Big-Data Approaches for Bioinformatics
Workflows: A Comparative Assessment

Rickey T.P. Nunes!®™) and Santosh L. Deshpande?

! VTU Research Resource Centre, Visvesvaraya Technological University,
Belagavi, India
rickeynunes@gmail.com
2 Centre for Postgraduate Studies, Visvesvaraya Technological University,
Belagavi, India
sld@vtu.ac.in

Abstract. There is a big-data explosion in the field of bioinformatics,
with the rapid growth in the size of biological data. In bioinformatics,
workflows are used to integrate and analyze biological data. Orchestra-
tion and choreography are the two approaches used to execute bioin-
formatics workflows. However, big-data poses several challenges in these
approaches. One of the challenges is how to handle the movement of big-
data during workflow execution. With the advent of big-data, a number
of modified orchestration and choreography approaches have also been
developed to handle big-data. In this paper, we review and make a com-
parative assessment of the state-of-the-art approaches to execute big-
data workflows. We examine the big-data handling in these approaches
and finally recommend a solution that could be a way forward in exe-
cuting big-data bioinformatics workflows.

Keywords: Big-data - Bioinformatics + Workflows : Orchestration -
Choreography

1 Introduction

There is a big-data explosion in the field of bioinformatics, with the rapid growth
in the size of biological data. Bioinformatics experiments typically involve ana-
lyzing data from one or more biological data sources using one or more analysis
tools [1]. The biological data sources and the analysis tools are usually distrib-
uted and available as web services. Hence, workflows are used to integrate these
distributed bioinformatics resources. Bioinformatics workflows are collection of
analysis tool and data services combined in a certain way to represent a bioin-
formatics experiment. Each analysis tool or computation service in the workflow
does some data analysis based on the input that it receives and produces some
data based on the analysis for the next service. Bioinformatics workflows are
executed based on data-flow. However, they can be executed based on control-
flow or combining both data-flow and control-flow [2]. A data-flow describes the

© Springer Nature Singapore Pte Ltd. 2016
A. Unal et al. (Eds.): SmartCom 2016, CCIS 628, pp. 647-654, 2016.
DOI: 10.1007/978-981-10-3433-6_78

648 R.T.P. Nunes and S.L. Deshpande

flow of specific dataset among the services of the workflow, whereas the control-
flow describes the correct order of execution among the different services of the
workflow.

In literature, there are two workflow execution approaches i.e. the orchestra-
tion and the choreography approach [3]. In the orchestration approach, the work-
flow is executed using a central coordinator called the orchestrator or workflow
engine. The orchestrator controls the data-flows and the control-flows among
the services of the workflow. On the other hand, in choreography approach,
the workflow services interact with each other directly to execute the workflow.
The services share the control among themselves. Each service of the workflow
knows with whom to interact and when to carry out its operations. Both these
approaches are used to execute bioinformatics workflows.

Bioinformatics workflows are inherently complex. Their execution requires
monitoring, reporting of workflow execution progress, handling of failures and
recording of provenance data. Bioinformatics workflows are also data-intensive.
They produce and move large volumes of data during workflow execution [4]. The
complexity of bioinformatics workflow increases with big-data in it. Big-data pose
several challenges in bioinformatics workflow execution. One of the challenges
is how to handle the movement of big-data in bioinformatics workflows. With
the advent of big-data, a number of modified approaches based on orchestration
and choreography approaches have also been developed to handle the big-data
and improve the performance of workflow execution. In this paper, we review
and make a comparative assessment of the state-of-the-art approaches to execute
big-data bioinformatics workflows. We examine the big-data handling in these
approaches and finally recommend a solution that could be a way forward in
executing big-data bioinformatics workflows.

2 Classical Approaches: Orchestration and Choreography

In this section, we review the classical orchestration and the classical choreog-
raphy approaches. In order to understand the execution of bioinformatics work-
flows using these approaches, let us consider a workflow in the Fig.1(a) with
two services s; and so. Let in be the input from the user to service s;. Based on
this input in, s; produces the data d that is passed on to service ss. Service sg
then produces the final output out which is passed to the user. The execution of
the workflow using orchestration and choreography approaches is shown in the
Figs. 1(b) and (c) respectively.

