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Abstract Tree adjoining grammars (TAGs) are mildly context-sensitive psy-
cholinguistic formalisms that are hard to parse. All standard TAG parsers have a
worst-case complexity of O(n6), despite being one of the most linguistically rele-
vant grammars. For comprehensive syntax analysis, especially of ambiguous nat-
ural language constructs, most TAG parsers will have to run exhaustively, bringing
them close to worst-case runtimes, in order to derive all possible parse trees. In this
paper, we present a new and intuitive genetic algorithm, a few fitness functions and
an implementation strategy for lexicalised-TAG parsing, so that we might get
multiple ambiguous derivations efficiently.
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1 Introduction

Tree adjoining grammars (TAGs) were proposed by Joshi et al. [1], to be used for
natural language representation and processing. The grammar is a non-Chomskian
formalism which is mildly context sensitive in nature. Unlike string generation
grammars, TAGs use trees to be their elementary constructs. The benefit of using
TAGs over generally popular grammars, such as context-free grammars (CFGs), is
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that TAGs are able to capture a lot more linguistically and lexically relevant fea-
tures which are normally lost in plain CFG models. TAGs have an extended domain
of locality which captures furthest dependencies in a single rule. Furthermore, they
are able to factor domain dependencies into sub-rules without affecting the parent’s
template. This gives TAGs an edge over other formalisms; one can model a lan-
guage using fewer rules and capture its semantics (at least in a limited way) without
a separate dependency parsing [2]. The TAG derivation is in fact a good depen-
dency structure that we can use instead. In cases where a probabilistic parse is done,
TAGs can almost compete with CFGs and the additional dependency parse required
complementing the syntax trees.

The problem we face with TAGs is its exponentially worse parsing complexity
for longer sentences; with multiple parse trees (ambiguous), this would be an
exhaustive problem. We want all ambiguous parses of a given phrase or sentence.
This will push the parser to worst-case scenarios. This was the main motivation to
consider alternates that fish out multiple solutions (or optimums in certain cases);
genetic algorithm seemed a good candidate.

TAG G is defined as a quintuple in [3] as follows:

GTAG = ðN, L, TI, TA, SÞ ð1Þ

where N is the set of all non-terminals, L is the set of all terminals, TI is the set of all
initial trees, TA is the set of auxiliary trees and S is a sentential start symbol. Trees
that have a root node named S are called sentential trees. TAGs generate trees and
not strings. The trees conjoin, using two operations, namely adjunction and sub-
stitution. Substitution is a nominal operation where two initial trees merge at a node
that is marked for substitution. This is the same substitution that results in the
middle-out growth of a CFG sentential form; essentially, it is a CFG operation. One
tree is a parent and the other is the child. The parent’s node which is marked for
substitution is replaced by the child’s root node, attaching the entire child tree with
the parent. This is essentially possible iff the substitution node is a leaf (external)
node.

Adjunctions on the other hand are inserting auxiliary trees to initial trees. An
auxiliary tree has got a root node and an identical foot node. The concept of
adjunction is splitting a node of the parent tree horizontally into a root and foot
nodes of an auxiliary tree. The criterion is the same as substitution except that it can
be done on any node (mostly internal nodes). While the root of the auxiliary tree
replaces the adjunction node in the parent, the foot node of the auxiliary tree will
adopt the sub-tree of the same node being replaced, so essentially inserting the
auxiliary tree into the initial tree.

Adjunctions make TAG mildly context sensitive. Figure 1 illustrates how both
operations on the tree forms eventually affect the string yield from the final derived
tree. Figure 2 pictures the physical process of these operations, a simple attachment
for substitutions and a partly complex insertion for adjunctions. For more details on
TAGs, refer works of Aravind Joshi, Vijay-Shanker, Yves Schabes and M Shieber
[3–5].
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2 Prior Works on Evolutionary Parsing

There are many classical and conventional algorithms to parse TAGs. The popular
algorithms are detailed in [4], a CYK-type parser, and [6], an Earley-type parser.
Our comparing implementation is the later with an obvious difference that it is a
multithreaded parser rather than the backtracking version detailed in [3, 6]. For
more details on this please refer our prior published works [7, 8].

The main work of relevance focused on combining EA and TAG parsing is
EATAGP [9], where an evolutionary algorithm has been proposed to parse TAGs
which they demonstrate on a simple copy language. The implementations are done
on different platforms so they have given a comparison of the number of compu-
tations required in each case. Their results show EATAGP to be much more efficient
not just for one parse but also asymptotically too as the EA is able to fit a linear
order while the classical TAG parsing will have an exponential order.

Substitution merely does a context free insertion. 
Nodes are frontier node marked for substituting.

