
Plugin for Instantaneous Web Page Rejuvenation
and Translation

Shashi Pal Singh1(✉), Ajai Kumar1, Hemant Darbari1, and Nikita Maheshwari2

1 AAI, Center for Development of Advanced Computing, Pune, India
shashipalsingh@gmail.com, {ajai,Darbari}@cdac.in

2 Banasthali Vidyapith, Banasthali, India
nikita.mundra143@gmail.com

Abstract. This paper outlines the Plugin for various browsers for instant reju‐
venation and translation of web pages into Indian languages. The websites with
Hindi content are less than 0.1% of the total websites, similarly less than .01% for
other Indian languages. While English content are more than 55% [13]. It is high
time for realization to provide the information to the local uses into their local
languages so, that they can take the advantage of various resource available on
websites which would result in enhancement in communication and knowledge.
The Plugin tool can be plugged in various browsers. On single clicks, the whole
page gets translated and rebuild into the original format without losing any infor‐
mation and graphics, which makes it easy, convenient, and readable for the users.
The methodologies used in our system are Extraction, Rebuilding and Translation
Memory. Further, we will discuss the workflow among the processes and then
concluded with experimental results that are obtained with this tool.

Keywords: Extraction · English to Hindi · Plugin · Rebuilding · Translation ·
Translation memory (TM)

1 Introduction

Translation is in existence since human wants to communicate with each other in their
own language. At initial stage, the translator was a human being itself who knew both
source and target language. After sometime, people start thinking to handle this problem
with the help of computer based translators. Although, it was not as much efficient as a
human being but work is still in progress to do so. The approaches like Statistical
Machine Translation (SMT), Rule Based, Example Based, Dictionary Based etc. have
been introduced for translation but each has its own advantages and disadvantages. Here,
we are going to introduce a good and efficient approach for translation which is Trans‐
lation Memory (TM). Translation Memory has evolved as an important area in the
translation industry. It is widely used among translators but not much of the work has
been done for Indian languages in comparison to other foreign languages. So, the main
focus is to translate the English text into its corresponding Hindi text or Indian
Languages.

© Springer Nature Singapore Pte Ltd. 2016
A. Unal et al. (Eds.): SmartCom 2016, CCIS 628, pp. 77–87, 2016.
DOI: 10.1007/978-981-10-3433-6_10

There are many translators that exist on web which can translate a web page. For
example- Systran, Prompt, GTS Website Translator, Lucy KWIK Translator, Word
lingo, Bing, and Google etc. But each translator has one or the other problem in it.

It is important to note, while translating a webpage, that the text content is not only
the thing which is needed to be translated into target language. A webpage contains a
lot more to be maintained like graphic, images, videos and other dynamic activities. If
a translated page will look like same as it was originally then it will be more comfortable
to read from the perspective of user. So, our concern is not only the translation but also
the correct rebuilding of the webpage.

The complete process of extraction, rebuilding and translation is initiated by the
extension. There is no specific reason to choose a particular web browser. The extension
can be developed for any web browser. In this paper, we will discuss about web browser
based extension, Extraction process, Rebuilding and Translation of the webpages.
Further, the process flow among all these modules will be discussed.

2 Literature Review

2.1 Extension Plugin

The Extension is a Plugin, which is placed near the address bar and looks like a button.
This extension can be made for any web browser for example- Chrome, Mozilla Firefox,
Internet explorer, Safari etc. When this plugin button is clicked, the complete web page
will be translated. There are some files which are related to make web browser extension
plugin. Some of them are optional and some of them are compulsory. The files related
to it are explained below [3, 4].

2.2 Manifest.json

The Manifest.json file is a very important file for making browser extension. This file
tells web browser the important information about the extension like, the name of your
extension, what kind of permission is needed, the icon image of the extension and the
other files related to it etc. Every extension has a JSON-formatted manifest file. The
name should be manifest.json otherwise it would not be recognized. There are many
fields in this file. All these fields are not compulsory to be mentioned. It totally depends
on the type of extension or on the application demand which you are developing.

