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Abstract A novel data compression perspective is explored in this paper and focus

is given on a new text compression algorithm based on clustering technique in Data

Mining. Huffman encoding is enhanced through clustering, a non-trivial phase in the

field of Data Mining for lossless text compression. The seminal hierarchical cluster-

ing technique has been modified in such a way that optimal number of words (pat-

terns which are sequence of characters with a space as suffix) are obtained. These

patterns are employed in the encoding process of our algorithm instead of single

character-based code assignment approach of conventional Huffman encoding. Our

approach is built on an efficient cosine similarity measure, which maximizes the

compression ratio. Simulation of our proposed technique over benchmark corpus

clearly shows the gain in compression ratio and time of our proposed work in rela-

tion to conventional Huffman encoding.
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1 Introduction

With the advent of the WWW, the need for transmission and storage of large amount

of data has increased. To transmit large data in the form of text, images, videos, etc.

over network channels and to reduce the storage space occupied, data compression

techniques are of immense need. Since data in the machine is stored and transmitted

in the form of bits and the technique where the number of bits is reduced to store the

data is termed as compression, types of compression include lossy or lossless [1].

Lossy compression reduces the size by removing irrelevancy in addition to redun-

dancy. It produces better compression than lossless technique at the cost of reduction

in quality to level which is not visually perceptible. Some of them are JPEG, MP3,

MPEG, PGF, etc. The process of reconstructing original data from compressed data

is termed as lossless compression, and some of them are discussed in Sect. 2 [1].

This paper concentrates on bringing an efficient version of Huffman encoding

which is one of the seminal algorithm and is a lossless compression technique [2].

Some commercial solutions use it as an intermediary phase and the codes are prefix

free. For lossless compression techniques, many models based on statistical, sliding

window, and dictionary have been proposed. A huge memory space to store the dic-

tionary data structure, where a large static collection of words is involved, forms the

major disadvantage of these models. Almost all of these algorithms employ charac-

ter/pattern (sequence of characters)-based encoding [1].

Induction, compression, approximation, search, and querying were the five per-

spectives of Data Mining identified by Naren Ramakrishnan et al. [3]. The scope of

Data Mining in the domain of data compression is explored in our work. Data Mining

is the process of extracting hidden and useful information from large DB’s [4]. The

condensed/compressed representation of the original large data is the result of the

knowledge (pattern base) represented, when Data Mining is viewed as a compres-

sion technique. Data Mining techniques include ARM, clustering, outlier analysis,

classification. [4, 5]. They are widely applied in personal recommendation systems

such as Amazon and Priority Inbox (Gmail), and Medical Diagnosis. To the best

of our knowledge, no literature exists which uses hierarchical clustering approach

blended with cosine similarity measure to perform text compression. We have used

the concept of hierarchical clustering, an important technique in Data Mining in

combination with lossless compression to group similar words (patterns) of a text for

efficient compression. This work exploits the principle of assigning shorter codes to

frequently occurring words in relation to single character-based approach of Huffman

encoding. Moreover, we concentrate on employing an efficient similarity measure to

improve the intracluster similarity by grouping frequently occurring words for an

efficient compression.

The technique of grouping/clustering a set of data points such that points in the

same group/cluster are highly similar to each other than to those in other clusters is

referred as clustering. Clustering results in high intrasimilarity within the clusters

and less intersimilarity with other clusters. Several similarity measures are used to

cluster the data in the literature [4, 6, 7]. We felt it is better to use cosine similarity
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measure to cluster data and have used agglomerative clustering. The cosine of the

angle AB is the dot product of A and B divided by the product of the lengths of the

vectors A and B [6]. That is, the cosine is,

cos 𝜃 =
∑n

i=1(AiBi)
√∑n

i=1 A
2
i

√∑n
i=1 B

2
i

The similarity obtained, ranges from −1 meaning exactly opposite to 1 meaning

exactly the same where 0 indicates orthogonality (De-correlation) and s indicates

intermediate similarity or dissimilarity where 0 < s < 1. In Sect. 2, we present the

related literature of text compression and hierarchical clustering. We propose the

design of our clustering-based Huffman algorithm approach for text compression in

Sect. 3. In Sect. 4, simulation results are shown. The summary and future work in

Sect. 5 is presented finally.