Adjunction does a context sensitive insertion before 
the foot node and after the foot node

Fig. 1 Yield of substitution operations between two initial trees (left) and yield of adjunction
operation between an initial and an auxiliary tree (right). Clearly, adjunction does a
context-sensitive insertion preserving the foot node and its yield intact while insert before and
after it
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Fig. 2 Substitution is a single attachment, while adjunction does two separate attachments. The
classical parsing treats adjunction as partial jump and completion process requiring a left
completion and a right prediction before the insertion is completed
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The EA version is a randomised search so evidently it gives different values as
for the population size and for the selection in each generation; computations vary
for different executions of the parser with the same string. To finalise the number of
computations, it is averaged across minimum 10 runs, for comparison. The main
focus of the paper is to find the right derived (parse) trees using gene pools created
from (tree, node) pairs that will be progressively added to a chromosome eventually
tracing out the derived tree with the desired yield. The fitness function is rather
vaguely defined, but the strategy is clear. They use multiple fitness scores with
decreasing priority like a three-tuple score vector (matches, coverage and yield).
The matches record the continuous matches of words in the input string order, the
coverage is the total word matches, and the yield tracks the length overshoot of the
chromosome over the real string with a negative value. They claim to have used
cubic order fitness first and successively reduced the order eventually using a linear
function which gave best results. It also merits mentioning some other basic works
on evolutionary parsing such as the genetic algorithm-based parser for stochastic
CFGs detailed in [10]. This work describes a lot of vague areas when it comes to
GA-based parsing. The grammar is considered to be probabilistic giving an easy
way to evaluate the sentential forms, in order to rank and compare different indi-
vidual parses.

The concept of coherent genes is introduced in [10] and is a concept that is
absent in the EATAGP where they have eliminated the non-viable gene issue by
carefully biasing the initial gene pool and using it in a circular manner. In CFG,
however, the sentential forms are string and this will not be a problem. In fact, this
gives a better fitness criterion to validate and evaluate individuals in a population
based on relative coherence. However, this approach works mostly on
non-lexicalised grammars by grouping the words based on POS categories.

3 Genetic Algorithm (GA) Model and Operators

Our approach to evolutionary parsing is to generate random derivations with pre-
assembled genes. In TAG parsing, derived trees or parse trees give only syntax
information, while other relevant linguistic attributes, such as dependency,
semantics and lexical features, are all lost. Undoubtedly, the more useful parse
output is not the parse tree but the know-how of creating one. In TAG terminology,
we call this the derivation structure, which is normally represented as a tree. It gives
obvious advantages to fetch derivations rather than just parse trees.

We rank derivations of an input string initially generated randomly and pruned
using the GA process to some threshold fitness value. The random derivations are
indicative of individual parses in our algorithm. To represent various genes is the
challenge as the derivation nodes contain a lot of information. Thus, we defined
TAG parsing as an eight-tuple GA process.
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GATAGP = fWD,ΓI,ΓC, fcover, fcohere,ΩLR, Pderivation, Cstopg ð2Þ

where

• WD is a complete lexical dictionary of words. The lexicalisation can be treated as
an indexing of WD. These aspects are discussed in detail in a later section.

• ΓI is set of genes that start a parse (sentential genes).
• ΓC is the set of all other genes that relates to each lexical item.
• fcohere is a fitness score that measure total coherence between genes in a

chromosome.
• fcover is the coverage of lexicons by various chromosomes.
• ΩLR is a genetic operator that only yields one child (the left-right child).
• Pderivation is initially a random population of chromosomal individuals.
• Cstop is a termination criterion for the GA, also called the stopping condition.

This is usually a preposition that needs to be realised for the GA process to stop.

The stop condition for the GA process is that average fitness be greater than a
threshold value. This value, however, needs to be estimated based on empirical
observation of multiple runs on the process itself. There are some other such
parameters that too require similar estimations. To understand more of these
parameters and their statistical properties, we can define a convex problem for it
that gives better mathematical grounds for analysing them. This, however, can be
tabled for another publication as it is not in focus here.

3.1 Genes, Gene Pools and Coherency

For a complete representation of a derivation tree in TAG, we need information as
to the main tree that will be lexicalised with the matrix verb of the sentence. These
are sentential constructs which are also initial type trees; we call them sentence-
initial trees. In order for us to initiate a parse on a sentence, we need such a tree. In
an ambiguous grammar, there can be multiple trees which can initiate a parse on the
sentence. So this has to be forced into the algorithm that the first tree it selects will
be a sentence-initial tree. Hence, genes which shall code for these trees are unique
and needs to be handled separately.

For representing a gene in any derivation string, we need the following two-tuple
and four-tuple structures.

