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Chapter 14
Visualization of Apoptosis: Annexin V Imaging

Skye Hsin-Hsien Yeh, Fan-Lin Kong, and Ming-Hsien Lin

Annexin V, a human protein with nanomolar affinity for cell membrane-bound 
phosphatidylserine (PS), is the most widely used conjugate for the detection of 
apoptosis by using the imaging modalities such as SPECT, PET, MRI, and optical 
imaging. This chapter will initially focus on the most recent reports on annexin 
V-conjugated imaging agents in both animals and humans, followed by conclusions 
and the possible future directions of annexin V imaging.

14.1  �Introduction

Apoptosis or programmed cell death plays a critical role in normal physiology and 
pathology of numerous disease states [1]. Therefore, the in vivo visualization of 
apoptosis would allow for both early detection of therapy efficiency and evaluation 
of disease progression. Several agents have been developed and investigated for 
apoptosis imaging by using different imaging modalities such as single-photon 
emission computed tomography (SPECT), positron emission tomography (PET), 
optical imaging (OI), and magnetic resonance imaging (MRI). Each imaging modal-
ity has certain advantages as well as limitations. The choice of the right imaging 
modality or hybrid scanner depends on the parameter of interest under consider-
ation (i.e., anatomical structure, functional metabolism, etc.).
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14.2  �Annexin V-Phospholipid Complex

The externalization of the phosphatidylserine (PS) on the cell membrane has been 
identified as a major biochemical marker of apoptosis and could in principle be 
exploited for the detection of apoptosis [2]. Annexin V (36 kDa), which interacts 
strongly and specifically with phosphatidylserine residues, has been the most stud-
ied imaging probe for apoptosis [3] (Table 14.1).

14.3  �SPECT and PET Imaging

14.3.1  �Single-Photon Emission Computed Tomography 
(SPECT) Imaging

Since the first apoptotic imaging reported in 1999 [4, 5], in vivo imaging of cell 
death with radiolabeled annexin V has been widely used in animal studies and clini-
cal trials [6]. The unique advantages of radiotracers include their high sensitivity 
and the translational potential. Among various SPECT radionuclides, technetium-
99 m (99mTc) is the most prominent isotope for the nuclear imaging because of its 
ideal nuclear properties and easy availability at low cost [7, 8].

Based on the previous study [9, 10], Blankenberg et al. reported an improved 
99mTc-annexin V radioprobe using the bifunctional agent hydrazino nicotinamide 
(HYNIC) [5]. 99mTc-HYNIC-annexin V showed the greatest uptake in the kidneys, 
liver, and urinary bladder; however, it was devoid of any bowel excretion, resulting 
in excellent signal to background ratio in the abdominal region. With the modified 
procedure of preparation, 99mTc-HYNIC-annexin V could be synthesized efficiently 
with high yield. By far, 99mTc-HYNIC-annexin V has been extensively investigated 
in animal models [11–15]. Multiple clinical trials have confirmed the clinical utility 
of 99mTc-HYNIC-annexin V in determining the efficacy of chemotherapy in the 
patients of non-small cell lung cancer for the detection of apoptotic regions [16, 17].

In 2000, Tait et  al. reported 99mTc-HYNIC-cys-annexin V117, which revealed 
site-specific labeling; however, it showed similar apoptosis avidity when compared 
to the previous version of 99mTc-HYNIC-annexin V [18]. Similar radiolabeled 
annexin V probes such as 99mTc(CO)3-HIS-cys-AnxV [19, 20] and 99mTc-His10-
annexin V [21] demonstrated improved sensitivity for detecting dead or dying cells.

Yang et al. reported the use of 99mTc-EC-annexin using ethylenedicysteine (EC) 
as a chelator to assess the level of apoptosis of tumor cell [26]. The preclinical data 
of breast cancer patients showed the total effective dose equivalent for 
99mTc-EC-annexin V of 6.80–7.89 mSv could be reasonable and allow it for clinical 
use and it could be a predictor for evaluating the treatment-related apoptosis after 
induction of chemotherapy [27].

Recently, 99mTc-C3(BHam)2-annexin V was developed using a bis(hydroxamide) 
derivative [C3(BHam)2] as a bifunctional chelating agent [28]. In vivo evaluation of 
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99mTc-C3(BHam)2-annexin V showed decreased uptake and retention in nonspecific 
tissues and much lower kidney accumulation of radioactivity when compared to 
99mTc-HYNIC-annexin V.  Their findings also indicated that 99mTc-C3(BHam)2-
annexin V could be a potential candidate as a predictor for response to 
chemotherapy.

Additional to 99mTc, 67Ga [22, 23] and 111In [24, 25] were also used to label 
annexin V or its mutants for site-specific detection of apoptosis.

