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Abstract
Sustainable agriculture highly depends on soil microorganisms to supply essen-
tial nutrients for plants and circulate the nutrient cycles in cropping systems. 
These microorganisms which are commercially formulated and briefly named 
“biofertilizers” can significantly reduce fossil fuel consumption, environmental 
degradation, and production cost related to agriculture. Phosphate biofertilizer is 
one of the most important groups of these beneficial microorganisms which plays 
a notable role in nutrient preparation for crops. Although these biofertilizers are 
usually known as phosphate suppliers for cropping systems, they can also provide 
other macro- and micronutrients to crops. Fungi and bacteria form two major 
groups of phosphate biofertilizers which can live freely or as symbiont organisms 
in agricultural soils. Mycorrhiza is a symbiont fungus which increases plant 
uptake of phosphate, nitrogen, and micronutrients and improves soil structure via 
formation of an extensive and dense mycelial network connected to plant roots. 
In contrast, phosphate solubilizing microorganisms are usually free living and 
able to solubilize insoluble phosphate compounds in soil mainly via releasing a 
wide range of organic acids and chelating metabolites. However, the effectiveness 
of these microorganisms is significantly influenced by edaphic factors and field 
management practices. For example, tillage as a usual practice in most of the 
cropping systems has negative effects on the absence and activity of mycorrhizal 
fungi. Application of chemical fertilizers which is another routine operation in 
modern agriculture also notably reduces the survival and effectiveness of phos-
phate biofertilizers. This review article presents the results on the main phosphate 
biofertilizers which can potentially be applied in sustainable agriculture, their 
action mechanisms, and important factors influencing their effectiveness.
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5.1	 �Introduction

Nowadays, agriculture relies on chemical fertilizers in order to satisfy the demand 
of crops with a high yield potential and produce economically viable yields. The 
synthesis of these fertilizers requires high amounts of fossil fuels as an energy 
source. Fossil fuels are nonrenewable resources, and their oxidized products such as 
CO2 pose hazards to the environment and to human health. Moreover, fossil fuel 
reserves are finite and therefore unsustainable in long-term scale.

Phosphorus (P) is the second important element after nitrogen which is necessary 
to survival and growth of plants (Ogbo 2010). However, in the soil solution, it usually 
exists in very low quantities (a micromolar level) as compared with most of the other 
vital nutrient elements which are present in millimolar levels (Ozanne 1980). To ame-
liorate P deficiency, high amounts of chemical P fertilizers are used which can lead to 
the environmental degradation, pollution of natural resources, water eutrophication, 
and increased crop production cost. Moreover, a notable section of the P added into 
the soil as chemical fertilizers is rapidly converted to unavailable compounds such as 
calcium phosphate or other fixed forms. As reported by Gyaneshwar et al. (2002), 
about 75–90% of the chemical P fertilizers applied in agricultural soils become 
unavailable quickly due to P combination with other elements such as Fe, Al, Ca, and 
Mg depending on the soil pH level. Generally, in the alkaline soils, P is fixed by Ca or 
Mg, whereas in the acidic ones, it forms insoluble compounds via reaction with Fe or 
Al. Therefore, there are large reserves of P in most agricultural soils resulted from the 
massive use of the synthetic P fertilizers (Rodriguez and Fraga 1999); as in a global 
scale, these reserves can sustain crop yields in their maximum levels for about one 
century (Goldstein et al. 1993). On the other hand, major P chemical fertilizers are 
originated from rock phosphates as their mother materials which are known to be 
finite resources, and their reserves may be depleted during the next 100 years (Herring 
and Fantel 1993). Phosphate biofertilizers can play an important role in agroecosys-
tems as renewable and ecofriendly nutrient suppliers for plants and are proposed as 
possible alternatives for conventional chemical P fertilizers. According to Raghuwanshi 
(2012), the use of these biofertilizers can be included as an efficient approach in 
Integrated Nutrient Management (INM) and Integrated Plant Nutrition System (IPNS). 
They can biologically transform soil P from unavailable to available forms.

These biofertilizers contain different types of microorganisms which increase 
the accessibility of plants to soil P reserves which are unavailable in normal condi-
tions. This can be attributed to their ability to dissolve insoluble P compounds and 
extension of plant root system via establishment of a symbiotic relationship with the 
roots of different plant species. These microorganisms belong to different taxo-
nomic groups especially fungi and bacteria.

