
Various Code Clone Detection Techniques
and Tools: A Comprehensive Survey

Pratiksha Gautam(&) and Hemraj Saini

Department of Computer Science and Engineering,
Jaypee University of Information Technology, Waknaghat, Solan 173234, India
pratikshamtech20@gmail.com, hemraj.saini@juit.ac.in

Abstract. In this paper, we have discussed several code replication detection
methods and tools in different dimensions. This review has provided an
extensive survey codec clone detection techniques and tools. Starting from clone
perceptions, classification of clones and an overall assortment of selected
techniques and tools is discussed. This paper covers the whole paradigm in
clone detection and presents open research avenues in code clone detection.

Keywords: Software security � Code clone � Program dependency graph �
Detection techniques

1 Introduction

Code segments usually occurs due to replication from one place and then rewrite them
in to another section of code with or without variations/changes are software cloning
and the copied code is called clone. Various researchers [1–5] have reported more than
20–59% code replication. The problem with such copied code is that an error detected
in the original must be checked in every copy for the same bug. Moreover, the copied
code expansions the effort to be done when augmenting the code [5, 8]. However, the
code quality analysis (improved quality code), replication identification, virus recog-
nition, facet mining, and bug exposure are the other software engineering tasks which
require the mining of semantically or syntactically identical code segment to facilitate
clone detection significant for software analysis [6]. Fortunately, there are a number of
comparison and evaluation studies which are related to numerous clone detection
techniques. Recently, Rattan et al. [7], has presented a methodical survey on clone
detection while Roy et al. [8] has presented an qualitative comparison and evaluation of
clone detection tools and techniques. Bellon et al. [9] has presented an extensive
quantitative assessment of six clone detectors which is based on large C and Java
programs for clone detection. Further, the potential studies have evaluated the clone
detection approach in other context [10–15].

In this paper, we have provided a comprehensive review on presently accessible
clone detection approaches and tools. We will start with the basic introduction of code
clones after that classify and compare the techniques and tools in two different ways.
Foremost, the classification of clone types and their techniques and subsequent cate-
gorization of clone detection tools. The remaining of the paper is structured as follows.

© Springer Nature Singapore Pte Ltd. 2016
A. Unal et al. (Eds.): SmartCom 2016, CCIS 628, pp. 655–667, 2016.
DOI: 10.1007/978-981-10-3433-6_79



The Sect. 2 presents the taxonomy of code clones. The Sect. 3 related to various clone
detection methods. The Sect. 4 explores the code clone detection tools. Research gaps
are discussed in Sect. 5 and finally, Sect. 6 concludes the paper.

2 Classification of Code Clones

Figure 1 characterizes the taxonomy of code clones. It can be categorized on the basis
of three aspects which are illustrated below. Clone classifications are used for
expansion reengineering and detection methods. On the basis of clone classification, we
have reiterated on the most prominent types of clone, which eventuates at the time of
reengineering. In the following, code clones are assorted on basis of three facets such
as: (1) similarities between two code segments, (2) clone instance position in program,
and (3) refactoring opportunities with the replicated code.

The similarity based clones are mainly of two types such as: (1) two code segment
can be identical on the basis of similarity of their program content and (2) it can be
similar in their functionalities without being textually identical. However, textual sim-
ilarity based clones are of three types as type-1 (similar code segment without modifi-
cation except for modification in whitespace and comments) type-2
(structurally/syntactically similar copied code, except for changes in names of function
identifiers, variables, types), and type-3 (identical code fragment with or without further
modifications; statements were changed, added or removed). The syntactic elements are
to be measured in this taxonomy which has been altered by the programmer after
replication. For instance, the methods which are same except the name or the methods
which are identical for the types of parameters integrated in high-similarity code clones.
The type-4 (similar computation but different structure) clone based on similar
functionalities.

The similarity between two functions is of three types which are based on four points
of comparisons such as name of the function, layout of the code, lexis in the functions
and control flow of the functions has been given by Mayrand et al. [3]. A taxonomy for
clone methods proposed by Balazinska et al. [16] with 18 different categories which
considers each group of clone methods on the basis of differences existing between

Fig. 1. Classification of code clones.

656 P. Gautam and H. Saini



them. The categories specify the amount of contents of the method has been copied and
also what type of syntax elements have been altered. At the first level, two categories
based on general similarities such as identical and external changes.

