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Abstract Emerging variants of known RNA viruses present an increasing threat to
mankind worldwide through their enlarging impact on morbidity and mortality.
One of them is the chikungunya disease, which becomes a major public health
problem and economic threat. Current world has no approved antiviral drugs
available against chikungunya infection. This Book Chapter mainly focuses on
discussion of the antiviral compounds that have been reported to inhibit chikun-
gunya virus replication. Various syntheses of antiviral agents, compounds isolated
from natural sources, and some structure–activity relationships are illustrated.
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1 Introduction

Chikungunya virus (CHIKV) is an alphavirus and was first recognized as an
epidemic form in East Africa in the early 1950s. Most patients of CHIKV infection
suffer from severe persistent arthralgia [1]. Female mosquitoes of the species Aedes
aegypti and Aedes albopictus are mainly responsible for its transmission. The dra-
matic turn of CHIKV history is its unexpected re-emergence in 2004, which was
associated with mutations in the viral genome and a new epidemic strain emerged
from the East, Central, South Africa enzootic linage [1, 2]. The outbreaks took place
mainly around the Indian Ocean, in particular, the French Island of La Réunion
(2005–2006), where about 300,000 cases were confirmed [1, 2]. Since then, thou-
sands of infected travelers imported this virus to many countries of the world. As a
result, it is endemic in northern Italy and southern France in 2007. Around the same
timeframe, several CHIKV re-emerged incidents happened in Asia, including a local
case in Singapore (2008) [3] and hundreds of cases in southern Thailand (2008–
2009) [4]. In March 2011, autochthonous transmission of CHIKV was reported in
New Caledonia (South Pacific Region), which is also the first report of CHIKV
transmission in this region [5]. Another outbreak of autochthonous chikungunya
fever with more than 10 cases occurred in Montpellier, France in October 2014 [6].
Beginning in late 2013, the virus started to spread to the Caribbean and into Central
and South America, affecting people from 41 countries or more [7, 8]. According to
the data of the Pan American Health Organization, about 1.3 million suspected and
confirmed cases were reported in these regions by March 2015 [7]. Many factors like
commercial transportation, urbanization, deforestation, climate change, have inad-
vertently formed environments, which brought emerging RNA virus pathogens
increasing at an accelerating rate.

In 2008, chikungunya fever is listed as a category C priority pathogen by The U.S.
National Institute of Allergy and Infectious Diseases [9]. Considering the global need
of new antiviral therapeutics and responding to the health theme of European Union
the 7th Framework Call, the Small-molecule Inhibitor Leads Versus Emerging and
Neglected RNA Viruses (SILVER) project was conceived in 2010. The SILVER
project, led by E. A. Gould and J.-L. Romette, include 24 international research teams
and scientists from 12 countries of Europe and Asia. Furthermore, the “Global Virus
Network”was initiated in 2011 to identify research gaps and opportunities, including
models of infection and disease, epidemiology, candidate vaccines, vector control
measures, and antivirals [7].

After being transmitted to the body, CHIKV circulates to the liver, muscle,
joints, lymphoid tissue, and brain [9]. There are two phases of infections that were
reported in the recent epidemic areas. The first is an acute phase, which lasts from a
few days to several weeks. The symptoms include high fever, rigors, headache,
photophobia, and petechial/maculopapular rash [9]. The second is a chronic phase,
which shows symptoms of polyarthralgia. Although its mortality rate is low, the
elderly or those with underlying chronic problems are most likely to have severe
complications [9]. During the most recent epidemics in India and in Réunion Island,
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severe cases have been described involving encephalitis, myelopathy, peripheral
neuropathy, myeloneuropathy, and myopathy [10]. Moreover, some cases of
multiorgan failure and eye infections have also been reported [11].

The CHIKV belongs to the Togaviridae family and consists of a positive-sense
single-stranded RNA genome of about 11.8 kb size. This genome has two open
reading frames 5′ and 3′ ends. The 5′ end encodes nsP1, nsP2, nsP3, and nsP4
non-structural proteins; the 3′ end encodes the capsid (C), two glycoproteins E1,
E2, and two small cleavage products (E3, 6 K) [11]. Keller et al. [12] present a
detailed description of the CHIKV life cycle and identify the key viral target
proteins for drug design in a perspective article.

