
A Systematic Review of Software Testing Using
Evolutionary Techniques

Deepti Bala Mishra1, Rajashree Mishra2(&), Kedar Nath Das3,
and Arup Abhinna Acharya1

1 School of Computer Engineering, KIIT University,
Bhubaneswar 751024, India

dbm2980@gmail.com, aacharyafcs@kiit.ac.in
2 School of Applied Sciences, KIIT University, Bhubaneswar 751024, India

rajashreemishra011@gmail.com
3 Department of Mathematics, NIT Silchar, Assam, India

kedar.iitr@gmail.com

Abstract. A best solution for decreasing software cost and reducing the cycle
time during software development is automatic software testing and it has been
seen by various organization. User specifications and requirements can be fully
achieved by software testing. A number of issues are underlying in the field of
software testing such as prioritization of test cases and automatic and effective
test case generation are to be handled properly and they mostly depends on
duration, cost and effort during the testing process. Testing can be done in two
different ways such as manual testing and automatic testing by using different
testing tools. Manual testing are very time consuming and this can be overcome
by automatic testing by generating test cases automatically. Several types of
evolutionary techniques like Genetic Algorithm, Particle Swarm Optimization
and Bee Colony Optimization have been used for software testing. In this
research paper, a survey of different evolutionary techniques used in software
testing have been presented by taking the various issues in to account.

Keywords: Test data generation ⋅ Software testing ⋅ Genetic algorithm
(GA) ⋅ Particle swarm optimization (PSO) ⋅ Bee Colony Optimization (BCO)

1 Introduction

Now-a-days automated software testing and developing of high quality test cases are
two main objectives in the software industry. To support a high quality assurance of
software, to create reliable, robust and trust worthy software or to deliver error free
software, testing is performed by gathering required information of the software. It is
also defined by the process of verification and validation, which meets the technical and
business requirements [1, 2] in software development process. Testing is a most time
consuming task which takes approximately 60% work load of the total software
development time. If the testing is performed using automated testing then it will lead
to reduce in software development cost by a significant margin [3–5].

© Springer Nature Singapore Pte Ltd. 2017
K. Deep et al. (eds.), Proceedings of Sixth International Conference
on Soft Computing for Problem Solving, Advances in Intelligent Systems
and Computing 546, DOI 10.1007/978-981-10-3322-3_16



A best solution for decreasing software cost and reducing the cycle time during
software development is automatic software testing and it has been seen by various
organization [6]. By using different software tools software can tested either manually
or automatically. It is proved that automated software testing is better than manual
testing as manual testing is a very time consuming and expensive task [7, 8]. Various
types of techniques have been proposed by researchers and a lot of work has been done
for software testing using soft computing techniques such as GA, Neural Network,
genetic programming, fuzzy logic and evolutionary computing by providing high
quality test data [8–10]. These techniques can be applied for test data generation to
optimized problems.

This paper presents a survey of how different types of evolutionary techniques such
as GA, PSO and BCO have been efficiently used in software testing and have been
applied extensively for automated test data generation. Further the paper is partitioned
into 4 sections. Section 1 presents the Introduction to software testing, Sect. 2 presents
related work in the field of software testing using different types of evolutionary
techniques, Sect. 3 contains a brief description about the working of GA, PSO and
BCO and Sect. 4 gives a conclusion followed by our future work.

2 Related Work

This section provides a survey on different evolutionary techniques like GA, PSO and
BCO used in software testing field for generating best test cases.

Last et al. [11], proposed a hybrid fuzzy based GA, which is an age extension of
GA (FAexGA) to generate test cases for mutation testing. They found a very minimal
set of test cases. The faults in test cases are exposed by the use of mutated versions of
the original method. The proposed method uses a FLC (Fuzzy Logic Controller) for
obtaining the probability of crossover. The probability of crossover differs according to
the age intervals allocated during lifetime. The life time and age of chromosomes
(parents) are defined by the FLC state variables. The truth value for obtaining
Young-age, middle-age and old-age are shown in Table 1. Where,

In their work an effective set of test cases are generated for a Boolean expression of
100 Boolean attributes by using three logical operators AND, OR, and NOT. An
external application generates the correct expression randomly and one simple function

Table 1. Fuzzy rule for cross over probability [14]

Parent 1
Young-age Middle-age Old-age

Parent 2 Young-age Low Medium High
Middle-age Medium High Medium
Old-age Low Medium Low

Age ∈ [Young-age, Middle-age, Old-age]
Crossover Probability ∈ [Low, Medium, High]

A Systematic Review of Software Testing 175



is evaluated for each test case to generate an erroneous expression. Here a 100-bit
lengthen binary strings of one dimension are generated as chromosomes.

