Parallelization of String Matching
Algorithm with Compaction of DFA

Apurva Joshi and Tanvi Shah

Abstract String matching algorithms are widely acknowledged due to its use in
many areas such as digital forensics, intrusion detection system, plagiarism
checking, bioinformatics. For improving the efficiency of the string matching, speed
of matching the strings must be elevated. Hence, an approach has been proposed
which would significantly reduce the time for matching the strings. Ternary content
addressable memory (TCAM) has been used by many for reducing the time
requirement. But TCAM has many disadvantages such as high cost, very high
power dissipation, problem due to pipelining. Small-scale applications may not be
able to bear all the disadvantages associated with TCAM. Hence, an approach has
been proposed which would overcome all the disadvantages associated with
TCAM. Modern CPUs have multicore facility. These multiple cores have been
exploited to provide parallelism. Parallelism greatly helps to increase the speed of
matching the string. Apart from this, reducing the memory requirement for string
matching algorithm is also necessary. When reduction in memory requirement and
parallelization are applied simultaneously, it provides improved results. High
response time would be obtained by using this approach.

Keywords Aho—Corasick algorithm (AC algorithm) - Finite automaton (FA) -
Parallelization - String matching

1 Introduction

String matching algorithms are the ones which find whether the given string is
present within the larger string. These algorithms are at the heart of many important
applications such as intrusion detection system (IDS), bioinformatics, digital

A. Joshi (=) - T. Shah
Department of Computer Engineering, VJITI, Mumbai, Maharashtra, India
e-mail: apurva.joshi91@gmail.com

T. Shah
e-mail: tanvishahvcet06 @ gmail.com

© Springer Nature Singapore Pte Ltd. 2018 327
P.K. Sa et al. (eds.), Progress in Intelligent Computing Techniques: Theory,

Practice, and Applications, Advances in Intelligent Systems and Computing 518,

DOI 10.1007/978-981-10-3373-5_33

328 A. Joshi and T. Shah

forensics, plagiarism checking. When using string matching in IDS, the security
factor and time factor along with accuracy must be considered, and when using in
plagiarism checking and bioinformatics, correctness is important. Due to high
criticality of applications using string matching, we can conclude that string
matching applications are very critical and it is necessary to improve its efficiency.

The Aho—Corasick algorithm [1] is a widely used algorithm, used for the pur-
pose of string matching. There are many factors which have led to wide spread use
of this algorithm. AC has deterministic performance, and this is because each
symbol scan results in a state transition. This does not depend on some sort of
specific input, due to which it is not vulnerable to various attacks. Apart from this,
this algorithm has a property that more than one string can be matched in a single
pass. As an example, in the word share, there are three keywords, viz. share, hare
and are. By using AC algorithm, all the three keywords are obtained in a single
pass. Due to these characteristics of AC algorithm, it is widely adopted among all
the string matching algorithms. AC algorithm is basically divided in major two
stages, viz. (I) construction of finite machine (FA) which would act as a string
matching machine and (II) traversal of string using the FA. For the purpose of
construction of FA, goto, failure transitions and output function are calculated. goto
function helps us create a simple FA. Failure function is the longest suffix of the
string which is also the prefix of some node. The goal of the failure function is to
restrict the algorithm from transiting to any state more than once. Failure functions
would redirect us to correct transition in case the word is present, and if the word is
not present, it would give a failure. Output function gives the output of a particular
state, i.e. the keyword obtained on reaching a particular state. After the creation of
FA with the failure states, the next stage is to inspect the string letter by traversing
the FA.

Traditional approach for storage of FA requires storing one rule per transition.
This leads to much wastage of memory. For the compaction of FA, [2] proposes
such an algorithm which makes it possible for us to store one rule per state which in
turn reduces the memory requirement to great extent. This algorithm suggests that
the states should be encoded in a way such that all the transitions to a single state
should be represented by a single prefix. Due to this, the problem boils down to
longest prefix match first. The algorithm mainly consists of following stages, viz.
(i) state grouping which finds longest common suffix for each state, (ii) common
suffix tree which involves creation of tree by encoding each state with smaller
number of bits and (iii) state and node encoding which creates a table containing
current state, symbol and next state. Using this approach, compaction of FA has
been made.

Parallelism is the process in which we divide the given task into chunks and
perform those tasks simultaneously. This helps us reduce response time consider-
ably. Parallelism has reached in various nooks and corners of technical fields. The
technique of parallelism has been applied even in the field of string matching, but a
hardware approach has been proposed which has its own disadvantages. To over-
come those disadvantages, a software approach has been proposed which would
exploit the multicore architecture of the CPU and give much faster results than its

Parallelization of String Matching Algorithm ... 329

serial counterpart. In this approach, we assign one thread to each letter and make the
traversal. Each thread would traverse the FA individually. The threads assigned to
the letters which do not start from starting state are terminated immediately. Due to
this, there are not many threads running at the same time and there is not much
overhead on the system.