In the classical orchestration approach Fig. 1(b), the input in received from
the user is sent to service s; by the orchestrator. Upon the receipt of the input
in, the service s; produces the data d which it passes to the orchestrator. The
orchestrator then passes the data d to the service so which produces the final
output out. The service sy passes this final output out to the orchestrator who
forwards it to the user. In this approach all the data is routed among the services
of the workflow through the central coordinator i.e. the orchestrator.

Big-Data Approaches for Bioinformatics Workflows 649

GG

(a) Workflow
@3 . S . %
/n—»@rchestrator > out nNSX out
1 / o\
| f\
1 \/ 3\>.\ ;4\/ z\/"\
OO (—=()

1:Inputin given to service s, 1:Input in given to service s; by user

2 : Service s; produces data (d) that is passed to orchestrator 2 : Service s; produces data (d) that is passed to service s,
3 : Orchestrator passes data (d) to service s, 3 : Service s, sends result our to user

4 : Service s, sends result out to orchestrator

(b) Classical Orchestration Approach (c) Classical Choreography Approach

Fig. 1. (a) Workflow (b) Classical orchestration approach (c) Classical choreography
approach

Using orchestration in bioinformatics workflow has several advantages; this
includes controlled and monitored execution of workflow, collection of prove-
nance data and handling of task failures during workflow execution. However
the classical orchestration approach suffers from performance bottlenecks. This
is due the fact that all the data is indirectly passed between the services of the
workflow resulting in unnecessary data-flows, consuming more bandwidth and
hence weakening the performance of the workflow execution. Another issue with
this approach is the scalability [5]. The overall performance of the bioinformatics
workflow reduces as the number of services and the volume of the data to be
orchestrated in the workflow becomes larger. The services of the workflow are
distributed but the decision and coordination logic are centrally located at one
point, this also creates a single point of failure in this approach.

In the classical choreography approach Fig.1(c), the input in is given to
the first service of the workflow i.e. the service s; by the user. The service s;
produces the data d. This data d is passed directly to service so which produces
the final output out which is transfered to the user. In a choreography approach
the services of the workflow do not depend on the central coordinator. The
approach achieves the composition by peer-to-peer communication between the
services of the workflow [6].

The choreography approach facilitates the services of the workflow to trans-
fer data directly between them without going through any central coordinator [7].
This direct data transfer between services consumes less bandwidth and thus pro-
vides performance benefits in bioinformatics workflow which are data-intensive.
Further more the choreography approach is more scalable than orchestration app-
roach [8]. However in this approach it is difficult to handle provenance of data,
monitor and handle components failures. The choreography approach also suffers
from implementation challenges i.e. the approach require complex design processes
and execution infrastructure compared to orchestration approach. These diffi-
culties make the orchestration as the preferred choice to execute bioinformatics
workflows.

650 R.T.P. Nunes and S.L. Deshpande

Table 1. Summary of orchestration and choreography approaches

Factors Method

Orchestration Choreography
Composition Centralized Decentralized
Data movement Indirect/Centralized Direct/Peer-to-Peer
Monitoring Easy Difficult
Provenance Easy Difficult
Failure-handling Relatively easy Difficult
Scalability Not scalable Scalable
Single point of failure | Possible Not possible
Implementation Simple and straight-forward | Complex

Table 1 summarises the orchestration and choreography approaches. As see
from the Table 1, both the approaches have their share of advantages and disad-
vantages in executing bioinformatics workflows. In order to combine the benefits
of both the approaches, several authors proposed modified orchestration and
choreography approaches to handle big-data in workflow execution.

3 Modified Orchestration and Choreography Approaches

This section reviews the modified classical orchestration and choreography
approaches. They are mostly based on decentralized and hybrid design. In a
decentralized design both the control-flow and the data-flow are distributed.
Whereas in a hybrid design the control-flow is centralized and the data-flow is
distributed.

