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Abstract. In the category of swarm intelligence based algorithms, Par-
ticle Swarm Optimization (PSO) is an effective population-based meta-
heuristic used to solve complex optimization problems. In PSO, global
optima is searched with the help of individuals. For the efficient search
process, individuals have to explore whole search space as well as have
to exploit the identified search area. Researchers are continuously work-
ing to balance these two contradictory properties i.e. exploration and
exploitation and have been modified the PSO in many different ways to
improve its solution search capability in the search space. In this regard,
incorporation of inertia weight strategy in PSO is a significant modi-
fication and after that many researchers have been developed different
inertia weight strategies to improve the solution search capability of PSO.
This paper presents an analysis of the developed inertia weight strategies
in respect to problem-solving capability and their effect in the solution
search process of PSO. The effect of 30 recent inertia weight strategies
on PSO is measured while comparing over ten well known test functions
of having different degree of complexity and modularity.

Keywords: Soft computing · Optimisation · Inertia weight · Swarm
intelligence · Nature inspired algorithms

1 Introduction

Particle Swarm Optimization (PSO) algorithm was developed by Eberhart and
Kennedy in 1995 [1]. It is inspired by the intelligent behaviour of bird in search
of food. The PSO algorithm is used to solve the different complex optimization
problems including economics, engineering, complex real-world problems, biol-
ogy and industry [2]. PSO can be applied to non-linear, non-differentiable, huge
search space problems and gives better results with good accuracy [3].

For n- dimensional search space, the velocity and position of the ith particle
represents as: Vi = (vi1, vi2, ..., vid)T and Xi = (xi1, xi2, ..., xid)T respectively.
Where, vid and xid is the velocity and position of ith particle in d-dimension
respectively. The velocity of the swarm (particle) is defined as follows:

vid(new) = vid(old) + c1r1(pid − xid) + c2r2(pgd − xid) (1)
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xid(new) = xid(old) + vid(new) (2)

where, d = 1, 2, ..., n presents the dimension and i = 1, 2, ..., N represents the
particle index, N is the size of the swarm, c1 and c2 are called social scaling and
cognitive parameters respectively that determines the magnitude of the random
force in the direction of particle’s previously best visited position (pid) and best
particle (pgd) and r1, r2 are the uniform random variable between [0, 1]. The
maximum velocity (Vmax) assists as a constraint to control the position of the
swarms within the solution search space.

Further, Shi and Eberhart [4] was developed the concept of an inertia weight
(IW) in 1998 to ensure an optimal tradeoff between exploration and exploitation
mechanisms of the swarm population. This inertia weight strategy was to be able
to eliminate the need of maximum velocity (Vmax). Inertia weight controls the
particles movement by maintaining its previous memory. The velocity update
equation is considered as follows:

vid(new) = w ∗ vid(old) + c1r1(pid − xid) + c2r2(pgd − xid) (3)

This paper discusses the 30 different inertia weight strategies on 10 bench-
mark functions for PSO algorithm. A comprehensive review on 30 inertia weight
strategies have been presented in next section.

2 A Review on Different Inertia Weight Strategies
for PSO

Inertia weight plays an important role in the process of providing a trade-off
between diversification and intensification skills of PSO algorithm. When the
inertia weight strategy is implemented to PSO algorithm, the particles move
around while adjusting their velocities and positions according to Eqs. (1) and
(2) in the search space.

In 1998, first time Shi and Eberhart [4] proposed the concept of constant
inertia weight. A small inertia weight helps in explore the search space while a
large inertia weight facilitates in exploit the search space. Eberhart and Shi [5]
proposed a random inertia weight strategy and enhances the performance and
efficiency of PSO algorithm.

The linearly decreasing strategy [6] increases the convergence speed of PSO
algorithm in early iterations of the search space. The inertia weight starts with
some large value and then linearly decreases to some smaller value. The inertia
weight provides the excellent results from 0.9 to 0.4. In global-local best inertia
weight [7], the inertia weight is based on the global best and local best of the
swarms in each generation. It increases the capabilities of PSO algorithm and
neither takes a linearly decreasing time-varying value nor a constant value.

