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Abstract. Spider Monkey Optimization (SMO) Algorithm being a
stretcher to the domain of meta-heuristics is performing well but has a
flaw of converging early. For eradicating this flaw and improving explo-
ration capability, a new modification is intended which is named as SMO
based on metropolis principle (SMOM). The Metropolis principle is taken
from simulated annealing in expectation to improve exploration capa-
bility of SMO. In this intended modification, non-prominent solutions
also get a chance to upgrade themselves and reach global optima. This
amendment enhances the global search capability of global leader phase
which helps in sustaining exploration and exploitation of algorithm while
maintaining the convergence speed. The intended algorithm is analyzed
with SMO, one of its recent variant namely, self-adaptive spider monkey
optimization (SaSMO) and another rooted algorithm i.e. particle swarm
optimization (PSO) over 12 benchmark functions and recorded outcomes
depicts that SMOM is a noted variant among them.

Keywords: Swarm intelligence · Nature inspired algorithms · Simu-
lated annealing · Metropolis principle

1 Introduction

Nature always being a good teacher and by taking inspiration from it, humans
evolve unique algorithms commonly known as nature-inspired algorithms [13].
Population-based meta-heuristics are one of its dominant class. A bevy of par-
ticles when reform their location based on their intellectual and unified behav-
ior fall under this category [8]. Artificial bee colony (ABC) [2], Particle swarm
optimization (PSO) [7], Gravitational search algorithm (GSA) [10] are few
population-based meta-heuristics. Spider Monkey Optimization (SMO) being
a new addition to this arena lessens the flaws of older meta-heuristics like stag-
nation in its basic design and an efficient algorithm. SMO is inspired by the
intelligent food foraging behavior of spider monkeys portraying the concept of
fission-fusion society and is developed by J. C. Bansal et. al [3]. Besides, being
an efficient algorithm it has some flaws too like being stuck in local optima [9].
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This paper exhibits a newly developed variant of SMO namely Spider Monkey
Optimization Algorithm based on Metropolis principle. This variant is evolved
to strengthen the exploration capability of all spider monkeys which guide them
to reach the optimal solution while maintaining their convergence speed.

Further, the structure of the paper is as: Sect. 2 presents an overview of the
SMO algorithm proceeding to Sect. 3 representing SMO based on metropolis
principle. Section 4 depicts the performance evaluation followed by conclusion in
Sect. 5.

2 Spider Monkey Optimization

Stimulated from the intellectual conduct of spider monkeys, researchers evolved
spider monkey optimization algorithm that portrays a perfect fission-fusion
structure. It has six phases except initialization that is interpreted below, and
its brief can be read in [3].

2.1 Local Leader Phase(LLP)

This phase presents the location amendment process of all spider monkeys (SM)
which depends on SM’s persistence and social influence. Its social influence is
based on their local leader and local group members experience. Location amend-
ment depends on greedy approach by which prominent SM is chosen. Location
amendment process is given in Eq. 1:

SMnewij = SMij + r1 × (LLkj − SMij) + r2 × (SMrj − SMij) (1)

where, SMij is the persistence of ith SM in jth dimension, LLkj represents the
local leader of kth group and SMrj is rth randomly selected SM. r1 is random
number between (0,1) and r2 varies in the range of (−1,1).

2.2 Global Leader Phase (GLP)

Taking inspiration from global leader and get influenced from neighbour, SM
update its position. In this phase, location is updated on the basis of fitness as
SM having high fitness get more chance to update itself as compared to less fit
SM. The location amendment process is given in Eq. 2:

SMnewij = SMij + r1 × (GLj − SMij) + r2 × (SMrj − SMij) (2)

Here, GLj is the location of global leader of the bevy. After amendment, greedy
selection is prescribed on the selection of individuals, i.e. if the fitness of monkey
is high, then its new location is selected else old one.

if fitnew (SM)> fitold(SM)
select new

else
select old
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2.3 Global Leader Learning Phase (GLLP)

This phase is about learning of global leader in whole bevy and monkey with
highest fitness get elected as global leader. If global leader doesn’t amend its
location then global limit count is set to 0 else incremented by 1.

