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Abstract. Shuffled Frog-Leaping Algorithm (SFLA) is a memetic meta-
heuristic approach for solving complex optimization problems. Like other
evolutionary algorithms, it may also suffer from the problem of slow con-
vergence. To elevate the convergence property of the algorithm, locally
informed search strategy is incorporated with SFLA. To improve the
intensification and diversification capabilities of SFLA, locally informed
search strategy is embedded by calculating the mean of local best and
one randomly selected neighbour solution of memeplex while updating
the position of worst solution in local best updating phase. Similarly,
mean of global best and a randomly selected neighbour solution is used
to improve the position of worst solution while updating the position of
worst solution in global best updating phase. The proposed algorithm is
named as Locally Informed Shuffled Frog-Leaping Algorithm (LISFLA).
The modified algorithm LISFLA is analysed over 15 distinct benchmark
test problems and compared with conventional SFLA, its recent vari-
ant, namely Binomial Crossover Embedded Shuffled Frog-Leaping Algo-
rithm (BC-SFLA) and three other nature inspired algorithms, namely
Gravitational Search Algorithm (GSA), Differential Evolution (DE) and
Biogeography-Based Optimization Algorithm (BBO). The results mani-
fest that LISFLA is an antagonist variant of SFLA.

Keywords: Meta-heuristic optimization techniques · Swarm intelli-
gence · Shuffled frog leaping algorithm · Locally informed

1 Introduction

Nature-inspired algorithms (NIAs), that take inspiration from nature and its
foundation is biological components of nature i.e. human and nature. The main
objective of developing such algorithm is to solve distinct complex real world
problems whose absolute solution doesn’t exist and is to optimize engineering
problems [1]. Swarm intelligence based algorithms [5] are based on mimicking
collective behavior of natural swarm’s e.g. particle swarm optimization (PSO)
[2], artificial bee colony algorithm (ABC) [8], shuffled frog-leaping algorithm
(SFLA) [7] and bacterial foraging algorithm (BFO) [9] etc.
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SFLA takes inspiration from the grubbing behavior of frogs that replicate
contagious information pattern with the natural and social behavior of species.
In SFLA, population (frogs) is partitioned into several memeplexes. Frogs
exchange their memes with other frogs using memetic evolution procedure which
helps to improve the performance of individual frog towards its global optimum
solution. There is always a presence of odds with all the evens, basic SFLA con-
verges slowly at the last stage and easily falls into local minima. To elevate the
performance of the conventional SFLA algorithm researchers are continuously
working on this algorithm [6,10,15].

To improve the convergence, intensification and diversification proficiency of
basic SFLA, locally informed search strategy is embedded in the local explo-
ration phase of the conventional SFLA to ameliorate the position of the worst
solution. In LISFLA, worst solution is take good memes either from local best
and one local random solution of the memeplex or global best and a randomly
chosen neighbour solution of the entire feasible search space. In this process,
worst solution is locally informed through the global best or local best with one
randomly selected neighbour to ameliorate the knowledge of worst solution of
memeplex. The contemplated algorithm is titled as Locally Informed Shuffled
Frog Leaping Algorithm (LISFLA).

The remaining paper is organized as shown: In Sect. 2, a brief overview of
standard SFLA is described. Locally Informed Shuffled Frog-Leaping Algorithm
(LISFLA) is proposed in Sect. 3. In Sect. 4, performance of LISFLA is tested
with several numerical benchmark functions. Finally, Sect. 5 conclude the work.

2 Overview of Shuffled Frog-Leaping Algorithm

Eusuff invented Shuffled Frog Leaping Algorithm (SFLA) in 2003 [7] for solving
distinct complex optimization problems. SFLA is a population-based cooperative
search metaphor inspired by foraging behaviour of frogs [13]. Memetic evolution
is used in SFLA for the purpose of spreading ideas among the solutions in a local
exploration which is same as PSO [2]. A shuffling approach helps for exchanging
ideas among local searchers that lead them toward a global optimum. SFLA con-
tains elements of global exploration, local exploration and shuffling procedures.
In general, a SFLA works as follows. Firstly, the parameters for the SFLA are
total number of memeplex (Mmpx), the number of frogs in each memeplex (Fm)
and the range of feasible search space are initialized. Therefore, the total pop-
ulation size (N) of swarm is denoted as N= Mmpx * Fm. Afterwards, objective
value of each frog is calculated. Rank is assigned accordingly to their objective
value and sort them in the descending order of their objective values. Then,
N frogs are partitioned into memeplexes (M), each containing frogs (F), like
that first rank frog goes to first memepelex, second rank frog goes to second
memeplex and third rank frog goes to third memeplex and so on. To construct
submemeplex, memplexes are divided into the submemeplex with having the
goal is that true solution to move towards its optimum solution by elevating
their ideas. Submemeplex selection process assigns weights to frogs. The weights
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are assigned with a triangular probability distribution (probk) using Eq. 1.

