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Abstract Tissue Engineering consists of cells, a scaffold and cytokines.
Decellularization represents the removal of cells from tissues or organs. Recently,
decellularized tissue has been investigated as a scaffold for tissue engineering, ter-
med decellularized tissue engineering. Importantly, the decellularized organ retains
its original structure, which is then used as a template for organ construction. The
decellularized organ also retains the tissue-specific extracellular matrix. Therefore,
decellularized tissue can be used as a matrix to provide a suitable microenvironment
for inoculated cells. Based on these concepts, the reconstruction of tissues/organs
with decellularized tissue/organ has been attempted using decellularized tissue
engineering. In this chapter, we introduce the typical methods used, history and
attainment level for the reconstruction of specific tissues/organs. First, the different
decellularized techniques and characteristics are introduced. Then, the commonly
used analysis methods and cautionary points during decellularization and recon-
struction with decellularized tissues/organs are explained. Next, the specific methods
and characteristics of decellularized tissue engineering for specific tissues/organs are
introduced. In these sections, the current conditions, problems and future work are
explained. Finally, we conclude with a summary of this chapter.
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ECM  Extracellular matrix
ESRD End-stage renal disease
GA Glutaraldehyde

HC1 Hydrochloric acid
MSCs Mesenchymal stem cells
PTFE Polytetrafluoroethylene
SDS  Sodium dodecyl sulfate

1 Introduction

Tissue engineering was propounded by Langer and Vacanti (1993) about two
decades ago. The concept was to construct tissues by combining cells, scaffolds,
and cytokines. Recently, the use of decellularized (DC) tissues as a scaffold for
culturing cells or as a template for organs has been the focus of research. DC-tissues
are obtained by removing cells from tissues that consist of an organ-specific
extracellular matrix (ECM). Therefore, DC-tissues are expected to be an effective
scaffold that has suitable components for the construction of tissues. In addition,
DC-organs are also expected to be effective templates for the construction of organs
because they retain their original three-dimensional structure. The seeding of cells
to DC-tissues or DC-organs is termed “recellularization”. Currently, the recon-
struction of various tissues or organs by the recellularization of DC-tissues or
DC-organs is being investigated.

Decellularization techniques can be divided into two categories: chemical agents
and physical treatments. Table 1 shows the major agents/treatments of each
decellularization mechanism and their characteristics (derived from Crapo et al.
(2011) and summary of this chapter). Decellularization of tissues or organs is
performed by using one agent/treatment or combining agents/treatments. In addi-
tion, the procedures for using chemical agents follow a pattern, for example, per-
fusion via blood vessels, or soaking on orbital shaker. The procedure depends on
the structure or characteristics of each tissue/organ (Shirakigawa et al. 2012). The
important characteristics and behaviors that should remain after decellularization
depend on the target tissue/organ. Therefore, different methods of decellularization
are used for different tissues/organs.

To date, DC-blood vessels, heart (containing heart valves), cartilage, liver, lung,
adipose, dermal, kidney, tendon, nerve, and pancreas have been reported. The
search results with “PubMed” are shown in Fig. 1. “Decellularized” and each
organ/tissue name (such as “decellularized vascular/vessel” or “decellularized
heart””) were used as keywords for the search. Studies reporting decellularization are
shown in this distribution. Although decellularization can be performed in any
tissue/organ, the tissues/organs usually require reconstruction as a scaffold.
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Table 1 Variation of decellularization agents

Agent Mechanism Characteristics
Chemical agents
Acid and bases | Denature proteins Used for solubilization of DC-tissue
Detergents Forms micelle with phospholipid Difficult to remove from the tissue
“cell membrane”
Ionic Widely used for decellularization
detergents Most powerful detergent for
e.g. sodium decellularization
dodecyl sulfate Associated with ECM, difficult to
(SDS) remove
Non-ionic Widely used for decellularization,
detergent but weaker than ionic detergents
e.g. Triton Perfect decellularization by Triton
X-100 X-100 is difficult
Zwitterionic Not commonly used
detergent Low power detergent for
e.g. CHAPS decellularization compared with
Triton X-100 or SDS
Organic Affinity for lipids Usually used for adipose
solvents decellularization
e.g. Acetone Sometimes used for sterilization
e.g. Alcohols
(ethanol)
Enzymes Catalyzes the hydrolysis of Nuclease is a poor decellularization
e.g. Nuclease ribonucleotide and agent
(DNase, deoxyribonucleotide chains Usually used with other detergents
RNase) Severs peptide bonds Trypsin is a poor decellularization
e.g. Trypsin agent
Damages the ECM
Physical treatments
Freezing and Ice crystals disrupt cell Ice crystal formation may disrupt
thawing membranes ECM structure
High pressure Bursts cells and removes the cells | Can disrupt ECM structure

Derived from Crapo et al. (2011) and a summary of this chapter

Fig. 1 Distribution of papers 1% 1% W Vascular or Vessel
studying DC-tissues or organs "7 B Heart
(based on a PubMed search; W Cartilage
date of search: 23 August B Liver
2016). The key words were = Lung
“decellularized” and each )
organ/tissue name. The total = Adipose
number of papers was 1657 B Dermal
B Kidney
1 Tendon
m Nerve
= Pancreas

= Solbilized
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Each organ has a unique structure that performs a specific function, and this is
important when evaluating which methods should be used for each tissue/organ.
However, some basic methods of decellularization are common. First, this review
will describe the common analysis methods and important points of decellular-
ization and recellularization. Then, we focus on each tissue and organ in order and
important points regarding each tissue/organ will be explained.

2 Common Analysis Methods and Cautionary Points
During Decellularization and Recellularization

The method of decellularization depends on the target tissue/organ characteristics.
However, some basic methods are common to all tissue/organ decellularization.
These methods can be divided into three categories.

e Perfect cell removal
e Remaining tissue/organ-specific three-dimensional structure
e Remaining tissue/organ-specific ECM components.

Here, we introduce the widely used methods. First, histological evaluation,
especially hematoxylin and eosin staining, is usually performed in most studies of
DC-tissue/organs. Hematoxylin and eosin stains cell nuclei and other cell compo-
nents purple and pink, respectively. Therefore, the above three points can be
evaluated qualitatively by comparing the staining tissue/organ before and after
decellularization.

Second, DNA content as an index of cell removal is widely used for quantitative
analysis. The ideal value of DNA content of DC tissue was reported to be <50 ng
dsDNA per mg ECM dry weight (Crapo et al. 2011), although, evidence for this
was not shown. However, another study reported that DNA content should be
evaluated based on wet weight (Mazza et al. 2015). If the dry weight is used, the
value will be affected by the weight of cells because the tissue/organ weight is
changed by cell removal during decellularization. We have measured the wet and
dry weight of rat native/DC-liver right lobe and evaluated the water content ratios
from these values. The water content of native liver was about 70%. However, the
water content of DC-liver was greater than 99%. These results suggested that the
dry cell weight was about 30% of the wet weight and the dry ECM weight was less
than 1% of the wet weight. Therefore, the weight of cells can affect the dry weight
of the target tissue/organ. Therefore, the wet weight should be used for quantitative
analysis. By contrast, Lee et al. (2014) reported the ratio of remaining DNA in
DC-liver versus that of native liver. They suggested that the remaining 3—4% DNA
in the DC-tissue/organ was not a problem. Although the standard for analysis of
DNA content is yet to be determined, the quantitative analysis of decellularization
is important.
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Once cells have been removed by decellularization, it is important that the ECM
should remain. The ECM mainly consists of collagen fibers and proteoglycan
complexes. Therefore, collagen and glycosaminoglycan are often evaluated as
typical components of collagen fibers and proteoglycan complexes, respectively.
These are sometimes evaluated quantitatively using an evaluation kit (Methe et al.
2014), or using qualitative immunostaining methods (Uygan et al. 2010). The ideal
values of collagen and glycosaminoglycan have not been reported. Even if the value
decreases by decellularization, if it will not affect the organ function or construc-
tion; therefore, the values are not critical. Furthermore, the specific components of
each tissue/organ are evaluated. For example, collagen IV and laminin in the kidney
(Peloso et al. 2015). In addition, each organ-specific structure is evaluated, such as
the blood vessel network in the liver and alveolar size in the lung.