5.2	 �Mycorrhiza

An important symbiotic relationship between soil fungi and vascular plant roots is 
called mycorrhizae which through it nutrients and energy are exchanged between 
two symbionts (Brundrett 2002). Roots of about 95% of plant species can be 
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colonized by soil fungi and establish mutualistic relationships named arbuscular 
mycorrhizae (AM) (Smith and Read 2008). Terrestrial plants and AM fungi (AMF) 
have been evolved side by side during their evolutionary history. A symbiotic rela-
tionship between AM fungi and land plants has been distinguished in the fossils 
belonging to Ordovician era, approximately 460 million years before this (Redecker 
et al. 2000).

Plant roots are colonized by AM, and the fungi transmit nutrient elements such 
as P into the host plant in exchange for the photoassimilate produced by plant. 
Arbuscules are highly branched intracellular fungal structures which are formed in 
the cortex of host plant roots, and at the same time fungi constitute their mycelial 
network in the soil (Fig. 5.1). P uptake by plants can be enhanced due to symbiotic 
relationship with AM (Bolan 1991). Moreover, these beneficial microorganisms can 
increase nitrogen (Barea et al. 1991) and micronutrient (Burkert and Robson 1994) 
availability to host plants and aggregate soil particles leading to an improved soil 
structure (Tisdall 1994). However, supply host plant with P which is an extremely 
nonmobile macronutrient in most soils can be defined as the main benefit caused by 
AMF (Bucher 2007).

5.2.1	 �Some Benefits of Mycorrhiza

As mentioned previously, increased phosphorus availability to plants is known as 
the main advantage resulted from the symbiosis with AMF. Because of low solubil-
ity and mobility, P is proposed as one of the most limiting essential soil elements 

Fig. 5.1  AM fungi form an extensive and dense mycelia network in soil by which cover the deple-
tion zone around plant roots (Source: http://www.sarcozona.org/tag/mycorrhizae)
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needed for plant survival and growth. It is estimated that crop inoculation with AMF 
can reduce the use of P chemical fertilizers by 80% in field conditions (Jakobsen 
1995). In a study, plants inoculated with AM showed a sixfold increase in Pi and 
fourfold increase in the other nutrients as compared with uninoculated fertilized 
plants. Other workers showed that inoculation with AM fungi increased plant ability 
to utilize soluble P from rock phosphate (Antunes and Cardoso 1991; Guissou et al. 
2001).

Moreover, mycorrhizal roots can acquire nitrogen organic compounds, such as 
amino acids and small peptides, and transport them to host plants (Bajwa and Read 
1985; Bajwa et al. 1985). Ericoid, a group of mycorrhizal fungi, can degrade organic 
nitrogen and transmit it to mycorrhizal plants in the experiments conducted in con-
trolled environments (Abuzinadah and Read 1986; Read 1991; Read et al. 1989). 
Michelsen et al. (1996) also suggested that ericoid mycorrhizae enabled the host 
plants to access soil organic N sources under natural conditions.

AM fungi can also effectively protect soil against erosion. This can be achieved 
by their extraradical hyphae which are able to connect soil particles (Miller and 
Jastrow 1992) leading to an improved soil aggregate stability and consequently a 
lower soil erodibility. AMF can also produce a sticky glycoprotein named glomalin 
which cements soil particles (Wright and Upadhyaya 1998; Wright et  al. 1999; 
Rillig et al. 2002) and improves the stability of soil aggregates via binding soil par-
ticles (Peters 2002).

5.2.2	 �Mechanisms by Which Mycorrhiza Interacts with Plants 
and Improves P and N Availability for Them

Before the physical contact between plants and AMF (i.e., at the pre-symbiotic 
stage), it is known that some molecular signals are exchanged between them. Some 
studies have been shown that on the one hand AMF modulate root gene expression 
(Kosuta et al. 2003; Weidmann et al. 2004), intracellular signaling (Navazio et al. 
2007; Kosuta et al. 2008), development (Oláh et al. 2005), and metabolism (Gutjahr 
et al. 2009) via diffusion of some produced compounds. On the other hand, plants 
release some special biochemicals via their roots which stimulate fungi to establish 
a symbiotic relationship (Gianinazzi-Pearson et al. 1989; Siqueira et al. 1991; Tsai 
and Phillips 1991; Giovannetti et al. 1996; Buee et al. 2000). Strigolactones (SLs) 
have been distinguished as the main secondary metabolites which are produced by 
host plants and are able to stimulate the symbiont fungi (Akiyama et  al. 2005; 
Besserer et al. 2006). Some important morphological and developmental events in 
AM fungi including spore germination, hyphal branching, and increasing fungal 
respiration and mitochondrial activity are usually induced by SLs (Besserer et al. 
2006, 2008).

