
Device Fragmentation: A Case Study
using “NeSen”

Rakesh Kumar Mishra, Rashmikiran Pandey, Sankhayan Choudhury
and Nabendu Chaki

Abstract Remote and eHealthcare Systems are designed to provide healthcare solu-

tions catering to wide variety of requirements ranging from highly personalized to

domain-specific systems. Often, a smartphone is used as an aid to port data from

embedded or external sensors to remote repository. A majority of smartphones are

equipped with multiple network interfaces including provisions for dual subscriber

identity modules (SIMs) and a variant of Android as the operating system. Android

being an open source system allows customization by the vendor or chipset manufac-

turer. This raises a serious concern in terms of fragmentation—a form of portability

issue with application deployment. For example, App developed on API 16 from

MediaTek behaves or crashes over a phone of API 16 from QualComm. We have

developed a mobile App called “NeSen” to assess the parameters of all prevalent

networks in an area. NeSen uses only the standardized telephony framework and is

tried over various smartphones from vendors including Samsung, HTC, LG, iBall,

Lava, Micromax, Karbonn, Xiaomi, and Gionee having chipset from MediaTek,

QualComm, SpreadTrum, and BroadComm. In this paper, using NeSen, we have

conducted first ever evaluation of fragmentation in Android’s basic framework. Dur-

ing experimental trails, several issues concerning device fragmentation are noted.

Keywords Fragmentation ⋅ NeSen ⋅ Android ⋅ Network parameters ⋅ RHM

systems

R.K. Mishra (✉) ⋅ R. Pandey

Feroze Gandhi Institute of Engineering & Technology, Raebareli, Uttar Pradesh, India

e-mail: rakesh.mishra.rbl@gmail.com

R. Pandey

e-mail: rashmikiran@hotmail.com

S. Choudhury ⋅ N. Chaki

Deparment of Computer Science & Engineering, University of Calcutta, Kolkata, West Bengal,

India

e-mail: sankhyan@gmail.com

N. Chaki

e-mail: nabendu@ieee.org

© Springer Nature Singapore Pte Ltd. 2018

P.K. Sa et al. (eds.), Progress in Intelligent Computing Techniques: Theory,
Practice, and Applications, Advances in Intelligent Systems and Computing 518,

DOI 10.1007/978-981-10-3373-5_41

411

412 R.K. Mishra et al.

1 Introduction

Android is an open source and customizable operating system allowing the man-

ufactures to modify the core libraries of Android. These modifications in Android

OS raise a serious concern in the form of fragmentation, i.e., inability of a code to

exhibit the homogeneous behavior in different Android platforms. Android compati-

bility definition document (CDD) [1] provides certain standards and policies to avoid

the fragmentation issues. CDD is able to control fragmentation to some extent but

failed to evade completely. Manufactures are also twisting basic essence of CDD in

several forms. This has been exposed while deploying NeSen among various smart-

phones from different vendors. Fragmentation is continually reported as a serious

concern for the App development community [2].

1.1 TelephonyManager Framework

Android provides an informative manager class that supplies information about

telephony-related operations and details on the device. An application interacts with

the TelephonyManager framework of the Android. The TelephonyManager frame-

work is direct reflection of native telephony manager in radio interface layer (RIL).

There is a mapping between the application framework and native TelephonyMan-

ager. Native TelephonyManager opens connection with RIL daemon and extending

the connection down to kernel drivers.

TelephonyManager Application Framework is supposed to make the platform-

specific variations transparent to the overlying application. The native Telephony-

Manager is a platform-dependent component and parts of it will have to be adjusted

to work with the potentially proprietary vendor radio interface layer (RIL). Figure 1

contains a graphical representation of the various blocks that compose the tele-

phony component. The RIL interactions start right above the baseband, which is

the firmware-specific platform to perform various cellular communication-related

actions such as dialing numbers, hanging up calls, and accepting calls, and per-

form the callbacks thereupon. On the other side, the Android package com.android.

internal.telephony contains various classes dealing with controlling the phone.

The android.telephony package contains the TelephonyManager class which pro-

vides details about the phone status and telephony-related data. TelephonyManager

can be used to access phone properties and obtain phone network state information.

PhoneStateListener—an event listener—may be attached to the manager enabling

an application to get aware of when the phone gain and lose service, and when calls

start, continue, or end [13].

Device Fragmentation: A Case Study using “NeSen” 413

Fig. 1 Radio interface layer

and TelephonyManager [3]

1.2 NeSen-The App

“NeSen” App [4] is developed to assess and record network parameters such as bit

error rate (BER), signal strength, cell stability, and service connectivity. All above

attributes are usually referred as performance quality parameters. NeSen is a service

augmenting RHM (Remote Healthcare Monitoring) system with the capabilities of

assured quality-based connection. The targeted service is supposed to harness the

availability of best cellular network with dual SIM smartphones.