2.3 Permission Block

Permission helps to limit the damage and protect by malware. Each permission can be
either one of the list of known string example- http://www.google.com [3] or can be a
match pattern example- “http://*/*”, “https://*/*” that gives access to one or most hosts.
For giving permission to each and every host you can mention “<all_urls >” in place
of any known string or pattern. There are many field of permission. Some of them are
given below-

78 S.P. Singh et al.

http://www.google.com

"permissions": [

"tabs", "<all_urls>","http://*/*","https://*/*","background","notifications",”downloads”,”history”,”location”,”active_tabs”],

2.4 Browser Action Block

There are two types of actions when we make a browser extension –

1. Page Action
2. Browser Action

Page Action is not preferred when you want to make your extension to work for each
and every page that your browser visits. For this browser action will be used. For
Example- The RSS icon in the following screenshot represents a page action that allow
you to subscribe the RSS feed for the current page [3, 4] (Fig. 1).

Fig. 1. Page action

In the following figure, the T-shaped icon, right of the address bar, is the icon for a
browser action (Fig. 2).

Fig. 2. Browser action

{ "name": " ",
...

"browser_action": {
"default_icon": { // optional

},
"default_title": " ", // optional; shown in tooltip
"default_popup": " " // optional

}, ... }

2.5 Content Script

The content script [3, 4] is a JavaScript file that runs in the context of webpages. This
means that the content script can interact with web pages that are currently open in the
browser. JQuery is not necessarily required, but it makes the things easier.

Plugin for Instantaneous Web Page Rejuvenation and Translation 79

"content_scripts": [{
"matches": ["<all_urls>"],
"js": [" ", " "],

“css”: [“ ”] }]

The ‘matches’ field tells Browser to inject Content.js file in every page open in the
browser. If you want to inject this script to only some pages, we can use match patterns
like-

[“https://mail.google.com/*”] and [http://*/*] will match any http URL, but no other
scheme like https sites.

A content script can access the current page, and is limited in the APIs it can access.
For example, it can’t listen the clicks on the browser action. So, a different type of script
is needed to add to our extension that is ‘background script’, which has access to every
Browser API but cannot access the current page.

So, the URL of the current page can be pull by content script, but this URL is needed
to hand over, to the background script, to do something useful with it. In order to
communicate, ‘message passing’ is done between background.js and content.js, which
allows scripts to send and listen for messages. In this way content scripts and background
scripts interact with each other.

2.6 Background Script

As we mentioned about the background script [3, 4] above in content script block, it is
clear that it is an important part of extension and manifest file. The Browser API func‐
tions can only be used by background.js to listen the click on the browser action, so we’ll
have to add some more message passing since background.js can open the tab on
browser, but can’t grab the URL given in address bar. So for this, message passing is
done between content.js and background.js. The Content.js file will grab the URL and
pass it to Background.js for the further process.

{ "name": "My extension",
…

"background": {
"scripts": [" "]
"page": " "

}, ...}}

2.7 Translation Memory

Translation memory (TM) systems were available in the market in late 1990’s commer‐
cially but the researches in this field have been in continuation since 1970’s. There is a
database that consists of existing translations which can be reused as a suggestion when
translation is done.

Translation Memory (TM) technology belongs to CAT systems. It is used to
providing a good precision translation. Basically, it is a database application that keeps
record of previously translated units and reuse the existing if it is being repeated in future
translations instead of translating the sentence from the scratch. It was believed that for

80 S.P. Singh et al.

https://mail.google.com/

translating monotonous type of texts, the translation memory could be better utilized.
But other features incorporated make it useful for non-monotonous texts also.

“A multilingual text archive containing (segmented, aligned, parsed and classified) multilingual
texts, allowing storage and retrieval of aligned multilingual text segments against various search
conditions.”

There are some benefits of Translation Memory which are-Consistency, Speed,
Portability, Cost, Content Management. There are some limitations as well-Error can
be propagated if misused and a memory is only as good as the maintenance it gets.

2.8 Jsoup Parser

Jsoup [10] is a Java HTML parser. It is a library for working with real-world HTML. It
gives us a very convenient API which can extract and manipulate the data, using the
best of DOM, CSS, and jQuery-like methods. Jsoup implements HTML5 specification,
and parses HTML to the same DOM as modern browsers do.

2.9 Webpage Extraction

The source code of the web page can be downloaded via different-different methods.
First method is via URL library of java and second method is via Parser. Here, we are
taking Jsoup parser for parsing the HTML but we can’t use it for downloading the source
code of the webpage because of the drawback of Jsoup. Jsoup can’t download the
complete source code of the webpage. Sometimes, it leaves some tags or attributes of
the tags at the time of downloading.