Hla et al. [12], proposed a particle swarm optimization (PSO) algorithm based on
modified software units for embedded real time software regression testing. The pro-
posed algorithm prioritize the test cases automatically so that new higher priority test
cases are selected for regression testing. The PSO algorithm successfully applied to the
prioritization problem by taking solution as particle space and from which the best new
positions of test cases, based on software unit can be found. Their results shows that the
PSO algorithm can prioritized the test cases in the test suites by new best positions
effectively and efficiently.

McCaffrey [13], developed a simulated BCO algorithm by which pair wise test sets
can be generated to reduce the test set size as all systems are not supported for
exhaustive testing with all possible inputs. The technique is a combinatorial NP-hard
technique and it takes more time to generate test sets, which are far better than the test
sets generated by deterministic approach.

Nachiyappan et al. [14], proposed a model based on genetic algorithm to decrease
the cost of regression testing. Their proposed model creates population by taking the
test history, the fitness value is calculated depending on the block based coverage value
and run time of test case and the genetic operators are used for successive generations
till the test cases with optimum value is found. They used Average Percentage of Faults
Detected (APFD) metric to calculate the fitness function of individual test cases.
The APFD can determine the effectiveness about cost, coverage, runtime and ordering
of the new test case. The test cases are rejected which violates the specified time
constraints. The model shows a good optimal sized test set by reduced test suite
technique and the method is very highly adaptive as test case reduction is more
effective when the fitness granularity is increased.

Kaur and Goyal [15], presented a BCO algorithm for fault coverage to a maximum
limit. The authors have mapped the farmer bee’s scenarios to prioritize the test suite.
They explained their work by taking two examples like “college program for admission
in courses” and “Hotel Reservation”. In their work values have been compared using
APFD (Average Percentage of Fault Detection) metrics and the proposed algorithm has
been implemented in CPP compiler.

Ferrer et al. [16], presented two search based approaches as GTSG (Genetic Test
Sequence Generator) and ACOts (Ant Colony Optimization approach for Test
Sequence) for test sequence generation in functional testing with shortest valid path,
which covers full transition and class. They used one CIT (Combinatorial Interaction
Testing) approach, the classification tree method for test planning and design in
functional testing. The authors defined the entire model as an extended classification
tree to generate test sequences for a SUT (Software Under Test), which is needed for
both industry and academia. Their first approach is GTSG with memory operator to
preserve the memory for population evaluation as well as faster computation to get the
solution. The second one is ACOts, which deals with large construction graphs. Test
sequence can be generated with near-optimal solutions, where search spaces are sep-
arated. The authors performed the experiments using 12 software models by comparing
their proposed approaches with greedy algorithm and they found their approaches can

176 D.B. Mishra et al.



generate test sequences with shortest valid path, which covers full transition and class
in functional testing.

Ankur and Srivastav [17], used GA to generate test data automatically for branch
testing. They developed an improved approach which focuses on branch ordering,
memory and elitism. The authors have discussed about DFS (Depth First Strategy),
BFS (Breadth First Strategy) and PPS (Path Prefix Strategy) for ordering the branches,
which are to be covered for testing. For improve test data they used elitism and memory
with branch orderings. They compared each strategy with RAN and RNS and found
best results with a mean number of generations and longer populations.

Andalib and Babamir [18], used PSO in discrete space for generating test data
where there is no data dependency between program lines in a software. They proposed
a method that produced minimum numbers of Test Case (TC) automatically with
highest covering of codes in a program. In their method Mc Cabe theory was used to
find the independent paths by reducing the number of paths in a program for selecting
the best test case. Investing the motion of all the particles (birds/fish), the fitness
function was taken for an optimal solution. They executed an integrated sorting pro-
gram and with only one TC, they found 75% of the regions and 50% of independent
paths are covered. The authors has compared their proposed algorithm with GA to
covered 100% of independent paths and found more efficient result.

