Automated Classification of Issue Reports
from a Software Issue Tracker

Nitish Pandey, Abir Hudait, Debarshi Kumar Sanyal
and Amitava Sen

Abstract Software issue trackers are used by software users and developers to
submit bug reports and various other change requests and track them till they are
finally closed. However, it is common for submitters to misclassify an improvement
request as a bug and vice versa. Hence, it is extremely useful to have an automated
classification mechanism for the submitted reports. In this paper we explore how
different classifiers might perform this task. We use datasets from the open-source
projects HttpClient and Lucene. We apply naive Bayes (NB), support vector
machine (SVM), logistic regression (LR) and linear discriminant analysis
(LDA) separately for classification and evaluate their relative performance in terms
of precision, recall, F-measure and accuracy.

Keywords Bug classification « Naive Bayes < Support vector machine -
Precision - Recall - F-measure

1 Introduction

Software evolves continuously over its lifetime. As it is developed and maintained,
bugs are filed, assigned to developers and fixed. Bugs can be filed by developers
themselves, testers or customers, or in other words by any user of the software.

N. Pandey (=) - A. Hudait - D.K. Sanyal
School of Computer Engineering, KIIT University, Bhubaneswar 751024, Odisha, India
e-mail: nitish5808 @gmail.com

A. Hudait
e-mail: abirhudait@gmail.com

D.K. Sanyal
e-mail: debarshisanyal @gmail.com

A. Sen
Dr. Sudhir Chandra Sur Degree Engineering College, Kolkata 700074, West Bengal, India
e-mail: amitavasen@yahoo.com

© Springer Nature Singapore Pte Ltd. 2018 423
P.K. Sa et al. (eds.), Progress in Intelligent Computing Techniques: Theory,

Practice, and Applications, Advances in Intelligent Systems and Computing 518,

DOI 10.1007/978-981-10-3373-5_42



424 N. Pandey et al.

For open-source projects, defect tracking tools like GNATS [1], JIRA [2] or
Bugzilla [3] are commonly used for storing bug reports and tracking them till
closure. Proprietary software also uses similar tools. However, along with bugs (for
corrective maintenance), it is common to file change requests that ask for adaptation
of the software to new platforms (adaptive maintenance) or to incorporate new
features (perfective maintenance). Similarly, there may be requests to update the
documentation, which may not be clubbed as a bug due to its usually less serious
impact. Requests for code refactoring, discussions and request for help are other
categories for which users may file an issue. However, the person filing the reports
may not always make a fine-grained distinction between these different kinds of
reports and instead record them as bugs only. The consequence could be costly:
developers must spend their precious time to look into the reports and reclassify
them correctly. Hence, it is worthwhile to explore whether this classification could
be performed automatically.

Machine learning, especially techniques in text classification and data mining,
provides invaluable tools to classify bug reports correctly. We call a report in a
software defect tracking system as an issue report irrespective of whether it refers to
a valid bug or it is related to some other issue (as discussed above). In this paper, we
study how machine learning techniques can be used to classify an issue report as a
bug or a non-bug automatically. One simple way to distinguish between these two
kinds of requests is to look for the text patterns in them. Certain words that describe
errors or failures in the software are more common in descriptions that truly report a
bug. This suggests that supervised learning techniques like classification can be
used. A classifier is initially trained using the data of an issue tracker and subse-
quently used to label a new issue report.

Contribution: We use a collection of issue reports from the open-source pro-
jects HttpClient [4] and Lucene [5] as present in the issue tracker JIRA [2]. Only
summary part of each report is parsed and used. We study the performance of
various classifiers on these issue summaries. More specifically, we apply naive
Bayes (NB) classifier, support vector machine (SVM), logistic regression (LR) and
linear discriminant analysis (LDA) separately for classification and evaluate their
relative performance in terms of precision, recall, F-measure and accuracy. In an
attempt to find the best classifier, we observe that, in terms of F-measure, SVM
followed by NB performs significantly better than other classifiers for both
HttpClient and Lucene projects. The classification accuracies obtained by NB and
SVM are also better than those of other classifiers for each project. For each of F-
measure and accuracy, the values for NB and SVM are close to each other. Hence,
NB or SVM appears to be a better choice compared to other classifiers for auto-
matic issue report classification.