14.3.2  �Positron Emission Tomography (PET) Imaging

The major advantages of PET imaging over SPECT are its much higher sensitivity, 
spatial resolution, and quantitative imaging; therefore, annexin V has been radiola-
beled with fluorine 18 (18F) and many other isotopes for positron emission 
tomography.

18F-labeled annexin V with N-succinimidy-4-18F-fluorobenzoate (18F-SFB) has 
been investigated by several groups [29, 30] [31]. These studies of 18F-SFB annexin 
V demonstrated comparable apoptotic imaging feasibility to 99mTc-labeled annexin 
V and a fast clearance [31]. Moreover, 18F-SFB annexin V showed a significant 
higher accumulation in the mice treated with doxorubicin when compared to the 
control group [30].

Annexin V can also be labeled with thiol-reactive agents such as N-substituted 
maleimides, and iodoacetamide can be used to modify proteins at cysteines at spe-
cific sites [32].18F-N-[2-(4-fluorobenzamido)ethyl]maleimide (18F-FBEM) was 
used to label thiol-containing proteins as a novel site-specific labeling prosthetic 
group [33, 34]. Compared to the previous generation of 18F-SFB-labeled annexin V, 
the novel 18F-FBEM-cys-annexin V showed faster renal and a lesser extent of hepa-
tobiliary excretion in normal mice and more sensitivity of site-specific detection in 
the rats of hepatic apoptosis model [35].

14.4  �MRI Imaging

One of the main differences between magnetic resonance imaging (MRI) scan and 
other imaging modalities like PET is that MRI scan which reveals high spatial reso-
lution allows scientists to navigate through the entire living organism, down to the 
cellular level. Several annexin V-based contrast agents have been developed. 
However, due to the fundamentally low sensitivity of MRI, how to deliver sufficient 
contrast agents safely and acquire sufficient imaging signals in vivo is definitely the 
concern.

14  Visualization of Apoptosis: Annexin V Imaging
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14.4.1  �T-Positive Images: Gadolinium-Labeled Annexin V

To access the redistribution of phosphatidylserine in the event of apoptosis, annexin 
V was linked to gadolinium diethylenetriamine pentaacetate (Gd-DTPA)-coated 
liposomes [36]. A significant increase in signal intensity was visible in those regions 
containing cardiomyocytes in the early stage of apoptosis. The in vivo Gd-DTPA-
annexin V MRI imaging provided a rapid targeting of apoptotic cells in the ischemic 
and reperfused myocardium. Moreover, van Tilborg and his colleagues reported 
Gd-DTPA-bis(stearylamide) (Gd-DTPA-BSA)-labeled annexin V, the multiple 
functions of lipid-based bimodal contrast agent, enables the detection of apoptotic 
cells with both MRI and optical techniques [37]. Gd-DTPA-BSA was covalently 
coupled multiple human recombinant annexin V to introduce specificity for apop-
totic cells. The imaging results showed a significant increase of the relaxation rates 
of apoptotic cell pellets when compared to the untreated control cells, which may 
have applications for the in vivo detection of apoptosis. In 2010, the same group 
developed a small micellar annexin A5-functionalized nanoparticle for noninvasive 
MRI and fluorescent imaging of PS exposing cells in atherosclerotic lesions [38]. In 
vivo MRI images of the abdominal aorta in atherosclerotic ApoE(−/−) mice 
revealed enhanced uptake of the annexin A5-micelles as compared to control 
micelles, which was corroborated with ex vivo near-infrared fluorescence images of 
excised whole aortas.

14.4.2  �T2-Negative Images: Iron Oxide-Labeled Annexin V

Compared to T1 agents, superparamagnetic iron oxide nanoparticle-based T2 agents 
are assumed to be the preferred MRI contrast agents for evaluating apoptosis due to 
their high sensitivity. Up to date, the common labeling approach for apoptotic imag-
ing is based on cross-linked derivative of monocrystalline iron oxide (MION), also 
known as cross-linked iron oxide (CLIO) [39].

Annexin V-CLIO allowed the identification of cell suspensions containing apop-
totic cells by MRI even at very low concentrations of magnetic substrate [40]. Van 
Tilborg et al. investigated the internalization of, when co-exposed to apoptotic stim-
uli, annexin A5 was shown to internalize into endocytic vesicles by using annexin 
A5-functionalized iron oxide particles [41].