The second instances, the token variations and method aspects based on three cat-
egories. The third point based on the significance of the particular token in method body
and, moreover the fourth phase is based on token-sequence distinction in function body.
The three distinct types of clones such as exact clones, parameterized clones, and clones
which have other pervasive features illustrated by Bellon and Koschke [9, 17, 18] for
accomplish a good assessment between different detection tools. The objective of this
categorization is to analysis the detection and classification adequacy of different clone
detection tools. A clone topology with one supplementary type (type-4) presented by
Davey et al. [19] which is based on the Bellon and Koschke [9, 17, 18]. In addition to
this, the authors [18] detected type-1 to type-3 clones and the detection of type-4 leaving
it as future work. Kontogiannis [20] details four types of clones, which are based on
functional scheme of replication such as exact clones, the clones which are similar
except for analytically replaced with variable names as well as data types; the third is
clones with further adaptations. The fourth is clones with statements have been added or
deleted.

Further, classification is related to location and similarity of code clones. This
categorization is based on place distinctions as well as physical expanse between clone
instance positions. The refactoring opportunities or impediments based on the fact that
the code segments which are located in the same file, same function or in files from
different directories can be improved without affecting their external behavior by using
refactoring. The clone instances in object oriented system are to be found at specific
position in the class hierarchy. The rudimentary parsing technology is sufficient for
extracting such type of assortments for a clone pair. The illustrations of such types of
classifications provided by various authors are as follows. A hierarchical categorization
of software clones which are consists of three partitions using two aspects such as
locations and functionality given by Kapser and Godfrey [21]. The first classification of
clones is based on their substantial position in the program text. Second, clones tax-
onomy is based on the type of realm in which they are located and third is function to
function code clones. Monden et al. [22], has described how to simplify the relation
between software quality and code by using module-based categorization of code
clones and they have also provided taxonomy of modules.

Finally, the refactoring opportunities based classifications discussed the simplicity
to extort the copied code from the refactoring perspective. The classifications of such
kinds of differences are based on methods which have been defined outside of the
copied code fragment and the uses of variables. The context analysis has been proposed
by Balazinska et al. [16] to complete the difference analysis of code clones for
computer-assisted refactoring. Fanta and Rajlich [23] proposed an approach of
reengineering scenarios to eliminate clones, which is based on automated restructuring
tools. The object-oriented systems (in SMALLTALK) investigated by Golomingi [24]
and the author have also provided a clone relationship scenarios taxonomy based on the
class hierarchy relationships of the methods which consists of duplicate code frag-
ments. Basically, there are four types of clone and each type is classified as shown in
Table 1 below.

Various Code Clone Detection Techniques and Tools 657



Table 1 characterizes four types of clones as well as their sub-types. The similarity
based taxonomy such as text based (type-1 to 3) and function based (type-4). Type 1
clone has been categories as follows. (1) The exact clone (similar code except some
variations in comments), Type 1, 3, 4 as (2) the structural (it is based on level of
similarity), Type 1,2,3,4 as (3) function (subset of structural). Type 2 as (1) renamed
(modification in copied code), (2) parameterized (renamed clone with renaming). Type
2, 3 as (3) near-miss (slight modifications in copied fragment but syntactic structure
remains same). Type 3 as (1) gapped (add, delete, modify some portion between
segment), (2) non-contiguous (Like near-miss, and gaps are allowed between code
fragment). Type 3, 4 as (3) reordered (some statement have been reordered). Type 4 as
(1) intertwined (making two segments in to one segment).

3 Code Clone-Detection Techniques

The clone detection techniques can be analyzed on the basis of code clone properties.
There are variant code clone properties which are shown in Fig. 2.

Figure 2 depicts some clone properties such as normalization means apply a
number of refinements as remove white space, comments etc. before actual compari-
son. The source representation, it is the result after the transformation. In the com-
parison phase the granularities are used for a particular technique. Comparison
algorithms play a vital role in detection of dissimilar types of code clones. The com-
plexity based on the types of comparison algorithms as well as types of transforma-
tions. The clone similarity means different kinds of clones can be identified by different
techniques. The granularity can be fixed or free. The language independency property

Table 1. Summary of clone taxonomy.

Type 1 Type 2 Type 3 Type 4

Exact clone Renamed clone Near-miss clone Structural clone
Structural clone Parameterized clone Gapped clone Function clone
Function clone Near-miss clone Non-contiguous clone Reordered clone

Function clone Reordered clone Intertwined clone
Structural clone Semantic clone
Function clone

Fig. 2. Various types of code clone properties.

