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Preface

Intelligent visual surveillance has emerged as a promising research area in computer
vision. Intelligent visual surveillance has wide application perspective, and provides
strong support for public security. To promote the adoption of visual surveillance, the
previous three editions of the Chinese Conference on Intelligent Visual Surveillance were
held in 2002, 2003, and 2011 successfully. In recent years, intelligent visual surveillance
has experienced greater advancement. New solutions and techniques are being discovered
continually. Furthermore, as more safe cities and smart cities have been constructed, the
issues of public security have become much more important. And many surveillance
companies are paying more attention to intelligent techniques in visual surveillance
systems. In order to strengthen communication, enhance understanding, and improve
cooperation between the academic and industrial communities, the 4th Chinese Confer-
ence on Intelligent Visual Surveillance (IVS 2016) was held on October 19, 2016.

After the call for papers was announced, we received 45 submissions covering all
aspects of visual surveillance. The Technical Program Committee (TPC) assigned each
submission to at least three reviewers with experience in the field of the submission.
Then, the TPC member made decisions of acceptance/rejection based on the review
reports. Through a rigid reviewing process, 19 papers were selected for this conference
proceedings volume with an acceptance rate of 42.22%. The papers address the problems
in object detection, motion tracking, person re-identification, action recognition, system
architecture, and other related topics, and contribute new ideas to research and devel-
opment of reliable and practical solutions for intelligent visual surveillance.

Finally, we would like to express our gratitude to all the contributors, reviewers,
TPC and Organizing Committee members who made this a very successful conference.
We also wish to acknowledge the Chinese Association for Artificial Intelligence, the
Technical Committee on Computer Vision, China Computer Federation (CCF-CV),
Springer, the Center for Research on Intelligent Perception and Computing, and the
Institute of Automation for sponsoring this conference.

October 2016 Tieniu Tan
Shaogang Gong
Jake Aggarval



Organization

General Chairs

Tieniu Tan Institute of Automation, CAS, China
Shaogang Gong Queen Mary, University of London, UK
Jake Aggarval The University of Texas at Austin, USA

Program Committee

Program Chairs

Kaiqi Huang Institute of Automation, CAS, China
Chaowu Chen First Research Institute of the Ministry of Public Security

of PRC, China
Dacheng Tao University of Technology Sydney, Australia

Program Committee

Caifeng Shan Philips Research, The Netherlands
Daoliang Tan Beihang University, China
Dewen Hu National University of Defense Technology, China
Grantham K.H. Pang The University of Hong Kong, SAR China
Haizhou Ai Tsinghua University, China
Hanzi Wang Xiamen University, China
Huchuan Lu Dalian University of Technology, China
Jianguo Zhang University of Dundee, UK
Jianru Xue Xi’an Jiaotong University, China
Jie Zhou Tsinghua University, China
Jinfeng Yang Civil Aviation University of China, China
Junge Zhang Institute of Automation, CAS, China
Liang Lin Sun Yat-sen University, China
Liang Wang Institute of Automation, CAS, China
Lin Mei Third Research Institute of the Ministry of Public Security

of PRC, China
Meibin Qi Hefei University of Technology, China
Mingming Cheng Nankai University, China
Rongrong Ji Xiamen University, China
Shengjin Wang Tsinghua University, China
Shiqi Yu Shenzhen University, China
Shuai Zheng Oxford University, UK
Stan Z. Li Institute of Automation, CAS, China
Tiejun Huang Peking University, China



Weiming Hu Institute of Automation, CAS, China
Weishi Zheng Sun Yat-sen University, China
Xiang Bai Huazhong University of Science and Technology, China
Xiaogang Wang Chinese University of Hong Kong, SAR China
Xiaokang Yang Shanghai Jiao Tong University, China
Xiaotang Chen Institute of Automation, CAS, China
Xiaoyi Jiang University of Münster, Germany
Xin Zhao Institute of Automation, CAS, China
Xuelong Li Xi’an Institute of Optics and Precision Mechanics,

CAS, China
Yunhong Wang Beihang University, China
Yuxin Peng Peking University, China
Zhang Zhang Institute of Automation, CAS, China
Zhaoxiang Zhang Institute of Automation, CAS, China
Zihe Fang First Research Institute of the Ministry of Public Security

of PRC, China

Organizers

Local Chair

Xin Zhao Institute of Automation, CAS, China

Local Committee Members

Da Li Institute of Automation, CAS, China
Dangwei Li Institute of Automation, CAS, China
Jinde Liu Institute of Automation, CAS, China
Qiaozhe Li Institute of Automation, CAS, China
Ran Xu Institute of Automation, CAS, China
Weihua Chen Institute of Automation, CAS, China
Weiqi Zhao Institute of Automation, CAS, China
Wenzhen Huang Institute of Automation, CAS, China
Yabei Li Institute of Automation, CAS, China
Yan Li Institute of Automation, CAS, China
Yanhua Cheng Institute of Automation, CAS, China
Yueyin Kao Institute of Automation, CAS, China
Yupei Wang Institute of Automation, CAS, China
Zhen Jia Institute of Automation, CAS, China

VIII Organization



Organization IX



Contents

Low-Level Preprocessing, Surveillance Systems

Occluded Object Imaging Based on Collaborative Synthetic
Aperture Photography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Xiaoqiang Zhang, Yanning Zhang, Tao Yang, Zhi Li, and Dapeng Tao

Video Synchronization with Trajectory Pulse . . . . . . . . . . . . . . . . . . . . . . . 12
Xue Wang and Qing Wang

Gestalt Principle Based Change Detection and Background Reconstruction. . . . 20
Shi Qiu, Yongsheng Dong, Xiaoqiang Lu, and Ming Du

L0-Regularization Based on Sparse Prior for Image Deblurring . . . . . . . . . . . 30
Hongzhang Song and Sheng Liu

A Large-Scale Distributed Video Parsing and Evaluation Platform . . . . . . . . 37
Kai Yu, Yang Zhou, Da Li, Zhang Zhang, and Kaiqi Huang

Tracking, Robotics

Autonomous Wheeled Robot Navigation with Uncalibrated
Spherical Images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Lingyan Ran, Yanning Zhang, Tao Yang, and Peng Zhang

Cascaded Tracking with Incrementally Learned Projections . . . . . . . . . . . . . 56
Lianghua Huang

Tracking Multiple Players in Beach Volleyball Videos. . . . . . . . . . . . . . . . . 65
Xiaokang Jiang, Zheng Liu, and Yunhong Wang

Multi-object Tracking Within Air-Traffic-Control Surveillance Videos . . . . . . 72
Yan Li, Siyuan Chen, and Xiaolong Jiang

Identification, Detection, Recognition

Person Re-identification by Multiple Feature Representations
and Metric Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Meibin Qi, Jingxian Han, and Jianguo Jiang

Deep Multi-level Hashing Codes for Image Retrieval. . . . . . . . . . . . . . . . . . 91
Zhenjiang Dong, Ge Song, Xia Jia, and Xiaoyang Tan

http://dx.doi.org/10.1007/978-981-10-3476-3_1
http://dx.doi.org/10.1007/978-981-10-3476-3_1
http://dx.doi.org/10.1007/978-981-10-3476-3_2
http://dx.doi.org/10.1007/978-981-10-3476-3_3
http://dx.doi.org/10.1007/978-981-10-3476-3_4
http://dx.doi.org/10.1007/978-981-10-3476-3_5
http://dx.doi.org/10.1007/978-981-10-3476-3_6
http://dx.doi.org/10.1007/978-981-10-3476-3_6
http://dx.doi.org/10.1007/978-981-10-3476-3_7
http://dx.doi.org/10.1007/978-981-10-3476-3_8
http://dx.doi.org/10.1007/978-981-10-3476-3_9
http://dx.doi.org/10.1007/978-981-10-3476-3_10
http://dx.doi.org/10.1007/978-981-10-3476-3_10
http://dx.doi.org/10.1007/978-981-10-3476-3_11


Salient Object Detection from Single Haze Images via Dark Channel
Prior and Region Covariance Descriptor. . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Nan Mu, Xin Xu, and Xiaolong Zhang

Hybrid Patch Based Diagonal Pattern Geometric Appearance Model
for Facial Expression Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Deepak Kumar Jain, Zhang Zhang, and Kaiqi Huang

Multi-object Detection Based on Binocular Stereo Vision. . . . . . . . . . . . . . . 114
Zhannan He, Qiang Ren, Tao Yang, Jing Li, and Yanning Zhang

Fast Vehicle Detection in Satellite Images Using Fully
Convolutional Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Jingao Hu, Tingbing Xu, Jixiang Zhang, and Yiping Yang

Behavior, Activities, Crowd Analysis

Semi-supervised Hessian Eigenmap for Human Action Recognition. . . . . . . . 133
Xueqi Ma, Jiaxing Pan, Yue Wang, and Weifeng Liu

Surveillance Based Crowd Counting via Convolutional Neural Networks . . . . 140
Damin Zhang, Zhanming Li, and Pengcheng Liu

Jet Trajectory Recognition Based on Dark Channel Prior . . . . . . . . . . . . . . . 147
Wenyan Chong, Ying Hu, Defei Yuan, and Yongjun Ma

Real-Time Abnormal Behavior Detection in Elevator. . . . . . . . . . . . . . . . . . 154
Yujie Zhu and Zengfu Wang

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

XII Contents

http://dx.doi.org/10.1007/978-981-10-3476-3_12
http://dx.doi.org/10.1007/978-981-10-3476-3_12
http://dx.doi.org/10.1007/978-981-10-3476-3_13
http://dx.doi.org/10.1007/978-981-10-3476-3_13
http://dx.doi.org/10.1007/978-981-10-3476-3_14
http://dx.doi.org/10.1007/978-981-10-3476-3_15
http://dx.doi.org/10.1007/978-981-10-3476-3_15
http://dx.doi.org/10.1007/978-981-10-3476-3_16
http://dx.doi.org/10.1007/978-981-10-3476-3_17
http://dx.doi.org/10.1007/978-981-10-3476-3_18
http://dx.doi.org/10.1007/978-981-10-3476-3_19


Low-Level Preprocessing, Surveillance
Systems



Occluded Object Imaging Based
on Collaborative Synthetic
Aperture Photography

Xiaoqiang Zhang1(B), Yanning Zhang1, Tao Yang1, Zhi Li1, and Dapeng Tao2

1 School of Computer Science and Engineering, Northwestern Polytechnical
University, Xi’an, Shaanxi, People’s Republic of China

vantasy@mail.nwpu.edu.cn
2 School of Information Science and Engineering, Yunnan University, Kunming,

People’s Republic of China

Abstract. Occlusion poses as a critical challenge in computer vision for
a long time. Camera array based synthetic aperture photography has
been regarded as a promising way to address the problem of occluded
object imaging. However, the application of this technique is limited
by the building cost and the immobility of the camera array system. In
order to build a more practical synthetic aperture photography system, in
this paper, a novel multiple moving camera based collaborative synthetic
aperture photography is proposed. The main characteristics of our work
include: (1) to the best of our knowledge, this is the first multiple moving
camera based collaborative synthetic aperture photography system; (2)
by building a sparse 3D map of the occluded scene using one camera, the
information from the subsequent cameras can be incrementally utilized
to estimate the warping induced by the focal plane; (3) the compatibility
of different types of cameras, such as the hand-held action cameras or
the quadrotor on-board cameras, shows the generality of the proposed
framework. Extensive experiments have demonstrated the see-through-
occlusion performance of the proposed approach in different scenarios.

1 Introduction

In the field of computer vision, occlusions often impose significant challenges
to various tasks, e.g. visual tracking and video surveillance. Since it is usually
difficult to solve the occlusion problem from a single view, multiple views based
approaches become a straightforward idea to solve the occlusion problem. Among
the multi-view approaches, synthetic aperture photography (SAP) [1–7] provides
plausible solutions to the occluded object imaging problems in a computational
way. By warping and integrating images from different views, the multiple view
system is computationally utilized to simulate a virtual camera with a very
large synthetic aperture. Therefore, the depth of field of the synthetic image is
so limited that the occluders, which are off the focal plane, would be blurred.
Meanwhile the object, which is on the focal plane, would stay sharp (Fig. 1(c)).
Thus, it provides the users the capability to see through occlusions.
c© Springer Nature Singapore Pte Ltd. 2016
Z. Zhang and K. Huang (Eds.): IVS 2016, CCIS 664, pp. 3–11, 2016.
DOI: 10.1007/978-981-10-3476-3 1
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Fig. 1. Collaborative synthetic aperture photography system and occluded imaging
result. (a) Collaborative data capturing. The occluded poster is collaboratively cap-
tured by different types of cameras: one on-board camera of a quadrotor (red box) and
two action cameras (blue box). (b) The occluded scene. (c) Occluded object imaging
result. (Color figure online)

Conventional SAP methods [1–3], utilize a camera array for the data cap-
turing. However, the application of these approaches are limited due to the
immobility and the high building cost of the array system and the inconvenience
in system calibration. In the following works [4,5], a single moving camera is
used to simulated a virtual camera array, which provides the users a more flexi-
ble way to generate the synthetic aperture images (SAIs). However, the camera
motion is constrained in a line in [4]. Besides, in these approaches [4,5], if the SAI
result is unsatisfied, the users need to re-capture the occluded object, discarding
all previous captured information. Besides, both the two approaches cannot be
applied to a multiple moving cameras based system. The lack of multiple moving
cameras based SAP approach motivates us to consider the SAP problem in a
collaborative way. That is, rather than a single moving camera, multiple moving
cameras, even in different types, can be used to collaboratively capture the scene
and generate the synthetic aperture images. As shown in Fig. 1(b), in the scene, a
planar poster is occluded by a potted plant and other objects. Images captured
by different types of cameras, including the on-board camera of a quadrotor
and action cameras (Fig. 1(a)), are collaboratively utilized to generate the see-
through-occlusion imaging result, which is shown in Fig. 1(c). To the best of our
knowledge, the proposed method is the first time to solve the occluded object
imaging problem within a collaborative multiple moving cameras framework.

In the SAP technique, images from different cameras or views are warped
onto a virtual focal plane. Hence, one of the core problems of the SAP is the
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estimation of the transformation matrices used in the warping. In the conven-
tional camera array based methods [1–3], the estimation is done by an offline
calibration procedure. However in our case, the estimation is more challeng-
ing since multiple moving cameras of different types are utilized in our system.
Inspired by the bag-of-words [8] based place recognition approaches [9–11], in
this paper, a novel multiple collaborative framework is proposed to estimate
of the transformations used when generating the SAIs. In this framework, one
selected camera is used to build a sparse map of the occluded scene, which is
then collaboratively utilized to incrementally estimate the poses of the images
from the subsequent cameras. Finally, with the user specified focal plane, the
synthetic aperture image are generated by warping images from all cameras
onto the focal plane. Compared to the previous single moving camera based
approaches [4,5], the proposed method can provide a SAP approach for multiple
users. Moreover, if the SAI result is unsatisfied, the users can incrementally cap-
ture the same scene from different perspectives, without discarding the previous
captured information. Experimental results on datasets captured both indoor
and outdoor demonstrate the performance of our approach.

2 Collaborative Synthetic Aperture Photography

In this section, we describe the details of the proposed collaborative SAP method.
The pipeline of the proposed method is illustrated in Fig. 2.

• System Overview. As shown in Fig. 2, cameras used in our system are divided
into two types: one main camera (red dashed box in Fig. 2) and several sub
cameras (blue dashed box in Fig. 2). In our collaborative framework, the main
camera is set to capture an image sequence of a scene and m frames will be
selected for the SAI generation, which are denoted as IK1, . . . , IKm. And the sub
cameras are set to capture images from different perspectives. Here we suppose
there are L sub cameras in total. For the j-th sub camera, it captures Nj images
in total. Mathematically, The SAI, Isa, can be represented by

Isa =
1

m +
∑L

j=1 Nj

⎛

⎝
m∑

i=1

P (Mi, IKi) +
L∑

j=1

Nj∑

k=1

P (Mjk, Ijk)

⎞

⎠, (1)

where M denotes the transformation matrix that projects the corresponding
image onto the focal plane, Ijk the k-th image captured from sub camera j and
P (·, ·) the required projection procedure. Usually, M is determined by the pose
of the corresponding image and the focal plane. In this section, the main focus
is the collaborative pose estimation.

As shown in Fig. 2, there are four main steps in the proposed approach.
Firstly, one camera is selected as the main camera, and the sparse 3D map of
the occluded scene is estimated from the image sequence captured by the main
camera via a keyframe-based SLAM approach. During the SLAM, image features
and their descriptors on a certain keyframe, are converted into a bag-of-words
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Fig. 2. Framework of the proposed collaborative SAP method. (Color figure online)

(BoW) vector. The keyframes and its BoW vector, as well as the estimated sparse
3D map of the scene, are stored for the next step. Secondly, in order to obtain
more information of the occluded object, several sub cameras are used to capture
the scene from perspectives that are different from those of the keyframes from
the main camera. The pose of each image from each sub camera are initially
estimated via BoW based relocalisation, in which the sparse map and keyframe
BoW vectors obtained from the first step are utilized. Thirdly, the pose of all
keyframes of the main camera, and that of all images from all sub cameras are
optimized via a global bundle adjustment. Finally, with the user specified focal
plane, the induced warping can be computed and the synthetic aperture image
is generated.

• Keyframe-Based SLAM for the Main Camera. In this step, we take the
image sequence captured from the main camera as the input. Because the goal
of our system is to estimate the poses of frames from different camera, in this
step, we choose to adopt the work of ORB-SLAM [11] for its convenience when
performing relocalisation. For the completeness, a brief review of the related
procedure is given below. More formal descriptions are given in [10,11].

The ORB-SLAM follows the traditional pipeline of the keyframe-based
SLAM approaches. The ORB feature descriptor is selected for the feature track-
ing and mapping procedure. During the SLAM, for each selected keyframe, the
extracted ORB features are converted into a bag-of-words vector, and stored in
a pre-trained visual vocabulary tree, which can be used for the relocalisation in
the following step. As well, the 3D locations of the estimated sparse map points
are stored.

• Sub Camera Pose Estimation via Relocalisation. In this step, the goal is
to estimate the poses of each image of each sub camera. Suppose an image, Iit, is
the t-th captured image from sub camera i. Because the scene is sparsely sampled
by the keyframes from the main camera, Iit would share some similarities with
some of the keyframes, which can be measured by the similarity between the
two bag-of-words vectors [9]. It can be defined as
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s(vit, vKj) = 1 − 1
2

∣
∣
∣
∣

vit
|vit| −

vKj

|vKj |
∣
∣
∣
∣ , (2)

where vit and vKj are, respectively, the bag-of-words vectors of Iit and that of the
j-th keyframe from the main camera. Therefore, by calculating and sorting the
similarity score (Eq. (2)) between Iit and all keyframes, the keyframe that shares
the most similarities with Iit, which is represented by IKit, can be retrieved and
will be used to estimate the pose of Iit.

Since IKit is the keyframe obtained from the first step, its feature points are
associated with the 3D map points, we can establish the 2D-3D correspondences
between image features on Iit and the map points by computing the 2D-2D
pixel correspondences between Iit and IKit. Then, with the 2D-3D correspon-
dences, the pose of Iit can be estimated by solving the Perspective-n-Point (PnP)
using [12] or the UPnP problem [13], depending on sub camera i is calibrated or
not. In practice, considering the mismatching situation and outliers of the map
point, the RANSAC scheme is used when estimating the pose of Iit. This step
is continued until the pose of all images from all sub cameras are estimated. If
the RANSAC scheme fails when estimating the pose, the corresponding image
will be discard when generating the SAI.

Finally, the pose of all keyframes from the main camera, and those of all
the images from all sub cameras, are optimized via a global bundle adjustment.
It should be noted that the proposed collaborative framework also works for
other SfM or relocalisation approaches. Therefore, the SfM and relocalisation
approaches are not specified in Fig. 2.

• Synthetic Aperture Image Generation. Before generating the SAI, one
view, either from the main camera or from the sub cameras, is selected as a
reference view. The SAI will be generated in the camera coordinate system of
the reference view. Without loss of generality, in practice, we usually select the
first keyframe as the reference view.

Suppose that the coordinate of the focal plane Π is (n�, d)�, in which n�

is the normal vector of Π and d a scalar. With the abuse of the notations, we
use Mi to represent the transformation matrix that projects the corresponding
image Ii onto the focal plane. Geometrically, Mi is the homography induced by
Π between Ii and the reference view Iref , and can be computed by

Mi = Ki(Ri − tin�/d)Kref , (3)

where Ki and Kref are, respectively, the intrinsic parameter matrix of Ii and
Iref , Ri and ti the relative rotation and translation between Ii and Iref .

After estimating all the induced warping for all images, the SAI is generated
using Eq. (1).

3 Experimental Results

In this section, we describe the details of the experimental results to show
the performance of the proposed occluded object imaging method.
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Fig. 3. Occluded object imaging result indoor. (a) The reference view of the occluded
scene. (b) A sample image from the sub camera. (c) The SAI generated using only
keyframes from the main camera. (d) The SAI generated using the proposed collabo-
rative framework.

• Equipment. One of the main features of the proposed collaborative SAP
method is that different types of cameras can be used in the framework. In order
to show the generality of the proposed method, we choose to use several on-the-
shelf cameras of different types for data capturing in the experiments. Moreover,
to show the application of the proposed method on aerial videos, the on-board
camera of a quadrotor is also utilized. In particular, for the quadrotor, the DJI
phantom 4, which is a high-end but affordable quadrotor with good on-board
camera, is selected. For the other cameras, several Yi action cameras are used.
The two types of camera are both shown in Fig. 1. Before the data capturing,
the intrinsic parameter of these cameras are set to be fixed and calibrated. The
captured image sequences from these cameras are uploaded to a desktop with an
Intel Core i5-4460 CPU @3.2GHz. We develop a C++ based system to generate
the SAIs using the proposed collaborative system.

Considering the fact that the depth-of-field of the SAI is very limited, it is
difficult to get the entire non-planar object in focus. In the following experiments,
we choose to use planar object to be the imaging object.

• Exp. A. Occluded Poster in an Indoor Scene. In this experiment, our
goal is to demonstrate the performance of the proposed method in the indoor
scene. As shown in Fig. 3(a), in the scene, a planar poster is severely occluded
by a potted plant and a toy doll. During the data capturing, the on-board cam-
era of DJI phantom 4 is selected as the main camera. Since the main goal of
the main camera is to build the sparse map of the scene, it is set to work at
lower resolution but high frame rate mode. In this experiment, the main camera
captures images sequence with a resolution of 1280× 720 pixels at 50 fps using a
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frontal perspective. Two Yi action cameras are used as the sub cameras in this
experiment. They both captures images with a resolution of 1920× 1080 pixels,
which shares the same aspect ratio with that of the main camera. Figure 3(a)
shows the reference view, which is the first keyframe out of all 13 keyframes
selected from the main camera. In total, 50 frames are captured from the two
sub cameras. One sample image is shown in Fig. 3(b).

Figure 3(c) and (d) show, respectively, the occluded object imaging result
using all keyframes and all images in our collaborative system. In SLAM
approaches, the keyframe selection criterion are usually based on the number
of successful tracked map points, rather than enhancement the occluded object
imaging performance. Besides, because the indoor scene is small, during the
SLAM, not many keyframes are selected. Figure 3(c) provides only partial infor-
mation of the occluded poster. However in the proposed collaborative method,
because two sub cameras are utilized to capture extra information of the occluded
object, the SAI result in Fig. 3(d) are more clearer see-through-occlusion imaging
result.

• Exp. B. Outdoor Experiment Using Aerial Images from Multiple
Flights. Considering the scene scale is small indoor, an outdoor experiment is
conducted to further demonstrate the performance of the proposed method. As
shown in Fig. 4(a), a planar poster is occluded by a metal trolley. Considering
that the scene is difficult to capture from hand-held cameras, we incrementally
capture the scene from several flights. Image sequence captured in the first flight
are used to build the sparse map of the scene, while the subsequent flights provide
more detailed information of the occluded object.

Different from the previous experiment, the quadrotor is controlled to cap-
ture images from top-down perspectives. The on-board camera is set to capture
images with a resolution of 1280×720 pixels and image sequence at 50 fps for the
first flight. During the experiment, we conduct 3 flights with different heights
ranging from 2 to 3 m. It should be noted that the occlusion-to-object distance
in this experiment is only 0.15 m, which makes it more challenging to remove of
the occlusions. Figure 4(b) shows the reference view, which is captured during
the first flight. Figure 4(c) shows the SAI result generated from 35 images. It

Fig. 4. Occluded object imaging result outdoor. (a) The DJI phantom 4 are used
to incrementally capture the occluded poster from a top-down perspective. (b) The
reference view. (c) The occluded object imaging result.
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can be seen that the entire pattern of the occluded poster can be seen in the
SAI and the occluded is blurred out. This experiment shows that the proposed
method can also be used for aerial video based occluded object imaging.

4 Conclusion

In this work, a novel multiple moving camera based collaborative SAP method
is proposed. In this framework, one selected camera is used to build a sparse
map of the occluded scene, which is then collaboratively utilized to incremen-
tally estimate the poses of the images from the subsequent cameras. Experiment
from indoor and outdoor scene and captured by both quadrotors and hand-
held camera demonstrate the performance and the generality of the proposed
approaches. In the future work, we would like to extend the propose method to
build a multiple quadrotors based occluded object imaging system.
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Abstract. This paper presents a method to temporally synchronize
two independently moving cameras with overlapping views. Temporal
variations between image frames (such as moving objects) are powerful
cues for alignment. We first generate pulse images by tracking moving
objects and examining the trajectories for changes in speed. We then inte-
grate a rank-based constraint and the pulse-based matching, to derive a
robust approximation of spatio-temporal alignment quality for all pairs
of frames. By folding both spatial and temporal cues into a single align-
ment framework, finally, the nonlinear temporal mapping is found using
a graph-based approach that supports partial temporal overlap between
sequences. We verify the robustness and performance of the proposed
approach on several challenging real video sequences. Compared to state-
of-the-art techniques, our approach is robust to tracking error and can
handle non-rigid scene alignment in complex dynamic scenes.

1 Introduction

Video synchronization is part of a more general video alignment problem which
occurs in tasks such as human motion recognition, video retrieval, multi-view
surveillance and 3D visualization. Videos must be aligned both spatially and
temporally. Spatial alignment computes the geometrical transformation of 2D or
3D coordinate systems of temporally aligned frames, so that the object of interest
is in correspondence. Temporal alignment computes 1D temporal transformation
by synchronizing frames to achieve good spatial alignment.

Jointly reasoning about temporal and spatial alignment improves the robust-
ness of the system. There are two main challenges. First, explicit 2D or 3D spa-
tial alignment is very difficult to compute for moving cameras on dynamically
changing scene with multiple moving objects. Second, due to non-predictable
frame drops, temporal context constraints (i.e. continuity) can not be applied
everywhere for temporal alignment.

The key insight is the spatio-temporal rhythm of movement of a human body.
Both the geometrical configuration and the speed variations of body parts, are
strong cues for alignment. Furthermore, the body configuration and movement
are often coupled. Our method uses sparse space-time point trajectories as input.

This work was partially supported by National Natural Science Foundation of China
(61272287, 61531014).
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We introduce a temporal feature, pulse, along each trajectory by examining the
changes in speed. We call this feature pulse as it reflects the rhythm of move-
ment, also the peaks and troughs on a pulse image are often associated with
the keyframes of body poses. With the pulse features, our objective is to mea-
sure the sequence-to-sequence alignment quality between pairs of frames with a
gross approximation of synchronization (i.e., constant offset model). On the other
hand, following traditional image-to-image alignment techniques, we measure the
spatial configuration alignment between two camera frames using a rank con-
straint based on epipolar geometry. This implicitly considers 3D transformation
without solving a hard reconstruction problem. Finally we fold both the pulse
based matching and the rank constraint into a single alignment framework, and
compute the globally optimal path that minimizes spatial and temporal mis-
alignments.

2 Related Works

Most video alignment techniques assume stationary or rigidly fixed cameras,
thus a fixed spatial transformation between corresponding frames is guaranteed
and need not be re-estimated at runtime. Commonly exploited geometric con-
straints include plane-induced homography [1,2], affine transformation [3], binoc-
ular epipolar geometry constraint [1,4,5], deficient rank conditions arose from
special projection models [6–8] and so on. Anthony et al. [9] propose to synchro-
nize stationary cameras using inflection points, which are found by examining
the trajectories for changes in direction. Once an event has been identified in
two such videos, a temporal mapping between the sequences can be globally
described by simple parametric models, like constant offset model [2,4,6,7] or
1D affine model [1,5,8]. Nonlinear temporal mapping is used to cope with free
form of time correspondence [3,10]. Assuming simultaneous recording, this kind
of temporal rigidity is preserved even for independently moving cameras [11–14].
If related videos are captured at different points in time, previous work [15–18]
assumes approximately coincident camera trajectories, to make sure that corre-
sponding frames are captured from similar viewpoints.

Our scenario is most closely related to the work in [11–14], which focuses
on video alignment for independently moving cameras and non-rigid dynamic
scenes. Tresadern and Reid [11] develop a unified rank constraint framework for
homography, perspective and affine projection models. Tuytelaars and Gool [12]
assume a scaled orthographic projection model and find corresponding frames
use the line-to-line distance of the back-projection 3D lines of matching points.
Lei and Yang [14] use the tri-ocular geometric constraint of point/line features to
build the timeline maps for multiple sequences. These methods assume that the
features are tracked successfully throughout each sequence and matched across
sequences, which are hardly assured in wide baseline conditions. Also they try
to recover a linear synchronization. Dexter et al. [13] propose a time-adaptive
descriptor based on self-similarity matrices to perform nonlinear synchronization.
However, they use static points in the background to estimate a dominant motion
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to compensate modest camera motion, which only works for distant views or
planar scenes.