Recellularization of DC-tissues/organs will be performed if necessary. The cell
adhesion and histological analysis of recellularized tissue are commonly evaluated.
Then, further evaluations of functions are performed depending on the specific
organ function such as the pumping movement in the heart and gas exchange in the
lung. In summary, following the common analyses of DC-tissues/organs, further
analyses are required for each tissue/organ. Next, we discuss some cautionary
points during DC and recellularization.

First is the time from harvest of the tissue/organ to the finish of decellularization
and sterilization. When reconstruction of the tissue/organ is performed using
DC-tissue/organ, the length of time from harvest of the tissue/organ to the finish of
decellularization and sterilization directly affects the time until the constructed
tissue/organ can be administered to the patient. Long-term decellularization can
denature or reduce the resolution of the ECM of the DC-tissue/organ. Furthermore,
if the time is prolonged, a risk of contamination is increased and the cost for
construction of the tissue/organ is increased.

Second, the washing process is important because the chemical agents used for
decellularization are cytotoxic. The DC-tissue/organ should be washed before use
as a scaffold for cell culture or transplantation. The washing process is usually
performed for a few hours or days, which is the same or longer than that of
incubation with the decellularization agent.

Third, the circulation system is important. During decellularization and recellu-
larization, some solutions should be used sequentially. The circulation system is
built by combining pumps and tubes, and is usually developed by each researcher
based on their specific requirements and therefore, they are not standardized. In some
organs, air bubbles in the flow solution can disrupt organ structures such as the
vascular network in liver. Therefore, the flow solution should be continuous, and air
vents should be contained in the circulation system when sensitive organs are used.

Fourth, stability of the flow solution speed or flow pressure in the tissue/organ is
very important to maintain the structure of the DC-tissue/organ. Circulation of a
solution at a high speed may cause the collapse of internal structures of the
DC-tissue/organ. In addition, control of the speed of circulating culture medium is
important especially during cell seeding because it affects cell adhesion.
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Furthermore, the seeding process and conditions should be optimized, e.g. the type
and number of seeded cells, the seeding method such as via the artery, and the
period until restart of the culture medium circulation after cell seeding.

Finally, the sterilization of DC-tissues/organs is important for cell culture or
construction of the tissue/organ for transplantation. Bacterial growth in
DC-tissues/organs should be avoided during decellularization and recellularization.
Therefore, antibacterial agents are often added to the circulating solution such as
washing solution. In addition, the sterilization procedure is sometimes performed
before transplantation or cell seeding. However, sterilization can damage the ECM
of DC-tissues/organs. For example, gamma irradiation and peracetic acid can
denature proteins. Therefore, the sterilization procedure should be selected
depending on the organ characteristics. Based on the above points, the decellu-
larization and recellularization procedure should be performed under mild condi-
tions. In the Sect. 3 (3.1-3.12), we focus on specific tissues/organs and explain their
background, structure, decellularization, and recellularization processes. In addi-
tion, some recent studies are introduced. The strain, decellularization method,
tissue/organ specific evaluation except common analysis and future works are
shown and summarized in each table.

3 Decellularization of Various Organs

3.1 Blood Vessels

Background

Injury of blood vessels due to accident or illness requires reparative surgery.
Autografts are sometimes used, but these processes also cause the injury to the
normal tissues and the limited with the range of uses. Thus, it is not considered a
suitable treatment approach. Injured blood vessels are sometimes reinforced by
stents. However, stents treatment has a limited range of application. Therefore,
artificial blood vessels are required for clinical treatment. Each year, 1.4 million
patients in the USA need arterial prostheses (Hasan et al. 2014).

Artificial blood vessels are the oldest artificial organ. Large artificial blood vessels
(inner diameter (ID) > 6 mm) were developed using synthetic polymers such as
Dacron and polytetrafluoroethylene (PTFE). These Artificial blood vessels are good
and have long-term patency for clinical treatment (Conte 1998). However, small
(narrow) artificial blood vessels (internal diameter; ID < 6 mm) with suitable func-
tion have not been developed. Retaining patency in these vessels is difficult.
Furthermore, artificial blood vessels consisting of synthetic polymers cannot replace
native tissue. The ID of blood vessels in children should increase with growth, but this
does not occur with synthetic artificial blood vessels. Conte (1998) reported “The
‘ideal’ vascular graft would be characterized both by its mechanical attributes and post
implantation healing responses”. Given the economic considerations, low cost and
long-term durability are also important issues. Therefore, the development of
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tissue-engineered artificial blood vessels to replace native tissues is required.
Currently, materials such as cell-seeded synthetic materials, biodegradable polymers,
cell sheets, and biopolymer are being studied. An example of biopolymer based
artificial blood vessels that is close to clinical application is discussed. Sugiura et al.
(2016) reported that 50:50 Poly (1-lactide-co-E-caprolactone) is allowed to flow into a
glass tube and lyophilized. Then, the tube was coated with polylactic acid by elec-
trospinning. The obtained tube was 3 mm in length and transplanted into mice for
8 weeks by infrarenal aortic interposition with microsurgery. Endothelialization and
cell invasion were observed, but how to replace the native tissue in long term is being
evaluated. However, products with sufficient function have not been developed.
Another issue is that mechanical strength decreases with time by biodegradation.
Therefore, the balance between biodegradation and maturation of blood vessels is a
problem. However, when a DC-blood vessel is used, biodegradation is not necessary
because it is an original basic structure.

Structure of blood vessels

The structure of blood vessels is shown in Fig. 2. The internal surface is covered
with endothelial cells that provide antithrombogenicity. The medium layer consists
of smooth muscle cells and controls the expansion and shrinkage of blood vessels.
The ECM fixes the layers between the internal surface and medium layer.
Mechanical strength is an important characteristic of blood vessels. It is determined
in two directions, circumferential and longitudinal tensile strength. However, the
values are dependent between studies.

Decellularized blood vessels

It is important to develop small artificial blood vessels. When scaled up from animals
to humans, the size of vessels should be carefully considered because although the
diameter is similar between species the length is different in humans. There have
been many reports about DC-blood vessels (Moroni and Mirabella 2014; Mahara
et al. 2015; Umashanakar et al. 2016). The mechanical strength of DC-blood vessels
is important when used as a scaffold for the construction of blood vessels. However,
the structure is a simple straight tube. Therefore, the decellularization methods used
are common and include the use of flowing detergent and physical treatments such as
high hydrostatic pressure. After decellularization, recellularization is usually per-
formed using DC tissue engineering. Since, cells flow in the blood, so flowing cells
can attach to the surface of DC-blood vessels indicating recellularization may not be
necessary. The products made from synthetic polymers such as Dacron and PTFE
are not recellularized. Therefore, recellularization might not be necessary for small
artificial blood vessels. A trend of recent studies is non-seeding, which provides

Endothelium L
Tunica intima
Internal elastic tissue

External elastic tissue

Smooth muscle . .
Tunica media

_»~————Tunica adventitia

Fig. 2 The structure of blood vessels
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anti-thrombogenicity and improvement of cell adhesion. Table 2 summarizes the
findings of three studies.