658 P. Gautam and H. Saini



verified language sustain of a detection tool. The output aspect indicates what kind of
output will be occurred as clone pair or clone classes or both. Clone refactoring
indicates restructuring existing code without changing its external behavior. The lan-
guage paradigm implies programming paradigm which is targeted for the particular
method of interest.

3.1 Classification of Code Clone Detection Techniques

There are following types of clone detection techniques.

(1) The text/string based approach: In this method, the source fragments are analyzed
as subsequence of text. The two segments are compared textually with each other
on the basis of different transformations like white space, newline and removing
comments etc. to locate sequences of same strings. Several researchers have
proposed numerous string/text based techniques for clone detection. The lexer as
well as line-based string matching algorithm on tokens for the line of text used by
Baker [27, 28] with the help of a tool named as Dup. It also used special
parameter for identifying clones (which have different variables names).
Although, it was not able to detect clone written in different style and it could not
support exploration and navigation between the copied codes. Koshke et al. [18]
has overwhelmed this problem by using tokens and non-parameterized suffixes.
Although, authors were unable to detect the exact and parameterized clones as
well as they could not make a distinction between them. Moreover, the clones
(text based tool) which is proposed by Koshke et al. [18] does not check whether
the identifiers had been renamed consistently. Karp-Rabin fingerprinting algo-
rithm used by Johnson [25] for clone detection as well as to measures the fin-
gerprints of a text for all length substring of the source code. The whole text is
partitioned in to a set of substring because of each character in this technique is
consists of at least one substring and then raw transformation [30] is applied for
matching of those substrings. However, the limitation of this technique is that to
keep 50 lines match resulting in to diminish large number of false positive. The
island grammar technique used by Cordy et al. [29] for identifying syntactic
constructs. Moreover, the author also provided the detection of near miss clones
for HTML web pages. The constraints of this technique is that it was unable to
normalize any code and it used smallest comparison. The string-based dynamic
pattern matching algorithm which is language independent proposed by Ducasse
et al. [2]. Further, this technique could not identify meaningful clone resolution in
language-independent manner due to the cohesiveness of the code. The latent
semantic indexing [31] based approach proposed by Marcuss [26]. This approach
detect the clones by extremity its comparison domain within comments and the
identifier in spite of compare whole source code. It cannot detect such types of
clones which have same structure nevertheless the identifiers name is different. All
of the detection approach which have been discussed above shows that it does not
apply transformation on the source code, the recent approach which has been
proposed by Ducasse et al. [2] has used several transformation on the raw source

Various Code Clone Detection Techniques and Tools 659



code. Although the cost of text based approach is awfully less except the code
having identifier changes, line split, amputation of parenthesis, type, etc. cannot
be analyzed and identified whether it is a cloned code or not.

(2) The lexical/token-based approach: The token based approaches are also called
lexical approach. In this technique, the whole source code is divided in to tokens
by lexical analysis and then all the tokens are formed in to a set of token sequence.
Finally, the sequence is scanned for identifying duplicated code. One of the
foremost tool of token based approach named as CCFinder proposed by Kamiya
et al. [32]. Foremost, the lexer partitions each line of text in to tokens and
subsequently forms a single token sequence and moreover, the suffix tree
matching algorithm is used to find similar sub-sequences of token sequence.
Although, Dup is also a token-based approach tool in the sense that it is also used
lexer for tokenization as well as for comparisons based on suffix tree matching
algorithm proposed by Baker [27, 28]. CP-Miner [34, 35] has been introduced to
overwhelm the problem of CCFinder and Dup, in which a frequent subsequence
mining technique is used for clone detection rather than sequential analysis in
CCFinder and Dup. A plug-in in visual studio based approach which detects
clones in Java and C# and it was not able to handle defects from programmer side
itself proposed by Juergens et al. [36]. However, the same approach for C ++ and
C# was proposed by Kawaguchi et al. [37] and it could not overcome the problem
as in [36].