Binder et al. proposed a solution using triggers in [9]. A trigger is a light-
weight infrastructure placed between the orchestrator and the services of the
workflow. Each service is associated with a trigger, which invokes that service.
Triggers act as data buffers and collect the required data for the services of the
workflow before invoking the service. They forward the outputs to other trig-
gers according to the routing information without involving the orchestrator for
data transfers. The approach uses choreography to achieve decentralized control
for workflow execution and overcomes the problem associated with the classi-
cal orchestration approach. Although the approach improves performance of the
orchestrator, the data now moves between the triggers and the services, thereby
increasing the traffic between them.

Barker et al. in [10] proposed a prozy based approach. This is a hybrid
approach that combines the benefits of orchestration and the choreography
approaches. A proxy is a lightweight piece of middleware placed between the
orchestrator and the services of a workflow, controlled by orchestrator. The
orchestrator sends a request to a proxy and the proxy then invokes the service
on behalf of the orchestrator. The proxies buffer the intermediate data and pass

Big-Data Approaches for Bioinformatics Workflows 651

it to the other proxies according to the data flow in the workflow. This allows
the services of the workflow to pass that data among themselves without passing
through the orchestrator. The proxies however pass references of the data passed
between the services to the orchestrator. This allows the orchestrator to monitor
the progress of workflow execution.

In [11], Fleuren et al. proposed a hybrid model that makes use of orchestra-
tor and choreography approaches to execute workflow. The orchestrator is used
to execute the main workflow and to integrate sub-workflows called work flow
skeletons of the main workflows. While the choreography approach is used to
execute the workflow skeletons. This approach also makes use of proxies, which
are associated with each workflow skeletons to execute the workflow. Although
proxies relieve the orchestrator from handling the intermediate data, the data
now flows between proxies and services of the workflow increasing the data traffic
between them.

Bahman Javadi et al. in [12] proposed decentralized orchestration approach
based on cloud to execute workflows. The approach uses a cloud between the
orchestrator and the services of the workflow to store and process data. Here
the output data of the service invocation which is usually of large volumes are
directly moved to the cloud bypassing the centralized orchestrator. In this way
the orchestrator is relieved from sending the intermediate data and thus reducing
the traffic between the services and the orchestrator. Since cloud provides high
amount of storage and processing, this approach can handle much more data
then the triggers and proxies approach. However, this approach directs all the
data from the services to the cloud, thus increasing the traffic between services
and the cloud.

Ward Jaradat et al. in [13] also proposed a cloud based workflow execution
approach that makes use of distributed orchestration. This decentralized orches-
tration approach partitions the workflow into smaller sub-workflows and then
transmits these sub-workflows to appropriate cloud location and then their exe-
cution happens in parallel. At each location an orchestrator is used to coordinate
the sub-workflow execution. The distributed orchestrators transfer intermediate
results between them to complete the workflow execution. Since the workflow is
executed in parallel the performance of workflow execution improves. Although
clouds provide advantages in execution of bioinformatics workflows in terms of
large storage space and computing facilities, one of the big challenge faced on the
cloud is handling the movement of the large data sets in and out of the cloud.

Wieland et al. in [14] proposed the concept of pointers to pass data by ref-
erence rather than by value from one service to another service of the workflow.
The service that produces the data, transfers a reference of data to consuming
service via the orchestrator. The consuming service then uses this reference to
get the data from shared data storage. The orchestrator only has to handle the
reference and not the data. Thus, this mechanism reduces the load on the orches-
trator leading to faster workflow execution. However, the data moves between the
service which increases the communication cost between the services especially
when the data is too big to move.