3 Trajectory Pulse

Let F = {x1,x2, . . . ,xM} and F ′ = {x′
1,x

′
2, . . . ,x

′
N} denote two corresponding

feature trajectories from video sequences M and N frames long respectively.
Both sequences have a collection of feature trajectories Γ = (F 1, F 2, . . . , FK)
and Γ ′ = (F ′1, F ′2, . . . , F ′K), with K the number of trajectories for both
sequences. Let vi(j) denote the jth frame of video i. Our goal is to find a nonlin-
ear temporal mapping p : N → N, where p(n) = m maps v1(m) in the reference
sequence to v2(n) in the observed sequence. Considering the situation that the
temporal displacements are not necessarily integer values, instead of a sub-frame
accurate synchronization, we find the temporally closest frame.

Given two sets of corresponding trajectories Γ and Γ ′, there are two ways of
looking at the spatio-temporal alignment. To represent the time varying struc-
ture in the trajectory space, between two corresponding point trajectories F and
F ′, a temporal trajectory affinity across views can be used for temporal synchro-
nization. To represent the time varying structure in the shape space, between two
instantaneous 2D point configurations (x1

m,x2
m, . . . ,xK

m) and (x′1
n ,x′2

n , . . . ,x′K
n ),

a spatial shape affinity across views can also be used. Thus a best match should
have both high temporal trajectory affinity and high spatial shape affinity.

We generate pulse images by examining the trajectories for changes in speed,
which reflects how fast the instantaneous point velocity changes. The frames
where the speed changes drastically can be seen as the pulse feature for temporal
alignment. Two examples of pulse images for corresponding trajectories are given
in Fig. 1. Each pulse image has been normalized to zero mean. The trajectories
of torso, whose variances are 1.62 and 2.43 respectively, lack distinctive pulse
features so that multiple temporal mappings can align the two trajectories. While
the trajectories of left hand, whose variances are 16.32 and 9.08 respectively,
provide discriminative pulse features to determine a unique solution for temporal
alignment.

The conclusions accord with the general impression. A static object con-
tributes nothing for video alignment. In general, greater temporal variations
a dynamic scene the better chances of exact video synchronization. The pulse
feature with obvious change in speed provides powerful alignment cues. Once
we have generated the pulse images for the corresponding trajectories, for each
feasible pair of frames, the synchronization is grossly determined by the frames
using a constant offset model. Accordingly the pulse-based trajectory affinity At

for frame pair (m,n) is defined as follows,

At(m,n) = exp(− trjm,n

σ2
t

), (1)

where trjm,n is the maximum pulse images difference for corresponding trajec-
tories, and σt is a positive rate.
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Fig. 1. Two examples of pulse images for corresponding trajectories. The discriminative
pulse features are indicated in black dotted vertical lines.

4 Nonlinear Temporal Alignment

For perspective projection model, given K corresponding points, the unknown
fundamental matrix F can be computed using Mf = 0, where M is a K × 9
observation matrix of constraints defined by the image feature locations, f is
the elements of the fundamental matrix: f = [f1, . . . , f8, 1]� [11]. Since it is a
homogenous equation, for a solution of f to exist, M must have rank at most
eight. However, due to the noise or the tracking error, the rank of M will almost
always be of full rank. We examine the effective rank, n̂, of the observation
matrix [7]. Let λ1, . . . , λh denote the singular values of M. The sum of remain-
ing singular values, denoted as dst =

∑h
k=n̂+1 λk, can be used to measure the

matching of two instantaneous 2D point configurations. The smallest dst of M
corresponds to the best match of frames. Finally, we transform dst to the shape
affinity As(m,n) as follows,

As(m,n) = exp(−dstm,n

σ2
s

). (2)

where σs is a positive rate. Thus we set the spatio-temporal affinity A(m,n) for
frame pair (m,n) by integrating the shape and trajectory affinity,

A(m,n) = exp
[

−(
dstm,n

σ2
s

+
trjm,n

σ2
t

)
]

. (3)

where σt and σs control the rate of decay for trajectory and shape weights
respectively. Finally, we transform the A to obtain the cost matrix C in which
low values indicate frames that are likely to have a good match. The entries of
the cost matrix C are given by,

C(m,n) = 1 − A(m,n)
Amax

, (4)

where Amax is the maximum value of A.
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The nonlinear temporal mapping p : N → N is referred as a path through
the cost matrix. We use the mapping computing algorithm described in [16] to
find the optimal path.

5 Experiments

In this section, we evaluate the proposed alignment algorithm on several channel-
ing real data. We focus on the alignment of sequences captured by independently
moving cameras simultaneously from different viewpoints. The corresponding
feature trajectories are the joint points in a human body labelled manually.
When some points are occluded, we interpolate the missing locations between
consecutive frames.

We perform an ablative analysis of our approach, by comparing to the fol-
lowing baselines: (1) using trajectory affinity At alone of Eq. 1, and (2) using
shape affinity As alone of Eq. 2. We additionally compare our approach with
three state-of-the-art synchronization algorithms for independently moving cam-
eras [12,13,16], abbreviated as BPM, MFM and SMM, respectively.

Given the ground truth {p̂(j), j)}j=1...M , we use the average absolute tem-
poral alignment error ε = 1

M

∑M
j=1 |p̂(j) − p(j)| as our basic accuracy metric.

5.1 Non-rigid Scene Alignment

For evaluation with videos captured with independently moving simultaneously,
we first use the Fight dataset provided by [19]. Further, we introduce a first-
person dataset captured by heal-mounted cameras, which consists of three social
interaction scenes. The scenes, Blocks and Exercise mat, capture tetradic inter-
actions between children aged 5–6. For the Basketball scene, the players strate-
gically take advantage of team formation (5v5). Ground truth are obtained by
manual synchronization. We take two clips with temporal overlapping for align-
ment. Within the observed sequence, we drop several frames randomly at a
maximum rate 5%.

The average temporal alignment errors with respect to the ground truth are
summarized in Table 1. The complete model of our approach outperforms other
methods on the test sequences. The content-based snapping [16] assumes that
two frames are more likely to be “alignable” if they contain a large number of
similar features, and it is unable to accurately synchronize sequences in the wide
baseline viewing condition.

Figure 2 shows the synchronization results for sample frames using the com-
plete model of our approach, BPM, MFM and SMM on different scenes. Three
alignment situations are defined according to the alignment accuracies. For a
frame vi(j), its alignment error is defined as εj = |p̂(j) −p(j)|. Thus, the frame
vi(j) is referred as a matched, slightly mismatched or mismatched frame when
εj ≤ 1, εj ≤ 2 and εj ≥ 3, respectively.
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Table 1. Comparisons of alignment error for non-rigid scene alignment.

Fight Blocks Exercise mat Basketball

BPM [12] 12.6 24.7 15.1 22.3

MFM [13] 4.9 14.2 16.8 9.4

SMM [16] 18.7 138.5 106.9 19.1

Our method (shape) 8.1 17.0 30.7 15.3

Our method (trajectory) 2.5 13.6 8.4 3.7

Our method (complete) 1.2 1.6 2.5 0.8

(a) Fight (b) Blocks

(c) Exercise mat (d) Basketball

Fig. 2. Synchronization results for sample frames on different scenes. From top to
bottom: Sample frames from the reference sequence, corresponding frames from the
observed sequence by the complete model of our method, BPM, MFM and SMM.
The red, yellow and green rectangles around the frames indicate matched, slightly mis-
matched and mismatched frames, respectively. (Color figure online)
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Fig. 3. Comparison of alignment error versus localization error on the Blocks scene.
The alignment error bound is fixed at ζ = 1 frame.

5.2 Robustness Analysis

Feature-based methods rely on the point trajectories as input data for alignment.
In a practical situation, the feature trajectory is usually imperfect and contains
noise. A robust alignment algorithm should be tolerate to certain tracking errors.
We evaluate the effect of noisy trajectories on the proposed approach using the
robustness analysis [3,5]. We consider the percentage of estimated correspond-
ing frame pairs below a given bound ζ, which allows us to assess the algorithm
robustness to compute high-accurate timelines (ζ ≤ 1 frame) as well as its behav-
ior in a less challenging situation (e.g., ζ ≤ 2 frames or ζ ≤ 5 frames).

Normally distributed and zero mean noise with various values of variance
is added to the tracked feature trajectories. The original point locations are
labelled manually. Then we can estimate the algorithm by computing the average
temporal alignment error in a variety of settings. Figure 3 shows the impact of
localization error on alignment accuracy for the complete model of our approach,
BPM and MFM on the Blocks scene. As expected, the ability to achieve accurate
alignments diminishes with increased noise levels. Our approach can align almost
80% of the total frames within a ±1 frame offset with respect to the ground truth,
even when the tracker noise variance reaches 6. Due to the sensitivity to tracking
error, previous methods deteriorate at a faster rate as the tracking noise level
increases comparing to ours.

6 Conclusion

We present a general framework for synchronizing dynamic scenes in the presence
of independent camera motion. We demonstrate the feasibility of folding pulse-
based trajectory affinity and rank-based shape affinity into a single alignment
framework. Experiments conducted on several challenging video sequences show
that the proposed approach outperforms the synchronization accuracy and the
robustness w.r.t the state-of-the-art techniques.
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Abstract. Gaussian mixture model based detection algorithms can easily lead
to fragmentary due to the fixed number of Gaussian components. In this paper,
we propose a gestalt principle based change target extraction method, and fur-
ther present a background reconstruction algorithm. In particular, firstly we
applied the Gaussian mixture model to extract the moving target as others did
but this may lead to incomplete extraction. Secondly, we have also tried to apply
the frame difference method to extract the moving target more precisely. Finally,
we determine to build a static background according to relationships between
each frame of a moving target. Experiment results reveal that the proposed
detection method outperforms the other three representative detection methods.
Moreover, our background reconstruction algorithm is also proved to be very
effective and robust in reconstructing the backgrounds of a video.

Keywords: Gestalt visual principle � Moving target extraction � Background
reconstruction � Video surveillance

1 Introduction

With the rapid development of video surveillance technology, the computer visual
analysis is widely used in video surveillance applications such as object detection and
scene understanding [1–3]. Practically, the moving object extraction, background
modeling and restoration and the background reconstruction are the key step in the
intelligent visual analysis, which is the focus of current research. Conventional algo-
rithms in video can be categorized into three types. The first type is based on pixel [4,
5]. It estimates the moving object’s region through build a probability model according
to pixel distribution law. But in this case a large number of sample pixels are needed,
which means artificial cost is relatively very high. The second type is based on region
[6]. It uses the consistency of texture features to reduce influence of the lighting on
moving targets and background. But the detection result is not effective when the
moving object has small changes only or characteristics are not obvious. The third type
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is based on the image frames [7, 8]. It detects the moving targets through build an
overall mode according to light change principle. But this mode is difficult to build as
light changes very quick and itself is very complicate. Whereas all of the above
algorithms are based on the computer image calculate level, which cannot meet current
needs however. In situation like this, it is difficult to do research on background
modeling and moving object extraction currently. To solve the above problems, in this
paper we adopt the method of building a Gestalt model based on the principles of
Gestalt visual imaging to let computer analyze the video gradually thus to achieve
reconstruction of the background and extraction of the moving object, in the purpose of
achieving smart surveillance of videos efficiently.

2 Details of Our Algorithm

2.1 Gestalt Psychology

Gestalt theory believes that people can see the objects when interaction happens
between the eye and brain. It combines various parts of the visual observations
according to certain rules, then making it one unity in an easier to understand [9]. Or
else the image will remain disorder or confusion cause it cannot be corrected thereafter.

According to the gestalt vision principle, we detect moving object and reconstruct
background as Fig. 1. When we are watching a scene video first, we will concentrate
on the region (as block shows in following pic) which we’re interested only and ignore
the surroundings to simplify the image information. Then we extract target region
(dashed line shows in following pic) according to relation between occlusion and
moving, to achieve background reconstruction through brain at last, so as to form a
stable solid background. Finally reconstruction of the background through the brain to
form a stable solid background. That when other follow-up objectives go through this
zone, in regardless of how long they have stayed will all be treated as moving targets,
does not affect the background image.

At first we will focus on the moving region roughly, and then construct the model
to extract the moving objects accurately. Finally the computer updates the background
image and extracts the moving objects by inter-frame information as Fig. 2.

5th fame

Reconstruct bacakground

30th fame

15th fame 300th fame

Fig. 1. The visual cognitive processing by gestalt principle
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2.2 Moving Object Detection

Currently, the main methods of moving object detection include low rank method and
optical flow method etc. low rank [4] can extract the moving targets accurately to some
degree. But it needs to calculate a large amount of complex data leading it cannot meet
video’s real-time requirements. Optical flow algorithm [5] computer is very fast, but the
model does not consider the feature by target itself. So it does not extract moving
objects completely. The above algorithms are based on the image level ‘visual cog-
nitive processes. Lead it unable to extract the target and background reconstruction
accurately when small amplitude motion or stay there for a long time, also causes
impact on understanding, target detection and tracking etc.

Through the study of human cognitive process, when we meet a video scene, we
construct background roughly shape through the brain by the video images. Then its
attention focuses on the movement region quickly. Finally, computer accurately
extracts the motion target by the brain dynamic cognitive process.

According to different image pixel distribution between background and move-
ment, Stauffer and Grimson [10] used the Gaussian mixture model algorithm to sim-
ulate pixel values. The Gaussian mixture model algorithm used learning factor to
simulate human cognitive process of foreground and background building dynamically
by formula (1):

P Xtð Þ¼
Xk
i¼1

xi;t � g Xt; ui;t;
X

i;t

� �
ð1Þ

Where k is the number of Gaussian model, η represents Gaussian probability
density, li,t and

P
i,t respectively the mean and covariance of i-th component. xi,t

represents the weight of the i-th component of the pixel which updated as formula (2):

xi;t ¼ 1� að Þxi;t�1 þ a Mi;t
� � ð2Þ

We priority order the Gaussian distribution model, used front the background
model as B which updated as formula (3):

video

Focus on the roughly 
moving regions

Extract the moving 
objects

Update background and 
back movement regions

The moving
 regions

The pure 
background

Fig. 2. The algorithm flow chart
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B ¼ argmin
b

Xb
k¼1

xk [ T

 !
ð3Þ

Where a is the learning factor, Mi,t is the matching model. T is a threshold for the
minimum ratio from real reaction background of total data Ak is the k-th in the input
video frame, {Aroik}N represents Ak contain N moving region, Aroiik represents the i-th
moving region from Ak. The Gaussian mixture model can extract the moving region
roughly. But our analysis by image perspective will miscalculate when the moving
target stays a long time or images have small vibration.

Frame difference method used threshold to measure the different value between
foreground and background image. Traditional algorithm [11] selects background
image is fixed. However, selecting different background images or threshold directly
affect the extraction result.

So we improve the Gaussian mixture model and frame difference method to extract
the moving targets by properties such as the shape, texture.
Step 1: We convert Ak to grayscale image Agrayk which reduce the amount of

calculation.
Step 2: Bk is the k-th background image. It grayscale image is Bgrayk and B1 = A1.
Step 3: We calculate Tk adaptively as formula (4). where (x, y) 2 Aroik, Nk is the

number of pixels from Aroik.

Tk ¼
P
x;y

Agraykðx;yÞ�Bgraykðx;yÞj j

Nk
Nk 6¼ 0

Tk�1 Nk ¼ 0

8<
: x; yð Þ 2 Aroik ð4Þ

Step 4: Use frame difference method to get target regions as formula (5) and
operating morphological as corrosion, expansion to IDk(x, y), the result
regions is {Broik}M.

IDkðx; yÞ ¼
1 Agrayk � Bgraykj j � Tk
0 Agrayk � Bgraykj j\Tk

�
ð5Þ

Step 5: Record the number j compositions series JF, if Aroiik and Broi jk (j = {1,
2 …, M}) have The public areas.

If JF 6¼ ; show that the Aroiik is the k-th image moving region, but the small
vibration region cannot effectively extract by Gaussian mixture model algorithm, so we
used frame difference method to repair region as formula (6):

Croiik ¼ AroiikjBroijf1k jBroijf2k . . .jBroijfk jf 2 JF; JF 6¼ ;
Aroiik JF ¼ ;

�
ð6Þ
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If JF ¼ ; show that the Aroiik is the fore k images moving region, but not sure Croiik
is due to annihilation in Ak when the target motion after stay a long time. Or exist in Bk.
So we use the canny operator to extract Agrayk and Bgrayk boundary, then contrast the
boundary with Croiik . If Agrayk is similar Croiik that show Croiik in Ak, we need to
extract the target. If Bgrayk is similar Croiik that show Croiik in Bk, we need to update
the background. The different brightness between Ak and Bk by Croiik region, that we
cannot fusion images simply.

2.3 Background Reconstruction

The computer has been accurately extracting the moving object and this section shows
the background reconstruction. Liu et al. [12] proposed hierarchical ensemble of
background models to reconstruction background. Kim et al. [13] structured codebook
background mode to fit the distribution characteristics by RGB background pixels.
Aqel et al. [14] used local adaptive threshold selection method by entropy and gen-
eralized Gaussian distribution which can effectively overcome the noises. But those
methods just analyze on image perspective, for the target stays a long time and the
reconstruction background has ghost regions.

According to the gestalt theory, we analyze cognitive background step by step. We
determine the moving target firstly, and then pay attention to the background. Finally
we fill the background by the target move. The moving targets are not changed into
background and artifacts when they stay a long time or other target across the region.
When Croiik in Bk, we need to be updated the Bk by Croiik region. Because the
brightness are different between Ak and Bk, If swaps the Ak and Bk by Croiik region. The
result image would be uncoordinated. We are defined as

Tkh ¼

P
x;y

Akhðx; yÞ � Bkhðx; yÞð Þ

Nk
; ðx; yÞ 2 SCroiik � Croiik; h 2 H ð7Þ

Where H are channels, the RGB image H = {1, 2, 3}. The Gray image H = {1}.
Akh and Bkh is the h channel value of Ak and Bk. Nk is the pixel numbers, Sroiik is the
minimum rectangle region of Croiik. We realize the background update process and
achieve the result as formula (8)

Bkhðx; yÞ ¼ Akhðx; yÞ � Tkh ; ðx; yÞ 2 Croiik; h 2 H ð8Þ

When the background updates, which shows Croiik region has target stay in before
k frame. So we need extract moving targets effectively by back movement region. We
re-segment the original images Al(l < k) by the SCroiik region. Extracting the moving
region and recasting background image by formula (5), ðx; yÞ 2 Croiik � Croiil

� �
.
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3 Experimental Results and Analysis

Experiment is used 10 group video database and 5 group video monitoring data. They
have three type video data. Type 1: At the beginning, there are no target motions, then
the target moves. Type 2: At the beginning, the target moves, then the target stay there
for a long time. Type 3: At the beginning, the target is static, then the object moves.

3.1 Detection Performance

Type 1 as Fig. 3(a). We can get the moving targets region roughly by Gaussian mixture
model, however the model cannot extract the local little change region as Fig. 3(b)
effectively. Then we get the moving targets result as Fig. 3(d) and background result as
Fig. 3(e) which integration frame difference method result Fig. 3(c) and (b).

Type 2 as Fig. 4(a). The Gaussian mixture model extract motion regions will be
gradually transformed into background as Fig. 4(b) when the targets stay a long time.
Frame difference method can restore the motion regions as Fig. 4(c). We gain the
moving regions result as Fig. 4(d) by integration Fig. 4(b) and (c).

The moving regions will be annihilated in the background as Fig. 4(e) and (k) as
time goes. Frame difference method can restore the motion regions as Fig. 4(f). But it is
not sure the regions from the targets will stay a long time or the region stay in the
background image at the beginning. We get the moving regions result as Fig. 4(g) by

••• 1A

••• 15A

50A

•••

(b)

(c) (e)

(d)

(a)

Fig. 3. The moving targets detect result by type 1 (a) input video. (b) {Aroi50}10, (c) {Broi50}1,
(d) {Croi50}1, (e) B50
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integration Fig. 4(e) and (f). We calculate the boundary similarity between Fig. 4(i)
and (h), and apply the same operation between Fig. 4(j) and (h). Which shows that the
moving region from A1000, the background will not be updated. The result background
image is Fig. 4(l).

Type 3 as Fig. 5(a). It produces trailing phenomenon as Fig. 5(b), because the
Gaussian mixture model has a gradual process by foreground and background con-
version. We get the moving regions result as Fig. 5(d) by integration Fig. 5(b) and (c).
Figure 5(d) shows that the target has trailing phenomenon seriously. Figure 5(f) is the
result of Gaussian mixture model, and Fig. 5(g) is the result of frame difference method
when the target moves. Figure 5(h) is the moving regions result by integration Fig. 5
(g) and (h). We compare Fig. 5(f) and (g), which can suggest the Fig. 5(g) have a
separate region. But it cannot be sure the regions from the targets stay a long time or the
region stay in the background image at the beginning. We calculate the boundary
similarity between Fig. 5(i) and (j), and apply the same operation between Fig. 5(k)
and (j), which shows that the moving region from B100, the background will be
updated. However, the brightness difference between A100 and B100. If they fusion
directly, which can non-uniform brightness as Fig. 5(m). Figure 5(n) is the background
image by our algorithm.

Experiments show that the algorithm can extract moving object and be recon-
structed in complex environment as the moving object stays a long time or images have
small vibration.

••• 1A

••• 100A

1000A

•••

(b) (e) (h) (k)

(c) (f) (i)

(a) (d) (g) (j) (l)

Fig. 4. The moving targets detect result by type 2 (a) input video. (b) {Aroi100}12,
(c) {Broi100}1, (d) {Croi100}1, (e) {Aroi1000}0, (f) {Broi1000}1, (g) {Croi1000}1, (h) Croi11000
boundary image, (i) A1000 boundary image, (j) B1000 boundary image, (k) The background
reconstruction by Gaussian mixture model, (l) the update background B1000
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3.2 Comparisons with Other Methods

We compare ours and main stream algorithm by segmentation accuracy and processing
time. Using the area overlap measure (AOM) as evaluation the segmentation results. It
is defined as:

AOM(A;BÞ ¼ S(A\BÞ
S(A[BÞ � 100% ð9Þ

Where A is moving region of artificial markers, B is the motion region by algo-
rithm, S(�) is pixel numbers, AOM is the greater and the better. The test results are
shown in Table 1.

It is shown that the low rank algorithm based on pixel can extract moving targets,
but it needs to calculate all pixels, so the average processing is long when there are no
target motions at the beginning, then the target moves. And based on the frame
algorithms, we just consider the overall information, processing time is fast, but the
accuracy is not that high. We propose the change target extraction and the background
reconstruction algorithm based on gestalt principle which the average processing time
is shorter than [7], and AOM is lower than [4], but it can be used widely and robustly.

(b) (f)

(c) (g)

(d) (h)

(a) (e) (i)

••• 1A

••• 100A

150A

•••

( )1B

(j)

(k) (m)

(l) (n)

Fig. 5. The moving targets detect result by type 3 (a) input video. (b) {Aroi100}13,
(c) {Broi100}2, (d) {Croi100}2, (e) 100th frame back movement region, (f) {Aroi150}25,
(g) {Broi150}3, (h) {Croi150}3, (i) 150th frame back movement region, (j) Croi3150 boundary
image, (k) A150 boundary image, (l) B150 boundary image, (m) The fusion image directly, (n) the
update background B1000
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4 Conclusions

In this paper, based on the Gestalt virtual principle we have proposed a moving object
extraction method and further present a background reconstruction algorithm in order
to solve the difficult problem of moving object’s prolonged detention, minor amplitude
motion under complex conditions in video sequences. Meanwhile to solve the problem
of being not able to extract moving objects and achieve background reconstruction
defiantly. Featuring high precision, robust logic and analysis this algorithm can play a
significant role in future follow-up video target tracking and recognition study and lay a
solid foundation thereby.
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Abstract. In this paper we propose a novel L0 penalty function of both
gradient and image itself as the regular term in the total energy function.
This regular term is based on sparse prior and solved as part of math-
ematical optimization problem. Our method not only reserves structure
information of the image but also avoids over smooth in the final restora-
tion. We illustrate the applicability and validity of our method through
experiments on both synthetic and natural blurry images. Despite we
don’t have numerous iterations, the convergence rate and result quality
outperform the most state-of-the-art methods.

Keywords: Deblurring · Deconvolution · Sparse · Regular term · Norm

1 Introduction

Blind deblurring has been extensively studied in recent years and many signifi-
cant accomplishments also have been achieved. Due to its non-convex and highly
ill-posed property, many natural image priors have made a great contribution to
address this kind of problem.

Natural priors focus on the essential features of the sharp image in order
to obtain the best model. Cho et al. [1] proposed a computationaly efficient
Gaussian prior on the latent image to get the gradient maps for kernel estimation.
Shan et al. [2] developed several models together with a new local smoothness
prior to approximate the heavy-tailed distribution. Fergus et al. [3] introduced a
zero-mean mixture-of-Gaussians to model the gradient magnitudes and adopted
a Bayesian approach to find the blur kernel. Nevertheless, none of these models
was able to simulate structure information of the sharp image commendably,
hence some artifacts appeared in the restored image.

Sparse prior has been emphasized its importance to sharp image and kernel,
which hypothesizes that the structure of a sharp image and its corresponding ker-
nel are often sparse. Sparse is usually interpreted as a type of norm, especially L0

norm, to serve as regular term during the deblurring process. For instance, Krish-
nan et al. [4] used L1/L2 as the regular term, where the L2 norm in the denom-
inator could be regarded as normalizing the L1 norm. But it supressed some
details of the gradient which could cause bad effects in the result. Xu et al. [5]
c© Springer Nature Singapore Pte Ltd. 2016
Z. Zhang and K. Huang (Eds.): IVS 2016, CCIS 664, pp. 30–36, 2016.
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proposed a piece-wise function to approximate L0 norm, the obtained image was
usually over sparse due to a small threshold. Perrone and Favaro [6] employed
Total Variation (similar as L1 norm) in the optimize process and changed the
kernel sparsity into constraints of the total energy function. Yet it had over 1000
iterations with a general result. Likewise, Zuo et al. [7] used a p norm of image
gradient, which did not have a better approximation but time consuming.

Based on above discussion and analysis, the main work and contribution
of this paper are summarized as follows. (1) We present a novel L0 norm of
both gradient and image itself as the regular term in the optimization formula.
The objective of using L0 norm here is to avoid over smooth and guarantee the
sparsity of the result. (2) For the purpose of improving coefficients of the regular
terms, we test a range of decimals in several images and select each one with the
best performance as our final parameters in the energy function.

We combine a pyramid model with the half-quadratic splitting method [8]
to ensure our algorithm converges to a solid solution. Compare with the state-
of-the-art methods, we are not only have more similar results under standard
quantitative evaluation but also save lots of running time.

2 Algorithm

Generally, image deblurring concentrates on inversing the blurring process and
transfers it to a mathematical optimization. The formula we used is formed as,

min
x,k

‖x ⊗ k − y‖2 + λP (x) + γQ(k), (1)

where x and y denote sharp and observed image, respectively. k is the convolved
kernel. The first term is data fidelity to reduce the difference between the esti-
mated image after convolving with the kernel and the blurry one. To avoid over
fitting, we add two more regular terms P (x) and Q(k).

2.1 New Regular Term

Regular term represented by L0 norm has been the best reflection of sparse
property so far. Due to L0 norm is highly non-convex, common approach usually
creates a function to approximate L0 norm. Our main work is to build a new loss
function which considers both gradient and sharp image. It is formed as follows,

P (x) = θ ‖x‖2 + ϕ(∇x), (2)

where we use L2 norm of sharp image to approximate L0 norm, ϕ(∇x) also
could be seemed as an approximation of L0 norm with regard to the gradient.
Compare with [5], our approximation maintains some very useful gradients who
have small magnitudes and can easily be ignored. The definition of ϕ(∇x) is:

ϕ(∇x) =

{
η

(
(∇hx)2 + (∇vx)2

)
, if (∇hx)2 + (∇vx)2 ≤ 1

η

1, otherwise
(3)
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Fig. 1. Plots of our regular term and a few contrasts

where (∇hx,∇vx) separately denote the horizontal and vertical gradients. The
main advantage of contrasting to [9] is that we use L2 instead of L0 norm on
sharp image to avoid over fitting in the results. We show comparison with other
sparse-pursuit functions [2,4] in Fig. 1.

The common form of sparse property of blur kernel is: Q(x) = ‖k‖2, which
is subject to k ≥ 0 and

∑
k = 1.

3 Optimization

Our major computation is taken on solving Eq. (1), to do this, a half-quadratic
splitting method [8] has been used to divide it into two sub problems Eqs. (4)
and (5). We alternately update each one during a few iterations.

min
x

‖x ⊗ k − y‖2 + λ(θ ‖x‖2 + ϕ(∇x)), (4)

min
x

‖x ⊗ k − y‖2 + γ ‖k‖2 . (5)

3.1 Compute x

Consider ϕ(∇x) is a piece-wise function which would make Eq. (4) highly
non-convex. We introduce an auxiliary vector (h, v) which is corresponding to
(∇hx,∇vx), then we rewrite Eq. (3) as

ϕ(∇x) = η((∇hx − h)2 + (∇vx − v)2) + M(|h|0 + |v|0), (6)

where M is a binary mask function satisfies M(|h|0+|v|0) = 0 only if h = 0, v = 0
and 1 otherwise. η has to be large enough to make sure auxiliary vector work.

(h, v) =

{
(0, 0), if (∇hx)2 + (∇vx)2 ≤ 1

η

(∇hx,∇vx), otherwise
(7)
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Similar to [5], Eq. (7) serves as the solution of Eq. (6), which means it also satisfies
minimizing Eq. (3).