(3) The syntactic/tree-based approach: In this approach, the program is represented in
the form of abstract syntax tree (AST) rather than creating tokens for each
statement and with the help of tree matching algorithm similar sub-tree is searched
in the same tree. One of the initial AST-based tool named as CloneDR proposed
by Baxter et al. [38]. It creates AST with the help of compiler generator and then
compares its sub tree by using metrics which is based on hash functions.
Although, it was not able to detect identical clones. To overcome this problem, the
Bauhaus has provided a ccdiml [39] tool by avoiding the uses of hashing and
similarity metrics. However, it was incompetent to verify the renamed identifiers.
Yang [40] has presented one of the grammar based approach. It is used for finding
the syntactic variations between the two versions of the same program by creating
their parse tree and then apply dynamic programming technique for identifying
similar sub tree. Wahler et al. [41] explored the approach to detect the exact and
parameterized clone. This approach foremost convert the AST into XML and
subsequently used frequent item set data mining technique [33] for extracting the
clones. Evas and Fraser [42] provided a further abstraction of this approach by
finding near miss clones as well as exact clones by using only AST leaves rather
than whole AST. Even though, it could not detect much of the exact clones. A tool
named Clone Tracker in Java was developed by Duala Ekoko et al. [43]. How-
ever, it was unable to identify post programming due to the numbers of false
positives. A clone management tool in Java which has amplified the time for clone
detection proposed by Nguyen [44]. However, aforementioned researches shows
that gapped clones could not be find by the AST as well as it could not detect
clones if the statements are reordered and does not follow the data flow. The
limitations of AST can be easily overcome by the use of PDG-based technique.

660 P. Gautam and H. Saini



(4) The semantic/PDG-based approach: The AST based problems was overwhelmed
by the program dependency graph (PDG) [45–47]. The PDG approach used the
data flow and control flow [50] for clone detection semantically and syntactically.
PDG-DUP is one of the most prominent PDG-based clone detection approach
proposed by Komondoor and Horwitz [45, 48]. It is based on program slicing
technique for identifying PDG sub graph without changing its semantics behavior.
Further, the same slicing based clone analysis approach accomplished by Gal-
lagher and Lucas [49]. They compute program slices on all the variables of a code
but could not find any analysis outcome. An iterative approach within PDG
proposed by Krinke [46] for identifying maximal similar sub graph but it cannot
be used on any type of system to find the clone. According to the several
researchers who are using the PDG have concluded that PDG-based techniques
can find non-contiguous clones but it cannot be applied to large systems and it
will require more time for code clone detection.

(5) The syntactic/metric-based approach: In metric-based methods dissimilar metrics
are assembled such as number of functions, number of lines etc. from code
segments and then evaluates that metrics in spite of assessments of source code
directly. Mayrand et al. [3] computed metrics from expression, layouts and control
flow for each function elements of a program and then similar metrics returned as
software clones. However, some metrics are not identified in that case they used
intermediate representation language (IRL) for exemplifying each function of
code. It detects function-based copy-paste instead of segment-based copy-paste
which occurs recurrently. The feasible matches identified by an abstract pattern
tool which is based on markov model provided by Kontogiannis et al. [4]. The
authors used metrics for clone detection which is extorted from an AST of the
code and then match detection is done by using dynamic programming. However,
it was unable to identify copy-pasted code rather than it only measures similarity
between the codes. Further, the identical approach used by Di Lucca et al. [51] for
acquisition the similarity between the static HTML pages by evaluating their level
of similarity, which is performed by computing the Levenshtein distance of the
code [52]. eMetrics tool is used for detecting function clones and then detected
clones are clustered according to refactoring opportunities by Calefato Lanuible
[53, 54]. Moreover, the mined code is checked manually for finding that is a true
positive or not yet it could not be executed on vast systems. So, the authors
concluded that metric-based approach can identify simply clones from the code.

(6) The semantic/hybrid approach: There are numerous hybrid methods for code
clone detection. The hybrid approach is a collection of several approaches and it
can be classified on the basis of preceding techniques. The tree and token
based-hybrid approach proposed by Koschke et al. [18] for finding type-I (exact)
and type-II code clones. In this approach authors generate suffix tree for serialized
AST nodes which is sequentialzed in preorder traversal and then by using suffix
tree based algorithm comparisons is performed on the tokens of the AST nodes in
place of AST nodes. The Microsoft’s new phoenix framework [55], was also used
for the detection of function level clones with the same approach. It can detect
exact function clone as well as parameterized clone with identifier renaming not
data type changes. The analogous approach proposed by Greenan [56] with the

Various Code Clone Detection Techniques and Tools 661



sequence matching algorithm for the detection of method level clones. Jiang et al.
[57] explored AST in Euclidean space for computing the vectors as well as group
these vectors on the basis of similarity through the Locating Sesitive Hasing
(LSH) [58]. A dynamic pattern matching as well as characterization based hybrid
approach is provided by Balazinska [59] in which method of each bodies are
computed with quality metrics and then evaluated identified clusters by using
Patenaude’s [60] metric-based approach. A dynamic change tracking and reso-
lution in Java language based novel approach explored by DeWit [61]. Further, it
was unable for data flow detection as well as data flows although, it detects the
clones at the programmer’s level. In addition to this, several other approaches for
the clone detection in other context have been proposed in [10–15]. All these
approaches mainly emphasized on the detection of type-1, type-2, and type-3
clones. However, aforementioned comprehensive survey has been presented
graphically in Fig. 3.