2 Related Work

The seminal work on text compression was proposed by Shannon Fano and David

A. Huffman in the year 1948 and 1952 [2, 8]. Those were entropy encodings, giv-

ing prefix codes by assigning short codes to frequent characters. Arithmetic encod-

ing, run-length encoding, and adaptive Huffman encoding are a few and they have

their own demerits [9–11]. In sliding window-based techniques like LZ77 family of

algorithms, by employing a dictionary and selecting strings from input data, each

string is encoded as a token. It is not true in all cases that the patterns in the text

occur close together and this assumption is a disadvantage of these methods. Some

of them are LZR, LZHuffman, LZPP, LZX, etc. [1]. Dictionary-based algorithms

such as LZ78, LZW, UNIX Compress, ZIP, and RAR suffer from the limitations of

non-optimal codes. In these algorithms, large dictionaries are created, and hence,

it costs time and memory heavily. In all the above given methods, focus was given

mostly to character-based encoding/sequence of character-based encoding. [12] has

shown that text compression by frequent pattern mining (FPM) technique is better

than conventional Huffman, but time taken to compress is more. Our algorithm takes

lesser time than [12] using efficient clustering mechanism.

A short discussion on data clustering follows. The most well-known partitioning

algorithm is the k-means approach which is good in terms of its simplicity and ease

of implementation. Some of the partitioning algorithms are k-medoids, PAM, and

CLARA [4]. In Hierarchical clustering, each point is taken as its own cluster. Using

one of many definitions of close, clusters are combined based on their closeness [6].

Until all the clusters are merged into one, or a termination condition holds, it succes-

sively merges the clusters close to one another [4]. The advantages of these methods

is the smaller computation costs where combinatorial number of different choices



350 C. Oswald et al.

is not of major concern. AGNES (AGglomerative NESting), BIRCH, and DIANA

(DIvisive ANAlysis) were to name a few [4, 7, 13–15]. A detailed survey can be

seen in [7].

3 Proposed Clustering-Based Huffman Algorithm (CBH)

The input file T with total words W is set to find the number of unique words

w(w ≤ W) and assign a unique Word ID for each unique word. The words are tok-

enized based on the character space. This method of tokenizing has an advantage

of reducing computation that includes newline being computed along with the other

characters. The text file T containing W words is partitioned equally into x partitions.

For every partition pi[1 ≤ i ≤ x], the unique words contained in it are found. A par-

tition frequency vector matrix fp of size x × w is constructed where pi is the partition

and py[1 ≤ y ≤ w] is a unique word id with word y contained in partition px. Let us

consider an example given below.

Text T: where there is a will there is a way
Let us assume x: 4, W: 9, and w: 6 where q1 = where

′ ′
(
′ ′

denotes space), q2 =

there
′ ′

, q3 = is
′ ′

, q4 = a
′ ′

, q5 = will
′ ′

, and q6 = way and number of unique words

in every partition are p1 ∶ 2, p2 ∶ 2, p3 ∶ 2, and p4 ∶ 3.

Partition frequency vector matrix fp =
⎡
⎢
⎢
⎢
⎣

q1 q2 q3 q4 q5 q6
p1 1 1 0 0 0 0
p2 0 0 1 1 0 0
p3 0 1 0 0 1 0
p4 0 0 1 1 0 1

⎤
⎥
⎥
⎥
⎦

These partitions are clustered based on the cosine similarity measure. Initially,

x partitions are the x clusters. The cosine similarity is found between all pairs of

cluster frequency vectors and the pair having maximum similarity is grouped into

a single cluster. In the example, cos(p2, p4) = 0.816497 and cos(p1, p3) = 0.5 and

so Cluster1 contains p1 and p3 and Cluster2 contains p2 and p4. After clustering

the pair, the newly formed vector’s frequency is the sum of frequencies of both the

vectors and this process terminates until 2 clusters are formed. Each of the 2 clusters

that are formed have the frequencies of the unique words w, so that the respective

Huffman codes can be generated individually for each cluster. A cluster frequency

vector fc (now fp is modified to fc, once the clusters are finalized) eliminates those qy′s
where frequency of qy = 0. This forms a modified cluster frequency vector matrix

fcm[m ∈ {1, 2}] with only nonzero frequency in the vector space. The Huffman codes

are now generated for fcm . The entire algorithm is explained in Algorithm 1 and

Procedure 2.
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The purpose of generating Huffman codes for fcm is to minimize the code length

being generated in Huffman algorithm. The Huffman codes for words in cluster c1
are q1 ∶ 10, q2 ∶ 0, and q5 ∶ 11. The Huffman codes for words in Cluster c2 are

q3 ∶ 11, q4 ∶ 0, and q6 ∶ 10. The procedure for generating Huffman codes is same

as conventional Huffman algorithm with the only difference being encoding words

instead of characters. A unique cluster ID corresponding to the cluster is appended,

before encoding every partition to differentiate them from which cluster they come

from. The decoding is done similar to the conventional Huffman decoding with the

difference being, the pattern for the code is taken from the corresponding cluster ID

it is appended to.