3 Proposed System

3.1 Brief Overview

The interface of our tool is an extension and a web browser. When, the user, who wants
to translate the webpage, clicks on the extension button, and the source code of the
webpage will be extracted. Each and Every tag that is present in the source code is parsed
with the help of parser. The path of all the files (where these files are actually stored)
present on that webpage is checked and modified according to the actual location of the
file on the website’s server. After that the complete webpage is traversed tag by tag and
the text content present on the webpage is fetched from it. Then, these text strings are
sent to the TM System for translation. Translation Memory is basically a database also
called as TM base or Translation Memory database. TM base contains a bilingual pair
of source and target language. Here the source language is English and Target Language
is Hindi. There is also a concept of Term Base which is maintained to provide the trans‐
lation of non-translatable English words (Fig. 3).

Plugin for Instantaneous Web Page Rejuvenation and Translation 81

Fig. 3. System architecture

3.2 Extension

A web browser extension is a button near by the address bar of the web browser. It can
be inside the address bar or outside the address bar depending on its action i.e. page
action or browser action respectively. Page action is used for a particular webpage and
browser action is used for many pages simultaneously open in the web browser. Here,
we are opting ‘browser action’ to make this extension working for every webpage
simultaneously open in web browser.

There are three basic files which are needed to develop an extension. These files are-
Manifest.json, Background.js, and Content.js. Background.js file is needed because the
click on the extension can only be listened by this file as it allows the web browser API’s
for example, chrome.* API in case of using Chrome browser while content.js can pull
the URL of the webpage.

3.3 Extraction

When the user clicks on the extension button, the source code of the webpage is
extracted by connecting with the URL of that webpage. There are some website
which runs on https protocol which mandates that the communication can only be
done via information provided in the certificate of that website then we need to
download that certificate and import that certificate in the trustore, Default trustore

82 S.P. Singh et al.

java uses can be found in \Java\jdk1.6.0_29\jre\lib\security\cacerts, then if we retry
to connect to the URL connection would be accepted.

3.4 Rebuilding

After the extraction phase, the source code of the webpage is parsed with the help of
parser. Here, we are taking Jsoup parser (Version 1.8.3) [13] because Jsoup is better than
other parser in web scraping. It can parse and clean the Html code like other parser but
it can update the Html code as well.

The tags, which contains the path of any file (images, script, stylesheet, audio, video
etc.), can be image tag, script tag, source tag, link tag, object tag, input tag, td tag, body
tag, table tag, embed tag, meta tag, iframe tag, frame tag etc. These tags are required to
be parsed. The path of the file, given in the source code, is updated, according to the
absolute path of that file on the website’s server, on which it actually exists. Further, the
script tag, iframe tag and frame tag may contain the files which can itself have images,
videos or any of the tag that are mentioned above. These are also needed to be handled
in the same way as depicted above. The webpage can also contain some background
images, imported CSS or scripting code which can contain images and other files. The
parser can’t parse these patterns. So, we need to make separate regular expression for
each condition to detect these files and update their path. The path of the files is required
to be updated because the tool is running on our server and the files are not present on
our server.

Algorithm for Rebuilding:-
Input: - Click on the extension and Output: - Updated source code
Steps: -

1. Click on the extension.
2. Source code of the webpage will be downloaded.
3. Parse all the tags which have path of any file (ex- Images, scripts, stylesheets, video,

audio).
4. Extract the source path of that file mentioned in one of the Tag’s attribute.
5. Check whether we need to change the path or not.
6. If yes, then check the correct location of the file exist on the server, change the path

according to that and put it back to the same position from where it was retrieved.
7. Make the regular expression for those Patterns which can’t be parsed with the parser.
8. If the pattern exists then go to step 3 to 6.

The rebuilding of the webpage is a very important phase in webpage translation. It
helps to maintain the webpage as it was before translation. A webpage may contain
images, audio, video, stylesheets which gives it proper look and other dynamic activities.
A user will feel comfortable in reading the webpage when it is in proper and managed
format. So, only text based translation is not only the thing to be focused. Rebuilding of
the webpage has to be focused too.

Plugin for Instantaneous Web Page Rejuvenation and Translation 83

3.5 Translation

The complete source code of the web page is parsed on the basis of its opening and
closing tags and the string between these tags are fetched and sent to the TM System to
check its corresponding Hindi translation.

Algorithm for getting the text of the webpage-
Input: - Updated source code and Output: - Source Language String for translation.
Steps: -

1. Parse the source code on the basis of opening and closing tag.
2. Check whether the text exists between the last closing tag and next opening tag.
3. If yes, check whether the last tag was script tag or style tag.
4. If it was script tag or style tag then don’t send that text string for translation.
5. Else send it for translation.