The soil volume exploited by plants can be extended by several times when plant 
roots are in association with AMF mycelial network (Fig. 5.2). Therefore, P uptake 
can be achieved more efficiently by a mycorrhizal than a non-mycorrhizal plant root 
system (Smith and Read 2008). In other words, mycorrhizal plants can access 
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nutrients such as phosphorus which exist outside the rhizosphere zone where they 
are not accessible for non-mycorrhizal plants. This is achieved through the fungal 
mycelial network connected to plant root system (Friese and Allen 1991). For 
example, one centimeter of colonized roots might produce 50–150 cm of extraradi-
cal hyphae (Harley 1989). Moreover, in comparison with plant roots, fungal hyphae 
are much thinner (Bago et al. 1998), which can enable them to penetrate in the soil 
microscopic pores which are unavailable to plant roots.

Another mechanism by which AMF increase P availability to plants is related to 
their ability to produce different organic acids (Lapeyrie 1988) which can transform 
soil mineral phosphates from insoluble to soluble forms. This inevitably leads to the 
higher plant access to acid-labile insoluble P compounds such as calcium phos-
phate. In addition, phosphatase produced by AMF can enable them to release P from 
organic phosphate forms (Koide and Shreinner 1992).

Although the plant growth-promoting effect of AMF is mainly attributed to their 
ability to dissolve insoluble P compounds and increase phosphate uptake by plants, 
there are some evidences on the effectiveness of these fungi to increase nitrogen 
accessibility to plants (Ames et al. 1984; Azcón-Aquilar et al. 1993). Matsumura 
et al. (2013) reported that under different amino acid treatments, the nitrogen con-
tent of mycorrhizal plants was notably higher than that for non-mycorrhizal plants. 
In another study, Hobbie and Hobbie (2006) observed that in arctic tundra, 61–86% 
of the nitrogen acquired by plants was resulted from an ectomycorrhizal symbiotic 
relationship. Govindarajulu et al. (2005) also found that AM fungi are able to obtain 

Fig. 5.2  The soil volume which can be explored by a plant can be increased by several times of 
magnitude via the network of fungal mycelium connected to AM roots (Source: http://www.dirt-
goddessseeds.com/category_s/1901.htm)
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soil inorganic nitrogen by their extraradical mycelium which then is converted to 
arginine and translocated to the intra-radical fungal mycelium located in the roots of 
host plant.

Some studies have demonstrated that the nitrogen present in the soil organic 
compounds can be accessible to AMF (Hodge et al. 2001; Whiteside et al. 2009; 
Hodge and Fitter 2010). Hodge and Fitter (2010) showed that decomposing soil 
organic materials are responsible for 31% of the nitrogen acquired by AMF hyphae 
system. This can be explained by the AMF ability to produce a diverse range of 
hydrolytic enzymes including cellulase, pectinase, and xyloglucanase in their exter-
nal mycelial network (Garcia-Romera et al. 1991; Garcia-Garrido et al. 1992). It 
clearly is known that these enzymes are responsible to decompose the soil organic 
matters.

Chitinases are another group of metabolites produced by AMF species which are 
proposed as one of the factors involved in plant root protection against soil patho-
gens (Azcón-Aguilar and Barea 1997; Gianinazzi-Pearson 1996). Whiteside et al. 
(2012) showed that recalcitrant (i.e., a molecule with relatively large and complex 
structure) organic N compound such as chitosan can be absorbed by AMF in situ.