2 Related Work

Many intensive efforts have been made for improving the efficiency of AC algo-
rithm. Methods for compaction of DFA have been proposed. Also, the use of
TCAM and IP lookup chips has been proposed. These algorithms have greatly
contributed in making the string matching more efficient and time saving. For the
real-time applications like IDS, use of ternary content addressable memory is very
useful which has very good speed. But this comes with its own disadvantages.
Many efforts have been made to improve the efficiency of string matching
keeping the AC algorithm as base. [3] suggests the elimination of failure transitions
from AC algorithm. [4] suggests a technique of compression which in turn reduces
the memory bandwidth required for processing the string. When processing a string
which is of length N, this approach would require minimum 2N traversals. [5—8]
propose a mechanism for reducing the space required to store the DFA. Some use
Chinese remainder theorem, while some make use of more compact data structure
for storage of the larger strings. [8] proposes use of NFA, i.e. nondeterministic finite
automaton instead of using a DFA. [9, 10] have suggested methods for reducing the
time required to match the string with the larger string by proposing the use of
TCAM, i.e. ternary content addressable memory. The most considerable contri-
bution is done by [2] which suggest compact DFA. The DFA used by AC algorithm
uses one rule per transition as a result; there are many rules per state. This causes
high requirement of memory for storage of DFA. Compact DFA suggests use of
only one rule per state. As a result, the storage requirement would reduce, which
would ultimately lead to improved throughput. These rules are stored as a triplet of

[11]:

Current State Field — Symbol Field — Next State Field

3 Implementation

As referred above, the basic intention here is to increase the efficiency of the
system, i.e. bring improvement in response time. For that purpose, following steps
are followed: An Aho—Corasick machine is created. The technology used for
implementation of the AC machine is CPP. goto function, failure function and

330 A. Joshi and T. Shah

Fig. 1 Flow chart for the
proposed system

Aho-Corasick Algorithm

Compaction of Finite Machine

Parallelization of
String Matching Process

construction of output function for FA are done using CPP. This leads to the
completion of the phase of construction of FA. After that compaction of the FA,
which is created is done. Each state is considered separately, and longest prefix for
individual state is calculated which follows construction of common suffix tree
based on the results of first step and then follows node encoding in which the actual
encoding of each and every node is done. This process gives us a rule set which is
much compact than its AC algorithm counterpart (Fig. 1).

This compact DFA structure has a table which contains current state, symbol and
next state. Current state gives us the state where the transition has reached currently,
symbol is the letter which causes transition from one state to another, and next state
gives us the state where the transition would reach if the symbol found is correct.
This compact data structure is much lesser in size and thus can be stored in faster
memory. Current state for start state is always encoded by ***** and the states
following the start state. For the purpose of parallelization, OpenMP with MPI has
been used. OpenMP is a memory multiprocessing API which can be used with C,
CPP, Fortran, etc. This API takes advantage of many cores available on the CPU.
MPI helps to make distributed computing possible. It helps us to make use of
several cores of different computers for the purpose of computations. Nowadays,
every CPU is multicore. Using this API, one thread can be assigned to each core
and program could be made to run in parallel. Each thread is assigned a single letter
of the larger string. In the first pass, it checks whether the letter matches with the
symbol led created in the above table, having current state as *****_If it does, the
thread proceeds with its transitions, else it terminates then and there. This approach
ensures the property of AC algorithm that all substrings could be identified in a
single pass is maintained. As an example, in the word share, there is a substring

Parallelization of String Matching Algorithm ... 331

TXT

INFUT FILEL
(PATTERN) e

=
| ALGORITHM FOR FINITE MACHINE CREATION,

COMPACTION |—— OUTFUT
AND PARALLELIZATION

\J

TXT

INFUT FILE2
(STRING TO BE MATCHED)

Fig. 2 Architecture for the proposed system

share, hare and are. All these three words could be identified in a single pass with
AC algorithm. Along with preserving the property, it also helps us reduce the
response time. A small improvement would be to use shared memory for storing the
variables instead of using global memory. Due to this, the overhead involved in
accessing the global variables will decrease greatly.

Figure 2 shows the architecture. All the patterns are already stored in a text file.
These patterns are passed as an input to the program which implements AC
algorithm. The program takes these patterns one line at a time and creates a FA and
applies compaction on it. After that, the larger string, which should be searched
into, is passed as an input to the same program. The program extracts words in
parallel (as many threads are assigned through the program) and performs string
matching. This explains the total working and architecture of the proposed work.

4 Results

Evaluation of the technique proposed in this paper has been done by checking it on
a pattern set which contains about 50,000 different patterns. In the experiment,
about 50,000 plus strings to be matched are taken and the response time is obtained.
Here, the response time is the addition of time required for construction of FA and
time for traversal of FA for finding the matches. The response time required is very
less and satisfies the real-time requirements. In comparison with its serial coun-
terpart, the response time reduces effectively. Suppose there are n threads which
have been assigned to the system to perform matching, then the decrease in
response time of the system is multiple of n.