Algorithm for translation-
Input: - Source Language String and Output: - Translated String in Target Language
Steps: -

1. The text string is preprocessed. In which the text filtering and segmentation is done.
2. In segmentation process, if any delimiter is present in the string, which is sent for

the translation, then split the string, on the basis of delimiters like “.”, “?”, “-”, “:”,
“;”, “!”,

3. The hash code of each string is generated.
4. The generated hash code is matched with hash code stored in TM database.
5. If matched, return its corresponding Hindi
6. Otherwise, if number of tokens in the segment is <=7 then compute 2-grams, else

if number of tokens in the segment is > 7 <=10 then compute 3-grams, else compute
4-grams. Each N-gram obtained is treated as a search token to fetch TM segments
which contains that N-gram token so as to get useful results only by fetching hardly
100 to 1000 segments and reduce searching time [6].

7. Now that source segment that contains 50% unique tokens of query segment is only
considered for matching thus reducing search space.

8. Now among them, names (using Named Entity Recognition), gender cases and
other placeables like numbers, dates etc. are handled [8].

9. If considering B1 as the N-gram of the query segment and B2 as the N-gram of the
TM source segment, apply Levenshtein algorithm.

10. If the value returned by the algorithm is either 0 or 1 then consider that N-gram in
score computation else discard it. Increases the M (a variable) by 1 for each N-gram
added.

Mathematically, the Levenshtein distance [11] between two strings a (Source string),
b (Target String) is given by Leva, b (i, j), which is the distance between the first “i”
characters of “a” and the first “j” characters of “b”.

If (a i! = b j) then Cost function = 1
If (a i == b j) then Cost Function = 0
If min (i, j) = 0,

84 S.P. Singh et al.

Leva, b(i, j) = max(i, j) (1)

Otherwise,

Leva, b(i, j) = min
{

Leva, b(i − 1, j) + 1, Leva, b(i, j − 1) + 1, Leva, b(i − 1, j − 1) + cost
}

(2)

The advantage of Translation Memory is that it gives faster translation results
comparative to other approaches. So the time taken in webpage translation is compara‐
tively less and user doesn’t need to wait more.

4 Result

There are so many tools for webpage translation like- Systran, Prompt, GTS Website
Translator, Lucy KWIK Translator, Word lingo, Bing, and Google etc. But each trans‐
lator has one or the other problem in it. Some can’t translate in Indian Languages, some
others cannot translate web pages based on https:// protocol and some don’t rebuild the
webpage correctly etc. So, this extension tool is made to overcome with some of these
problems.

Total 155 webpages were tested by this extension tool. The result is only based on
“How good rebuilding of a webpage can be done by this tool” The results are not calcu‐
lated on the basis of quality of the translation. The webpages based on framework such
as Joomla, WordPress etc. was taken. The webpages, either developed in HTML or
HTML5 format, are considered too and it can also translate the https:// protocol based
web page etc.

The following graph will show the results of this tool -
Testing is done using this tool and the results are obtained manually with human

intervene for checking the result of rebuilding. Five parameters are decided to rank the
rebuilding of the webpage. These parameters are- Excellent, Very Good, Average,
Below Average and Poor. The webpage is put under the ‘Excellent’ category if there is
no fault in the rebuilding of the webpage. If there are one or two images/video/audio
missing then it is put in ‘Very Good’ category. If, more than two image/video/audio are
missing or the content is not properly managed then it is put under ‘Average’ category.
If almost nothing is present on the webpage after rebuilding or if the output is coming
totally haphazard then it is put under ‘Below Average’ category and if the tool is unable

Fig. 4. TM translator tool result

Plugin for Instantaneous Web Page Rejuvenation and Translation 85

to rebuild the webpage or giving nothing after rebuilding then it is put in ‘Poor’ category
(Fig. 4).

On comparing the processing speed of other translation tools and this tool, we will
see that this tool is little slow than other translation tools and sometimes, it also takes
time to load the webpage which have heavy graphics.

5 Conclusion and Future Scope

Not much work has been done in the area of rebuilding and translation of a webpage for
Indian Languages. So, we have developed an extension for performing this task which
will extract the source code of the webpage, rebuild it and translate it. Jsoup parser is
helping to parse the tags present in the source code and the advantage of using this parser
has already been discussed. Total 155 webpages are tested by this extension tool and
other translators. The final results of our tool are comparatively better. 66% of webpages
are in ‘Excellent’ category when they are rebuilt with this tool, 23% are in ‘Very Good’
category, 5% are in ‘Average’ category, 2% are in ‘Below Average’ category and 2%
are in ‘Poor’ category.