5.3	 �Phosphate Solubilizing Microorganisms (PSMs)

P is proposed as one of the most important elements participant in growth, develop-
ment, and biological processes of different organisms. It is also known as an essen-
tial limiting factor for plants due to its insufficient solubility and mobility in soils 
(Vessey 2003) especially in extraordinary pH conditions. However, insoluble P 
compounds such as calcium phosphate and apatite can be solubilized by phosphate 
solubilizing microorganisms (PSMs) mainly bacteria and fungi which are in asso-
ciation with plant roots. Bacillus and Pseudomonas are known as the most impor-
tant genera of mineral phosphate solubilizing bacteria (PSB) (Illmer and Schinner 
1992), while main genera of fungi involved in P solubilization process are 
Aspergillus and Penicillium (Motsara et al. 1995). In soil, bacterial and fungal PSMs 
form 1–50 and 0.1–0.5% of the total soil phosphate solubilizing microorganisms, 
respectively. It means that the number of PSB is higher by 2–150 times than that for 
fungal solubilizing agents (Kucey 1983). Generally, production of organic acids and 
chelating factors by PSMs can explain their ability to solubilize insoluble phosphate 
compounds (Deinum et al. 1996; Dong and Pierdominici 1995).

However, there are some evidences which indicate inorganic acids can also be 
produced by PSMs. For example, the bacteria belonging to the genus Acidithiobacillus 
produce sulfuric acid via reaction with elemental sulfur (Garcia Junior 1992). This 
biologically produced acid plays an effective role in natural P solubilizing process 
via reducing soil pH which consequently leads to the improved plant growth 
(Stamford et al. 2002). However, it has been shown in both liquid and solid media 
that fungi have a higher ability to produce organic acids and therefore are more 
efficient to solubilize insoluble P compounds when compared with PSB 
(Venkateswarlu et al. 1984).
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In a soil with P limited resources, PSMs can notably increase plant accessibility 
to this important element. According to Mohammadi et al. (2015), in a weedy con-
dition along with a reduced sowing uniformity (i.e., when high intra- and interspe-
cific competitions were intensified), phosphate biofertilizers containing fungi and 
bacteria could significantly improve soybean yield indicating the essential role of 
these microorganisms to support plants in a P limited condition.

5.4	 �Mechanisms by Which PSMs Improve P  
Availability for Plants

The improvement of P availability by PSMs can be achieved through different mech-
anisms (Fig. 5.3). However, it seems that the production of different organic acids by 
PSMs is the main reason explaining their solubilizing activity (Alam et al. 2002). 
Diverse organic acids such as gluconic, ketogluconic, oxalic, citric, succinic, fumaric, 
tartaric, α-ketobutyric, lactic, itaconic, isovaleric, isobutyric, acetic, malic, glyox-
ylic, and malonic can be produced by PSMs. The results of some studies show that 
the most efficient organic acid involved in P solubilization process is gluconic acid 
which is produced by Gram-negative bacteria (Goldstein et  al. 1993; Kim et  al. 
1998). Khan et al. (2009) also suggested that gluconic and ketogluconic are the main 
low molecular weight organic acids produced by PSMs which are able to solubilize 
insoluble phosphate compounds in soil. The glucose oxidative metabolism by glu-
cose dehydrogenase in the presence of a cofactor named pyrroloquinoline quinone 
(PQQ) is the mechanism by which gluconic acid is produced by PSMs (Fig. 5.4).
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Fig. 5.3  Different mechanisms by which PSMs improve P availability for plants (Adapted from 
Zaidi et al. 2009)
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In general, the reduced soil pH caused by organic acids produced by PSMs can 
explain their ability to dissolve insoluble P compounds (Nahas 1996). However, it 
appears that increasing P solubilization rate cannot be achieved by acidifying reac-
tion alone (Subha Rao 1982). According to Kucey (1988), another major factor 
influencing solubilization process is the capacity of organic acids to chelate insolu-
ble P compounds; as in a study when 0.05 M EDTA was added to the medium, solu-
bilization rate was the same as inoculation with Penicillium bilaii.

PSMs can also produce inorganic acids, synthesize exopolysaccharides, and 
release H+ as other important mechanisms contributing to inorganic P solubilization 
process (Gamalero and Glick 2011). Moreover, phosphatase produced by PSMs can 
play a key role in solubilization of organic P compounds (Park et al. 2011).