652 R.T.P. Nunes and S.L. Deshpande

Table 2. Overview of the modified approaches

Data-flow
Approach Name Design Interface Environment |Single point of| Type Between
failure places
Triggers [9] Decentralized | Mediator SOA Orchestrator/ |Indirect | Triggers-and-
Triggers Services
Proxy [10] Hybrid Mediator SOA Orchestrator/ |Indirect|Proxies-and-
Proxies Services
‘Workflow Skeletons [11] |Hybrid Mediator SOA / Grid |Orchestrator/ |Indirect|Proxies-and-
Proxies Services
Cloud [12] Decentralized | Mediator SOA / Cloud|Orchestrator |Indirect|Services-and-
Cloud
Distributed Decentralized | Distributed SOA / Cloud |Distributed Indirect | Distributed
Orchestration [13] Orchestration | Orchestrators Orchestrators Orchestrator-

and-Services

Pointers/ Reference Decentralized | Mediator SOA Orchestrator |Indirect|Shared data

passing [14] storage-and
-Services

Data Flow Delegated Hybrid Direct/ SOA Orchestrator |Direct |Services

(DFD) [15] Peer-to-Peer

Pipelined Data Flow Hybrid Direct/Peer- |SOA Orchestrator |Direct |Services

Delegated (PDFD) [16] to-Peer

Subramanian et al. proposed a Data- flow delegated (DF D) approach in [15].
The data required in the workflow execution are dynamically assigned to the
workflow services as per their requirements. This is achieved by enabling direct
transport of data between participating services of the workflow controlled by the
orchestrator. The orchestrator informs the services from where they will receive
the input data and where they have to send the output data. The Data-Flow Del-
egated (DFD) approach relieves the orchestrator from handling the data but the
services of the workflow move the data directly between them.

Although pipelined parallelism is used in workflow systems such as Kepler,
Taverna and Triana, they carry the problem associated with the orchestration
i.e., they require the orchestrator to transmit (and receive) all the input and
output data of the component services. Subramanian et al. attempted to over-
come this problem in [16]. The authors proposed an approach called Pipelined
data-flow delegation (PDFD) for web services-based workflows. Pipelined data-
flow delegation is orchestrator coordinated approach that allows partitioning
of large datasets into independent subsets and that can be communicated in a
pipelined manner without going through the centralized orchestrator. This app-
roach improves workflow execution but is feasible only if data can be split into
independent chunks and processed in batches.

4 Discussion and Conclusion

Table 2 gives an overview of the modified approaches reviewed in this paper. Most
of the approaches are based on decentralized and hybrid design. The approaches
handle big-data in a workflow by moving the data either directly between the
services or indirectly using mediators and data references. Parallelism is also

Big-Data Approaches for Bioinformatics Workflows 653

combined in some of the approaches to handle big-data and to speedup workflow
execution.

The modified approaches are data-driven. They move data which is vary-
ing in size from one computing service to another computing service during the
workflow execution. The orchestrator is used to control and monitor the work-
flow execution, while the computing services of the workflow handle the data-flow
directly or indirectly between them. In other words the data coordination respon-
sibility of the orchestrator is distributed to the workflow components. However,
such distribution can optimize the workflow performance to some extent, but not
extensively as the distribution of responsibilities does not help to overcome all
the difficulties in handling big-data. With the size of biological data increasing
and the workflows having to handle data in the range of terabytes to petabytes
and more, moving data to computation in a workflow is not feasible solution. The
size of the analysis tools associated with computing services are much smaller
than the size of the data that flows in a workflow. To handle the big-data in
a bioinformatics workflow, this paper suggests changing the paradigm of work-
flow execution by moving the computation to data. Moving computation means
moving analysis tools from computation services to data services. We feel this
will lead to more efficient handling of big-data in bioinformatics workflows and
thereby mark a shift in big-data analysis.