After fixing (h, v), we can update x by substitute Eq. (6) into Eq. (4), then
derive it in the frequency domain and yield its optimum solution,

x = F−1

(
F(k) × F(y) + λη(F(∇h) × F(h) + F(∇v) × F(v))

F(k) × F(k) + λθ + λη(F(∇h) × F(∇h) + F(∇v) × F(∇v))

)

,

(8)
where F(·) is the FFT operator and F−1(·) denotes the inverse FFT. F(·) means
the complex conjugate. Both multiplication and division operate on element wise.

3.2 Compute k

Directly optimize Eq. (5) has been proved that it will lead to an inaccurate
solution [1]. We use ∇∗x and ∇∗y instead of x and y, then define S(k) as

S(k) = ‖∇hx ⊗ k − ∇hy‖2 + ‖∇hx ⊗ k − ∇hy‖2 + γ ‖k‖2 . (9)

Here a conjugate gradient method is employed to minimize S(k).
We show the comparison of our estimated kernel with a few others and the

kernel similarity [10] from dataset [11] during each iterations in Fig. 2.

Algorithm 1. Overview of Deblurring
Input: Observed image y
Output: Sharp image x and blur kernel k
1: for i = 1 : 5 do
2: update (h, v) using Eq. (7).
3: update x using Eq. (8).
4: update k using Eq. (9).
5: end for
6: non-blind deconvolution.

(a) [1] (b) [12] (c) [4]

(d) [13] (e) [9] (f) Our

(1) Kernel comparison
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Fig. 2. Convergence of the proposed algorithm
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3.3 Non-blind Deconvolution

The intermediate sharp image x from Sect. 3.1 has not yet qualified as final
output. After fixing kernel in Sect. 3.2, we use k as input of a non-blind decon-
volution method to estimate the final sharp image. Here we adopt Krishnan’s
method [14] which is based on Hyper-Laplacian prior to gain the first sharp
image. Then similar as [9], we use Eq. (8) to solve a second image, together com-
bine with a bilateral filtering mask to obtain the final version. Experiments show
that such method would suppress the artifacts in the estimated images.

4 Experiments

In this section, we first explain how we determine the values of coefficient λ, θ, γ.
Take λ as an example, we test our method on several different images in the range
of 3e − 4 to 2e − 2 and leave others intact. After that we count the quantitative
evaluation of each value on each image and select the highest as the final λ. As
for η, we initialize it with λ/2 and increase it during each iteration.
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Fig. 3. PSNR and SSIM quantitative evaluation on [11] and [15]

Afterwords, we employ our method on both synthetic and natural blurry
images with these parameters selected above. Levin et al. [11] develop a dataset
which contains 4 sharp images and each one is convolved with 8 different kernels.
The natural blurry dataset [15] consists of 12 kernels and 48 blurry images where
each one of them corresponds to 199 sharp images. A few other methods like
Xu and Jia [12], Krishnan et al. [4], Zhong et al. [13] and Pan et al. [9] are
also employed as contrasts. We compute the PSNR and SSIM on all restored
images, the results show that our method has the largest proportion of the best
performances. Partial results of PSNR and SSIM are shown in Fig. 3.
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(a) Blurry image (b) Xu et al. [12] (c) Krishnan et al. [4]

(d) Zhong et al. [13] (e) Pan et al. [9] (f) Our result

Fig. 4. Examples of natural images with kernel size of 41× 41 from dataset [14]

5 Discussion

Many deblurring methods are based on the sparse prior, that is using a formula
similar to Eq. (1) to transform deblurring to a mathematical optimization prob-
lem. The regular term has multiple modalities and is the main difference among
these methods, but all of them could be seemed as some kind of approximations
of L0 norm. The proposed method is not only constrain the gradient of sharp
image by using L0 norm, but also add constraints on sharp image itself. Com-
pared with existing algorithms, we have decreased the smoothing constraints on
the final estimated image and meantime increased the convergence speed.
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Abstract. Visual surveillance systems have become one of the largest
data sources of Big Visual Data in real world. However, existing systems
for video analysis still lack the ability to handle the problems of scal-
ability, expansibility and error-prone, though great advances have been
achieved in a number of visual recognition tasks and surveillance applica-
tions, e.g., pedestrian/vehicle detection, people/vehicle counting. More-
over, few algorithms explore the specific values/characteristics in large-
scale surveillance videos. To address these problems in large-scale video
analysis, we develop a scalable video parsing and evaluation platform
through combining some advanced techniques for Big Data processing,
including Spark Streaming, Kafka and Hadoop Distributed Filesystem
(HDFS). Also, a Web User Interface is designed in the system, to collect
users’ degrees of satisfaction on the recognition tasks so as to evaluate
the performance of the whole system. Furthermore, the highly extensible
platform running on the long-term surveillance videos makes it possible
to develop more intelligent incremental algorithms to enhance the per-
formance of various visual recognition tasks.

1 Introduction

Intelligent visual surveillance (IVS) has long been one of the most important
applications of computer vision technologies. Intelligent surveillance video analy-
sis is a demand-increasing research topic along with the raising of consciousness
of public security and explosive increase of deployment of surveillance devices.
In the past decades, most researchers aimed to solve separate visual tasks, e.g.,
background modeling [1–3], object detection [4–6], motion tracking [7,8], per-
son re-identification [9,10] and attribute recognition [11,12], which is because
early researchers [13] considered the complexity of whole surveillance task, thus
divided the whole system into several separate steps with a divide-and-conquer
strategy. And one ordinary IVS system is simple a fixed execution flow of these
sub-tasks. However, the era of Big Data raises new challenges for IVS systems.
First, to explore values in large-scale visual surveillance video, it is urged to solve
the problem of scalability and error-prone of large-scale video data processing.
Second, to discover correlations in various visual information, it need solve the
problem of expansibility and flexibility of deploying new visual analysis mod-
ules. Third, the system could be improved adaptively and incrementally in its
c© Springer Nature Singapore Pte Ltd. 2016
Z. Zhang and K. Huang (Eds.): IVS 2016, CCIS 664, pp. 37–43, 2016.
DOI: 10.1007/978-981-10-3476-3 5
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running lifetime, thus the users’s feedbacks should be collected to optimize the
models for different visual tasks. Unfortunately, in previous work, few efforts
were devoted to these problems.

In this work, to address these problems, we present a novel Large-scale Video
Parsing and Evaluation Platform (LaS-VPE Platform) based on some advanced
techniques for Big Data processing, including Spark Streaming, Kafka and HDFS
[14]. This platform can run easily and flexibly on distributed clusters, making full
use of large-scale computation resources. High-level abstraction of vision tasks
and usage of Spark Streaming and Kafka make it possible to add or replace
any algorithm modules at any time and robust to faults, thus easy to maintain
and computation-resources-saving. The high flexibility of the system also enables
users to specify their own execution plan. Also the well-designed platform and
Web UI make it easy for both developers to extend the system and users to
operate on the system.

The main contributions of this paper are listed below:

1. We propose a detailed and integrated solution for surveillance scene parsing
and performance evaluation with large-scale video data.

2. We solve some technical issues in adopting and integrating Spark Streaming
and Kafka in large-scale video processing.

3. The implementation of this platform is an open-source project, and we will
share it in GitHub, so anyone can make use of it while referring to this paper.

2 Relating Works

There has been researches on IVS systems which show some common interests
with our work. The VisFlow [15] system also combines machine vision with big
data analysis, featuring high accuracy and efficiency. It can compute execution
plans for different vision queries, by building a relational dataflow system. Com-
pared to this work, the LaS-VPE platform does not provide optimization for
execution plan, but instead enables users to easily create their own plans with
Web UI. Parameters and execution order can be specified in any valid form on
every query, making it highly customizable. The optimization work is left to
users or done by future extern modules.

Qi et al. proposed the Visual Turing Test system [16] for deep understanding
in long-term and multi-camera captured videos. It presents a well-designed sys-
tem for video-evaluation utilizing scene-centered representation and story-line
based queries. However, this work does not focus on system efficiency. Our sys-
tem emphasizes less on visual algorithm evaluation concepts, but spend more
effort on improving the feasibility of evaluation on massive video data by dis-
tributed computing techniques and flexible system design.

3 Platform Design

In this section, we describe the design of our LaS-VPE platform. The platform is
powered by Spark Streaming on YARN and Kafka. For better understanding of
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the mechanism of this platform, readers are recommended to first read through
some introductions and have a rough understanding of mechanisms and terms
of Spark Streaming and Kafka.

3.1 Platform Framework

The LaS-VPE platform is divided into several modules. Each module is responsi-
ble for one kind of system affairs, like meta-data saving, extern message handling,
and execution of different versions of different visual recognition algorithms.
Each module runs permanently, unless the administrator manually terminates
it. Communication among different modules is powered by Kafka, which is a
high-throughput, distributed, publish-subscribe messaging system.

The LaS-VPE platform also possesses a Web UI. Users can create a certain
task in it, and command the tasks to flow through the modules in a speci-
fied graph. A task thus has specified input and execution route, and can end
with several outputs, including saving meta-data to databases or hard disks and
responding user queries in the Web UI.

3.2 Task Flow and Communication

To address the problem in traditional IVS systems that only a few preset exe-
cution plans are available and to enhance the expansibility and flexibility of the
system, we enable our modules to be executed in user-defined plans. Each exe-
cution corresponding to a vision query is called a task. Each task can specify the
order of visual recognition sub-modules in a form of flow graph of modules. For
simplicity, a flow graph must be directed acyclic. One module may exist more
than once in a flow graph, if it needs to be executed more than once, enabling
finite execution circles to be dissembled and operated in one task.

Tasks pass among modules as a flow of Kafka messages. A Kafka message
contains a key field and a value field. The key field records a Universal Unique
Identifier (UUID) assigned to each task, which is generated along with the task
generation in the Web UI. The value field records a serialized byte array of a spe-
cial class TaskData, which is illustrated in Fig. 1. It contains three fields: result
data from the sender module, identifier of next module to execute (NME) and
the flow graph structure of the task. A flow graph structure is then described by
two parts: nodes and links, where each node specifies a module to be executed as
well as some parameters and extra data for that single execution. Each directed
link indicates that after the execution of the module specified by the head node,
its results should be sent to the module specified by the tail node, and that
module shall be executed some time afterwards.

Since the graph is a directed acyclic graph, it is able to be topological-sorted.
Each time a module receives a message, the NME corresponds to the module
itself, so the module can find itself in the graph according to this field. If the mod-
ule takes more than one input node and some inputs currently have not arrived
yet, the module cannot be immediately executed, and the current message sent
to this module will be cached temporarily. Multiple pieces of cached messages
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Fig. 1. This picture illustrates how to represent a logical task flow graph in a TaskData
class. The flow graph structure is an adjacency list of the graph. The NME field specified
the next module to execute. In this picture, this module corresponds to the node
numbered 2. The result data field’s content is not considered here. It will be analyzed
by the consuming part of the module.

will be merged and accumulated in the module. When the input requirement is
satisfied, the module starts an execution with the accumulated data.

3.3 Kafka-Based Inter-module Communication

We use Kafka for communication between modules, so as to decouple the system
and enhance the flexibility and extensibility of the system. By doing so, modules
need not be written and compiled together and thus become isolated. When one
module dies due to some exception or deliberate termination, it does not affect
the others, and the input data to this module will be cached by the Kafka, so
when this module recovers or is replaced by a new version of it, these input data
can be correctly consumed and processed. Also, the destinations of output can
be specified by the task flow graph described above, so it need not modify and
recompile a module if we want it to output to some alternative destinations.

Kafka topics can be divided into groups for different type of messages, such
as topics for pedestrian tracks and topics for pedestrian attributes. However,
topics are not shared among different vision modules. Each module owns one or
more topics corresponding to its input data types. For example, if Module M1
and M2 both take in pedestrian attributes and tracks as input, M1 owns two
topics named M1-Pedestrian-Attribute and M1-Pedestrian-Track respectively,
while M2 owns another two topics named M2-Pedestrian-Attribute and M2-
Pedestrian-Track respectively. If some modules have produced some attributes
and is commanded to send to both M1 and M2, the Kafka producers inside these
modules need to send the attributes to both M1-Pedestrian-Attribute and M2-
Pedestrian-Attribute message queues. In this way, the task flow graph actually
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does not specifies which module to output to, but instead which topic to output
to, since a topic belongs to exactly one module.

3.4 Spark Streaming and YARN

For large-scale video data processing, clusters are preferred for high through-out
computation. We choose Spark Streaming to enable distributed computation
since it guarantees realtime processing, and use YARN to manage the cluster. We
view each module as a Spark Streaming application. Applications are submitted
to YARN by the SparkLauncher class programmatically, then run permanently.
Multiple applications may run simultaneously and independently on YARN. It
is easy to terminate applications using the Web UI of YARN. This means we
can choose only part of the modules in the platform to run, and terminate any
of them whenever we want, thus saving computation resources.

In the LaS-VPE platform, a streaming context usually consists of three
stages: Kafka message receiving stage, message re-organizing stage (optional) and
message processing stage. The Kafka message receiving stage receive messages
from Kafka then transfers them into Discretized Streams (DStreams), which
abstractly represents a continuous stream of data. In each call of the final mes-
sage processing stage, a certain extern algorithm, such as a tracking algorithm,
is run simultaneously on multiple workers to process the data delivered to them.
The results are then output in various forms, like using a KafkaProducer class
to send it to Kafka, or using a FileSystem class to send it to HDFS, etc.

3.5 Web UI Design and Evaluation

The LaS-VPE platform provides a Web UI for generating tasks, monitoring the
applications in the platform, and querying the visual recognition results. The
task generating UI allows users to easily create a flow graph of jobs within each
task. The UI server is responsible to transform the graph into the data form
mentioned above and send it to the processing modules, then listen to execution
results.

The web page for querying results does not directly communicate with the
processing modules. Since we force each processing module to save their meta-
data and results on HDFS or databases, the query-solving server seeks results
at these locations. This makes results endurable and easy to access outside the
processing cluster. Also, a feedback field is provided in the result displaying
pages, varying according to the type of results, to allow users to simply mark
their satisfaction of the results or provide detailed revision on the results they
see. For example, in Re-ID applications, results are displayed in a form of ranked
candidate photos that are predicted to be the most similar to the target, so users
can give feedback by simply selecting the ground-truth ones, and satisfaction
as well as supervision information can be both inferred. These feedbacks are
stored into a database and can be used for future semi-supervised or supervised
incremental training of all the algorithms used for the tasks.
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Fig. 2. This picture shows a sample framework. Modules are submitted to YARN,
and task flows start from extern web UI. Results are saved in the meta-data saving
module.

Combining these features, one can specify various combinations of algorithms
and configurations of each vision algorithm modules, then evaluate them on any
database representing a particular application scene, so it is easy and low-costing
to find out the best settings for any new applications scenes, thus exploiting the
ability of video parsing algorithms in maximum extent. The whole system is
illustrated in Fig. 2.

4 Conclusions

In this paper, we proposed a novel Video Parsing and Evaluation Platform to
solve problems existing in ordinary video surveillance systems like low flexibil-
ity and extensibility and lack of user feedback collecting functions. The VPE-
Platform can run robustly on distributed clusters, support highly customized job
flow and easy maintaining, and collect user feedback for incremental training.
Some experiments will be added in the future to show the design validity and
high performance of the platform.
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Abstract. This paper focuses on the use of spherical cameras for
autonomous robot navigation tasks. Previous works of literature mainly
lie in two categories: scene oriented simultaneous localization and map-
ping and robot oriented heading fields lane detection and trajectory
tracking. Those methods face the challenges of either high computation
cost or heavy labelling and calibration requirements. In this paper, we
propose to formulate the spherical image navigation as an image classifi-
cation problem, which significantly simplifies the orientation estimation
and path prediction procedure and accelerates the navigation process.
More specifically, we train an end-to-end convolutional network on our
spherical image dataset with novel orientation categories labels. This
trained network can give precise predictions on potential path directions
with single spherical images. Experimental results on our Spherical-Navi
dataset demonstrate that the proposed approach outperforms the com-
paring methods in realistic applications.

1 Introduction

In the field of autonomous driving, vision-based navigation research has long
been a hot topic. On various platforms, like quadrotors, self-driving cars, and
robotics, multiple types of sensors and cameras have been facilitated to improve
the machine intelligence. In this paper, we propose an alternative approach
of using a convolutional neural network (CNN) for addressing the problem of
autonomous robot navigation with spherical cameras. Details of our device and
framework are shown in Fig. 1.

Accurate position and orientation estimation of a camera is one of the most
important tasks for robotic navigation problems. In most scenarios, simultane-
ously building up the 3D maps of the world while tracking the location and the
orientation of the camera is a common approach for a navigation task. In the
last two decades, simultaneous localization and mapping (SLAM) method and
various derivatives have been dominating this topic. Various systems have been
proposed, for example, PTAM [1] etc. Recently, Caruso et al. [2] successfully
accomplish a SLAM system for direct use of omnidirectional cameras.

All the SLAM based systems have achieved great performance and offer users
a set of candidate solutions for navigation tasks. However, when it comes to
c© Springer Nature Singapore Pte Ltd. 2016
Z. Zhang and K. Huang (Eds.): IVS 2016, CCIS 664, pp. 47–55, 2016.
DOI: 10.1007/978-981-10-3476-3 6
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Fig. 1. A spherical driving robot. For spherical images, the central bottom pixels are the
front heading of a robot and the red arrows points to the potential path. Our motivation
is to generate navigation signals with the severely distorted spherical images. (Color
figure online)

moving platforms, like tablet PCs, quadrotors, and moving robotics as in our
case, limited computational capabilities pushes the SLAM based navigation task
a higher complexity level. Therefore, seeking a low-cost solution is important.

Inspired by the human vision system, another group of methods focus on the
problem of road detection and trajectory planning. An intelligent robot could fol-
low the visual paths via local road segmentation [3] and trajectory prediction [4].
For example, Lu et al. [5] build up a hierarchical vision sensor based method for
robust road detection in challenging road scenes. Chang et al. [6] present a vision-
based navigation and localization system using two biologically-inspired scene
understanding models which are studied from human visual capabilities.

In spite of their simplicity, human vision inspired methods highly rely on local
features for segmentation tasks and usually lose a whole sense of the environment.
What’s more, for spherical images, the calibration and wrapping process further
complicates those solutions.

As early in the 90s, Pomerleau [7] has treated the road following task as
a classification problem. Later on, Hadsell et al. [8] develop a similar system
for navigation in unknown environments. Recently, Giusti et al. [9] define the
camera orientation estimation as a three-class classification problem (Left, Front,
Right) and capture a set of forest trail images with 3 head-mounted cameras,
each pointing to one direction. Given one frame image, their trained model can
tell a robot whether it need to make a left/right turn or keep straight forward.
One drawback here is that the fixed cameras are not flexible for tasks with higher
orientation precision demands. For more turning control signals, more cameras
are needed. This may not be a good solution for complex applications.

Inspired by [7], in this paper, we propose to make navigation predictions by
classifying spherical images into different rotation categories. One characteristic
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of spherical images is that it captures a wide view of 360◦ natural scenes and
thus gives much more potentially useful information than those plane images.
For generating training images of different orientations, we could just make a
rotation of the original front viewed images and do not need to recapture the
scene. The contributions of our paper are as following:

– We formulate this spherical camera navigation task as an image classification
problem and design an end-to-end CNN for it. It’s efficient for reality appli-
cations, where we don’t need to do pixel-wise labelling of roads or build a
complex 3D world with unreasonable high computation and memory costs.

– We build one spherical navigation dataset and raise a novel labelling strategy,
which enables us to generate various training images for different complexity
and precision applications with a minor change in the labelling process.

2 Navigation Network

Deep convolutional networks have been widely used in many computer vision
tasks, e.g. image recognition [10], image segmentation [11], object detection [12]
etc. In this paper, we train a convolutional network to estimate accurate robot
heading pose orientation in the navigation task using raw spherical images.
Details on the problem formulation and the network design are in the following.

2.1 Navigation via Classification Formulation

Accurate position and orientation estimation of a robot is a basic step for build-
ing navigation systems. Other than doing high computation cost processes like
SLAM or lane segmentation, a novel approach of formulating navigation as an
image classification problem is described in details in this subsection.

Figure 1 illustrates a general view of our capturing platform. An upward-
looking spherical camera is fixed on top of a wheeled robot, which can capture
images with detailed information of its 360◦ surroundings. Considering when the
robot is wandering around within a campus, our problem is to tell the robot to
turn left/right or keep straight forward with spherical frames in real-time.

Given a set of N spherical images X ∈ R
D, we want to get the potential

navigation direction y ∈ Y , with a range of [−k,+k], where k equals to 1, 2, 3, . . .
for different complexities. Let y = 0 denote going straight forward, y < 0 for
turning left, and y > 0 for turning right. For learning the model, the goal is
to minimize the global prediction error of: L =

∑N
n=1[1 − δ(ŷn, yn)], in which

ŷn = F (xn) is our prediction for sample (xn, yn), δ(a, b) equals to one if a = b
and zero otherwise. The nonlinear warping model F (x;w, b) will be learned next.

2.2 Network Structure

Inspired by the extraordinary works of Alexnet [10] and its extension Giusti
et al. [9], we adopt a similar CNN for the spherical image classification problem.
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Table 1. The network structure and layer setups of CNN used in our experiments.

Features [9] Model 1 Model 2

0 3 × 101 × 101 Inputs Inputs Inputs

1 32 × 98 × 98 Conv Conv Conv

2 32 × 49 × 49 Pool Pool Pool

3 - Tanh P/ReLU BN+PReLU

4 32 × 46 × 46 Conv Conv Conv

5 32 × 23 × 23 Pool Pool Pool

6 - Tanh P/ReLU BN+PReLU

7 32 × 20 × 20 Conv Conv Conv

8 32 × 10 × 10 Pool Pool Pool

9 - Tanh P/ReLU BN+PReLU

10 32 × 7 × 7 Conv Conv Conv

11 32 × 3 × 3 Pool Pool Pool

12 - Tanh P/ReLU BN+PReLU

13 288–200 FC1 FC1 FC1

14 - Tanh P/ReLU PReLU

15 200–K FC2 FC2 FC2

A convolutional network conventionally consists of several successive pairs
of convolutional layers (Conv), pooling layers (Pool) and fully connected layers
(FC). Our network consists of four Conv layers and two FC layers. Each Conv
layer is followed by a max-pooling layer to enhance the local contrast.

Table 1 presents the detailed layer-wise network setups. Since Giusti et al. [9]
choose to use the scaled hyperbolic tangent activation function (Tanh) and do
not give much analysis on the non-linear warping functions, we first put some
effort on that. We find out that both Rectified Linear Units (ReLU) [13] and
Parametric Rectified Linear Units (PReLU) [14] outperform Tanh units. Here
we choose the better one (PReLU in model 1, Table 1) for later experiments.

Optimizing a deep neural network may not be easy because of the gradient
vanishing/exploding trouble, and it is highly likely that our model may get stuck
in a saddle point and could not well tune the lower level features. This is espe-
cially serious for spherical images, as most of them are similar in appearance and
the gradient may not be of much different. We here adopt the Batch Normaliza-
tion (BN) [15] method in model 2, Table 1, which forces the network activations
to vary across examples. In this way, we could not only accelerate the training
of networks but also achieve a better classification performance.

During training, the networks are optimized with the adagrad strategy, which
relieves us from trying learning rates and momentum hyper-parameters back and
forth. Further details and analysis on the performance of the network configu-
rations are given in the experiment section.
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3 Spherical-Navi Dataset

To train a model that could accurately classify images, a dataset with balanced
class distribution is required. Since a spherical image has the characteristic that
the orientation change of camera viewing only results in a rotation of the spheri-
cal images, we could generate simulation images with various robot orientations
from one single image. In this way, the drawback of [9] being not flexible is not
a serious problem anymore.

Data Capturing. In total, ten video sequences are captured using a spherical
camera when the robot is wandering around within a campus. Each video is
captured at 60 frames per second with a high resolution of 4608 × 3456 pixels.
To ensure that neural networks actually model the whole dataset well instead of
just memorizing the scene, we carefully design the navigation path so that there
are fewer overlaps among those video clips.

Data Labelling. For a navigation task with K turning control signals, we
actually can generate any orientation posed image by a specific rotation of the
original one. For stability, when generating images for different classes, a larger
field is given to front views. That’s because, in this way, the robot has a higher
probability of keeping on going straight other than frequent left/right turn inter-
ruptions. Figure 2 gives an illustration of how the image of different classes look
like on one same street corner with K = 7. Here, we have those random rotations
of (−30◦,+30◦) as front view (i.e. k = 0) and the rest regions are equally divided
into six orientation fields.

Data Argumentation. Due to the robot moving jitter, some frames may not
contain satisfying high-quality contents. Without loss of generality, in this paper,
video sequences are resampled at two frames per second. In total, there are 8000
images for training and 6000 images for testing.

Before feeding into the network, we also apply some pre-processes on the
spherical images. Since the spherical camera is fixed upward looking, it captures
much unnecessary information to the prediction, such as the central sky pixels
in Fig. 2. In the training procedure, those central pixels are masked out. In our
experiment, we get about 1% improvement on average when the central pixels are
masked out. All images are then normalized in the YUV space with zero-mean
and unit variance to reduce the lighting changing effects.

(a) +70◦ (b) +50◦ (c) +30◦ (d) 0◦ (e) 30◦ (f) 50◦ (g) 70◦

Fig. 2. Sample images from 7-class configuration (best viewed with zooming in). The
orientation change of a robot corresponds to a rotational difference of a spherical image.
(Color figure online)
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4 Experimental Results

4.1 Network Setup and Training

Well designed training strategy is essential for good performance. In this paper,
three models (as detailed in Table 1) are analyzed on the Spherical-Navi dataset.
All of them share the common structure with the filter size equals to four.

For initialization, all the weights of neuron connections are initialized using
the strategy in [14] and the biases are set to zero. During training, it would be
wise to set a higher learning rate for models with PReLU activations than those
with ReLU neurons. In our settings, the learning rate equals to 1e-5, 1e-4 for
ReLU and PReLU respectively. And when the training loss first stops decreasing,
all learning rates are divided by a scalar of ten. For better generalization, we use
a mini-batch size of 10 and make a shuffle of all training images on every epoch.

The proposed algorithm is developed with the Torch7 package [16], which
makes many efforts on improving the performance and efficacy of benchmark
methods. The training procedure for all models listed in Table 1 can be finished
within three days using an Intel Core-i7 3.4 GHz PC, and the CUDA version can
be much shorter to less than 20 h with a Nvidia Titan X GPU. When testing, it
takes 10ms for the onboard Nvidia Jetson TK1 to classify one image.

4.2 Quantitative Results and Discussion

Firstly, for a general view of the accuracy, Table 2 lists out the performance of
all those models with the class number K varies. It demonstrates that we could
use our approach in practice with a high confidence of larger than 86%.

As demonstrated in Table 2, among all those cases, our model 2 with BN
performs best. Further, as the number of directions increase, all those methods’
precision drops slightly. That is reasonable because when we have more classes,
the chance of overlapping increases and then makes this problem more compli-
cated. Besides, since the videos we captured is not guaranteed to be perfectly
straightforward viewing, there might be some miss labelled images. This, in turn,
can also affect the final precision.

Then, Fig. 4 gives a detailed classification result when K = 7. Since images
of different classes are similar to each other in contents and varying with a
slight difference of rotational degrees, neighbouring classes are more likely to be
misclassified. That’s why we have a higher value near the diagonal positions in

Table 2. Average classification results on our SphericalNavi dataset.

[9] Our model 1 Our model 2

3 classes 91.14% 92.64% 94.30%

5 classes 83.01% 84.82% 93.07%

7 classes 73.12% 72.36% 86.41%
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(a) FC1 Input (b) FC1 Output & FC2 Input (c) FC2 Output

Fig. 3. The feature responses of testing samples from different layers in model 2 (7-
class case, best viewed in color). After the mapping of layer FC1(a2b) and FC2(b2c),
samples are in a more discriminative subspace.

Fig. 4. The detailed classification accuracies of all the classes in our 7-direction case.
The higher the diagonal values, the better classification performance.

the confusion matrix. It should also be noted that, when the robot is walking
on a straight road, front-view images and rear-view images may be difficult
to distinguish from each other. The same problem applies to left/right case.
Consequently, there may be some samples that look like horizontally or vertically
flipped. That’s why we have a slightly high value in the upright corner.

Lastly, deep learning methods have made extraordinary success in many tasks
mainly benefit from its great capability of mapping high dimensional data into
discriminative feature spaces. Figure 3 gives an illustration of how features are
mapped layer after layer to a compact subspace. Corresponding feature outputs
of 8000 sample images from the last convolutional layer (Fig. 3(a)) and the fully
connected layers (Fig. 3(b) and (c)) are shown together. As the dimension of
features decreases from 288 to 7, those 8000 samples are getting warped into more
compact groups and thus much easier for classifiers to make further predictions.

5 Conclusions

In this paper, we formulate the spherical camera based autonomous robot navi-
gation task as an image classification problem. We then solve this problem with
a CNN network trained on a set of specifically labeled images. This method
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of using raw panoramic information, without any time-consuming calibration
and warping or global 3D virtual world building processes, works pretty well on
mobile platforms with low computation resources. Benefited from the powerful
capability of convolutional networks in solving classification problems, we have
achieved impressive performance on our campus navigation experiments.
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Abstract. A convention in visual object tracking is to only favor the
candidate with maximum similarity score and take it as the tracking
result, while ignore the rest. However, surrounded samples also provide
valuable information for target locating, and the combination of their
votes can produce more stable results. In this paper, we have proposed
a novel method based on the supervised descent method (SDM). We
search for the target from multiple start positions and locate it with their
votes. For evaluating each predicted descent direction, we have presented
a confidence estimating scheme for SDM. To adapt the tracking model
to appearance variations, we have further presented an incremental cas-
caded support vector regression (ICSVR) algorithm for model updating.
Experimental results on a recent benchmark demonstrate the superior
performance of our tracker against state-of-the-arts.

