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Abstract. Gravitational search algorithm (GSA) is a simple well known
meta-heuristic search algorithm based on the law of gravity and the law
of motion. In this article, a new variant of GSA is introduced, namely
Exploitative Gravitational Search Algorithm (EGSA). In the proposed
EGSA, two control parameters (Kbest and Gravitational constant) are
modified that play an important role in GSA. Gravitation constant G
is reduced iteratively to maintain a proper balance between exploration
and exploitation of the search space. Further, To enhance the searching
speed of algorithm Kbest (best individuals) is exponentially decreased.
The performance of proposed algorithm is measured in term of relia-
bility, robustness and accuracy through various statistical analyses over
12 complex test problems. To show the competitiveness of the proposed
strategy, the reported results are compared with the results of GSA, Fit-
ness Based Gravitational Search Algorithm (FBGSA) and Biogeography
Based Optimization (BBO) algorithms.

Keywords: Gravitational search algorithm · Swarm intelligence ·
Heuristic search algorithm · Elitism · Exponential · Gravitational con-
stant

1 Introduction

Nature is an origin of inspiration for solving hard and complex problems. Nature-
inspired algorithms (NIAs) are inspired by nature and used to deal with diffi-
cult real-world engineering problems [6]. Swarm intelligence algorithms [1,2] are
inspired by any type of collective behaviours of individuals in nature. Gravita-
tional search algorithm (GSA) [6] is a swarm intelligence type algorithm that
is inspired by the Newton’s physics concept gravitational force and motion of
individuals in nature. Individuals fascinate each others by the gravity force and
accelerate according to the force applied on individuals. Individuals with heavier
masses have high attraction power compare to lower masses individuals. By this
attraction power of individuals higher masses individuals move slowly as com-
pare to lower masses individuals. GSA is an optimization algorithm and provides
proper balancing between exploitation and exploration capabilities. So in this
algorithm, heavier masses individuals are responsible for exploitation whereas
lighter masses individuals are responsible for the exploration of the search area.
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When searching process start lighter masses (individuals are far from the opti-
mum solutions) individuals move with large step size (exploration) and after this
when individuals converge to the optimum solutions i.e. higher masses individu-
als move with comparative small step size (exploitation). Researchers have been
progressively produce new techniques to refine the performance of the algorithm
[3,7,8,11].

In this paper, to improve the searching capability and diversification and
intensification proficiency of GSA algorithm, a new variant of GSA is designed,
namely Exploitative Gravitational Search Algorithm (EGSA). In the proposed
EGSA, Kbest (best individuals) and Gravitational constant G are modified
such that searching efficiency of GSA is increased and the solution explore the
search space in early iteration having large step size while exploit the identified
search region in later iterations with small step size. To balance the number of
individuals that applied force to other individuals as the iteration is increased,
Kbest value is exponentially decreased. Gravitational constant is also decreased
through iterations that is responsible for the step size of individuals.

The remaining paper is organised as shown: In Sect. 2, a brief overview of
GSA is illustrated. Exploitative GSA algorithm (EGSA) is proposed in Sect. 3.
In Sect. 4, performance of EGSA is tested with several numerical benchmark
functions. Finally, Sect. 5 gives a summary and conclude the work.

2 Gravitational Search Algorithm

E. Rashedi et al. developed Gravitational Search Algorithm (GSA) in 2009 [6].
GSA is a population-based stochastic search algorithm inspired by the Newton’s
gravitational law and movement of individuals in universe by gravitational force.
According to Newton’s gravity law “Every individuals in-universe fascinate each
other with force, this force is directly proportional to the product of individuals
masses and inversely proportional to the square of the distance between individ-
uals masses [6]”. Force applied to the individuals, by this force individuals are
accelerated from their position. Performance of individuals is measure by their
mass. Agents with higher mass are good as compare to lighter mass agents.

The GSA algorithm is described as follows: Each individual Xi in search
space with I number of individuals is represented as:

Xi = (x1
i , ....., x

d
i , ....., x

n
i ) for i = 1, 2, ....., I, (1)

here xd
i shows the position of ith individual in d dimensional area.

Mass of individuals is a based on the individuals fitness. The fitness of all
individuals are calculated and worst and best fitness are identified for calculating
the mass of individuals.

– For minimization problems best and worst fitness are:

best(g) = minfitj(g) j ∈ 1, · · ·, I (2)

worst(g) = maxfitj(g) j ∈ 1, · · ·, I (3)
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– For maximization problems best and worst fitness are:

best(g) = maxfitj(g) j ∈ 1, · · ·, I (4)

worst(g) = minfitj(g) j ∈ 1, · · ·, I (5)

maxfitj(g) and minfitj(g) show the maximum and minimum fitness value of
the jth individual at iteration g.

