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Abstract Quality of ultrasound image is dominantly limited by two major issues

such as low resolution and speckle noise. The existing speckle reduction techniques

are mostly applied either before or after scan conversion. Filtering before scan con-

version results in huge computational load since the amount of data handled is quite

large while filtering after scan conversion provides poor image quality. In this paper,

a novel and computationally efficient filtering technique has been proposed where

filtering is performed along with scan conversion using spatial linear adaptive and

nonlinear filters in two directions of scan conversion geometry. The proposed frame-

work is found suitable for the real-time applications and improves the visual quality

of the image. Quality metrics for the proposed method have been compared to other

existing methods to show the novelty of the work.
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1 Introduction

Ultrasound imaging modality is predominantly used as a diagnostic tool in modern

medicine. It is a noninvasive means of examining body’s internal organs and is practi-

cally risk-free to human body. The quality of the ultrasound image is largely affected

by a prominent factor known as speckle noise. Speckle is an inherently generated
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noise by the ultrasound imaging acquisition system degrading resolution and contrast

of the image. Speckle appears as a granular pattern [1] originating from a waveform

with various independent scattered components. It seems as bright and dark spots

over the surface of the image and brings difficulties to experts in medical diagno-

sis. Thus, speckle reduction becomes a rising area of research in order to make the

ultrasound imaging modality comparable to the other medical imaging practices in

terms of image excellence. In ultrasound imaging system, speckle noise is generally

suppressed at the preprocessing stage or at the post-processing stage. The existing

noise reduction filtering techniques [2–11] are, therefore, mostly applied either on

the raw scan data (i.e., before scan conversion) or on the scan-converted images (i.e.,

after scan conversion). Filtering on raw scan data generates huge computational load

whereas filtering after scan conversion lacks in image quality as information con-

tent in image hampers largely during scan conversion. Consequently, a new efficient

speckle reduction technique is proposed which unifies filtering and scan conversion

simultaneously, i.e., filtering along with scan conversion. The resultant image of fil-

tering scan conversion is the outcome of filtering separately in the two directions of

scan conversion geometry: radial direction and horizontal direction. The choice of

filter can be made different in the two directions of scan conversion filtering. The

present article, therefore, has investigated the performance of the speckle filtering

scan conversion using either same or different combinations of linear and nonlinear

filters imposed in two different phases of scan conversion.

2 Noise Model

The noise embedded to the ultrasound scan lines is the combined form of speckle

and Gaussian noise. Speckle is multiplicative in nature and generally assumed as

Rayleigh distribution. This speckle noise is multiplied with the signal and then log-

compressed by the logarithmic amplifier. As a result, the multiplied speckle noise

becomes additive to the log-compressed signal at the output of the logarithmic ampli-

fier. Afterward, the Gaussian noise is added to the logarithmic amplifier output for

the simulation of the ultrasound scan lines that are made corrupted by speckle and

Gaussian noise. The noisy signal is then scan-converted. The noisy scan data is thus

modeled as

S0(i, j) = S(i, j) + nG(i, j) + ns p(i, j) . (1)

where S(i, j) is the log-compressed signal, nG(i, j) is the additive Gaussian noise, and

ns p(i, j) is the log-compressed speckle noise.
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3 Speckle Reduction Methods

The existing speckle reduction methods can be broadly categorized as compounding

techniques [12, 13], spatial linear adaptive and nonlinear filtering [3–7], multi-scale

method [8–11], non-local means denoising [14, 15], and sparse representation-based

denoising [16]. Lee filter [3], Kuan filter [5], Dutt and Greenleaf [7],

Bamber and Daft [4] are the examples of linear spatial adaptive filters. These filters

are based on local statistics and perform filtering within the fixed size window cen-

tering the pixel under consideration increasing smoothness in homogeneous region

of the image. Median, weighted median, adaptive weighted median [6], and direc-

tional median [17] are some of the nonlinear filters useful for preserving edges in

an image while reducing random noise. The homogeneity map method (HMM) is

introduced [18] for speckle reduction based on the mapping of homogeneous and

non-homogeneous regions of the speckled image. Again, optimized Bayesian NL-

means with block selection (OBNLM) [15] uses the adaptation of non-local (NL)

means using Bayesian formulation. It uses the Pearson distance for patch compari-

son for speckle reduction generating a competitive performance.

