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Abstract
Nowadays a large scale of crop produce are pesticide ridden. Heavy application of 
these hazardous pesticides is not only very costly which leaves financial burden to 
the farmers but is also harmful to our biodiversity leading to loss of various endan-
gered living species. However, growers are being trained worldwide, and they are 
progressively switching over their agriculture from chemical or conventional agri-
culture to organic or sustainable agriculture. Sustainable agriculture reveals crop 
cultivation with “no chemicals.” But organically cultivated produce are mirage 
due to their exorbitant prices, at least for the urban dwellers. To resolve this 
conundrum, the role of plant growth-promoting rhizobacteria (PGPR) has been 
discussed in the process of plant growth promotion, with their mechanisms and 
their importance in crop production on sustainable basis. The application of PGPR 
strain is conducive and creates thrust toward organic farming at every level of 
farmers, whether it be large landowner or small-scale farmers. However, PGPR 
strain performance varies from lab to field and even from field to field due to host 
specificity. Besides, some strains of PGPR have the potential to promote growth 
of a particular plant, while in another plant they do not respond. There are various 
ways that promote plant growth such as N2 fixation, P solubilization, siderophore 
production, phytohormone production, and also the control of phytoparasitic 
pathogens. In addition to the beneficial role, some important aspects of negativity 
inducted by the PGPR have also been discussed. Sustainable agriculture, if done 
in the light of PGPR module, will not only remove the financial burden of the 
farmers but also prove to be conducive, congenial, and putative. Further studies to 
commercialize the potent strain of PGPR are stridently needed which will unravel 
certain yet to be explored mechanisms.
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21.1  Introduction

The total world population is expected to increase by 8.5 billion by 2030 (Anonymous 
2015). This significant population increase is surmised due to unchecked and con-
sistent increase in the population of developing or underdeveloped countries. This 
significant increase brings about the poverty and hunger. India has been home to 
194.6 million undernourished people, the highest in the world (Anonymous 2015). 
To obviate this issue, sustainable crop production is the best weapon known so far 
against poverty and hunger especially powerful in underdeveloped countries. 
Microorganisms are the best living entities providing the best ecological services in 
the sustenance of ecological balance. Thus, a group of bacteria that help in plant 
growth promotion by exhibiting beneficial inputs on crop plant are known as plant 
growth-promoting rhizobacteria (PGPR) (Zhou et al. 2016). They do have some 
advanced diagnostic features such as colonization of the host’s rhizosphere, rhizo-
plane, and the interior region of the root system. Besides, some bacteroides make 
the way to enter inside the root building up endophytic population which ultimately 
benefits the crop plants (Compant et al. 2005). Similarly, some bacterial species are 
able to enhance the root surface area providing essential nutrients that reach to the 
plant, thereby inducing plant productivity (Adesemoye and Kloepper 2009). The 
thread line toward the role of biofertilizers in nutrient uptake and environment stress 
management has provided a relaxation to the researchers up to some extent but not 
fully. Hence, we are in urgent need to manage these stresses through eco-friendly 
ways. Many countries are utilizing PGPR as biofertilizers in sustainable agriculture 
and also forcing nearby nations to use them in a proper way (Singh et al. 2011). 
However, there are some issues/factors to use PGPR, such as performance of strains 
under field conditions, because it has been seen that bacterial strains having the 
same biological potential do not respond under the field conditions that may be due 
to failure in the host’s root colonization. To eliminate the food issues for the crowded 
population, natural biofertilizers in sustainable module are being used. It has been a 
well- established fact that application of suitable PGPR strain enhances the produc-
tivity under favorable climate conditions (Okon and Labandera-González 1994; 
Singh et al. 2011). A large number of genera of PGPR have been applied worldwide 
to check the potentiality in plant growth promotion and found to possess great 
potential in sustainable crop production such as silviculture, horticulture, and envi-
ronmental remediation (Jeffries et al. 2003; Reed and Glick 2005; Fravel 2005; 
Aeron et al. 2011; Karličić et al. 2016). The role of different organic molecules 
released by PGPR like indoleacetic acid (Park et al. 2005; Shao et al. 2015), gib-
berellic acid (Mahmoud et al. 1984; Ortega-Baes and Rojas-Aréchiga 2007; Castillo 
et al. 2015), and cytokinins (Amara et al. 2015) is appreciable to various extents in 
agriculture. In addition, plant hormones such as IAA and cytokinin-producing 
PGPR are found to be conducive growth promoters of various horticultural crops, 
Sesamum indicum, Trifolium repens, Arachis hypogaea, Cajanus cajan, Trigonella 
foenum, Mucuna pruriens, Pinus roxburghii, and Mimosa pudica (Noel et al. 1996; 
Hirsch et al. 1997; Kumar et al. 2005). Growth stimulation in plant through PGPR 
has been observed through various mechanisms such as colonization of plant root, 
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plant growth stimulation, and reduction in plant disease (Kloepper and Schroth 
1978). To unravel the complex mechanisms involved in rhizobial interactions is a 
very important issue in the determination of the sustainability; however, some abi-
otic factors such as temperature, soil nature, smog, etc. can’t be avoided. Because 
varying temperatures have good binding with aeration, pH gradient promotes the 
microbial growths (Shen et al. 2015).