Roadmap: A brief background of the current research is provided in Sect. 2.
Related work is reported in Sect. 3. Our proposed approach is outlined in Sect. 4,
while Sect. 5 describes the experiments, results and threats to validity of the results.
The conclusion appears in Sect. 6.



Automated Classification of Issue Reports ... 425

2 Background

Software issue reports capture crucial information about the problem faced by the
user who filed the report. A host of issue tracking tools is available, each with
varying degrees of sophistication in recording the issue filed. The variations occur
in the number of fields that the user needs to fill into the number of stages that the
issue goes through before it is declared closed. Note that closing could refer to
either fixing the issue or declaring it as void (i.e., invalid). We used issue reports
from the issue tracking tool JIRA [2]. An issue in JIRA could report a host of
different things like bug, maintenance, improvement, document update, code
refactoring. In our discussion we will categorize reports into two classes: bug and
non-bug (note: we use non-bugs to refer to all reports that are not categorized
as bug in JIRA). We use supervised learning tools [6] to automatically segregate
the reports into these two categories. Supervised learning involves two steps:
(1) training a classifier using labeled samples and (2) classifying an unknown test
case after it is trained. We use four kinds of supervised learning algorithms:
(1) naive Bayes (NB) classifier, (2) support vector machine (SVM), (3) logistic
regression (LR) and (4) linear discriminant analysis (LDA).

3 Related Work

Analysis of software issue reports submitted to issue tracking tools is a common
research area due to its applications in triaging issue reports [7], grouping bugs into
different types, estimating issue resolution time and providing feedback on the
quality of reports. The extent and cost of misclassification are studied in [8].
Researchers have suggested various methods to automatically classify the reports so
that even if the original issue type reported by the user is incorrect, the right type
can be inferred and used for further analysis by application engineers. Antoniol
et al. [9] manually classified 1800 issues collected from issue trackers of Mozilla,
Eclipse and JBoss projects into two classes: bug and non-bug. They investigated the
use of various information contained in the issue reports for the classification. They
also performed automatic classification of (a smaller subset of) issue reports using
naive Bayes, ADTree and linear logistic regression classifiers. Recently, Ohira et al.
[10] manually reviewed 4000 issue reports in JIRA from four open-source projects
and manually classified them based on their impact (e.g., security bug, performance
bug) on the project. Pingclasai, Hata and Matsumoto [11] reported results of
automated bug report classification done with topic modeling (using latent
Dirichlet allocation) followed by application of one of the three techniques—
ADTree, naive Bayes classifier and logistic regression—on the issue repositories of
three open-source projects. Chawla and Singh [12] proposed a fuzzy logic-based
technique to classify issue reports automatically. They have reported higher values
of F-measure compared to [11] for each of the same three projects. However, [12]



426 N. Pandey et al.

used a smaller dataset; so one might wonder whether the results would hold when
the repository is much larger. Wu et al. [13] developed the BugMiner tool that uses
data mining on historical bug databases to derive valuable information that may be
used to improve the quality of the reports as well as detect duplicate reports. Zhou
et al. [14] employed text mining followed by data mining techniques to classify bug
reports. Like the preceding works, we too study automatic classification of issue
reports but use a partially different collection of classifiers (e.g., SVM and LDA are
added). However, we do not use topic modeling but a simple term—frequency
matrix as an input to the classifiers. We use the highly reliable R [15] environment
for experiments. We attempt to identify the classifiers that can be used with sat-
isfactory performance.

4 Our Approach

We now describe the approach to classify the unseen reports into their belong-
ingness. The approach is shown schematically in Fig. 1. The issue reports are first
parsed, and only the summary from each report is taken. The body of the report as
well as other details like heading, ID, category, description are ignored since it is
time-consuming to process them and is usually not found to be of added value to
classification [9]. The summary is then preprocessed: common words and stop
words are removed from each summary, each word is stemmed and tokenized into
terms, and finally the frequency of each term is computed to create the term—
frequency matrix (tfin) for each report. As argued in [9], tfm is probably better
suited compared to #f-idf (term frequency—inverse document frequency) indexing
for software issue classification. Note that we remove terms with frequency lower
than a threshold. The preprocessed reports (or alternatively, the #fin) are divided into
training and testing sets. The training set is used to train the classifier, while the
testing set is used to study how well—with respect to chosen metrics—the classifier
performs the task of classification.

