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Abstract. In this paper, we propose a deep siamese convolutional
neutral network (DSCNN) to learn semantic-preserved global-level and
local-level hashing codes simultaneously for effective image retrieval. Par-
ticularly, we analyze the visual attention characteristic inside hash bits
by activation map of deep convolutional feature and propose a novel
approach of bit selecting to reinforce the pertinence of local-level code.
Finally, unlike most existing retrieval methods which use global or unsu-
pervised local descriptors separately, leading to unexpected precision,
we present a multi-level hash search method, taking advantage of both
local and global properties of deep features. The experimental results
show that our method outperforms several state-of-the-art on the Oxford
5k/105k and Paris 6k datasets.

1 Introduction

Due to the explosive growth of the Internet, massive images have flooded our
daily lives. Image retrieval, i.e. finding images containing the same object or
scene as in a query image, has attracted more attention from researchers.

Recently, most studies have reported that deep Convolutional Neural Net-
works (CNNs) achieved the state of the art performance in many computer vision
tasks [1–3]. Notably, many works [4,5] have demonstrated the suitability of fea-
tures from fully-connected layers for image retrieval. While several works [6–8]
focused on features from deep convolutional layers and showed that these fea-
tures have the natural interpretation as descriptors of local image regions. How-
ever, most CNN features for image retrieval are directly extracted from classi-
fication model, and subjected to low precision. Furthermore, the features with
rich semantic information distract the target sense of query. Early work by Zhou
et al. [9] revealed that the convolutional units of CNNs actually behave as object
detectors, and proposed a method to generate Class Activation Map (CAM) [10]
for localizing the discriminative image regions, which make it available to use
deep localizable representations for visual tasks.
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Besides, traditional nearest neighbor search methods are faced with the
computational cost of similarity calculation of high-dimension features, are not
appropriate for rapid retrieval, especially under the circumstances of big data
age. A practical alternative is to use the hashing based methods [11–13]. Hash
method designs a group function which project images into binary codes so
that similar images are mapped into similar code. Therefore, the retrieval prob-
lem can be done efficiently by computing Hamming distance. Benefiting from
deep learning, several researchers [13–17] combined image representations learn-
ing with hash learning into one CNN architecture to learn semantic-preserved
binary code. Although these methods achieved outstanding performance, have
not shed light on the relation between each bit and semantic concept.

Fig. 1. The DSCNN framework is proposed. Firstly, The semantic-preserved global-
level Hg and local-level hash codes Hl are learned. Secondly, we obtain CAMs of each
bits of Hg and average these CAMs to acquire ’Hash attention area’, and get ’Local
hash attention area’ by activation maps corresponding to each bits of Hl. Then visually
highlight bits (red colored) are selected as compact hash code. Finally, we retrieval
similar images by the presented multi-level search strategies. (Color figure online)

In this paper, we propose a deep siamese CNN (DSCNN) framework to
learn semantic-preserved hash code, and design the last convolutional layer of
DSCNN to obtain local-level hash codes, which is essentially different from other
methods [13–15]. Above all, we propose a novel method to obtain compact bits
with salient local-semantic. Finally, we present a multi-level hash search method
for retrieval.

2 Our Method

Learning Semantic-Preserved Hash Code. It is feasible to embed a latent
layer in high-level of a network to output global binary code [13–15]. We follow
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it and use both label and pair information to guide hash leaning. Otherwise,
inspired by discovery [4], we propose to hashing convolutional activations. As
Fig. 1 shows, the activation of hash layer and conv7 are both tanh function. And
we impose constraints on these layers to embed semantic information. Assuming
that the feature maps of conv7 are {Ii}Ci=1 ∈ (−1, 1)W×H , W, H is weight and
height, C is the number of filters, the output of Hash Layer are a ∈ (−1, 1)H ,
H is the length of hash code. ŷ is output of softmax layer, y is expected output.
And we minimize the loss function defined following to learn parameters of our
network. For local-level hash:

L1 = −
N∑

j=1

yi log(ŷj) (1)

For global-level hash:

L2 = −L1 + αJ11 + αJ12 + βJ2 + γJ3

= −
N∑

j=1

yi log(ŷj) + α

N∑

j=1

N∑

i=1

δ(yj = yi)‖aj − ai‖22

+ α

N∑

j=1

N∑

i=1

δ(yj �= yi)max(0, c − ‖aj − ai‖22)

+ β

N∑

j=1

(‖|aj | − 1‖2) + γ

N∑

j=1

(‖avg(aj) − 0‖2)

(2)

where δ is indicator function, avg is the mean function, c is a constant, N is the
number of images. The terms L1 and J1∗ aim to embed semantic consistency
and similarity to hash code respectively. The term J2 aims to minimize the
quantization loss between the learned binary code and the original feature. The
last term J3 enforces evenly distribution of −1 and 1 in hash code. α, β, γ are
parameters to balance the effect of different terms.

Finally, the global-level hash code Hg and local-level hash codeHl are defined:

Hg = δ(a > 0),Hl = δ(f > 0)

wheref ∈ (−1, 1)C , fk =
1

W × H

W∑

i=1

H∑

j=1

Ik(i, j)
(3)

Selecting Compact Bits. The deep convolutional feature maps are activated
with different regions [18,19]. And through careful observation we found that
some feature maps are not related to the salient area, it may be possible to
boost feature discrimination by discarding unrelated feature maps. Therefore we
propose to select compact bit to enforce retrieval performance.

The first stage is to catch the attention region of Hg. We compute CAMs of
Hg. Then we average these maps to Mavg and binarize by Bavg = δ(Mavg > θ),
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where θ is a threshold. And we get attention region by finding the largest con-
nected subgraph of Bavg. As Fig. 1 shows.

The second stage is selecting local feature maps. We convert all feature maps
of Conv7 into activation maps {AMi}Ci=1 by up-sampling, and obtain corre-
sponding binary maps {Bi}Ci=1 as the first stage done. We definite the score of
relevant to salient area of feature maps as follows:

S(Bi, Bavg) = sum(Bi ∧ Bavg) (4)

where ∧ is AND operation bit-by-bit, sum represents sum all elements of matrix.
In the last stage, Ranking I1, I2, . . . , IC by their scores S and selecting top

L filters as informative local features. Then we choose associated L bits of Hl

as H
′
l for efficient retrieval. In our experiment, we only compared the local-level

hash code of query’s L positions with corresponding position bits of others.

H
′
q = Ψq(Hq), dH(H

′
q,Hi) = dH(H

′
q, Ψq(Hi)) (5)

where Ψq(∗) indicates obtain the bits of ∗ as the same positions as Hq.

Searching via Multi-level Hashing. The original data space could be mapped
to Hamming space by several group hash functions with similarity structure pre-
served separately. We proposed a multi-level search method of hashing, using
several sets of function with different properties to reinforce positive neighbor-
hoods retrieval and develop two strategies.

Rerank-Based Strategy#1. Firstly, we use global-level hash code to retrieval
and select top K as candidates. Then, we use local-level hash code to rerank
these candidates.

Hamming Distance Weighted Strategy#2. Assuming that query image xq

and N images {xi}Ni=1 and corresponding global-level hash code Hgq, {Hgi}Ni=1

and local-hash code H
′
lq, {Hli}Ni=1. Fusing distance as:

Sim(xq, xi) = λdH(Hgq,Hgi) + (1 − λ)dH(H
′
lq,Hli) (6)

In experiments, we firstly retrieval use the global-level code, then rerank by
proposed weighted strategy.

3 Experiments

Datasets. We evaluate performance on three standard datasets with mean
average precision (MAP). Oxford Buildings [20] (Oxford5k) contains 5063
images, including 55 queries corresponding 11 landmark buildings. Oxford
Buildings+100K [20] (Oxford105k) includes Oxford5k and extra 100K images
as distractor. Paris Buildings [21] (Paris6k) contains 6412 images, 55 queries
corresponding to 11 Paris landmarks.

Experimental Details. We implement the proposed DSCNN by Caffe [22]
package. We design DSCNN based on the AlexNet architecture, details as
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Fig. 1 shows. All images are resized to 256× 256 before passing through the net-
work. For training model, we randomly select positive and negative pairs from
dataset exclude queries and initial weights of Conv1-Conv4 with pre-trained
AlexNet.