Dixit and Tomar [19], developed and implemented a hybrid algorithm GPSHA
(Genetic Particle Swarm Hybrid Algorithm) combining the power of GA and PSO and
they found a less number of generations and less number of test cases which covers
around 100% of a program. Their results confirmed the effectiveness of the GPSHA
over GA and PSO after performing in real world problems.

Sharma et al. [20], implemented GA in software testing to increase the efficiency
and process time of testing. They generate test cases by using GA in Ruby, C++ and
Matlab. It is found that the best fitness function is evaluated to a population of 50 and
maximum generation 500. When the stopping condition is satisfied the iterative gen-
eration is stopped by providing an optimized and unique solution.

Yang et al. [21], developed a new intelligent search based algorithm RGA
(Regenerate Genetic Algorithm) to increase test coverage, search efficiency, restrain
population aging and produce less number of test cases for coverage oriented software
testing. They found RGA can give better optimized solution for large scale, highly
complex problems and solve the population aging problem. After comparing with GA
and random test method, authors found RGA is more efficient for required coverage
criteria of test cases and achieving greater test coverage with fewer iterations and test
cases.

Shahbazi and Miller [22], used a multi objective optimization in black box string
test case generation for random testing and adaptive random testing. The authors
performed their experiments by taking six different types of string distance functions
such as Levenstein, Hamming, Cosine, Manhattan, Cartesian and Locality-Sensitive
Hashing, to find effectiveness and run time of test cases. They introduce two objectives
for effective string test cases such as the length distribution of the string test cases and
the diversity control of the test cases within a test set. They used one diversity- based
fitness function to generate optimized test sets to reveal faults more effectively and
found superior test cases are produced by applying the objectives.

A Systematic Review of Software Testing 177



Zhenga et al. [23], developed a decomposition based multi-objective evolutionary
algorithm (MOEA/D) for regression testing of programs from SIR repository. The
experiments are evaluated in four approaches such as NSGA-II (non-dominated sorting
genetic algorithm, MOEA/D (parameter c, used in normalization is fixed), MOEA/D
(c is chosen from tuning) and classic greedy algorithm. The authors compared their
work with Yoo and Harman [24] multi objective approaches where they used greedy
algorithm and two versions of NSGA-II. They found among all the approaches
MOEA/D with varying c is most effective and it produce the lowest HV(Hyper Vol-
ume) values with cheapest test suite. The two variants of MOEA/D have superior
performance in comparison to NSGA-II and greedy algorithm.

After an extensive study of different evolutionary techniques used in software
testing, we came to learn GA, PSO and BCO are used efficiently for generating test
cases and solving many complex problems. Table 2 shows a brief summary of different
evolutionary algorithm used in software testing and the results found in different related
work has been already done.

Table 2. A brief summary of different evolutionary algorithm used in software testing and
results found.

Authors Problem discussed
and solved

Algorithm
used

Work done in
particular area

Results

Mark Last
et al. [11]

Generate test cases
for mutation
testing.

GA Used a FLC
(Fuzzy Logic
Controller) for
obtaining the
probability of
crossover

FAexGA is
efficient as the
rate of finding
error is very fast
and number of
solution is
distinct.

Hla et al. [12] Prioritize test cases
to increase
effectiveness in
regression testing
for embedded real
time software.

PSO Focused on
coverage based
prioritization of
test suite.

PSO algorithm
can prioritized
the test cases in
very effectively
and efficiently

McCaffrey
[13]

Reducing test set in
pair wise testing

BCO Combinatorial
NP hard and
Pair wise
Testing

Test cases are
far better than
the test sets
generated by
deterministic
approach.

Nachiyappan
et al. [14]

Decrease the cost of
regression testing
by reducing the test
suite.

GA APFD is used to
determine the
effectiveness of
test cases.

The method is
very highly
adaptive as test
case reduction is
more effective
with increase of
fitness
granularity.

(continued)

178 D.B. Mishra et al.



Table 2. (continued)

Authors Problem discussed
and solved

Algorithm
used

Work done in
particular area

Results

Kaur and
Goyal [15]

Fault based test suit
prioritization.

BCO Used APFD
(Average
Percentage of
Fault Detection)
metrics and
CPP compiler.

Maximum
numbers of
faults are
covered in
regression
testing.

Ferrer et al.
[16]

Test sequence
generation with
shortest valid path
to cover transition
and class.

GA &
ABC

CIT
(Combinatorial
Interaction
Testing), the
extended
classification
tree method.

Generate test
sequences with
shortest valid
path, which
covers full
transition and
class in
functional
testing.