Vendors refer to the product marketing companies of the devices such as Sam-

sung, Micromax, Sony, and Lava, while the manufactures refer to the companies

which manufacture mobile chipsets such as MediaTek and QualComm. To further

investigate the issues, another App is designed and deployed for introspecting tele-

phony framework of each phone. The App is designed to reveal the information

such as manufactures, vendor, Build version, model no, device id, and radio ver-

sion. This information is extracted through Build class within the Android basic

framework. It has been seen that different manufactures and vendor’s ported their

arbitrary information-defined formats. It is directly written in Android compatibility

document [1] that such information has to be presented in homogeneous manner and

is presently violated by the vendors/manufactures of mobile phone.

In one of the recent works [5], possible heterogeneities with the TelephonyMan-

ager framework of Android are discussed. Here, a first of a kind case study is pre-

sented to expose the fragmentation within the basic framework. Fragmentation is

predominantly identified as API fragmentation under device fragmentation category.

Lack of Google specification for dual SIM telephony framework is often considered

as the major cause behind fragmentation. This has been handled by various tech-

niques including introspection as illustrated in Table 1.

The paper is organized as follows: Related work is described in Sect. 2 and API

Fragmentation manifested with NeSen is detailed in Sect. 3, while discussion with

conclusions is presented in Sect. 4.

414 R.K. Mishra et al.

Table 1 Configuration of equipment

Manufacturer API level Approach for adaptation Vendor of

product

Remarks

MediaTek 16–20 SDK based iBall, Lava,

Gionee

BER is

captured as

−1 till API

17 and

thereafter as

99

QualComm 15–16 Service call for instantiation and

introspectation for invocation

Samsung,

Karbonn,

LG, Xiaomi

–

SpreadTrum 19 Introspection for both instantiation

and invocation

Karbonn,

Intex

–

BroadComm,

QualComm

19 Introspection of fields for

instantiation and invocation

Micromax,

Xiaomi

Unusual

approach but

worked

QualComm 18 Service call for instantiation and

introspection for invocation with

different names

HTC –

2 Related Work

A learning-based energy-efficient approach is implemented using Android App in

[6] for network selection. The algorithm primarily focuses over lower power con-

sumption and high quality of services using parameters such as network availability,

signal strength of available networks, data size, residual battery life, velocity, loca-

tion of users, and type of application. Battery life, location, and application type are

used to determine optimal performing network based on certain predefined rules.

App-based monitoring of the network is implemented in [7]. This reports the net-

work parameters perceived by the user equipment to the network-side entity for QoE

assessment.

Authors in [8] have detailed the causes of fragmentation. Two vendors, i.e., HTC

and Motorola, have been chosen here to analyze the bug reports. Bug reports sub-

mitted by Android users help to identify fragmentation. Topic analysis methods have

been used to extract the set of topics from the bug reports. Two topic analysis meth-

ods opted for fragmentation analysis are Labeled Latent Drichlet Allocation (Labeled

LDA) and LDA. Topics extracted from the Labeled LDA and LDA are compared to

find out the unique bug report topics, and these topics manifest the fragmentation.

Park et al. [9] proposed two methods to detect the fragmentation problem in

Android. The methods used are code-level check and device-level test. Code-level

checking method analyzes the code and finds out the part of code where the fragmen-

tation occurs by converting code into itemized values. The itemized values are then

mapped on predefined set of rules to correct the code accordingly. Code-level check

Device Fragmentation: A Case Study using “NeSen” 415

methods are generally dealt with the hardware fragmentation. Other method is used

to analyze the fragmentation at API level. The method collects the test results of APIs

and store in the database along with the functions of APIs. Then, these two methods

compare the API’s functions used by developer with the corresponding functions

stored in the database and find the fragmentation.

In [10], a behavior-based portability analysis methodology is proposed to over-

come the problems of portability issues in Android. The methodology lets the devel-

oper to extract the ideal behavior of application to compare it with similarity in appli-

cation flows. The entire analysis includes behavior extraction, test execution, and log

analysis to identify ideal pattern of App operation flow.

In another work [11], focus is on the change and fault proneness of underlying

API. Two case studies are planned: First case study orients toward the change of

user ratings in Google Play Store, while the second study emphasizes on experience

and problems faced by Android developers and their feedbacks affecting the user

ratings. Among the techniques discussed so far, work in [9] is very close and seems

to be appropriate for identifying and locating the fragmentation issues of NeSen, but

the technique relies on the list-based approach. In case of NeSen, this is not possible

because the TelephonyManager is exhibiting valid results as expected from the sin-

gle SIM phone telephony framework. There is no specification at Google repository

for the dual SIM telephony framework. Thus, a list for mapping cannot be prepared.