γI = ftI, lWDg, γI ∈ΓI, γI ∈ΓI, TS
I ⊂TI, lWD ∈WD ð3Þ

γC = ftN, lWD , tp, ntpg
γC ∈ΓC, tN ∈ ðTI ∪TA −TS

I Þ, TS
I ⊂TI, lWD ∈WD, tp ∈ ðTI ∪TAÞ

ð4Þ
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The genes are of two types the sentence-initial (SI) genes in (3) and the common
genes in (4). The sets are generated into separate gene pools. The SI-type gene γI is
simple enough; they encode the root node of derivation with a sentence-initial tree
and a possible lexicalisation with any occurring word lW. The common gene is a bit
more complicated. This encodes all the other nodes of the derivation and has two
extra items: the parent tree tp and the node of the parent tree np, where this given
tree tN has attached itself and lexicalised with lW.

The genes in true nature represent all possible nodes in all derivation trees. This
is the reason we must try and fit the nodes in the right tree. The creation of these is a
batch process that is O(w.k2) in time where there are k trees and w words. This can
also be done in a single initialisation process and not repeat it for every parse again
and again. We have evaluated our algorithm purely based on the fitness scoring and
selection process and have omitted gene creation from it, in order to get an idea of
the efficiency as a function of the length of the sentence, and compare it to classical
TAG parsing.

Coherency in a gene is defined as the viability of the gene to exist in a real
derivation. This is a binary property, and the gene can be non-coherent in many
ways: if the tree is not lexicalised by the paired lexicon, if the parent tree does not
have a parent node specified, or if the main tree can never conjoin with the specified
parent site due to adjunction constraints or lack of substitution marker. These can be
verified while the gene is being created as a set of check heuristics, thus never
creating a non-viable gene in the gene pools. The benefit of this process is we can
bias it with more heuristics if required. This justifies our call to make this a batch
process for the bulk of trees and lexicons, as once the coherent genes are created,
then it is just a matter of indexing them to create local gene pool for each sentence.

3.2 Chromosomes and Fitness

A chromosome is a complete derivation tree. It contains genes that code for every
word of the given sentence. While the coherence of genes can be ensured, chro-
mosomes are randomised and may be non-coherent. This can be refined only
through genetic evolution (GA) process. Since the gene that starts the parse needs to
be added separately, the chromosomes are built by this bias. A chromosome is
defined as an ordered set of genes as follows

κi = fγI ∏
w− 1

j = 1
γCj

: γI ∈ΓI and ∀j γCj
∈ΓCg, w is length of the sentence ð5Þ

Note that it is concatenation of genes and the order of genes is the same as the
order of the lexicons (lexicons) in the sentence. We are not doing any other kind of
biasing for continuous genes in the above formation. We have empirically found
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that a population of over twenty thousand per instance is a good pool to compre-
hensively collect most syntactic ambiguities.

Coherence over chromosomes is defined as a fitness score unlike in genes. The
max score is |w-1|, and min score is 0. It is a count of the number of cohering genes;
if a gene with parent tp exists, then there should be a gene with tree tp in the same
chromosome. If a single non-coherent gene exists, the derivation becomes
non-viable. However, coherence can be improved by genetic evolution, by applying
genetic operators.

The fitness calculation is done using a search and a matching heuristic that
iterates over the entire chromosome to find gene pairs that match. It is possible to do
it exhaustively using an O(n.log2(n)) pair comparison like a sort process. This can
be replaced by a shallow parse that will take an O(n3) complexity. However, it can
also be achieved with a linear heuristic function. Out of all these, the shallow parse
version is the most accurate and gives almost all the ambiguous derivations. The
other techniques yield good results faster but also some false positives that need to
be additionally filtered.

Coherence is secondary here, and there is a more important fitness concern that
we need to solve, the word coverage problem. To make sure that the chromosome
has complete word coverage, that is, to check that there is a gene in the chromo-
some for every word in the given sentence, we employ a simple linear search logic
that marks words as each gene is iterated on. The coverage problem is given due
importance in the earlier generations, and later on, the coherence will take over
while coverage will still be active at a minimal level.

3.3 The Left-Right Genetic Operations

The main biasing of our GA model is that there are fewer random operators than
most classic GAs. The operator we have used is a crossover and biased mutation for
the main selection process. Our crossover genetic operator works by finding exactly
one child per pair of parents. This is the leading child or as to call it, the LR child.
Since our parse and coherency model works from left to right, we get better and
faster convergence from it. The operator can be defined as follows

ΩCLRðκiÞ= κLRi such that κLRi = fγI ∏
h

j = 1
γCj

∏
w

k=h+1
γCk

: ∀j γCj
∈

κi and ∀k γCk
∈ κRandomg, h is the coherence index of κi

ð6Þ

As it follows, the crossover needs a good husband and randomly selects a wife to
crossover, preserving the husband’s coherence and fitness. The idea is never to
create a less fit offspring from any husband. So naturally the evolution will go
forward. Similarly, biased mutation is also defined. The operator never lowers the
fitness of a chromosome it is operating on. The mutation can be defined as follows.
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ΩMLRðκiÞ= κMi such that