Fayek et al. [8] introduced a particle swarm simulated annealing technique
(PSOSA). This inertia weight strategy is optimized by using simulated annealing
and improves its searching capability.
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Chen et al. [9] present two natural exponent inertia weight strategies as e1-
PSO and e2-PSO, which are based on the exponentially decreasing the inertia
weight. Experimentally, these strategies become a victim of premature conver-
gence, despite its quick convergence speed towards the optimal positions at the
early stage of the search process.

Using the merits of chaotic optimization, chaotic inertia weight has been
proposed by Feng et al. [10] and PSO algorithm becomes better global search
ability, convergence precision and quickly convergence velocity.

Malik et al. [11] presented a sigmoid increasing inertia weight (SIIW) and
sigmoid decreasing inertia weight (SDIW). These strategies provide better per-
formance with quick convergence ability and aggressive movement narrowing
towards the solution region.

Oscillating Inertia Weight [12] provides a balance between diversification and
intensification waves and concludes that this strategy looks to be competitive
and, in some cases, better performs in terms of consistency.

Gao et al. [13] proposed a logarithmic decreasing inertia weight with chaos
mutation operator. The chaos mutation operator can enhance the ability to jump
out the premature convergence and improve its convergence speed and accuracy.

To overcome the stagnation and premature convergence of the PSO algo-
rithm, Gao et al. [14] proposed an exponent decreasing inertia weight (EDIW)
with stochastic mutation (SM). The stochastic mutations (SM) is used to
enhance the diversity of the swarm while EDIW is used to improve the con-
vergence speed of the individuals (Table 1).

Linearly decreasing inertia weight have been proposed by Shi and Eberhart [4]
and greatly improved the accuracy and convergence speed. A large inertia weight
facilitates at the inceptive phase of search space while later linearly decreases to
a small inertia weight.

Adewumi et al. [25] proposed the swarm success rate random inertia weight
(SSRRIW) and swarm success rate descending inertia weight (SSRDIW). These
strategies use swarm success rates as a feedback parameter. Further, it enhances
the effectiveness of the algorithm regarding convergence speed and global search
ability.

Shen et al. [18] proposed the dynamic adaptive inertia weight and used to
solve the complex and multi-dimensional function optimization problems. This
strategy can timely adjust the particle speed, jump out of a locally optimal
solution and improve the convergence speed.

Ting et al. [24] proposed the exponent inertia weight. There exist two impor-
tant parameters as a local attractor (a) and global attractor (b). This method
controls the population diversity by adaptive adjustment of local attractor (a)
and global attractor (b).

Chatterjee and Siarry [22] proposed nonlinear decreasing inertia weight strat-
egy with nonlinear modulation index. This strategy is quite effective as well as
avoid premature issues. Lei et al. [17] proposed adaptive inertia weight. It fur-
nishes with automatically harmonize global and local search ability and obtained
the global optima.
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Table 1. Inertia weight strategies

S.No. Name of inertia weight Formula of inertia weight

1 Logarithm Decreasing Inertia Weight [13] w=wmax+(wmin − wmax).log10(a + 10t
T

)

2 Exponent Decreasing Inertia Weight [14] w = (wmax − wmin − d1).exp( 1

1+
d2t
T

)

3 Natural Exponent Inertia Weight Strategy(e2

-PSO) [9]

w = wmin + (wmax − wmin).e

−[ t

( T
4 )

]2

4 Natural Exponent Inertia Weight Strategy(e1

-PSO) [9]

w = wend + (wstart − wend).e

[ −t

( T
10 )

]

5 Global-Local Best Inertia Weight [7] w = [1.1 − gbesti
pbesti

]

6 Simulated Annealing Inertia Weight [8] w = wmin + (wmax − wmin).λk−1

7 Oscillating Inertia Weight [12] w =

(
wmin+wmax

2 +
wmax−wmin

2 cos( 2Πt
T

)),

where T =
2S1
3+2k

8 Chaotic Random Inertia Weight [10] z = 4 ∗ z ∗ (1 − z), w = 0.5 ∗ rand + 0.5 ∗ z

9 The Chaotic Inertia Weight [10] w = (wmax − wmin) ∗ ( T −t
T

) + wmin ∗ z,

where, z = 4 ∗ z ∗ (1 − z)