fc =
⎡
⎢
⎢
⎣

q1 q2 q3 q4 q5 q6

c1 1 1 0 0 0 0
c24 0 0 2 2 0 1
c3 0 1 0 0 1 0

⎤
⎥
⎥
⎦

Final fc =
[

q1 q2 q3 q4 q5 q6

c13 1 2 0 0 1 0
c24 0 0 2 2 0 1

]

fc1 =
[
q1 q2 q5

c13 1 2 1
]

fc2 =
[
q3 q4 q6

c24 2 2 1
]

fc is the summed up cluster frequency vector matrix; final fc is the final cluster fre-

quency vector matrix; and fc1 and fc2 are modified cluster frequency vector matrices

from which the Huffman codes are generated.

4 Experimental Results

We tested our CBH algorithm over Calgary compression corpus datasets, which is

a benchmark data which involves files in the range 76 kB–10 MB [16]. The method

for CBH algorithm is written in C and executed in Ubuntu on 2:26 GHz machine

with 4 GB memory. Table 1 reports the compression ratio and execution time of the

tested algorithms. Figure 1 shows the efficiency of our algorithm in terms of com-

pression ratio (Cr) of the proposed clustering-based Huffman technique in relation

to conventional Huffman encoding, at varying partition size (x) for census and bible

dataset while partition size is fixed from 2 to 9. The compression ratio Cr is defined

as follows:

Cr =
Uncompressed size of text

Compressed size of text

The code table’s size along with the encoded text size post CBH is denoted by

the compressed size. Our algorithm significantly outperforms the seminal conven-

tional Huffman in compression ratio, with lesser partition size (2 ≤ x ≤ 9). In the

bible and census corpora, the Cr obtained at x = 9 is 2.82932 and 6.40910 whereas

conventional Huffman gave a Cr of 1.82434 and 1.75479 only. This is because, when

partitions in T with high cosine similarity form clusters, it leads to clusters of high

inter similarity measure. This implies that more non-unique words (less % of unique

words) with high frequency exist across clusters, yielding less code table size. More-

over, total number of words W across the final two clusters are unequally distributed.

This leads to almost same code length for words. In our approach, encoded size is
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Fig. 1 Compression ratio

versus x for bible and census
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more than the code table size and this is because of the presence of more non-unique

words, and every word qy can get two different codes and the length of the them

differs. In most of the datasets, in the final 2 clusters, more number of partitions fall

into a single cluster leading to a biased situation. Since we encode words instead of

characters, encoded size of CBH is much lesser (34% reduction) than conventional

Huffman, even though code table size of CBH is more.

Algorithm 1 Clustering based Huffman Encoding(CBH)

Input: Text File: T , Number of partitions: x
Output: Encoded File: T ′ �
1: Scan T once to find unique words w from the total no. of words W ; w ≤ W
2: Divide T such that number of words contained in pi [1≤ i ≤ x] = �W/x�
3: for each pi do
4: Use w to form Partition Frequency Vector fpi

where fpi
= c1q1 + c2q2 + c3q3 + . . . + cwqw,

c1, c2, c3, . . . , cw are the frequencies of q1, q2, q3, . . . , qw.
5: end for

6: fc=form Cluster(fp) where fc =
(

fc1
fc2

)
, c = {c1, c2}, p = {p1, p2, . . . , pi } and fp =

⎛
⎜⎜⎜⎝

fp1

fp2

...
fpi

⎞
⎟⎟⎟⎠

7: for each cm do
8: for each qy in cm do
9: Eliminate qy from fcm where frequency of qy = 0 to get modified cluster frequency matrix fcm