In Future, the enhancement can be done by finding out other different tags with their
various attributes. And if they are necessary for helping in good rebuilding of webpage
then they must be handled in the rebuilding process. The other thing which can be
improved is the processing speed of rebuilding process which is slow in comparison of
other translator. Also, the functionality of this tool can be extended to perform translation
in other languages as well.

References

1. Srivastava, N., Singh, P., Chauhan, S., Singh, S.P., Kumar, A., Darbari, H.: Hindi-English
translation memory systems. Int. J. Emerg. Trends Technol. Comput. Sci. (IJETTCS) (2014).
AAI, Center for development of Advanced Computing, Pune, India

2. Joshi, N., Mathur, I.: Design of English-Hindi Translation Memory for Efficient Translation,
Department of Computer Science, Banasthali Vidyapith University (2012)

3. https://developer.chrome.com/extensions/getstarted.html turorial by Google Chrome.
Accessed 23 Jan 2015

4. Berke-Williams, G.: A developer in San Francisco. https://robots.thoughtbot.com/how-to-
make-a-chrome-extension. Accessed 23 Jan 2015

5. Somers*, H., Diaz**, G.F.: (UMIST, Manchester)* (Universidad de Sevilla)**, Translation
Memory vs. Example-based MT – What’s the difference? (2004)

6. Wołkowicz, J., Kulka, Z., Warsaw, V.K.: n-Gram-Based Approach to Composer Recognition,
University of Technology Institute of Radioelectronic Nowowiejska 15/19, 00-665
Warszawa, Poland Dalhousie University Faculty of Computer Science, Canada (2008)

7. McTait*, K., Olohan**, M., Trujillo*, A.: A Building Blocks Approach to Translation
Memory Centre for Computational Linguistics*, Centre for Translation Studies** Department
of Language Engineering UMIST Manchester M60 1QD (1999)

8. Saha, S.K., Ghosh, P., Sarkar, S., Mitra.P.: Named Entity Recognition in Hindi using
Maximum Entropy and Transliteration, Indian Institute of Technology, Kharagpur (2008)

86 S.P. Singh et al.

https://developer.chrome.com/extensions/getstarted.html
https://robots.thoughtbot.com/how-to-make-a-chrome-extension
https://robots.thoughtbot.com/how-to-make-a-chrome-extension

9. Arthern, P.J.: Machine Translation and Computerized Terminology Systems a Translator’s
Viewpoint, Head of English Translation Division, Council of the European Communities,
Brussels (1979)

10. http://jsoup.org/ tutorial by jsoup HTML parser © 2009 – 2015 Jonathan Hedley. Accessed
15 Feb 2016

11. Haldar, R., Mukhopadhyay, D.: Levenshtein Distance Technique in Dictionary Lookup
Methods: An Improved Approach, Web Intelligence & Distributed Computing Research Lab
Green Tower, C-9/1, Golf Green, Calcutta 700095, India (2011)

12. EAGLES Evaluation of Natural Language Processing System, Initial Survey on the
Availability of Translation Memory Tools. Featurization: Design and function of translation
memory. www.issco.unige.ch/research.projects/ewg95/node152.html

13. https://en.wikipedia.org/wiki/Languages_used_on_the_Internet. Accessed 23 Jan 2015
14. https://github.com/jhy/jsoup/. Accessed 23 Jan 2015

Plugin for Instantaneous Web Page Rejuvenation and Translation 87

http://jsoup.org/
http://www.issco.unige.ch/research.projects/ewg95/node152.html
https://en.wikipedia.org/wiki/Languages_used_on_the_Internet
https://github.com/jhy/jsoup/

	Plugin for Instantaneous Web Page Rejuvenation and Translation
	Abstract
	1 Introduction
	2 Literature Review
	2.1 Extension Plugin
	2.2 Manifest.json
	2.3 Permission Block
	2.4 Browser Action Block
	2.5 Content Script
	2.6 Background Script
	2.7 Translation Memory
	2.8 Jsoup Parser
	2.9 Webpage Extraction

	3 Proposed System
	3.1 Brief Overview
	3.2 Extension
	3.3 Extraction
	3.4 Rebuilding
	3.5 Translation

	4 Result
	5 Conclusion and Future Scope
	References