probk =
2(q + 1 − k)
q(q + 1)

(1)

Here, q is total number of population and k = 1, 2, 3, ..., q, represents rank of
frogs within the memeplex. The frog with the higher objective value has the
higher probability of being selected for the submemeplex. The frogs with the
lower objective value has lower probability. The position of best frogs and worst
frogs is recorded.

The worst solution is updated their position by using three phases: (1) Local
best updating phase (2) Global best updating phase and (3) Randomly initial-
ization of solution in the search space (Censorship).

1. Local best updating phase: To improve the position of worst frog. The
position update equation for worst solution is defined in Eq. 2.

Unew = PW + R(0, 1) ∗ (PLB − PW ) (2)

Here, Unew is the new position of worst frog, PLB and PW are position of
local best frog and worst frog respectively. R(0, 1) is a random number in
the range [0, 1]. If Unew lies in the feasible space, compute the new objec-
tive value. Greedy selection strategy is applied for improving the position of
worst solution. If the position of worst solution gets better than the previous
position then position is updated otherwise it goes in next phase i.e. global
best updating phase.

2. Global best updating phase: In this phase, the worst frog get chance to
update its position with the help of global best frog as defined in Eq. 3.

Unew = PW + R(0, 1) ∗ (PGB − PW ) (3)

Here, PGB represents the global best frog found so far. Again greedy selec-
tion strategy is applied for improving the position of worst solution. If worst
solution does not update its position then it is randomly initialized in the
feasible search space. After this phase memeplexes are updated with the new
position of worst frog solution.

3. Randomly initialization of solution in the search space (Censor-
ship): If new position of worst solution is infeasible means worst solution
exist outside the range of search space and old position which is calculated
by global best solution is not better. Meme of this frog not spread no longer
it means that worst frog does not have good meme so, randomly generate a
new frog within the range of feasible search space to replace the frog whose
new position was not so good to progress.

After the memetic evolutionary steps within each memeplexes are to be shuf-
fled and the population is to be sorted in decreasing order of their objective value.
Position of the best frog PGB is get updated. To check convergence, repeat the
above procedure until the stopping criteria is met.
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3 Locally Informed Shuffled Frog Leaping Algorithm
(LISFLA)

In the working of SFLA algorithm, there are enough possibilities for the solutions
to get stuck in local optima. It also suffers from the problem of slow convergence.
To reduce such problems, locally informed search process is incorporated by
taking mean of both local best and one randomly selected local neighbour of
memeplex and global best and one random neighbour for improving the position
of the worst solution in local best updating phase and global best updating phase
of basic SFLA respectively.

As it is clear from the solution’s search process of conventional SFLA that
the Eqs. (2, 3), the worst solution is updated during each iteration by using three
phases: (1) Local best updating phase (2) Global best updating phase and (3)
Randomly initialization of solution in the search space. Further, it is to be noted
that worst solution is simply influenced by the local best or global best solution,
which may lead to trap in local optima and leads to loss of intensification and
diversification capability.

To avoid such possibilities (stagnation or converging in local optima), in the
proposed strategy, the step size is calculated by taking the mean of both local
best or global best solution and one randomly selected neighbour solution of
memeplex otherwise it is randomly initialized in the search space. This type of
search phenomenon elevates the intensification and diversification proficiency of
the algorithm that are chief characteristics of the population-based optimiza-
tion algorithms. Therefore, to improve the convergence and to maintain the
intensification and diversification capability of SFLA, following modifications
are proposed.

3.1 Local Best Learning Phase with Random Neighbour

The position of worst solution is updated using the locally informed search
process. In the process of local search, the worst solution is get updated
(informed) by taking mean of both local best solution and one randomly selected
local neighbour solution of particular memeplex . The updated step size and
position update equations is defined as Eqs. (4 and 5).