10: end for
11: gen HuffmanCodes(fcm) //Generates Huffman codes using conventional method and stores in cod

table c1 and c2
12: end for
13: for each pi in T do
14: for each word qy in pi do
15: if (pi is in c0) then
16: Append 0 as prefix to the encoded text and scan from c0 code table and replace it with its

respective Huffman codes
17: end if
18: if (pi is in c1) then
19: append 1 as prefix to the encoded text and scan from c1 code table and replace it with its

respective Huffman codes
20: end if
21: end for
22: end for
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Procedure 1 form Cluster(fp)

Input: Partition frequency vector matrix fpi ∗w

Output: Cluster frequency vector matrix fc2∗w

�
1: cnt = 0
2: for each fi do
3: fci ← fpi

4: end for
5: while (x − cnt) > 2 do
6: for each pair of cluster frequency vectors fci , fc′

i
out of x−cnt

2

)
do

7: Calculate Cosine Similarity measure, cos θ =
∑x

i =1 fci fc′
i√∑x

i =1 f2
ci

√∑x
i =1 f2

c′
i

where θ denotes the angle be-

tween the vectors ci and c′
i and store the cos θ value in a cosine array against the cluster pair (fci , fc′

i
).

8: end for
9: Find the pair (fci , fc′

i
) with the maximum cos θ value.

10: Form fci c′
i

and update its cluster frequency vector as cii ← ci + c′
i

11: Delete the entries in the table with atleast one element of the pair (fci , fc′
i
) except fci c′

i
.

12: cnt + +;
13: end while
14: return Cluster frequency vector fc

Procedure 2 Clustering based Huffman Decoding Algorithm

Input: Encoded File T
Output: Original Text File T ′ �
1: while end of file do
2: while end of partition pi do
3: if (bit b == 0) then
4: for all words qy in pi do
5: Read from c0 code table and the corresponding word for the code is replaced
6: end for
7: else
8: for all words qy in pi do
9: Read from c1 code table and the corresponding word for the code is replaced

10: end for
11: end if
12: end while
13: end while

For any corpus, Cr does not increase significantly while increasing x, because

individually code table size and encoded size are almost same for any x. This is due

to the fact that w is same for all x and the number of words in every partition is

constant, w words in partition are distributed almost equally across clusters in the

clustering process, getting almost same code length for words. Moreover, encoded

size remains almost same. The similar behavior was observed for any input set of

corpus (Fig. 2).

The percentage of unique words play a major role along with the partition size

in achieving a better Cr as shown in Fig. 2. With the decrease in the percentage,

the compression ratio increases since more number of frequent words generate less

number of codes leading to better compression. Since all partitions go into any of

the two clusters, it has been observed that when the clusters does not have much

equal number of partitions (even ranging from 11% in cluster1 to 89% in cluster2) in

some cases, it leads to higher compression ratio in all corpus. This is because, when

partitions contain less words with high frequency, it leads to high cosine similarity

(high inter similarity measure), and hence, their code size is less leading to lesser
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Fig. 2 % of Unique words

versus Cr for all datasets
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Fig. 3 Execution time

versus x for bible and census
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encoded size as well. A high compression ratio by CBH was observed for census

dataset because of its dense occurrence of patterns (words).

Figure 3 shows the partition size x and the encoding time for bible and census

corpora. The time taken to compress the corpus by CBH is more than conventional

Huffman. This primarily depends on the size of the input file, x and less likely depen-

dent on frequency of words in T . If the number of partitions are more, the time taken

to find the cosine measure for all combinations of clusters adds up the cost. The time

taken to encode more number of partitions also adds up the cost, because of locating

the clusters x times and to traverse the tree to find the codes. Since the time taken to

locate the cluster for W codes and to traverse the trees to retrieve the word is more,

decoding time is more than the time to encode. Figure 4 denotes the % of unique

words and the time for 3 different corpora. As the % of unique word increases, time
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Fig. 4 % of Unique words

versus time for all datasets
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taken to encode increases for bible and census corpora. This is because, if w is more,

the size of the clustering-based Huffman tree is large, generating more codes. The

similar behavior was observed for any input set of corpus.

5 Conclusion

We explored a novel text compression algorithm in this paper by employing cluster-

ing in conventional Huffman encoding. We show that the proposed CBH algorithm

achieves efficient compression ratio, encoded size, and execution time. However, we

still consider our CBH technique to be a prototype that needs further improvement.

As a part of future work, we want to investigate the scope of the CBH algorithm in

other lossless word-based compression and lossy compression techniques. In addi-

tion, we want to focus on improving the method of clustering using other efficient

hierarchical algorithms.
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