Further, customizations from manufacturers resulted in non-standardized nomencla-

ture of the public interfaces. Hence, a generic list cannot also be prepared even after

introspection. A case study-based approach using NeSen for fragmentation with tele-

phony framework is conducted below.

3 Device Fragmentations: API Fragmentation with NeSen

Android is an open source readily available Linux-based operating system. On the

one hand, openness of Android allows customizing the framework, keeping the basic

library intact; on the other hand, a vendor opts Android to cut down the cost of the

products.

NeSen [4] is an Android-based tool incorporated at the Mobile Terminal (MT)

which is capable of assessing both static and dynamic network parameters of the

smartphone. The real-time values of these parameters are logged at the file system

of the MT. The customization from the manufactures of the different vendors posed

NeSen a serious challenge of portability among the smartphones from different ven-

dors as well as to different APIs of the same vendors. Fragmentation is the one of the

major reason why Android Apps misbehaves and shows inconsistency in the func-

tioning [8].

This flexibility to customize the APIs results into differences within existent

framework from different manufacturer as well as platforms from same manu-

facturer with different APIs. The fragmentation is categorized in two types, viz.

operating system (OS) fragmentation and device fragmentation [9]. Device-level

416 R.K. Mishra et al.

fragmentation happens because of the difference in design of underlying hardware

of phones as well as customization of the APIs by the manufacturers. Device-level

fragmentation is further classified into hardware-level fragmentation and API-level

fragmentation. NeSen exhibited device-level fragmentation, particularly API-level

fragmentation.

Initially, NeSen was tried on Samsung and Karbonn smartphones with Qual-

Comm chipset and Android API 15/16. The objects were instantiated through service

instance invocation method with service name as parameter. The telephony objects

thus created were given independent state listeners, and the data is logged in different

files storing values of signal strength received, bit error rate, cell identity, location

area code, etc. The list of phones tested with the first version is in Table 2.

NeSen is tested over different vendors and manufacturer of smartphone and has

the manifestation of fragmentation. Fragmentation is observed during testing of App

over several manufactures as well as API levels. Figure 2 illustrates the success and

failure experience with NeSen’s basic version over different phones. NeSen’s ini-

tial version is tested with API 15–21, phones of 11 vendors and 4 manufacturers.

NeSen is successfully installed over some phones, while on others, it is either com-

pletely failed or only GUI appeared. NeSen’s reasons for the unsuccessful run or

failed installation are identified as object instantiation failure, method invocation

Table 2 List of vendors and

manufactures used for NeSen
Chipset manufacturer Example

MediaTek iBall, Lava, Gionee

QualComm Samsung, Karbonn, LG,

Xiaomi

SpreadTrum Karbonn, Intex

BroadComm Micromax, Xiaomi

Fig. 2 Fragmentation posed to NeSen

Device Fragmentation: A Case Study using “NeSen” 417

Fig. 3 Different types of fragmentation seen with NeSen

failure and event error. Certain worth mentioning failures of NeSen with different

manufacturers are on account of change in the API level which elucidates in Fig. 3.

Methodology opted for the purpose was to perform introspection for each smart-

phone’s library framework. Introspection of phone telephony framework reveals sev-

eral challenges for NeSen with respect to object instantiation, method invocation, and

listeners assignment.

3.1 Library Manifestation

Resources claimed that there is a gap in the Android library specifications and under-

lined hardware of the smartphones, hence raising the serious compatibility issues

[12]. Hardware enhancements usually do not have direct support from standard

library, thereby exposing the scope for the customization of Android platform by

the manufacturer.

Similar instance has been observed with NeSen over several smartphones plat-

form. Generally, as per the standard specification of Android, TelephonyManager

class can be instantiated by system service invocation method with service kind

literal as a parameter. This does not work for NeSen trails beyond basic platform.

Meanwhile, the crucial points observed are like even a class of Android. That is,

TelephonyManager has its four variants. These four variants of the class implied to

their corresponding smartphone manufactures. These are being used by the different

manufactures as listed in Table 3. Library has been incorporated into the framework

in four different variants by the manufactures.