1 Introduction

As a fundamental subject in computer vision, visual object tracking plays a crit-
ical role in numerous applications including video surveillance, gait recognition,
behavior analysis and robotics. Recent years have witnessed great progress in
visual tracking [1–4]. Despite decades of studies, tracking is still a challenging
task due to large appearance variations such as object deformation, occlusions,
illumination variation and background clutter.

There are two main categories of tracking approaches: generative trackers
and discriminative trackers. Generative approaches [5–8] take visual tracking as
an appearance reconstruction problem. They mainly focus on the reconstruction
model and online templates updating. Representative trackers are IVT [5] and
sparse representation based trackers [6–8]. On the other hand, discriminative
models [9–12] view tracking as a classification or regression task. They learn
classifiers online with automatically labeled samples and locate the target with
the candidate of maximum classification score. Some discriminative trackers are
Struck [13], SCM [9], MEEM [14] and deep learning based methods [15–17].
Generally speaking, discriminative models are more robust against background
clutters and thus they usually perform much better than generative ones.

A convention in tracking approaches, generative or discriminative, is to only
favor the candidate with maximum similarity score, and afterwards the rest
samples have no impact on the tracking result. However, surrounded samples also
c© Springer Nature Singapore Pte Ltd. 2016
Z. Zhang and K. Huang (Eds.): IVS 2016, CCIS 664, pp. 56–64, 2016.
DOI: 10.1007/978-981-10-3476-3 7
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provide valuable information for target locating, and the combination of their
estimations can produce more stable results without increasing computational
burden.

In this paper, we have proposed a novel method for visual tracking. Instead
of basing the tracking result on one sample with maximum score, we approach
the target from multiple surrounded candidates in a cascaded way by using
the Supervised Descent Method (SDM) [18], and locate the target by searching
for the most densely voted position. The SDM models the optimization for a
non-linear problem with cascaded linear projections, which has been applied in
various areas including facial landmark detection [18], extrinsic camera calibra-
tion [19] and visual tracking [20]. To provide an evaluation scheme for each pre-
dicted offset, we have presented a confidence estimation model for SDM which is
learned from samples and updated online. To adapt the model to target appear-
ance variations, we have further proposed an Incremental Cascaded Support
Vector Regression (ICSVR) algorithm for model updating.

2 The Proposed Method

This section presents details on the proposed tracking model.

2.1 Cascaded Regression

The observation model in our approach is constructed based on the supervised
descent method (SDM) [18], which learns the projection from features to descent
directions in a cascaded way.

Specifically, for an object located at s ∈ R
d, we draw samples {si}n

i=1 around
s to obtain training data {(Δsi, φi)}n

i=1, where φi ∈ R
p denotes the extracted

feature and Δsi = si − s is the offset. The SDM learns the projections {Rk ∈
R

d×p}C
k=1 in a cascades way by iteratively optimizing the following C problems:

min
Rk

∑

i

‖Δsk
i − Rkφk

i ‖22 + λ‖Rk‖22, k = 1, · · · , C, (1)

where k denotes the cascade index and s1i = si, φ1
i = φi, Δsk

i = sk
i −s, λ is a reg-

ularization parameter. With learned matrices {Rk}C
k=1, the iterative regression

from a start state s1i to the estimated one ŝi = sC+1
i is formulated as:

sk+1
i = sk

i + Rkφk
i , k = 1, · · · , C. (2)

In our method, we use the support vector regression (SVR) algorithm for
learning the projection matrices {Rk}C

k=1 since it is proven experimentally to be
more robust against sample noise. Let rkj denotes the jth row of Rk, and sk

ij

denotes the jth entry of sk
i , the cascaded SVR is formulated as:
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min
rkj ,ξki,ξ∗

ki

1
2
‖rkj‖22 + η1

n∑

i=1

(ξki + ξ∗
ki),

s.t. rkj · φki − Δsk
ij ≤ ε1 + ξki,

Δsk
ij − rkj · φki ≤ ε1 + ξ∗

ki,

ξki, ξ∗
ki ≥ 0

i = 1, · · · , n, k = 1, · · · , C (3)

where η1 is a regularization factor, ξki, ξ∗
ki are slack variables and ε1 is a preset

margin which is fixed to ε1 = 5 empirically in our experiments.

2.2 Confidence Evaluation

Despite the effectiveness of SDM, its main drawback is the lack of a mechanism
for indicating how reliable an offset prediction is. In this section, we present a
confidence evaluation scheme for SDM.

In training stage, if one regress iteration pulls a sample closer to the
groundtruth, we say that the sample is more credible and vice versa. Based on the
idea, we propose to learn an extra set of projection matrices {Qk ∈ R1×p}C

k=1

for confidence evaluation. We take the ratio of overlap rates before and after
regression θk

i = (ok+1
i )2/ok

i (where ok
i denotes the overlap between sk

i and s) as
the label to train {Qk}C

k=1:

min
Qk,ξki,ξ∗

ki

1
2
‖Qk‖22 + η2

n∑

i=1

(ξki + ξ∗
ki),

s.t. Qk · φki − θk
i ≤ ε2 + ξki

θk
i − Qk · φki ≤ ε2 + ξ∗

ki

ξki, ξ∗
ki ≥ 0,

i = 1, · · · , n, k = 1, · · · , C (4)

When testing, the reliability ci of each sample is computed as:

ci =
C∏

k=1

θk
i , k = 1, · · · , C. (5)

2.3 Target Locating

When locating target in a new frame, we sample around the last estimated
position to obtain m candidates {si, φi}m

i=1. With the learned cascaded model,
we iteratively pull each sample si to the target location:

sk+1
i = sk

i + Rkφi, k = 1, · · · , C. (6)

After C iterations, we obtain all the estimated states ŝi = sC+1
i . Intuitively,

the most densely voted position is more likely to be the target location. In our
method, we use the dominant set [21] algorithm for locating the voting center.
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The dominant set algorithm computes sample weights wi by optimizing:

max
w

wTAw,

s.t. w ∈ Λ, (7)

where Λ = {w ∈ R
m : w > 0 and eTw = 1}, e ∈ R

m is a vector of all 1s, A ∈
R

m×m is an affinity matrix with each entry Aij = exp (‖ŝi−ŝj‖2
2

2σ2
A

) representing

the similarity between sC+1
i and sC+1

j , σA is a scaling factor which is set to
the median value of all entries in A. Finally, the estimated target location is
obtained by:

ŝ =
∑

i

wiŝi. (8)

Taking sample confidences ci into consideration, we slightly modify the affin-
ity matrix A as:

A∗
ij = ci · cj · Aij . (9)

The rest voting process is the same as described before.

3 Updating Scheme

To adapt the model to target appearance variations, we propose an Incremen-
tal Cascaded Support Vector Regression (ICSVR) algorithm for online model
updating.

Note that the Support Vector Regression (SVR) problem with training sam-
ples {xi, yi}l

i=1 and preset margin ε is equivalent to a Support Vector Classifica-
tion (SVC) problem with modified training data {(zi, 1)}l

i=1 and {(zi,−1)}2l
i=l+1,

where zi = (xT
i , yi+ε)T for i = 1, · · · , l and zi = (xT

i , yi−ε)T for i = l+1, · · · , 2l:

min
w,ξ

1
2
‖w‖22 + η

2l∑

i=1

ξi,

s.t. (w · zi) ≥ 1 − ξi, i = 1, · · · , l

−(w · zi) ≥ 1 − ξi, i = l + 1, · · · , 2l,

ξi ≥ 0, i = 1, · · · , 2l (10)

where η is a regularization parameter. In this way, the incremental learning of
SVR can also be implemented by online SVC with slightly modified training
samples. We use the work proposed in [22] as the SVC updater in our approach.

As for the cascaded process, in training stage, we collect samples and over-
lap rates accross C cascades, and train SVRs with samples in corresponding
cascades.
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4 Experiments

We evaluate our tracking approach on a publicly available benchmark [23], which
contains 51 challenging sequences, and compare the performance with 30 track-
ers, where 28 of which are recommended by [23] including Struck [13], SCM [9],
TLD [24], VTD [25], CT [26] and ALSA [27], while the KCF [28] and DSST [29]
are recent state-of-the-art trackers.

4.1 Implementation Details

The proposed approach is implemented on MATLAB R2015b and run on a 2.6
GHz Intel Core i5 CPU with 8 GB memory. The code without optimization
runs at 3.5 fps in average. Each sampled image is converted to grayscale and
normalized to 32 × 32, then HOG feature is extracted on it with bin size 4.
For simplicity, we only estimate the target position s = {x, y} and assume the
scale and angle of the target stay the same during tracking. In training stage, we
sample 200 images around the target with sample radius r1 = 8. C = 3 cascades
of SVR are trained with regularization parameters η1 = 0.001, η2 = 0.001. ε1 is
set to 5 and ε2 is set to 1. When testing, 400 images are sampled around the last
estimated target location with sample radius r2 = 20. The model updating is
performed each T = 5 frames. All the parameters are fixed for different sequences
for fair comparison.

4.2 Overall Performance

The overall performance of our method on the benchmark [23] is illustrated
in Fig. 1. We apply the precision plot and the success plot for comparing

Fig. 1. Overall performance of 30 state-of-the-art trackers and our tracker on the bench-
mark. For clarity, only top 10 trackers are illustrated. (a) Precision scores. (b) Success
scores.
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performance between different trackers. The precision plot indicates the
percentage of frames whose estimated location is within the given threshold
distance to the ground truth, while the success plot demonstrates the ratios of
successful frames whose overlap rate is larger than the given threshold. The pre-
cision score is decided by the score on a selected threshold (20 pixel), and the
success score is evaluated by the Area Under Curve (AUC) of each plot. For
clarity, only top 10 trackers are illustrated on both plots.

As can be seen from Fig. 1(a) and (b), our method obtains superior perfor-
mance against others. In the precision plot, our tracker outperforms DSST by
5.2 % and outperforms KCF by 6.2 %. In the success plot, our tracker performs as
good as DSST and 4.6 % better than KCF. The DSST employs an accurate scale
estimation scheme while our tracker does not estimate the target scale, which
makes the DSST obtains competitive performance in the success plot. Overall,
our tracker performs competitive or better than state-of-the-arts in terms of
both the location accuracy and overlap precision.

The superior performance of our tracker validates the effectiveness of sam-
ple voting and the cascaded support vector regression scheme. The cascaded
process models the non-linear mapping from features to offsets with iterative
linear regressions. In addition, the proposed Incremental Cascaded Support Vec-
tor Regression (ICSVR) algorithm provides an effective way for robust model
updating, which contributes greatly to the stability of long term tracking.

4.3 Component Validation

This section carries out experiments for verifying the contributions of different
components in our method. Three components are evaluated in this section:
the dominant set voting, the sample confidence evaluation and the incremental
learning of cascaded SVR.

Figure 2(a) compares precision scores among trackers using different voting
methods. CAT-DS, CAT-MED and CAT-MS denote the trackers using dom-
inant set voting, (weighted) median voting and (weighted) mean shift voting
schemes respectively, where the weights are computed as described in Sect. 2.2.

Fig. 2. Validations of different components. (a) Precision scores with and without
confidence evaluation. (b) Precision scores of different updating schemes. (c) Precision
scores of different voting methods.
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As can be seen from Fig. 2(a), CAT-DS significantly outperforms CAT-MED and
CAT-MS, which indicates that the dominant set voting is more stable in finding
the most densely voted place.

Figure 2(b) compares precision scores between trackers with and without con-
fidence evaluation, namely the CAT and the CAT-NCONF trackers. There’s a
striking disparity between their scores, which indicates that the sample confi-
dence evaluation is an indispensable part in our method.

Figure 2(c) compares precision scores between trackers using different updat-
ing schemes. CAT-ICSVR denotes the tracker using the proposed Incremental
Cascaded Support Vector Regression (ICSVR) updating scheme while the CT-
WSVR denotes the one using weighted parameter updating scheme (with forget-
ting factor λ = 0.1). As illustrated in Fig. 2(c), CAT-ICSVR outperforms CAT-
WSVR by 8.8 % when the cascade number is set to 3, which indicates the signif-
icant contribution of ICSVR updating algorithm on the tracking performance.

Besides, we can see from the figures that, as the cascade number increases,
the performance of our tracker (CAT) steadily rises and reaches the top at 3
cascade, then slightly declines when the number gets larger. This trend reflects
the mechanism of SDM and its effectiveness. The SDM models the optimization
for a non-linear problem with cascaded linear projections. When the cascade
number grows from 1 to 3, the precision score rises since the model fits the
data better. Whereas the performance decreases afterwards, which indicates that
the SDM gets overfitting on the training data when the model becomes more
complex.
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Abstract. Multi-object tracking has been a difficult problem in recent years,
especially in complex scenes such as player tracking in sports videos. Player
movements are often complex and abrupt. In this paper, we focus on the
problem of tracking multiple players in beach volleyball videos. To handle the
difficulties of player tracking, we follow the popular tracking-by-detection
framework in multi-object tracking and adopt the multiple hypotheses tracking
(MHT) algorithm to solve the data association problem. To improve the effi-
ciency of the MHT, we use motion information from Kalman filter and train an
online appearance model of each track hypothesis. An auxiliary particle filter
method is adopted to handle the missing detection problem. Furthermore, we
obtain the significant performance on our beach volleyball datasets, which
demonstrate the effectiveness and efficiency of the proposed method.

1 Introduction

With the explosive growth of various video data, automatic video processing has
become more and more important in order to reduce the manual effort for video
analysis. Among all kinds of video data, sports videos captured from different kinds of
matches, such as football, basketball and volleyball has attracted a lot of research
interests, due to their huge popularity and tremendous commercial value.

Compared with multiple object tracking (MOT) in other scenes, multiple player
tracking in sports video is much more difficult due to the following reasons: (1) players in
the same team are always visually similar, making the appearance information less dis-
criminative and unreliable; (2) sports players often interact with others in complex ways
and (3) the occlusions are much more frequent and severe. All of these issues together
have posed quite a great challenge to the tracking system, which requires not only reliable
observations but also a sophisticated tracking strategy to make the system robust.

Recent progress on Multi-Object Tracking (MOT) has focused on the tracking-
by-detection strategy, where object detections from a category detector are linked to
form trajectories of the targets. In this work, we aim to track multiple highly dynamic
and interactive players in beach volleyball videos. Firstly, we follow the popular
tracking-by-detection framework in MOT. Concretely, we employ the DPM [1]
detector to get the detection results. Next, to solve the data association problem, the
classical multiple hypotheses tracking (MHT) algorithm [2] is adopted.
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The contributions of this paper lie in the following three-fold: (1) We train multiple
online appearance models to improve the efficiency and accuracy of the MHT tacking
method; (2) An auxiliary color-based particle filter is applied to handle missing
detections; (3) We analyze the robustness of the method, in particular the influence of
each part of the tracking system.

The paper is structured as follows: After discussing related work in the following
section, Sect. 3 describes the details of MHT. Section 4 talks about how the online
appearance model and the particle filter help improving the tracking result. Section 5
presents experiments and analyzes the performance of our method.

2 Related Work

As object detection hasmade impressive improvements in recent years,MOThas focused
on the tracking-by-detection strategy. Different from the data association-based tracking
approaches, there are many methods use the detection results from a probabilistic
inference perspective. A Kalman filter [3] is an early representative method. Then based
on sequential Monte Carlo sampling, particle filters [4] gained much attention because of
their simplicity, generality, and extensibility in a wide range of challenging applications.

There are many papers about multiple player detection and tracking in sports video.
In [5], Huang et al. first detected the players and ball based on extracted foreground and
then performed shape analysis to remove false alarms. To conquer the problem of
complex multiple object interactions with overlaps and ambiguities, Okuma et al. [6]
used an offline boosted particle filter to track each player in a mixture representation.

However, probabilistic inference methods cannot solve the highly dynamic and
interactive players in sports videos, due to the severe occlusions and abrupt movements
of players. So recently many methods have posed multi-object tracking as data asso-
ciation. Majority of the batch methods formulates MOT as a global optimization
problem in graph-based representation, due to their computational efficiency and
optimality. The problem of associating tracklets has been investigated using a variety of
method, such as the Hungarian algorithm [7], k-shortest paths [8], cost-flow networks
[9] and discrete-continuous optimization [10]. Kim et al. [11] follow the classical
formulation in [2] and corporate the appearance modeling with MHT. We also apply
the MHT in multiple player tracking of beach volleyball.

3 Multiple Hypotheses Tracking Algorithm

In the MHT algorithm, observations are localized bounding boxes. Generally, the MHT
framework consists of the following five steps.

3.1 Track Tree Construction and Updating

A track tree encapsulates multiple hypotheses starting from a single observation. At
each frame, a new track tree is constructed for each observation. Previously existing
track trees are also updated with observations from the current frame.

66 X. Jiang et al.



3.2 Gating

To predict the tracking area of each track hypothesis, the motion information is taken
into consideration. The Kalman filter is used to predict the location of the target. Then
the Mahalanobis distance d2 between the predict location and a new observation is
calculated to decide whether to update a particular trajectory. The distance threshold dth
determines the size of the gating area.

3.3 Tracking Score

Each track hypothesis is associated with a track score. The lth track’s score at frame k is
defined as follows:

Sl kð Þ ¼ xmotS
l
mot kð ÞþxappS

l
app kð Þ ð1Þ

where Slmot kð Þ and Slapp kð Þ are the motion and appearance scores, and xmot, xapp are the
weights that control the contribution of the location measurement and the appearance
measurement to the track score, respectively. The motion and the appearance score are
calculated like the formulation in [11].

3.4 Global Hypothesis Formation

Given the set of trees that contains all trajectory hypotheses of all targets, we wish to
determine the most likely global hypothesis. We follow the formulation in [2]. The
global hypothesis formation problem is formulated as a Maximum Weighted Inde-
pendent Set (MWIS) problem.

3.5 Track Tree Pruning

In order to avoid the exponential growth of the graph size, the pruning step is applied for
MHT. We adopt the standard N-scan pruning approach. Figure 1 shows an example.

1

1

1 2

1 2 43

Before Pruning After Pruning

1

1

1 2

1 2 43

Root 
observation New Root 

observation

Fig. 1. An example of N-scan pruning (N ¼ 2)
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We also set a threshold Bth to retain a track tree’s branches based on its track score.
Only the top Bth branches are kept. This is because the number of players in beach
volleyball is static. In this way, we can make pruning more efficient.

4 Online Appearance Model and Particle Filter Method

4.1 Online Appearance Model

Considering the complexity of beach volleyball player tracking, in addition to the
motion estimates method, we build an online appearance model of each target. We
utilize the convolutional neural network features trained on the ImageNet+PASCAL
VOC dataset in [12]. The 4096-dimensional feature for each observation box is
extracted. To save the time and space, a principal component analysis (PCA) is then
performed to reduce the dimensionality of the features. In the experiments we take the
first 256 principal components. We follow the multi-output regularized least squares
framework [13].

4.2 An Auxiliary Particle Filter

In the MHT framework, if there is a sequence of missing observations, the corre-
sponding track hypothesis will be deleted from the hypothesis space. This may cause
false tracking results, which is resulted from missing detections of the detector.
Figure 2 shows an example.

In our work, color information of each player is used for the observation model in
the particle filter framework. We take the HSV color space of each player and create a
one dimensional histogram containing NH � NS bins and NV bins appended.

...

...

Frame 169 Frame 170 Frame 180

Fig. 2. Illustration of missing detection problem. The first row is the missing detection. The
second row is the wrong detection results of MHT (player 1 was identified as player 5)
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Firstly, the color histogram of each player is calculated on the first frame based on
the bounding box with high detection confidential scores. When a bounding box has no
adjacent boxes on the next frame, we assume that the missing detection problem
happens. Then a similarity matric between the bounding box and players is calculated.
If the bounding box is similar to one of the players, a particle filter is initialized to
predict the position of the bounding box in the next frame. The particle filter continues
until a new bounding box from the detector is found around the predict position. In this
way, we can avoid false tracking results in some degrees.

5 Experiments

We evaluate the performance of our framework on a Beach Volleyball Dataset. There
are 200 frames labeled for beach volleyball games.

The entire system is implemented in Matlab on the platform of Linux. The popular
DPM detector, which is publicly available, is used to get bounding boxes of players.
The model trained on the INRIA Person dataset is applied. In Fig. 3, we show some
tracking output on our beach volleyball datasets. We can see that our tracking method
can handle the occlusion problem well. For comparison, we choose the state-of-the-art
MOT method proposed in [11]. The same DPM detector is used in our dataset.

Algorithm Parameters: In the proposed tracking algorithm, as to MHT, we set
xmot ¼ 0:2 and xapp ¼ 0:8 considering that the appearance model plays a more
important role. And the max number of each track tree’s branches Bth is set to 10. The
dummy numbers threshold Nmiss ¼ 15. N about the N-scan is set to 7 in our experiment.
And the Mahalanobis distance dth ¼ 12. As to the particle filter method, the particle
number of each target is set to 50. As to color histogram, we set NH ¼ 10, NS ¼ 10 and

Fig. 3. Tracking output on the beach volleyball dataset.
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NV ¼ 10. The smaller number of particles means faster speed, while may result in
lower accuracy.

Evaluation: We follow the current evaluation protocols in [14] for visual multi-target
tracking. The multiple object tracking accuracy (MOTA), multiple object tracking
precision (MOTP). The number of false positives (FP), the number of false negatives
(FN), the total number of identity switches (IDS) are also reported.

Table 1 shows the results about our method and the MHT_DAM method on the
beach volleyball dataset. We also list the results about the method without the help of
the auxiliary particle filter for comparison.

From Table 1, we can see that the MOTA and MOTP of our method are better than
the MHT_DAM and method without particle filtering. The FN becomes smaller
because the missing detections are alleviated. What’s more, the identity switches
between players becomes less.

6 Conclusion

We have proposed a novel method based on the tracking-by-detection framework to
handle the MOT problem for beach volleyball videos. The MHT method is adopted to
overcome the false positive detections in the data association procedure. Online
appearance models are trained to improve the efficiency and accuracy of the MHT
tacking method. To alleviate the missing detection problem, a color-based particle filter
is utilized. Through this way, better observations are provided for multiple player
tracking. Experimental results demonstrate that the proposed method achieves better
performance, compared with the state-of-the-art approaches.
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Abstract. In this paper, we strive to settle Multi-object tracking (MOT) prob-
lem within Air-Traffic-Control (ATC) surveillance videos. The uniqueness and
challenges of the specific problem at hand is two-fold. Firstly, the targets within
ATC surveillance videos are small and demonstrate homogeneous appearance.
Secondly, the number of targets within the tracking scene undergoes severe
variations results from multiple reasons. To solve such a problem, we propose a
method that combines the advantages of fast association algorithm and local
adjustment technique under a general energy minimization framework. Specif-
ically, a comprehensive and discriminative energy function is established to
measure the probability of hypothetical movement of targets, and the optimal
output of the function yields to the most responsible target state configuration.
Extensive experiments prove the effectiveness of our method on this new
dataset.

1 Introduction

Multi-object tracking (MOT) has been widely studied in recent years and resulted in a
fruitful selection of literature [1–6]. In this paper, however, a more specific and
complex MOT problem is resolved. Particularly, we try to design a method to perform
reliable tracking of multiple identical small targets within ATC surveillance videos.
The realization of such a method is significant as it lays solid foundation for the
development computer-aided ATC.

Compared with previous MOT datasets, the specialty and complexity of the ATC
surveillance videos is two-fold. Firstly, the reasons for targets number variations are
diversified. Besides the common way where target entering and leaving the margin of
the scene may lead to varying target number, aircrafts targets within the ATC
surveillance videos can also emerge or disappear in the center of the scene (Fig. 1).
This phenomenon results from the fact that the airport should be the head of departing
aircrafts’ trajectories or the tail of approaching aircrafts’ trajectories. In application, this
uncommon behavior of the targets may bring about extra difficulty in realizing reliable
tracking. Secondly, as the ATC surveillance videos cover a vast range of field con-
taining massive number of objects, thus the targets at concern are usually small-sized
which provide limited appearance cues. Consequently, the appearances of different
targets are highly identical. The combination of the above two issues are prone to result
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in spurious association of an approaching aircraft with a departure aircraft, if the
traditional multiple target tracking methods are applied.

To cope with these difficulties, the method proposed in this work follows the
tracking-by-detection (TBD) strategy in consideration of its ability of identifying
new appearing. Nonetheless, this strategy is still inadequate to handle the possible
identity mislabel caused by the entering and leaving targets. Consequently, an energy
minimization [5] framework is also constructed in the proposed work, where a tailored
energy function is designed to resolve our special tracking problem. Specifically, error
associations between approaching and departing airplanes are specially penalized by a
relative distance difference energy term. In addition, proper initial value and the cor-
responding energy optimization details are also introduced to make our method more
efficiently.

The main contribution of the proposed work is three-fold: Firstly, a new energy
function aiming at our special ATC surveillance videos is proposed. Secondly, a proper
initial value for energy-based method is selected for homogeneous motion targets
tracking; Thirdly, satisfactory experiment results are achieved on challenging ATC
surveillance videos.

The rest of this paper is organized as follows. After related work is discussed in
Sect. 2, the proposed method is elaborated in Sect. 3. Section 4 demonstrates the
experiment results on our ATC surveillance datasets. Section 5 draws the conclusions
of the proposed MOT approach.

2 Related Work

The proposed method in this work follows the TBD framework. As the name suggests,
a TBD method usually consists of two components: target detection and data associ-
ation modules. Depending on the temporal operation strategy, TBD methods can be
further categorized as local or global methods. The local methods generate tracking
results frame-by-frame or batch-by-batch, using the detection outputs obtained from

Fig. 1. Unusual way of targets emerging and disappearing within Air-traffic-control Surveil-
lance Video. The blue one is going to landing and the orange one and the green one have just
taken off. (Color figure online)
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only a limited-length time window at each round of operation. For the local methods,
such as bi-partite matching [7] and multiple frames matching [8], data association is
typically formed into an optimization problem where the optimal affinity matching is
computed. However, as this line of method only uses a fraction of frames at each
association, thus it might not be robust enough when faced with long-time occlusion
and intricate motion pattern because of the lack of comprehensive sequential cues. As a
result, mainstream methods at present are all global, where the tracking result is
generated on basis of the detection responses acquired from the whole video sequence.
Similar to the local methods, the global methods also transform the problem of asso-
ciation into optimization, yet the difference resides in the fact that the optimization is
only executed in the scale of the whole video sequence here. Popular global methods
involve optimization schemes such as network flows [9], k-shortest paths [10], maxi-
mum weight independent set [11], etc. All of these strategies usually employ a graph
model that selects a subset of nodes and edges to maximize similarity of hypotheses.

In addition, some researchers tried to interpret data association problem from other
aspects. There are two representative works we mainly focus on in this paper. The first
one is on basis of energy function [5] which uses standard conjugate gradient opti-
mization and jump-moves methods to find local minimization of a nonconvex opti-
mization. Although this strategy is quite effective as energy function is well-capable in
describing the optimal formulation of trajectories through multiple energy terms, yet it
will suffer from overwhelming computational cost if the initialization is inappropriate.
The other work [6] employs a hierarchical structure [12], which gradually associates
the single detection responses into tracklets, and then formulates tracklets into longer
trajectories. The key of this method is evaluating and optimizing the affinity on basis of
tracklets instead of single detections. Although it can achieve quite efficient perfor-
mance by calculating the rank of Hankel matrices using fast algorithm, but improper
interpolations among targets may arise occasionally because there are no other limi-
tations (such as targets speed) to constrain the linking between two tracklets with
similar motion consistency but different IDs.

3 Our Method

In our work, tracking airplanes in ATC surveillance videos is formulated as a problem
of tracking multiple homogeneous targets. More specifically, this challenging tracking
problem is handled by establishing and minimizing an energy function, wherein most
aspects related to the target state are jointly considered. In particular, as the main
purpose and strength of the proposed method is to eliminate the possible false asso-
ciations that may happen near the airport area within the tracking scenes, therefore a
novel energy term is deliberately designed and added to the energy function. For
constructing this new term to correct wronged associations, priori knowledge is
indispensable. The most significant prior information for the problem at hand is the fact
that, all airplanes locate within the terminal control area (TMA) should either depart or
approach, which means that the starts or ends of trajectories are either in the center or
the margin of the scene. Based on this priori knowledge, we hereby introduce the
concept of relative distance, which measures the distance from the two endpoints of

74 Y. Li et al.



trajectory to the center of airport respectively. Larger difference value of these two
relative distances indicates more probable trajectory.

In practice, trajectories with large relative difference value are set with high con-
fidence scores. Meanwhile, those with smaller value should be punished. Under this
premise, the corresponding relative distance energy term is designed, which is the key
point to correct the error linking within airport area. In addition, as proper initialization
is vital in avoiding additional optimization efforts, we apply Iterating Hankel Total
Least Squares (IHTLS) algorithm [6] to generate the initial value and adjust opti-
mization details accordingly, which makes our energy-based framework more effective
and efficient.

In Subsect. 3.1, the construction of relative distance difference energy function is
elaborated, together with the other energy terms aiming at curing imperfect parts of
initial association [6]. In Subsect. 3.2, the details of optimization process, especially
two main differences between our method and algorithm proposed in [5] are presented.

3.1 Construction of Energy Function

The energy function implemented in our work takes five different terms:

E ¼ c1Edyn þ c2Efid þ c3Eres þ c4Ereg þ c5Eexc ð1Þ

where N represents the number of trajectories and F represents the number of frames.