In GSA inertia, active and passive gravitational masses are equal. Individual
with heavier masses are more efficient. Heavier masses individuals have higher
attraction power and move slowly. Masses in GSA depend on the fitness value
of individuals and calculated as follows:

Maj = Mpi = Mii = Mi, i = l, 2, ...., I. (6)

mi(g) =
fiti − worst(g)

best(g) − worst(g)
(7)

Mi =
mi(g)

∑I
j=1 mj(g)

(8)

here Mii and Mpi are inertia and passive gravitational masses of ith individual
respectively and Maj is active gravitational mass of jth individual. fiti is the
fitness value of ith individual.
G(g) is the gravitational constant computed as Eq. 9.

G(g) = G0e
(−αg/MaxIt) (9)

Here, G0 and α are constant and initialized at the starting. The value of G(g)
is reduced exponentially during each iteration for controlling search accuracy.
MaxIt is total number of iteration. Acceleration of individuals depends upon
the ratio of force and mass of the individual [5] and calculated as follows:

ad
i (g) = F d

i (g)/Mii(g) (10)

F d
i (g) is the overall force acting on ith individual computed as:

F d
i (g) =

∑

j∈Kbest,j �=i

randjF
d
ij(g) (11)

Kbest is computed as follows:

Kbest = finalper + (1 − g

MaxIt
) × (N − finalper) (12)

Kbest = round(N × Kbest

N
) (13)

Here, finalper is the constant and N is the total number of individuals in
the search space. Kbest is initial N individuals with the best fitness value and
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highest mass. Kbest will reduce linearly in each iteration and at the final only
one individual applying force to the other individuals.

Force on ith individual by jth individuals mass during iteration g is computed
using the following Eq. 14:

F d
ij(g) = G(g).(Mpi(g) × Maj(g)/Rij(g) + ε).(xd

j (g) − xd
i (g)) (14)

Here, Rij(g) is the Euclidian-distance between two individuals i and j at itera-
tion g. Gravitational constant G(g) is calculated using Eq. 9 while ε is a small
constant. The velocity update equation for individuals is defined as:

vd
i (g + 1) = randi × vd

i (g) + ad
i (g) (15)

here, rand is random variable in interval [0, 1]. vd
i (g) and vd

i (g + 1) are the
velocity of ith individual at the iteration g and g + 1 subsequently.

The position update equation for individuals is defined as:

xd
i (g + 1) = xd

i (g) + vd
i (g + 1) (16)

here, xd
i (g) and xd

i (g +1) are the position of ith individual at the iteration g and
g +1 subsequently. Velocity of individuals is updated during each iteration. Due
to changes in the velocity every individual update its position.

This procedure is carry on until their termination criteria is met or iteration
reach their maximum limit.

3 Exploitative Gravitational Search Algorithm

In the population-based algorithms, behavior of agent is measured by the
exploitation and exploration capability in the search space. Exploration is for
the enlarging the entire search space and exploitation is the finding optimum
solution from the previously visited good solutions. During the early iteration
of the algorithm, GSA visit the entire search space to find out the optimal solu-
tions. After the lapse of iteration GSA exploit the search space by visiting the
previously visited points. For the better performance of any population-based
algorithm it is necessary to maintain a proper balance between the exploitation
and exploration. Initially, when the individuals are not converged, exploration is
needed to find out the good solutions in the whole search space. For the explo-
ration large step size is necessary. After the lapse of iteration, individuals are
converged. Hence for finding the optimal solution of the algorithm, individuals
needs to exploit the search space (step size is comparatively less). In GSA grav-
itational constant G affects the step size of individuals. As mentioned in Eq. 14,
force is directly proportional to the gravitational constant G and from the Eq. 10,
acceleration is depend on the force of individuals. Acceleration in GSA plays a
vital role for the step size of the individuals. Therefore in this paper gravitational
constant G is modified as shown here:

G(g) = G0e
(−αg/MaxIt)(1 − g

MaxIt
) (17)
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From the Eq. 17, it is clear that the value of gravitational constant will be high
during the initial iteration and value is reduced iteratively. Therefore, the accel-
eration and step size of the individuals are decreased as the number of iteration
increased.