2.4 Local Leader Learning Phase (LLLP)

Every sub-group has its leader that is elected in this phase. If a local leader
doesn’t amend itself then, a counter named local limit count is increased by 1.

2.5 Local Leader Decision Phase (LLDP)

If local leader of any bevy doesnt get relocated to a distinct edge known as Local
Leader Limit (LLL), then all the monkeys of that group amend their locations
either by random initialization or by using global leader wisdom through pr i.e.
perturbation rate given in Eq. 3:

SMnewij = SMij + r1 × (GLj − SMij) + r1 × (SMij − LLkj) (3)

2.6 Global Leader Decision Phase (GLDP)

If the global leader doesnt get relocated to a distinct edge known as Global
Leader Limit (GLL), then the global leader splits the bevy into smaller subgroups
or fuse subgroups into one unit group.

3 Spider Monkey Optimization Algorithm Based
on Metropolis Principle

SMO has a major flaw of being stuck in local optima due to which it bounces the
global optima. In global leader phase, there are possibility that global leader get
stuck or do not explore the search space properly. For enhancing the exploration
characteristics of the algorithm, spider monkey optimization algorithm based on
metropolis principle is depicted.

3.1 Modified Global Leader Phase

In global leader phase, the location amendment process of SM is given in Eq. 2.
From this equation, a new location of SM is evaluated, and then we have one old
position represented by SMij and new location by SMnewij . In the basic version
of SMO greedy approach is used. The greedy approach has a dominant flaw that
if the strength of the new solution is greater, then it is elected. Whereas, it may
be possible that a non-prominent solution also covers the possibility of reaching
to global optima.
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For eradicating this flaw, new modification is intended i.e. based on metropo-
lis principle taken from simulated annealing [5,6]. It simulates the cooling behav-
ior of the material. By this principle, non-prominent solutions are also accepted
with a probability in the intended modification which is evaluated as shown in
Eq. 5.

ΔC = Cnew − Cold (4)
P (ΔC) = exp(−ΔC/T ) (5)

In Eq. 4, Cnew and Cold are cost of new and old solutions respectively and
their difference is saved in ΔC. T represents the temperature i.e. used to evaluate
probability exponentially. From Eqs. 4 and 5, it is possible that if the cost of a
newly generated solution is less then also it is confirmed. This principle is the
backbone of simulated annealing [4] as by this chance of stagnation is less because
it has the power of accepting non-prominent solutions with probability.

Now, greedy selection of amended global leader phase is shown as:

if (fitnew (SM)> fitold)(SM) ‖ r > exp(−(fitnessnew − fitnessold)/T )
select updated solution

else
select previous solution

Here, r is a random number between (0,1), and T is the temperature which is
at 20. In above selection, there are two conditions of election reflecting the newly
selected location of a SM. Firstly, if an SM attains high strength at an altered
location, then it is elected. Secondly, in the case of non-prominent solutions if the
random number is greater than probability then also the non-prominent solution
is considered but with some probability. Through this modification, SM that
are not coming in the range of strength are also elected that is solution giving
high strength are chosen, but non-prominent are elected too which overcome
the flaw of global leader phase. It results in bettering global search capability
of global leader phase. By this modification, exploration ability is upgraded
because of which premature convergence speed is maintained, and there are
better possibilities to reach global optima.

4 Experimental Outcomes

4.1 Considered Test Problems

The proposed algorithm SMOM is tested over 12 benchmark functions to exam-
ine its indulgence among other rooted algorithms. These 12 benchmark functions
are taken from reference papers of taken algorithms for testing and are depicted
in Table 1.
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Table 1. Test problems