Among these five terms, the motion term EdynðXÞ ¼
PF�2

t¼1

PN

i¼1
jjvti � vtþ 1

i jj2, the regu-

larization term Ereg ¼ N and the mutual exclusion term Eexc ¼ ðP
F

t¼1

P

i6¼j

1
jjxti�xtj jjÞ=ð

PF

t¼1
NtÞ

are close to the definition in [5]. So we hereby mainly introduce the other two terms Efid

and Eres.

Fidelity

Efid ¼ h
XN

i¼1

X

k

jGkj2 þ c
XF

t¼1

ðDt � UtÞ ð2Þ

Fidelity represents the congruence between trajectories and detections. The first
term represents the total number of frames where trajectories do not associate real
detection responses but interpolate fake ones, Gk is the length of tracklets without
detection responses. The second term represents the number of detections which do not
belong to any trajectory, where Dt is the number of detections in frame t and Ut is the
part of belonging to trajectories. Although tracking algorithm should have the ability to
maintain latent tracklets without detection responses for a certain length, yet the over
interpolations operation in algorithm [6] will likely generate fake but not latent
tracklets. The fidelity term is therefore designed to punish this situation.
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Relative Distance Difference

Eres ¼
XN

i¼1

1
jrs � re þ 1j ð3Þ

This term is designed to cope with the situation where targets could enter or leave
from the center of the scene, which is the main difficulty for realizing reliable MOT in
ATC surveillance videos. As the airplanes appearing in the scene always need to take
off or land within the airport terminal area that locates at the center of the scene,
therefore all trajectories should either start or terminate at the center of the scene, and
no aircrafts could travel across the scene. Basing on this prior knowledge, we design
the energy term Eres to constrain relative distance difference. As shown in formula (3),
rs indicates the distance from the start point of a trajectory to the center of the scene,
meanwhile re is the distance from end point of that trajectory to the center. According
to the prior information elaborated as above, for a correct trajectory, one of the rs and re
should be nearly zero while the other one should be large. As a result, the relative
distance difference jrs � rej should have a large value for a true trajectory.

3.2 Framework Details

The whole tracking procedure is shown in Fig. 2. The differences between our
algorithm and [5] are mainly two-fold: Firstly, we abrogate the conjugate gradient
method which was applied in [5] to minimize the continuous energy function. This is
because the targets in ATC surveillance videos are so small and the location of
detections does not need to be smoothed by optimizing continuous energy minimiza-
tion; Secondly, we abolish the step of Add operation and execute the step of Split in an
iteration, which aims to cope with over-association of initial value.

In this paper, we take five fixed-order optimization steps, which include split,
remove, shrink, grow and merge. The details of them are shown as follows.

Split and Remove
The purpose of this step is disconnecting obvious wrong associations caused by

IHTLS algorithm [6]. Split operation will stop when the value of energy function

Energy Itera ons 

Split IHTLS Algorithm

Remove Shrink Grow Merge

TrajectoriesDetec on 
responses

YN

Fig. 2. The framework of our approach
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cannot be lower after energy iterations. In order to avoid disconnecting correct links
and obtaining too many fragments, we limit the maximum iterations as i_max.

After the split operation, we need to remove those questionable tracklets without
sufficient support from detections. In application, we test the tracklets one by one and
remove those that may lower the energy.

Shrink, Grow, Merge
The steps of shrink, grow and merge are similar to [5], in consideration of the

length of the article, hereby we would not elaborate on them.

4 Experiment

To testify the effectiveness of the algorithm, we perform experiments on our ATC
surveillance videos dataset and the details are illustrated in this section.

4.1 Implementation Details and Parameter Setting

Datasets. In this paper, we conduct the experiments on three available ATC surveil-
lance videos and quantitatively evaluate the tracking results. These videos are screen
recordings of radar control machine during actual control process in Tianjin TMA,
China. The resolution of images is 2560*1600 and at every frame there are 10 to 15
objects appearing in the scene. Every surveillance video sequence originally lasts about
45 min, and contains 55000 frames with a frame rate of 20 fps. Because radar system
can only detect the airplanes in the whole airport terminal area every four seconds, we
sample the sequences at an interval of 80 frames to get about 700 valid frames for each.

Detection. In our video, targets may demonstrate four different colors: white, orange,
blue and green. As the color of targets in the videos randomly changes during moving,
we should design a multi-color template to detect any possible targets. In order to test
the robustness of our energy-based association framework, several detection sets with
different recall and precision generated by different detector thresholds are prepared for
testing.

Parameter Setting. We set all parameters of our method as follows:

1: ½c1 c2 c3 c4 c5� ¼ ½0:05 1 1000 1 136�
2. h ¼ 1 and c ¼ 10
3. i_max = 10

Evaluation Metrics. For the quantitative evaluation, we adopt the widely used
CLEAR MOT metrics [13]. In our sequences, the targets are so small that it is unnec-
essary to evaluate the tracking precision. In other words, we only calculate the
Multi-Object Tracking Accuracy (MOTA) as formula (4) shows, which takes into
account three typical errors, false negatives (fn), false positives (fp) andmiss match (mm).
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MOTA ¼ 1�
P

t ðfpt þ fnt þmmtÞP
t gt

ð4Þ

4.2 Effectiveness of the Energy-Based Framework

In this section we would first show the effectiveness of energy function integrating with
the relative distance difference term Eres, which is the main propose of our work. As
Fig. 3(a) shows, the No. 6 target lands and goes on takeoff, which is obviously unlikely
to happen. We correct this to two different targets land and takeoff in turn shown in
Fig. 3(b).

Table 1 shows the effectiveness of five energy optimization steps. We set the
detection threshold as 12.

4.3 Quantitative Comparisons and Qualitative Results

In this section, we first present the quantitative results compared with energy mini-
mization framework [5] and IHTLS algorithm [6] (as shown in Fig. 4) to further verify
the effectiveness of our method. As we take the detections under different thresholds as
the input of both algorithms, the robustness of our algorithm for different kinds of
detection errors is tested as well.

(a) Energy-based algorithm without resE                         (b) Our method

Fig. 3. Effectiveness of energy function integrating the relative distance difference term.

Table 1. The effectiveness of five energy optimization steps.

Operation Input Split Remove Shrink Grow Merge

Energy 19809.87 19440.92 16567.86 15272.22 15254.32 15251.43
MOTA 0.9578 0.9585 0.9679 0.9737 0.974 0.9742
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5 Conclusion

In this paper, we design and apply a Multi-object tracking (MOT) algorithm within the
ATC surveillance videos to help keep tracks of aircrafts in the terminal area. To solve
such a special visual tracking problem where targets demonstrate highly homogenous
appearance, a novel TBD-based strategy is proposed which is an integration and
modification of two representative tracking algorithms. This strategy solves the
tracking under the framework of energy function optimization, where the result of fast
association algorithm for similar appearance targets tracking is deployed as the initial
value for the optimization. The proposed method is not only suitable for solving our
special MOT problem effectively, but also provides a valuable idea for solving other
similar special tracking problems. Experiments demonstrate that the proposed formu-
lation performs well when tracking targets within ATC surveillance videos.
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Abstract. Person re-identification is the problem of matching pedes-
trian images captured from multiple cameras. Feature representation and
metric designing are two critical aspects in person re-identification. In
this paper, we first propose an effective Convolutional Neural Network
and learn it with mixed datasets as a general deep feature extractor.
Secondly, we extract the hand-crafted feature of images as a supplement,
then we learn the independent distance metrics for deep feature repre-
sentation and hand-crafted feature representation, respectively. Finally,
we validate our method on three challenging person re-identification
datasets, experimental results show the effectiveness of our approach,
and we achieve the best rank-1 matching rates on all the three datasets
compare with the state-of-the-art methods.

1 Introduction

Person re-identification aims to identify whether two pedestrian images observed
from disjoint camera views belong to the same person or not, which has great
significance in video surveillance systems. Large variations in viewpoint, illu-
mination and body posture across different camera views can cause a great
appearance variance, which makes the re-identification still a challenging prob-
lem. Typically, methods for re-identification include two vital steps: (1) develop-
ing robust feature representations to handle the variations in pedestrian images;
(2) designing discriminative distance metrics to measure the similarity between
pedestrian images.

Representative feature descriptors include [1–8], which mostly come from
color and texture. Gray et al. [1] used boosting to select a subset of optimal
features composed by texture and color features; Farenzena et al. [2]proposed
Symmetry-Driven Accumulation of Local Features (SDALF) consisted of both
symmetry and asymmetry color and texture information; Zhao et al. [3] learned
the mid-level filter (Mid-Level) from patch clusters with coherent appearance
obtained by pruning hierarchical clustering trees to get view-invariant and dis-
criminative features; SalMatch [5] was proposed to exploit both patch matching
and salience matching for person re-identification, and in [7], Local Maximal
Occurrence (LOMO) was proposed, which was extracted from the local HSV
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histograms and SILTP features with sliding windows to make a stable repre-
sentation against viewpoint changes. However, due to the limitations of hand-
crafted feature descriptors, it is hard to extract abstract and intrinsic features of
the images, which makes these appearance-based features are highly susceptible
and difficult to achieve a balance between discriminative power and robustness.

In recent years, many metric learning approaches have been proposed [5,7,9–
14] and achieved remarkable performance for person re-identification. Represen-
tative methods include Cross-view Quadratic Discriminant Analysis (XQDA)
[7], Large Scale Metric Learning from Equivalence Constraint (KISSME) [9],
Metric learning to Rank (MLR) [10], Pairwise Constrained Component Analysis
(PCCA) [11] and Large Margin Nearest Neighbor (LMNN) [14]. These methods
extracted the hand-crafted features first to learn the transformation matrix of the
initial feature space, which makes the distance become smaller between the same
individuals and larger between different individuals in transformed feature space,
some of them achieved impressive improvements for person re-identification.

Compared with the hand-crafted features based methods aforementioned,
there are several deep learning based methods have been proposed [15–19]. More
abstract and internal features can be learned automatically with the deep archi-
tecture, which makes the feature representation rather robust compared with
those hand-crafted features. Li et al. [15] proposed a novel filter pairing neural
network (FPNN) to jointly optimize feature learning, geometric transforms, pho-
tometric transforms, misalignment, occlusions and classification. Yi et al. [16]
used a siamese deep convolutional architecture to learn the texture feature,
color feature and metric together in fully cross dataset setting. Ahmed et al.
[17] presented a deep neural network with layers specially designed for captur-
ing relationships between different camera views. Wu et al. [18] used very small
convolution filters and increased the depth of the network to improve the per-
formance of re-identification. Xiao et al. [19] learned deep feature representation
from multiple domains with Convolutional Neural Networks (CNNs). However,
these deep neural network need to learn a large number of parameters, small
datasets usually can not get remarkable results.

To address these problems, firstly, we learn a general Convolutional Neural
Network with the mixture of various datasets as our deep feature extractor,
which increases the scale of training set to make small datasets are applicable
and enables us learn better features from multiple datasets. Then we extract
the appearance-based features of pedestrian images as a supplement. Finally, we
learn different metrics for the deep feature representation and hand-crafted fea-
ture representation, respectively, which makes the distance metrics more discrim-
inative. Experiments show the superior performance of our proposed approach
when compared with the state-of-the-art works.

2 Proposed Approach

In this paper, we extract both deep features and hand-crafted features to repre-
sent pedestrian images, and then learn the distance metrics respectively for the
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two types of feature representations to measure the similarity between different
images in a more discriminative way. Section 2.1 introduces the Convolutional
Neural Network we proposed to extract the deep feature representation of the
images. Section 2.2 introduces the multiple feature representations and our inde-
pendent metric learning.

2.1 Our Deep Architecture

Inspired by [19,20], we build a CNN model described in Table 1, and mix the
various datasets together to train a general CNN as our deep feature extractor for
all the datasets. Specifically, three benchmark datasets include VIPER, CUHK01
and CUHK03 are used to validate our method, and all the images are scaled to
144 × 56 pixels.

Table 1. The Architecture of Our Proposed CNN

Name Patch size/stride Input size

conv1 3 × 3/1 144 × 56 × 3

conv2-conv3 3 × 3/1 144 × 56 × 32

pool3 2 × 2/2 144 × 56 × 32

Inception 4a,4b As in Fig. 1(a) 78 × 28 × 32

Inception 5a,5b As in Fig. 1(a) 36 × 14 × 384

Inception 6a,6b As in Fig. 1(b) 18 × 7 × 786

Global pool 9 × 4/1 9 × 4 × 1536

fc7 Logits 1 × 1 × 1536

fc8 Logits 1 × 4 × 2048

Softmax Classifier 9 × 4 × 2168

The structure of our CNN is the same with [19] expect the last two Inception
modules and the two fully connected layers. Figure 1(b) shows the structure
of our last two Inception modules, which was applied to image classification
in [20], it expanded the filter bank outputs of the original Inception modules
in Fig. 1(a) to promote high dimensional representation. After this, two fully
connected layers were applied, the first has 2048 channels and the second contains
the channels are equaled with the number of the individuals in training set which
is set to 2168 in our model.

2.2 Multi-features Fusion and Independent Metric Learning

After trained the proposed CNN, we extract the fc7 layers output as the deep
feature representation for the training and testing set, and exploit the hand-
crafted feature LOMO [7] consisted of local HSV histograms and SILTP features
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Fig. 1. Inception modules used in our CNN structure, which were all proposed in
[20] for image classification, module in (b) is an expanding of (a) to promote high
dimensional representations on the coarsest grid

as a complement. Then we learn the independent distance metric with XQDA
[7] for the two types of feature representations, respectively.

The XQDA aims to learn a discriminant subspace and an effective distance
metric at the same time. Given a pair of images (i, j) captured from different
views, xi and yj are the original features of the images. The distance between
image i and j is formulated as:

f(xi,yj) = (xi − yj)TWMWT(xi − yj) . (1)

where W ∈ R
d×r is the subspace projection matrix, M ∈ R

r×r is the learned
metric kernel, d is the dimension of the original feature space, and r(r < d) is
the dimension of the transformed feature space.

In this paper, we suppose xdr
i and xhr

i are the deep feature representation and
hand-crafted feature representation of image i, respectively, ydr

j and yhr
j have

the similar meanings. The distance between image i and j can be re-formulated
as:

d(i, j) = dn(xdr
i ,ydr

j ) + dn(xhr
i ,yhr

j ) . (2)

where dn(xdr
i ,ydr

j ) is the normalization of d(xdr
i ,ydr

j ), dn(xhr
i ,yhr

j ) is the nor-
malization of d(xhr

i ,yhr
j ), which are all calculated by Eq. (1).

3 Experiments

3.1 Datasets and Experiment Protocols

We validate the proposed approach on three widely-used person re-identification
datasets include VIPER [21], CUHK01 [22], and CUHK03 [15].

VIPER is one of the most challenging dataset for person re-identification, it
contains 632 pairs of person images taken from two camera views with var-
ious poses, viewpoints and illumination conditions. The CUHK01 dataset is
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larger in scale than VIPER, it contains 971 persons captured from two dis-
joint views and each person has two images in each camera view, camera A
captured the frontal or back view of the individuals while camera B captured
the side views. And the CUHK03 dataset is one of the most largest published
person re-identification datasets, it includes five different pairs of camera views
with more than 14,000 images of 1467 pedestrians, in addition, both manually
cropped pedestrian images and images automatically detected by the pedestrian
detector of [23] are all provided, this is a more realistic setting considering mis-
alignment, occlusions, body part missing and detector errors.

We follow the widely adopted experimental protocols for VIPER and
CUHK01 datasets, the individuals in these dataset are randomly divided into
half for training and the other half for testing. And for CUHK03, we follow the
settings in [19,24], using both manually cropped pedestrian images and images
automatically detected together and then randomly select 100 individuals for
testing, the other 1367 individuals are used for training. We mix the three
selected training sets together to train a general CNN which is employed to
extract the deep feature representations of images for various datasets, we use
Caffe [25] deep learning framework implement our network. And then we exploit
the same individuals used for training our CNN in the three datasets to learn
distance metrics for different datasets, respectively. The result is evaluated by
cumulative matching characteristic (CMC) curve [26], which is also known as
rank-n, an estimate of finding the correct match in the top n match. This pro-
cedure is repeated 10 times and the average of rank-n is reported for different
dataset.

3.2 Evaluations of Proposed Method

In order to validate the effectiveness of the proposed method, here we conduct
a series of experiments with different settings to evaluate the effectiveness of
our approach, which include: (i) use our proposed method; (ii) replace our CNN
with JSTL [19]; (iii) without hand-crafted feature representation; (iv) without
our deep feature representation.

Figure 2 shows the rank-n(n = 1, 5, 10, 20) matching rates for different exper-
iments and datasets. Experimental results show the effectiveness of the proposed
method, our method achieves the better performance than other compared meth-
ods on all the three datasets. The first two experiments validate the effective-
ness of our proposed CNN, by expanding filter bank outputs to promote higher
dimensional representation, we can achieve a better performance. And the last
two experiments validate that the two types of feature representations can com-
plement each other well.

3.3 Comparison with State-of-the-Arts

We compare our approach with the following state-of-the-art methods: Metric
Ensembles (Ensembles) [24], mFilter+LADF [3], mFilter [3], LOMO+XQDA [7],
FT-JSTL+DGD [19] and JointRe-id [17]. Figure 3 shows the results on VIPER,
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(a) VIPER (b) CUHK01 (c) CUHK03

Fig. 2. The experimental results of different methods on the three datasets, mea-
sured by rank-1, rank-5, rank-10 and rank-20 matching rates. The red curves represent
our proposed method, which achieve the best rank-1 matching rates for all the three
datasets (Color figure online)

CUHK01 and CUHK03 datasets. Our method improves rank-1 recognition rates
by 5.4%, 7.6% and 8.7% on the three datasets compare with the state-of-the-arts.

(a) VIPER (b) CUHK01 (c) CUHK03

Fig. 3. Performance comparison of the proposed method with the state-of-the-arts for
VIPER, CUHK01 and CUHK03 datasets. Our approach outperforms all the state-of-
the-art methods in most cases, especially on rank-1 matching rate

4 Conclusion

In this paper, we present an effective deep architecture trained with a mixture
of various datasets to extract deep features of pedestrian images, then we use
the deep feature representation and hand-crafted feature representation to learn
different metrics, respectively. By using both deep feature representation and
hand-crafted feature representation, we can gain more robust and comprehensive
features, and learning independent distance metrics for the two types feature
representation can realize a higher discriminative power. We conduct extensive
experiments on three widely used person re-identification datasets to validate
our approach. Experimental results demonstrate that our method achieves a
better performance than other state-of-the-art methods in most cases.
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Abstract. In this paper, we propose a deep siamese convolutional
neutral network (DSCNN) to learn semantic-preserved global-level and
local-level hashing codes simultaneously for effective image retrieval. Par-
ticularly, we analyze the visual attention characteristic inside hash bits
by activation map of deep convolutional feature and propose a novel
approach of bit selecting to reinforce the pertinence of local-level code.
Finally, unlike most existing retrieval methods which use global or unsu-
pervised local descriptors separately, leading to unexpected precision,
we present a multi-level hash search method, taking advantage of both
local and global properties of deep features. The experimental results
show that our method outperforms several state-of-the-art on the Oxford
5k/105k and Paris 6k datasets.

1 Introduction

Due to the explosive growth of the Internet, massive images have flooded our
daily lives. Image retrieval, i.e. finding images containing the same object or
scene as in a query image, has attracted more attention from researchers.

Recently, most studies have reported that deep Convolutional Neural Net-
works (CNNs) achieved the state of the art performance in many computer vision
tasks [1–3]. Notably, many works [4,5] have demonstrated the suitability of fea-
tures from fully-connected layers for image retrieval. While several works [6–8]
focused on features from deep convolutional layers and showed that these fea-
tures have the natural interpretation as descriptors of local image regions. How-
ever, most CNN features for image retrieval are directly extracted from classi-
fication model, and subjected to low precision. Furthermore, the features with
rich semantic information distract the target sense of query. Early work by Zhou
et al. [9] revealed that the convolutional units of CNNs actually behave as object
detectors, and proposed a method to generate Class Activation Map (CAM) [10]
for localizing the discriminative image regions, which make it available to use
deep localizable representations for visual tasks.

c© Springer Nature Singapore Pte Ltd. 2016
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Besides, traditional nearest neighbor search methods are faced with the
computational cost of similarity calculation of high-dimension features, are not
appropriate for rapid retrieval, especially under the circumstances of big data
age. A practical alternative is to use the hashing based methods [11–13]. Hash
method designs a group function which project images into binary codes so
that similar images are mapped into similar code. Therefore, the retrieval prob-
lem can be done efficiently by computing Hamming distance. Benefiting from
deep learning, several researchers [13–17] combined image representations learn-
ing with hash learning into one CNN architecture to learn semantic-preserved
binary code. Although these methods achieved outstanding performance, have
not shed light on the relation between each bit and semantic concept.

Fig. 1. The DSCNN framework is proposed. Firstly, The semantic-preserved global-
level Hg and local-level hash codes Hl are learned. Secondly, we obtain CAMs of each
bits of Hg and average these CAMs to acquire ’Hash attention area’, and get ’Local
hash attention area’ by activation maps corresponding to each bits of Hl. Then visually
highlight bits (red colored) are selected as compact hash code. Finally, we retrieval
similar images by the presented multi-level search strategies. (Color figure online)

In this paper, we propose a deep siamese CNN (DSCNN) framework to
learn semantic-preserved hash code, and design the last convolutional layer of
DSCNN to obtain local-level hash codes, which is essentially different from other
methods [13–15]. Above all, we propose a novel method to obtain compact bits
with salient local-semantic. Finally, we present a multi-level hash search method
for retrieval.

2 Our Method

Learning Semantic-Preserved Hash Code. It is feasible to embed a latent
layer in high-level of a network to output global binary code [13–15]. We follow
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it and use both label and pair information to guide hash leaning. Otherwise,
inspired by discovery [4], we propose to hashing convolutional activations. As
Fig. 1 shows, the activation of hash layer and conv7 are both tanh function. And
we impose constraints on these layers to embed semantic information. Assuming
that the feature maps of conv7 are {Ii}Ci=1 ∈ (−1, 1)W×H , W, H is weight and
height, C is the number of filters, the output of Hash Layer are a ∈ (−1, 1)H ,
H is the length of hash code. ŷ is output of softmax layer, y is expected output.
And we minimize the loss function defined following to learn parameters of our
network. For local-level hash:

L1 = −
N∑

j=1

yi log(ŷj) (1)

For global-level hash:

L2 = −L1 + αJ11 + αJ12 + βJ2 + γJ3

= −
N∑

j=1

yi log(ŷj) + α

N∑

j=1

N∑

i=1

δ(yj = yi)‖aj − ai‖22

+ α

N∑

j=1

N∑

i=1

δ(yj �= yi)max(0, c − ‖aj − ai‖22)

+ β

N∑

j=1

(‖|aj | − 1‖2) + γ

N∑

j=1

(‖avg(aj) − 0‖2)

(2)

where δ is indicator function, avg is the mean function, c is a constant, N is the
number of images. The terms L1 and J1∗ aim to embed semantic consistency
and similarity to hash code respectively. The term J2 aims to minimize the
quantization loss between the learned binary code and the original feature. The
last term J3 enforces evenly distribution of −1 and 1 in hash code. α, β, γ are
parameters to balance the effect of different terms.

Finally, the global-level hash code Hg and local-level hash codeHl are defined:

Hg = δ(a > 0),Hl = δ(f > 0)

wheref ∈ (−1, 1)C , fk =
1

W × H

W∑

i=1

H∑

j=1

Ik(i, j)
(3)

Selecting Compact Bits. The deep convolutional feature maps are activated
with different regions [18,19]. And through careful observation we found that
some feature maps are not related to the salient area, it may be possible to
boost feature discrimination by discarding unrelated feature maps. Therefore we
propose to select compact bit to enforce retrieval performance.

The first stage is to catch the attention region of Hg. We compute CAMs of
Hg. Then we average these maps to Mavg and binarize by Bavg = δ(Mavg > θ),



94 Z. Dong et al.

where θ is a threshold. And we get attention region by finding the largest con-
nected subgraph of Bavg. As Fig. 1 shows.

The second stage is selecting local feature maps. We convert all feature maps
of Conv7 into activation maps {AMi}Ci=1 by up-sampling, and obtain corre-
sponding binary maps {Bi}Ci=1 as the first stage done. We definite the score of
relevant to salient area of feature maps as follows:

S(Bi, Bavg) = sum(Bi ∧ Bavg) (4)

where ∧ is AND operation bit-by-bit, sum represents sum all elements of matrix.
In the last stage, Ranking I1, I2, . . . , IC by their scores S and selecting top

L filters as informative local features. Then we choose associated L bits of Hl

as H
′
l for efficient retrieval. In our experiment, we only compared the local-level

hash code of query’s L positions with corresponding position bits of others.

H
′
q = Ψq(Hq), dH(H

′
q,Hi) = dH(H

′
q, Ψq(Hi)) (5)

where Ψq(∗) indicates obtain the bits of ∗ as the same positions as Hq.

Searching via Multi-level Hashing. The original data space could be mapped
to Hamming space by several group hash functions with similarity structure pre-
served separately. We proposed a multi-level search method of hashing, using
several sets of function with different properties to reinforce positive neighbor-
hoods retrieval and develop two strategies.

Rerank-Based Strategy#1. Firstly, we use global-level hash code to retrieval
and select top K as candidates. Then, we use local-level hash code to rerank
these candidates.

Hamming Distance Weighted Strategy#2. Assuming that query image xq

and N images {xi}Ni=1 and corresponding global-level hash code Hgq, {Hgi}Ni=1

and local-hash code H
′
lq, {Hli}Ni=1. Fusing distance as:

Sim(xq, xi) = λdH(Hgq,Hgi) + (1 − λ)dH(H
′
lq,Hli) (6)

In experiments, we firstly retrieval use the global-level code, then rerank by
proposed weighted strategy.

3 Experiments

Datasets. We evaluate performance on three standard datasets with mean
average precision (MAP). Oxford Buildings [20] (Oxford5k) contains 5063
images, including 55 queries corresponding 11 landmark buildings. Oxford
Buildings+100K [20] (Oxford105k) includes Oxford5k and extra 100K images
as distractor. Paris Buildings [21] (Paris6k) contains 6412 images, 55 queries
corresponding to 11 Paris landmarks.

Experimental Details. We implement the proposed DSCNN by Caffe [22]
package. We design DSCNN based on the AlexNet architecture, details as
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Fig. 1 shows. All images are resized to 256× 256 before passing through the net-
work. For training model, we randomly select positive and negative pairs from
dataset exclude queries and initial weights of Conv1-Conv4 with pre-trained
AlexNet.

Fig. 2. Examples of the compact of using local-level code to reranking. For each query
image, the first line represents the rankings with global-level hash code, and the next
line is the retrieval result by using proposed multi-level hash search method.

Results of Local Features. We compare local-level code from DSCNN with
other state local descriptors. Firstly, we compare with the sophisticated local
descriptors aggregation methods Fisher vectors [6], VLAD [23] and Tri. embed-
ding [24]. Table 1 summaries the results. We attain the best performance on
three datasets. Compared with deep feature, we can see that our average-pooling
strategy (local-level hash) outperforms max-pooling [25] and SPoC [6] on Oxford
dataset. Then, the result on Paris demonstrates that the local-level is superior to
global-level hash code. And multi-level improve the performance of global-level
code by 12 and 14 on Oxford and Paris, respectively. Some qualitative examples
of retrieval using multi-level hash are shown in Fig. 2, local-level hash enhances
the ranking of relevant results and decrease the irrelevant images, as expected.
Finally, our method is different from PCA and performs better.

Table 1. mAP comparison with local descriptors. Local-level hash perform better.

Method D Oxford5k Oxford105k Paris6k

Fisher Vector [6] 256 54.0 - -

Trian. embedding [24] 1024 56.0 50.2 -

VLAD [6] 128 44.8 37.4 55.5

CNN+VLAD [8] 128 55.8 - 58.3

CNN+Max pooling [25] 256 53.3 48.9 67.0

SPoC [6] 256 58.9 57.8 -

Conv7+PCA 256 58.6 55.7 68.6

global-level hash code 48 59.3 58.2 69.2

local-level hash code 256 69.7 63.9 85.2

multi-level hash code 256 67.1 63.4 83.7
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Comparison with State-of-the-Art. Approaches based on deep model in
the literature. We set length of Hl to 256 impartially. As Table 2 reveals that
our method produced better or competitive results. For strategy #1, we use
global-level hash code to retrieval 50 candidates and rerank by local-level hash
code, achieving mAP 67.1% on Oxford5k and 83.7% on Paris6k. Then, we adopt
strategy #2 to retrieval with setting λ to 0.5 empirically, obtaining slightly
different performance with strategy#1. We conjectured that the fusion weaken
some discriminant of local-level code caused the gap in performance.

For deep convolutional features, CNN+fine-tuning [26] gains mAP 55.7% on
Oxford by retraining deep models with additional landmarks dataset collected
by themselves, while we obtain 67.2% only with limited training samples pro-
vide by datasets. Although we did not promote performance by spatial rerank-
ing or query expansion strategies as Tolias et al. [7] done, our method achieve
competitive results. Compared with R-CNN+CS-SR+QE [26], our method is
more simple and effective (83.7 vs 78.4), exploring the inside property of deep
convolutional descriptor to select compact local feature for retrieval, while
R-CNN+CS-SR+QE locates objects by RPN. Mention that our method can
carry out fast image retrieval via Hamming distance measurement, which is
obviously superior to others based on Euclidean or Cosine distance.