4 Comparisons of Clone Detection Tools

The software clone detection tools are multivariate and their abstraction entails a
methodical scheme for recounting their property. In this section, we indexed the dif-
ferent clone detection tools presented in the literature in a tabular form as shown in
Table 2. The Table 2 illustrates the assessments of various tools and techniques. In this
table, the first column represents the author name, 2nd column refers to the tools name,

Fig. 3. Comprehensive survey of code clone detection techniques.

Table 2. Comparisions of Clone detection tools

Author Tools Techniques Supported-language Domain

Baker [1, 26] Dup Line/Text based C, C++, Java CD/Linux
Kamiya, et al. [24] CCFinder Transformation/Token

comp. with suffix tree
C, C++, Java,
COBOL etc.

CD/Windows/NT

Bellon [8] Ccdiml
(Bauhaus)

AST/Tree Matching C, C++ CD/Linux

Krinke et al. [38] Duplix PDG, graph Matching C? CD

662 P. Gautam and H. Saini



the 3rd column signifies the proposed technique, 4th column imply whether the tool
supported languages and 5th column shows the domain of the tools.

5 Open Research Issues in Code Clone Detection

There is no code clone detection technique for the detection of non-trivial code clone,
which is also ideal in terms of portability, scalability, precision and recall. Every tool
has its own limitations, making it difficult to define which is realistic for clone
detection. The type-1 as well as type-2 clone can be easily detected in comparison of
type-3 and type-4. The PDG based-approach can only detect type-3 and type-4 clone
but the shortcoming of this algorithm is that it produces many variants of the same
clone, thereby taking longer time to process a program. Thus, it is essential for such
type of technique and tool that may overcome the limitations of existing techniques for
clone detection.

6 Conclusion

The code-clone detection is an emerging issue in the software ecosystem which
degrades the software’s comprehensibility as well as maintainability. Therefore, its
analysis and detection is necessary for improving the quality, structure and design of
the software system. In this paper, discussion in terms of attributes based clone cate-
gorization, classification of clone detection tools as well as approaches such as text
based, token based, tree based, PDG based, metric based and hybrid technique on the
basis of their property and sub-property. However, numerous algorithms have been
developed based on aforementioned approaches, but sill now the detection of clone
with accuracy and efficiency is a potential issue. There are various algorithms for clone
detection in which some algorithms are less efficient when a large system is to be
compared as well as some algorithms detects only a particular type of clone. This paper
presents an extensive comparison of tools and techniques as well as research gaps in
clone detection so that one can easily select an appropriate method according to the
requirement and can analyze opportunities for hybridizing various techniques that may
overcome the existing research gaps in clone detection algorithms.

Acknowledgments. The authors would like to thank Professor Ghanshyam Singh as well as
anonymous reviewers for critical comments and suggestions to improve the quality of the
manuscript.

Various Code Clone Detection Techniques and Tools 663



References

1. Baker, B.S.: On finding duplication and near-duplication in large software systems. In:
Proceedings of 2nd IEEE Working Conference on Reverse Engineering, Toronto, Ontario,
Canada, pp. 86–95, July 1995

2. Ducasse, S., Rieger, M., Demeyer, S.: A Language independent approach for detecting
duplicated code. In: Proceedings of 1st IEEE International Conference on Software
Maintenance, Oxford, UK, ICSM 1999, pp. 109–118 (1999)

3. Mayrand, J., Leblanc, C., Merlo, E.: Experiment on the automatic detection of function
clones in a software system using metrics. In: Proceedings of 1st IEEE International
Conference on Software Maintenance, Monterey, CA, pp. 244–254 (1996)

4. Kontogiannis, K., Mori, R.D., Merlo, E., Galler, M., Bernstein, M.: Pattern matching for
clone and concept detection. J. Autom. Softw. Eng. 3(1), 79–108 (1996)

5. Lague, B., Proulx, D., Mayrand, J., Merlo, E.J., Hudepohl, J.: Assessing the benefits of
incorporating function clone detection in a development process. In: Proceedings of 1st
IEEE International Conference on Software Maintenance, Washington, DC, USA, pp. 314–
321 (1997)