Application of PGPR into soil must be evaluated meticulously. However, the 
indigenous strain may trigger defense mechanism induction which helps in the 
reduction of the pathogen potential by releasing root flavonoids (Parmar and 
Dufresne 2011). Therefore, during the microorganism selection, extreme care 
through rigorous filed studies to fully understand interactive traits is needed which 
may ease the expected turmoil. Besides, PGPR provide the potential role in the 
biotic and abiotic stress reduction, also help in the elimination of pesticides’ resid-
ual effects, and thereby help in the plant and microflora development through sus-
tainable ways (Khan 2005; Kang et al. 2010; Xun et al. 2015).

Moreover, for successful colonization and proliferation of PGPR, interaction 
among the microorganisms is necessary especially between the local strains. The 
bacterial population around the rhizosphere remains always higher than the popula-
tion existing through the soil (Lynch and Leij 1990). These aspects have made a 
clear note that the higher amount of nutrient remains available around the root 
region. Conjoint application of compatible traits accelerates symbiotic activities 
which help in the enhanced nutrient acquisition by switching on some gene that 
allows recognition and release of root exudates (Verma and Yadav 2012).

21.2  The Rhizosphere: Dwelling Point for PGPR

The rhizosphere is considered to be the most important portion of the ecological 
habitat in soil where PGPR along with other microorganisms remain in close con-
tact with the roots of the plant (Brink 2016). PGPR may have some specific alli-
ances with plants which may have provided the role in growth enhancement. 
Production of some biomolecules for plant growth promotion such as phytohor-
mones, metabolites, etc. may modify the rhizosphere microbiota and environment 
affecting microbial diversity associated with the rhizosphere (Frankenberger and 
Arshad 1995; Davison 1988). Different types of close association in bacteria with 
roots may be formed such as on root surface (rhizoplane) and soil just after the root 
(rhizosphere) (Brink 2016). PGPR respond to various processes like exchange of 
signal molecules and nutrients and colonize the root tissue creating a protection 
layer of root tissues. In addition, mucigel consists of plant mucilage, bacterial exo-
polymers, and soil particles of the immediate layer of rhizobacteria. It has been 
reported that plant roots covered by mucigel have higher water content than noncov-
ered ones; hence, mucigel plays a crucial role in the root protection and protects 
from dehydration (Miller and Wood 1996). In addition, contents of root exudates 
help in the enrichment and selection of bacteria and ultimately help in the healthy 
rhizosphere formation. Plant root exudates act as source of carbon for microbial 
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growth. Besides, there are certain organic molecules which perform chemotaxis of 
microbes within the rhizosphere. In addition, root exudates are much helpful in the 
maintenance of steady concentration of some flavonoids and mineral nutrients, 
flocked after decomposition of organics and other recycled wastes (Dakora and 
Phillips 2002). Thus depending upon the nature and types of organics, released fla-
vonoids and other molecules, specific PGPR diversity develops into the rhizosphere. 
Several PGPR have the ability to attach with roots and extract the nutrients from soil 
making them available to the plants. More specifically, some strains of PGPR have 
been found to penetrate the root tissue and make direct communication with the 
organic nutrients present in the apoplast (Gupta et al. 2017).