Test Prob-
lem

Objective function Search Range Optimum
Value

D Acceptable
Error

Alpine f1 =
∑D

i=1 |xisin xi + 0.1xi| [-10, 10] f(0) = 0 30 1.0E − 05

Michalewicz f2 = − ∑D
i=1 sinxi(sin(

i.xi
2

π )20) [0, π] fmin =
−9.66015

10 1.0E − 05

Salomon
Problem

f3 = 1 − cos(2π
√∑D

i=1 x2
i ) + 0.1(

√∑D
i=1 x2

i ) [-100, 100] f(0) = 0 30 1.0E − 01

Step func-
tion

f4 =
∑D

i=1 (�xi + 0.5�)2 [-100, 100] f(−0.5 ≤ x ≤
0.5) = 0

30 1.0E − 05

Inverted co-
sine wave

f5 = − ∑D−1
i=1

(
exp

(
−(x2

i +x2
i+1+0.5xixi+1)

8

)
× I

)
[-5, 5] f(0) = −D + 1 10 1.0E − 05

where, I = cos
(
4
√

x2
i + x2

i+1 + 0.5xixi+1

)
Levy mon-
talvo 1

f6 = Π
D (10sin2(Πy1)+

∑D−1
i=1 (yi−1)2×(1+10sin2(Πyi+1))+

(yD − 1)2), where yi = 1 + 1
4 (xi + 1)

[-10, 10] f(−1) = 0 30 1.0E − 05

Shifted
Rosenbrock

f7 =
∑D−1

i=1 (100(z2
i −zi+1)

2+(zi −1)2)+fbias, z = x−o+1,
x = [x1, x2, ....xD], o = [o1, o2, ...oD]

[-100, 100] f(0) = fbias =
390

10 1.0E − 01

Shifted
Griewank

f8 =
∑D

i=1
z2

i
4000 − ∏D

i=1 cos(
zi√

i
) + 1 + fbias, z = (x − o),

x = [x1, x2, ....xD], o = [o1, o2, ...oD]

[-600, 600] f(0) = fbias =
−180

10 1.0E − 05

Shifted Ack-
ley

f9 = −20 exp(−0.2
√

1
D

∑D
i=1 z2

i )−exp( 1
D

∑D
i=1 cos(2πzi))+

20 + e + fbias, z = (x − o), x = (x1, x2, ........xD), o =
(o1, o2, ........oD)

[-32, 32] f(0) = fbias =
−140

10 1.0E − 05

Shubert f10 = − ∑5
i=1 i cos((i + 1)x1 + 1)

∑5
i=1 i cos((i + 1)x2 + 1) [-10, 10] f(7.0835, 4.8580) =

−186.7309
2 1.0E − 05

Sinusoidal f11 = −[A
∏D

i=1 sin(xi − z) +
∏D

i=1 sin(B(xi − z))], A =
2.5, B = 5, z = 30

[0, 180] f(90 + z) =
−(A + 1)

10 1.0E − 02

Pressure
Vessel

f12=0.6224x1x3x4 + 1.7781x2x2
3 + 3.1661x2

1x4 + 19.84x2
1x3 x1=[1.1, 12.5]

x2=[0.6, 12.5]
x3=[0, 240]
x4=[0, 240]

0 6 1.0E − 05

Test Prob-
lem

Objective function Search Range Optimum
Value

D Acceptable
Error

Alpine f1 =
∑D

i=1 |xisin xi + 0.1xi| [-10, 10] f(0) = 0 30 1.0E − 05

Michalewicz f2 = − ∑D
i=1 sinxi(sin(

i.xi
2

π )20) [0, π] fmin =
−9.66015

10 1.0E − 05

Salomon
Problem

f3 = 1 − cos(2π
√∑D

i=1 x2
i ) + 0.1(

√∑D
i=1 x2

i ) [-100, 100] f(0) = 0 30 1.0E − 01

Step func-
tion

f4 =
∑D

i=1 (�xi + 0.5�)2 [-100, 100] f(−0.5 ≤ x ≤
0.5) = 0

30 1.0E − 05

Inverted co-
sine wave

f5 = − ∑D−1
i=1

(
exp

(
−(x2

i +x2
i+1+0.5xixi+1)