These studies used interesting techniques. Mahara et al. (2015) reported the
decellularization of ostrich carotid artery using a non-detergent method. This
material is very interesting because the ostrich carotid artery is narrow, long and
straight without branching. Blood vessels usually have many branches. If the
branches are tied to form a straight scaffold, the knot will prevent the smooth flow
of blood and coagulation may occur. Therefore, the use of a straight blood vessel
without unexpected branches is important for obtaining an ideal scaffold. They
showed the long-term patency of the transplanted DC-artery using a porcine
experiment. The advancement of this research for clinical use is expected.
Umashanakar et al. (2016) proposed the use of DC-blood vessels as a patch for
treatment of a blood vessel hole. This method is expected to be used for a wide
variety of areas including accidents during surgery. The development of this patch
is expected. Gong et al. (2016) suggested that mechanical strength was decreased
during decellularization treatment. Therefore, they coated DC-blood vessels with a
nanofibrous material using electrospinning to improve its strength. Using suitable
material for specific role in association with other materials is a good idea. In these
studies, recellularization was not performed.

Future work

Tissue-engineered artificial blood vessels should have anti-blood clotting property
and mechanical strength. To achieve these objectives, artificial blood vessel should be
sufficiently endothelialized and have an elastic force similar to the native tissue. The
perfect replacement of ECM of DC-vessels by native cells and tissue will hopefully
achieve these objectives. Collagen is the main constituent of ECM and is a trigger for
coagulation. Therefore, the use of pre-endothelialization or anti-blood clotting coating
for complete endothelialization is necessary for clinical use. Furthermore, the
long-term stability of endothelialization is needed. The mechanical strength of
DC-blood vessels is expected to be close to the strength of the original, so the hope for
its use as a scaffold for the construction of blood vessels is high.

3.2 Heart Valves

Background

In Germany, 29,672 heart valve surgeries were performed in 2013, and the patient
number is increasing globally (Theodoridis et al. 2016). Currently there are two
basic types of artificial heart valve products: mechanical heart valves and biopros-
thetic heart valves. Both have advantages and disadvantages. Mechanical heart
valves are made of artificial biomaterials (mainly pyrolytic carbon) that allow them
to be used for a lifetime, but patients are treated daily with Warfarin, an anticoag-
ulation medicine. In addition, the level of the medicine is checked more than once
per month. Bioprosthetic heart valves are made of porcine aortic valves or bovine
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Ventricularis

\ Endothelial cells

Fig. 3 The structure and characteristics of heart valves. a Images of the aortic valve in open and
closed position (from the aorta). b Aortic valve histology emphasizing trilaminar structure
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pericardial xenografts. These are treated with glutaraldehyde (GA). The GA treat-
ment devitalizes and sterilizes tissues and also reduces tissue immunogenicity
(Roosens et al. 2016). Patients receiving transplanted bioprosthetic heart valves have
to take Warfarin for the first few months, but the valves suffer from calcification and
have to be transplanted again 10-20 years later. Therefore, the development of a
novel heart valve that can be used for a lifetime without Warfarin is desired.

Structure of heart valves

The structure and characteristics of heart valves are shown in Fig. 3. As shown in
Fig. 3b, the surface of the heart valve consists of endothelial cells. The internal
middle layer consists of interstitial cells. The heart valves perform repetitive
opening and closing movements many times during lifetime (Fig. 3a). Therefore,
durability is important.

Decellularization of heart valves

Mechanical grafts require mechanical strength and biocompatibility when used for
heart valves. However, the endothelialization of the surface is needed for
anti-coagulation. Recent studies are shown in Table 3.

The commonly used detergents are not powerful for decellularization. Although
the decellularization of heart valves is thought to be difficult because of its internal
vascular network, but reports suggest all cells can be removed. However, biopros-
thetic heart valves, which retain some cells, are widely used. Therefore, the complete
removal of cells may not be important. The disadvantages of mechanical valves are
anti-coagulation and for bioprosthetic valves it is prolonging the effective application
period by anti-calcification. DC-heart valves are expected to resolve these problems.
Therefore, characteristic analysis of DC-heart valves should include anti-coagulation
and anti-calcification. Some studies have reported the clinical use of DC-heart valves.
In these studies, recellularization was not performed. The endothelialization of
DC-heart valves is thought to occur after transplantation in vivo. Mechanical valves
and bioprosthetic valves were not endothelialized but have been used in clinical
treatment. Therefore, endothelialization before transplantation may not be important.
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Table 3 Recent studies on DC-heart valves
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Strain Decellularization Sterilization | Recellularization Specific
(reference) evaluation
Porcine (Ota | 80% PEG for 68 (100 kGy PERV and al, 3-Gal | Hyperacute
et al. 2007) h — 100 kGy gamma gamma were analyzed by rejection
irradiation — 70 U/mK | irradiation) | PCR evaluation
DNase for 48 h Transplanted in rats | Hemodynamic
and dogs functional
calcification was evaluation
determined Effect of gamma
irradiation to
collagen
Human 0.5% SDC, 0.5% SDS Not shown | Transplanted to Provide further
(Cebotari for 36 h patients data and
et al. 2011; Analysis of peak follow-up of
Sarikouch gradient by MRI size | transplanted
et al. 2016) growth with child patients
growth
Porcine 0.5% Triton X-100 for | 7.5% iodine | SDS quantification In vivo testing in
(Theodoridis |24 h — 0.5% SDS for solution for | by uniaxial tensile large animals
et al. 2016) 24 h 5 min test porcine
aorta-derived
endothelial cells
were seeded onto
cusps and
biocompatibility was
analyzed
Porcine 1% Triton X-100 and Not shown | Coated with Evaluation of
(Zhou et al. 0.05% 10 mg/ml endothelialization
2015) trypsin — 0.2 mg/ml 20 kDa PEG, in vivo,
DNase and 20 mg/ml 1 mg/ml RGD differentiation
RNase for 1 h peptide and under shear stress
1000 pg/ml VEGF
Endothelial
progenitor cells were
seeded and

adhesion/growth
were analyzed

RGD Arg-Gly-Asp, VEGF vascular endothelial growth factor, PERV vascular endothelial growth factor,
PEG polyethylene glycol

Future work

The structure of heart valves is simple, therefore, the clinical application of artificial
heart valves is hoped for in the near future. To improve the current treatment, the
long-term (more than 20 years) stability of endothelialization and mechanical
strength should be evaluated. To achieve this, both the endothelialization of the
surface but the replacement of native tissues in the middle layer of heart valves may
be necessary to construct a complete heart valve. If this can be achieved, the heart
valves will grow in conjunction with the growth of a child to adulthood.
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3.3 Heart

Background

Heart disease is the leading cause of death in the USA and throughout many
advanced countries (Sanchez et al. 2015). Although the gold standard treatment for
end-stage heart failure is still heart transplantation through surgery, the shortage of
donor organs is a severe problem. Even if a matching donor is found, there are risks
of postsurgical complications (Zia et al. 2016). As with any other organ trans-
plantation, patients are treated with long-term immune-suppressants that cause a
variety of side effects including immunodeficiency, hypertension, diabetes and renal
insufficiency. Therefore, 24% patients die within 5 years after transplantation. To
solve these problems, the development of tissue-engineered hearts is required.