Table 2. mAP comparison with state-of-the-art methods CNN-based.

Method Oxford5k Oxford105k Paris6k

SPoC [6] 58.9 57.8 -

Razavian et al. [5] 55.6 - 69.7

Kalantidis et al. [27] 65.4 59.3 77.9

Tolias et al. [7] 66.8 61.6 83.0

CNN+fine-tuning et al. [4] 55.7 52.4 -

R-CNN+CS-SR+QE [26] 67.8 - 78.4

Ours(#1) 67.1 63.4 83.7

Ours(#2) 67.2 62.8 83.4

4 Conclusion

This paper has presented a deep siamese CNN to produce global and local levels
hash codes for image retrieval with the proposed multi-level search method. And
we firstly propose to select region-related bits by activation maps. Finally, we
demonstrate the efficacy and applicability of the proposed approach on retrieval
benchmarks. Experimental results show that our method improves the previous
performance on Oxford and Paris datasets, respectively.
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Abstract. Due to degraded visibility and low contrast, object detection from
single haze images faces great challenges. This paper proposed to use a com-
putational model of visual saliency to cope with this issue. Superpixel-level
saliency map is firstly abstracted via the dark channel prior. Then, region
covariance descriptors are utilized to estimate local and global saliency of each
superpixel. Besides, the graph model is incorporated as constraint to optimize
the correlation between superpixels. Experimental results verify the validity and
efficiency of the proposed saliency computational model.

Keywords: Single haze image � Saliency � Covariance � Dark channel �
Superpixel

1 Introduction

According to the statistical reports from the ministry of public security, more than 10%
of the road traffic accidents are directly related to bad weather, such as fog and haze, the
visibility is significantly degraded in these scenes. Optically, the reason is due to the
floating particles in the air, which absorb and scatter much light.

To address this issue, a plethora of defogging algorithms have been developed in
recent decades. By utilizing image dehazing technology, the color and visibility of the
single haze image can be restored to some degree. Although the dehazing processing
can increase the identification of salient region substantially, the background infor-
mation is also enhanced. As a result, the real salient object of the defogging image can
not be detected correctly by the state-of-the-art saliency models (e.g. Fig. 1).

Typically, haze images have low contrast and low resolution, which cause the
visual features difficult to extract. Thus, saliency detection in haze image faces several
problems: (1) For most features become invalid in low visibility conditions, the
accuracy of detection result can’t be ensured by traditional feature extraction methods.
(2) Due to lack of edge and contour information, there has little difference between
foreground and background in haze image, it makes salient object hardly distinguished.

© Springer Nature Singapore Pte Ltd. 2016
Z. Zhang and K. Huang (Eds.): IVS 2016, CCIS 664, pp. 99–106, 2016.
DOI: 10.1007/978-981-10-3476-3_12



Conventional saliency methods had mainly followed Itti’s model [3], which based
on the multi-scale features and center-surrounded contrast. According to the perceptual
mechanism of human visual system (HVS), contrast plays a key role in visual saliency
computation. Current models estimate the saliency of each image region by computing
the contrast from local or global perspective.

Local methods compute saliency between each image region and its local neigh-
borhood. Rigas et al. [4] constructed saliency map by extracting image features via
local sparse coding. Nouri et al. [5] modeled the mesh saliency by using local adaptive
patches. Such models tend to highlight salient objects near edges instead of the whole
regions. Global methods estimate saliency between each region and the whole image.
Our previous model [6] computed saliency by global contrast measure and color dis-
tribution. Zhang et al. [7] proposed a nonlocal anisotropic diffusion equation based
saliency model. These global models can get a uniform saliency region.

In this paper, we employ both local and global estimation to define the saliency of
each superpixel. For the accuracy of salient object detection is directly affected by the
feature extraction, which is the main step to turn the visual stimuli into visual infor-
mation for processing. The saliency of each superpixel is computed the by two
descriptors including dark channel and covariance feature, which can better eliminate
the influence of the haze background. To optimize the saliency map, a graph model is
exploited to enhance the visual effect. Experimental results on the haze image dataset
demonstrate that the generated saliency map has favorable performance in comparing
with nine state-of-the-art saliency models.

2 Proposed Salient Object Detection Model

2.1 Superpixel Based Graph Construction

The proposed method creates superpixels by using simple linear iterative clustering
(SLIC) algorithm [8]. The input image is first divided the into superpixels SP(i), where
i ¼ 1; � � � ;N and N = 300 is sufficient to guarantee a good boundary recall.

After superpixel segmentation, a graph G ¼ ðv; eÞ of N nodes is constructed to
represent the input image, where v is the nodes set and each node corresponds to a
superpixel; e is the edges set and is weighted by an affinity matrix Am ¼ ½aij�N � N.
Given the graph G and the saliency seeds s ¼ ½s1; s2; � � � ; sN �T , the diffusion process
spreads the seeds s through graph G based on the optimal affinity matrix. The saliency

(a) Haze image (b) BL [1] (c) SC [2] (d) Proposed

(e) Dehazing (f) BL [1] (g) SC [2] (h) Proposed (i) Flowchart of the proposed model in single haze image

Fig. 1. Saliency maps comparison between haze image (a) and the pre-processing image (e).
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diffusions S� ¼ ½S�1; S�2; � � � ; S�N �T of each node are calculated via: S� ¼ Dm � s; where
Dm denotes the diffusion matrix, which is equal to ðIm � b � LmÞ�1 in (1).

The goal of manifold ranking is to compute a rank for each node in graph. By
utilizing the manifold ranking through graph G, the similarity between superpixels can
be described more accuracy. Given G, as in [9], the ranking function is defined by:

S� ¼ ðIm � b � LmÞ�1s; ð1Þ

where Im is the identity matrix of G, parameter b controls the balance of unary and
pairwise potentials in manifold ranking, and Lm is the normalized Laplacian matrix.

2.2 Dark Channel Based Depth Information Extraction

The dark channel prior is proposed to remove the haze from input image in [10].
According to the observation of outdoor images, some pixels or regions usually have at
least one color channel, which has very low intensity. It means that the dark channel of
image pixels is mainly generated by the dark regions, which usually appear in the
salient objects. For a pixel Iðx; yÞ, the dark channel prior is defined as:

Idarkðx; yÞ ¼ 1� min
c2fR;G;Bg

min
x;y2pðx;yÞ

Icðx; yÞð Þ
� �

; ð2Þ

where Ic is a color channel of image I and pðx; yÞ is a local patch centered around
Iðx; yÞ. Then, the dark channel prior of each superpixel SP(i) is computed by:

IdarkðSPðiÞÞ ¼ 1
numðSPðiÞÞ

X
x;y2SPðiÞ Idarkðx; yÞ; ð3Þ

where num(SP(i)) is number of pixels within the superpixel SP(i).
The low intensity region in haze image can be effective recognized by the dark

channel computation. Thus, the dark regions, colorful surfaces or the specific objects
are picked out from haze image. These factors are also components of salient objects.

2.3 Feature Based Region Covariance

The proposed model uses covariance matrices of superpixels as meta-features for
saliency estimation. The structure information can be better captured by region
covariance, which can also integrate features in a nonlinearly way. In our work, several
visual features are extracted, namely lightness, orientation, sharpness, and spectrum.

Lightness Feature: The lightness feature (denoted as Lðx; yÞ) is got from the light
channel in Lab color space, although the color information would fade in haze images,
the glow amount of an image is still an important indicator to measure object saliency.
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Orientation Feature: For an input image I, the horizontal gradient (denoted as
@I=@xj j) and the vertical gradient (denoted as @I=@yj j) are the norm of first order
derivatives of the intensity image, which can represent the edge orientation informa-
tion. The distribution and difference of the brightness in the haze scenes can be
highlighted by the gradient amplitude.

Sharpness Feature: Sharpness is proportional to the variations of image grayscale
and texture complication between a pixel and its neighbor pixels. The sharpness feature
(denoted as Sharðx; yÞ) is computed by the convolution of grayscale image and the
first-order derivatives of the Gaussian in vertical and horizontal directions [11].

Spectrum Feature: The spectrum feature (denoted as Specðx; yÞ) is measured by the
difference between log spectrum and amplitude [12], which is less affected by
the image contrast and more robust to noise.

Based on these features, the image is converted into a 5-dimensional feature vector:

F x; yð Þ ¼ Lðx; yÞ @Iðx; yÞ
@x

����
���� @Iðx; yÞ@y

����
����Sharðx; yÞSpecðx; yÞ

� �T
: ð4Þ

For each superpixel region SP(i) inside F, it can be represented as a 5 � 5 covariance
matrix [13] via:

Ci ¼ 1
n� 1

Xn
i¼1

ðfiðx; yÞ � l�Þðfiðx; yÞ � l�ÞT ; ð5Þ

where ffiðx; yÞgi¼1;���;n denote the 5-dimensional feature points inside SP(i) and l� is the
mean value of these points.

The multiple features, which might be correlated, can be naturally fused by covari-
ance matrix. The dissimilarity between two covariance matrices is measure by [14]:

qðCi;CjÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX5

k¼1
ln2EkðCi;CjÞ

r
; ð6Þ

where fEkðCi;CjÞgk¼1;���;5 are the generalized eigenvalues of Ci and Cj.

2.4 Covariance Based Saliency Estimation

Given an input haze image, the saliency of superpixel region Ri is defined by the
weighted average of covariance dissimilarities between Ri and its surrounding region.

For local saliency estimation, the surrounding region of Ri is found according to its
affinity matrix. The local saliency of Ri is computes as:

sðRiÞ ¼ 1
ki

Xki

j¼1
dðRi;RjÞ; ð7Þ
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where ki is the numbers of adjacent superpixel regions (denoted as Rj, j ¼ 1; � � � ; ki) of
Ri, dðRi;RjÞ is the dissimilarity between Ri and Rj, which is given by:

dðRi;RjÞ ¼ qðCi;CjÞ
1þ c�ðiÞ � c�ðjÞj j ; ð8Þ

where Ci and Cj denote the covariance matrix of Ri and Rj, c�ðiÞ and c�ðjÞ denote the
center of Ri and Rj, respectively. For global saliency estimation, we choose the whole
image region as the surrounding region of Ri.

2.5 Diffusion-Based Saliency Optimization

After calculating the saliency of all the superpixel regions, a seed vector s is obtained,
which contains a saliency value per graph node. Then the diffusion process given by (1)
and dark channel prior given by (3) are utilized to optimize the results. The saliency
value of superpixel SP(i) is constructed by:

SsaliencyðSPðiÞÞ ¼ Dm � sðRiÞ � IdarkðSPðiÞÞ: ð9Þ

Finally, two different saliency maps Slocal and Sglobal are efficiently obtained by the
proposed local and global methods, which are complementary to each other. We inte-
grate these two saliency maps by weighted geometric: Smap ¼ Selocal � S

1�e

global; e ¼ 0:5.

3 Experimental Results

The proposed algorithm is evaluated on the haze image dataset, which contains 200
haze images with the binary ground truths. Our model is compared with nine
state-of-the-art saliency models, including low rank matrix recovery (LR) model [15],
context-aware (CA) model [16], patch distinction (PD) model [17], graph-based
manifold ranking (GBMR) model [18], saliency optimization (SO) model [19], cellular
automata (BSCA) model [20], bootstrap learning (BL) model [1], spatiochromatic
context (SC) model [2], and generic promotion of diffusion-based (GP) model [21].

The performance evaluation is conducted according to four metrics. The first metric
compares the true positive rates (TPRs) and the false positive rates (FPRs). Figure 2(a)

(a) the TPRs and FPRs curve (b) the precision, recall and F-measure 

Fig. 2. Quantitative comparisons of the proposed saliency model with nine models.
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shows the TPR-FPR curve for comparing the proposed saliency model with the
aforementioned nine saliency models.

The second metric compares the precision, recall, F-measure rate. Precision mea-
sures the accuracy of the resulting saliency map. Recall measures the completeness of
the detected salient objects. F-measure is calculated as the weighted harmonic mean
between precision and recall. The quantitative comparisons of various models are
shown in Fig. 2(b), it shows that our model significantly outperforms the others.

The third metric compares the AUC (area under the curve) score, which is calcu-
lated as the area under the TPR-FPR curve. The perfect saliency model will score close
to 1. The forth metric compares the mean absolute error (MAE) score, which evaluates
the true negative saliency assignment. The MAE score is calculated as the difference
between the saliency map and the ground truth. The AUC and MAE scores are listed in
Table 1. Obviously, the proposed model achieves a relatively better performance
scores on the haze image dataset. The average computation times of ten saliency
models are also compared in Table 1, which are measured at a PC machine with an
Intel Pentium G2020 2.90 GHz CPU and 12 GB RAM. All these ten models are
implemented by using MATLAB.

The visual comparisons of saliency maps obtained by these various saliency models
are presented in Fig. 3. As can be intuitively observed from Fig. 3, the saliency maps
produced by the proposed model are closest to the ground truth and can deal well with
the challenging haze images.

Table 1. The performance comparisons of various saliency models in haze images

LR CA PD GBMR SO BSCA BL SC GP Proposed

AUC 0.8919 0.9440 0.9294 0.8047 0.8108 0.7298 0.9138 0.8466 0.8969 0.9747

MAE 0.1375 0.1578 0.1155 0.2889 0.1038 0.2824 0.2451 0.1397 0.2074 0.0964

TIME(s) 73.5214 35.4267 32.6920 1.6726 2.5709 3.1887 91.4533 58.6289 15.9652 9.8337

(a) Input (b)G-T (c) LR (d) CA (e)PD (f) GBMR (g) SO (h) BSCA (i) BL (j) SC (k) GP (l) Proposed

Fig. 3. The saliency maps of the proposed model in comparison with nine models.
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4 Conclusion

In this paper, we focus on modeling saliency by estimating the local and global contrast
of all superpixels, and present a dark channel and covariance feature based saliency
model. The dark channel processor can better restrain the impact of haze background.
The covariance feature can be robust to deal with the low contrast single haze images.
To further improve the visual performance, a diffusion process is employed to enhance
the internal relevance of salient object. Extensive experimental results have shown that
the proposed saliency model performs favorably against 9 state-of-the-art models on
the haze image dataset.
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Abstract. Automatic Facial Expression Recognition (FER) is an imper-
ative process in next generation Human-Machine Interaction (HMI) for
clinical applications. The detailed information analysis and maximiza-
tion of labeled database are the major concerns in FER approaches. This
paper proposes a novel Patch-Based Diagonal Pattern (PBDP) method
on Geometric Appearance Models (GAM) that extracts the features in
a multi-direction for detailed information analysis. Besides, this paper
adopts the co-training to learn the complementary information from
RGB-D images. Finally, the Relevance Vector Machine (RVM) classi-
fier is used to recognize the facial expression. In experiments, we vali-
date the proposed methods on two RGB-D facial expression datasets, i.e.,
EURECOMM dataset and biographer dataset. Compared to other meth-
ods, the comparative analysis regarding the recognition and error rate
prove the effectiveness of the proposed PBDP-GAM in FER applications.

1 Introduction

Numerous advancements in computer technology makes an automatic Facial
Expression Recognition (FER) as an attractive research area for HMI. The
knowledge about the facial parametric model is the prior requirement to recog-
nize the expression status. The Facial Action Coding Systems (FACS) and the
Facial Animation Parameters (FAP) [1] define the muscle actions and animations
for standardized face parameterization. The utilization of 3D and 4D recordings
[2] improves the ability of exploitation of facial information. The Local Diagonal
Number (LDN) pattern [3] is the derived method from LDP that encodes the
structural and intensity variations for specific face texture. The RGB-D images
captured by low-cost sensors (Kinect) [4,5] extends the FER systems applicabil-
ity into Human-Robot Interaction (HRI). Based on the properties of the image,
the feature extraction is split up into two categories such as static image-based
and the image sequence-based methods. Among them, the static methods uti-
lize the fewer data to achieve the fast recognition whereas the sequence-based
c© Springer Nature Singapore Pte Ltd. 2016
Z. Zhang and K. Huang (Eds.): IVS 2016, CCIS 664, pp. 107–113, 2016.
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methods requires more data. The Gabor Wavelet Transform (GWT) [11] that
extracts the features in two domains namely, spatial and frequency from the sta-
tic image that leads to high dimension. The existence of facial variations, pose,
illumination and the cultural change causes the performance degradation in FER
systems. Hence, there is a need of large-scale data to overcome the problems in
FER. The introduction section addresses the major issues in the traditional FER
methods such as the large scale data and the detailed information analysis. The
technical contributions of proposed PBDP-GAM are listed as follows:

1. The Patch-Based Diagonal Pattern (PBDP) proposed in this paper supports
the reliable detection and tracking of facial points that increases the size of
labeled pool.

2. The incorporation of PBDP on Geometric Appearance Models (GAM) and
the co-training extract the facial features in the multi-direction and the com-
plementary information learning.

3. The multi-directional feature extraction and the maximization of labeled
database by PBDP-GAM supports the detailed information analysis.

2 Related Work

The capture of facial surface deformations is the necessary stage in FER sys-
tems and it suffers from illumination variations. Ghosh and Ari [6] utilized
the Gray World (GW) algorithm to overcome the illumination variation from
grayscale and color images. An accurate prediction of scene illumination vari-
ation depends on the hand-crafted features that degraded the performance.
Convolutional Neural Network (CNN) and Differential Mean Curvature Map
(DMCM) multithreading cascade of rotation-invariant HOG (McRiHOG) and
Dynamic Bayesian Network (DBN) captured the facial interactions in different
levels such as bottom-top and top-bottom [7]. The two-way facial feature track-
ing algorithms have the great influence on expression/Action Unit recognition
performance. Principal Component Analysis (PCA), Gray Level Co-occurrence
Matrix (GLCM) and Fuzzy-logic based Image Dimensionality Reduction using
the Shape Primitives (FIDRSP) reduced the gray level with efficient recognition.
The existence of redundant and irrelevant features increased the complexity and
the computational cost in classification algorithms. Feature selection methods,
time-series classification methods, Relevance Vector Machine (RVM) [8], Output-
Associative RVM (OA-RVM) and Continuous Conditional Neural Fields (CCNF)
[10] predicted the multi-dimensional output vectors for the specific features and
the spatial-temporal dependencies inclusion affected the robustness adversely.
Hence, there is a need of large scale database to analyze the expressions. The
evolution of Co-training methods [13] improved the recognition performance with
the large size templates utilization.
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3 Patch-Based Diagonal Pattern on Geometric
Appearance Model

Figure 1 shows the working flow of PBDP-GAM. Initially, the preprocessing stage
comprises noise removal and skin pixel detection from input RGB images in the
KinectDB. The Gaussian filter removes the noise in the images. The Viola-Jones
[9] method detects the face from the input RGB images.

Fig. 1. Architecture of proposed method.

The GAM accepts the segmented skin pixels and converts them into binary
to extract the top of the head pixel. Then, GAM predicts the nose, mouth, chin,
and forehead from the top pixel by using distance measurement. The HOG,
Gabor followed by GAM algorithm counts the gradient orientation occurrences
for localized images and represents the image variations respectively. Then, we
utilize the Haralick feature extraction for every 30-degree orientation that pro-
vides clear texture analysis. Based on diagonal pixel values, PBDP extracts
image patterns. Initially, the image is divided into 3 * 3 matrix. The average of
diagonal pixels is calculated. If the average pixel value is greater than the neigh-
boring pixel, then the cell is filled with the value ‘1’. Otherwise, it is ‘0’. The
count of ones and zeros decides the necessary patterns for RGB-D image. The
likelihood estimation function in RVM classifier [8] identifies the facial expres-
sions as neutral and smile for RGB-D images respectively. Figure 2(a)–(d) show
the facial points detection. Figure 2(e)–(h) show the state of expression.
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Fig. 2. Facial points detection and expression (neutral/smile state) recognition.

The integration of large unlabeled data with the small labeled data improves
the RGB-D object recognition by a semi-supervised approach refers co-training
[13]. The training of RGB and Depth classifier (CRGB , CDepth) with an indepen-
dent feature set improves the large size unlabeled data learning. The probability
scores of RGB-D classifier determines the input instance category with cross
validation co-efficient (α) follows:

c = argciεxMax(αP ci
CRGB

+ (1 − α)P ci
CDepth

) (1)

If the RVM classified result has the sufficient confidence then the corresponding
images are added to the database.

4 Performance Analysis

The EURECOMM and biographer database validates the effectiveness of pro-
posed algorithm. The EURECOM dataset [13] contains facial images of 52 peo-
ples (14 females, 38 males) captured by Kinect sensor in two sessions at different
time periods. The Biographer-RGB-D database contains facial images of 13 peo-
ples (Chinese males with an age of fewer than 30 years with 25 images of each)
captured by the softKinetic camera with 15 fps frame rate.

4.1 Performance Metrics

The comparative analysis of proposed PBDP-GAM without co-training, with co-
training and SVM classifier regarding True Positive (TP), True Negative (TN),
False Positive (FP), False negative (FN), accuracy, sensitivity, specificity, preci-
sion, recall (True Positive Rate (TPR), Jaccard coefficient, Dice overlap, Kappa
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Table 1. Parametric equations

Parameters Descriptions

True Positive (TP) Cases of correct predictions of expressions

True Negative (TN) Cases of correct predictions of no expressions

False Positive (FP) Cases of incorrect predictions of expressions

False Negative (FN) Cases of incorrect predictions of no expression.

Accuracy (TP +TN)/(TP+ TN+ FP+ FN)

Sensitivity TP/(TP +FN)

Specificity TN/(FP +TN)

Precision TP/(TP +FP)

Recall TP/(TP +FN)

Dice coefficient Measure of similarity between the expression sets

Jaccard coefficient Size of intersection of expression sets/size of union of expression sets

Kappa coefficient k = P0−Pe
1−Pe

Table 2. Performance analysis

Performance metrics PBDP-SVM PBDP-RVM without
co-training

PBDP-RVM with
co-training

Sensitivity 86.2069 94.8276 98.2759

Specificity 99.2908 98.5816 99.2908

Precision 96.1538 93.2203 96.6102

Recall 86.2069 94.8276 98.2759

Jaccard coeff 97.0588 97.9412 99.1176

Dice overlap 98.5075 98.9599 99.5569

Kappa coeff 0.8916 0.9277 0.969

Accuracy 97.0588 97.94 99.12

coefficient on Biographer RGB-D database shows the effectiveness of proposed
work. The performance parameters specify how the proposed algorithm recog-
nizes the facial expression of the images. Table 1 describes the equations used
to evaluate the performance parameters. Table 2 shows the estimated values for
each performance metrics. The RVM combined with the PBDP approach effec-
tively reduces the computational cost due to the generalized form.

Figure 3 shows the recognition and error rate analysis for various expression
states over the existing methods. The PBDP-GAM offers 2.17, 14.92, 2.57, 6.65
and 3.89% improvement in recognition rate for smile, OM, SG, OH and OP
respectively compared to SANN method [12]. Similarly, PBDP-GAM reduces
the error rate by 36.87, 25.12, 74.78, 25.21, 50.97 and 45.87% compared to SANN
respectively.
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Fig. 3. (a) Recognition rate and (b) error rate analysis.

5 Conclusion

This paper addressed the limitation of real-time HMI-based applications such
that the detailed information analysis that requires large scale labeled pool.
The novel Patch-Based Diagonal Pattern (PBDP) on Geometric Appearance
Models (GAM) are proposed that extracted the features on multiple direction
for detailed information analysis. The co-training utilization created an effec-
tive large scale database with better identification and acceptance rate values.
Finally, the application of Relevance Vector Machine (RVM) to the extracted fea-
tures effectively classified the facial expression status. The experimental results
of proposed PBDP-GAM show the efficient recognition performance over the
existing methods regarding the recognition and the error rate values. Extension
of this work includes the deep learning methods for 3D face FER system.
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Abstract. This paper proposes a new multi-object detection system
based on binocular stereo vision. Firstly, we calibrate the two cameras
to get intrinsic and extrinsic parameters and transformation matrix of
the two cameras. Secondly, stereo rectify and stereo match is done to get
a disparity map with image pairs acquired by binocular camera synchro-
nously. Thus 3d coordinate of the objects is obtained. We then projects
these 3D points to the ground to generate a top view projection image.
Lastly, we propose distance and color based Mean shift cluster approach
to classify the projected points, after which the number and position of
objects can be determined. Binocular stereo vision based methods can
overcome the problems of object occlusion, illumination variation, and
shadow interference. Experiments in both indoor and corridor scenes
show the advantages of the proposed system.

1 Introduction

Video surveillance is widely used in our life. It is very important in the area
of public safety, traffic control, and intelligent human-machine interaction etc.
How to detect multi objects accurately is one of the major concerned prob-
lems to the researchers. Monocular, binocular and multiple cameras are all used
to detect objects. Existing object detection systems based on monocular vision
[1–4] usually have problems in such conditions: (1) multiple objects with severe
occlusion; (2) illumination variation; (3) the shadow interference. As for multi-
camera based detection system [5,6], it can avoid occlusion because of multi-view
and depth information. However, multi-camera based system needs additional
processing, extra memory requirement, superfluous energy consumption, higher
installation cost, and complex handling and implementation. For the above prob-
lems, binocular stereo vision based surveillance is a compromise between the
above two systems. The binocular can solve occlusion problem and has a small
computational cost and is easy to implement.

There is some work focus on stereo rectify [7,8] and stereo match [9]. Several
approaches based on stereo vision have been proposed to solve object detec-
tion problems [10–16]. The work of Muñoz-Salinas et al. [10] combines infor-
mation from multiple stereo cameras to get three different plan-view maps to
detect objects. In [11], Cai et al. presents a new stereo vision-based model for
c© Springer Nature Singapore Pte Ltd. 2016
Z. Zhang and K. Huang (Eds.): IVS 2016, CCIS 664, pp. 114–121, 2016.
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120mm

Fig. 1. The binocular stereo vision system. The left and right image are acquired by
binocular stereo camera synchronously. The final result is Marked in right image with
a stereo bounding box.

multi-object detection and tracking in surveillance system by projecting a sparse
set of feature points to the ground plane. In [12], Schindler et al. study a system
for detection and 3D localisation of people in street scene recorded from a mobile
stereo rig. Colantonio et al. [13] uses a thermo-camera and two stereo visible-
cameras synchronized to acquire multi-source information: three-dimensional
data about target geometry, and its thermal information is combined to do
object detection.

Our multi-object detection system based on binocular stereo vision is show in
Fig. 1. It performs well when there exists severe occlusion, illumination variation
and shadow interference. 3D coordinate of objects in the scene is obtained by
binocular stereo vision, and then project it to the ground to get a top view
projection image. In the projection image, the points on different objects are
separated from each other so that object occlusion can be eliminated. In order
to get the 3D coordinate of the object, the calibration of binocular stereo camera
is needed. The framework of the proposed system is shown in Fig. 2.

Projection image with mean shift 
cluster result marked with rectangle

Stereo rectify and stereo match

left image right image

disparity map disparity GMM

GMM

Intrinsic and extrinsic parameter calibration

Detection result

project
back to 

right
image

combine the result of calibration and disparity,  get 3D 
coordinate and project to get a plan-view projection image 
do mean-shift cluster on projection image

Fig. 2. The framework of the proposed binocular stereo vision system. Our work is
divided into three main blocks: stereo match, calibration and detection.
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The remainder of the paper is organised as follows: in Sect. 2 the calibration
of binocular stereo camera is introduced. Section 3 describes the mean shift clus-
ter method for object detection. Section 4 shows the result of out experiment.
Conclusions and future works are contained in Sect. 5.

2 Binocular Stereo Vision System Calibration

In this part, we mainly talk about the camera calibration. Firstly, each camera
is calibrated by Zhang’s [17] planar calibration method and then rectified by
Bouguet algorithm. Next, we match the same point in left and right images
and get disparity map by BM algorithm. Through stereo calibration, we can
get rotation and translation matrix which transforms the left camera coordinate
system to the right camera coordinate system. Combining the disparity map
between left and right images and calibration result, we can get the 3D coordinate
of the object in the scene. The transformation of coordinate is introduced in
detail below.

2.1 Camera Coordinate System to World Coordinate System

World coordinate is used to describe the position of camera, the rotation and
translation matrixes between camera coordinate and world coordinate shown the
transformation relationship between them. Assume that the point P’s coordinate
in the world coordinate system is (Xw, Yw, Zw), and its coordinate in the camera
coordinate system is (Xc, Yc, Zc). According to geometric model of camera, select
the right camera as the reference camera, as its center is the original point of
the camera coordinate system. Hence:

⎡

⎢
⎢
⎣

Xc

Yc

Zc

1

⎤

⎥
⎥
⎦ =

[
R T
0 1

]
⎡

⎢
⎢
⎣

Xw

Yw

Zw

1

⎤

⎥
⎥
⎦ = M1

⎡

⎢
⎢
⎣

Xw

Yw

Zw

1

⎤

⎥
⎥
⎦ (1)

Here we designate the original point of the world coordinate on the ground.
R and T are the rotation and translation matrixes between camera coordinate
system and world coordinate system.

2.2 World Coordinate System to Image Coordinate System

By the last step, we can get world coordinate of a point on the image. Assume
that point P is the center of object on top view projection image, we need to
reproject the point to the original right image to show the detection result,
hence:
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(u,v) is the coordinate of point P on right image. fu and fv are vertical and
horizon focal length, M2 is camera’s intrinsic parameter matrix, M1 is camera’s
extrinsic parameter matrix, which can be calibrated by Zhang’s planar calibra-
tion method.

3 Object Detection - Mean Shift Cluster

After the binocular stereo camera calibration, we can get a projection image,
in which each pixel represents one point on the ground and its value shows the
quantity of points projected to the pixel. With the projection image, we can
solve the object detection problem by clustering, as one cluster represents one
object. We use a new distance and color based Mean shift cluster algorithm.
Mean shift cluster [18,19] is a powerful non-parametric technique that does not
require prior knowledge of the number of clusters and does not constrain the
shape of the clusters.

