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Abstract. Spider Monkey Optimization (SMO) is a recent optimiza-
tion method, which has drawn interest of researchers in different areas
because of its simplicity and efficiency. This paper presents an effort to
modify Spider Monkey Optimization Algorithm with higher exploitation
capabilities. A new acceleration coefficient based strategy is proposed in
the basic version of SMO. The proposed algorithm is named as Fast Con-
vergent Spider Monkey Optimization Algorithm (FCSMO). FCSMO is
tested over 14 benchmark test functions and compared with basic SMO.
The result reveals that FCSMO will surely become a good variant of
SMO.

Keywords: Meta-heuristic optimization techniques · Swarm intelli-
gence · Acceleration coefficient

1 Introduction

Optimization works to unfolds all potential outputs meeting some stated con-
straints. From past years NIA have proposed various methods to explain NP-
Hard and NP- complete optimization problems of real world [7]. Nature inspired
algorithm, inspired by nature, is a stochastic approach wherein an individual or a
neighbor’s interacts with each other intellectually to explain complicated preex-
isting mechanisms in an efficient manner. NIA is focused mainly on evolutionary
based algorithm and swarm based algorithm. Evolutionary algorithm is a com-
putational standard motivated by Darwinian Evolution [9]. Swarm intelligence
assets in unlocking optimization problems considering collaborative nature of
self-sustaining creatures like bees, ants, monkeys whose food-gathering capabili-
ties and civilized characteristics have been examined and simulated [5,6,8]. SMO
is a subclass of swarm intelligence, proposed by Jagdish Chand Bansal et al., in
the year 2014 [4]. SMO is a food foraging based algorithm, considering nature
and social frame work of spider monkeys. Fission-Fusion social system relates to
social configuration of spider monkey. Many researchers have been studied that
SMO algorithm is good at exploration and exploitation but there is possibilities
of further improvements.
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To improve the convergence speed, a variant of SMO is proposed, i.e. name
as Fast Convergent Spider Monkey Optimization Algorithm. In the proposed
modification acceleration coefficients based strategy is incorporated in the basic
version of SMO.

The rest of the paper is structured as follows: In Sect. 2, SMO is described.
Fast Convergent Spider Monkey Optimization Algorithm (FCSMO) is proposed
in Sect. 3. In Sect. 4, performance of FCSMO is tested with several benchmark
functions. Finally, Sect. 5 includes a summary and conclude the work.

2 Overview of Spider Monkey Optimization (SMO)
Technique

A distinct class of NIA proposed by JC Bansal et al. [4], by trivial behavior
of monkeys i.e. Spider Monkey Optimization (SMO) technique. Spider Monkey
optimization, a Fission-Fusion mode is an extension of above discussed predica-
ment. Here, a populous, consistently dictated by a female, is fragmentized into
tiny clusters for seeking, chiefly food and they are buddy up to 40 to 50 singular
who rift into small groups in search of food who again are headed by a female.
In case she fails to meet the objective (food finding), further subdivides, again
succeeded by a female, replicating the process until reach the food. For recent
updates in their positions, various steps are undertaken: inspection of probing
of wide search space and picking or electing of superlative practical results [10].

2.1 Steps of SMO Technique

SMO technique is based on population repetitive methodology. It consists of
seven steps. Each step is described below in a detailed manner:

1. Initialization of Population: Originally a population comprised of N spider
monkeys signifying a D-dimensional range Mi where i=1,2,...N and i repre-
sents ith spider monkey. Each spider monkey (M) exhibits possible results of
the problem under consider. Each Mi is initialized as below:

Mij = Mminj + R(0, 1) × (Mmaxj − Mminj) (1)

Here Mminj and Mmaxj are limits of Mi in jth vector and R(0,1) is a random
number (0,1).

2. Local Leader Phase (LLP): This phase relies on the observation of local
leader and group mates, M renew its current position yielding a fitness value.
If the fitness measure of the current location is larger than that of the former
location, then M modifies his location with the latest one. Hence ith M that
also exists in kth local group modify its position.

