
Classification of SQL Injection Attacks
Using Fuzzy Tainting

Surya Khanna and A.K. Verma

Abstract The embellishment of the Internet has escalated the need to resolve cyber
security issues. SQL injection attacks (SQLIAs) being one of the oldest yet tena-
cious attacks captivating the Web applications pose a serious threat. Various
techniques are introduced over the years to tackle this problem, but there are times
when it becomes difficult to meticulously define the fine line separating a valid
input from a malicious one. This work proposes a SQL injection (SQLI) threat level
indicator based on fuzzy logic for handling SQL injection attacks. The fuzzy
tainting approach helped in ruling out the possibilities of false positives.

Keywords SQL injection ⋅ Fuzzy logic ⋅ Tainting ⋅ Web security ⋅ Threat
level indicator

1 Introduction

The past decade has seen a rapid shift of products and services to the world of
Internet. Whether it is the commercial sector or financial, even the government is
going online. All this hype of being a part of the online world has led these services
to become the focal point of attacks. Hence, the need of the moment is protect the
user’s data from maleficent attacker(s).

SQL injection is among the top rankers in the threat rating lists as analyzed by
various organizations like OWASP [1], MITRE [2]. An average number of 6,800
SQL injection attacks (SQLIAs) per hour were observed in Imperva’s Web appli-
cation attack report edition #6 [3]. Even alarming observation was an increase of

S. Khanna (✉) ⋅ A.K. Verma
Computer Science & Engineering, Thapar University, Patiala, Punjab, India
e-mail: surya.khanna88@gmail.com

A.K. Verma
e-mail: akverma@thapar.edu

© Springer Nature Singapore Pte Ltd. 2018
P.K. Sa et al. (eds.), Progress in Intelligent Computing Techniques: Theory,
Practice, and Applications, Advances in Intelligent Systems and Computing 518,
DOI 10.1007/978-981-10-3373-5_46

463



29.63% in SQLIA than the previous year. Further, Verizon’s 2015 Data Breach
Investigations Report (DBIR) enlists 2,122 confirmed data breaches out of 70
organizations [4]. Information is the most valuable asset to the organizations. So,
the databases should be hardened against injection attacks.

2 Motivation

The first point of initiating this work was to legalize valid inputs containing key-
words usually considered insecure. Hence, the keywords alone cannot be relied
upon. They give us results that are partially true. Now, fuzzy logic is a technology
that can handle partial truth values. If that be combined with the known attacks, we
can resolve our problem. Work has been done using fuzzy logic to assess the
security risks [5] using various density functions but validation of such inputs has
not been pondered upon.

3 SQL Injection Attacks

This section provides a brief background on SQL injection. SQLIAs can be broadly
categorized as:

• First Order/Direct Attacks

– Through user input
– Through cookies
– Through server variables

• Second Order/Indirect Attacks, i.e., the malicious input is inserted at a place
different from where the attack is intended to be performed.

4 Related Work

This section acknowledges the work of various researchers who contributed to
provide solution for SQLIA.

In 2003, Huang et al. [6] proposed a black box approach to assess the security of
Web application using fault injection and behavior monitoring. It uses Web crawler
to determine SQLIA target points of a Web application. A knowledge expansion
model is used to learn the behavior of malicious pattern and determine high con-
fidence terms. Lastly, the negative response extraction (NRE) algorithm is used to
determine the impact of input on the results. Later on, Stephen W. Boyd and
Angelos D. Keromytis 2004 [7] used a secret key to randomize the SQL queries

464 S. Khanna and A.K. Verma



with the help of a proxy. The security of this technique depends on the strength of
the secret key.

In 2005, William G.J. Halfond and Alessandro Orso [8] built SQL query models
combining static as well as dynamic monitoring techniques to detect injection.
The SQL query model is a non-deterministic finite-state automaton which checks
the dynamically generated queries to figure out any violation. Further, X. Fu et al.
2007 [9] proposed a white box model for static analysis of byte code to determine
vulnerabilities at compile time. A hybrid constraint resolver following string
analysis approach is used to decide security breaches. Further, in 2010, Bisht et al.
brought forward CANDID [10], a query structure mining approach to determine the
deviation of queries formed by candidate input from programmer-intended queries.