The main idea behind Mean shift is to treat the points in the d-dimensional
feature space as an empirical probability density function where dense regions
in the feature space correspond to the local maxima or modes of the underlying
distribution. It is a iterative algorithm. We use gradient ascent procedure on the
local estimated density until convergence to solve the problem.

The mean shift procedure consists the following three steps:

1. choose an initial point as cluster center.
2. compute the mean shift vector from other points to this center.
3. move the center along the mean shift vector and get a new center, repeat

step 1 until reach the termination condition.

When the two object are much close to each other, it is difficult to separate
them by the distance based mean shift cluster.

Here we use both distance and color information of the projection image to
do mean shift cluster. In this case, the kernel is Khs,hc

(x) in Eq. 3.

Khs,hc
(x) = K(

∥
∥
∥
∥
xs − xs

i

hs

∥
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∥)K(

∥
∥
∥
∥
xr − xr

i

hr

∥
∥
∥
∥) (3)

To sum up, the steps are that the points are constantly moving along the
direction of the probability density gradient. Mean Shift cluster can find the
location of highest density by means of gradient descent.

We get n clusters centers by mean shift cluster method, each cluster rep-
resents one object. Then generate a bounding box, whose center is the cluster
center. The object projection to the ground is inside the box. Combined with the
height information of the object, we reproject these points back to the reference
image. The detection result is shown in Fig. 3.
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Indoor Scene Corridor Scene

Frame #176 Frame #181 Frame #235 Frame #181 Frame #199 Frame #314

Fig. 3. The detection result by mean shift clustering. Top two rows are the 2D and 3D
projection image, and the mean shift cluster results are marked with a white rectangle
bounding box. Bottom row shows the detection result in original right image.

4 Experiment

In this section we show the performance of the proposed binocular stereo vision
based multi-object detection system. We choose the point grey Bumblebee2
stereo vision camera (BB2-08S2C-60) and its baseline is 120 mm. The camera
is placed in the ceiling with a certain angle. The area covered by the camera is
3 m× 4 m. The camera is synchronised and set to acquire images at 60 fps with a
resolution of 1024 × 768 pixels. Our system has no specific requirements for the
surveillance objects, and moving people is used as an example of multi-object
detection in both indoor and corridor scenes, eight person are asked to walk
casually.

Figure 4 shows a comparison between our system and four typical back-
ground model based methods, including AdaptiveBL [20], DP MeanBGS,
Multi-LayerBG (MLBG) [21], Mixture of Gaussian V1BGS (MGV1BG) [20].
The detection results are marked with red stereo bounding boxes. It shows that
our method can detect the occluded objects while other methods can’t. Differ-
ent objects are separate when the occlusion happens on the projection image.

Adaptive BL OursOriginal Image DP MeanBGS MLBG MGV1BGAdaptive BL OursOriginal Image DP MeanBGS MLBG MGV1BG

Fig. 4. Comparison to four background model based object detection methods. (Color
figure online)
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However, background model based methods can’t separate them, as occluded
objects and other objects are fused together and form a connected domain on
the image.

4.1 Indoor Scene Experiment

The indoor scene always placed many things, like desks, cupboards etc., and
presents a complex background on the image. Our system is a good solution to
occlusion problem and complex background, as the object detection is solved by
distance and color combined mean shift cluster on the top view projection image.
The left part of Fig. 3 shows the detection result in indoor scenes. We can see that
even though some objects are severely occluded, however, they can be detected
properly. The detection results are marked with a red stereo bounding box.

4.2 Corridor Scene Experiment

As everyone knows, the corridor don’t have sufficient light and the image qual-
ity is not good, especially at night. When people walking in the scene, severe
occlusion, illumination and shadow change may happen. The state of art method
based on monocular does not work well on this data set, but our method shows
great performance.

We tested with 166 frames of indoor scene, 704 total number of real objects
and 166 frames of corridor scene, 872 total number of real objects. In indoor
scene experiment, only 21 real objects are not detected and there are 4 false
alarms. In corridor scene experiment, our method also performs well, 25 real
objects are not detected and there are 27 false alarms. The evaluation illustrates
that our method shows high detection rate and low false detection rate.

5 Conclusions

In this paper, we present a multi-object detection system based on binocular stereo
vision. 3D coordinate of object can be obtained by the binocular stereo vision
based method. Then we can get a top view projection image. Mean shift cluster
is used to determine the number and position of each object in the scene. Exper-
iment in both indoor and corridor scenes shows that our method performs well
to solve the problem of occlusion, illumination change and shadow interference.
In future, we will make efforts to do track on this system.
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Abstract. Detecting small targets like vehicles in high resolution satel-
lite images is a significant but challenging task. In the past decade, some
detection frameworks have been proposed to solve this problem. However,
like the traditional ways of object detection in natural images those meth-
ods all consist of multiple separated stages. Region proposals are first
produced, then, fed into the feature extractor and classified finally. Multi-
stage detection schemes are designed complicated and time-consuming.
In this paper, we propose a unified single-stage vehicle detection frame-
work using fully convolutional network (FCN) to simultaneously predict
vehicle bounding boxes and class probabilities from an arbitrary-sized
satellite image. We elaborate our FCN architecture which replaces the
fully connected layers in traditional CNNs with convolutional layers and
design vehicle object-oriented training methodology with reference boxes
(anchors). The whole model can be trained end-to-end by minimizing a
multi-task loss function. Comparison experiment results on a common
dataset demonstrate that our FCN model which has much fewer parame-
ters can achieve a faster detection with lower false alarm rates compared
to the traditional methods.

1 Introduction

Recent advances in remote sensing imagery make high-resolution satellite images
more accessible. Detecting vehicle objects in those satellite images becomes an
essential and meaningful research field for it can provide important information
for homeland surveillance, intelligent transportation planning, disaster search
and rescue, etc. Although a lot of works have been done, there is no one that
takes efficiency, robustness and speed all in consideration.

Machine learning methods are widely utilised in the research of satellite image
vehicle detection in the past decade. Like traditional object detection frameworks
in natural images those methods mainly take three stages. Region proposals
(latent candidates) are first produced by certain proposal extracting algorithm
like selective search and BING, then, fed into the feature extractor and classified
finally. Zhao and Nevatia [1] take vehicle detection as a 3D object recognition
problem so they select the boundary of the car body, front windshield and the
shadow as features which are then integrated by a Bayesian network. Eikvil
et al. [2] utilise satellite image information like road information, geometric-
shape properties to assist their Hu moment-based detection method. Liang
c© Springer Nature Singapore Pte Ltd. 2016
Z. Zhang and K. Huang (Eds.): IVS 2016, CCIS 664, pp. 122–129, 2016.
DOI: 10.1007/978-981-10-3476-3 15
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et al. [3] propose a detection scheme that uses multiple kernel SVM (MKL-
SVM) with HOG and Haar features. They trained MKL-SVM to learn an opti-
mal kernel with many base kernels in order to get the trade-off between HOG
and Haar features. Kembhavi et al. [4] construct an vehicle detection framework
by extracting HOG, color probability maps and pairs of pixel as features and
using a partial least square model.

All the detection framework we talk above are based on manual designed fea-
tures. Such hand-crafted features are “shallow” for they mainly consider color,
edge and general shape of the object and since real scene can be very complex
and various, those features reach a bottleneck in recognition discrimination and
robustness. Since Krizhevsky et al. [5] made a breakthrough using a convolu-
tional neural network (CNN) in ILSVRC [6] in 2012, CNN as an deep learning
model has been widely used in visual recognition tasks and yielded superior
performance. Deep convolutional neural networks can automatically learn rich
hierarchical features from raw data with its convolution layers and pooling lay-
ers and then send those self-learned features to an multiple layer perceptron
(MLP) for classification or regression. Jiang et al. [7] use graph-based superpixel
segmentation to extract region proposals and train a CNN to classify those pro-
posals. Chen et al. [8] slide a window to get vehicle proposals and train a hybrid
deep neural network (HDNN) to do the recognition work. Chen et al. [9] also
design another type of deep neural network called parallel deep convolutional
neural network to do the vehicle detection work.

Until now, all the detection framework we have discussed consist of at least
two stages which means complicatedly designed and time-consuming for proposal
generation process is hardly realized on GPU. For further acceleration, several
newly proposed proposal methods based on convolutional features, such as region
proposal network (RPN) [10], MultiBox [11] and DeepMask [12] are very suitable
for implementation on GPU. Inspired by region proposal network [10], we pro-
pose a unified single-stage vehicle detection framework using fully convolutional
network which can be trained end-to-end. We elaborate our FCN architecture
which can process arbitrary-sized images and design the training methodology
in experiment. The comparison results demonstrate that our method can achieve
a faster detection with lower false alarm rates and much fewer parameters com-
pared to traditional methods. The remainder of this paper is presented as follows.
Firstly, we explain our method in Sect. 2, in Sect. 3, we present and analyse our
experiment results. We conclude our work in Sect. 4.

2 Method

In this section, we explain our model architecture and learning methodology
respectively. We use a fully convolutional network (FCN) [13] which takes a
satellite image of any size as input and generates feature maps. Then the feature
maps are sent to two sibling convolutional layers: a classification layer (cls.) and
a box-regression layer (reg.). To reduce the number of candidate windows, like
RPN [10] We use n reference boxes (also called anchors [10]) to hypothesize
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the vehicle objects’ positions. The classification layer outputs the probability
how likely one anchor covers an object and the box-regression layer outputs the
regressed positions.

Fig. 1. Our FCN-based detection framework. The input is a arbitrary-sized raw satellite
image of 3 channels. A CNN of 6 convolution layers acts as a feature extractor. The
two sibling parts, classification layer and regression layer do the following detection
work. We use k anchors to hypothesize the vehicle locations

2.1 Architecture of FCN

The architecture of FCN used in this paper is showed in Fig. 1. It consists of
an feature extraction part and two sibling parts: classification and regression.
In our experiments we investigate Zeiler and Fergus’s model [14] which has 5
convolutional layers and 2 fully connected layers. ZF-net is designed for the
ILSVRC classification competition [6] which has 1000 categories. As for detection
task, it is not suitable for fully connected layers lose spatial information. So we
replace the fully connected layers with convolutional layers, forming a single fully
convolutional network. For clarity we demonstrate our FCN in Table 1. The FCN
model has six 3× 3 convolutional layers and 2 sibling 1× 1 convolutional layers.
Every spatial position (corresponding to a region of the input image) of conv6
feature map obtains a 256-d feature vector, which is fed into the box-classification
layer (cls.) and box-regression layer. Our model has the same depth with ZF-net
but much fewer parameters. In practice, we compared our fully convolutional
network model with ZF-net model and found that our model is 14 times smaller.

2.2 Learning Methodology

To narrow the vehicle object searching space, we use several reference windows
(anchors [10]) instead of searching every scale and aspect ratio. At training
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Table 1. FCN configurations. For each convolutional layer “parameters” gives the
filter size and the stride which the filter is sliding with and “filter numbers” gives the
convolution kernel numbers of that layer. The pooling layers, LRN layers and ReLU
activation layers are not shown for brevity

Layer conv1 conv2 conv3 conv4 conv5 conv6 cls reg

Parameters 3 × 3, 2 3 × 3, 2 3 × 3, 1 3 × 3, 1 3 × 3, 1 3 × 3, 1 1 × 1, 1 1 × 1, 1

Filter numbers 96 256 384 384 256 256 18 36

stage, our FCN model takes an arbitrary-sized image of 3 channels as input and
generates feature maps of 256 channels after layer conv6. So in each position
(x, y) of those features maps we can extract a 256-dimension vector correspond-
ing to k anchors in the original image. If one anchor has intersection-over-union
(IoU) overlap with any ground-truth box higher than 0.75 we take it as a positive
sample and similarly, if the IoU is lower than 0.3 we consider it as a negative
sample. Other reference boxes do not server as training examples. For anchors
we use three 3 scales with box areas of 36× 36, 44× 44, and 50× 50 pixels, and
3 aspect ratios of 2:1, 1:1, and 1:2. The 9 anchors we use are shown in Table 2.

Table 2. anchors

362, 2:1 362, 1:1 362, 1:2 442, 2:1 442, 1:1 442, 1:2 502, 2:1 502, 1:1 502, 1:2

50 × 26 36 × 36 26 × 50 62 × 31 44 × 44 31 × 62 70 × 36 50 × 50 36 × 70

Our FCN model is trained end-to-end by back-propagation (BP) [15] and the
optimization scheme we use is stochastic gradient descent (SGD) [15]. We define
our multi-task loss function following [16]:

�L({pi} , {ti}) =
1

Ncls

∑

i

Lcls(pi, p∗
i ) + λ

1
Nreg

∑

i

p∗
i Lreg(ti, t∗i ). (1)

Here, i is the index of anchors in a mini-batch and pi is the predicted probability
of anchor i being an object. The corresponding ground-truth label of pi is p∗

i

which is 1 if the anchor is positive and 0 otherwise. Similarly, ti is the 4 predicted
parameterized coordinates of the predicted bounding box and t∗

i the ground-
truth. The classification loss Lcls is a vehicle vs. non-vehicle log loss and we
use smooth function defined in [16] for regression loss Lreg. The hyperparameter
λ controls the balance between the two task losses. We find that satisfactory
results can be obtained for vehicle detection by setting λ = 10. Thus we keep
this parameter fixed in the following experiments. Our implementation is based
on Caffe [17] and Python.
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3 Experiment

This part dispatches details of our experiment results. Specifically, we first intro-
duce our dataset and then we compare the detection accuracy of our method
with that of some typical methods. Finally our method is compared to other
DNN-based methods on the subject of size and speed.

The dataset we use is that of [8] which includes 63 satellite images (1368 ×
972) from google earth of San Francisco city containing 6887 vehicle samples.
To guarantee adequate training data, we split the dataset to 46 and 17 for
training and testing randomly. At training stage, we augment the training set
by rotating the images by 90◦, 180◦, 270◦ and flipping the images horizontally. No
further data augmentation is done. When training, parameters of conv1-conv5
are initialized from a pre-trained model on PASCAL VOC2007 detection task.
We iterate 10000 times with learning rate 0.001 for the first 7000 mini-batches
and 0.0001 for the next 3000 mini-batches on our training set. The momentum
and weight decay we use are 0.9 and 0.0005 respectively [5].

Here the false alarm rate (FAR), precision rate (PR), and recall rate (RR)
are defined as

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

FAR =
number of false alarms

number of vehicles
× 100%

PR =
number of detected vehicles

number of detected objects
× 100%

RR =
number of detected vehicles

number of vehicles
× 100%

. (2)

Table 3. FAR and processing time of our method and other methods on vehicle
test set

Method FAR at given RR (%)

95% 90% 85% 80% 75% 70%

Proposed 19.3 9.38 5.42 3.53 2.27 1.63

HDNN [8] 20.2 9.57 5.49 3.57 2.31 1.65

HOG+SVM [18] 67.5 43.4 29.3 20.2 14.3 10.3

LBP+SVM [19] 87.6 59.2 43.0 32.8 24.5 19.4

Adaboost [20] 91.6 65.3 49.1 40.1 31.6 25.8

Test time for one image (s)

Proposed GPU 0.2

HDNN [8] GPU 8

In Table 3, we list the FAR at given RR of our method and 4 other typical
methods. Our method outperforms other methods. It means our detector is more
robust for it can detect objects which are very hard for the rest methods and
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that proves the benefits of deep convolutional features and position regression.
In Fig. 2, we give some detection results samples. The testing images cover scenes
from road with many trees to parking lot. Our detector performs very well even
vehicle objects are quite dense on parking pot or sheltered by trees.

Fig. 2. Some detection results in San Francisco. The four images cover scenes from
road with trees to parking lot

Since our detection framework is designed to be a single-stage detector, it
also has a very fast speed. In Table 3, we give the processing time of one image of
FCN and traditional DNN method. Our detector achieves a frame rate of 5 fps
on a computer with NVIDIA GTX960. There are two main reasons that our
method is superior in speed. One is discarding proposal extraction stage which
is an essential step of the rest methods and the other is that we do convolutions to
the whole original image to extract features rather than one proposal by another.
So for one testing image, our network does forward propagation only once while
the other methods need to do it hundreds or thousands times depending on how
many region proposals they extract in the region proposals extracting stage.

Table 4. Size of parameters in various models

Model AlexNet [5] ZF-Net [14] Proposed

Size 224 MB 249 MB 17MB

Table 4 shows the comparison of parameter size for various models. Our FCN
model is based on ZF-Net but the size is only 1/14 of ZF-Net which demonstrates
that using convolutional layers instead of fully connected layers can greatly
reduce the the amount of model parameters while obtaining comparable detec-
tion performance.
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4 Conclusion

In this paper, we propose a new automatic satellite vehicle detection frame-
work based on fully convolutional network (FCN). Different from traditional
manual feature-based or DNN-based methods which are designed multi-stages,
our method takes only one stage both in training and testing. By elaborating
the FCN architecture and integrating several learning tricks, a very robust and
fast vehicle detector is obtained. Our experiment results show that our approach
achieves better performance in both detection accuracy and speed in comparison
to alternative approaches with much fewer parameters.
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Abstract. Dimensionality reduction has been attracting emerging attention
with the explosive growing of high-dimensional data in many areas including
web image annotation, video object detection, and human action recognition.
Comparing with the traditional nonlinear dimensional reduction such as Locally
Linear Embedding, Isometric feature Mapping, Laplacian Eigenmap, semi-
supervised nonlinear dimensional reduction method can improve stability of the
solution by taking into account prior information. In this paper, we integrate
exact mapping information of certain data points into Hessian Eigenmap and
propose semi-supervised Hessian Eigenmap. Considering the prior information
with physical meaning, semi-supervised Hessian Eigenmap can approximate
global low dimensional coordinates. On the other hand, Hessian can exploit
high-order information of the local geometry of data distribution in comparison
with graph Laplacian and thus further boost the performance. We conduct
experiments on both synthetic and real world datasets. The experimental results
demonstrate that the proposed semi-supervised Hessian Eigenmap algorithm
outperforms the representative semi-supervised Laplacian Eigenmap algorithm.

1 Introduction

With the development of visual surveillance, many computer vision applications are
attracting emerging attentions including web image annotation, video object detection,
etc. In most cases, the visual information is represented by high-dimensional data.
Therefore, it has been becoming important for dimensional reduction which aims to
learn a suitable low-dimensional representation of the high-dimensional data.

The representative dimensional reduction methods include principal component
analysis (PCA), multidimensional scaling (MDS), locally linear embedding (LLE),
ISOMAP, local tangent space alignment (LTSA), Laplacian Eigenmap (LE) and
Hessian Eigenmap (HE). Principal component analysis (PCA) [1] can transform the
original data into a lower dimensional space and keep the most variance. Multidi-
mensional scaling (MDS) [2] pictures the structure of a set of data points using
Euclidean space and remains the distance of those points in low-dimensional space.
Locally linear embedding (LLE) [3] aims to recover the global nonlinear structure from
a set of locally linear patches. ISOMAP [4] builds on classical MDS but seeks to
preserve the intrinsic geometry of the data, and it tries to use geodesic manifold
distance to replace typical Euclidean distance between all pairs of data points. Local
tangent space alignment (LTSA) [5] tries to find the global low-dimensional
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coordinates by the local tangent space information. Laplacian Eigenmap [6] wants to
find a low-dimensional representation for original high-dimensional data by main-
taining the local properties which calculated by pairwise distance between neighboring
points. And Hessian Eigenmap [7] is the method which achieves local linear embed-
ding by minimizing the Hessian function on the manifold and the local Hessian is
estimated by the local tangent space.

All the above traditional dimensional reduction methods are unsupervised, in which
no prior information of the input data are taken into account. Recently, semi-supervised
nonlinear dimensionality reduction [8] considered prior information for dimensional
reduction and yielded global low dimensional coordinates with physical meaning. And
then semi-supervised Laplacian Eigenmap (SSLE) [9] boosted the performance by
integrating prior information into Laplacian Eigenmap. In this paper, we propose
semi-supervised Hessian Eigenmap (SSHE) for human action recognition. In contrast
to Laplacian, Hessian has a richer null-space and can exploit high-order information of
the local geometry of data distribution. And Hessian extrapolates nicely to unseen data
[10]. Firstly, we conduct experiments on synthesis data and a toy dataset (MNIST) to
verify the proposed algorithm. Then we apply the proposed semi-supervised Hessian
Eigenmap for human action recognition. The experimental results demonstrate that the
proposed semi-supervised Hessian Eigenmap outperforms the semi-supervised Lapla-
cian Eigenmap algorithm.

The rest of the paper is organized as follows. In Sect. 2, we briefly introduce the
Hessian Eigenmap and then describe the semi-supervised Hessian Eigenmap in detail.
In Sect. 3, we demonstrate the experiments on different datasets. And finally, the
conclusion is drawn in Sect. 4.

2 Semi-supervised Hessian Eigenmap

In this section, we briefly introduce the procedure of Hessian Eigenmap at first. And
then we describe the proposed semi-supervised Hessian Eigenmap.

2.1 Hessian Eigenmap

Suppose we are given a dataset X ¼ x1; x2; . . .; xnf g with n samples. Hessian Eigenmap
algorithm can be summarized as the following four steps.

Step 1: Neighborhood construction. Using k-neighborhood to define neighbors in
Euclidean distance for each input point xi, we get neighborhood matrix Ni.
Step 2: Create local tangent coordinates. Conduct singular value decomposition on
neighborhood matrix Ni ¼ U

0
DV . The first d columns of V (Vi ¼ v1; v2; . . .; vd½ �)

mean the tangent coordinates of data points xi.
Step 3: Build local Hessian Estimator. First construct a column vector

1 ¼ 1; 1; . . .; 1|fflfflfflfflfflffl{zfflfflfflfflfflffl}
k

2
4

3
5
0

and a matrix Qi ¼ ½vi�vj�1� i� j� d . Apply Gram-Schmidt proce-

dure on the mixed matrix 1;Vi;Qi½ � and gain its orthogonalization matrix, then we
extract a subset Wi at the same position of Qi from it. Let Wi ¼ Wi �W

0
i .
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Step 4: Construct Hessian Eigenmap matrix. Let H is a n� n zero matrix, and fills
matrix H through function H Ni;Nið Þ ¼ H Ni;Nið ÞþWi. Up to now, we calculate the
first dþ 1 smallest eigenvalues of matrix H which are the low-dimensional
embedding coordinates of the original high-dimensional data.

2.2 Semi-supervised Hessian Eigenmap

In this part, we discuss about Semi-Supervised Hessian Eigenmap. Let dataset X ¼
x1; x2; . . .; xnf g ¼ X1X2½ �; subset X1 ¼ x1; x2; . . .; xmf g and X2 ¼ xmþ 1; . . .; xnf g

s:t:m\n. Suppose that X1 is a part of dataset X whose low dimensional coordinates are
already known while X2 is the rest. Also we divide the low dimensional coordinate
matrix Y into Y ¼ ½Y1Y2�, in which Y1 corresponds to X1, while Y2 in accordance
with X2.

Similar to the unsupervised Hessian Eigenmap, we use the Donoho & Grimes’s
method [7] to get the Hessian matrix H. Then similar to SSLE [9], we divide H into

H ¼ H11 H12

H21 H22

� �
ð1Þ

Where H11 is of size m� m. Since Y1 is known, we can get Y2 by solving the
minimization problem:

minY2 Y1 Y2½ � H11 H12

H21 H22

� �
YT
1

YT
2

� �
ð2Þ

Compared with SSLE, we just use the Hessian to replace the Laplacian. Then the
minimization function equals to

minY2 Y1H11Y
T
1 þ Y2H

T
12Y

T
1 þ Y1H12Y

T
2 þ Y2H22Y

T
2

� � ð3Þ

So the answer given by the partial derivative of the function above sub Y2 and let it
equals to zero.

@ Y1H11YT
1 þ Y2HT

12Y
T
1 þ Y1H12YT

2 þ Y2H22YT
2

� �
@Y2

¼ 0 )obtain H22Y
T
2 þHT

11Y
T
1 ¼ 0 ð4Þ

Now, Y2 can be figured out easily for Y1 is supported by supervised points X1.

3 Experiments

In this section we conduct experiments on both synthetic and real world datasets. The
representative SSLE and the proposed SSHE are compared in Sects 3.1 and 3.3, also
traditional unsupervised algorithms LE and HE are involved in our comparison for
visual effects in Sect 3.2. And in the semi-supervised methods, the label information of
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prior points defined by one hot code. Most importantly, the neighboring number k is
chosen carefully for reaching the best performance of each algorithm while the other
parameters staying the same. In Sects. 3.1 and 3.3, a simple classifier [9] is designed as
Labeli ¼ argj¼1;2;...;NmaxYi

2 jð Þ; i ¼ 1; 2; . . .; ðn� mÞ, N is the class number of input
data, and Yi

2 means the calculated low dimensional coordinate matrix for the rest data.
What we need to do is to find which line gets the largest number, then that line number
corresponds to the label information. By comparing the returned labels with the real
labels, we can get the accuracy rate.

3.1 Experiments on Swiss Roll

Dataset and Experiment Setting: Swiss Roll is a common synthetic data model in
manifold learning. In this experiment, we create a 3000 points Swiss Roll with 2
categories (each category owns about 1500 points). We reduce the dimensionality to
2D, while the original dimensionality reaching to 3D. The supervised points are
selected randomly and each class has the same number of prior points. The label
information of supervised points are defined as [1 0] for the first class and [0 1] for the
other one. We retry 10 times on each set of parameters, then average them as the final
results. Both SSLE and SSHE are applied to this dataset. The result of the experiments
proves the superiority of Semi-supervised Hessian Eigenmap Fig. 1.

Results:

3.2 Experiments on MNIST

Dataset and Experiment Setting: We use the MNIST handwriting dataset which
contains 60000 pictures and each picture is size of 28 � 28 pixels represents figure “0”
to “9”. For visual effects we select 800 samples for each figure from “1”, “4”, “7”, and
“9”. We apply unsupervised algorithms Laplacian and Hessian Eigenmap and the
derived semi-supervised techniques to this data.

Fig. 1. Swiss Roll dataset (left) and the accuracy rates of SSLE and SSHE (right).

136 X. Ma et al.



Like the experiment on Swiss Roll we define the label information of supervised
points who are chosen randomly as [1 0] for class one, [0 1] for class two, [−1 0] for
class three and [0 −1] for class four. And we reduce the original dimensionality to 2D.
Traditional unsupervised techniques Laplacian Eigenmap, Hessian Eigenmap and
semi-supervised methods SSLE, SSHE are all involved in our comparison.

Results: As it is shown in Fig. 2, compared with unsupervised algorithms, semi-
supervised methods divide the four classes apparently by considering only a bit of prior
points. For further exploration, we increase the rate of prior data points gradually
(shown in Fig. 3). Within our expectation, the boundaries of different classes become
more clear and even can be classified by a linear classification with the increase of prior
information. And they express the superiority of semi-supervised algorithms.

3.3 Experiments on Human Action Dataset

Dataset and Experiment Setting: We use human action dataset [11] which is achieved
by 17 inertial sensors attached on different positions of the volunteers. And it contains
10 action performed by 10 people and each action with samples range from 100 to 110.
The FFT feature of 3D acceleration gathered by sensors obtained through pre-process
and the process including mean filter and FFT. Then we get a matrix size of 1086 �
1344 from each sensor where 1086 is the number of samples and 1334 means the
dimensional coefficients of each sample. Need to say the ten categories of human
actions including: jumping forward, jumping up, lying down, running, setting down,
typing, walking, walking quickly and walking S.

In our experiments we extract data from partial sensors. We reduce the dimen-
sionality to 6D and the prior data points are selected randomly, simultaneously every

Fig. 2. The dimensionality reduction results of LE, HE, SSLE and SSHE.

Fig. 3. The results of SSLE and SSHE with the different rate of prior points. K = 7, d = 2.
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class contains the same rate of supervised points. We have 10 categories of human
actions, so we use one hot code to represent the label information of supervised points.

That means 1 00. . .0|fflfflffl{zfflfflffl}
9

2
4

3
5 corresponds to class 1, and 00. . .0|fflfflffl{zfflfflffl}

9

1

2
4

3
5 corresponds to class 10

etc. We increase the rate of prior points gradually from 10% to 50% and conduct
experiments 10 times on each rate, then average them as the final outcomes for each
condition. Representative SSLE and proposed SSHE are compared in our experiments.

Result: As it is shown in Fig. 4, with the increase of supervised spots, SSHE’s per-
formance is superior to SSLE apparently in the accuracy rate. In addition, we also find
that the standard deviation of the two methods rising while the prior points reaching a
certain rate. Confusion matrices of SSLE and SSHE shown in Fig. 5 are obtained
through the one-off experiments when the rate of prior points equal to 25% and 50%.

4 Conclusion

In this paper, we propose a semi-supervised Hessian Eigenmap for human action
recognition. Hessian has a richer null-space and can exploit high-order information of
the local geometry of data distribution. Also Hessian extrapolates nicely to unseen data.

Fig. 4. Results of SSLE (blue) and SSHE (red) conducted on human action dataset. (Color
figure online)

Fig. 5. Confusionmatrices of SSLE andSSHEwhen the rate of prior points equal to 25%and 50%.
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The experimental results on both synthetic dataset and real world dataset demonstrate
that the proposed semi-supervised Hessian Eigenmap algorithm outperforms the rep-
resentative semi-supervised Laplacian Eigenmap algorithm.