Ankur and
Srivastav.
[17]

Generate test data
automatically for
branch testing.

GA Focused on
branch ordering,
memory and
elitism.

Generate best
results with a
mean number of
generations and
longer
populations.

Andalib and
Babamir [18]

Generating
minimum number
of Test Case
(TC) automatically
with highest
covering of codes
in a program.

PSO Used Mc Cabe
theory to find
the independent
paths for
selecting the
best test case.

Covered 100%
of independent
paths and found
more efficient
result.

Dixit and
Tomar [19]

Generation of Less
and unique
numbers of test
cases.

GA &
PSO

Combining the
power of GA
and PSO

GPSHA results
a less number of
generations and
less number of
test cases and
covers around
100% of a
program.

Sharma et al.
[20]

Increase the
efficiency and
process time of
testing.

GA Generate test
cases by using
GA in Ruby,
C ++ and
Matlab.

Providing an
optimized and
unique solution
for testing.

(continued)

A Systematic Review of Software Testing 179



3 An Introduction to Evolutionary Algorithm

Evolutionary algorithm based on biological behavior or evolution of population, which
can be used to solve many complex and real life problems by producing high quality
test data automatically [15, 23]. This algorithm is based on the principle of survival of
the fittest and models some natural phenomena like genetic inheritance and Darwinian
strife for survival, constitute an interesting category of modern heuristic search [9, 19].
Figure 1 shows the work flow of evolutionary technique.

3.1 Genetic Algorithm (GA)

GA has emerged as a practical, robust optimization technique and search method and it
is inspired by the way nature evolves species using natural selection of the fittest
individuals.

The algorithm was developed by John Holland in United States [14]. The solution
to a specific problem can be solved by a population of chromosomes. A chromosome is

Table 2. (continued)

Authors Problem discussed
and solved

Algorithm
used

Work done in
particular area

Results

Yang et al.
[21]

Judging the
population aging
process.

GA Used population
regeneration
strategy

RGA is more
efficient by
reducing the
number of test
cases and
achieving
greater test
coverage with
fewer iterations
and test cases.

Shahbazi and
Miller [22]

Generate effective
set of black box
string test cases
through multi
objective
optimization.

GA &
MOGA

Used several
string distance
functions to find
effectiveness
and run time of
test cases.

Superior test
cases are
produced by
using multi
objective
optimization
technique.

Zhenga et al.
[23]

To achieve full
coverage for
regression testing

MOEA &
GA

Used MOEA/D
with a
normalization
parameter c to
solve multi
objective
optimization
problem

MOEA/D have
superior
performance in
comparison to
NSGA-II and
greedy
algorithm.

180 D.B. Mishra et al.



a string of binary digits and each digit is called a gene and population can be created
randomly. It is a best way to solve optimization problems by searching for good genes
and applying the different genetic operators like selection, crossover, mutation and
Elitism [11, 17, 22].

Selection: A selection operation is performed to determine the individuals that meets
the fitness function where fitness function is a specific function depending upon the
criteria which returns a number indicating the acceptability of the program. This
function is used in the selection process to determine the optimum point and the
variants survive to the next iteration [8, 21]. Selection methods are of six different types
such as roulette wheel, stochastic universal sampling, linear rank, exponential rank,
binary tournament and truncation.

Crossover or Recombination: After selection, the crossover operation is applied to
the selected chromosomes, which swaps genes or sequence of bits in the string between
two individuals. For binary encoding different types of crossover operators are used
like one point, two point, uniform and arithmetic. Cross over process is repeated with
different parent individuals. Finally the mutation operator is applied to a randomly
selected subset of the population [17, 20].

Mutation: It is used to maintain genetic diversity in the population by altering chro-
mosomes to introduce new good traits. Basically six types of mutation operators are
used in Genetic algorithm such as Bit string, flip bit, boundary, uniform, non uniform
and Gaussian [17, 21].

True

Initialize population

mutation

crossover

Evaluating Fitness function and sorting

Environmental  selection

False

Parent selection

Check for termination condition Best population

Fitness function and sorting

Fig. 1. Work flow of evolutionary technique

A Systematic Review of Software Testing 181



Elitism: Elitism process involves copying a small proportion of the fittest candidates
into the next generation, which are related to the best solution found [17].