In 2013, A.S. Gadgikar [11] came forward with a negative tainting approach to
detect SQLIA. In this approach, all entry points are checked for known attack
keywords. Recently, in 2015, B. Hanmanthu and colleagues [12] proposed data
mining technique using decision trees to classify attack signatures, thereby pre-
venting SQL injection. Decision making is based on associative classification rules.

5 Methodology

We propose a fuzzy logic-based tainting solution to determine SQLI vulnerabilities.
In this technique, we initially use negative tainting [11] to determine any malicious
string in input parameters and attempt to determine their attack types according to
which we can associate a severity level with them as shown in Table 1. The risk
level is based on the hindrance; it can cause in the smooth working of a system.

Table 1 Severity level of different types of SQLIAs

Attack type Example Risk level

Tautology ’ or a = a – Medium
Logically incorrect
queries

Pass character in integer data type, e.g., pin = ‘#123\’
or pin = convert (int, (select top 1 name from sysobjects
where xtype = ‘u’))

Low

Union query ’ UNION SELECT accNo from users where uid = 1349 – Medium
Piggybacked
queries

(I)’; insert into users values (666, ‘attacker’, ‘admin’, 0xffff)
—

(II)’; Drop table accounts;–

High

Stored procedures Pass following as parameters
(I)’; SHUTDOWN; –
(II)’; Drop table users;–

Medium,
high

Alternate encoding ’; exec (char(0x73687574646f776e)) – Medium,
high

Inference
(I) Blind injection
(II) Timing attacks

(I) john’ and 1 = 0 –

john’ and 1 = 1–
(II) id = 1’) or sleep(25) = 0 limit 1–

Low

Classification of SQL Injection Attacks Using Fuzzy Tainting 465



Scores are calculated from the taints found against the known attacks for all input
parameters of a query. These scores are used to indicate the risk level of the
malicious input strings. Attackers use logically incorrect queries or inference
techniques to determine information about the database though error messages. Not
much information can be retrieved through these methods and is usually considered
as a part of database fingerprinting. So, no sensitive data breach happens; therefore,
they are enlisted to pose a low-level threat, whereas attacks like tautology, union,
stored procedure may lead to breach of confidentiality and hence given a relatively
higher-level threat indication.

Then, we look over the programmer-intended query corresponding to the input
parameter and determine the probability with which our system will be affected if
any malicious input is given to the query. Malicious content in a DDL poses highest
level of threat. Any modification at the schema level can lead to huge loss/leakage
of sensitive data as they can affect the entire table, e.g., the attacker can create
another table in which he/she can dump sensitive information about the system and
make it available for access by unauthorized users or a table containing monetary
records can be deleted affecting large no. of users.

Fuzzy logic basically reduces to paradoxes or multivalued logic to half-truths (or
half-falsities). A quote (‘) is considered as a dangerous parameter for SQL inputs,
although it is partially true. We encountered places where the quote is a part of a
perfectly valid input. Due to the various guidelines laid down in the defense
strategies of SQLIAs, these legal inputs are also considered dangerous. To resolve
such problems, we have designed a set of fuzzy rules in their deductive form.
A fuzzy rule set used to determine the overall threat level is shown in Table 2. An
example rule (as shown in 4th row of Table 3) is “IF input_risk_level IS high AND
statement_type IS DDL THEN SQLI_risk IS severe.”

For each query, the set of rules is applied to obtain the degree of membership
value which is then defuzzified to produce the output. To predict the exposure of
query to SQL injection attacks, we use center of gravity (COG) method of
defuzzification [13] given by the algebraic expression:

x* =

R
μðxÞx dx

R
μðxÞ dx ð1Þ

Table 2 Examples of fuzzy
rules

Input risk level Statement type SQLI risk

Valid Any None
Medium DML Average
High DML Severe
Medium DDL Severe

466 S. Khanna and A.K. Verma



Consider the different kinds of input values in a SQL query as shown in Fig. 1.
First one is a valid query despite containing quotation mark. The second form of
input leads to breach in confidentiality of the system, while the last one results in
the loss of sensitive data.