Acknowledgement. This paper is partly supported by the National Natural Science Foundation
of China (Grant Nos. 61671480, 61301242, 61271407) and the Fundamental Research Funds for
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Abstract. Video surveillance based crowd counting is important for
crowd management and public security. It is a challenge task due to the
cluttered background, ambiguous foreground and diverse crowd distrib-
utions. In this paper, we propose an end-to-end crowd counting method
with convolutional neural networks, which integrates original frames and
motion cues for learning a deep crowd counting regressor. The original
frames and motion cues are complementary to each other for count-
ing the stationary and moving pedestrians. Experimental results on two
widely-used crowd counting datasets demonstrate the effectiveness of our
method, and achieve the state-of-the-art performance.

1 Introduction

Counting crowd pedestrians in surveillance videos draws a lot of attention
because its important applications in crowd management and public security. It
is especially significant for public areas with high population density. However,
due to severe occlusions, diverse crowd distributions and complex background,
the crowd counting in surveillance videos is a challenging problem.

Many algorithms have been proposed to count the pedestrians by detec-
tion [1–4] or trajectory-clustering [5,6]. However, these methods are limited
by the severe occlusion among people in a clustered environment or in a very
dense crowd. The most extensively used method for counting crowd pedestri-
ans is feature-based regression. The traditional regressor based crowd counting
methods [7–11] segment the foreground firstly, and then train regressors with
hand-crafted features extracted from the foreground to predict global crowd
counts. It is worth noting that segmenting the foreground target accurately in
surveillance videos is a challenging task, which would significantly affect the
performance of the final crowd counts prediction. In recent years, convolutional
neural networks (CNN) have achieved great success in the field of computer
vision. Researches [12–14] show that the features learned by the deep CNN
model can explore the latent high-level semantic representation, and are more
c© Springer Nature Singapore Pte Ltd. 2016
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effective than hand-crafted features for many applications. Based on the CNN
framework, Zhang et al. [15] and Zhang et al. [16] proposed to regress the crowd
counts of original image directly. Both of them utilize the pedestrian density
map to aid the model training, and demonstrate good performance on most
existing datasets. However, in order to compute the density map, the head loca-
tion of every pedestrian needs to be labeled in the original image, which is
time-consuming and costly.

In this paper, we propose a simple but effective surveillance based crowd
counting method with the CNN framework. We learn an end-to-end crowd count-
ing regressor with the original image frames that are only labeled with crowd
counts in the training dataset. In order to alleviate the disturbance from the
cluttered background, inspired by the work [17] that utilizes motion cues among
video frames for crowd segmentation, we propose to integrate original and motion
images for learning the crowd counting regressor. The original images are to
learn some filters that are sensitive to the areas like crowd pedestrians, while
the motion images are to learn some filters that focus on the foreground target.
They are complementary to each other for counting the pedestrians in surveil-
lance image frames. Extensive experiments are conducted on two commonly used
crowd counting datasets, and our method achieves the state-of-the-art perfor-
mance.

2 Proposed Method

The key insight of our approach is that the motion cues among video frames
are beneficial to alleviate the disturbance from the cluttered background, and
the original images and the corresponding motion images are complementary to
each other for learning a robust deep crowd counting regressor. In the following,
we will first present the process of generating the motion images, and then detail
our crowd counting framework.

2.1 Motion Images Generation

Since we aim to count crowd pedestrians in surveillance videos, it would be
beneficial to improve the performance of the crowd counting regressor if it is
trained only with the crowd areas, but not the cluttered background, such as
trees, buildings, etc. Although the crowd areas in videos are not labeled, the
motion cues can help detect moving pedestrians even if they have similar textures
with background, and help alleviate the cluttered background. Here, we explore
the motion cues by computing motion image for each original image frame. In
detail, as shown in Fig. 1, the motion images are generated by the original frames
minus the mean frame of the surveillance video clip. The foreground targets are
highlighted in the motion image.
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Fig. 1. Pipeline of generating the motion image. Best viewed in color. (Color figure
online)

2.2 Crowd Counting Model

Although the motion image is beneficial to detect the foreground targets in
surveillance videos, these targets may include some other noise targets (e.g., cars,
showcases, and so on) but not only the moving pedestrians. In addition, there
may be some stationary crowd pedestrians in the video clips. As a consequence,
we propose a deep CNN framework that integrates original and motion images
for learning a robust crowd counting regressor, see Fig. 2. Here, the original image
can help count the stationary pedestrians and eliminate the moving targets that
are not pedestrians.

As shown in Fig. 2, our network model consists of two columns, one column
for the original image while another column for the motion image. For each col-
umn, there are 5 convolutional layers and 2 fully connection layers, which are
same to the configuration in the AlexNet [12]. Since the training data is lim-
ited, we change the fully connection layer fc7 to a bottleneck layer with a lower
dimensional (128-dimensional) to prevent overfitting. We merge the outputs of
the two columns into one layer so that the original and motion cues are inte-
grated. By mapping the integrated information to one fully connection layer fc8
with 1-dimensional, we can get the prediction count of crowd pedestrians in a

Fig. 2. The framework of our proposed method.
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video frame. We place the Euclidean distance loss on the top of the fc8 layer to
directly regress the crowd count in an image frame, which is defined as follows.

F(θ) =
1

2N

N∑

i=1

‖P(xi; θ) − yi‖2, (1)

where θ represents the weight parameters of our network, and P(xi; θ) outputs
the prediction count of frame xi while yi is the corresponding ground truth crowd
count.

The loss function is optimized via batch-based stochastic gradient descent
and backpropagation. Since the number of training samples are very limited,
the layers before fc7 in each column are initialized by the AlexNet model [12]
trained on ImageNet, and their learning rates are set to 0. We firstly pretrain
CNN in each column separately by directly mapping the output of fc7 to fc8.
Then we utilize the pretrained CNNs to initial the two columns in our final
model and fine-tune the parameters in fc7 and fc8 layers.

3 Experiments

We evaluate our method on two widely-used crowd counting benchmarks. Exper-
imental results demonstrate the effectiveness of our method, and achieve the
state-of-the-art performance on both datasets. Implementation of the proposed
network is based on the Caffe framework developed by [18]. In the following, we
will first explain the evaluation metric, and then we introduce the two benchmark
datasets. Finally, the experimental results are presented.

3.1 Evaluation Metric

By following the convention of previous work [7,15,19] for crowd counting, we
evaluate different methods with three kinds of evaluation metric: mean average
precision (MAP), mean average error (MAE) and mean square error (MSE).
They are defined as follows:

MAP = 1 − 1
N

N∑

i=1

|ỹi − yi|
yi

,MAE =
1
N

N∑

i=1

|ỹi − yi|,MSE =
1
N

N∑

i=1

(ỹi − yi)2,

where N is the number of test images, ỹi is the predicted pedestrian count of the
ith image frame, and yi is the ground truth pedestrian count of the ith image
frame. Roughly speaking, MAP and MAE indicate the accuracy of the learned
model, and MSE indicates the robustness of the learned model.

3.2 Datasets

For the research of crowd counting, there are two most widely-used datasets:
UCSD [7] and Mall [9]. Example frames of the two datasets are shown in Fig. 3.
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Fig. 3. Example frames of the datasets. (a) UCSD dataset. (b) Mall dataset.

– UCSD: It contains 2000 frames chosen from one surveillance camera on UCSD
campus walkways. The frame size is 158×238. There are about 25 persons on
average in each frame. By following the same setting with previous work [7,15],
we use frames from 601 to 1400 as training samples, and the remaining 1200
frames are used as test data.

– Mall: It is a dataset collected from a publicly accessible webcam in a mall for
crowd counting. There are over 60,000 pedestrians were labeled in 2000 video
frames. The frame size is 480 × 640. We adopt the same experimental setting
with [9], the first 800 frames are selected as training data, and the rest 1200
frames are selected as test data.

3.3 Results

We first verify the effectiveness of merging the original and motion cues for crowd
counting based on the Mall dataset. The results are shown in Table 1. Comparing
to the CNN network with only the original images as input, the MAP of crowd
counting is improved by integrating the original and motion information for
learning the crowd counting regressor. This demonstrates the effectiveness of
merging the original and motion cues for crowd counting in some degree.

Table 1. Experimental results on the Mall dataset with different input information

Method MAP

Only original image 0.91

Original and motion images 0.92

We also compare our method with other popular regression based crowd
counting methods. The experimental results are shown in Table 2. Most of the
methods learn the crowd counting regressor based on the hand-crafted features,
except the cross-scene crowd counting [15] and our methods utilize the deep CNN
features. From the results in Table 2, we can see that the CNN network based
methods show better crowd counting performance (the smaller, the better), espe-
cially on the UCSD dataset. Our baseline is the output of our model trained only
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Table 2. Comparision results in UCSD and Mall datasets

Method UCSD Mall

MAE MSE MAE MSE

Kernel ridge regression [20] 2.16 7.45 - -

Ridge regression [19] 2.25 7.82 3.59 19.00

Texture analysis counting [21] 2.60 10.1 3.90 23.90

Gaussian process regression [7] 2.24 7.97 3.72 20.10

Multiple output regression [9] 2.29 8.08 3.15 15.70

Cross-scene crowd counting [15] 1.60 3.31 - -

Our baseline 1.76 6.56 3.24 15.58

Our method 1.53 3.76 3.09 15.22

with the original images. The performance of our baseline is comparable with the
cross-scene crowd counting method [15], even though they used extra pedestrian
head location information. By integrating the motion cues into our baseline, our
final method shows the best results on both datasets. This again validates the
effectiveness of our method that integrates the original and motion images for
crowd counting.

4 Conclusion

In this paper, we propose an end-to-end surveillance based crowd counting
method with the CNN framework. In order to count the stationary and mov-
ing pedestrians effectively, we integrate the original frames and motion cues for
learning a robust deep crowd counting regressor. Experimental results on the
widely-used UCSD and Mall datasets show that the proposed method is effec-
tive for surveillance based crowd counting, and achieve the best results on both
datasets.
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Abstract. The automatic fire-fighting water cannon is an important device for
fire extinguish. By identifying the jet trajectory, the closed-loop control of fire
extinguishing process can be realized, which improves the quality and efficiency
of the water cannon. In this paper, a novel jet trajectory recognition method
based on the dark channel prior and the optical properties of low scene trans-
mission in the jet trajectory’s coverage area is proposed. Firstly, the dark
channel prior was used to extract the low scene transmission region. Then, in
order to identify the jet trajectory more accurately, this extracted region was
matched with the moving target area which is restored by Gaussian mixture
background modeling. Finally, the modified cubic curve is used to fit out jet
trajectory and predict its ending. The experimental results indicate that the
proposed approach can effectively detect the jet trajectory with strong
anti-interference ability and higher accuracy.

Keywords: Fire-fighting water cannon � Jet trajectory recognition � Dark
channel prior � Curve fitting � Gaussian mixture modeling

1 Introduction

Nowadays, the fire disaster has become a serious threat to human survival and
development. It is urgent to improve the effect of the fire extinguishing equipment. So
the research on closed-loop control fire-fighting water cannon which focused on the jet
trajectory recognition has become a hotspot in recent years.

There have been many related work about the jet trajectory recognition. Feng et al.
[1] derived the beam equation of the jet trajectory based on the exterior ballistics and
the particle kinematics. Jing [2] proposed a segmentation algorithm based on the
improved OTSU approach and region growing for the jet trajectory. An extraction
algorithm for the jet trajectory in colorful pictures based on the difference of RGB was
presented by Weilu and Min [3]. A Multi-trajectory Vector Search Method (MTVSM)
was proposed by Jie et al. [4], which is used to extract feature points in the jet
trajectory. In addition, as for the multi-starting points search method of the jet tra-
jectory, Guo [5] proposed the diagonal line method. Hao [6] put forward a stepwise
filtering optimization method based on the fitness of Particle Swarm Optimization
(PSO) [7].

In the above researches, the essence of the preliminary extraction of the jet tra-
jectory is based on the background subtraction and the dynamic, static characteristics of
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the jet trajectory. Some interference is unable to exclude, such as the changing ambient
light, high brightness background, moving objects, water stains, and the bifurcation of
the jet caused by the air resistance and other reasons. To address these problems, a
novel jet trajectory recognition method based on the dark channel prior is proposed in
this paper. That can overcome the above defects, improve the recognition accuracy and
do a good groundwork for the closed-loop control of the water cannon.

2 Jet Region Recognition

2.1 Low Scene Transmission Region Extraction

Dark Channel Prior. In the jet image, because there are a large amounts of water
droplets in the jet coverage area form scattering, this effect is similar to other suspended
particles in natural haze image. Therefore, the dark channel prior theory in haze image
proposed by He et al. [8] in CVPR can be applied to the jet trajectory recognition. The
prior said, any haze-free image except the sky always exists some pixels that have
lower intensities in at least one channel of the RGB color space (dark channel):

Jdark xð Þ ¼ min
c2 r;g;bf g

ð min
y2XðxÞ

ðJcðyÞÞÞ � IbðxÞ ¼
Z d

0
Abe�bdðxÞdx ¼ ð1� e�bdðxÞÞA ð1Þ

From (1) we know:

tðxÞ ¼ e�bdðxÞ ¼ 1� Ib
A

ð2Þ

Where t(x) is the scene transmission that describes how light transfers in the
atmosphere, and 0� tðxÞ� 1. The intensity of Jdark(x) which is used the blackbody
radiation model to approximate is lowest in the dark channel and tends to zero,
tðxÞ ! 1. It means that the scene transmission in the dark channel is quite high. Yang
et al. [9] presented that the suspended particles are smaller, the impact on the image is
relatively small, the atmospheric transmission is commonly t(x) = 0.8 under normal
conditions. It is in line with the dark channel prior.

But He et al. [8] also presented that the dark channel prior exists limitations. What’s
more, the limitations are used to identify and remove the haze area which is not in
conformity with the dark channel prior theory [10]. The concrete embodiment of the
limitations in the jet images is that some regions do not exist the dark channel (do not
meet the dark channel prior formula (1)) such as the jet trajectory and the white walls,
water stains, and other interference which is very similar to the air light. The patch X(x)
was used to traverse these areas, you would find it has the characteristics (Fig. 1):
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Jdark xð Þ ¼ min
c2 r;g;bf g

ð min
y2X xð Þ

ðJcðyÞÞÞ ! 1 tðxÞ ! 0 ð3Þ

The scene transmission tðxÞ ! 0 could be described as the low scene transmission
region. This paper also used this limitation of the dark channel prior combined with the
scene transmission formula (2) to extract the jet region in Fig. 2. Because this grayscale
image is not conducive to the follow-up work, so the OTSU is used to get the binary
transmission image shown in Fig. 3. Fortunately, the interference in these areas is not
motion region except for the jet region, so it could be removed by the subsequent image
matching with motion region. It not only can extract the jet region, but also remove the
moving object and other interference which is introduced by background subtraction.

2.2 Motion Region Identification

Gaussian Mixture Modeling (GMM) and Background Updating. Besides the
optical properties of the low scene transmission, the jet trajectory also has the motion
characteristics, so it can also adopt moving object extraction method at the same time to
extract the jet trajectory initially. Because GMM is one of the best models for modeling
a background scene with gradual changes and repetitive motions [11]. While in the jet
images the changes of the illumination, water stains and other interference are gradual,
so GMM is suitable for the jet trajectory extraction. The principle of the GMM is that
each pixel of the change of RGB values of three-channel respectively can be described
by a mixture of K Gaussian distributions at time t:

P Xtð Þ ¼
XK
K¼1

Wk;t � g Xt; uk;t;
X

k; t
� �

ð4Þ

Where each pixel color is presented with a random variable X, probability of the
observed value is Xt, K is the number of Gaussian distributions, wk, t is the weight-
iness of the kth Gaussian distribution at time t, g Xt; uk;t;

P
k; t

� �
is the Gaussian

probability density function. Where ut is the mean, n is the channel number, the
covariance matrix can be described as

P
k; t ¼ r2t � I. Where r2t is standard deviation.

Fig. 1. Original image on
angle 1

Fig. 2. Transmission
image

Fig. 3. Binary transmission
image
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Because of the interference such as the changing ambient light exists, the fixed
background could not adapt to the small changes in the scene, the background updating
should be carried on [11]. The update rules of background modeling as follows:

at ¼ 1� qð Þa2t�1 þ q Xt�utð ÞT Xt�utð Þ ð5Þ

2.3 Image Matching

Through the above steps, we have gotten the transmission image in Fig. 3 and the
motion region image after morphology filtering [12] in Fig. 4. The next step is
matching (and operations) the two figures to get the matching image in Fig. 5. This
matching image excludes the white walls, water stains, bright sunlight windows and
other interference which is similar to the air light in the low scene transmission image,
and the interference of changing ambient light, moving objects in the motion region
image, only retains the motion region with the low transmission of jet trajectory in
Fig. 5.

3 Jet Trajectory Identification

3.1 Feature Point Extraction

Based on the jet region recognition, the rough regions of the jet trajectory have been
identified. But because of the influence of air resistance, the extracted main jet tra-
jectory is not clear enough, with the interference of the scattered clouds of spray in the
rear section. Meanwhile, due to the defects in image processing, the cutoff parts were
existed in the jet region, so the jet trajectory can’t be identified accurately. Therefore,
this paper takes the vertical search method [13] to extract the feature points in Fig. 6.

3.2 Jet Trajectory Fitting

Though the above operation, the jet region and the feature points of the jet trajectory
were extracted, then the curve is used to fit the jet trajectory and predict the jet ending.
The actual water cannons have the traits of high speed, high water pressure. Therefore,
the jet trajectory in the early stage keeps the good water type only affected by the gravity

Fig. 4. Extracted motion region Fig. 5. Jet region after matching
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and presents the ideal parabola. In the late stage, the curve of the jet trajectory would
appear bifurcation and deformation affected by the air resistance and fluid dynamics, so
the later stages of the jet need to forecast. This paper has tried to use the least squares
fitting parabolic [14] (blue curve), cubic curve (red curve) and the piecewise weighted
cubic curve (green curve) to predict the jet according to its morphological properties in
Fig. 7. In the end, the piecewise weighted cubic curve was chosen to fit out the jet
trajectory, because it is better consistent with the actual jet than others.

4 Results and Analysis

Interference test is done on the jet trajectory recognition in the next two experiments.
The interference in the first set of experiments is the strong light by changing the

shooting angle. Some sunshine through the window shoot onto the jet image, so only
using the traditional method based on the motion characteristics of the jet trajectory
would introduce some interference of the jump spot (Fig. 8(g)). While these interfer-
ence can be filtered out in this paper. Because these regions are belonged to the dark
channel in the transmission image, the interference is basically removed in the
matching image (Fig. 9).

Fig. 6. Feature points extraction of jet tra-
jectory (Color figure online)

Fig. 7. Fitting curve of jet trajectory (Color
figure online)

(a) original image (b) transmission image (c) matching image(d)feature points extraction

(e) jet fitting (f)location of the water points (g)the traditional method for jet region extraction 

Fig. 8. Interference test of the changing ambient light in the jet trajectory on angle 2 (Color
figure online)
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The interference in the second is the bifurcation of the terminal jet trajectory
affected by air resistance, the traditional method would introduce some water mist
interference. The above interference makes it difficult to extract the feature point and fit
the curve. But these interference regions are also belonged to the dark channel which
could be removed by matching and the main part of the jet trajectory could be clearly to
extract.

5 Conclusions

The experimental results prove that this algorithm can identify the jet trajectory
accurately and completely even under the complex conditions. It has strong robustness
and high detection rate. It is significant for positioning of the jet ending, realizing
closed loop control of the water cannon and other subsequent research.
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Abstract. Violent behaviors occurred in elevators have been frequently
reported by media in recent years. It is necessary to provide a safe
elevator environment for passengers. A new visual surveillance system
with the function of abnormal behavior detection is proposed in this
paper. Firstly, human objects in surveillance video are extracted by back-
ground subtraction, and meanwhile the number of people in each image
is counted. Then, some algorithms are presented to deal with different
abnormal behaviors. For one person case, we pay attention to whether
the person fell down or not. And for two or more people case, we use the
image entropy of Motion History Image (MHI) to detect if there is vio-
lent behavior. Experimental results show that the proposed algorithms
can offer satisfactory results.

1 Introduction

There is a gradually wide spread use of elevators in high-rise buildings as the
progress of industrial technology. While several criminal behavior events taking
place in the elevator have been reported recently, including robbery, kidnapping,
violence and so on. It’s urgent to provide a safe and advanced vehicle for pas-
sengers. Traditional surveillance system is installed to monitor what happens in
an elevator. However it is extremely tedious to search for violent behaviors with
a very low probability. While there have been increasing efforts to tackle this
problem, it remains rather challenging due to compound issue such as occluding,
camouflage, illumination changes, tracking failure, video noise and so on.

Human action recognition and behavior detection draw a lot of attention
in computer vision. In recent years, many algorithms have been proposed to
improve interest point detection, local spatio-temporal descriptors, and building
relationships among local features [1]. Most of the algorithms focus on single
action, such as hand-waving, running, or horse riding. The work mentioned above
does not consider abnormal event detection among multiple people.

Several algorithms for abnormal detection have been proposed in recent years.
Adam et al. [2] monitor low-level measurements in a set of fixed spatial positions
and integral-pixel approximations of optical flow to detect usual event. Mehran
et al. [3] place a grid of particles over the image and treat the moving particles
c© Springer Nature Singapore Pte Ltd. 2016
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as individuals which are drawn by the space-time average of optical. Abnormal
behavior is detected using social force model. Cui et al. [4] propose an interaction
energy potential function to represent the current behavior state of a subject.
However these methods are focused on crowed movement in public place, which
can’t handle the scene where people in a confined place.

In the real world, the definitions of abnormal behavior of person are various in
different scenes. For example, it’s normal for a person exercising on square, which
will be treated as strange on the contrary in classroom. Thus there isn’t a unified
standard to define anomalies. One common solution is to see the event deviating
from the expect as abnormal behavior according to the specific situation.

In our work, we define failing down as an abnormal behavior while there is
only one passenger in elevator. When there are more than one passengers in
elevator, fighting with each other is considered as abnormal.

Our characteristics are summarized as below. (1) Our method does not rely
on human tracking, so it is more robust to errors that are introduced by tracking
failure. (2) We just only detect motion information which is the precondition for
violent behavior. (3) We do not extract angular point or calculate optical flow,
thus the algorithm is with less complex calculation.

2 Our Approach

The framework of this paper is summarized in Fig. 1. We firstly extract human
objects and count the number of people. And then different abnormal behav-
ior detection algorithms are designed according to the number of passengers in
elevator.

Fig. 1. Flow chart.

2.1 Human Body Object Extraction and People Counting

It is convenient to extract human objects by background subtraction, for the
background of the scene in an elevator is static and simple. The accuracy of
the result is mainly influenced by the variation of illumination intensity. We
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adopt the statical method proposed by Horprasert et al. in [5], which achieves
outstanding results in shadow detection. Different from [5], we classify a pixel to
be part of human object foreground or background including shaded background,
shadow and highlight background. Finally, human object foreground is acquired
by applying morphology operation on the raw mask.

People counting is necessary to decide how to detect abnormal behavior,
because the possible abnormal behaviors will be different according to the num-
ber of people. It is effective to count the number of passengers by calculating
connected region pixels when there is no serious occlusion between people. The
result of people counting is shown in Fig. 2.

Fig. 2. The result of human objects abstraction and people counting.

2.2 Single People Detection

The normal behavior of passengers in elevator is stand-up or moving around a
little. It is required to detect whether someone is failed down or not when there is
only one passenger in elevator. We use the method mentioned above to extract
human objects and obtain a binary mask. Horizontal projection and vertical
projections are implemented on the mask. There is an obvious difference between
vertical and horizontal projections of the binary masks of the two different cases
where one passenger is failed down and stand-up.

We are inspired by the idea of [6], which counts people by a grid distribution
of sensors. We design Detection Windows (DW) to monitor what is going on. The
DWs of vertical and horizontal are interest regions of projections of vertical and
horizontal direction of binary mask. The vertical DW is taken from one third of
the original window of the vertical direction projection from left side. Similarly,
the horizontal DW is taken from bottom. It will be masked to be active if the
DW has more than 65% nonzero pixels. On the contrary, the DW will be seen
as inactive.

We can judge the status of the passenger in elevator by monitoring the con-
dition of the two DWs of vertical and horizontal direction. If the vertical DW
is active and the horizontal DW is inactive, we infer the passenger is stand-up.
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Fig. 3. (a) The input raw frame of standing up. (b) The binary mask obtained by
background subtraction. (c) The horizontal projection of the binary mask. (d) The
vertical projection of the binary mask. (e) The detection window of horizontal direction.
(f) The detection window of vertical direction.

Otherwise it’s considered that the passenger is failed down when the vertical
DW is inactive and the horizontal DW is active.

The horizontal projection and vertical projections of normal case of standing
up and abnormal case of failing down are shown as Figs. 3 and 4. The original
input frames and the binary masks derived by background subtraction are shown
in Figs. 3(a), 4(a) and Figs. 3(b), 4(b) separately. The horizontal and vertical
direction projections of the binary masks are exhibited in Figs. 3(c), 4(c) and
Figs. 3(d), 4(d) separately. Figures 3(e), 4(e) and Figs. 3(f), 4(f) are DWs of
horizontal direction and vertical direction. For Fig. 3 the DWs of vertical and
horizontal direction are active and inactive respectively, from which we consider
the passenger is stand-up. For Fig. 4 the DWs of vertical and horizontal direction
are inactive and active separately, from which it can be considered that the
passenger is failed down.

2.3 More Than One People Detection

The behaviors of human in elevator is limited. Most of the people stand alone
hardly moving around or doing some kinds of complex action in the narrow
space, in contrast to in other scenes, such as plaza, railway station, outdoors
and so on. The peace will be broken when violent behaviors take place. Thus
we are inspired to extract movement, which is the necessary requirement for the
occurrence of abnormal behavior. We intend to tackle this issue by detecting
motion and expressing motion from the aspect of energy function.
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Fig. 4. (a) The input raw frame of failing down. (b) The binary mask obtained by
background subtraction. (c) The horizontal projection of the binary mask. (d) The
vertical projection of the binary mask. (e) The detection window of horizontal direction.
(f) The detection window of vertical direction.

Fig. 5. (a) and (c) are input fames. (b) and (d) are corresponding MHIs.

We express motion by Motion History Image [7]. The MHIs of standing still
and fighting are shown in Fig. 5(b) and (d). The brighter pixels denote more
recent motion and the gray darker pixels indicate earlier motion.

Information entropy is used in image, called image entropy, to depict the
amount of information of an image. We can see from Fig. 5(b) and (d), the
nonzero pixels of the two cases are different remarkably. The entropies of the
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two image will also be greatly different. We improve the calculation formula of
one dimensional entropy of gray image as

E = −
255∑

i=0

(i/255) p(i)log2p(i) . (1)

The gray image entropy mention in (1) is seen as weighted entropy that means to
assign a great weight to recent motion. The weighted entropy is used as energy
function to distinguish abnormal behavior such as fighting with high energy.
Average value μ and standard deviation σ of energy function are calculated by
T successive frames of normal cases. The discriminant function of the current
frame is shown as

discriminant result =

{
normal if

∣
∣E−u

σ

∣
∣ ≤ λ

abnormal if
∣
∣E−u

σ

∣
∣ � λ

. (2)

In Eq. (2) λ is determined empirically.

3 Experimental Results

The data sets of elevator monitoring videos are collected by the research team.
The fighting and failing down videos are recorded by Panasonic HDC-HS20
digital video. The experiment environment of hardware is desktop computer
with 3.60 GHz Intel(R) Core(TM) i7-4790 CPU, 8G RAM. The softwares are
Visual Studio 2013 and Opencv2.4.10 on Windows 7 operation system.

3.1 One People Detection

The initial frames for background subtraction is static background without per-
son. The number of initial frames is 25. The algorithm is tested on 4 segment
videos. The size of each frame is 320 × 640. The accuracy of the algorithm pro-
posed in this paper is shown in Table 1. We also compare our algorithm with the
contour matching method in literature [8], the correct rate and processing speed
are shown in Table 2.

Table 1. The accuracy of falling down detection.

Test videos The total number of frames Accuracy of detection

video1 761 92.35%

video2 721 92.29%

video3 743 92.54%

video4 811 92.72%
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Table 2. The comparison of results of falling down detection with another method [8].

Algorithm Accuracy of detection Processing time of per frame

Contour matching 91.00% 0.0274

Algorithm in this paper 92.54% 0.0203

3.2 More Than One People Detection

In our experiment, we select λ = 5 by trial and error and T = 60. The average
entropy of normal case is μ = 11.48 and the standard deviation is σ = 0.8276.
The result of experiment is shown in Fig. 6. It can be seen that the image
entropies are between 0 and 20 when the passengers are standing still or moving
a little. The entropy will increase sharply when there is violent behavior. The
155th frame begin to increase dramatically. The comparison experiment with
the setting threshold method in literature [9] is shown in Table 3.

Fig. 6. The result of more than one people abnormal behavior detection.

Table 3. The comparison of results of violent behavior with another method [9].

Algorithm Accuracy of detection Processing frames of per second

Threshold comparison 84.00% 25

Algorithm in this paper 92.54% 27
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4 Conclusion

We propose a new visual surveillance system with the function of abnormal
behavior detection in elevator. Human objects in surveillance video are extracted
by background subtraction, and meanwhile the number of people in each frame
is counted. Different abnormal detection methods are designed according to the
number of passengers. Detection window and improved image entropy which is
seen as energy function are exploited to detect abnormal behavior. The experi-
ments show that our formula offers content results in elevator scenes. The algo-
rithm mentioned in this paper not only provides high detection accuracy but also
with low computation complexity. What’s more it can run in real time. However
there is a limitation on the number of passengers. When there are too many
passengers in elevator, the detection accuracy will decrease because of occlusion.
We will try to solve this problem in future.
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