10 Linear Decreasing Inertia Weight [6] w = wmax − (wmax − wmin)( t
T

)

11 Sigmoid Decreasing Inertia Weight [11] w=
(wmax−wmin)

(1+e−u(k−n∗gen))
+ wmin,

u=10log((gen)−2)

12 Sigmoid Increasing Inertia Weight [11] w=
(wmax−wmin)

(1+eu(k−n∗gen))
+ wmin,

u=10log((gen)−2)

13 Random Inertia Weight [5] w = 0.5 + 0.5 ∗ rand

14 Constant Inertia Weight [4] w=c, where c=0.2(considered for

experiments)

15 Chaotic Adaptive Inertia Weights (CAIWS-D) [15] w=[(wmax − wmin)( T −t
T

) + wmin] ∗ z,

where, z=4*SR*(1-SR)

16 Chaotic Adaptive Inertia Weights (CAIWS-R) [15] w=(0.5*SR+0.5)*z, where z=4*SR*(1-SR)

17 Decreasing Exponential Function Inertia Weight

(DEFIW) [15]

w = t−( t√t)

18 Fixed inertia weight (FIW) [16] w = 1
2ln(2)

19 Adaptive Inertia Weight Strategy [17] w=[
1−( t

T
)

(1+S t
T

)
]

20 Dynamic Adaptive Inertia Weight [18] w = wmin + (wmax − wmin)F (t)Ψ(t),

Ψ(t) = exp(− t2

(2σ2)
) and σ = T/3

21 Decreasing Inertia Weight (DIW) [19] w = winit ∗ u−t

22 Inertia Weight Strategy [20] w =
(winit−0.4)(gsize−i)

(gsize+0.4)

23 Double Exponential Dynamic Inertia Weight [2] w = exp(−exp(−R)), where R =
(T −t)

T

24 Tangent Decreasing Inertia Weight (TDIW) [21] w = (wmax − wmin) ∗ tan( 7
8 (1 − t

T
)k)

25 Nonlinear Decreasing Inertia Weight (NDIW) [22] w = (wmax − wmin)( T −t
T

)n + wmin

26 Linear or Non-Linear Decreasing Inertia Weight [23] w = ( 2
t
)0.3

27 Exponent Inertia Weight [24] w = w0e
−a( t

T
)

28 Swarm Success Rate Random Inertia Weight

(SSRRIW) [25]

w = 0.5 ∗ rand + 0.5 ∗ ssrt−1

29 Swarm Success Rate Descending Inertia Weight

(SSRDIW) [25]

w = (wmax −wmin)( T −t
T

)+wmin ∗ssrt−1

30 Descending Inertia Weight [25] w = wmin + (wmax − wmin)( T −t
T

)

J. asoc. [23] proposed the linear or non-linear decreasing inertia weight. This
strategy has global search ability and also helpful to find a better optimal solu-
tion. It overcomes the weakness of premature convergence and converges faster
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at the early stage of the search process. Jiao et al. [19] proposed the decreasing
inertia weight (DIW). This strategy provides the algorithm with dynamic adapt-
ability and controls the population diversity by adaptive adjustment of inertia
weight.

Li, L. et al. [21] proposed the tangent decreasing inertia weight (TDIW) based
on tangent function (TF). This strategy is to increase the diversity of swarm for
more exploration of the search space at initial iterations while later exploit the
search area. So that this approach provides better results with accuracy.

Chauhan et al. [2] proposed the double exponential dynamic inertia weight
(DEDIW). The inertia weight is calculated for whole swarm iteratively by using
gompertz function, and it is capable of providing a stagnation free environment
with better accuracy. Peram et al. [20] proposed a new inertia weight that pro-
vides the less susceptible to premature convergence and less likely to be stuck in
local optima. Sheng-Ta Hsieh et al. [16] introduced fixed inertia weight (FIW).
It provides better convergence speed and less computational efforts.

The decreasing exponential function inertia weight (DEFIW) [15] decreases
the value of inertia weight iteratively as the algorithm approaches equilibrium
state and furnishes the superiority to the competitors in fitness quality.