Recently, our group present annexin V conjugated with superparamagnetic iron 
oxide nanoparticles (USPIO-annexin V) to the mice with Fas-induced hepatic 
apoptosis (data unpublished). The results showed that USPIO-annexin V accumu-
lated in the region of hepatic apoptosis significantly decreased in comparison with 
control group (p< 0.05) (Fig. 14.1). USPIO-annexin V MRI may provide useful 
properties such as quantitative pharmacologic hepatic apoptosis that can be used as 
an indicator for hepatitis or liver injury induced by chemotherapy or after radiation 
exposure.

S.H.-H. Yeh et al.
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14.5  �Optical Imaging

Petrovsky et al. first demonstrated that annexin V-labeled fluorophore Cy5.5 could 
be used as a nonradioactive probe for apoptosis [42]. Later in 2004, the modified 
annexin V-Cy5.5 conjugate was used to measure the tumor response to chemother-
apy by fluorescence molecular tomography (FMT). This probe provided higher 
quantification accuracy validated by histology when compared to the traditional 
planar illumination methods [43]. The quantitative results also showed tenfold 
increase of fluorochrome intensity in cyclophosphamide-sensitive tumors and a sev-
enfold increase of resistant tumors compared with controls. Smith et al. developed 
a fluorescent imaging probe conjugating zinc(II)-dipicolylamine (Zn-DPA) with 
annexin V [44]. In vivo studies demonstrated that the fluorescent Zn-DPA targeting 
ligand selectively targeted to the apoptotic tumor cells was consistent with ex vivo 
biodistribution and histological analyses [45].

14.6  �Multiple Imaging Modality

Multiple imaging modalities generate more informative and effective imaging in the 
diagnosis and treatment of a large number of diseases, particularly if the machine 
combines both functional and anatomical imaging modalities. By using multiple 
imaging instruments, researchers can track multiple molecular targets 

Fig. 14.1  T2-weighted in vivo MR images at the abdominal region. Images acquired at 1 hour 
after administration USPIO. Control mice (upper panel, a–c) and anti-Fas-induced hepatic apop-
tosis (lower panel, e–g). li liver, ki kidney, sp spleen, pa pancreas (Adapted from Yeh et al. [unpub-
lished data])

14  Visualization of Apoptosis: Annexin V Imaging
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simultaneously and obtain more accurate localization and precise expression of bio-
markers [46].

AnxCLIO-Cy5.5, the first magneto-optical nanoparticle, can be used as a bifunc-
tional tracer in MRI and fluorescence imaging [47]. The in vivo images demon-
strated that myocardial T2 signals of AnxCLIO-Cy5.5 were significantly lower in 
the mice receiving transient coronary artery (LAD) occlusion, and fluorescence tar-
get to background ratio was significantly higher when compared to the controls 
[48]. In addition, annexin V-conjugated quantum dots with a paramagnetic lipidic 
coating (Gd-DTPA) for MRI and fluorescent imaging showed high specificity for 
detecting apoptotic cells [38, 49].

As an alternative to MRI/optical imaging, nuclear/optical imaging was also 
developed for the detection of apoptosis. Zhang et al. evaluated 111In-labeled annexin 
A5-conjugated core-cross-linked polymeric micelles (CCPM) for micro-single-
photon emission tomography/computed tomography (μSPECT/CT) and fluores-
cence molecular tomography (FMT) imaging in various disease models including 
tumor apoptosis, hepatic apoptosis, and inflammation. [50] [51]. Zhang et al. pro-
vided the clue that multiple imaging techniques should be advantageous in assess-
ing and validating early diagnosis and therapeutic responses in diseases associated 
with apoptosis.

14.7  �Conclusions and Perspectives

Over the past two decades, there have been many tracers proposed by using differ-
ent modalities for apoptosis imaging, but none of them yet has achieved fully the 
validation for the differential localization or biochemical cellar progression of apop-
tosis. In this review, we focus on imaging agents conjugated with annexin V by 
using different imaging modalities such as single-photon emission computed 
tomography (SPECT), positron emission tomography (PET), optical imaging (OI), 
and magnetic resonance imaging (MRI). Each modality allows for the in vivo non-
invasive detection of apoptotic cells and cell products. Not surprisingly, multimodal 
imaging, combining two or more of these techniques (PET/MRI or SPECT/CT or 
optical/CT), will become a key player for basic and translational medicine in 
humans and animals in the future, despite the challenges when considering acquir-
ing and combining nonredundant images as well as imaging time, throughput, and 
cost of technology.

However, for the development of apoptosis-detecting imaging agents, there are 
several concerns that should be taken in mind such as the pharmacokinetic/pharma-
codynamics of new agents, signal to background ratio in the abdominal region, and 
differentiation of apoptosis and necrosis. Consequently, we believe that all of these 
factors will be integrated and clear obstacles to introduce a successful apoptosis 
imaging agent.

S.H.-H. Yeh et al.
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