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Adaptive Scale Factor Based Differential
Evolution Algorithm

Nikky Choudhary(B), Harish Sharma, and Nirmala Sharma

Rajasthan Technical University, Kota, India
nikkychoudharys8@gmail.com

Abstract. In DE, exploration and exploitation capabilities depend on
two processes, namely mutation and crossover. In these two processes
exploration capability and exploitation capability is balanced using the
tuning of scale factor F and crossover probability CR. In DE, for a high
value of CR and F, there is always enough chance to skip the true solu-
tion due to large step size in the solution search space. Therefore in this
article, a self-adaptive scale factor strategy is proposed in which scale
factor is adaptively decided through iterations. In the proposed strategy,
in the early iteration, the value of F is kept high to keep the large step
size while in later iterations the value of F is kept small to keep the step
size short. The proposed strategy is named as Adaptive Scale Factor
based Differential Evolution (ASFDE) Algorithm. Further, to increase
the exploration capability of the algorithm, a limit is associated with
every solution to count the number of not updating iterations. If this
count crosses the pre-defined limit, then the solution is randomly ini-
tialized. The proposed algorithm is tested over 12 different benchmark
functions and correlate with standard DE, and another swarm intelli-
gence based algorithm, namely artificial bee colony (ABC) algorithm,
and particle swam optimization (PSO) algorithm. The obtained results
reveal that ASFDE is a competitive variant of DE.

Keywords: Evolutionary Algorithm · Differential Evolution Algo-
rithm · Optimization · Nature inspired algorithms

1 Introduction

Nature-inspired algorithms (NIA) are inspired by the natural behavior and solve
various real-world optimization problems [11]. Evolutionary Algorithm (EA) is
a method used for searching the optimum value for a problem by yielding a
populous of results over numeral generations. Differential Evolution (DE) is a
populous based and random probability search technique, comparatively an easy
method to search an optimum value to the optimization problems. There are
possibilities that populous has not merged to local optima due to which it can’t
reach the global optimum [7].

Mezura-Montes et al. [12] emulate the different forms of DE for global
best and bring out that DE demonstrates a degraded performance and stays
c© Springer Nature Singapore Pte Ltd. 2017
K. Deep et al. (eds.), Proceedings of Sixth International Conference
on Soft Computing for Problem Solving, Advances in Intelligent Systems
and Computing 546, DOI 10.1007/978-981-10-3322-3 1
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ineffectual in analyzing the search space, particularly for multimodal functions.
Price et al. [5] concluded the same. The problems of premature convergence
and stagnation have to be considered seriously for developing a comparatively
efficient differential evolution algorithm. Research is constantly operational to
enhance the premature convergence of DE [3,8,13]. In [9] Some latest variants
of DE with remarkable purposes are depicted.

In this paper, modified version is adaptive through a change in iterations
which make the step-size adaptive due to which a proper balance is maintained
among two mechanism that is exploration and exploitation which helps a leader
to remove stagnation and achieve a good convergence speed. Further, to avoid
the stagnation, a limit based counter is associated with every solution to check
the not updating counts of the solution.

The remaining paper is described as: Sect. 2 covers the Condensed summary
of DE. Adaptive Scale Factor based Differential Evolution (ASFDE) Algorithm
is presented in Sect. 3. Performance of ASFDE is tested with several benchmark
functions in Sect. 4. Last, Sect. 5 comprises a summary and conclusion.

2 Condensed Summary of the DE

Price and Storn propounded DE algorithm [2] in 1995. It is a fast, easy and pop-
ulous based random probabilistic search technique. DE/rand/1/bin technique is
used, rand denotes that parent is elected arbitrarily, 1 represents the counts of
differential vectors and bin indicates the binomial crossover. DE comprises of
three essential components that are mutation, crossover and selection respec-
tively. At the initial phase, uniformly distributed population is generated ran-
domly. Mutation results in the generation of an experimental vector which fur-
ther used within crossover to create offspring and then selection is committed to
elect the best for next generation [10]. A Dim-dimensional vector (xi1, xi2, . . . ,
xiDim) is used to represent an Dim-dimensional area and i = 1, 2, . . . , S. Here,
S is the populous size. Initialization of ith vector in jth component is displayed
Eq. 1:

Xi,j = Xj,lo + randi,j [0, 1] ∗ (Xj,hi − Xj,lo) (1)

where, Xi,j is a position, lo and hi are lower and upper limits of searching area.
randij is an evenly dispersed random number in the range of 0 to 1.

2.1 Mutation

For every individual of the current populous, an experimental vector is produced
by mutation operator. Experimental vector is created when a parent is altered
with a subjective differential which produces an offspring in crossover operation.
For generating an experimental vector ui(t), mutation operation is defined in
Eq. 2:



ASFDE 3

– Parent xi1(t) is elected randomly from initialized populous, as i �= i1.
– Election of two candidates are done arbitrarily that are xi2 and xi3, from

populous with a condition that i �= i1 �= i2 �= i3.
– After this, experimental vector is computed by mutating the parent using

Eq. 2:
ui(t) = xi1(t) + F × (xi2(t) − xi3(t)) (2)

Here, F ∈ [0, 1], which controls differential variation.