Arasomwan et al. [15] Proposed chaotic adaptive inertia weights as CAIWS-D
and CAIWS-R. These strategies simply combine chaotic mapping with the
swarm success rate as a feedback parameter to harness together chaotic and
adaptivity characteristics. These approaches provide more refine accuracy, faster
convergence speed as well as global search ability.

3 Experimental Results

To evaluate the performance of the inertia weight strategy, it is tested over 10
different benchmark functions (F1 to F10) as given in Table 2.

3.1 Parameter Settings

Following experimental settings are adopted:

– G0 = 100 and α = 20 [26],
– Number of runs = 30,
– Number of populations = 50,
– Maximum number of iterations (T) = 1000,
– Value of c1 and c2 are 2.0 [25].

3.2 Results and Discussion

In this section, 30 different inertia weight strategies are analyzed on 10 bench-
mark problems in terms of average number of function evaluations (AFE’s),
mean error (ME) and standard deviation (SD). The AFE’s, ME and SD are
presented in Tables 3, 4 and 5 respectively. Boxplot of AFE’s, ME and SD are
shown in Figs. 1, 2 and 3 respectively.
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Table 2. Test problems, D: Dimensions, AE: Acceptable Error

Test problem Objective function Search range Optimum value D AE

Sphere f1(x) =
∑D

i=1 x
2
i [-5.12 5.12] f(0) = 0 30 1.0E − 05

De Jong f4 f2(x) =
∑D

i=1 i.(xi)
4

[-5.12 5.12] f(0) = 0 30 1.0E − 05

Ackley f3(x) = −20 + e + exp(− 0.2
D

√∑D
i=1 xi

3) [-30, 30] f(0) = 0 30 1.0E − 05

Alpine f4(x) =
∑D

i=1 |xisin xi + 0.1xi| [-10, 10] f(0) = 0 30 1.0E − 05

Michalewicz f5(x) = −∑D
i=1 sin xi(sin ( i.xi

2

π
)20) [0, π] fmin=-9.66015 10 1.0E − 05

Cosine Mixture f6(x) =
∑D

i=1 xi
2−0.1(

∑D
i=1 cos5πxi)+0.1D [-1, 1] f(0)=−D × 0.1 30 1.0E − 05

Exponential f7(x) = −(exp(−0.5
∑D

i=1 xi
2)) + 1 [-1, 1] f(0) = −1 30 1.0E − 05

brown3 f8(x) =
∑D−1

i=1 (xi
2(xi+1)

2+1
+ xi+1

2xi
2+1

)

[-1 4] f(0) = 0 30 1.0E − 05

Beale f9(x) = [1.5 − x1(1 − x2)]
2 + [2.25 −

x1(1 − x2
2)]

2 + [2.625 − x1(1 − x3
2)]

2
[-4.5,4.5] f(3, 0.5) = 0 2 1.0E − 05

Colville f10(x) = 100[x2 − x2
1]

2 + (1 − x1)
2 +

90(x4 − x2
3)

2 + (1− x3)
2 + 10.1[(x2 −

1)2 +(x4−1)2]+19.8(x2−1)(x4−1)

[-10,10] f(1) = 0 4 1.0E − 05

It is clear from the reported results that most of the Inertia weight strategies
produce poor results in case of michalewicz function (F5). It clear from Fig. 1
that constant inertia weight and linearly decreasing inertia weight (LDIW) is
best and worst strategy respectively in terms of AFE’s. It is observed from
Fig. 2 that the mean error taken by chaotic random inertia weight strategy and
global local best inertia weight strategy are minimum and maximum in terms of
mean error respectively compared to the other inertia weight strategies.