Mnewij = Mij + R(0, 1) × (LLkj − Mij) + R(−1, 1) × (Mrj − Mij) (2)

Here Mij define ith M in jth dimension, LLkj correlate to the kth leader of
local assembly location in jth dimension. Mrj defines rth M which is randomly
picked from kth troop such that r �= i in jth dimension.
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3. Global Leader Phase (GLP): This following phase initiates just after
accomplishing LLP. Depending upon the observation of global leader and
mates of local troop, M updates their location. The position upgrade equation
for GLP phase is as follows:

Mnewij = Mij + R(0, 1) × (GLj − Mij) + R(−1, 1) × (Mrj − Mij) (3)

Here GLj poises for global leader’s location in jth dimension and j=1,2,3,...,D
defines an arbitrarily chosen index. Mi modify their locus considering prob-
abilities Pr′

is. Fitness is used to calculate probability of a specific solution,
with various methods such as

Pri = 0.1 + (
fitnessi

fitnessmax
) × 0.9 (4)

4. Global Leader Learning (GLL) Phase: Here greedy selection strategy
is applied on the population which modifies the locus of global leader i.e.
the location of M which has best fitness in the group is chosen as the mod-
ified global leader location. Also its is verified that global leader location is
modifying or not and in case not then GlobalLimitCount(GLC) is increased
by 1.

5. Local Leader Learning (LLL) Phase: Here, local leader locus is modified
by implement greedy selection in that population i.e. the location of M which
has best fitness among the entire group is chosen as the latest location of
local leader. Afterwards, this modified local leader location and old values
are compared and LocalLimitCount (LLC) is increment by 1.

6. Local Leader Decision (LLD) Phase: Here, updating of local leader loca-
tion is done in two ways i.e. by arbitrary initialization or by mixing informa-
tion obtained via global and local leader, if local leader location is not modi-
fied up to a precalculated limit named as LocalLeaderLimit through equation
based on perturbation rate (p).

Mnewij = Mij + R(0, 1) × (GLj − Mij) + R(0, 1) × (Mij − LLkj) (5)

Clearly, it is seen in equation that modified dimension of this M is fascinated
towards global leader and oppose local leader. Moreover, modified M’s fitness
is determined.

7. Global Leader Decision (GLD) Phase: Here, global leader location is
examine and if modification is not done up to precalculated iterations limit
named as GlobalLeaderLimit then division of population in small group is
done by local leader. Primarily population division is done in two classes
and further three, four and so on until the upper bound called groups of
maximum number (GM) is reached. Meanwhile, local leaders are selected
using LL method for newly formed subclasses.
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The pseudo-code of the SMO algorithm is as follows:-

(1) Define Population, LocalLeaderLimit, GlobalLeaderLimit, Perturbation rate.
(2) Determine fitness (each individual distance from sources of food)
(3) Apply greedy selection to choose global and local leaders.
while Termination condition is not met do

(i) To hit target, new locations for group population is formulated with the
help of self experience as well as local and group population experience,
using Local Leader Phase (LLP).
(ii) Relied on fitness value of group members, employ greedy selection
strategy.
(iii) Assess probabilities Pri for all companions using equation (4).
(iv) Generate new locations for each group companions, chosen by Pri, by
self experience, global leader experience also consider experience of group
member using Global Leader Phase (GLP).
(v) Greedy selection method is applied to modify global and local leaders
locations of entire groups.
(vi) Any local leader of a group, if fails to modify her locus within
LocalLeaderLimit then deflect that specific group companions for further
foraging using Local Leader Decision (LLD) Phase.
(vii) Any global leader if fails to modify her locus within GlobalLeaderLimit
then she diversifies group into subgroups by Global Leader Decision Phase
with the minimum threshold of each groups size being 4

end

Algorithm 1. Spider Monkey Optimization (SMO)

3 Fast Convergent Spider Monkey Optimization
Algorithm

In population repetitive methodology, exploration and exploitation are the two
basic properties of NIA. A convenient balance between both these two proper-
ties are required. Exploration describe the promising regions by searching the
given search space while exploitation helps in finding the optimal solution in
the promising search regions. In the basic SMO, it is good at exploration and
exploitation but there is possibilities of further improvements. So to improve the
basic SMO, on new variant named Fast Convergent Spider Monkey Optimization
Algorithm (FCSMO) is designed.