Structure of the heart

The heart mainly consists of muscle and blood vessels as shown in Fig. 4. Its
function is to pump blood throughout the whole body and its internal surface is
composed of endothelial cells that allow blood cells to adhere. The internal middle
layer consists of high-density muscle except in the heart valves.

Decellularization of the heart
To construct an artificial heart, DC-tissues should retain the original
three-dimensional structure as a scaffold for cell adhesion. Endothelial cells should
attach and cover the internal surface. Muscle cells should invade into the middle
layer and grow. To perform its functions, the muscle cells have to beat strongly and
steadily. A summary of recent studies is shown in Table 4.

SDS and Triton X-100 are usually used for decellularization of the heart. These
solutions enter the heart via the ascending aorta. The heart muscle contains a very
narrow vascular network; therefore, detergents cannot be used with this network

Superior vena cava
Aorta

Pulmonary artery

Pulmonary artery
(to lungs)

(to lungs)

Pulmonary veins % > Pulmonary veins
(From lungs) (from Iungs)

Left atrium

Right atrium
Papillaly muscle

Right ventricle Left ventricle

Inferior vena cava

Fig. 4 Structure of the heart. Arrow shows the flow of blood
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because detergents attack the middle layer cells of the heart wall by diffusion from
an internal surface. Thus, a powerful detergent for decellularization is required.
Furthermore, Triton X-100 is used to remove remaining SDS or cell debris inside
the DC-matrix.

Recellularization of DC-heart

The heartbeat is maintained by heart muscles. Therefore, recellularization with
cardiomyocytes is necessary for reconstruction of the heart. To develop sufficient
muscle strength, a high cell density and culture of muscle inside the DC-heart are
important. Furthermore, electrical activation is required during recellularized
DC-heart culture to improve the strength of seeded cardiomyocytes. Although Ott
et al. (2007) have performed electrical activation of heart cells during a medium
circulation culture. Kitahara et al. (2016) suggested that differentiation of mes-
enchymal stem cells (MSCs) to heart muscle or endothelial cells was not sufficient
without electrical activation. Although circulation culture systems containing an
electrical activation system are complicated, this is required for the construction of
functional muscle. Furthermore, the placement of each suitable cell to a suitable
place is difficult. Kitahara et al. (2016) also suggested that the transmission of
electric signals will not be successful if certain cells such as immature cells (e.g.
myoblasts) are seeded and differentiated inside the DC-heart. Recent studies
reported the use of heterotopic transplantation. However, coagulation occurred after
the transplantation because complete endothelialization was not performed, and
long-term transplantation with blood flow was not achieved.

Future work

The improvement of muscle strength of recellularized DC-heart is necessary to
construct an alternative organ for the heart. To date, only a few of the adult heart
functions gave been reported (Ott et al. 2008). To improve the muscle strength of
recellularized DC-heart, high-density placement of muscle cells is important. In
addition, electric activation is also important for training the constructed muscle.
A pacemaker might be required to maintain a steady heartbeat. During the recel-
lularization of DC-heart, uniform recellularization is required in each heart atrium
and cardiac chamber. Furthermore, the complete endothelialization of internal
surfaces is important for anti-coagulation in the heart. These studies can be per-
formed with animal models, but when the scale-up will be performed for humans,
much higher cell numbers will be needed. The adult human heart contains 2 x 10°
cardiomyocytes (Smit and Dohmen 2014). The growth and maturation of seeded
cells inside the DC-heart during organ culture will be important. However, the
construction of a bioreactor system to train muscle to achieve the required blood
pressure and flow is important for recellularized DC-heart cultures. In addition, a
reinforcement product such as a heart cell sheet or reinforcement patch with
DC-heart powder may be useful alternatives to whole heart products.
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3.4 Liver

Background

There are about 27,000 deaths annually in the USA due to liver disease (Yagi et al.
2013). End stage liver diseases including cirrhosis, chronic viral hepatitis, hepa-
tocellular carcinoma, injuries from alcohol abuse, or even inborn metabolic disor-
ders, often lead to demands for organ transplantation (Sabetkish et al. 2015).
However, 20% of patients die on the waiting list due to a shortage of organ donors
(Mazza et al. 2015). The liver is a regenerative organ and even if 70% of the liver is
harvested, the donor can survive (Shirakigawa et al. 2013). Often, a living liver
transplantation is performed in the clinic because of a cadaveric donor shortage.
However, this treatment has a potential risk of death for the donor, and therefore,
alternative treatments should be developed such as tissue-engineered liver
construction.

Structure of liver

The structure of the liver is shown in Fig. 5. The liver consists of millions hepatic
lobules, which are the minimum functional unit of the liver. Hepatocytes are the
main cell type involved in liver functions. The liver has a fine blood vessel network,
and hepatocytes require oxygen for their survival and function.

Decellularization of liver

Liver, composed of hepatocytes, has many functions and is the central organ of
metabolism. Because hepatocytes require oxygen, recellularization of hepatocytes
and construction of blood vessel networks are important for the construction of a
functional liver. A summary of recent studies is shown in Table 5.

Inferior vena cava

Proper hepatic artery

Portal vein
Common bile duct

T~ Sinusoids
Central vein J A //

;@ Central vein

Portal tracts (triads)

Bile duct
Hepatic artery branch ~ Portal triads

Portal vein branch

Fig. 5 Structure of the liver
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To construct a fine vascular network, the original three-dimensional structure of
the liver should be used as a scaffold. Therefore, chemical agents are used for the
decellularization of liver via the portal vein, the major blood vessel in the liver. The
vascular network structure was evaluated by forming a template of it with resin.
Previous reports observed an intact vascular-tree network. However, the quality of
the remaining structure is different between studies. At the macroscopic levels, they
show similarities to the original structure. However, the liver requires oxygen, so
the thickness of the hepatocytes aggregate that can survive is a maximum of 50 pm.
The remaining vascular network structure should contain small diameter vessels for
use as a template in DC-liver. Thus, the ideal distance between blood vessels is less
than 100 um. Even if the cell growth (regeneration of liver) occurs during the
culturing of recellularized DC-liver or transplantation in vivo, the length between
blood vessel structures in the template (i.e. DC-liver) should be less than 1 mm
(Shirakigawa et al. 2013).

Recellularization is necessary for functional liver construction because hepato-
cytes perform the main functions of the liver. For recellularization, various liver cells
were used (Table 5). After recellularization of DC-liver with hepatocytes, liver
specific functions were determined as follows: albumin synthesis as an index of
protein synthesis ability, cytochrome P450 (CYP) activity as an index of drug
metabolism ability and urea secretion. Albumin synthesis or urea secretion was
reported in recellularized DC-liver cultures. Therefore, drug metabolism functions
such as CYP activity should also be analyzed in recellularized DC-liver. Currently,
the function of recellularized DC-liver is reduced compared with native liver. An
improvement in seeded cell density is expected. It is assumed that the minimum liver
weight required to support a patient with acute liver failure is approximately 5-10%
of total liver weight. Therefore, about 10 billion human cells, or 50—100 million rat
cells must survive and function in the reconstructed liver (Caralt et al. 2014).