At the present time, there is no vaccine against CHIKV infection licensed for
human use. Most of the treatments are symptomatic [13]. Even worse is that the
current world has no drug available against CHIKV. Four well-informative review
articles covering structures and biological data have been published by Keller [12],
Kaur and Chu [13], Neyts [14], Bhakat and Soliman [15], and respective
co-authors. The former two are in 2013 and the latter two are in 2015. Moreover,
recent review articles involving the discussion and analysis of epidemiology,
pathogenesis, global virus network, or cellular mechanisms of action were pub-
lished by Thiberville et al. [1], Weaver and Forrester [2], McSweegan et al. [7],
Schwartz and Albert [9], Couderc and Lecuit [16], Singh and Unni [17], Birendra
et al. [18], Parashar and Cherian [19], and Lum and Ng [20].

2 Compound Classes, Structures, Biological Activities,
and Mechanisms of Action

In this review article, we illustrate antiviral agents on the basis of their classes of
compounds, structures, synthetic routes, natural sources, biological activities, as
well as structure–activity relationship (see Table 1). Emphasis will be placed on the
newly developed agents reported after the year of 2013 and syntheses of artificially
designed compounds. Efficacy in vivo of most of these compounds, however, has
not yet been evaluated in animal models on the basis of the information reported in
the original articles.

The established antiviral compounds towards CHIKV can mainly classified
into five categories: purines/pyrimidines, nucleosides, alkaloids, terpenoids, and
flavaglines. Their characteristics and biological data are illustrated as follows.
The table contains information of newly developed antiviral agents reported
during the past three years and some established compounds studied earlier for
comparison.

A. Purines and Pyrimidines

D’hooghe, De Kimpe, and coworkers [21] synthesized a series of purine
derivatives, of which antiviral activities were screened against nine different viruses
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including CHIKV. In 2012, they reported purine b–lactam 1 and purine–amino-
propanol 2 with symptom against CHIKV. The key steps for their synthesis shown
in Scheme 1 include a Staudinger [2 + 2] cyclocondensation between a Schiff base
and a ketene (from PhOCH2COCl) to give a (x-bromoalkyl)-cis-b-lactam with
diastereoselectivity. Then N-alkylation of a purine derivative with this b-lactam
intermediate gives the desired purine–b-lactam 1. Furthermore, a
LiEt3BH-mediated b-lactam ring opening takes place to produce the target purine 2.

In 2015, Hwu, Tsay, Neyts, and co-workers [22] reported the design and syn-
thesis of a new series of uracil–coumarin–arene conjugates against CHIKV. Five of
22 new hybrid conjugates can inhibit CHIKV in Vero cells with significant potency
and low toxicity. As shown in Scheme 2, their synthesis includes a coupling
reaction to form a coumarin derivative, its condensation with an organosulfonyl
chloride to give sulfonylated intermediate, and a selective S-alkylation of
2-thiobenzouracil at the allylic position of (coumarinyl)chloride to yield the desired
triply conjugated target 3. Its molecular framework is determined unambiguously
by single X-ray diffraction analysis.

Et3N, MgSO4

2. PhOCH2COCl

(83 89%)

N

N

N

N

N

NHCH2Ph

LiEt3BH, THF, rt

N

N

N

N
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HN

N
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O

Br

N

N

N

H
N
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OPh
HO

1 2

N-alkylation

OPh

O

O

H

Staudinger
cyclocondensation

R R
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R

reductive 
ring opening

1. NH2(CH2)nBr HBr

CH2Cl2, rt

Et3N, CH2Cl2, rt DMF,100 C
K2CO3

n

R = H, Cl
n = 1, 2

n n

(R = H, n = 2) (R = Cl, n = 1)

(64 75%)