418 R.K. Mishra et al.

Table 3 TelephonyManager

class variants
Chipset manufacturer TelephonyManager class

MediaTek TelephonyManagerEx

(through SDK)

QualComm TelephonyManager,

MSimTelephonyManager,

MultiSimTelephonyManager

SpreadTrum TelephonyManager

BroadComm TelephonyManager

3.2 Object Instantiation

Instantiation of object for NeSen require several specific ways as per their library and

underlined hardware. Each manufactures force to dig out its way of object instantia-

tion. This process makes the App development more chaotic as well as time taken.

In case of NeSen, there are five different ways of instantiation were identified where

each is unique to the specific API and manufacture. These are listed as in Table 4.

A few of the manufacturers such as MediaTek provided their own SDK (Software

Development Kit) framework which is freely available to be integrated with IDE,

while the rest of the manufactures as well as vendors does not provide any such SDK.

Standard Android framework library documentation is not sufficient to explore the

dedicated framework libraries from different manufactures. The identification of a

mechanism for instantiation of objects, for different manufactures except MediaTek,

was really a thought-provoking, time-taking, and investigative task. Each smart-

phones’ library needs to be introspected for the purpose, and each alternative is to

be explored for method invocations and listener binding.

Table 4 Object instantiation

mechanism
Chipset manufacturer Instantiation mechanism

MediaTek getSystemServices()

QualComm TelephonyManager, static

method from(), static fields

instance instantiation

through introspection

SpreadTrum Instantiation through

introspection

BroadComm TelephonyManager

Device Fragmentation: A Case Study using “NeSen” 419

3.3 Method Invocation

All the smartphones enlisted here are explored deeply with the help of introspection

to investigate the methods of particular class. Generally, all the required methods

are present in the library, but they are also overridden or renamed in some forms.

NeSen study reveals that though all the methods are present still, we need to dig

out them as per the requirement. Methods are renamed by extending the standard

method name of with word such as “Gemini.” For example, getNetworkOperator() is

renamed as getNetworkOperatorGemini(), etc. It is also observed that in some cases,

few of the methods generate ambiguous or erroneous results which cannot be directly

applied for NeSen. Another way to invoke such methods is through introspection

of the library for the corresponding method variants and identifying the suitable

candidates for the purpose.

3.4 Listener Assignment

Listener object is bound to the class object to listen the events and reciprocate with

action. The required listener binding method for the NeSen was found in the library

in three different variants with no particular trends of APIs and manufactures. An

introspection of the library is required to choose the corresponding method for the

listener accordingly. The listener binding method is found to have changed name

and/or parameters; e.g., the listen method in standard framework has PhoneStateLis-

tener and an integer as parameter. The original version is sometime complimented

with listenGemini method with one additional integer parameter in some libraries.

In other cases, the name remains the same, but signature becomes like that of lis-

tenGemini.

3.5 Data Logs and Event Triggers

During data recording by NeSen, it was observed that BER reported by event listener

in smartphone manufactured by MediaTek was incorrect as that was not similar to

values in other smartphones. Parameters taken into account for comparison are oper-

ator name, time and LAC were same. MediaTek SDK is providing suspicious value

for BER, while all others are as per expectation during comparison. Valid values for

the BER are [0–7, 99] as in [13]. BER of −1 is reported when phone is in “out-of-

service” state. One of the Sony smartphones deployed with NeSen is failed to provide

CID/LAC for second interface.

Its exclusive problem observed with MediaTek smartphones, wherein the null

object is being thrown by the event monitor for the listener. The problem is removed

when the empty SIM slot of the smartphone is provided with the SIM. This problem

420 R.K. Mishra et al.

is not manifested with the smartphones of the other manufactures such as Qual-

Comm, SpreadTrum, and BroadComm. In these smartphones, events for individual

interfaces are generated mutually independently. This affects cost in terms of efforts

to understand and debug the problem.

4 Conclusions

Generally, most of the RHM systems require some network access and exploit all

possible communication interfaces for extending communication capability with

assured reliability of the data communication. NeSen is developed for this very pur-

pose. Majority, i.e., 86%, of Android developer are considering fragmentation for

rise in the cost of development [14]. Google initiatives such as Android Source Code,

Compatibility Definition Code, and Compatibility Test Suite are existing to tackle the

issue; however, such initiatives are far away from resolving the fragmentation prob-

lems of the domain [9]. Android compatibility document classifies the customization

restrictions into MUST, REQUIRED, OPTIONAL, SHALL, SHOULD, and REC-

OMMENDED for ensuring the compatibility [1]. During the course of tackling the

deployment issues with NeSen, we have encountered issues such as erratic exhibi-

tion of the BER value by different phone of same vendors, cell_id undetected in

Sony phone C2004, and different hardware and device information by two phones

with SpreadTrum chips.