0

1

2

3

4

5

x 10
4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Fig. 1. Boxplots for average number of function evaluations of 30 different Inertia
Weight strategies on 10 benchmark functions as per Table 3
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Table 3. Average number of function evaluations of different inertia weight strategies
for different benchmark functions

Inertia
Weight

Sphere De Jong
f4

Ackley Alpine Michalewicz Cosine
Mixture

Expone-
ntial

brown3 Beale Colville

1 09851.67 08540.00 15218.33 45575.00 49731.67 50100.00 9611.67 10270.00 2771.667 26260.00

2 22313.33 19670.00 32858.33 30181.67 50100.00 42166.67 22125.00 23351.67 6585.00 36578.33

3 25801.66 24028.33 35703.33 33166.67 48105.00 41483.33 25651.67 26728.33 09263.33 39870.00

4 18846.67 16835.00 29221.67 26516.67 48733.33 40691.67 18248.33 19665.00 06175.00 40780.00

5 50100.00 49196.67 50100.00 26536.67 48840.00 50100.00 50100.00 50100.00 00885.00 47108.33

6 13663.33 11920.00 23591.67 21495.00 50100.00 44928.33 13378.33 14915.00 3565.00 39290.00

7 29278.33 23780.00 50100.00 46190.00 47988.33 45698.33 26725.00 32083.333 3526.67 43920.00

8 39623.33 35648.33 50100.00 50100.00 47638.33 49888.33 35870.00 41895.00 3230.00 46575.00

9 32738.33 30196.67 42308.33 39525.00 48946.67 42490.00 31791.67 33640.00 04591.67 36876.67

10 44853.33 42535.00 50100.00 50096.67 48795.00 49615.00 43596.67 45206.67 10890.00 46073.33

11 13218.33 11451.67 23440.00 19735.00 49196.67 46841.67 12383.33 14135.00 02711.67 43118.33

12 25103.33 23176.67 34655.00 32036.67 46930.00 46618.33 24230.00 25821.67 12451.67 41675.00

13 15840.00 13016.67 29701.67 29538.33 49053.33 48191.67 15398.33 17851.67 03503.33 31575.00

14 8433.33 7330.00 18216.67 15083.33 49228.33 50100.00 07688.33 08975.00 02385.00 45735.00

15 26308.33 23300.00 47571.67 38541.67 48951.67 39000.00 24606.67 28170.00 2968.33 41273.33

16 26348.33 22995 47791.67 37485.00 49750.00 39408.33 24390.00 28135.00 4603.33 40158.33

17 11821.67 14613.33 28691.67 25045.00 50100.00 30740.00 11070.00 12343.33 4011.67 49971.67

18 11116.67 10255.00 20148.33 17286.67 49011.67 47786.67 10798.33 12016.67 01056.67 38490.00

19 21593.33 20201.67 28485.00 27230.00 49003.33 42706.67 21200.00 22236.67 07161.67 39731.67

20 13108.33 11238.33 44071.67 20541.67 46168.33 39801.67 36930.00 14003.33 1121.67 38113.33

21 10585.00 09818.33 17485.00 17256.67 47970.00 47661.67 10198.33 11496.67 03293.33 41001.67

22 18141.67 15730.00 26410.00 23940.00 50100.00 37963.33 17363.33 18841.67 06580.00 45256.67

23 32145 29100 44275.00 40775.00 49000.00 37770.00 31460.00 33501.67 03953.33 34638.33

24 17571.67 15713.33 26353.33 24056.67 49713.33 36716.67 16858.33 19021.67 06556.67 41691.67

25 42213.33 39358.33 50041.67 48980.00 49168.33 47785.00 41083.33 42838.33 10196.67 43158.33

26 10585.00 9818.33 17485.00 17256.67 47970.00 47661.67 10198.33 11496.67 03293.33 41131.67

27 24753.33 22180.00 35250.00 31966.67 49148.33 38595.00 23735.00 25720.00 07821.67 37138.33

28 23265.00 19488.33 40460.00 33003.33 49821.67 35823.33 21410.00 24258.33 02921.67 45111.67

29 26200.00 24011.67 36238.33 33400.00 47765.00 37798.33 25305.00 27360.00 07193.33 38271.67

30 45070.00 42221.67 50100.00 50085.00 49010.00 49023.33 43833.33 45480.00 08773.33 40638.33

0

0.5

1

1.5

2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Fig. 2. Mean error value of 30 different Inertia Weight strategies on 10 benchmark
functions as per Table 4
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Table 4. Mean error value of different inertia weight strategies for different benchmark
functions