Scan conversion in ultrasound imaging system is conventionally done by interpo-

lation method. In the proposed method, the interpolation is restored by filtering using

some of the spatial linear and nonlinear speckle reduction filters and is also compared

with the two competitive state-of-the-art methods such as HMM and OBNLM.

4 Proposed Method for Speckle Reduction Through
Filtering Scan Conversion

The simplified schematic block diagram of a typical diagnostic B-mode ultrasound

imaging system that employs filtering scan conversion is shown in Fig. 1. In filtering

scan conversion framework, the reconstruction of image from noisy scan data is per-

formed along two directions in two successive phases, respectively: (i) filtering scan

conversion along radial direction (phase 1) and (ii) filtering scan conversion along

horizontal direction (phase 2). The essential steps of the proposed filtering scan con-

version algorithm for obtaining the rectangular grids have been discussed in detail

below.

Phase 1

Aim: Computation of the values at the points where radial lines intersect with the

horizontal grid lines marked with solid samples in Fig. 2a.

Assumption: Solid triangular points in scan conversion geometry (Fig. 2a) are the

sample points.
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Fig. 1 Block diagram of ultrasound imaging system (speckle reduction is done with scan conver-

sion)

(a) (b)

(c)

Fig. 2 a Scan conversion geometry b Geometry of first-stage computation c Pixel geometry for

raster grid points computation
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Steps

1. Consider three successive lines, Line j− 1, Line j, and Line j + 1.

2. P is considered as a point where the radial line, i.e., Line j cuts the horizontal grid

line.

3. Find the nine surrounding nearest points around P.

4. A, B, C, D, E, F, G, H, and I are the nearest points around P along Line j− 1, Line

j, and Line j + 1. E is the nearest along Line j termed as s(nearest,j).

5. To calculate the pixel value at P, these nine samples around point P are considered

as a member of local window.

6. Use any spatial linear or nonlinear filters to find P. To adapt Kuan filter [5], the

following equation is used

p = s̄ + k[𝜃r − s̄] . (2)

where s̄ is the average value of the pixels within the local window and 𝜃r is the

interpolated value at the desired point P on the jth scan line for rth-order inter-

polation. The parameter k can be determined from the equation below

k = Var(x)
Var(x) + x̄2 + Var(x)

. (3)

where x̄ andVar(x) represent the mean and variance of local window, respectively.

The interpolated value can be taken as 𝜃r = s(nearest, j), i.e., nearest neighbor

(or zeroth − order interpolated value).
7. Find all the points where radial lines cut the horizontal grid lines by moving the

window along the scan lines. P1, P2, and P3 are such points as shown in Fig. 2b.

The geometry will be then converted as shown in Fig. 2c. Now, with the help of

available points P1, P2, and P3, the raster grid points of the raster scan are computed.

It can be illustrated with the help of Fig. 2c.

Phase 2

Aim: Computation of the pixel values at the grid points of the Cartesian coordinates

(i.e., where vertical grid line cuts the horizontal grid lines) from the computed values

of the previous step. Pixel values at raster grid points Q1, Q2, and Q3 (Fig. 2c) are

to be computed.

Steps

1. Consider the raster grid point Q5 in the ith row and jth column. Find three nearest

points of Q5 along ith row.

2. P7, P6, and P8 are such three nearest points. P7 is the nearest one assigned as

p(i,nearest).

3. Find three nearest points from previous and next rows, i.e., (i − 1)th row and

(i + 1)th row.