21.3  Mechanisms of Actions

Generally there are two types of mechanisms involved in the plant growth promo-
tion, i.e., (1) direct and (2) indirect.

21.3.1  Direct Mechanism

21.3.1.1  Nitrogen Fixation
Nitrogen (N) is an important element for growth and development; hence, it is sur-
mised to be very essential. However, 78% N2 present in the atmosphere is not avail-
able to the growing plants. Generally, N2 is converted into a useable form through 
nitrogen fixation process where nitrogen changes to ammonia through nitrogenase 
enzyme (Kim and Rees 1994). Biological nitrogen fixers are ubiquitous in nature, 
and available around the world, they function at mild temperature (Raymond et al. 
2004). They are economically sound, beneficial, eco-friendly, and alternative to 
hazardous pesticides. Around two-thirds of global nitrogen is fixed through biologi-
cal nitrogen fixation process (Rubio and Ludden 2008).

Generally, two categories of nitrogen-fixing organisms are found: (1) symbiotic 
nitrogen-fixing bacteria (rhizobia) which includes members of the family 
Rhizobiaceae forming symbiosis with leguminous plants (Ahemad and Khan 2010; 
Zahran 2001) and nonleguminous plants (Frankia) and (2) nonsymbiotic nitrogen- 
fixing bacteria such as cyanobacteria, Azotobacter, Azospirillum, Azoarcus, 
Gluconacetobacter diazotrophicus, etc. (Bhattacharyya and Jha 2012). Although 
nitrogen-fixing bacteria make available only a short amount of the fixed nitrogen to 
the plants (Glick 2012), interestingly, some other type of symbiotic nitrogen-fixing 
bacteria infects the root and establishes symbiosis with the roots of crop plants.

In the establishment of the symbiotic relationship, dinitrogenase reductase con-
taining iron protein and dinitrogenase having metal cofactors are involved 
(Minamisawa et al. 2016). Dinitrogenase reductase gives electrons with high  reducing 
energy, while dinitrogenase forming metal cofactor uses these electrons to reduce N2 
to NH3. There are three nitrogen-fixing cofactors such as (1) Mo-nitrogenase, 
(2) V-nitrogenase, and (3) Fe-nitrogenase. Structure wise, nitrogen- fixing living 
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system varies from genus to genus; mostly nitrogen fixation process is completed by 
the activity of the molybdenum-nitrogenase (Bishop and Jorerger 1990). The nitro-
gen fixation process is carried out by an enzyme known as nitrogenase complex 
(Kim and Rees 1994).

21.3.1.2  Phosphate Solubilization
The second important plant growth-limiting nutrient is phosphorus (P) after nitro-
gen; this is available in plenty in both organic and inorganic forms (Khan et al. 
2009). Despite having a large reservoir of P in the soil, the sufficient amount of P to 
the plant is not reachable due to availability of P into H2PO4 forms which are inac-
cessible to the plants (Bhattacharyya and Jha 2012). The insoluble P is available in 
the soil and remains in an inactive state as inorganic mineral forms like apatite or as 
organic forms such as inositol phosphate, phosphotriesterase, and phosphomonoes-
ters (Glick 2012). To obviate the P deficiency in soils, farmers have started to apply 
phosphatic fertilizers in agricultural lands. Plants obtain fewer amounts of applied 
fertilizers, and the rest is rapidly converted into insoluble forms of P in the soil 
which are reserved again and reach beyond the catch limits of the plants (Mckenzie 
and Roberts 1990). Importantly, continuous application of P is not a solution 
because regular application of these P fertilizers is not only very costly to the farm-
ers but is also an unsafe means to the environments. Moreover, organisms having 
phosphate-solubilizing activity, known as phosphate-solubilizing microorganisms 
(PSM), help in the availability of P to the plants (Khan et al. 2006). PSB are consid-
ered to be a supplier of P in P-limited soil and replenish the P through various means 
(Zaidi et al. 2009). Some bacteria such as Serratia, Microbacterium, Azotobacter, 
Bacillus, Burkholderia, Erwinia, Flavobacterium, Pseudomonas, Enterobacter, 
Rhizobium, and Beijerinckia are known to be the important and ecologically sound 
rhizobacteria (Bhattacharyya and Jha 2012). Solubilization of inorganic phosphorus 
is carried out by the action of organic acids (low molecular weights) which have 
been synthesized by various PGPR groups (Zaidi et al. 2009). A large number of 
phosphatase enzymes catalyzing the hydrolysis phosphoric esters are involved in 
the mineralization (Glick 2012). Moreover, phosphate solubilization and mineral-
ization may occur in the same bacterial species simultaneously (Tao et al. 2008).