Heterotopic transplantations of porcine and rat DC-liver were reported.
However, coagulation occurred inside the transplanted graft in the liver. In addition,
long-term transplantation with blood flow was not achieved. Therefore, the perfect
endothelialization is needed.

Future work

Hepatocytes require an oxygen supply for survival and function indicating a
functional vascular network is necessary. Therefore, endothelialization is required
in DC-liver. The inoculation of a high cell density should improve liver specific
functions of DC-liver. However, to achieve a high cell density similar to native
numbers in vivo is difficult. Cells need to be seeded at a low density of about 1/10
that in vivo. Then, reconstruction to the in vivo cell density should be occur
following cell growth and neo-vascularization during recellularized DC-liver cul-
ture or transplantation in vivo. Additionally, it would be useful to have bile
secretion in DC-liver. In the future, it is hoped reconstructed liver grafts are used for
orthotopic transplantation. The ECM containing ratio of the liver is very low
compared with other organs and the mechanical strength of DC-liver is weak; thus,
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it might be difficult to maintain abdominal pressure. Reinforcement of the con-
structed graft may be needed.

3.5 Lung

Background

In the USA, nearly 30 million patients currently suffer from end-stage lung disease,
with 12.1 million adults affected by chronic obstructive pulmonary disease, the
fourth leading cause of death (Song et al. 2011). Lung transplantation remains the
only definitive treatment, but donor shortage is a severe problem. Therefore, the
construction of an alternative donor lung is required.

Structure of lung

The lung function is to exchange gas. Oxygen is supplied from the atmosphere to
blood, and carbon dioxide is released from the blood to the atmosphere. To achieve
this, the lung has fine vascular networks and many alveoli as shown in Fig. 6. The
surface of an alveolus consists of epidermal cells and the lung can shrink and
expand with the movement of the diaphragm.

Decellularization of lung and recellularization
The lung is a special organ because it has three phases: gas, liquid, and solids that
exchange gas between the blood and atmosphere. Cells are usually cultured in
liquid culture medium, but epidermal cells on the surface of alveolus have to be
exposed to the atmosphere. The three-dimensional structure of the airways should
be retained before and after decellularization of the lung. Therefore, the solution
circulation system for decellularization has to contain a channel for retaining the
airway structure including fine structures such as alveoli and the vascular network.
Therefore, the detergent method is usually used for decellularization. The solutions
usually enter the lung via the lung artery, but the airways can also be used.
A summary of four recent reports are shown in Table 6.

As mentioned above, because oxygen should be supplied from the atmosphere to
blood in the lung, the construction of blood vessels and alveolar surfaces is
important. Therefore, the seeding and culture of epidermal cells and endothelial

Trachea
Pulmonary artery Bronchioles .
2= / 7oy ) Veins Artery
. A )/ Bronchi
Pulmonary vein /g | /17 N\
- ' A Alveolus
/ Artery
I|
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| & ~d
/,- I""x..‘ __ [Type I alveolar cell
Right lobes Left lobes | Veins Type II alveolar cell

Fig. 6 Structure of the lung
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cells is necessary. After recellularization of DC-lung, specific analyses are per-
formed: comparison of alveolar size and number before and after decellularization,
and evaluation of gas exchange of oxygen and carbon dioxide. In addition, the fetal
cells or cell lines were seeded on airways instead of primary lung cells. The growth
ability of primary lung cells might be poor. Orthotopic transplantation for a few
days was reported, but the size of the transplanted recellularized DC-lung was
reduced by macroscopic observation (Song et al. 2011). The engraftment of
recellularized DC-lung is still difficult.

Future work

Functional lungs should perform gas exchange with breathing. To achieve this, there
are three important points: (1) no leakage of air from airways by epidermal cellular-
ization of the airways; (2) the constructed organ should have sufficient mechanical
strength for breath; and (3) blood can flow in the vascular network without clotting.
These points should be achieved before its clinical use. In addition, the long-term
stability and the homogeneity of constructed lung should be determined.

3.6 Kidney

Background

Chronic kidney disease (CKD) is a global public health issue with an estimated
prevalence of 8-16% worldwide. End-stage renal disease (ESRD) eventually
develops in 0.15-2% of patients with overt CKD annually, and renal replacement
therapy with dialysis or transplantation is required (Figliuzzi et al. 2014). Nearly 1
million patients in the USA live with ESRD, with over 100,000 new diagnoses
every year. Although hemodialysis has increased the survival of patients with
ESRD, transplantation remains the only available curative treatment. However,
donors are lacking. In addition, even patients that receive a transplanted kidney
from a donor, 20% of recipients experience an episode of acute rejection within
5 years of transplantation, and approximately 40% of recipients lose graft function
within 10 years after transplantation (Song et al. 2013). The development of
tissue-engineered kidney is required as a solution to these problems.

Structure of the kidney

The kidney filters the blood and creates urine to control fluid balance, and regulate
the balance of electrolytes. All the blood in our bodies passes through the kidneys
several times a day. The structure of the kidney is shown in Fig. 7.

Decellularization of kidney and recellularization
Kidney filters the blood plasma to form urine. Then, reabsorption is performed via
renal tubules. The kidney consists of two systems: blood vessels and urinary ducts.
A summary of recent studies is shown in Table 7.

Decellularization of the kidney is usually performed by passing the detergent
solution through the artery because the kidney structure is important for recon-
struction using the kidney as a scaffold. As a detergent, SDS is widely used for
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Fig. 7 Structure of the kidney

kidney decellularization indicating removing cells in the kidney is difficult.
Reconstruction of the kidney requires the construction of a blood vessel system and
urinary duct system. To achieve this, endothelial cells were seeded via the artery
and kidney cells were seeded via the urethra (Song et al. 2013). Another study used
stem cells seeded via the artery to allow the cells to differentiate in DC-kidney
(Guan et al. 2015). Currently, the construction of a blood vessel system and urinary
duct system is difficult. During orthotopic transplantation, coagulation occurred in
DC-kidney when the endothelial cells were seeded suggesting that the complete
construction of a vascular network system is required for the construction of a
kidney. When the recellularization of DC-kidney was performed with kidney cells,
creatinine or urea syntheses as kidney functions were evaluated. However, these
functions should be improved as an alternative to hemodialysis or kidney donors.

Future work

The complete construction of a vascular network is necessary because of the high
blood flow through kidneys. Kidney cells should be inoculated at a suitable area
and the construction of the urethra is required. The performance of kidney function
should be improved; however, functions such as filtration by the glomerulus or
reabsorption via the renal tubules will be difficult to achieve.

3.7 Adipose

Background

In plastic surgery, the construction of adipose tissue is valuable for reconstruction
and cosmetics. After resection for breast cancer, breast reconstruction requires
adipose construction of cm in size. Reconstruction can be achieved by allografts;
however, the allograft has to move with blood vessels. Therefore, the dermis or
muscle must be cut open. High biocompatibility synthetic materials such as clinical
silicon have been developed. However, atrophy occurs in 10% of transplanted
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patients and the shape of the transplanted material can change. In addition, although
the adipose tissue loses elasticity with age, artificial materials remain unchanged.
Therefore, the balance of the body changes with time. Recently, studies have
reported the injection of autograft adipose, obtained from the abdomen or thigh by
absorption of adipose. However, survival and shape control of injected adipose is
difficult. Thus, the development of tissue-engineered adipose is required.