In our endeavor to resolve the reported fragmentation, another tool called “Intros”

reveals the platform information using the Build class. The App itself faces the chal-

lenges of fragmentation. This is an opinion that fragmentation is appearing on the

account of the lack of specification for API by Google itself for multi-SIM phones

and strict binding over the semantic meaning of information from vendors and man-

ufactures of the phones.

References

1. Android Compatibility Definition Document: http://static.googleusercontent.com/media/

source.android.com/en//compatibility/android-cdd.pdf. (Accessed on Oct, 2015).

2. Malavolta, I., Ruberto, S., Soru T., Teragani, V.: Hybrid Mobile Apps in Google play Store: An

Exploratory Investigation. In: 2nd ACM International conference on Mobile Software Engi-

neering (MOBILESoft). pp. 56–59 (2015).

3. http://www.nextinnovation.org/doku.php?id=android_ril. (Accessed on Jan, 2016).

4. Mishra, R. K., Pandey, R., Chaki, N., Choudhury, S.: “NeSen” -a tool for measuring link quality

and stability of heterogenous cellular network. In: IEEE International Conference on Advanced

Networks and Telecommuncations Systems (ANTS). pp. 1–6. IEEE (2015).

5. http://www.ltfe.org/objave/mobile-network-measurements-using-android/. (Accessed on Jan,

2016).

http://static.googleusercontent.com/media/source.android.com/en//compatibility/android-cdd.pdf
http://static.googleusercontent.com/media/source.android.com/en//compatibility/android-cdd.pdf
http://www.nextinnovation.org/doku.php?id=android_ril
http://www.ltfe.org/objave/mobile-network-measurements-using-android/

Device Fragmentation: A Case Study using “NeSen” 421

6. Abbas, N., Taleb, S., Hajj, H., Dawy, Z.: A learning-based approach for network selection in

WLAN/3G heterogeneous network. In: Third International Conference on Communications

and Information Technology (ICCIT). pp. 309–313. IEEE (2013).

7. Poncela, J., Gomez, G., Hierrezuelo, A., Lopez-Martinez, F. J., Aamir, M.: Quality assess-

ment in 3G/4G wireless networks. In: Wireless Personal Communications, 76(3), pp. 363–377

(2014).

8. Han, D., Zhang, C., Fan, X., Hindle, A., Wong, K., Stroulia, E.: Understanding android frag-

mentation with topic analysis of vendor-specific bugs. In: 19th Working Conference on Reverse

Engineering (WCRE). pp. 83–92. IEEE (2012).

9. Park, J. H., Park, Y. B., Ham, H. K.: Fragmentation Problem in Android. In: International

Conference on Information Science and Applications (ICISA). pp. 1–2 (2013).

10. Shin, W., Park, D. H., Kim, T. W., Chang, C. H.: Behavior-based portability analysis methodol-

ogy for Android applications. In: 5th IEEE International Conference on Software Engineering

and Service Science (ICSESS). pp. 714–717. IEEE (2014).

11. Bavota G, Linares Vasquez M: The Impact of API Change- and Fault-Proneness on the User

Ratings of Android Apps. In: IEEE Transaction on Software Engineering. vol. 41(4). pp. 384–

407 (2015).

12. SushrutPadhye: https://dzone.com/articles/major-drawbacks-android. (Accessed on Sep,

2015).

13. Signal Strength in Android Developer: http://developer.android.com/reference/android/

telephony/SignalStrength.html. (Accessed on Sep, 2015).

14. W. Powers: Q1’11 - Do you view Android Fragmentation as a Problem? Baird Research (2011).

15. http://marek.piasecki.staff.iiar.pwr.wroc.pl/dydaktyka/mc_2014/readings/Chapter_7_

Telephony_API.pdf. (Accessed on Jan, 2016).

https://dzone.com/articles/major-drawbacks-android
http://developer.android.com/reference/android/telephony/SignalStrength.html
http://developer.android.com/reference/android/telephony/SignalStrength.html
http://marek.piasecki.staff.iiar.pwr.wroc.pl/dydaktyka/mc_2014/readings/Chapter_7_Telephony_API.pdf
http://marek.piasecki.staff.iiar.pwr.wroc.pl/dydaktyka/mc_2014/readings/Chapter_7_Telephony_API.pdf

	Device Fragmentation: A Case Study using ``NeSen''
	1 Introduction
	1.1 TelephonyManager Framework
	1.2 NeSen-The App

	2 Related Work
	3 Device Fragmentations: API Fragmentation with NeSen
	3.1 Library Manifestation
	3.2 Object Instantiation
	3.3 Method Invocation
	3.4 Listener Assignment
	3.5 Data Logs and Event Triggers

	4 Conclusions
	References