References

1. Stevens, R.D., Tipney, H.J., Wroe, C.J., Oinn, T.M., Senger, M., Lord, P.W.,
Goble, C.A., Brass, A., Tassabehji, M.: Exploring Williams-Beuren syndrome using
myGrid. Bioinformatics 20(suppl 1), i303-i310 (2004)

2. Yang, X., Wang, L., Jie, W. (eds.): Guide to e-Science: Next Generation Scientific
Research and Discovery. Springer, Heidelberg (2011)

3. Barker, A., van Hemert, J.: Scientific workflow: a survey and research directions.
In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski, J. (eds.) PPAM
2007. LNCS, vol. 4967, pp. 746-753. Springer Berlin Heidelberg, Berlin, Heidelberg
(2008). doi:10.1007/978-3-540-68111-3_78

4. Liu, J., Pacitti, E., Valduriez, P., Mattoso, M.: A survey of data-intensive scientific
workflow management. J. Grid Comput. 13(4), 457-493 (2015)

5. Barker, A., Besana, P., Robertson, D., Weissman, J.B.: The benefits of service
choreography for data-intensive computing. In: Proceedings of the 7th International
Workshop on Challenges of Large Applications in Distributed Environments, pp.
1-10. ACM, June 2009

6. Barker, A., Weissman, J.B., Van Hemert, J.: Eliminating the middleman: peer-
to-peer dataflow. In: Proceedings of the 17th International Symposium on High
Performance Distributed Computing, pp. 55—64. ACM, June 2008

7. Barker, A., Walton, C.D., Robertson, D.: Choreographing web services. IEEE
Trans. Serv. Comput. 2(2), 152-166 (2009)

8. Pedraza, G., Estublier, J.: Distributed orchestration versus choreography: The
FOCAS approach. In: Wang, Q., Garousi, V., Madachy, R., Pfahl, D. (eds.)
ICSP 2009. LNCS, vol. 5543, pp. 75-86. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-01680-6_9

http://dx.doi.org/10.1007/978-3-540-68111-3_78
http://dx.doi.org/10.1007/978-3-642-01680-6_9
http://dx.doi.org/10.1007/978-3-642-01680-6_9

654

10.

11.

12.

13.

14.

15.

16.

R.T.P. Nunes and S.L. Deshpande

Binder, W., Constantinescu, 1., Faltings, B.: Service invocation triggers: a light-
weight routing infrastructure for decentralised workflow orchestration. Int. J. High
Perform. Comput. Networking 6(1), 81-90 (2009)

Barker, A., Weissman, J.B., van Hemert, J.I.: The circulate architecture: avoiding
workflow bottlenecks caused by centralised orchestration. Cluster Comput. 12(2),
221-235 (2009)

Fleuren, T., Gotze, J., Miiller, P.: Workflow skeletons: increasing scalability of sci-
entific workflows by combining orchestration and choreography. In: IEEE European
Conference on Web Services (ECOWS), pp. 99-106, September 2011

Javadi, B., Tomko, M., Sinnott, R.O.: Decentralized orchestration of data-centric
workflows in cloud environments. Future Gener. Comput. Syst. 29(7), 1826-1837
(2013)

Jaradat, W., Dearle, A., Barker, A.: Workflow partitioning and deployment on the
cloud using orchestra. In: Proceedings of the 2014 IEEE/ACM T7th International
Conference on Utility and Cloud Computing, pp. 251-260. IEEE Computer Society,
December 2014

Wieland, M., Gorlach, K., Schumm, D., Leymann, F.: Towards reference passing
in web service and workflow-based applications. In: IEEE International Enterprise
Distributed Object Computing Conference, pp. 109-118. IEEE, September 2009
Subramanian, S., Sztromwasser, P., Petersen, K., Puntervoll, P.: Direct data trans-
fer between SOAP web services in orchestration. In: Proceedings of the 14th Inter-
national Conference on Information Integration and Web-based Applications and
Services, pp. 91-100. ACM, December 2012

Subramanian, S., Sztromwasser, P., Puntervoll, P., Petersen, K.: Pipelined data-
flow delegated orchestration for data-intensive eScience workflows. Int. J. Web Inf.
Syst. 9(3), 204218 (2013)

	Big-Data Approaches for Bioinformatics Workflows: A Comparative Assessment
	1 Introduction
	2 Classical Approaches: Orchestration and Choreography
	3 Modified Orchestration and Choreography Approaches
	4 Discussion and Conclusion
	References