21.3.1.3  Siderophore Production
Iron is a key element for all microorganisms to thrive well; however, certain 
lactobacilli, are an exception (Neilands 1995). In some environments, iron does 
not occur in the accessible form, but they are available in plenty as an inacces-
sible form (Rajkumar et al. 2010). Generally, bacteria catch iron atoms through 
organic molecules which act as an iron chelator, siderophores having high iron-
binding affinities. Generally, water-soluble siderophores are common, and they 
are categorized into extracellular and intracellular siderophores (Khan et al. 
2009). In gram-positive and gram-negative bacteria, Fe+3 in Fe3+-siderophore 
complex on the membrane of bacteria is reduced to Fe2+ which is accessible to 
bacterial membrane, further released into the cell through gating mechanisms of 
inner and outer membrane of bacteria (Ansari et al. 2016). However, there may 
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be loss of some amount of siderophores (Rajkumar et al. 2010; Neilands 1995). 
Hence, it may be concluded that siderophore acts as iron solubilizers under an 
iron-limited environment (Indiragandhi et al. 2008). Besides iron, some other 
heavy metals like Al, Cd, Cu, Ga, In, Pb, and Zn are being chelated by sidero-
phores (Neubauer et al. 2000). In addition, siderophore complex enhances the 
solubility of metal concentration (Rajkumar et al. 2010). Therefore, bacterial 
released chelating molecules assist well in the alleviation of stress imposed on 
plant by heavy metals (Schmidt 1999). Plenty of research have advocated well 
for plant growth promotion as a result of siderophore releasing bacterial appli-
cations (Rajkumar et al. 2010; Ansari et al. 2016). Crowley and Kraemer (2007) 
reported that siderophores released by bacteria help iron to be made available to 
the oat, and the plant has mechanisms for utilization of complex under iron- 
deprived environment. Moreover, Pseudomonas fluorescens C7 enhanced the 
iron content significantly in plant tissue and improved plant yield (Vansuyt et al. 
2007). Inoculation of Pseudomonas strain GRP3 on iron nutrition of Vigna radi-
ata resulted in a decline in chlorotic injuries and enhanced plant growth (Sharma 
et al. 2003).

21.3.1.4  Phytohormone Production
Most of PGPR isolated from the soil especially rhizosphere have the ability to syn-
thesize and release phytohormones like IAA as secondary molecules (Patten and 
Glick 1996). Generally, IAA released by PGPR may alter the growth and develop-
ment of the plant because endogenous pool of plant IAA may be deviated by the 
enhanced acquisition of IAA (Glick 2012; Spaepen et al. 2007). Moreover, IAA 
also plays a crucial role in plant defense mechanisms against a wide range of phy-
topathogenic bacteria (Spaepen and Vanderleyden 2011). Thus, IAA released by 
PGPR is recognized as effective molecules and plays a role in pathogenesis and 
phytostimulation (Spaepen and Vanderleyden 2011). It has been reported that IAA 
is a significant factor in various cellular processes, such as cell division, differentia-
tion, and vascular bundle formation, and also surmised that auxins play a role in the 
nodule formation (Glick 2012; Spaepen et al. 2007). It is reported that application 
of Rhizobium leguminosarum bv. viciae enhanced 60-fold more root nodules than 
uninoculated ones (Camerini et al. 2008). In spite of these, certain environmental 
factor regulates the IAA biosynthesis in different genera of PGPR (Spaepen et al. 
2007).