Bug Report Parsed SM Pre-proces§ing & >
stemming
(Removal of stop w
words, preposition,

number etc.)

Classifiers

A
I<-

— Data Flow Labelled I

Machine Learning

Fig. 1 Proposed approach for issue classification



Automated Classification of Issue Reports ... 427

5 Experiments, Results and Discussion

We use a subset of manually classified issue reports from HttpClient [4] and Lucene
[5] projects as provided by [8]. The issue reports were, in turn, extracted from JIRA
by researchers [8]. Only the summary part of the reports is taken into consideration
for classification. The count of reports used is shown in Table 1.

For each project, we randomly partition the dataset into two subsets for training
and testing, respectively, in the ratio 80:20. Only report summary is used for
processing. The classifiers are trained first. In the testing phase, each issue report is
first preprocessed just like we do in the training phase so that we have only unique
terms in the datasets now. These preprocessed datasets are then given to the clas-
sifiers to assign labels. The classifier uses past knowledge (i.e., of training phase) to
find the belongingness of the reports. The experiments for each project are con-
ducted ten times, each time with a random 80:20 partition to compute the param-
eters of interest (as explained in the next subsection), and their average values are
reported.

We use the R [15] language and environment to perform the experiments. We
used R version 3.2.1 which contains implementations of the classifiers NB, SVM,
LR and LDA.

5.1 Performance Measures

To measure the performance of the classifiers, we use the metrics: precision, recall,
F-measure and accuracy. Before we define them, we look at four important
quantities that measure how the classifier classified the test inputs as belonging to or
not belonging to the (positive) class bug.

1. True positive (TP): number of reports correctly labeled as belonging to the class.

2. True negative (TN): number of reports correctly rejected from the class.

3. False positive (FP): number of reports incorrectly labeled as belonging to the
class.

4. False negative (FN): number of reports incorrectly rejected from the class.

The entries of the confusion matrix, in terms of the above vocabulary, are
indicated in Table 2.

Using the measurements and the following formulae, we calculate precision,
recall, F-measure and accuracy.

Table 1 Projects and their

h Project name #Total reports #Bug #Non-bug
issue reports

HttpClient 500 311 189
Lucene 253 110 143




428 N. Pandey et al.

Table 2 Confusion matrix of Results of classifier

lassifi
crasster Bug Non-bug
True classification Bug TP FN
Non-bug FP TN

(a) Precision: It is the ratio of the number of true positives to the total number of
reports labeled by the classifier as belonging to the positive class.

TP
TP+FP

(1)

precision =

(b) Recall: It is the ratio of the number of true positives to the total number of
reports that actually belong to the positive class.

TP
recall= ———— (2)
TP+ FN
(c) F-measure: It is the harmonic mean of precision and recall.
Feax prectjst:on X recall 3)
precision + recall

(d) Accuracy: It measures how correctly the classifier labeled the records.

TP+ TN @)
VA =
Y = TP Y FP+ FN + IN

5.2 Results and Discussion

We classity the issue reports on HttpClient and Lucene in JIRA as bug or non-bug,
i.e., we perform binary classification. The performance of each classifier in terms of
the above metrics for each project is given in Tables 3 and 4. The highest and

Table 3 Precision, recall, F-measure and accuracy for NB, SVM, LR and LDA on HttpClient
project

NB SVM LR LDA
Precision 0.752658 0.736468 0.676794 0.709587
Recall 0.802054 0.843185 0.599136 0.692016
F-measure 0.775167 0.784175 0.633574 0.699153
Accuracy 0.714 0.711788 0.564 0.621396




Automated Classification of Issue Reports ... 429

Table 4 Precision, recall, F-measure and accuracy for NB, SVM, LR and LDA on Lucene project

NB SVM LR LDA
Precision 0.771069 0.811171 0.476134 0.504317
Recall 0.51246 0.538948 0.541953 0.510138
F-measure 0.612841 0.640172 0.500015 0.503319
Accuracy 0.721569 0.719608 0.560785 0.568627

second highest values of each metric are highlighted for each project. In case of
HttpClient, SVM performs best while NB is the second best in terms of precision,
recall and F-measure. The performance of the other classifiers is far worse. Highest
accuracy is provided by NB in classification of HttpClient reports with SVM at the
second position. For Lucene, in terms of precision and F-measure, SVM again
performs best while NB is second best. LR, however, gives the highest recall value
in case of Lucene. The highest accuracy is again achieved by the NB classifier,
while SVM is behind by a small margin. Overall, both SVM and NB perform very
well for each project.