Inertia
Weight

Sphere De Jong
f4

Ackley Alpine Michalewicz Cosine
Mixture

Expone-
ntial

brown3 Beale Colville

1 8.90E-06 8.29E-06 5.03E-04 9.14E-04 8.79E-01 4.81E-01 8.40E-06 8.66E-06 4.09E-06 1.50E-03

2 9.15E-06 8.91E-06 9.59E-06 9.57E-06 4.52E-01 1.23E-01 9.23E-06 9.16E-06 3.99E-02 1.57E-03

3 9.32E-06 8.97E-06 9.55E-06 9.64E-06 4.47E-01 1.63E-01 9.17E-06 9.13E-06 3.99E-02 1.34E-03

4 9.28E-06 8.74E-06 9.50E-06 9.54E-06 4.48E-01 1.58E-01 9.28E-06 9.18E-06 3.99E-02 1.22E-03

5 4.54E-01 3.14E-01 5.21E-01 1.15E-04 8.86E-01 2.15E+00 2.19E-01 8.26E-01 5.55E-06 4.84E-03

6 9.08E-06 9.13E-06 9.52E-06 9.25E-06 8.45E-01 2.27E-01 9.15E-06 9.24E-06 2.00E-02 1.18E-03

7 9.04E-06 8.78E-06 3.96E-05 1.37E-05 4.07E-01 1.08E-02 8.77E-06 9.36E-06 2.00E-02 6.33E-03

8 9.44E-06 8.87E-06 4.51E-04 5.51E-05 2.67E-01 5.41E-03 9.33E-06 9.51E-06 2.00E-02 5.13E-03

9 9.25E-06 8.97E-06 9.61E-06 9.13E-06 3.92E-01 5.91E-02 9.28E-06 9.19E-06 2.00E-02 1.84E-03

10 9.26E-06 8.96E-06 1.78E-04 6.26E-05 4.00E-01 3.45E-02 9.30E-06 9.43E-06 3.99E-02 4.95E-03

11 9.15E-06 8.91E-06 9.67E-06 9.56E-06 4.90E-01 1.76E-01 9.20E-06 9.15E-06 2.00E-02 3.64E-03

12 9.22E-06 8.61E-06 9.58E-06 9.40E-06 4.26E-01 2.22E-01 9.11E-06 9.30E-06 4.57E-06 1.54E-03

13 9.17E-06 9.26E-06 9.58E-06 8.69E-06 6.41E-01 4.58E-01 9.13E-06 9.05E-06 2.00E-02 9.58E-04

14 8.96E-06 8.77E-06 1.00E-01 8.07E-06 9.71E-01 6.50E-01 9.23E-06 8.98E-06 2.00E-02 2.55E-03

15 9.13E-06 8.74E-06 1.27E-05 9.31E-06 3.52E-01 4.94E-03 9.14E-06 9.54E-06 2.00E-02 3.33E-03

16 9.43E-06 9.05E-06 1.39E-05 9.62E-06 3.55E-01 9.43E-06 9.26E-06 9.44E-06 3.99E-02 2.86E-03

17 8.52E-06 8.88E-06 8.69E-06 5.52E-04 9.13E-01 4.93E-03 8.08E-06 8.46E-06 3.99E-02 2.88E-01

18 9.06E-06 8.69E-06 9.59E-06 9.31E-06 8.54E-01 3.60E-01 8.94E-06 9.28E-06 5.66E-06 1.32E-03

19 9.12E-06 8.56E-06 9.46E-06 9.36E-06 5.09E-01 1.82E-01 8.96E-06 8.90E-06 2.00E-02 2.06E-03

20 9.32E-06 9.22E-06 9.61E-06 9.38E-06 3.54E-01 1.53E-01 9.18E-06 9.23E-06 4.88E-06 1.09E-03

21 8.84E-06 8.84E-06 9.54E-06 7.78E-06 6.34E-01 3.50E-01 8.64E-06 9.01E-06 2.00E-02 4.69E-03

22 8.98E-06 9.09E-06 9.62E-06 9.38E-06 6.00E-01 1.28E-01 9.12E-06 9.13E-06 5.99E-02 2.13E-03

23 9.32E-06 9.19E-06 9.68E-06 9.52E-06 4.05E-01 9.86E-03 9.26E-06 9.35E-06 2.00E-02 2.02E-03

24 9.24E-06 9.12E-06 9.61E-06 9.63E-06 4.94E-01 1.23E-01 9.19E-06 9.01E-06 5.99E-02 1.94E-03

25 9.11E-06 8.62E-06 3.85E-05 1.29E-05 4.16E-01 6.90E-02 9.33E-06 9.35E-06 3.99E-02 2.93E-03

26 8.84E-06 8.84E-06 9.54E-06 7.78E-06 6.34E-01 3.50E-01 8.64E-06 9.01E-06 2.00E-02 2.01E-03

27 9.17E-06 9.04E-06 9.54E-06 9.50E-06 6.36E-01 7.88E-02 9.49E-06 9.05E-06 5.99E-02 1.18E-03

28 9.26E-06 9.23E-06 9.61E-06 9.67E-06 3.73E-01 2.96E-02 9.43E-06 9.21E-06 2.00E-02 3.46E-03

29 9.27E-06 8.97E-06 9.49E-06 9.65E-06 2.95E-01 5.91E-02 9.27E-06 9.29E-06 5.99E-02 1.54E-03

30 9.31E-06 9.07E-06 1.93E-04 4.63E-05 4.02E-01 1.97E-02 9.52E-06 8.96E-06 2.00E-02 3.62E-03
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Fig. 3. Standard Deviation value of 30 different Inertia Weight strategies on 10 bench-
mark functions as per Table 5
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Table 5. Standard deviation value of different inertia weight strategies for different
benchmark functions