Initially, the negative taint values of all inputs are calculated followed by
determining the type of query, in this case, a DML. Lastly, these values are
fuzzified to indicate SQLIA. Our system shows appropriate indications for threat
levels produced by the different inputs as shown in Figs. 2 and 3.

Fig. 1 Various sorts of input to a query

Fig. 2 Input: O’Neal

Classification of SQL Injection Attacks Using Fuzzy Tainting 467



6 Conclusion and Future Work

In this paper, we have classified SQL injection threat level with the help of fuzzy
logic and tainting techniques. The proposed model detects the impact of a full
fledged query on the data source and works on successfully removing false posi-
tives. This approach uses the commonly known COG method, while implemen-
tation of other method can be explored in the near future. Security of the application
can be enhanced by including more encoding patterns. This method can further be
extended to solve the issue of no SQL injection.

References

1. Top 10 2013-Top 10. In: - OWASP. https://www.owasp.org/index.php/top_10_2013-top_10.
Accessed 4 Mar 2016.

2. Common Weakness Enumeration. In: CWE - 2011 CWE/SANS Top 25 Most Dangerous
Software Errors. http://cwe.mitre.org/top25/. Accessed 4 Mar 2016.

3. 2015 Web Application Attack Report (WAAR) - Imperva. http://www.imperva.com/docs/hii_
web_application_attack_report_ed6.pdf. Accessed 5 Mar 2016.

4. 2015 Data Breach Investigations Report. In: Verizon Enterprise Solutions. http://www.
verizonenterprise.com/dbir/2015/. Accessed 5 Mar 2016.

5. Shahriar H, Haddad H (2014) Risk assessment of code injection vulnerabilities using fuzzy
logic-based system. Proceedings of the 29th Annual ACM Symposium on Applied
Computing - SAC ‘14.

6. Huang Y-W, Huang S-K, Lin T-P, Tsai C-H (2003) Web application security assessment by
fault injection and behavior monitoring. Proceedings of the twelfth international conference
on World Wide Web - WWW ‘03 148–159.

Fig. 3 Input: ’; drop table users—

468 S. Khanna and A.K. Verma

https://www.owasp.org/index.php/top_10_2013-top_10
http://cwe.mitre.org/top25/
http://www.imperva.com/docs/hii_web_application_attack_report_ed6.pdf
http://www.imperva.com/docs/hii_web_application_attack_report_ed6.pdf
http://www.verizonenterprise.com/dbir/2015/
http://www.verizonenterprise.com/dbir/2015/


7. Boyd SW, Keromytis AD (2004) SQLrand: Preventing SQL Injection Attacks. Applied
Cryptography and Network Security Lecture Notes in Computer Science 292–302.

8. Halfond WGJ, Orso A (2005) Combining static analysis and runtime monitoring to counter
SQL-injection attacks. SIGSOFT Softw Eng Notes ACM SIGSOFT Software Engineering
Notes 30:1–7.

9. Fu X, Lu X, Peltsverger B, Chen S, Qian K, Tao L (2007) A Static Analysis Framework For
Detecting SQL Injection Vulnerabilities. 31st Annual International Computer Software and
Applications Conference - Vol 1- (COMPSAC 2007) 1:87–94.

10. Bisht P, Madhusudan P, Venkatakrishnan VN (2010) Candid. ACM Transactions on
Information and System Security TISSEC ACM Trans Inf Syst Secur 13:1–39.

11. Gadgikar AS (2013) Preventing SQL injection attacks using negative tainting approach.
2013 IEEE International Conference on Computational Intelligence and Computing Research
1–5.

12. Hanmanthu B, Ram BR, Niranjan P (2015) SQL Injection Attack prevention based on
decision tree classification. 2015 IEEE 9th International Conference on Intelligent Systems
and Control (ISCO) 1–5.

13. Ross, T. J.: Fuzzy Logic with Engineering Applications. 2nd edn. Wiley (2004).

Classification of SQL Injection Attacks Using Fuzzy Tainting 469


	46 Classification of SQL Injection Attacks Using Fuzzy Tainting
	Abstract
	1 Introduction
	2 Motivation
	3 SQL Injection Attacks
	4 Related Work
	5 Methodology
	6 Conclusion and Future Work
	References