21.3.1.5  1-Aminocyclopropane-1-Carboxylate (ACC) Deaminase
Ethylene is an essential hormone for carrying out normal plant growth and develop-
ment (Khalid et al. 2006). This phytohormone is produced by almost all plants and 
plays an important role in the reduction of multifarious physiological changes in 
plants. In addition, ethylene is also considered to be a stress hormone (Saleem et al. 
2007). It has been reported that under deprived conditions due to various environ-
mental factors such as extreme drought, water logging, heavy metals, and pathoge-
nicity, the ethylene reaches to its elevated level and affects negatively the plant, 
thereby reducing the crop growth and development (Saleem et al. 2007; Bhattacharyya 
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and Jha 2012). PGPR possess enzymes, e.g., 1-aminocyclopropane- 1-carboxylate 
(ACC) deaminase, to help in plant biomass enhancement by reducing the ethylene 
level (Nadeem et al. 2007; Zahir et al. 2008). Some bacterial strains possessing ACC 
deaminase activity have been documented such as Acinetobacter, Achromobacter, 
Agrobacterium, Alcaligenes, Azospirillum, Bacillus, Burkholderia, Enterobacter, 
Pseudomonas, Ralstonia, Serratia, Rhizobium, etc. (Shaharoona et al. 2007a, b; 
Nadeem et al. 2007; Zahir et al. 2008; Zahir et al. 2009; Kang et al. 2010). These 
bacterial genera have the ability to convert ACC to 2-oxobutanoate and NH3 (Arshad 
et al. 2007). Various types of biotic and abiotic stress have been relaxed by ACC 
deaminase producers (Glick 2012; Lugtenberg and Kamilova 2009). Besides, these 
PGPR help in the root elongations, seed formation, and enhancement in root nodule 
formation (Nadeem et al. 2007; Shaharoona et al. 2008; Nadeem et al. 2009; Glick 
2012).

21.3.2  Indirect Mechanism

Management of plant disease through the application of bioagents is an eco-
friendly and novel approach (Lugtenberg and Kamilova 2009; Rizvi et al. 2016; 
Ansari et al. 2016). Significant indirect mechanisms of plant growth promotion 
in PGPR through biocontrol agents have been discussed (Glick 2012). Generally, 
food competitions, niche exclusions, induction of systemic resistance, and anti-
fungal metabolite production are the main mode of biological control of 
PGPR. A large number of PGPR have been reported to produce antifungal 
metabolites such as HCN, phenazines, pyrrolnitrin, 2,4-diacetylphloroglucinol, 
pyoluteorin, viscosinamide, and tensin (Bhattacharyya and Jha 2012). In addi-
tion, proper synchronization of PGPR with root leads to development of plant 
resistance against some pathogenic bacteria, fungi, and viruses (Rizvi et al. 
2016). This process is known as induced systemic resistance (ISR) (Lugtenberg 
and Kamilova 2009).