8

)
× I

)
[-5, 5] f(0) = −D + 1 10 1.0E − 05

where, I = cos
(
4
√

x2
i + x2

i+1 + 0.5xixi+1

)
Levy mon-
talvo 1

f6 = Π
D (10sin2(Πy1)+

∑D−1
i=1 (yi−1)2×(1+10sin2(Πyi+1))+

(yD − 1)2), where yi = 1 + 1
4 (xi + 1)

[-10, 10] f(−1) = 0 30 1.0E − 05

Shifted
Rosenbrock

f7 =
∑D−1

i=1 (100(z2
i −zi+1)

2+(zi −1)2)+fbias, z = x−o+1,
x = [x1, x2, ....xD], o = [o1, o2, ...oD]

[-100, 100] f(0) = fbias =
390

10 1.0E − 01

Shifted
Griewank

f8 =
∑D

i=1
z2

i
4000 − ∏D

i=1 cos(
zi√

i
) + 1 + fbias, z = (x − o),

x = [x1, x2, ....xD], o = [o1, o2, ...oD]

[-600, 600] f(0) = fbias =
−180

10 1.0E − 05

Shifted Ack-
ley

f9 = −20 exp(−0.2
√

1
D

∑D
i=1 z2

i )−exp( 1
D

∑D
i=1 cos(2πzi))+

20 + e + fbias, z = (x − o), x = (x1, x2, ........xD), o =
(o1, o2, ........oD)

[-32, 32] f(0) = fbias =
−140

10 1.0E − 05

Shubert f10 = − ∑5
i=1 i cos((i + 1)x1 + 1)

∑5
i=1 i cos((i + 1)x2 + 1) [-10, 10] f(7.0835, 4.8580) =

−186.7309
2 1.0E − 05

Sinusoidal f11 = −[A
∏D

i=1 sin(xi − z) +
∏D

i=1 sin(B(xi − z))], A =
2.5, B = 5, z = 30

[0, 180] f(90 + z) =
−(A + 1)

10 1.0E − 02

Pressure
Vessel

f12=0.6224x1x3x4 + 1.7781x2x2
3 + 3.1661x2

1x4 + 19.84x2
1x3 x1=[1.1, 12.5]

x2=[0.6, 12.5]
x3=[0, 240]
x4=[0, 240]

0 6 1.0E − 05

4.2 Experimental setting

To substantiate that SMOM is a competed member in arena of population based
meta-heuristics, comparative examination is performed among SMOM, SMO [3],
PSO [7] and SaSMO [11]. Following experimental setup is done:

– Population of Spider Monkeys (N) = 50;
– Max number of groups = 5;
– LLL = 1500
– GLL = 50
– Settings of SMO, PSO, and SaSMO are taken from their original papers

[3,7,11].

4.3 Results

Table 2 unfolded the attained outcomes of all the taken algorithms SMO, PSO,
SaSMO and SMOM based on above parameter settings. All taken algorithms are
tested on 100 runs in C++. Results are shown in the form of standard deviation
(SD), mean error (ME), average function evaluation (AFE) and success rate
(SR).

Results in above Table 2 exhibits that SMOM is a better variant than SMO,
PSO, and SaSMO regarding reliability and accuracy at a cost of function eval-
uations in some benchmarks because it is giving a remarkable success rate. In
addition to above results box-plots analysis of compared algorithms in terms of
success rate is presented. Box-plots analysis [12] of SMO, PSO, SaSMO, and
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Table 2. Comparison of outcomes of test problems