Kbest in Eq. 13 controls the number of individuals that apply the force to
other individuals in search space. A large number of Kbest (individuals) means
large number of individuals interact with each other and movement between the
individuals is high. As the result convergence speed is lower. From Eq. 13 it is
clear that Kbest is linearly decreased therefore change in Kbest is very small
as the number of iterations increase. Due to this movement and interaction
between individuals is comparatively lower but the effect in convergence speed
is not much. Therefore in this paper Kbest is modified as shown here:

Kbest = round(N × exp(−βg/MaxIt)) (18)

Here, N is total number of individuals and β is constant. The value of Kbest
is reduced exponentially during each iteration. From the Eq. 18 it is clear that
Kbest is exponentially decreased. At initial iteration Kbest is large therefore
movement and interaction between the individuals is more that show the explo-
ration of the search space. Whereas the number of iteration is increased Kbest
is reduced therefore movement and interaction between the individuals is com-
parative less that shows the exploitation of the individuals.
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Fig. 1. Effect of Kbest in number of individuals

Behaviour of Kbest through iterations is shown in Fig. 1. It is clear from this
figure that in EGSA, Kbest is decreases exponentially through iterations whereas
in GSA Kbest is decreases linearly through iteration. So initially large number
of individuals apply force as the number of iteration is increased comparatively
less number of individuals apply force. So, EGSA regulates a proper balance
between diversification and intensification proficiency and improve the searching
ability as the number of iteration increase. The pseudo-code of EGSA is shown
in Algorithm 1.
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– Identification of search area.
– Creating a randomly dispersed set of individuals;

while Stopping condition is not satisfied do

– Calculate fitness of individuals.
– Calculate individuals mass by Eq. 6 and 7.
– Evaluate constant (G) by Eq. 17.
– Evaluate Kbest by Eq. 18.
– Calculate force (F ) for each direction by Eq. 14 and acceleration (a) for

every individuals by Eq. 10.
– Update individuals velocity by Eq. 17 and position by Eq. 18.

end
Algorithm 1. EGSA Algorithm

4 Results and Discussions

To examine the outcome of the EGSA, 12 different benchmark functions (f1 to
f12) are picked as shown in Table 1.

To certify the prosection of the proposed algorithm EGSA, a comparative
analysis is carried out among EGSA, standard GSA, FBGSA [4] and BBO [10].
To authenticate the performance of the considered algorithms over the test prob-
lems, the experimental setting is given below:

– The number of simulations/run = 30,
– Number of population (N) = 50,
– G0 = 100, α = 20, β = 5 and finalper = 2,
– Experimental settings for the algorithms GSA, FBGSA [4] and BBO [10] are

simulated from their primary research papers.

Table 2 display the experimental results of the examine algorithms. A detailed
analysis about the standard deviation (SD), mean error (ME), average number
of function evaluations (AFE) along with the success rate (SR) are shown in
Table 2. Results in Table 2 replicates, many times EGSA exceeds in terms of
reliability, efficiency as well as accuracy as compare to the GSA, FBGSA and
BBO.

Further, Mann-Whitney U rank sum test [9] is performed at 5% level of
remarkable (α = 0.05) between EGSA - GSA, EGSA - FBGSA and EGSA -
BBO. Table 3 display the compared results of mean function evaluation and
Mann-Whitney test for 30 simulations. In Mann-Whitney test, we observe the
remarkable difference between two data set. If remarkable difference is not seen
then = symbol appears and when remarkable difference is observed then com-
parison is performed in terms of the AFEs. And we use + and - symbol, +
represent the EGSA is superior than the examined algorithms and - represent
the algorithm is inferior. The last row in Table 3, authorize the excellence of
EGSA over GSA, FBGSA and BBO.
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Table 2. Comparison of the results of test functions, TP: Test Problem