Under natural environment having stress, mechanisms used by the PGPR for 
plant growth promotion are common. However, under stress conditions some 
strains of PGPR fail to survive because of inability to tolerate the stress. But the 
significant increase in plant growth takes place by various mechanisms, for exam-
ple, reduction in stress-induced ethylene level, production of exopolysaccharides, 
induced systemic resistance, etc. (Glick et al. 2007; Saharan and Nehra 2011; 
Sandhya et al. 2009; Saravanakumar et al. 2007; Upadhyay et al. 2011). As far as 
stress management is concerned, plant growth is affected by nutritional perturba-
tions such as elevation in Na+ which causes iron toxicity and disrupts the usual 
uptake of various essential ions. Some strains of PGPR protect crop plants from 
excessive Na+ concentration by producing exopolysaccharides and through biofilm 
transformations which ultimately reduce Na+ uptake (Geddie and Sutherland 1993; 
Khodair et al. 2008; Qurashi and Sabri 2012). In addition, PGPR protect plants 
from phytopathogens through various mechanisms such as antibiosis, competition, 
and parasitism (Beneduzi et al. 2012; Cassells and Rafferty-McArdle 2012; 
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Deshwal et al. 2003; Gula et al. 2013; Heydari and Pessarakli 2010; Khokhar et al. 
2012; Perneel et al. 2008; Ping and Boland 2004). PGPR adopt one or more mech-
anisms for crop protection. PGPR check the phytopathogens’ growth by antibiosis 
mechanisms where antimicrobial compounds inhibit pathogen’s growth released 
by bacteria (Glick 1995). Similarly, PGPR have also been reported to check avail-
ability of iron required for pathogens which is necessary for plant growth. (Subba 
Rao 1993).

It is enough to conclude that PGPR accelerate plant growth by deploying some 
mechanisms and help in the crop protection from various deleterious plant patho-
gens which directly or indirectly affect the plant growth. In addition, there may be 
some specificity in the bacterial genera, i.e., some mechanisms may be present in 
one particular strain while absent in another.

21.4  Commercialization of PGPR

Different strains of bacteria have responded to various extents under different 
climatic environment. This may be due to different climatic factors and edaphic 
factor which are considered to affect the performance of beneficial PGPR (Zaidi 
et al. 2009). The importance of PGPR has generated an impetus to commercial-
ize the PGPR in the industrial level so that potential strains of PGPR may be 
exploited from the soil and transferred to the farmers’ even low scale of land 
(Table 21.1).

Table 21.1 Various strains of plant growth-promoting rhizobacteria (PGPR) exerting beneficial 
impact on plant health

S. 
no. PGPR Role Reference

1 Bacillus megaterium, 
Arthrobacter 
chlorophenolicus, and 
Enterobacter sp.

Enhanced plant growth and yield 
attributed by solubilization of 
phosphorus; nitrogen fixation; 
production of phytohormones such as 
auxins, cytokinins and gibberellins; 
sequestering of iron by production of 
siderophores; and lowering of ethylene 
concentration

Idris et al. 
(2004)

2 Azotobacter, Bacillus, 
Enterobacter, and 
Xanthobacter

Significantly enhanced nitrogen 
accumulation, growth and grain yield of 
rice plants

Mirzai et al. 
(2010), Bal et al. 
(2013), Khalid 
et al. (2009), and 
Singh et al. 
(2011).

3 Bacillus lentimorbus Enhanced plant growth as well as 
antioxidant capacity of the edible parts 
of spinach, carrots and lettuce, under 
salinity and drought stress

Nautiyal et al. 
(2008), Ahmad 
et al. (2013), and 
Naveed et al. 
(2014)
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(continued)

S. 
no. PGPR Role Reference

4 Pseudomonas aeruginosa Improved the growth of Vigna radiata 
(mung beans) plants under drought 
conditions. PGPR-inoculated plants 
tend to improve the water-use efficiency 
of plants. Hence, these bacteria can be 
beneficial to the environment in terms 
of reducing excessive usage of water

Sarma and 
Saikia (2014), 
Ahmad et al. 
(2013), and 
Naveed et al. 
(2014)

5 Bacillus megaterium and 
Pantoea agglomerans

Inoculation of these bacteria into maize 
roots increased the ability of the root to 
absorb water under the salinity 
conditions. Here, bacteria that can grow 
under hypersaline conditions were 
better able to colonize the root 
rhizospheres and external spaces of 
roots that are themselves exposed to 
high-salinity conditions

Marulanda et al. 
(2010) and Gond 
et al. (2015)

6 Azospirillum brasilense Improved salt tolerance of the jojoba 
plant during in vitro rooting

Gonzalez et al. 
(2015)