5.5	 �Factors Influencing the Efficiency  
of P-Related Microorganisms

The effectiveness of PSMs as biofertilizers can be influenced by diverse factors. Ho 
and Ko (1985) showed that after artificial introduction of PSMs into the soil, the size 
or density of their populations was decreased quickly. The success level of PSMs 
after introducing them into the soils highly depends upon their ability to compete 
with other soil microorganisms and the presence of a notable PSM saprophytic 
capacity. According to Kucey et al. (1989), the effectiveness of the inoculated PSMs 
to improve plant growth and yield can be varied in relation to several factors 
including:

	1.	 If inoculated PSM can survive and colonize in the plant rhizosphere.
	2.	 Its competitive ability with native microorganisms.
	3.	 Essence and characteristics of the inoculated soils and plant varieties.
	4.	 Inadequate rhizospheric nutritional level which can lead to the sufficient organic 

acid production by PSMs to dissolve insoluble P compounds.
	5.	 PSM infirmity to dissolve soil P.

It is concluded that extensive studies should be carried out to distinguish the 
PSM strains with high durability and competitive ability under the environments 
with high complexity such as a plant rhizosphere in order to access to highly effi-
cient P biofertilizers.
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Fig. 5.4  Molecular structure of pyrroloquinoline quinone 
(PQQ) which acts as a cofactor in gluconic acid production 
process (Adapted from Matsumura et al. 2014)
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5.5.1	 �Soil Factors

Edaphic factors including soil composition (Bashan et al. 1995), physiological con-
dition, temperature, pH, water content (Van Elsas et al. 1991), and the existence of 
recombinant plasmids (Van Veen et al. 1997) can significantly affect the survival of 
the inoculated PSMs. While competition, predation, and the growth of plant roots 
which supplies the substrates needed to PSMs form the main biotic factors influenc-
ing PSM survival as inoculants. Since the survival of AMF as obligatory endosym-
bionts only depends on the carbohydrates produced by the root cells of host plants, 
all edaphic agents determining the metabolism and growth of host will certainly 
affect AMF efficiency.

The soils with high buffering capacity can notably reduce PSM efficiency to 
solubilize insoluble P compounds, especially when PSM strains are not able to 
release acceptable levels of organic acids. Khan et al. (2007) also found that the 
presence of diverse environmental conditions is an important reason which can 
explain the variation in PSM efficiency. The low effectiveness of PSMs can be 
related to an unsuitable soil environment as may be observed in high alkaline soils. 
As in the soils with high alkalinity level that are commonly found in arid and semi-
arid climatic conditions (e.g., many areas of Iran) and usually have high tempera-
tures and salinity levels, PSMs may colonize plant roots poorly resulting in a low P 
solubilizing activity. Therefore, it seems that searching for PSM strains with high 
efficiency in unfavorable environmental conditions is necessary.

5.5.2	 �Agronomic Practices

Sole cropping, conventional tillage, and fertilizer application are some of the com-
mon techniques to produce yield in most modern agricultural systems which can 
negatively affect AMF abundant and diversity in soils (Helgason et al. 1998; Oehl 
et al. 2005).

5.5.2.1	 �Tillage Practices
Tillage operations have been shown to reduce the number of AMF spores present in 
the soil (Kabir et al. 1998) and AM fungi colonization in some agricultural crops 
(Jasper et al. 1989; Miller et al. 1995; McGonigle and Miller 1996). Annual soil 
disturbances produced by conventional tillage systems showed reducing effects on 
AMF colonization when compared with reduced tillage practices (Miller and 
Jastrow 1992; Miller et al. 1995; Al-Karaki 1998; Miller 2000).

In general, conservation tillage practices have positive effects on AM fungi 
parameters and other soil factors. Positive consequences caused by no tillage con-
sisted of higher soil carbon, nitrogen, sulfur, and phosphorus quantities and a 
greater AM fungal propagules remaining in the soil as compared with conven-
tional tillage, as well as a simultaneously increased phosphorus accessibility for 
subsequent crops.
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In a study, the amount of total glomalin produced by AMF enhanced in the soils 
under reduced tillage and no tillage than conventional tillage and soil carbon con-
tent was known as an important factor determining this enhancement (Borie et al. 
2006).