6. Roy, C.K., Cordy, J.R.: A survey on software clone detection research. Technical report 541,
Queen’s University at Kingston (2007)

7. Rattan, D., Bhatia, R., Singh, M.: Software Clone detection: a systematic review. Inf. Softw.
Technol. 55(7), 1165–1199 (2013)

8. Roy, C.K., Cordy, J.R., Koschke, R.: Comparison and evaluation of code clone detection
techniques and tools: a qualitative approach. Sci. Comput. Program. 74(7), 470–495 (2009)

9. Bellon, S., Koschke, R., Antoniol, G., Krinke, J., Merlo, E.: Comparison and evaluation of
clone detection tools. IEEE Trans. Softw. Eng. 33(9), 577–591 (2007)

10. Patil, R.V., Joshi, S., Shinde, S.V., Ajagekar, D.A., Bankar, S.D.: Code clone detection
using decentralized architecture and code reduction. In: Proceedings of IEEE International
Conference on Pervasive Computing, Pune, India (ICPC 2015), pp. 1–6, January 2015

11. Keivanloo, I., Zhang, F., Zou, Y.: Threshold-free code clone detection for a large-scale
heterogeneous Java repository. In: Proceedings of 22nd IEEE International Conference on
Software Analysis, Evolution and Reengineering, Montreal, QC (SANER 2015), pp. 201–
210 (2015)

12. Chodarev, S., Pietrikova, E., Kollar, J.: Haskell clone detection using pattern comparing
algorithm. In: Proceedings of 13th IEEE International Conference on Engineering of Modern
Electric Systems (EMES 2015), Oradea, Romania, pp. 1–4 (2015)

13. Kamiya, T.: An execution-semantic and content-and-context-based code-clone detection and
analysis. In: Proceedings of 9th International Workshop on Software Clones, Montreal, QC
(IWSC 2015), pp. 1–7 (2015)

14. Singh, M., Sharma, V.: Detection of file level clone for high level cloning. In: Proceedings of
3rd Elsevier International Conference on Recent Trends in Computing (ICRTC 2015), India,
pp. 915–922 (2015)

15. Basit, H.A., Jarzabek, S.: A data mining approach for detecting higher-level clones in
software. IEEE Trans. Softw. Eng. 35(4), 497–514 (2009)

16. Balazinska, M., Merlo, E., Dagenais, M., Lague, B., Kontogiannis, K.: Measuring clone
based reengineering opportunities. In: Proceedings of the 6th IEEE International Symposium
on Software Metrics (METRICS 1999), USA, pp. 292–303, November 1999

17. Bellon, S:. Vergleich von techniken zur erkennung duplizierten quellcodes. Master’s thesis
no. 1998, University of f Stuttgart (Germany). Institute for Software Technology, September
2002

664 P. Gautam and H. Saini



18. Koschke, R., Falke, R., Frenzel, P.: Clone detection using abstract syntax suffix trees. In:
Proceedings of the 13th IEEE Working Conference on Reverse Engineering, Italy, pp. 253–
262, October 2006

19. Davey, N., Barson, P., Field, S., Frank, R., Tansley, D.: The development of a software
clone detector. J. Appl. Softw. Technol. 1(3/4), 219–236 (1995)

20. Kontogiannis, K.: Evaluation experiments on the detection of programming patterns using
software metrics. In: Proceedings of the 4th IEEE Working Conference on Reverse
Engineering, Netherlands, pp. 44–54, October 1997

21. Kapser, C., Godfrey, M.W.: Aiding comprehension of cloning through categorization. In:
Proceedings of the 7th IEEE International Workshop on Principles of Software Evolution,
Japan, pp. 85–94, September 2004

22. Monden, A., Nakae, D., Kamiya, T., Sato, S.I., Matsumoto, K.I.: Software quality analysis
by code clones in industrial legacy software. In: Proceedings of 8th IEEE International
Symposium on Software Metrics, Canada, pp. 87–94, June 2002

23. Fanta, R., Rajlich, V.: Removing clones from the code. J. Softw. Maintenance 11(4), 223–
243 (1999)

24. Koni-N’sapu, G.G.: A scenario based approach for refactoring duplicated code in object
oriented systems. Diploma thesis, University of Bern, Germany (2001)

25. Johnson, J.H.: Identifying redundancy in source code using fingerprints. In: Proceeding of
the 1993 Conference of the Centre for Advanced Studies on Collaborative Research,
Canada, pp. 171–183, October 1993