4. Find the grid point Q2 of the same column and (i − 1)th row and search three

points around Q2 along the row. In a similar way, three nearest points from next

row, i.e., (i + 1)th row can be found out.
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5. Finally, the pixel point at the grid point Q5 can be computed from these nine

points by using similar type of Eq. 2

q = p̄ + k[𝜙r − p̄] . (4)

where p̄, 𝜙r indicate the same meaning as of s̄, 𝜙r in Eq. 2. The final pixel values at

the grid point are evaluated by moving the window along horizontal direction.

In the proposed method, filtering can be performed in two different manners:

FSC (2 pass) and FSC (1 pass). When filtering is performed in both the radial and

horizontal directions, the technique is known as speckle reduction through filtering

scan conversion in two pass (FSC (2 pass)). After computation of the point P, the

raster grid point can also be computed by simple linear interpolation. This technique

is termed as speckle reduction through filtering scan conversion in single pass (or

FSC (1 pass)).

5 Simulation and Results

The efficiency of the algorithm has been evaluated by generating phantom data from

analytic function f (x, y) = 1
4
[sin(wx)], placing few holes of different sizes. The sim-

ulations were performed in MATLAB and were tested in Windows 7 Home Basic,

Intel(R) Core(TM) i5-4690 CPU@ 3.50 GHz processor, 4 GB RAM, 32-bit OS, with

500 GB hard disk.

The scan lines of the raw scan data are corrupted with the three levels of speckle

and Gaussian combined parameters, speckle (𝜎 = 1.0) with 20 dB Gaussian noise

(overall noise = 17.6 dB), speckle (𝜎 = 1.5) with 15 dB Gaussian noise (overall

noise = 12.6 dB), and speckle (𝜎 = 2.0) with 10 dB Gaussian noise (overall

noise = 7.6 dB).

A quantitative measure of the image quality is performed using four well-defined

quality metrics such as MSE (mean squared error), PSNR (peak signal-to-noise

ratio), MSSIM (mean structural similarity) [19], and BLUR [20]. Table 1 shows the

performance of Lee filter in terms of quality metric in the proposed framework both

Table 1 Quality metrics of Lee filter output under combined speckle and Gaussian noise (overall

SNR 17.6 dB)

Lee Filtering before

scan conversion

Filtering after

scan conversion

Filtering with

scan conversion

(2 pass)

Filtering with

scan conversion

(1 pass)

MSE 1090.19 1363.12 652.47 1162.47

PSNR 17.79 16.82 20.02 17.51

MSSIM 0.8375 0.7911 0.8949 0.8285

BLUR 0.2541 0.2837 0.3492 0.2493
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in pass1 and pass2 (Lee filter in both directions) over the two conventional filtering

techniques. It is found that filtering scan conversion (2 pass) gives the best perfor-

mance in terms of MSE, PSNR, MSSIM, and BLUR.

As compared to filtering before and after scan conversion, the proposed method

achieves a PSNR improvement of 2.23 dB and 3.2 dB, respectively.

The proposed algorithm also employs four combinations of spatial linear and

nonlinear filters in the two paradigms of speckle filtering scan conversion such as

Lee-Kuan, Lee-Med, Med-Lee, and Med-Med. ‘Lee-Kuan’ indicates Lee filtering

in radial direction and Kuan filtering in horizontal direction. The same notation is

followed for other filter combinations also. Med is indicating median filter. Per-

formance of these filtering combinations in the proposed framework is also com-

pared with two prominent speckle reduction filters, HMM and OBNLM, as shown

in Table 2. In terms of MSE and PSNR, ‘Lee-Kuan’ achieves the best performance

with an improvement of 7.75 in MSE and a significant improvement in PSNR can

be achieved with respect to ‘Lee-Med’ that attains the second best performance. The

PSNR for HMM and OBNLM is as low as compared to ‘Lee-Kuan,’ ‘Lee-Med,’

Table 2 Quality metrics of different filtering combinations for the noise levels

MSE

Noise level

(dB)