Inertia
Weight

Sphere De Jong
f4

Ackley Alpine Michalewicz Cosine
Mixture

Expone-
ntial

brown3 Beale Colville

1 1.54E-06 9.56E-07 2.66E-03 2.05E-03 6.06E-01 1.96E-01 1.86E-06 1.38E-06 2.38E-06 1.53E-03

2 8.26E-07 1.08E-06 3.58E-07 3.59E-07 3.24E-01 1.15E-01 6.84E-07 8.14E-07 1.49E-01 1.10E-03

3 6.19E-07 9.40E-07 3.49E-07 2.86E-07 3.96E-01 1.76E-01 7.40E-07 6.89E-07 1.49E-01 8.07E-04

4 6.45E-07 9.15E-07 4.10E-07 3.84E-07 3.13E-01 1.62E-01 5.22E-07 7.74E-07 1.49E-01 3.59E-04

5 4.34E-01 1.05E+00 5.36E-01 4.54E-04 6.88E-01 1.00E+00 1.64E-01 7.43E-01 3.02E-06 4.00E-03

6 8.16E-07 1.19E-06 3.28E-07 7.43E-07 5.70E-01 1.65E-01 5.50E-07 7.21E-07 1.07E-01 7.74E-04

7 7.26E-07 1.17E-06 2.10E-05 9.87E-06 3.15E-01 3.70E-02 1.09E-06 4.36E-07 1.07E-01 6.96E-03

8 5.53E-07 1.19E-06 2.74E-04 3.25E-05 2.29E-01 2.65E-02 6.58E-07 6.79E-07 1.07E-01 4.58E-03

9 6.61E-07 7.83E-07 3.54E-07 1.10E-06 2.92E-01 8.18E-02 4.59E-07 6.97E-07 1.07E-01 1.23E-03

10 6.61E-07 7.48E-07 1.23E-04 8.33E-05 3.60E-01 6.25E-02 6.82E-07 3.49E-07 1.49E-01 3.99E-03

11 7.83E-07 1.07E-06 4.02E-07 3.87E-07 4.01E-01 1.43E-01 5.79E-07 8.31E-07 1.07E-01 4.99E-03

12 5.26E-07 1.20E-06 4.27E-07 5.60E-07 3.77E-01 1.61E-01 6.72E-07 6.50E-07 3.30E-06 8.53E-04

13 8.54E-07 6.95E-07 4.37E-07 1.86E-06 5.43E-01 2.30E-01 8.55E-07 7.03E-07 1.07E-01 7.45E-05

14 1.02E-06 1.37E-06 3.75E-01 2.89E-06 5.38E-01 2.40E-01 4.98E-07 1.17E-06 1.07E-01 2.14E-03

15 8.31E-07 9.18E-07 5.80E-06 5.50E-07 2.90E-01 2.65E-02 5.92E-07 5.28E-07 1.07E-01 3.27E-03

16 6.17E-07 9.55E-07 1.22E-05 3.57E-07 2.81E-01 6.24E-07 6.58E-07 5.21E-07 1.49E-01 2.54E-03

17 1.74E-06 1.50E-06 1.63E-06 2.31E-03 5.80E-01 2.65E-02 2.04E-06 1.77E-06 1.49E-01 1.41E+00

18 9.20E-07 1.10E-06 5.99E-07 6.01E-07 6.15E-01 2.25E-01 8.30E-07 5.78E-07 2.85E-06 6.36E-04

19 7.09E-07 1.23E-06 5.04E-07 6.34E-07 4.16E-01 1.60E-01 9.73E-07 1.15E-06 1.07E-01 1.85E-03

20 6.24E-07 9.46E-07 3.94E-07 5.39E-07 2.94E-01 1.35E-01 5.31E-07 5.89E-07 2.98E-06 3.50E-04

21 8.07E-07 8.84E-07 3.55E-07 3.06E-06 5.18E-01 1.93E-01 1.36E-06 8.22E-07 1.07E-01 4.41E-03