Step = R(0, 1) ∗ (
PLB + PKL

2
− PW ) (4)

Unew = PW + Step (5)

Here, Unew is the updated position of the worst solution and Step shows the step
size. (PLB) and (PKL) represents the local best solution and a local neighbour
solution of PW respectively. R(0, 1) is a uniformly distributed random number
in the range between [0, 1]. If Unew lies in the feasible space, compute the new
objective value. Greedy selection strategy is applied for improving the position
of worst solution in the search space. If the position of worst solution gets better
than the previous position then the position of the worst solution is updated
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otherwise it goes to next phase. In the modified equation a new term is added
that is containing the information received from the local best solution and
a random neighbour solution of memeplex. In Eqs. (4, 5), worst solution PW is
informed through the both both PLB and PKL. In basic SFLA Eq. (2), sometimes
the worst solution (PW ) are not updated through the local best solution that
leads to loss of intensification and diversification proficiency of the search space.
Therefore, in Eqs. (4, 5) to improve the position of worst solution mean of both
PLB and PKL are taken that leads to move PW toward its optimum solution.

3.2 Global Best Learning Phase with Random Neighbour

In this phase the worst solution is get update its position by taking mean of
both global best and a random neighbour solutions of the feasible search space.
The position update process of worst solution is defined as Eqs. (6 and 7).

Step = R(0, 1) ∗ (
PGB + PKG

2
− PW ) (6)

Unew = PW + Step (7)

Here, Unew is the updated position of worst solution and Step shows the step
size. PGB and PKG represents the global best solution and neighbour solution
of PW respectively. If Unew is exist in the feasible space, compute its objective
value and apply greedy selection strategy between the new and worst solution. If
worst solution does not update its position then it is randomly initialized in the
feasible search space. In Eqs. (6, 7) both PGB and PKG has the ability to attract
the worst solution PW . In the modified equation a new term is added that is
containing the mean of the information received from the global best solution
and a randomly selected neighbour solution of the search space. According to
Eqs. (6, 7), in place of only global best solution, mean of both randomly chosen
neighbour solution and global best solution is used that commute the worst
solution in the direction of the global best solution with neighbour solution that
enhance the intensification and diversification potential of SFLA algorithm.

3.3 Censorship

If new position of worst solution is infeasible means worst solution exist outside
the range of search space and old position which is calculated by global best
solution is not better. Meme of this frog not spread no longer it means that worst
frog does not have good meme so, generate a new solution randomly within the
range of feasible search space to inplace the frog whose new position was not so
good to evolution.

After the memetic evolutionary steps within each memeplex, the memeplexes
are to be shuffled and the population is to be sorted in decreasing order of their
objective value. Position of best frog PGB is get updated. Then we check the
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stopping criteria of algorithm if it is satisfied then stop the process. Otherwise,
again partition the frogs into memeplexes.

Like SFLA, the LISFLA algorithm is also divided into two phases, namely
global exploration phase and local exploration phase. The locally informed search
strategy is embedded in the local exploration phase of the algorithm, while global
exploration phases are kept same as in the basic SFLA.

4 Results and Discussions

To analyze the validity of LISFLA algorithm, 15 distinct global optimization
functions (f1 to f15) are used here, demonstrated in Table 1.

To accredit the pursuance of the proposed algorithm LISFLA, a comparative
experiment is carried out among LISFLA, SFLA [7], BC-SFLA, GSA [11], DE
and BBO [14]. LISFLA is tested with the basic SFLA, BC-SFLA, BBO, DE
and GSA over considered optimization test functions. Following experimental
parameters are adopted:

– The number of simulations/run = 30,
– Total number of memeplexes (Mmpx) = 5
– Number of frogs in each memeplex (Fm) = 10 and total population Size

(Mmpx * Fm) (N) = 50
– Parameter settings for the algorithms basic SFLA, BC-SFLA, GSA, DE and

BBO are imitated from their elementary research papers. [7,11,14]

Table 2 shows the experimental results of the SFLA, BC-SFLA, GSA, DE
and BBO algorithms and also furnishes about the standard deviation (SD),
average number of function evaluations (AFE), mean error (ME), and success
rate (SR). Results in Table 2 reflects that most of the time LISFLA outrun in
terms of reliability, robustness, efficiency as well as accuracy in comparison to
the SFLA, BC-SFLA, GSA, DE and BBO.