Structure of adipose

Adipose consists of adipose cells, ECM, and a fine vascular network, which is
simple in structure. Adipose cells contain a fat reservoir, so the size of the cell
depends on the amount of fat.

Decellularization of adipose

A summary of recent reports of decellularization of adipose is shown in Table 8.
Adipose does not contain large blood vessels. Therefore, it cannot be perfused with
chemical agents via blood vessels. Thus, DC-adipose was obtained by repeated
freeze-thaw cycles and soaking in decellularized agent solution. The differentiated
ratio of adipose was increased when adipose-derived stem cells were seeded onto
decellularized adipose. The mixture of cells and DC-adipose is usually transplanted
subcutaneously, and the engraftment of the transplanted tissue is examined for
functional analysis. In addition, the density of the vascular network required for
engraftment of transplanted tissue is often performed. Oil red O staining of the
adipose is used for analysis of transplanted tissues.

Future work

Adipose tissue injection is performed in plastic surgery, but the survivability of
transplanted adipose obtained from the abdomen or thigh by absorption of adipose is
less than 50%. The survivability can be improved to 85-90% by injection of a mixture
consisting of adipose tissue and adipose-derived stem cells selected by centrifugation.
However, the reconstruction of a sufficient volume adipose is difficult using these
methods alone. These problems might be resolved by combining a scaffold such
DC-adipose tissue with adipose-derived stem cells. As a scaffold, it should be
effective for adipose construction because it will promote adipose-derived stem cell
differentiation. In addition, the formation of a vascular network using DC-adipose as
a scaffold will allow the survival of transplanted adipose. The improvement of sur-
vival rate of the transplanted tissue or the acceleration of adipose tissue formation
should be examined in the future. However, the control of its three-dimensional shape
may be difficult. Combining other materials such as synthetic biodegradable poly-
mers that become a gel in situ might allow its flexible formation.

3.8 Dermis

Background
The skin is our first line of defense against the outside world and provides a barrier
against physical and biological attack, moisture retention, thermoregulation or
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Fig. 8 Structure of the skin

excretion of waste products by sweating, as well as transmitting touch sensations.
The skin heals itself by natural reconstruction when lightly injured. However, larger
wounds may result in prolonged healing time complicated by infection or which
might not heal (Nyame et al. 2015). When the skin is destroyed over a large area, it
might be life threatening. Autografts remain the gold standard for the management
of large wounds. However, injuries such as large area burns cannot be treated with
autografting. In addition, when autograft treatment is performed, the surrounding
skin is injured forming a new wound. To resolve these problems, many bioproducts
have been developed to promote the healing of skin functions.

Structure of the skin

The skin consists of a subcutaneous bilayer formed by the epidermis and dermis as
shown in Fig. 8. The epidermis is 0.1-0.3 mm thick and mostly consists of ker-
atinocytes (about 95%). The dermis is tightly connected to the epidermis by a
basement membrane. The dermis consists of ECM and fibroblasts, and has a fine
vascular network connected to the subcutaneous tissue. The dermis contains nerves,
hair roots, sebaceous glands, and sweat glands.

Bioproducts and decellularized skin

In the tissue engineering field, Rheinwold and Green (1975) reported a method of
expanding keratinocytes in vitro and keratinocyte cell sheets are sold as a
tissue-engineered bioproducts (Epicel®, Genzyme Biosurgery, Corp., Cambridge,
MA, and Jace®, Japan Tissue Engineering Co. Ltd., Aichi, Japan). The protocol
uses a skin sample larger than 1 cm? isolated from the patient. Then, the ker-
atinocytes are isolated and cultured. After 2—-3 weeks, a sheet of cultured epidermis
measuring 1000 cm? is produced. However, this product only consists of the epi-
dermis. In a deep wound, the dermis is also injured and because the keratinocyte
cell sheet preparation requires the long-term culture of a patient’s cells with high
cost, this treatment is not suitable for acute injury.
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Allograft is another treatment after autograft. Allografts need to be sterilized to
avoid disease transmission. During sterilization, graft proteins are denatured killing
the graft cells. Therefore, this product consists of denatured human ECM and
another person’s dead cells. It can be used as a temporary alternative skin that
functions as a barrier. After transplantation, the allograft is slowly replaced by the
regenerating host tissue. Although it does not have a special function, low cost
production may be achieved because it is produced by the sterilization of human
skin. Another product, GammaGraft® (Promethean LifeSciences, Inc., Pittsburgh,
PA) is a ready-to-use, gamma-irradiated allograft.

Decellularized allograft products are also available. Allograft products contain
dead cells, which have no healing effect. Therefore, its function is similar to the
allograft product. Decellularization allows a space for the patient’s cells to invade,
and it can perform as a scaffold for the reconstruction of skin. AlloDerm® (LifeCell
Corporation, Branchburg, NJ) or Graftjacket® (Wright Medical Technology, Inc.,
Memphis, TN) are already available. Recently, MatrACELL® (LifeNet Health, Inc.,
Virginia Beach, VA) is a human DC-dermis product that uses a non-denaturing
anionic detergent (N-lauroyl sarcosinate) (Moore et al. 2015). Gentler decellular-
ization procedures should be developed. In addition, allogenic skin has been
developed, consisting of human cells and biomaterials such as collagen. For
example, Apligraf® (Organogenesis, Canton, MA) has a bilayer structure. The upper
epidermal layer is formed by promoting human keratinocytes (epidermal cells). The
lower dermal layer combines bovine collagen I and human fibroblasts (dermal cells),
which produce additional matrix proteins. However, these products do not contain a
vascular network, hair roots or sweat glands, and therefore can be improved.

Other products use xenografts or DC-xenografts. The most important benefit of
these products is that the material can be obtained in large quantities and with a
large size. Porcine xenografts are the most commonly used xenograft (Nyame et al.
2015). Xenografts act as a temporary barrier and decrease the healing time.
DC-xenografts might act as a template for the reconstruction of skin and may have a
function similar to DC-allografts if a suitable treatment is developed and performed.

Future work
Although many bioproducts have been developed for skin treatment, and clinical
studies have been reported for these products, the optimal procedure for each product
or treatment method has not been developed, and should be investigated in the future.
However, the high cost of these techniques is a disadvantage. Because these products
will be used to treat large areas, the cost should be reduced. New products of DC-skin
should follow one of two paths: (i) perfect skin that is identical to native skin that
functions immediately after transplantation, and does not require replacement by the
patient’s own skin; and (ii) a low cost skin with wide versatility that can be stored at
room temperature, and used as a template for the reconstruction of skin. This would be
invaded by the patient’s cells and help skin cell growth and neo-vascularization.
Currently, a recellularized DC-dermis is not available. The recellularization of
DC-dermis has advantages and disadvantages. An advantage is that seeded cells
may promote replacement with the patient’s cells or produce ECM if human
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fibroblast cells are also seeded. If a patient’s cells are seeded, the time to
replacement may be decreased. A disadvantage is the high cost of cell seeding,
culture processes for recellularization, and transportation or storage. After recel-
lularization and culture, the products should be used within a few days and
transported at 37 °C, or otherwise stored in a freezer to keep the seeded cells alive.
However, it may become a perfect skin immediately. Furthermore, the cell source is
a problem. For cells that are ready-to-use, identification of the patient immune type
or a highly efficient method for cell growth will be needed. To develop low cost
skin, DC-skin using xenografts may be useful compared with allografts. To
improve the function of DC-skin as a scaffold, some additional functions are
required such as promoting cell growth or neo-vascularization, and antibacterial
activity to decrease the risk of infections.