7 Azospirillum Inoculation of lettuce plants with 
Azospirillum sp. not only improved 
lettuce quality but also extended the 
storage life of a lettuce grown under salt 
stress

Gabriela et al. 
(2015)

8 Azospirillum, Azotobacter, 
Bacillus, Burkholderia, 
Corynebacterium, 
Pseudomonas, Rhizobium, 
and Serratia

Beneficial to the whole rhizosphere 
microbiota through the highly nutritive 
and energetic rhizodepositions and, in 
turn, improved plant growth

Rawat and 
Mushtaq (2015)

9 Pseudomonas fluorescens 
and Bacillus subtilis

Soil application of both P. fluorescens 
and B. subtilis alone or in combination 
was able to reduce the nematode 
population and improve the onion 
growth

Munshid et al. 
(2013)

10 Azotobacter sp., Bacillus 
cereus, B. megaterium, 
B. subtilis

Individual and/or mixed treatment of 
PGPR when used as a soil drench 
treatment resulted in reduced root rot/wilt 
incidence and severity on some evergreen 
fruit transplants under greenhouse 
conditions compared with control. The 
mixed treatment of PGPR gave the 
highest protection against root rot/wilt 
diseases compared with the use of 
individual treatment. Also, all treatments 
significantly increased plant growth when 
compared with control treatment

Abdel-Monaim 
et al. (2014)

11 Pseudomonas fluorescens Singly and in various combinations with 
botanical enhanced growth and 
productivity parameters of fenugreek 
(Trigonella sp.)

Rizvi et al. 
(2013)
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21.5  Pros and Cons of PGPR Applications

A critical observation pertaining to the administration of any foreign strain of PGPR 
is done in order to know up to what extent they have adaptability to the native strain. 
If they are incompatible with each other, there may be some perturbation regarding 
the performance of the bacteria. Besides, native strain initiates the development of 
resistance in the plant against deleterious phytopathogens by releasing flavonoids 
and phytoalexins (Parmar and Dufresne 2011). In order to understand the interactive 
character of the microorganisms and their utilization as a potential application, rig-
orous studies on field experiment are required. The rhizosphere is an ideal place for 
the proliferation of these microorganisms influenced by the various environmental 
factors like physical, chemical, and biological processes of the root (Sørensen 
1997). These microorganisms nurture well in and around the root area of plants 
which may be due to root exudates which are then used by the microbial growth 
(Doornbos et al. 2012; Phillips et al. 2011).

21.5.1  Beneficial Aspects of PGPR

PGPR present in the soil environment can cause beneficial alterations in plant 
health either through the production of plant growth regulators or ameliorating the 
plant nutrition by enhancing nutrient uptake from the soil (Zahir et al. 2004). 
Besides, a large number of these rhizobacteria help the plant to overcome several 
biotic as well as abiotic stresses such as drought, salinity, flooding, and heavy 
metal toxicity, and hence they capacitate the plant to sustain under adverse envi-
ronmental situations (Tiwari et al. 2016). Different free-living soil bacterial strains 

Table 21.1 (continued)

S. 
no. PGPR Role Reference

12 Azospirillum brasilense 
strain Cd

Improved plant growth and nutrition as 
well as reduced root-knot nematode in 
roots in micropropagated banana

Rodrigues et al. 
(2008)

13 Azospirillum brasilense and 
Rhizobium leguminosarum 
bv. ciceri

Improved the nodulation of chickpea; 
the effect of this interaction was further 
enhanced by organic matter present in 
the growth medium

Fabbri and Del 
Gallo (1995)

14 Azotobacter chroococcum Production of growth substances (auxin, 
gibberellin, etc.) and in turn enhanced 
crop production

Wani et al. 
(2013)

15 Bacillus spp. Elicit induced systemic resistance (ISR) 
and also elicit plant growth promotion

Kloepper et al. 
(2004)

16 Bacillus subtilis, 
Pseudomonas fluorescens, 
and Aspergillus awamori

Significantly increased plant growth and 
chlorophyll contents of pathogen- 
inoculated tomato plants