5.5.2.2	 �Fertilization
AMF diversity and abundance have increasingly been declined in response to min-
eral nutrient application in agroecosystems (Lin et al. 2012; Liu et al. 2012). Among 
the mineral nutrients, Pi and nitrate have solely shown adverse effects on AMF, 
while these beneficial fungi were not negatively affected even by high levels of 
other essential elements including potassium, calcium, magnesium, sulfate, and 
iron.

Although the adverse effect of Pi on AMF has been recognized for a long time 
(Abbott et al. 1984; Thomson et al. 1986; Amijee et al. 1989; Breuillin et al. 2010; 
Balzergue et al. 2011), the increased AMF-plant symbiotic relationship caused by N 
deficiency can significantly overcome the reducing influence resulted from high P 
levels on AMF. This indicates that symbiosis can be enhanced by plants as long as 
there are limiting levels of one of these two important elements in rhizosphere.

Phosphorus
Crop production through the extensive use of chemical P fertilizers can notably 
decline AMF existence and abundance in soils (Johnson 1993). In a P-enriched 
environment, plant roots are not usually colonized severely by AMF (Amijee et al. 
1989) as it has been indicated that when adequate accessible P is present in the soil, 
the growth of certain plant species may be reduced due to AMF colonization (Son 
and Smith 1995).

Pi can systemically suppress AM development which is in relation to the nutri-
tional condition of host plant shoot. Inasmuch as a notable section of the photosyn-
thate produced by host plant is usually used by AMF (Smith et al. 2009; Douds et al. 
2000), the inhibiting effect of the elevated Pi levels on AMF development may be 
attributed to an energy-saving negative feedback mechanism in the environments in 
which the P needed for plant can adequately be provided in the absence of a symbi-
otic relationship with fungi. In other words, at a high level of phosphorus, plant 
preferentially adopts a nonexpensive and direct approach to acquire P (Nagy et al. 
2008), and therefore, the plant root colonization by AMF can significantly be 
declined.

Moreover, long-term previous P applications can also affect AM fungi coloniza-
tion of subsequent crops (Kahiluoto et al. 2000; Dekkers and van der Werff 2001). 
Dekkers and van der Werff (2001) reported that after 10 years without P fertiliza-
tion, AM fungi colonization of winter wheat (Triticum aestivum) and barley 
(Hordeum vulgare) was greater when previous long-term annual P fertilization 
ranged from 0 to 17.5  kg  ha−1 compared to when the rate of P application was 
52.5 kg ha−1.

The main metabolites including amino acids and carbohydrates which are 
secreted by host plant roots and are usable for AMF can be reduced in a P-enriched 
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soil (Graham et al. 1981; Thomson et al. 1986). The genes involved in carotenoid 
biosynthesis and those responsible for symbiotic relationship, e.g., PT4, were sup-
pressed in the presence of Pi (Breuillin et al. 2010). In contrast, the roots exposed to 
a P-deficient condition can exude some essential flavonoid signals which induce the 
growth and activity of AMF at the pre-symbiotic phase (Nair et al. 1991).

Based on some conducted studies, low quantities of strigolactones (key factor to 
trigger plant-AMF symbiosis) can usually be produced and exuded by different 
plant species when the soil phosphorus is high (Yoneyama et al. 2007a, b; López-
Ráez et al. 2008), and strigolactones may not be present in the plant root exudates 
exposed to high P levels, and consequently these plants don’t show stimulating 
effects on AMF.

Therefore, it can be assumed that the suppressive effect of P-enriched soils on 
AMF symbiosis is related to the decreased plant ability to produce sufficient levels of 
strigolactones in these conditions (Bouwmeester et al. 2007; Yoneyama et al. 2007b). 
Balzergue et al. (2011) reported that the exudates extracted from the plant roots devel-
oped in a P-enriched soil were not able to induce branching of fungal hyphae.

Other researchers also demonstrated that there is a negative correlation between 
the levels of strigolactones produced by host plant and soil available phosphorus 
(Yoneyama et al. 2007a, b; López-Ráez et al. 2008) and these metabolites could not 
be detected in the root exudates obtained from the plants developed in P-enriched 
environments. However, the number of the roots colonized by AMF and plant abil-
ity to produce strigolactones is mainly determined by shoot Pi content compared to 
the externally soil available phosphorus or the Pi levels which locally exist in plant 
roots (Balzergue et al. 2011).