TP Algorithm SD ME AFE SR

f1 EGSA 4.76E-07 9.44E-06 127540.00 30

GSA 5.59E-07 9.30E-06 154615.00 30

FBGSA 5.57E-07 9.25E-06 141046.67 30

BBO 5.78E-03 1.04E-02 200000.00 0

f2 EGSA 1.01E-04 9.89E-03 84075.00 30

GSA 1.98E+00 3.61E+00 200000.00 0

FBGSA 8.65E+00 4.04E+01 200000.00 0

BBO 5.28E-03 1.77E-02 200000.00 0

f3 EGSA 4.65E-07 9.50E-06 151536.67 30

GSA 4.94E-07 9.42E-06 181821.67 30

FBGSA 6.47E-07 9.23E-06 166096.67 30

BBO 5.61E-02 5.61E-02 20000.00 0

f4 EGSA 1.25E-04 1.54E-01 8996.67 30

GSA 4.96E-03 2.56E+02 11583.33 30

FBGSA 5.60E-04 4.15E-02 12635.00 30

BBO 4.40E+01 4.80E-05 5351.67 30

f5 EGSA 1.49E-06 8.45E-06 67220.00 30

GSA 1.55E-06 7.73E-06 86376.67 30

FBGSA 1.86E-06 7.45E-06 81458.33 30

BBO 5.49E-02 1.42E-01 200000.00 0

f6 EGSA 1.60E-04 9.02E-04 74060.00 30

GSA 5.23E-02 1.88E-02 142220.00 26

FBGSA 3.73E-01 9.92E-02 200000.00 0

BBO 1.41E+00 2.73E-01 191210.00 3

f7 EGSA 7.92E-13 1.83E-12 14473.33 30

GSA 8.88E-13 1.85E-12 21290.00 30

FBGSA 7.81E-13 1.89E-12 21995.00 30

BBO 8.25E-13 1.79E-12 1090.00 30

f8 EGSA 1.15E-05 1.14E-05 36455.00 30

GSA 1.16E-05 1.17E-05 49801.67 30

FBGSA 1.20E-05 1.22E-05 47368.33 30

BBO 4.00E-01 3.26E-01 83296.67 18

f9 EGSA 2.70E-14 3.90E-14 127580.00 30

GSA 6.47E-02 6.67E-02 160010.00 28

FBGSA 2.70E-14 5.34E-14 155450.00 30

BBO 2.58E-14 3.10E-14 18711.67 30

f10 EGSA 6.74E-06 6.33E-06 29600.00 30

GSA 5.95E-06 5.50E-06 39686.67 30

FBGSA 6.24E-06 6.29E-06 36780.00 30

BBO 3.34E-16 1.22E+00 200000.00 0

f11 EGSA 7.48E-06 8.88E-05 30623.33 30

GSA 6.00E-06 8.96E-05 43526.67 30

FBGSA 5.66E-06 8.89E-05 41330.00 30

BBO 6.55E-06 8.96E-05 2600.00 30

f12 EGSA 4.13E-14 9.53E-13 179236.67 30

GSA 1.34E-12 1.34E-11 200000.00 0

FBGSA 9.24E-14 8.73E-13 192680.00 30

BBO 2.02E-03 5.94E-03 200000.00 0
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Table 3. Comparison based on Mann-Whitney U rank test at significance level α =
0.05 and mean function evaluations

Test problems EGSA Vs GSA EGSA Vs FBGSA EGSA Vs BBO

f1 + + +

f2 + + +

f3 + + +

f4 + + -

f5 + + +

f6 + + +

f7 + + -

f8 + + +

f9 + + -

f10 + + +

f11 + + -

f12 + + +

Total number of + sign 12 12 08

Moreover, for comparison of examined algorithms, in form of consolidated
achievement boxplots [2] study of AFE is carried out. Boxplot study efficiently
describe the empirical circulation of data graphically. The boxplots for EGSA,
GSA, FBGSA and BBO are depicted in Fig. 2. The results clearly show that
interquartile range and medians of EGSA are relatively low.

EGSA GSA FBGSA BBO
0

0.5

1

1.5

2

2.5

x 105

Fig. 2. Boxplots graphs (Average number of function evaluation)

To calculate the convergence speed of modified algorithm we use Acceleration
Rate (AR) [9] which is represent as shown below:

AR =
AFEcompareAlgo

AFEEGSA
(19)
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Table 4. Test Problems: TP, Acceleration Rate (AR) of EGSA compare to the Stan-
dard GSA, FBGSA and BBO

TP GSA FBGSA BBO

f1 1.212286342 1.105901417 1.568135487

f2 2.378828427 2.378828427 2.378828427

f3 1.199852621 1.096082356 1.319812587

f4 1.287513894 1.40440904 0.594849944

f5 1.284984628 1.21181692 2.975304969

f6 1.920334864 2.700513097 2.581825547

f7 1.470981115 1.519691386 0.075310917

f8 1.366113473 1.299364513 2.284917478

f9 1.254193447 1.218451168 0.146666144

f10 1.340765766 1.242567568 6.756756757

f11 1.421356264 1.349624469 0.08490258

f12 1.115843112 1.075003255 1.115843112

here, compareAlgo ∈ (GSA, FBGSA and BBO) and AR > 1 means EGSA is
faster than compared algorithms. For investigate the AR of modified algorithm it
compared with standard GSA, FBGSA and BBO, results of Table 2 are analyzed
and the value of AR is calculated using Eq. 19. It is cleared from the Table 4 that
convergence speed of EGSA is faster than other examined algorithms.

5 Conclusion

This paper presents a variant of GSA algorithm, known as Exploitative Gravita-
tional Search Algorithm (EGSA). In the modified version, two control parame-
ters gravitational constant G and Kbest are modified. Kbest is number of best
individuals that exponentially decreases with the number of iterations increases
and it increase the searching speed of algorithm. Gravitational constant G is
also deceased with number of iterations increased and it enhance the conver-
gence speed. This methodology is reliable and efficient and maintain the proper
balance between the exploitation and exploration proficiency of the algorithm.
The proposed algorithm is compared with GSA, FBGSA and BBO over differ-
ent benchmark functions. The obtained results state that EGSA is a competitive
variant of GSA and also a good choice for solving the continuous optimization
problems. In future, the newly developed algorithm may be used to solve various
real world optimization problems of continuous nature.
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