Besides, boxplots [3,12] analysis is carried out for comparing the examined
algorithms in the form of combined performance though it can efficiently depict

LISFLA BCSFLA SFLA DE BBO GSA

0

0.5

1

1.5

2

x 105

Fig. 1. Boxplots graphs (Average Function Evaluation)
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Table 2. Comparative result of TP, TP: Test Problem for LISFLA

TP Algorithm SD ME AFE SR

f1 LISFLA 9.80E−07 8.32E−06 5999.47 30

BCSFLA 9.67E−07 8.24E−06 8546.30 30

SFLA 1.12E−06 8.73E−06 12333.10 30

DE 1.16E−06 8.58E−06 18770.00 30

BBO 8.01E−07 8.98E−06 46193.33 30

GSA 1.34E−06 8.03E−06 63223.33 30

f2 LISFLA 1.03E−06 8.85E−06 8502.20 30

BCSFLA 1.77E−02 8.05E−01 200000.00 0

SFLA 2.19E−02 8.25E−01 200000.00 0

DE 1.03E−16 7.59E−01 200000.00 0

BBO 1.13E−03 7.63E−01 200000.00 0

GSA 3.21E−03 7.60E−01 200000.00 0

f3 LISFLA 5.23E−07 9.38E−06 14840.93 30

BCSFLA 5.95E−01 2.77E−01 56603.13 24

SFLA 5.62E−01 2.69E−01 61437.80 24

DE 4.28E−07 9.49E−06 42043.33 30

BBO 1.00E−02 4.53E−02 200000.00 0

GSA 5.84E−07 9.37E−06 161030.00 30

f4 LISFLA 3.69E−02 9.86E−03 20234.33 28

BCSFLA 1.61E−01 1.67E−01 136836.07 10

SFLA 2.47E−01 5.52E−01 193757.90 1

DE 7.96E−07 9.02E−06 21763.33 30

BBO 1.87E−01 1.58E−01 200000.00 0

GSA 8.13E−07 8.66E−06 111176.67 30

f5 LISFLA 8.41E−07 8.90E−06 5554.03 30

BCSFLA 8.74E−07 8.96E−06 8074.27 30

SFLA 7.73E−07 8.92E−06 10541.43 30

DE 6.91E−07 9.02E−06 17165.00 30

BBO 3.62E−07 9.54E−06 93826.67 30

GSA 7.56E−07 8.86E−06 91298.33 30

f6 LISFLA 9.45E−07 8.87E−06 9168.40 30

BCSFLA 6.82E−07 9.02E−06 10797.23 30

SFLA 7.06E−07 8.94E−06 18280.53 30

DE 6.87E−07 9.21E−06 22221.67 30

BBO 1.65E−05 4.26E−05 200000.00 0

GSA 1.07E−06 8.84E−06 99265.00 30

(continued)
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Table 2. (continued)