It is proved fact that the smaller the memory size, higher is the speed of the
system. When we perform compaction of FA, the FA could be stored in more
compact memory than the amount of memory needed when it was not compacted.
Hence, we could conclude that the speed of the system increases significantly.
Apart from this, as we are performing task of matching in parallel, the response

332 A. Joshi and T. Shah

Fig. 3 Graph representing
response time of parallel
execution

m Time for Parallel execution

Time for Parallel Execution

) o o
S M

> e S
Input Size

time would decrease further. There is no overhead involved in matching the string
in parallel; as a result, the response time decreases without involvement of inner
costs. There is no pipelining involved nor there is any stalling of the process of
parallelization.

For parallel processing, Fig. 3 shows us the results on string matching. For serial
processing, each 100th increase in the input size matters and the response time
increases additively for such increase in input size. Figure 4 shows us the results of
serial processing on string matching.

Figure 5 Shows Graph representing comparison in response time of serial and
parallel execution. Below figure shows the comparison between the parallel

Fig. 4 Graph representing 180
response time of serial 160
execution

140 -

120
100
80

m Time for Serial Execution

40
20

Time for Serial execution

Input Size

Parallelization of String Matching Algorithm ... 333

Fig. 5 Graph representing 180
comparison in response time = Time for Serial Execution

R 160 -
of Serlfll and parallel —— Time for Parallel Execution
execution 140 -

120 -
100
80 -
60 -

Response Time

40 -
20 -

9 © 5] O O
< 5] N})
S P S

Input Size

algorithm and its serial counterpart. For small inputs, serial processing takes less
time as compared to parallel. This is because of the overhead involved in breaking
up the input data set in subsets so that one thread is assigned to each subset. Also,
overhead involved in assigning thread to each subset is countable. As the input size
increases, the disparity between the response times required for serial and parallel
processing increases. For the input set of 20,000, the disparity is highest. Serial
processing requires 159.099 s as against 1.4994 s of parallel processing.

5 Conclusion

This paper shows how parallelization and compaction of DFA helps in reducing the
response time. Parallelization is obtained without any stalling or any requirement to
wait until some other activity gets completed. This helps us to obtain an
improvement in response time. How the use of parallelization helps in improvement
of string matching algorithms efficiency has been illustrated in this paper. For
processing a pattern set as large as 50,000, 100,000, only 3.67 s is taken. Com-
paction leads to further reduction in time. Lesser the size of memory, more it is fast.
Hence, reducing the rules for string matching process also leads to improved
results. The approach proposed could be used in all the applications which cannot
bear the highly costly TCAM chips, and the application which require power saving
facilities could also go with this approach.

334 A. Joshi and T. Shah

References

1. V. Aho and Margaret J. Corasick, Efficient String Matching: An Aid to Bibliographic Search,
communications of the ACM June 1975, Volume 18 Number 6.

2. Anat Bremler-Barr, Member, IEEE, David Hay, Member, IEEE, and Yaron Koral, Student
Member, IEEE, CompactDFA: Scalable Pattern Matching Using Longest Pre x Match
Solutions, IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 22, NO. 2, APRIL
2014.

3. Sang Kyun Yun Dept. of Comput. Telecommun. Eng., Yonsei Univ., Wonju, South Korea,
An Efficient TCAM-Based Implementation of Multipattern Matching using Covered State
Encoding, IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 2, FEBRUARY
2012.

4. M. Becchi and P. Crowley, An improved algorithm to accelerate regular expression
evaluation, in Proc. ACM/IEEE ANCS, 2007, pp. 145-154.

5. A. Bremler-Barr, D. Hay, and Y. Koral, CompactDFA: Generic state machine compression
for scalable pattern matching, in Proc. IEEE INFOCOM, 2010, pp. 657-667.

6. Tzu-Fang Sheu Inst. of Commun. Eng., Nat. Tsing-Hua Univ., Hsinchu Nen-Fu Huang;
Hsiao-Ping Lee, A Time- and Memory- Efficient String Matching Algorithm for Intrusion
Detection Systems, Global Telecommunications Conference, 2006. GLOBECOM ‘06. IEEE.

7. S. Kumar, J. Turner, P. Crowley, and M. Mitzenmacher, HEXA: Compact data structures for
faster packet processing, in Proc. IEEE ICNP, 2007, pp. 246-255.

8. R. Sidhu and V.K. Prasanna, Fast Regular Expression Matching Using FP-GAs, Proc. Ninth
Ann. IEEE Symp. Field-Programmable Custom Computing Machines (FCCM 01), pp. 227—
238, 2001.

9. Y. Weinsberg, S. Tzur-David, D. Dolev, and T. Anker, High performance string matching
algorithm for a network intrusion prevention system (NIPS), in Proc. IEEE HPSR, 2006,
pp. 147-153.

10. J. van Lunteren, High-performance pattern-matching for intrusion detection, in Proc.
IEEE INFOCOM, Apr. 2006, pp. 113.

11. Cheng-Hung Lin, Member, IEEE, Chen-Hsiung Liu, Lung-Sheng Chien, and Shih-Chieh
Chang, Member, IEEE, Accelerating Pattern Matching Using a Novel Parallel Algorithm on
GPUs, IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 10, OCTOBER 2013.

	33 Parallelization of String Matching Algorithm with Compaction of DFA
	Abstract
	1 Introduction
	2 Related Work
	3 Implementation
	4 Results
	5 Conclusion
	References