The basic process of Genetic algorithms mainly involves creating an initial set of
random solutions (population) and evaluating them [21, 23], by using the GA opera-
tors, in which the better solutions are identified (parents) and are then used to generate
new solutions (children). These values can be used to replace with other population.
This new population (generation), is then reevaluated and the process for generating
new values continues until a final solution is found based on a specified condition of
the fitness function [14]. Finally the function minimization is applied to the fitness
function for test data generation.

3.2 Particle Swarm Optimization Algorithm (PSO)

PSO is a search based optimization technique that studies the social behavior of bird
flocking or fish schooling. This algorithm mainly based on the movement and intel-
ligence of swarms [18, 19]. The best solution can be found by a number of particles
constituting a swarm, moving around in a particular search space of N-dimensional and
adjusting their flying according to own and other’s flying experience. Particles are
always keeping track for personal best solution, denoted by p-best and the best value of
any particle, denoted by g-best. Simultaneously the speed is adjusted dynamically of
each particle depending on flying experiences. The velocity of each particle can be
changed by considering the parameters like current position and velocity, distance
between current position and its p-best as well as the distance between current position
and its g-best [12, 19].

3.3 Bee Colony Optimization Algorithm (BCO)

Bee Colony Optimization (BCO) is a special type of Swarm Intelligence (SI), where the
honey bees are the agents of the group. They communicate with each other by “Waggle
Dance” principle to exchange information about the location for rich food source. In
this system there is a well coordinated interaction between bees of a particular colony,
organized team work and simultaneous task performance [13, 15].

In a bee colony different types of bees are present like a queen bee, many male
drone bees and thousands of worker bees where the Queen is responsible to lay eggs
for creating new colonies the male drones are responsible to mate with the Queen. At
the time of downfall, male drones are discarded from the colony. The females of the
hive are the worker bees. They are main responsible to build blocks of the hive as well
as to comb, clean, maintain, guard the hive, search and collect rich food to feed the
queen and drones. The worker bees are of two types such as forager bees and scout
bees. The scout bees search food sources randomly and after finishing their distance
limits they return back to the hive to give the information to foragers by “Waggle
Dance” principle. Finally after observing the direction and information regarding
location of rich food sources the foragers start flying to collect food [13, 24]. BCO
algorithms are used to solve diverse domains problems, bench mark problems like
routing problems, NP-hard problems and Travelling Salesman Problems [15].

182 D.B. Mishra et al.



4 Conclusion and Future Work

In this review paper we analyzed how different types of evolutionary techniques such
as GA, PSO, ABCO and BCO have been efficiently used in software testing and have
been applied extensively for automated test data generation. The results and perfor-
mance of testing can be improved by these techniques. The evolutionary generation of
test cases is proved to be very efficient and cost effective than manual testing. In future,
we planned to combine the power of GA, PSO, ABCO and BCO in such a way that the
new hybridized algorithm can produce a less number of test generations from which
best test cases can be achieved for software testing. It is also planned to develop a new
algorithm to generate test cases randomly and further optimize to find the best test
cases.

References

1. Chauhan, N.: Software Testing: Principles and Practices. Oxford University Press, Oxford
(2010)

2. Jogersen, P.C.: Software Testing: A Craftsman Approach, 3rd edn. CRC Presses, Boca
Raton (2008)

3. Srivastava, P.R., Kim, T.H.: Application of genetic algorithm in software testing. Int.
J. Softw. Eng. Appl. 3(4), 87–96 (2009)

4. Berndt, D.J, Watkins, A.: High volume software testing using genetic algorithms. In:
Proceedings of the 38th Annual Hawaii International Conference on System Sciences –

Volume 09, vol. 9, pp. 318–326. IEEE Computer Society, Washington, DC (2005)
5. Wang, J., Changan, W., Shouda, J.: Test data generation algorithm of combinatorial testing

based on differential evolution. In: Third International Conference on IEEE Instrumentation,
Measurement, Computer, Communication and Control (IMCCC) (2013)

6. Vahid, G., Mäntylä, M.K.: When and what to automate in software testing? A Multi-Vocal
Lit. Rev., Inf. Softw. Technol. 76, 92–117 (2016)

7. Vudatha, C.P., Nalliboena, S., Jammalamadaka, S.K., Duvvuri, B.K.K., Reddy, L.:
Automated generation of test cases from output domain of an embedded system using
genetic algorithms. In: 3rd International Conference on Electronics Computer Technology
(ICECT), vol. 5. IEEE (2011)