T P Algorithm SD ME AFE SR

f1 SMO 3.46E−06 9.79E−06 79051.30 99

SaSMO 2.82E−04 4.17E−04 98985.87 0

PSO 1.55E+00 2.30E−01 90070.00 72

SMOM 5.16E−07 9.44E−06 78543.94 100

f2 SMO 4.21E−03 4.95E−04 56524.47 98

SaSMO 4.88E−04 5.45E−05 54914.81 98

PSO 4.20E−01 4.20E−01 99402.50 2

SMOM 3.56E−06 4.84E−06 50766.33 100

f3 SMO 2.55E−02 1.93E−01 200862.84 7

SaSMO 1.35E−01 1.56E+00 101746.98 0

PSO 8.01E−02 3.98E−01 100003.00 1

SMOM 3.36E−02 1.87E−01 195533.78 13

f4 SMO 0.00E+00 0.00E+00 16239.24 100

SaSMO 0.00E+00 0.00E+00 21085.75 100

PSO 0.00E+00 0.00E+00 36092.50 100

SMOM 0.00E+00 0.00E+00 13021.23 100

f5 SMO 5.21E−02 5.25E−03 80817.68 99

SaSMO 1.56E−01 5.05E−02 91340.72 45

PSO 6.05E−01 1.58E+00 99659.50 2

SMOM 1.76E−06 8.09E−06 73350.00 100

f6 SMO 1.03E−02 1.05E−03 18723.73 99

SaSMO 1.74E−06 8.12E−06 39102.07 100

PSO 6.00E−07 9.30E−06 33252.50 100

SMOM 8.32E−07 8.92E−06 11838.42 100

f7 SMO 9.67E+00 2.50E+00 172472.86 39

SaSMO 1.35E+00 9.54E−01 94387.43 23

PSO 2.51E+01 8.38E+00 98430.50 3

SMOM 3.20E+00 1.33E+00 162517.47 50

f8 SMO 4.79E−03 1.79E−03 132298.41 81

SaSMO 2.83E−03 9.19E−04 59303.68 86

PSO 5.61E−02 6.59E−02 100050.00 0

SMOM 3.33E−03 9.95E−04 127305.92 87

f9 SMO 1.21E−06 8.46E−06 9126.81 100

SaSMO 1.30E−06 8.46E−06 33002.44 100

PSO 9.86E−07 8.95E−06 24719.00 100

SMOM 1.06E−06 8.60E−06 9097.11 100
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Table 2. (Continued)

T P Algorithm SD ME AFE SR

f10 SMO 5.29E−06 4.61E−06 4647.06 100

SaSMO 5.52E−06 4.82E−06 8944.04 100

PSO 2.49E−03 7.10E−04 46715.00 67

SMOM 5.24E−06 4.57E−06 4255.02 100

f11 SMO 6.37E−03 1.23E−02 158030.72 58

SaSMO 1.31E−02 2.40E−02 100020.13 11

PSO 3.47E−01 7.13E−01 96757.00 9

SMOM 1.22E−02 1.26E−02 147513.7 72

f12 SMO 2.15E−04 6.02E−05 114575.91 55

SaSMO 2.02E+00 1.86E+00 103297.65 0

PSO 3.28E−05 3.22E−05 59489.50 60

SMOM 9.29E−04 1.51E−04 97740.30 64

SMOM is shown in Fig. 1 representing the empirical distribution of data graphi-
cally. Figure 1 shows that variation, interquartile range and medians of developed
SMOM is higher than other three. After this, a comparison is made by using the
performance indices (PI) graph [1] based on ME, SR, and AFE. The computed
values of PI for SMO, SaSMO, PSO and SMOM are portrayed in Fig. 2.

SMO PSO SaSMO SMOM

0

20

40
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80

100

120

Fig. 1. Boxplot graph for success rate

Figure 2(a), (b) and (c) show the performance index of success rate, an aver-
age number of function evaluations and mean error respectively. Figure 2 indi-
cates that PI of SMOM is notable as compared to other variants.
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Fig. 2. Performance index for test problems; (a) for case (1) (b) for case (2) and (c)
for case (3).

5 Conclusion

Eradicating the pitfalls of SMO, Metropolis step is applied to improve the explo-
ration capability of SMO and avoiding stagnation in the population. This paper
presents the modified version of SMO that is more reliable and accurate, namely
metropolis operator based spider monkey optimization. This modification helps
the global leader to achieve an optimal solution by accepting a non-prominent
solution with some probability by using metropolis step. For testing the inten-
sity of SMOM, it is examined over 12 benchmark functions, and results show
that it is spell variant. Through statistical analysis, it is demonstrated that the
proposed strategy is more reliable (better success rate) at the cost of function
evaluations. In future, it can be applied to real-world optimization problems and
complex optimization problems of continuous in nature.
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