Finally, no products or studies have reported the reconstruction of nerves, hair
roots, sebaceous glands, and sweat glands, and this should be addressed in future
studies. In addition, the visual appearance of the reconstructed skin should be as
natural as possible to enhance the quality of life of the patients. Even if this raises
the costs, some patients will hope for a natural visual reconstruction.

3.9 Cartilage

Background

Aging population has increased the number of patients suffering from cartilage
disorders such as osteoarthritis, the most common joint disease in the USA,
affecting an estimated 27 million Americans (Bautista et al. 2016). Additionally, if
the cartilage is injured, self-repair is limited because it consists of dense ECM
without a vascular network. When the injury is small, treatments such as bone
drilling or autograft transplantation can be used. Bone drilling describes the drilling
of the subchondral bone to induce blood flow. The blood coagulates at the injured
cartilage area and becomes cartilage. However, the reconstructed cartilage is fiber
cartilage not hyaline cartilage. Autograft transplantation describes the harvesting of
a small rod of cartilage from an area that is not subject to strain from body weight
and that is then transplanted to the injured area. Using this method, the transplanted
cartilage is similar to the original cartilage, but its usable range is limited. However,
these methods cannot be performed in patients with a large injury. When the
healing of cartilage injury is difficult, an artificial joint might be transplanted.
However, the durability of artificial joints is limited to 10-20 years. Therefore, this
treatment is not suitable for young patients.

In the tissue-engineering field, tissue-engineered cartilage is available as Jack™
(Japan Tissue Engineering Co.). This method harvest a small cartilage sample from
the patient, then the chondrocytes are isolated and cultured in Atelocollagen gel for
four weeks. Furthermore, the proliferating chondrocytes with gel are transplanted to
the injured site. This method is a novel treatment. However, the healing time is
long, about 6-12 months is needed until the patient can walk. Thus, the develop-
ment of a new treatment method for the reconstruction of hyaline cartilage in a
short-term is required.



214 N. Shirakigawa and H. Ijima

Fig. 9 The structure of Articular surface
cartilage
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Structure

Cartilage overlaid on the subchondral bone consists of dense ECM (Fig. 9). The
superficial zone consists of collagen II fibers aligned in parallel to the articular
surface to resist shear stress, and the deep zone consists of the same fibers aligned
perpendicularly to the bone interface to absorb compressive loads. There is no
vascular network in cartilage.

Decellularized cartilage
A summary of recent studies about DC-cartilage are shown in Table 9.

Because there is no vascular network in cartilage, decellularization of cartilage is
usually performed by freeze-thawing or diffusion of detergents from the surface.
Some studies have used cartilage directly without chopping. Decellularization of
cartilage is often performed after chopping. The reason is that cartilage consists of
dense ECM and the diffusion of a detergent may be difficult. In addition, when it is
transplanted to the injured site, its shape may be controlled better when added as a
chopped sample. For recellularization, MSCs are widely used. The necessity of
recellularization is unclear, but the cartilage cells are needed to maintain the car-
tilage for a long time. However, the seeding density and method must be optimized.

Future work

When DC-cartilage is used without chopping, it might be used as a template for the
reconstruction of cartilage. If the original ECM exists, then reconstruction may be
achieved in a short time. However, the control of its shape to match the injured site
and the method of seeding cells inside the dense ECM will be difficult. The
decellularized chopped cartilage or solubilized DC-cartilage may be better for shape
control, but the construction of a three-dimensional structure will also be difficult.
Evidence for the promotion of reconstructed cartilage using DC-cartilage is needed.

3.10 Tendon

Background
Tendons connect bone and muscle. The most commonly affected tendons are the
finger and hand flexors and extensors, the rotator cuff, and the Achilles tendon. In
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Table 9 Recent studies of decellularized cartilage
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Strain Decellularization Evaluation Future work
(reference)

Pig Freeze-thaw four 3 x 107 MSCs/ml-sample In vivo implantation
tibiofemoral cycles — 0.125 U/ml were seeded and centrifuged

joints chondroitinase for at 400 x g for 5 min, then

(Bautista et al.

24 h — 0.1% SDS for

cultured and analyzed

2016) 24 h — 100 U/ml DNase and
1 U/ml RNase — 0.1%
peracetic acid
Human Triton X-100 for Mechanical and Long-term stability
nasoseptal 12 h — 90 U/ml DNase and biocompatibility testing and
cartilage 85 mg/ml RNase for 5 h structural/mechanical

(Graham et al.

2016

characteristics
Repopulated with
appropriate host cells
In vivo preclinical
animal model
experiments

Pig femoral

—80 °C and lyophilized for

Flow in silicone molds and

Hierarchical

condyles 24 h — freezer/mill — 2.5mM | lyophilized, crosslinked and organization of the
cartilage MgCl,, 0.5 mM CaCl, and sterilized via dehydrothermal | newly synthesized
(Rowland 50 U/ml DNase — homogenize | treatment tissue
et al. 2016) Sterilized in 70% ethanol for

15 min

8 x 10° MSCs/ml were

seeded

particular, acute Achilles tendon ruptures have an increasing incidence of 18 per
100,000 (Lovati et al. 2016). When injured seriously, movement of the connected
part is difficult, and self-repair is difficult. Large tendon damage needs to be
repaired using any tissue substitutes. Allograft transplantation is usually performed,
but there are disadvantages, such as slow incorporation into host tissues, potential
disease transmission, danger of infection, tunnel widening caused by immune
responses, delayed tendon-bone healing, and lower mechanical character (Dong
et al. 2015). In addition, both synthetic and biological scaffolds have been used in
studies, but a viable tendon substitute is not yet widely available for clinical
applications. Therefore, a tissue-engineered tendon should be developed.

Structure
Tendons consist of a low cell density (5%) of collagen fibers containing collagen I
(more than 90%) (Lovati et al. 2016).

Decellularized tendon
There are many reports about DC-tendons (Lovati et al. 2016). A summary of
recent reports is shown in Table 10.

The diffusion of detergent for the decellularization of tendons is difficult because
of the presence of dense collagen fibers. Therefore, freeze/thaw cycles are widely
used for the decellularization of tendons, and sliced tendons are sometimes used. The
sliced tendon is used to form a rod by “rolling up” the tissue. However, slicing can
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change its mechanical strength. A rabbit model is often used for the analysis of
tendon repair (Lovati et al. 2016). After transplantation, histological analyses and
biomechanical tests are performed (Pan et al. 2015). Results suggest that the
DC-tendon will be useful for tendon repair. However, it is not currently ready for
clinical use. Previous analyses were performed in animal models. For human clinical
use, the mechanical strength will be different. Therefore, an index of its strength for
clinical use should be developed. In addition, long-term stability analysis is required
and the role of DC-tendons should be determined during healing.

Future work

The promotion of tendon reconstruction of tendon is expected by the use of
DC-tendon as a template. However, the necessity of recellularization of DC-tendon
is still unclear. In addition, its mechanical strength and durability should be studied
further. Although tendon injury is not life threatening, it can reduce the quality of
life for patients. Its structure is very simple, so the quick development of recon-
struction techniques is desired.