8. Sharma, C., Sabharwal, S., Sibal, R.: A survey on software testing techniques using genetic
algorithm. arXiv preprint arXiv, pp. 1411–1154 (2014)

9. Wappler, S., Lammermann, F.: Using evolutionary algorithms for unit testing of object
oriented software. In: GECCO, pp. 1925–1932. ACM (2005)

10. Goldberg, D.E: Genetic Algorithms: In Search, Optimization and Machine Learning.
Addison Wesley, MA (1989)

11. Last, M., Eyal, S., Kandel, A.: Effective black-box testing with genetic algorithms. In: Ur, S.,
Bin, E., Wolfsthal, Y. (eds.) HVC 2005. LNCS, vol. 3875, pp. 134–148. Springer,
Heidelberg (2006). doi:10.1007/11678779_10

12. Hla, K.H.S., Choi, Y., Park, J.S.: Applying particle swarm optimization to prioritizing test
cases for embedded real time software retesting. In: IEEE 8th International Conference on
Computer and Information Technology Workshops, CIT Workshops 2008, pp. 527–532.
IEEE, July 2008

A Systematic Review of Software Testing 183

http://dx.doi.org/10.1007/11678779_10


13. McCaffrey, J.D.: Generation of pair wise test sets using a simulated bee colony algorithm. In:
IEEE International Conference on Information Reuse and Integration, IRI 2009. IEEE
(2009)

14. Nachiyappan, S., Vimaladevi, A., Selva Lakshmi, C.B.: An evolutionary algorithm for
regression test suite reduction. In: 2010 International Conference on Communication and
Computational Intelligence (INCOCCI), pp. 503–508. IEEE, December 2010

15. Kaur, A., Goyal, S.: A survey on the applications of bee colony optimization techniques. Int.
J. Comput. Sci. Eng. 3(8), 30–37 (2011)

16. Ferrer, J., Kruse, P.M., Chicano, F., Enrique Alba, E.: Evolutionary algorithm for prioritized
pairwise test data generation. In: Proceedings of the 14th Annual Conference on Genetic and
Evolutionary Computation, pp. 1213–1220. ACM (2012)

17. Ankur, P., Srivastav, G.: Automated test data generation for branch testing using genetic
algorithm: an improved approach using branch ordering, memory and elitism. J. Syst. Softw.
86(5), 1191–1208 (2013)

18. Andalib, A., Babamir, S.M.: A new approach for test case generation by discrete particle
swarm optimization algorithm. In: The 22nd Iranian Conference on Electrical Engineering
(ICEE), May 20–22. Shahid Beheshti University (2014)

19. Dixit, S., Tomar, P.: Automated test data generation using computational intelligence,
Reliability. In: 4th International Conference on Infocom Technologies and Optimization
(ICRITO) (Trends and Future Directions). IEEE (2015)

20. Sharma, A., Rishon, P., Aggarwal, A.: Software testing using genetic algorithms. Int.
J. Comput. Sci. Eng. Surv. (IJCSES) 7(2), 21–33 (2016). doi:10.5121/ijcses

21. Yang, S., Man, T., Xu, J., Zeng, F., Li, K.: RGA: a lightweight and effective regeneration
genetic algorithm for coverage-oriented software test data generation. Inf. Softw. Technol.
76, 19–30 (2016)

22. Shahbazi, A., Miller, J.: Black-box string test case generation through a multi-objective
optimization. IEEE Trans. Softw. Eng. 42(4), 361–378 (2016)

23. Zheng, W., Hierons, R.M., Li, M., Liu, X., Vinciotti, V.: Multi-objective optimisation for
regression testing. Inf. Sci. 334, 1–16 (2016)

24. Yoo, S., Harman, M.: Regression testing minimization, selection and prioritization: a survey.
Softw. Test. Verification Reliab. 22(2), 67–120 (2012)

184 D.B. Mishra et al.

http://dx.doi.org/10.5121/ijcses

	A Systematic Review of Software Testing Using Evolutionary Techniques
	Abstract
	1 Introduction
	2 Related Work
	3 An Introduction to Evolutionary Algorithm
	3.1 Genetic Algorithm (GA)
	3.2 Particle Swarm Optimization Algorithm (PSO)
	3.3 Bee Colony Optimization Algorithm (BCO)

	4 Conclusion and Future Work
	References