26. Marcus, A., Maletic, J.: Identification of high-level concept clones in source code. In:
Proceedings of 16th IEEE International Conference on Automated Software Engineering
(ASE 2001), pp. 107–114, November 2001

27. Baker, B.S.: A program for identifying duplicated code.de. In: Proceedings of Computing
Science and Statistics, 24th Symposium on the Interface, pp. 49–57, March 1993

28. Baker, B.S.: Parameterized difference. In: Proceedings of the 10th ACM-SIAM Symposium
on Discrete Algorithms (SODA 1999), Maryland, USA, pp. 854–855, January 1999

29. Cordy, J.R., Dean, T.R., Synytskyy, N.: Practical language-independent detection of
near-miss. In: Proceedings of the 14th Conference of the Centre for Advanced Studies,
Canada, pp. 1–12, October 2004

30. Cox, I.J., Linnartz, J.P.M.: Some general methods for tampering with watermarks. J. Sel.
Area Commun. 16(4), 587–593 (1998)

31. Dumais, S.T.: Latent Semantic Indexing (LSI) and TREC-2. In: Proceedings of the 2nd Text
Retrieval Conference (TREC 1994), Maryland, pp. 105–115, March 1994

32. Kamiya, T., Kusumoto, S., Inoue, K.: CCFinder: a multilinguistic token-based code clone
detection system for large scale source code. IEEE Trans. Softw. Eng. 28(7), 54–67 (2002)

33. Baker, B.S.: Finding clones with dup: analysis of an experiment. IEEE Trans. Softw. Eng. 33
(9), 608–621 (2007)

34. Li, Z., Lu, S., Myagmar, S., Zhou, Y.: CP-miner: a tool for finding copy-paste and related
bugs in operating system code. In: Proceedings of the 6th Symposium on Operating System
Design and Implementation (OSDI 2004), Berkeley, CA, USA, vol. 4, no. 19, pp. 289–302,
December 2004

35. Li, Z., Lu, S., Myagmar, S., Zhou, Y.: CP-miner: finding copy-paste and related bugs in
large-scale software code. IEEE Trans. Softw. Eng. 32(3), 176–192 (2006)

36. Juergens, E., Deissenboeck, F., Hummel, B.: Clone detective - a workbench for clone
detection research. In: Proceedings of the 31st IEEE International Conference on Software
Engineering, Vancouver, BC, pp. 603–606 (2009)

Various Code Clone Detection Techniques and Tools 665



37. Kawaguchi, S., Yamashina, T., Uwano, H., Fushida, K., Kamei, Y., Nagura, M., Iida, H.:
SHINOBI: a tool for automatic code clone detection in the idea. In: Proceedings of 16th
IEEE Working Conference on Reverse Engineering (WCRE 2009), Lille, pp. 313–314
(2009)

38. Baxter, I.D., Yahin, A., Moura, L, Anna, M.S.: Clone detection using abstract syntax trees.
In: Proceedings of the 14th IEEE International Conference on Software Maintenance (ICSM
1998), Maryland, pp. 368–377, November 1998

39. Raza, A., Vogel, G., Plödereder, E.: Bauhaus – a tool suite for program analysis and reverse
engineering. In: Pinho, L.M., González Harbour, M. (eds.) Ada-Europe 2006. LNCS, vol.
4006, pp. 71–82. Springer, Heidelberg (2006). doi:10.1007/11767077_6

40. Yang, W.: Identifying syntactic differences between two programs. J. Softw. Prac. Exp. 21
(7), 739–775 (1991)

41. Wahler, V., Seipel, D., Fischer, G.: Clone detection in source code by frequent item set
techniques. In: Proceedings of the 4th IEEE International Workshop on Source Code
Analysis and Manipulation (SCAM 2004), USA, pp. 128–135, September 2004

42. Evans, W.S., Fraser, C.W., Ma, F.: Clone detection via structural abstraction. J. Softw. Qual.
17(4), 309–330 (2009)

43. Duala-Ekoko, E., Robillard, M.P.: Clone tracker: tool support for code clone management.
In: Proceedings of the 30th ACM International Conference on Software Engineering,
Washington, DC, USA, pp. 843–846 (2008)

44. Nguyen, H.A., et al.: Clone management for evolving software. IEEE Trans. Softw. Eng. 38
(5), 1008–1026 (2012)

45. Komondoor, R., Horwitz, S.: Using slicing to identify duplication in source code. In: Cousot,
P. (ed.) SAS 2001. LNCS, vol. 2126, pp. 40–56. Springer, Heidelberg (2001). doi:10.1007/
3-540-47764-0_3