Scheme 1 Synthesis of purine–b-lactam 1 and purine–aminopropanol 2
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The coumarin moiety, –SCH2–, and –SO2– (but not –CH2–) joints in the con-
jugated compounds shown in Fig. 1 are essential to their antiviral activity. Use of
either an Me or an NO2 group attached to the arene moiety brings enhanced activity

O
Cl

O

OEt

OH

OH p-MeC6H4SO3H

O

Cl

O

OH

S
Cl

toluene,

(75%)

O
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O
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S N
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O
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S
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O O
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K2CO3, acetone
50

(82%)

O O

Me

(88%)

O O

Me

+

coupling reaction

3

condensation
S-alkylation

K2CO3, EtOH

Scheme 2 Synthesis of benzouracil–coumarin–arene conjugates 3

Fig. 1 Structure-activity relationship of uracil–coumarin–arene conjugates
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to the target molecules. When coumarin–arenes are conjugated with benzouracil,
the resultant hybrids (such as 3) exhibit better selectivity indexes than their kin with
uracil or 5-methyluracil.

In 2014, Pérez–Pérez et al. [23] identified [1,2,3]triazolo[4,5-d]pyrimidin-7(6H)-
ones as active inhibitors of CHIKV replication in the low micromolar range with no
cytotoxicity detected up to 668 lM. The synthetic procedure for the most active
compounds 4b as shown in Scheme 3 includes (3 + 2) cycloaddition between an
arylazide and a cyanoacetamide to give a 5-aminotriazole amide. Subsequent
condensation followed by ring formation produces the target triazolopyrimidine 4b.

B. Nucleosides

During the past five decades, nucleosides have been used in clinics and,
nowadays, become cornerstones of treatment for patients with viral infections. Two
drugs in this family were reported with anti-CHIKV activity in 2004 [24]. Ribavirin
(5), a “synthetic nucleoside” containing a 1H-1,2,4-triazole moiety, is effective
against a variety of RNA viruses, especially in the genus Alphavirus. The combi-
nation of ribavirin and interferon-a shows a synergistic anti-chikungunya viral
effect [24]. Several studies have elucidated the mechanisms of anti-viral action of
ribavirin. They involve predominantly inhibition of inosine monophosphate dehy-
drogenase (IMPDH) activity, depletion of the intracellular guanosine triphosphate
(GTP) pools, inhibition of viral RNA capping, and induction of an error catastrophe
[14, 37–39].

6-Azauridine (6) [24], containing a 1,2,4-triazine-3,5(2H,4H)-dione moiety, is
an another “synthetic nucleoside” with a broad-spectrum of anti-metabolite. It
inhibits both DNA and RNA virus replication. In comparison with ribavirin (5),
6-azauridine (6) shows a greater potency against CHIKV with EC50 = 0.82 µM and
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SI = 254. Its activity might be through the inhibition of orotidine monophosphate
decarboxylase activity and the depletion of uridine triphosphate pools [40].

C. Alkaloids

Favipiravir (7) is a pyrazinecarboxamide derivative, which was discovered and
synthesized by Toyama Chemical Co. in Japan as a candidate antiviral drug [41]. It
is active against many viruses, including influenza viruses, West Nile virus, yellow
fever virus, foot-and-mouth disease virus, flaviviruses, arenaviruses, bunyaviruses,
alphaviruses, picornavirus and norovirus [41, 42]. In 2014, favipiravir (7) was
approved in Japan for the treatment of influenza virus disease. The mechanism of its
action is related to the selective inhibition of viral RNA-dependent RNA poly-
merase. In the same year, Neyts et al. [25] disclosed that favipiravir (7) inhibits viral
genome replication of laboratory strains and clinical isolates of CHIKV.