5.3 Threats to Validity

The results obtained in this paper are sensitive to the choice of the datasets. In
particular, if the datasets are changed, the outcomes, i.e., precision, recall, F-
measure and accuracy, may change. The datasets we used are small, and hence, the
results might not be reflective of the outcome for a larger sample. We used data
from only two open-source projects. The results may be different for other projects.

6 Conclusion

We used four classifiers, namely NB, SVM, LR and LDA, to classify issue reports
into bug and non-bug categories. The experiments were conducted using issue
reports of the projects HttpClient and Lucene from the JIRA issue tracker. In terms
of F-measure, SVM followed by NB performs significantly better than other
classifiers for HttpClient and Lucene. The classification accuracies obtained using
NB and SVM are comparable. They are far better than those of other classifiers for
each project. Hence, NB or SVM appears to be a good choice for automatic issue
report classification. Since the datasets are not quite large and belong to only two
projects, we refrain from making general comments on the exact numerical results.
Implementations of NB and SVM are widely available. Our results suggest it might



430 N. Pandey et al.

be profitable to classify the reports using these classifiers before further analysis by
developers or managers. In future, we plan to use other classifiers including
ensemble classifiers and expand the dataset to larger number of reports and projects.

References

. https://www.gnu.org/software/gnats/.

. https://www.atlassian.com/software/jira.

. https://www.bugzilla.org/.

. https://hc.apache.org/httpclient-3.x/.

. https://lucene.apache.org/.

. F. Sebastiani. Machine learning in automated text categorization. ACM Computing Surveys

(CSUR) 34.1:1-47, 2002.

7. D. Cubrani¢. Automatic bug triage using text categorization. In Proceedings of the 16th
International Conference on Software Engineering & Knowledge Engineering (SEKE’2004),
2004.

8. K. Herzig, S. Just, and A. Zeller. It’s not a bug, it’s a feature: How Misclassification Impacts
Bug Prediction. In Proceedings of the 35th IEEE/ACM International Conference on Software
Engineering, 2013.

9. G. Antoniol, et al. Is it a bug or an enhancement? A text-based approach to classify change
requests. In Proceedings of the 2008 Conference of the Center for Advanced Studies on
Collaborative Research: Meeting of Minds (CASCON’2008), ACM, 2008.

10. M. Ohira, et al. A dataset of high impact bugs: manually-classified issue reports. In
Proceedings of the IEEE/ACM 12th Working Conference on Mining Software Repositories
(MSR’2015), 2015.

11. N. Pingclasai, H. Hata, K. Matsumoto. Classifying bug reports to bugs and other requests
using topic modeling. In Proceedings of 20th Asia-Pacific Software Engineering Conference
(APSEC’2013), 1IEEE, 2013.

12. I. Chawla, S. K. Singh. An automated approach for bug classification using fuzzy logic. In
Proceedings of the 8th ACM India Software Engineering Conference (ISEC’2015), 2015.

13. L. L. Wu, B. Xie, G. E. Kaiser, R. Passonneau. BugMiner: software reliability analysis via
Data Mining of Bug Reports. In Proceedings of the 23rd International Conference on
Software Engineering & Knowledge Engineering (SEKE’2011), 2011.

14. Y. Zhou, Y. Tong, R. Gu, H. Gall. Combining text mining and data Mining for bug report
classification. In Proceedings of 30th IEEE International Conference on Software Mainte-
nance and Evolution (ICSME’2014), 2014.

15. https://www.r-project.org/about.html.

AN BN =


https://www.gnu.org/software/gnats/
https://www.atlassian.com/software/jira
https://www.bugzilla.org/
https://hc.apache.org/httpclient-3.x/
https://lucene.apache.org/
https://www.r-project.org/about.html

	42 Automated Classification of Issue Reports from a Software Issue Tracker
	Abstract
	1 Introduction
	2 Background
	3 Related Work
	4 Our Approach
	5 Experiments, Results and Discussion
	5.1 Performance Measures
	5.2 Results and Discussion
	5.3 Threats to Validity

	6 Conclusion
	References