Singh and 
Siddiqui (2015)
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of a particular genus consist of similar metabolic potential of enhancing plant 
growth (Gamalero et al. 2009; Belimov et al. 2005; Ma et al. 2011; Nadeem et al. 
2007; Sandhya et al. 2009; Zahir et al. 2008). PGPR minimize the detrimental 
effects of the plant pathogens through several mechanisms that in turn lead to 
healthy and disease-free plants, thereby improving the plant growth indirectly 
(Glick and Bashan 1997). This task of PGPR may be fulfilled either by the release 
of anti- pathogenic substances or by making the plant more resistant against 
attacking pathogen through activation of induced systemic resistance (Persello-
Cartieaux et al. 2003). As far as direct growth promotion is concerned, PGPR 
adopt different pathways such as providing the host plant a useful compound or 
facilitating the plant to use the beneficial compounds already present in the soil 
(Kloepper et al. 1991). They can also help the plant by fixing atmospheric nitro-
gen and producing siderophores that chelate iron that gets available to the plants. 
PGPR have also been reported to produce phytohormones and solubilizing nutri-
ents such as phosphorus, thus making it available to the plants (Patten and Glick 
2002). The efficiency of these rhizobacteria is also determined by the host plants 
as well as the soil characteristics (Gamalero et al. 2009). Overall, PGPR enable 
them to promote plant growth and development by various ways. Some strains 
utilize more than one mechanism to go through normal as well as stressed envi-
ronmental conditions. In addition to rhizobacterial strain, plant growth and devel-
opment also rely on the types of interaction with the host plant and also with the 
soil environment.

21.5.2  Harmful Aspects of PGPR

PGPR play a valuable role in the sustenance of soil health and enhancement of plant 
growth and developments; they are also reported to show pernicious effects on plant 
growth and developmental process (Saharan and Nehra 2011). For instance, 
Pseudomonas species produce cyanide that is implicated to have both advantageous 
and detrimental effects. Cyanide-producing PGPR not only inhibit the growth of 
certain pathogens but also cause injurious impact on plant growth (Martínez-Viveros 
et al. 2010). Moreover, the auxin production by PGPR, depending on its concentra-
tion, may be beneficial or detrimental for plant health (Vacheron et al. 2013). A low 
concentration of auxin promotes plant growth, while at elevated level root retardation 
has been noticed (Patten and Glick 2002). Another compound rhizobitoxine released 
by Bradyrhizobium elkanii acts in both manners. Being an inhibitor of ethylene syn-
thesis, it can mitigate the adverse effects of stress-induced ethylene on the formation 
of nodule (Vijayan et al. 2013). But in some cases such as foliar chlorosis in soya 
bean, it has also been reported to act as a toxin (Xiong and Fuhrmann 1996). 
Enormous varieties of biosurfactant produced by the microorganisms are being con-
sidered as an interesting group of materials for application in various areas of agri-
culture such as food, health care, biotechnology, and biomedical approaches (Banat 
et al. 2010). It has also been observed that simultaneous application of PGPR and 
fungi accelerates to be pathogenic, while PGPR individually remain nonpathogenic 
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(Banat et al. 2010). The above discussion flashes the light on the negative impacts of 
PGPR in addition to its positive role. However, these detrimental impacts may take 
place under certain specific conditions and that too by some distinct strains.

21.6  Conclusion and Future Prospects

High level of hazardous pesticide application is very costly and leaves financial bur-
den to the farmers. Their application also leaves a mark of loss of red data list spe-
cies. No doubt, different governments have initiated various steps to train the local 
farmers to cultivate their land in organic ways. Application of PGPR is one of the 
cost-effective and conducive ways. It is concluded that application of PGPR helps to 
enhance plant growth through various mechanisms like induction of IAA, P solubili-
zation, and siderophore production. Sometimes it has been seen that consortia of 
different strains are much more effective than their sole application. More studies on 
PGPR will increase our knowledge of rhizosphere biology and will provide the new 
avenues to open for new door for the sustainable agriculture. Application of consortia 
of different strains of PGPR will help in the nutrient management.
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