κMi = fγI ∏
h

j = 1
γCj

∏
m− 1

k= h+1
γCk

γCRandom
∏
w

k=m+1
γCk

: ∀j γCj
∈ κi and

∀k γCk
∈ κi, γCRandom

∈ΓCg, h is the coherence index of κi
andm is themutation index such that h <m<w

ð7Þ

4 Implementation

The primary implementation is done using a pruned XTAG subset for English [8].
The main assumption as we have discussed earlier, maintains that the TAG should
be single anchored and is lexicalised with only one word. This is why we associate
a tree with just one lexicon in our gene model. We have used the O(n.log(n)) fitness
strategy which we introduce earlier.

The howCover method for estimating word coverage works by directly counting
the genes that code for each word. The total count must be equal to the count of the
words in the input sentence. This algorithm works linearly by using a word-hashed
search of the required gene pool.

method howCover(ki, w) 
cover <- 0 
for j from 0 until |w|

if ki contains wj then increment cover
rof
return cover

end

The howCohere method reads continuous coherence and returns when any gene
in the sequence is non-cohesive. Since it employs a binary search on genes, the
chromosome is required to be sorted on parent-node ordering. This is an additional
overhead for the sake of lessoning this computation. In real practice, we can avoid
this sorting too. This will be demanding as the length of the string increases; we
would need a real big population size to make sure enough viable chromosomes
exist. The above method is of O(n.log(n)).
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method howCohere ( ki ) 
cohere <- 0 
for gj є ki, j = 1, 2 … |ki|  

if bSearch (ki, gj.tp, gj.np) 
increment cohere

else return cohere
   fi
rof

end
The selection is yet again a straight process. Once the genetic operations are

defined, then the selector simply calls them to incrementally evolve and transform
the population. Typically within 10–15 generation, we observed convergence. The
challenge the selector faces is how to eliminate duplicate chromosomes and
duplicate solutions. The first way is to make the population into a set so duplicates
will never be stored. The second way is to eliminate duplicates when they are
created during the process, by making the solution holder a binary tree or a set. One
observation we have made is that the duplication of initial chromosomes is less as it
is created in a sequentially random process (no re-seeding of the random generator).
So we have used a binary tree to check for duplicates in the solution holder. We can
extend our model for a wide coverage grammar like XTAG [11], but requires some
overhaul of our base GA definition and will incur considerable complexity for
coherency computations.

method selector ( PD, solsset, goodset ) 
for ki  PD, i = 0, 1, 2 … |PD| 

if howCover( ki ) and howCohere( ki ) are maximum 
add ki to solsset

else if only howCover(ki)is maximum
add ki to goodset

else add mutateLR(ki) to newPD
fi

rof
if goodset is not empty 

newPD <- crossoverLR( good , PD ) 
else newPD <- crossoverLR( Random(PD) , PD) 

fi
return newPD

end
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5 Results and Conclusion

The proposed algorithm theoretically fares best when we have a word size of seven
or more words. The overall complexity of GATAGP is O(n.log(n).|PD|). The
implementation front we incur some extra overheads and the efficient size of the
input sentence is observed to be eight. Our main obstacle to this comparison is the
false positives that we incur which needs to be filtered using shallow parsing. We
have presented in Table 1, the theoretical speed up between classical and evolu-
tionary TAG parsing. For this analysis, we assume the population size to be 10000
with ten generations. We have also empirically observed that the number of trees
selected per sentence is on an average 41. The worst-case complexity for

Table 1 A theoretical computations chart for GATAGP and Earley-type parser for different input
lengths. The calculations assume a population of 10000 chromosomes and a tree pool of 41 trees
on an average. The complexity of former is O(n.log2(n).|PD|) and latter is O(|G|.n6)

|w| GATAGP Earley type |w| GATAGP Earley type

7 2665148 4823609 12 5501955 122425344
8 3200000 10747904 13 6110572 197899169
9 3752933 21789081 14 6730297 308710976
11 4905375 72634001 15 7360336 467015625

Fig. 3 Some derivations created by parsing the example sentence ‘Tree Grammars are now parsed
with a faster algorithm with simpler rules’. The sentence yielded 65 derivations and parsed in less
than 10 s. The same sentence gave 40 derivations in the classical Earley-Type parser and took 25 s
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Earley-type TAG parser is O(|G|2.n9) [6], but ours being a multithreaded parser we
can assume the minimum worse case (time) for TAG parsing as O(|G|.n6) [7].
Figure 3 gives screen shots of a few syntactically ambiguous derivations given by
the GATAGP for the example sentence ‘Tree Grammars are now parsed with a
faster algorithm with simpler rules’. The trees are generated from solution set
chromosomes, using our TAG Genie [7] tree viewer.
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