From the results of search process of basic SMO that it will get higher
opportunity for advancement in various iteration using two ways: (1) Global
Leader Phase (GLP) and (2) Local Leader Decision (LLD) phase. Exploration
and exploitation capacity should be managed in an effective way. The details of
these two steps of FCSMO implementation are explained below:

1. Global Leader Phase (GLP): In the GLP phase, depending upon the
observation of Global leader and mates of local troop, M updates their loca-
tion. In the GLP phase of iteration, solutions in search space are having
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large step-size resulting in exploration. In later iterations, there is a gradual
decrease in step-size by moving slowly iteration by iteration due to which
solution exploits the search space well and resulting good convergence. The
position upgrade equation for this phase is as follow:

Mnewij = Mij+R(0, 1)×(GLj−Mij)+(Mrj−Mij)×[1−(
iter

Maxiteration
)]×c

(6)
Here GLj poises for global leader’s location in jth dimension and j=1,2,3,...,D
defines an arbitrarily chosen index and iter and Max iteration show the
present iteration and the maximum iteration number, respectively. c is the
random number. Its value is 2. In this acceleration coefficient is added with
random member. The position upgrade method of GLP phase is exhibited in
following algorithm.

count=0;

while count < group do
for each member Mi ∈ group do

if R(0,1) < Pri then

count=count+1;

Randomly select j ∈ 1...D

Randomly select Mr ∈ group s.t r �= i

Mnewij = Mij + R(0, 1) × (GLj − Mij) + (Mrj − Mij) × [1 − ( iter
Maxiteration )] × c

end if

end for
end

Algorithm 2. Global Leader Phase (GLD)

2. Local Leader Decision (LLD) Phase: Here, updating of Local Leader
location is done in two ways i.e. by arbitrary initialization or by mixing infor-
mation obtained via global and local leader, if local leader location is not
modified up to a precalculated limit named as LocalLeaderLimit through
equation based on p. In the LLD phase of iteration, solutions in search space
are having large step-size resulting in exploration. In later iterations, there is
a gradual decrease in step-size by moving slowly iteration by iteration due to
which solution exploits the search space well and resulting good convergence.
The position upgrade equation for this phase is as follow:

Mnewij = Mij +(GLj −Mij)×(1−(
iter

Maxiteration
))+R(0, 1)×(Mij −LLkj)

(7)
Clearly, it is seen in equation that modified dimension of this M is fascinated
towards global leader and oppose local leader. Moreover, modified M’s fitness
is determined and iter and Max iteration show the present iteration and
the maximum iteration number, respectively. In this acceleration coefficient
is added with global leader. The position upgrade method of LLD phase is
exhibited in following algorithm.
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if LocalLimitCount > LocalLeaderLimit then

LocalLimitCount=0

for each j ∈ 1...D do
if R(0,1) ≥ p then then

Mnewij = Mij +R0, 1 × (Mmaxj − Mminj)
else

Mnewij = Mij + (GLj − Mij) × (1 − ( iter
Maxiteration

) +R(0, 1) × (Mij − LLkj)
end if

end for
end if

Algorithm 3. Local Leader Decision (LLD) Phase

The pseudo-code of the FCSMO algorithm is as follows:-
(1) Define Population, LocalLeaderLimit, GlobalLeaderLimit, Perturbation rate.
(2) Determine fitness (each individual distance from sources of food)
(3) Apply greedy selection to choose global and local leaders.
while Termination condition is not met do

(i) To hit target, new locations for group population is formulated with the
help of self experience as well as local and group population experience,
using Local Leader Phase (LLP).
(ii) Relied on fitness value of group members, employ greedy selection
strategy.
(iii) Assess probabilities Pri for all companions using equation (4).
(iv) Generate new locations for each group companions, chosen by Pri, by
self experience, global leader experience also consider experience of group
member using algorithm 2.
(v) Greedy selection method is applied to modify global and local leaders
locations of entire groups.
(vi) Any local leader of a group, if fails to modify her locus within
LocalLeaderLimit then deflect that specific group companions for further
foraging using algorithm 3.
(vii) Any global leader if fails to modify her locus within GlobalLeaderLimit
then she diversifies group into subgroups by Global Leader Decision Phase
with the minimum threshold of each groups size being 4

end

Algorithm 4. Fast Convergent Spider Monkey Optimization (FCSMO)

4 Experimental Results

4.1 Test Problems Under Consideration

To evaluate the quality of proposed FCSMO algorithm, 14 opposed global opti-
mization issue (f1 - f14) are selected as presented in Table 1. All the issues
are continuous optimization issues and having various rates of complexity. Test
problems (f1 - f14)) are yield from [1,11] with the correlated offset values.
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Table 1. Test problems

4.2 Experimental Setting

To verify the efficiency of proposed algorithm FCSMO, a relative study is taken
between FCSMO and SMO. To analysis FCSMO and basic SMO, over the exam-
ine testing issues, subsequent observational setting is emulated:

– The number of simulations/run =100,
– Population size (Monkeys) NP = 50
– R = rand[0, 1]
– GlobalLeaderLimit ∈ [N/2, 2× N] [4]
– LocalLeaderLimit= D× N [4]
– Perturbation rate (p) ε[0.1, 0.8]

4.3 Results Comparison

Table 2 represent the observational results of relative algorithm. Following
Table 2 gives a information about Standard Deviation (SD), Mean Error (ME),
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Table 2. Comparison of the results of test functions, TP: Test Problem

TP Algorithm SD ME AFE SR

f1 FCSMO 1.81E-06 7.99E-06 88298.07 100

SMO 1.56E-06 8.24E-06 96073.45 100

f2 FCSMO 4.79E-07 9.36E-06 23416.47 100

SMO 9.32E-07 9.26E-06 32438.70 100

f3 FCSMO 3.50E-06 5.52E-06 32438.20 100

SMO 3.72E-06 4.98E-06 52153.75 100

f4 FCSMO 4.01E-02 1.18E-02 32651.24 92

SMO 4.80E-02 1.77E-02 62144.30 88

f5 FCSMO 0.00E+00 0.00E+00 10792.21 100

SMO 0.00E+00 0.00E+00 14261.81 100

f6 FCSMO 4.38E-07 9.80E-06 124902.53 100

SMO 1.15E-05 1.23E-05 169082.28 90

f7 FCSMO 8.70E-07 9.02E-06 12917.52 100

SMO 1.45E-02 2.08E-03 20795.99 98

f8 FCSMO 1.09E-06 8.80E-06 12867.18 100

SMO 1.53E-03 2.28E-04 17814.27 98

f9 FCSMO 1.23E-03 1.39E-04 96079.51 97

SMO 4.27E-03 1.64E-03 134399.12 81

f10 FCSMO 4.70E-14 6.18E-14 130131.22 38

SMO 4.31E-14 7.05E-14 150535.16 28

f11 FCSMO 1.48E-05 1.68E-05 104691.82 50

SMO 1.42E-05 1.72E-05 106712.17 49

f12 FCSMO 4.11E-06 9.90E-06 177221.60 15

SMO 3.39E-06 1.05E-05 187621.00 10

f13 FCSMO 5.05E-03 8.29E-03 55146.68 97

SMO 5.38E-03 1.11E-02 154825.33 62

f14 FCSMO 1.07E-03 1.35E-04 89666.40 67

SMO 3.63E-05 3.39E-05 111436.91 57

Average Number of Function valuations (AFE) and Success Rate (SR). Accord-
ing to Results of Table 2, at maximum time FCSMO shows best results from
SMO, in terms of performance, efficiency and accuracy.

Moreover, boxplots evaluation of AFE is taken for comparing the relevant
algorithms in scheme of consolidated quality, so it can simply show the observed
distribution of statistic graphically. The boxplots for FCSMO and SMO are
presented in Fig. 1. The results declares that interquartile scope and medians of
FCSMO are comparatively low. Further, all relevant algorithms are studied by
allowing entire attention to the SR, AFE and ME. This study is determined
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Fig. 1. Boxplots graph for average function evaluation

using the quality basis i.e. represented in [2,3]. The evaluated values of PI for the
FCSMO and SMO are calculated and consecutive PIs graphs are represented
in Fig. 2. The graphs analogous to several cases i.e. allowing entire attention to
SR, AFE and ME (as explained in [2,3]) are represent in Figs. 2(a), (b), and (c)
respectively. In these diagram, horizontal axis means the weights and vertical
axis means the PI. It is clear from Fig. 2 that PI of FCSMO are superior than
the other studied algorithms in various case. i.e. FCSMO observe better on the
studied testing issues as compare to the SMO.
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Fig. 2. Performance index for test problems; (a) for weighted importance to SR, (b)
for weighted importance to AFE and (c) for weighted importance to ME.
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5 Conclusion

This paper presents a variant of SMO algorithm, known as Fast Convergent
Spider Monkey Optimization Algorithm (FCSMO). In FCSMO, an acceleration
coefficient based strategy is proposed in which step size is decreased through
iteration. To evaluate the proposed algorithm, it is tested over 14 benchmark
function. The results collected by the FCSMO is better than the basic SMO
algorithm. In future, newly developed algorithm may be used to solve various
real-world optimization problems of continuous nature.
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