46. Krinke, J.: Identifying similar code with program dependence graphs. In: Proceedings of the
8th IEEE Working Conference on Reverse Engineering (WCRE 2001), Germany, pp. 301–
309, October 2001

47. Liu, C., Chen, C., Han, J., Yu, P.S.: GPLAG: detection of software plagiarism by program
dependence graph analysis. In: Proceedings of the 12th ACM International Conference on
Knowledge Discovery and Data Mining (KDD 2006), Philadelphia, pp. 872–881, August
2006

48. Komondoor, R.V.: Automated duplicated-code detection and procedure extraction. Doctoral
thesis, University of Wisconsin- Madison, USA (2003)

49. Gallagher, K., Layman, L.: Are decomposition slices clones? In: Proceedings of the 11th
IEEE International Workshop on Program Comprehension (IWPC 2003), USA, pp. 251–
256, May 2003

50. Ferrante, J., Ottenstein, K.J., Warren, J.D.: The program dependence graph and its use in
optimization. ACM Trans. Program. Lang. Syst. 9(3), 319–349 (1987)

51. Di Lucca, G.A., Di Penta, M., Fasolino, A.R., Granato, P.: Clone analysis in the web era: an
approach to identify cloned web pages. In: Proceedings of the 7th IEEE Workshop on
Empirical Studies of Software Maintenance, Italy, pp. 107–113, November 2001

52. Di Lucca, G.A., Di Penta, M., Fasolino, A.R., Granato, P.: An approach to identify
duplicated web pages. In: Proceedings of the 26th International Conference on Computer
Software and Applications, England, pp. 481–486, August 2002

53. Calefato, F., Lanubile, F., Mallardo, T.: Function clone detection in web applications: a semi
automated approach. J. Web Eng. 3(1), 3–21 (2004)

54. Lanubile, F., Mallardo, T.: Finding function clones in web applications 2003. In:
Proceedings of 7th IEEE European Conference on Software Maintenance and Reengineering
(CSMR 2003), Italy, pp. 379–386, March 2003

666 P. Gautam and H. Saini

http://dx.doi.org/10.1007/11767077_6
http://dx.doi.org/10.1007/3-540-47764-0_3
http://dx.doi.org/10.1007/3-540-47764-0_3


55. Tairas, R., Gray, J.: Phoenix-based clone detection using suffix trees. In: Proceedings of the
44th ACM Annual Southeast Regional Conference (ACM-SE 2006), Melbourne, pp. 679–
684, March 2006

56. Greenan, K.: Method-level code clone detection on transformed abstract syntax trees using
sequence matching algorithms. Student report, University of California, Santa Cruz, USA
(2005)

57. Jiang, L., Misherghi, G., Su, Z., Glondu, S.: Scalable and accurate tree-based detection of
code clones. In: Proceedings of the 29th IEEE International Conference on Software
Engineering (ICSE 2007), USA, pp. 96–105, May 2007

58. Datar, M., Immorlica, N., Indyk, P., Mirrokni, V.S.: Locality-sensitive hashing scheme
based on p-stable distributions. In: Proceedings of the 20th ACM Annual Symposium on
Computational Geometry (SoGG 2004), New York, pp. 253–262, June 2004

59. Balazinska, M., Merlo, E., Dagenais, M., Lagüe, B., Kontogiannis, K.: Measuring clone
based reengineering opportunities. In: Proceedings of the 6th IEEE International Software
Metrics Symposium (METRICS 1999), Florida, USA, pp. 292–303, November 1999

60. Patenaude, J.F., Merlo, E., Dagenais, M., Laguë, B.: Extending software quality assessment
techniques to java systems. In: Proceedings of the 7th IEEE International Workshop on
Program Comprehension (IWPC 1999), USA, pp. 49–56, May 1999

61. De Wit, M., Zaidman, A., Van Deursen, A.: Managing code clones using dynamic change
tracking and resolution. In: Proceedings of IEEE International Conference on Software
Maintenance (ICSM 2009), Edmonton, AB, pp. 169–178 (2009)

Various Code Clone Detection Techniques and Tools 667


	Various Code Clone Detection Techniques and Tools: A Comprehensive Survey
	Abstract
	1 Introduction
	2 Classification of Code Clones
	3 Code Clone-Detection Techniques
	3.1 Classification of Code Clone Detection Techniques

	4 Comparisons of Clone Detection Tools
	5 Open Research Issues in Code Clone Detection
	6 Conclusion
	Acknowledgments
	References