f7 LISFLA 6.19E−02 2.50E−01 108844.53 17

BCSFLA 1.29E−01 5.17E−01 200000.00 0

SFLA 1.47E−01 3.60E−01 167215.30 7

DE 3.00E−02 2.10E−01 155318.33 26

BBO 5.37E−02 4.67E−01 200000.00 0

GSA 5.82E−02 8.00E−01 200000.00 0

f8 LISFLA 8.56E−07 8.66E−06 8698.07 30

BCSFLA 6.53E−07 9.11E−06 12437.80 30

SFLA 9.55E−07 8.84E−06 16133.77 30

DE 7.81E−07 9.12E−06 25906.67 30

BBO 4.33E−04 1.28E−03 200000.00 0

GSA 1.02E−06 8.91E−06 109881.67 30

f9 LISFLA 2.73E−06 6.81E−06 2738.93 30

BCSFLA 1.93E−06 7.11E−06 2266.53 30

SFLA 1.36E−06 8.09E−06 6626.67 30

DE 2.28E−06 7.26E−06 7665.00 30

BBO 2.20E−06 7.48E−06 3241.67 30

GSA 1.81E−06 6.49E−06 46398.33 30

f10 LISFLA 0.00E+00 0.00E+00 3844.73 30

BCSFLA 4.76E−01 2.00E−01 38038.30 25

SFLA 0.00E+00 0.00E+00 9004.93 30

DE 0.00E+00 0.00E+00 10886.67 30

BBO 0.00E+00 0.00E+00 5351.67 30

GSA 0.00E+00 0.00E+00 11583.33 30

f11 LISFLA 1.07E−06 8.58E−06 9897.87 30

BCSFLA 8.49E−07 8.66E−06 14172.93 30

SFLA 8.00E−07 8.95E−06 18385.47 30

DE 9.63E−07 8.95E−06 29205.00 30

BBO 5.39E−03 1.44E−02 200000.00 0

GSA 9.47E−07 8.75E−06 95278.33 30

f12 LISFLA 3.96E−02 2.39E−02 59982.17 22

BCSFLA 6.44E−01 5.53E−01 149901.03 8

SFLA 3.15E+00 4.85E+00 194013.27 1

DE 7.17E−07 8.90E−06 26943.33 30

BBO 7.07E−01 8.54E−01 200000.00 0

GSA 8.82E−07 8.81E−06 90630.00 30

(continued)
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Table 2. (continued)

f13 LISFLA 1.79E−02 3.32E−03 14040.03 29

BCSFLA 8.89E−07 8.78E−06 11064.47 30

SFLA 1.79E−02 3.32E−03 20893.87 29

DE 1.02E−06 8.88E−06 23088.33 30

BBO 3.09E−05 1.04E−04 200000.00 0

GSA 6.13E−07 9.00E−06 95498.33 30

f14 LISFLA 5.87E−07 9.07E−06 12680.57 30

BCSFLA 1.03E−06 8.59E−06 13154.93 30

SFLA 6.76E−07 9.16E−06 25357.17 30

DE 5.87E−07 9.08E−06 26216.67 30

BBO 6.60E−04 2.33E−03 200000.00 0

GSA 2.33E−05 7.78E−04 134665.00 28

f15 LISFLA 9.31E−17 8.72E−16 21009.73 30

BCSFLA 9.95E−17 8.45E−16 28845.97 30

SFLA 4.86E−17 9.30E−16 37419.80 30

DE 6.21E−17 9.08E−16 58980.00 30

BBO 2.02E−03 5.94E−03 200000.00 0

GSA 1.34E−12 1.34E−11 200000.00 0
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Fig. 2. Performance index for test problems; (a) for weighted importance to SR,
(b) for weighted importance to AFE and (c) for weighted importance to ME.
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the empirical dispersion of data graphically. The boxplots for LISFLA, SFLA,
BC-SFLA, GSA, DE and BBO are displayed in Fig. 1. The results manifest that
interquartile range and medians of LISFLA are comparatively low.

Nextly, all considered algorithms are also compared by giving weighted
importance to the ME, SR, and AFE. This comparison is measured using
the performance indices which is described in [3,4]. The resultant values of PI
for the LISFLA, BC-SFLA, SFLA, GSA, DE and BBO are computed and cor-
responding PIs graphs are demonstrated in Fig. 2.

The graphs belonging to each of the cases i.e. giving weighted importance to
AFE, SR and ME (as explained in [3,4]) are depicted in Figs. 2(a), (b), and (c)
respectively. In these figures, horizontal axis represents the weights while vertical
axis expresses the PI.

It is clear from Fig. 2 that PI of LISFLA are superior than the other con-
sidered algorithms in each case. i.e. LISFLA performs better on the considered
test problems as compare to the BCSFLA, SFLA, GSA, DE and BBO.

5 Conclusion

In this paper, a new variant of SFLA algorithm is presented, namely Locally
Informed Shuffled Frog Leaping Algorithm (LISFLA). In the proposed LISFLA,
a new position update strategy for the worst solution is proposed and that is
embedded in local exploration phase of primary SFLA. In the proposed locally
informed update process, the step size of the worst solution is decided on the
basis local best or global best and a local randomly selected neighbour solution
of memeplex. In this proposed LISFLA, local best and global best solutions
are intensified the search space while, randomly selected neighbour solution is
diversified the search area. Further, the proposed algorithm is compared with
basic SFLA, its recent variant, namely Binomial Crossover Embedded Shuffled-
Frog Leaping Algorithm (BC-SFLA) and three other nature inspired algorithms,
namely Gravitational Search Algorithm (GSA), Differential Evolution (DE) and
Biogeography-Based Optimization Algorithm (BBO). Experiments over the test
functions, depicts that the LISFLA outplays to the considered algorithms.
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