Fig. 2. Examples of the compact of using local-level code to reranking. For each query
image, the first line represents the rankings with global-level hash code, and the next
line is the retrieval result by using proposed multi-level hash search method.

Results of Local Features. We compare local-level code from DSCNN with
other state local descriptors. Firstly, we compare with the sophisticated local
descriptors aggregation methods Fisher vectors [6], VLAD [23] and Tri. embed-
ding [24]. Table 1 summaries the results. We attain the best performance on
three datasets. Compared with deep feature, we can see that our average-pooling
strategy (local-level hash) outperforms max-pooling [25] and SPoC [6] on Oxford
dataset. Then, the result on Paris demonstrates that the local-level is superior to
global-level hash code. And multi-level improve the performance of global-level
code by 12 and 14 on Oxford and Paris, respectively. Some qualitative examples
of retrieval using multi-level hash are shown in Fig. 2, local-level hash enhances
the ranking of relevant results and decrease the irrelevant images, as expected.
Finally, our method is different from PCA and performs better.

Table 1. mAP comparison with local descriptors. Local-level hash perform better.

Method D Oxford5k Oxford105k Paris6k

Fisher Vector [6] 256 54.0 - -

Trian. embedding [24] 1024 56.0 50.2 -

VLAD [6] 128 44.8 37.4 55.5

CNN+VLAD [8] 128 55.8 - 58.3

CNN+Max pooling [25] 256 53.3 48.9 67.0

SPoC [6] 256 58.9 57.8 -

Conv7+PCA 256 58.6 55.7 68.6

global-level hash code 48 59.3 58.2 69.2

local-level hash code 256 69.7 63.9 85.2

multi-level hash code 256 67.1 63.4 83.7
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Comparison with State-of-the-Art. Approaches based on deep model in
the literature. We set length of Hl to 256 impartially. As Table 2 reveals that
our method produced better or competitive results. For strategy #1, we use
global-level hash code to retrieval 50 candidates and rerank by local-level hash
code, achieving mAP 67.1% on Oxford5k and 83.7% on Paris6k. Then, we adopt
strategy #2 to retrieval with setting λ to 0.5 empirically, obtaining slightly
different performance with strategy#1. We conjectured that the fusion weaken
some discriminant of local-level code caused the gap in performance.

For deep convolutional features, CNN+fine-tuning [26] gains mAP 55.7% on
Oxford by retraining deep models with additional landmarks dataset collected
by themselves, while we obtain 67.2% only with limited training samples pro-
vide by datasets. Although we did not promote performance by spatial rerank-
ing or query expansion strategies as Tolias et al. [7] done, our method achieve
competitive results. Compared with R-CNN+CS-SR+QE [26], our method is
more simple and effective (83.7 vs 78.4), exploring the inside property of deep
convolutional descriptor to select compact local feature for retrieval, while
R-CNN+CS-SR+QE locates objects by RPN. Mention that our method can
carry out fast image retrieval via Hamming distance measurement, which is
obviously superior to others based on Euclidean or Cosine distance.

Table 2. mAP comparison with state-of-the-art methods CNN-based.

Method Oxford5k Oxford105k Paris6k

SPoC [6] 58.9 57.8 -

Razavian et al. [5] 55.6 - 69.7

Kalantidis et al. [27] 65.4 59.3 77.9

Tolias et al. [7] 66.8 61.6 83.0

CNN+fine-tuning et al. [4] 55.7 52.4 -

R-CNN+CS-SR+QE [26] 67.8 - 78.4

Ours(#1) 67.1 63.4 83.7

Ours(#2) 67.2 62.8 83.4

4 Conclusion

This paper has presented a deep siamese CNN to produce global and local levels
hash codes for image retrieval with the proposed multi-level search method. And
we firstly propose to select region-related bits by activation maps. Finally, we
demonstrate the efficacy and applicability of the proposed approach on retrieval
benchmarks. Experimental results show that our method improves the previous
performance on Oxford and Paris datasets, respectively.
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