The antiviral drug umifenovir (i.e., arbidol, 8), an indole derivative, was origi-
nally developed at the Research Institute of Pharmaceutical Chemistry in Russia
about three decades ago [43]. Since 1990, this drug has been used in Russia mainly
for the intervention of prophylaxis and acute respiratory infections like influenza
[44, 45]. In 2011, Pastorino et al. [26] reported that umifenovir (8) presents potent
inhibitory activity against CHIKV. The significant anti-viral activity of this drug
may be attributed to the diverse mechanisms of action, including interference with
the early stages of CHIKV attachment or entry or the replication cycle, as well as
alterations of cellular membranes [44, 46]. A synthetic procedure leading to
umifenovir (8) as illustrated in Scheme 4 includes seven steps, for which the key
steps are the Friedel–Crafts alkylation, reductive cyclization, and the Mannich
condenation [43, 47]. On the other hand, this drug can also be produced through
four steps as shown in the synthetic route in Scheme 5. They involve Nenitzescu
indole synthesis, acylation/bromination, S-alkylation, and the Mannich condensa-
tion [48, 49].

Recently, de Lamballerie, Jayaprakash et al. [27] reported a series of aryl
alkylidene alkaloids, among which 1,3-thiazolidin-4-ones 9 and 10 showed
anti-chikungunya activity with IC50 values of 0.42 and 6.8 lM. These two com-
pounds can be synthesized by simple steps shown in Scheme 6 [50, 51]. The key
step is the Knoevenagel condensation. Moreover, the authors performed molecular
docking simulation of the active compound 9 with the X-ray crystal structure of
CHIKV nsP2 protease. As a result, the mechanism of action may come from the
protease inhibition.

Harringtonine (11) is a natural alkaloid isolated from the Japanese plum yew,
Cephalotaxus harringtonia in only 0.0064% yield [52]. In 2013, Chu et al. [28].
reported that it exhibits potent anti-CHIKV activity with an EC50 value of 0.24 lM
with minimal cytotoxicity. Harringtonine inhibits an early stage of the CHIKV
replication cycle, affects CHIKV RNA production, and interferes with viral protein
expression.
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D. Terpenoids

As a major class of natural compounds, terpenoids display a wide range of
biological activity against a variety of infectious diseases. The four representatives
shown in Table 1 contribute significantly to the anti-CHIKV development.

In 2014, Litaudon et al. [29] reported their isolation of diterpene jatrophane ester
(12) in 0.0006% yield from the whole plant of Euphorbia amygdaloides
ssp. Semiperfoliata, an endemic plant of Corsica and Sardinia. Jatrophane ester (12)
shows an EC50 value of 0.76 lM with a high SI value of 208.

In the same year, Chu et al. [30] disclosed their isolation of two aplysiatoxin-related
compounds 13a,b from the marine cyanobacterium Trichodesmium erythraeum
in *0.0022% yield. These two 12-membered ring terpenes exhibit significant
anti-CHIKV activity in post-treatment of infected SJCRH30 cells with EC50 values of
1.3 and 2.7 lM, respectively. Their potency is on the same order as that of the
highly-oxygenated natural trigocherrin A (14) [31]. This chlorinated daphnane
diterpene orthoester was isolated from the bark of Trigonostemon cherrieri in
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0.00017% yield, an endemic plant of New Caledonia [53]. Nevertheless, they are
much less potent in comparisonwith 12-O-tetradecanoylphorbol 13-acetate (15) [54],
which was reported by Litaudon et al. in 2012 [32]. Tetradecanoyl phorbol acetate 15
presents an EC50 value of 2.9 nMwith a very high SI value of 1965. The activation of
the signal transduction enzyme protein kinase C could be the mechanism of action on
its anti-CHIKV activity.
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E. Flavagline

Plant natural products flavaglines are characterized with a unique cyclopenta
[b]benzofuran nuclues. Fused benzofurans display an array of biological effects as
insecticidal, antifungal, anti-inflammatory, and neuroprotective agents [55]. In
2015, Smith et al. [33] reported that flavaglines FL23 (16) and FL3 (17) inhibit the
CHIKV by interaction with prohibitin-1, which is a receptor protein used by the
virus to enter mammalian cells. The synthetic route to give flavaglines FL3 (±)-(17)
is shown in Scheme 7. The key steps include the Friedel–Craft acylative cycliza-
tion, the Michael addition, and Evans–Saksena reduction reactions [56, 57].