Nitrogen
Previous studies in controlled environments and the field have found that low N 
levels (20  mM N) increased mycorrhizal infection (Goulart et  al. 1995, 1996; 
Stribley and Read 1976). Whiteside et al. (2012) suggested that increasing nitrogen 
accessibility can decrease plant tendency to establish a symbiotic relationship with 
AMF, because the cost-effectiveness of fungal association is significantly reduced 
under this condition. Consequently, in the soils with high N levels, a decreased 
AMF frequency can be expected as is usually happened in different ecosystems 
(Treseder 2004). Cappellazzo et al. (2008) also reported that the ability of AM fun-
gus G. mosseae to transport amino acids was notably declined in the presence of 
high inorganic nitrogen levels. The suppressing effects of N-enriched environments 
on AM colonization and activity have been demonstrated in several works. For 
example, Whiteside et  al. (2012) observed a lower AMF ability to organically 
derived nitrogen uptake when accessible nitrogen was increased. In their study, the 
use of nitrogen fertilizer notably reduced the rate of specific uptake (i.e., per unit 
biovolume) of labile organic N by AMF.

However, if soil available N is so low that it reduces plant growth, establishment 
of the mycorrhizal association may be affected. In a study, the limited N supply to 
the host plants could have resulted in a reduced C supply to support mycorrhizal 
association, thus leading to a reduced mycorrhizal infection level (Yang et al. 2002). 
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Other studies showed that serious nitrogen deficiency in plants may contribute to 
low root carbohydrate content which lowers infection levels in vesicular-arbuscular 
mycorrhizal associations (Hepper 1983; Same et al. 1983). It can be concluded that 
the presence of a critical N level to achieve an efficient plant-AM association in soil 
is necessary.

5.5.2.3	 �Rotation
Since the development of AM fungi is biotrophic (Morton 1990), the absence of 
mycorrhizae hosts could cause a decrease in soil residual AM propagules and their 
vitality for crops seeded afterward in a rotation.

Including non-mycorrhizal crops in rotation might affect the concentration and 
vitality of indigenous AM species in soil, thereby affecting the growth of 
AM-dependent crops following in the rotation (Dalpè and Monreal 2004). Gavito 
and Miller (1998) reported that intra-radical AM colonization of corn (Zea mays L.) 
was delayed in field plots when canola rather than corn was the previous crop.

In general, the crops belonging to Chenopodiaceae, Brassicaceae, and 
Caryophyllaceae (Barker et al. 1998) families don’t form symbiotic associations 
with AM fungi, and thus including them in rotations can significantly reduce the 
absence and activity of AM fungi in agroecosystem soils. Moreover, since AM fungi 
are obligate symbionts and their survival is fully dependent to live hosts, including 
black fallow in a rotation has negative effects on these beneficial microorganisms.

�Conclusion

In general, phosphate biofertilizers can be proposed as suitable alternatives to 
synthetic chemical fertilizers which are extensively applied in modern agricul-
tural ecosystems. Maintaining and invigorating these beneficial microorganisms 
via adoption of appropriate agronomic practices and introducing them into the 
agricultural soils intentionally can notably reduce fossil fuel consumption and 
environmental hazards caused by chemical inputs used in cropping systems 
while reclaiming the soil ecosystem. These microorganisms which mainly 
belong to fungi and bacteria groups can increase crop accessibility to nutrient 
reserves in soil via different mechanisms such as formation of a dense and exten-
sive mycelial network connected to crop roots and production of a wide range of 
organic acids and chelating metabolites. However, some conventional operations 
which are extensively used in crop production systems today have shown nega-
tive effects on these beneficial microorganisms which consequently have been 
led to the increased dependency of these systems to external inputs.

It is concluded that in order to attain the self-sufficient and sustainable agri-
cultural systems, the essential role of phosphate-related microorganisms as effi-
cient nutrient suppliers for crops should seriously be considered. Moreover, the 
reasonable crop production practices including the use of conservation tillage 
(no or reduced tillage), organic manures instead of synthetic chemical fertilizers, 
and suitable and black fallow-free crop rotations as well as the artificial introduc-
tion of these microorganisms as biofertilizers into the agricultural soils should be 
included in cropping system management programs.
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