4. Size of parameters in various models

Model AlexNet [5] ZF-Net [14] Proposed

Size 224 MB 249 MB 17MB

Table 4 shows the comparison of parameter size for various models. Our FCN
model is based on ZF-Net but the size is only 1/14 of ZF-Net which demonstrates
that using convolutional layers instead of fully connected layers can greatly
reduce the the amount of model parameters while obtaining comparable detec-
tion performance.
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4 Conclusion

In this paper, we propose a new automatic satellite vehicle detection frame-
work based on fully convolutional network (FCN). Different from traditional
manual feature-based or DNN-based methods which are designed multi-stages,
our method takes only one stage both in training and testing. By elaborating
the FCN architecture and integrating several learning tricks, a very robust and
fast vehicle detector is obtained. Our experiment results show that our approach
achieves better performance in both detection accuracy and speed in comparison
to alternative approaches with much fewer parameters.
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