22 7.53E-07 7.83E-07 4.40E-07 5.57E-07 4.41E-01 1.46E-01 8.90E-07 7.62E-07 1.80E-01 1.56E-03

23 6.08E-07 9.61E-07 3.55E-07 4.06E-07 3.60E-01 3.69E-02 6.05E-07 5.29E-07 1.07E-01 2.07E-03

24 6.71E-07 1.13E-06 3.58E-07 3.92E-07 3.38E-01 1.43E-01 6.37E-07 9.25E-07 1.80E-01 1.19E-03

25 9.37E-07 1.17E-06 2.93E-05 7.08E-06 3.60E-01 9.90E-02 4.63E-07 5.80E-07 1.49E-01 2.84E-03

26 8.07E-07 8.84E-07 3.55E-07 3.06E-06 5.18E-01 1.93E-01 1.36E-06 8.22E-07 1.07E-01 1.25E-03

27 6.81E-07 7.45E-07 4.11E-07 4.33E-07 5.58E-01 9.90E-02 4.22E-07 9.90E-02 1.80E-01 4.49E-04

28 6.41E-07 7.43E-07 3.61E-07 3.08E-07 3.01E-01 7.04E-02 5.76E-07 6.86E-07 1.07E-01 2.49E-03

29 6.65E-07 8.10E-07 3.12E-07 3.45E-07 2.30E-01 8.18E-02 5.80E-07 7.32E-07 1.80E-01 1.03E-03

30 5.71E-07 8.76E-07 9.32E-05 3.83E-05 3.18E-01 5.02E-02 3.12E-07 7.68E-07 1.07E-01 4.22E-03

If the comparison is made through standard divisions (SD’s)the chaotic ran-
dom inertia weight produces near optimal solutions in comparison to other iner-
tia weight strategies as shown in Fig. 3. The summary results of inertia weight
strategies are shown in Table 6.

Table 6. Summary Results for Inertia Weight

Criterion Best inertia weight strategy Worst inertia weight strategy

Average Function Evaluation Constant Inertia Weight Linear Decreasing Inertia Weight

Mean Error Chaotic Random Inertia Weight Global-Local Best Inertia Weight

Standard Deviation Chaotic Random Inertia Weight Global-Local Best Inertia Weight

4 Conclusion

This paper presents the significance of inertia weight strategies in the solu-
tion search process of particle swarm optimization (PSO). Here, total 30 iner-
tia weight strategies in PSO are analyzed in terms of efficiency, reliability and
robustness while testing over 10 complex test functions. Through boxplots and
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success rate, it is found that the chaotic random inertia weight is better in terms
of accuracy while constant inertia weight performs better in terms of efficiency
of PSO among the considered inertia weight strategies.
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