3.11 Pancreas

Background

According to the World Health Organization, at least 285 million people worldwide
suffer from diabetes. While pharmaceutical interventions and insulin supplementation
are the most common treatment of diabetes, these do not represent a cure and can
potentially lead to long term complications (Goh et al. 2013). B-cell replacement
through islet or pancreas transplantation is the only therapy that can reliably
re-establish a stable euglycemic state (Peloso et al. 2016). However, transplantations
have a disadvantage of a severe donor shortage. To solve this problem, studies have
attempted to develop artificial pancreas using a machine to control blood glucose
levels in an ideal range by the injection of insulin based on monitoring of the blood
glucose level. Recently, the downsizing of machines and the stabile control of blood
glucose levels have been reported (Haidar et al. 2015). However, long-term stability is
still a problem. Therefore, a tissue-engineered pancreas might resolve these problems.

Structure

The pancreas contains endocrine and exocrine tissues. Endocrine islets contain
a-cells and B-cells, which produce glucagon and insulin, respectively that control
the blood glucose level. Although the pancreas consists of exocrine islets (more
than 90%), it is abnormalities of the endocrine islets that affect the patient’s life.
Therefore, reconstruction of the endocrine system should be developed.

Decellularization and recellularization

DC-pancreas might be used as a scaffold for the transplantation of islets that can
survive in vivo. A summary of recent studies of DC-pancreas are shown in
Table 11.
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Table 11 Recent studies of decellularized pancreas

Strain Decellularization Sterilization | Recellularization | Specific Future work
(reference) evaluation

Mice 0.5% SDS for Not shown |3 x 10’ MIN-6 | Vascular Optimization of
(Gohetal. |54 h — 1% Triton cells via portal structure recellularization
2013) X-100 for 15 min veinand 3 x 10" | AFM procedure

ARA42J cells via | Insulin
pancreatic duct gene

expression
Human 1% Triton X-100 12 kGy 2 x 10° human | Vascular Understanding
(Peloso and 0.1% gamma primary structure the mechanisms
et al. ammonium irradiation pancreatic double of interactions
2016) hydroxide solution endothelial cells | line between the
for 48 h — DNase perfusion | matrix and cells
and 0.0025% system Using optimal
magnesium cell for
chloride regeneration of
the endothelium
and islets

AFM atomic force microscope

The pancreas is a soft organ with a vascular network. Therefore, decellulariza-
tion of the pancreas is usually performed by detergents without physical treatment.
After decellularization, recellularization is required for full functionality. Either
pancreas cells or endothelial cells are seeded and cultured and then the vascular
density or insulin secretion is evaluated. However, the seeding of each cell type at a
suitable location will be difficult.

Future work

Previous studies have not reported an improvement of the mass transfer between
islets and blood because of the difficulty of constructing a vascular network. In
addition, the stabilization of transplanted islets in vivo is also a problem that needs to
be solved. Therefore, for transplanted islets to survive, the construction of a vascular
network is needed. DC-pancreas may be a suitable ECM for islets, but it is very soft.
A previous study reported that the kidney was used as a scaffold to construct pan-
creas (Willenberg et al. 2015). Furthermore, the reconstructed pancreas should be
strengthened to endure abdominal pressure. DC-pancreas might be achieved if a fine
vascular network can be achieved in the scaffold. Finally, by seeding each cell type
at each suitable location, the DC-pancreas function might be improved.

3.12 Others

Tissues and organs consist of cells and ECM. Therefore, the decellularization of any
tissue and organ can be performed in theory. However, the difficulty of decellular-
ization depends on the specific structure of each tissue and organ. A summary of
studies on the decellularization of other tissues and organs is shown in Table 12.
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As shown in Table 12, decellularization has been applied to bone and nerves. In
these tissues, the promotion of reconstruction might be achieved by decellularized
tissues containing the original ECM components and structure for use as a template.
If the efficiency of DC-tissues for reconstruction is shown, then other DC-tissues
may be studied further.

4 Solubilized Decellularized Tissues/Organs

Background

The survival, original function, and growth of isolated cells or transplanted cells
from tissues or organs can be difficult. The construction of an in vivo-like
microenvironment is required for such cells. The solubilization of DC-tissues/organs
will allow the collection of material for tissue culture or construction. However, it is
still unclear what factors affect cell differentiation, for example, physical specifica-
tions such as hydrophobic character, or ECM content.

Efficient cell differentiation is a problem in the tissue engineering field. It was
reported that differentiation can be promoted by culturing cells on specific ECM
(Nakamura and Ijima 2013). Solubilized DC-tissues/organs might be used as a
potential scaffold for differentiation. In addition, for solubilized DC-tissues/organs,
the shape of the material may be controlled by coating or gelation of the
three-dimensional structure, which might be useful for cell culture material and
construction of the tissue/organ. A summary of recent studies of solubilized
decellularized tissues/organs is shown in Table 13.

For the solubilization of DC-tissues/organs, there are two methods: (i) the
tissue/organ is chopped before decellularization; and (ii) the tissue/organ is chopped
after decellularization. When a tree-like vascular network is present, the perfusion
of a chemical agent via the network will achieve efficient decellularization.
Therefore, after decellularization, DC-tissues/organs might be easier to dissociate.
However, if the chopping is performed before decellularization, a greater decrease
in ECM might occur during decellularization because of the increased surface area.
When there are many fine vascular structures, the severed ends of the vascular
structures will be present at the chopped surface allowing the detergent to diffuse
more efficiently. When few vascular structures are present, it is better to perform
decellularization after chopping because the diffusion of the detergent depends on
the surface area. Retention of the three-dimensional native structure is not required
because the DC-tissue/organ will be solubilized. Physical treatments such as
freeze/thaw cycles are often combined. For the solubilization of DC-tissues/organs,
0.1 N HCI and pepsin are often used. Collagen, which is the main component of
ECM, is usually derived with HCI; however, pepsin is also used because HCI alone
cannot solubilize DC-tissue/organ efficiently. However, acid or enzymes can
damage the ECM. Therefore, the amount used or length of incubation should be
reduced.
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Future works

Solubilized DC-tissue/organ can be used as an ECM matrix for culture dish coating
or as a three-dimensional culture material by gelation. The concentration of the
matrix or gel strength should be optimized. Furthermore, the construction of an
organ might require a combination of three-dimensional printing technology or
decellularized organs. In addition, its application by injection-like spray, as a patch
of tissue or to reinforce tissues will be useful.

5 Conclusions

Dermis and heart valve bioproducts from bovine or porcine have already been
developed and decellularized human dermis is already available. These tissues are
easy to use clinically because their function is simple or it is used at a denuded area.
However, the knowledge gained using these materials can be applied to other
tissues/organs. The use of other tissues/organs with xenografts is also expected to
be developed in the near future. Of course, DC-tissue/organ allografts can be used,
but these treatments can be expanded by using xenografts. Organs such as the heart
or liver from cadaveric donors are not usually used for transplantation. However,
DC-organs can be obtained from cadaveric donors. We have discussed the various
studies on the reconstruction of tissues/organs based on DC-tissue/organ in Sect. 3.
However, the most common problem for the reconstruction of a functional organ is
the endothelialization or construction of a vascular network in the DC-organ. By
developing efficient vascularization methods, these studies will be improved.
Another common problem is the seeding method used to inoculate cells to a suit-
able location. Mature cells could be used or immature cells could be seeded first and
mature cells seeded second. The latter method is expected to be more successful,
but there is a risk of cancer from the immature cells. Therefore, differentiation
methods should be improved. The DC-tissue/organ can be used to construct a
suitable microenvironment for cells. The reconstruction of various tissues/organs is
expected based on the use of decellularized tissues/organs.
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