Lee-Kuan Lee-Med Med-Lee Med-Med HMM OBNLM

17.6 650.0608 657.8171 678.9877 781.004 1287.915 1253.893

12.6 748.2261 820.9659 1064.882 1350.91 2007.842 2016.524

7.6 806.7585 968.2591 1661.91 2277.55 3067.872 3092.939

PSNR

Noise level

(dB)

Lee-Kuan Lee-Med Med-Lee Med-Med HMM OBNLM

17.6 20.0329 20.0101 19.837 19.2351 17.0822 17.1965

12.6 19.4772 19.1384 17.9217 16.9198 15.1552 15.132

7.6 19.1112 18.32 15.9784 14.5926 13.2762 13.244

MSSIM

Noise level

(dB)

Lee-Kuan Lee-Med Med-Lee Med-Med HMM OBNLM

17.6 0.8849 0.8636 0.8708 0.8399 0.847 0.847

12.6 0.8246 0.797 0.7923 0.7509 0.7048 0.7088

7.6 0.7324 0.6996 0.6686 0.625 0.5782 0.5743

BLUR

Noise level

(dB)

Lee-Kuan Lee-Med Med-Lee Med-Med HMM OBNLM

17.6 0.384 0.2782 0.3767 0.2553 0.2959 0.3142

12.6 0.349 0.2521 0.337 0.2305 0.247 0.2547

7.6 0.3086 0.2249 0.2985 0.2068 0.223 0.2224
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3 a Original image b noisy image, overall noise 17.6 dB (speckle 𝜎 = 1.0, Gaussian = 20 dB)

c Lee-Kuan d Lee-Med e Med-Lee f Med-Med g HMM h OBNLM filter output for speckle para-

meter 𝜎 = 1.0 combined with 20 dB Gaussian noise (overall noise 17.6 dB)

‘Med-Lee,’ and ‘Med-Med.’ The output images (for 17.6 dB overall noise) for dif-

ferent filtering combinations are represented in Fig. 3. Figure 4 shows the plot of the

quality metric for three levels of noise. Table 3 depicts the real-time application of

the proposed framework in terms of normalized mean time and variance, and Table 4

shows the running time of HMM and OBNLM on the scan-converted image. Filter-

ing scan conversion examined with real scan data of ultrasound machine is given in

Fig. 5.

Fig. 4 a MSE b PSNR c MSSIM d BLUR at overall input SNR 17.6 dB (speckle noise 𝜎 = 1.0
added with 20 dB Gaussian noise), 12.6 dB (speckle noise 𝜎 = 1.5 added with 15 dB Gaussian

noise), and 7.6 dB (speckle noise 𝜎 = 2.0 added with 10 dB Gaussian noise.)
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Table 4 Normalized mean time (s) and variance of HMM and OBNLM filtering techniques

Normalize mean time Variance

HMM 0.56408 0.005993

OBNLM 0.41979 0.001993

(a) (b) (c)

(d) (e) (f)

Fig. 5 a Lee-Kuan b Lee-Med c Med-Lee d Med-Med d HMM e OBNLM Filter output obtained

from scan data of real ultrasound machine

6 Conclusion

Despite speckle filtering in pre- or post-processing stages, the article presents a novel

framework of speckle suppression where filtering and scan conversion are unified as

a single operation. The image quality metric justifies the proposed methods’ effi-

ciency when compared with other two techniques. The proposed algorithm is also

compared with the two speckle reducing techniques lying in the state of the art: HMM

and OBNLM. Though the image output of HMM and OBNLM looks less noisy but

the fine details are found absent. On concluding the results in terms of running time

of the algorithm, filtering with scan conversion takes comparable time with respect

to other frameworks. Though HMM and OBNLM takes less time than the proposed

technique but there is a high prospect of object loss as it is visualized from Figs. 3

and 5. The proposed algorithm is therefore well-suited with the real-time application

of ultrasound imaging system with enhanced output images.
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