Others

Apart from the above classes of compounds, Freitas–Junior et al. [34] screened a
kinase inhibitor library of 4000 compounds against CHIKV infection by using high
throughput screening. In 2013, they reported that four benzofuran derivatives were
active as inhibitors associated with CHIKV cell death in a dose-dependent manner.
Compounds with a scaffold as benzofuran 18 (CND0335) exhibit the EC50 values
of between 2.2 and 7.1 lM.

Brancale et al. [35] reported their computer-aided identification and design of a
series of (a-carbony)hydrazones with selective activity against CHIKV. They ini-
tially obtained the hit candidates from a virtual screening simulation of *5 million
compounds on the CHIKV nsP2. After investigation of their structure–activity
relationship in silico and optimization of the candidate compounds, a simplified
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chemical structure (a-carbonyl)hydrazone 19 was attained. Synthesis of compound
19 is illustrated in Scheme 8, in which sequential Knoevenagel–Doebner reaction
and condensation reactions are in operation. This compound indeed exhibits
promising activity profile as shown in Table 1.

In 2015, van Hemert et al. [36] first reported that the approved anti-parasitic drug
suramin (20b) inhibits CHIKV RNA synthesis with an IC50 value of *5 lM. It
also inhibits replication of various CHIKV isolates in cell culture with an EC50 of
79 lM and CC50 >800 µM. Furthermore, suramin can inhibit a post-attachment
early step of the CHIKV replicative cycle and (re)initiation of CHIKV RNA syn-
thesis by possibly interfering with binding of the template RNA. These findings are
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in agreement with the previous studies in vitro that suramin inhibits RNA viral
polymerases and helicases [36]. Very soon, closely related results on inhibition of
the same virus entry and transmission by suramin (20b) is reported by Kuo, Lin
et al. [58].

A series of suramin derivatives (e.g., 20a) were synthesized by Bolognesi, Hwu
et al. [59] based on the design of compounds with fewer sulfonate fingers, shorter
arms, only one side, or no neck in comparison with suramin. As depicted in
Scheme 9, the representative procedure includes amide formation, followed by
reduction of nitro compounds and carbonylation. These suramin derivatives were
also tested for their ability to inhibit CHIKV RNA synthesis in vitro.
Unsymmetrical compounds possessing only one arm were inactive regardless of its
length. It has been proved that compound with six sulfonate groups showed greater
anti-CHIKV (EC50 = 79 µM) than tetrasulfonate (EC50 = 210 µM) in the cell
culture (see Table 1 and Fig. 2).

3 Concluding Remarks

Development of new antiviral compounds for chikungunya fever meets an urgent
need of global societies. It is due to the re-emerged outbreaks occurring in 2004 and
recent spreading to the Americas in late 2013. A limited number of natural products
exhibit great potency with an appealing selective index value. Unfortunately, their
isolation yields are often very low, as represented by the naturally occurring 12-O-
tetradecanoylphorbol 13-acetate (15) obtained in 0.00017% yield. Complex struc-
tures associated with these natural products with multiple stereogenic centers,
various functional groups, and several rings make their total synthesis very
challenging.

Fig. 2 Structure–activity relationship of suramin and its derivatives
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As a result, medicinal chemists, biologists, and virologists with interdisciplinary
expertise have been seeking for unnatural targets that can be obtained in a large
quantity by chemical synthesis. By far, various types of compounds with
anti-CHIKV activity have been obtained; among which the ones reported recently
are listed in the Table 1. These compounds belong to purine/pyrimidine, nucle-
oside, alkaloid, flavagline, etc. Nevertheless, none of them has been yet approved as
a drug to serve the purpose. The opportunity remains high for scientists to devote
their efforts to design and synthesize small molecules to fight for the human battle
against CHIKV with success.

Moreover, some molecules in the compound libraries of the Table 1, such as
benzouracil–coumarin–arene conjugates, suramin derivatives et al. may be suitable
for their development to become potential new drugs for the treatment of neu-
rodegenerative disorders. Multi-functional design, in silico computational screen-
ing, in vitro/ex vivo/in vivo experiments, and organic syntheses of these novel
candidate compounds are in progress.
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