2.2 Crossover

Crossover is applied to get offspring x′
i(t) which is produced by crossover of

parent xi(t) and experimental vector ui(t) depicted in the following Eq. 3:

y′
ij(t) =

{
uij(t), if q ∈ Q

xij(t), otherwise.
(3)

Here Q is the set of crossover points that will go under perturbation, xij(t) is the
jth element of the vector xi(t). Basically two types of crossover are used in DE.
The presented variant ASFDE uses the binomial crossover. Here, R(1,Dim) is
a uniformly distributed between 1 and Dim. Crossover point (Q) ε {1, 2, . . .... ,
Dim} is used to select the crossover points in random fashion. Algorithm1 shows
binomial crossover. CR (Crossover probability) is used to select the crossover
points.

Q (Set of crossover points) = empty set, q∗ ∼ R(1, Dim);
Q ← Q ∪ q∗;
for each q ∈ 1.......Dim (Problem dimension) do

if R(0, 1) < CR (Crossover probability) and q �= q∗ then
Q ← Q ∪ q;

end if
end for

Algorithm 1. Binomial Crossover.

2.3 Selection

The solution having low-cost value or less objective value is chosen to survive
in next generation i.e. group. It elects the better among parent and offspring
depending on objective cost for the next group.

xi(t + 1) =

{
y′
i(t), if f(y′

i(t)) > f(xi(t)).
xi(t), otherwise.

(4)

The solution having less objective value will survive in the next generation.
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Fig. 1. Flow chart of the Differential Evolution (DE) algorithm

3 Adaptive Scale Factor Based DE

To avoid premature convergence and stagnation, a modification is done in muta-
tion phase of DE. DE algorithm has two control parameters named as scaling
factor F and crossover probability CR. CR controls the perturbation rate of the
algorithm and F used to maintain the step-size of individuals. CR is directly
proportional to perturbation rate which is directly proportional to the explo-
ration of the search area. When F is greater, then resultant step-size explore
the search area, and lesser the F exploitation is performed. In basic DE, F is
constant due to which step-size gets affected.

For improving this drawback of DE, concept of adaptive step-size is intro-
duced in the algorithm by which initially step-size is large and later on it
decreases gradually. Modified equation for mutation phase is given below:

ui(t) = xi1(t) + r × (1 − iter/Max iterations) × (xi2(t) − xi3(t)) (5)
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In above Eq. 5, r is random number between (0.1,1), iter is present iteration
and Max iterations is maximum iterations. From Eq. 5 there is a uniform change
in step-size that helps in doing exploration initially and as an increase in iteration
number results in exploitation of search space. This modification results in a
uniform decrease in step-size by which global optima can’t be skipped.

Hence, modified version is adaptive through a change in iterations which
make the step-size adaptive due to which a proper balance is maintained among
two mechanism that is exploration and exploitation which helps a leader to
remove stagnation and achieve a good convergence speed.

Further, to reduce the possibilities of premature convergence, a counter is
associated with every solution which is incremented by one in case the solution
is not updated itself in each iteration. If a solution gets updated then the counter
is initialized to zero. If the counter is reached to a predefined threshold then
the associated solution is randomly initialized in the solution search space by
considering that the solution has been stuck in a local optima.

Based on above discussion pseudo code of the purposed strategy is shown in
Algorithm 2:

Initialize, control parameters, r and CR;
Initialize, the populous, s(0), of S individuals;
while termination criteria(s) do

for each solution, xi(t) ∈ S(t) do
Find the Objective value, f(xi(t));
Produce the experimental vector depicted in the following Eq. 6:

ui(t) = xi1(t) + r × (1 − iter/Max iterations) × (xi2(t) − xi3(t)) (6)

Produce offspring, y′
i(t), using crossover;

if f(y′
i(t)) is more fit than f(xi(t)) then

Add y′
i(t) to P (t + 1);

else
Add xi(t) to P (t + 1);

end if
end for
if Counter associated with xi is reached to the threshold then

Counter=0 and randomly initialize xi.
end if

end while
Return the best solution;

Algorithm 2. Adaptive Scale Factor based DE.

4 Outcomes and Discussions

4.1 Test Problems Under Consideration

For examining the outcomes of the ASFDE, 12 different benchmark functions
(f1 to f12) are picked and displayed in Table 1.
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Table 2. Comparison of the results of test function problems

TF Algorithm SD ME AFE SR

f1 DE 4.72E−02 1.33E−02 37386.0 92

ASFDE 8.08E−07 8.99E−06 39007.5 100

ABC 2.30E−06 7.20E−06 22897.5 100

PSO 7.05E−02 3.70E−02 77107.5 77

f2 DE 2.92E−01 7.00E−02 26625.5 94

ASFDE 0.00E+00 0.00E+00 25508.5 100

ABC 0.00E+00 0.00E+00 11615.0 100

PSO 9.95E−02 1.00E−02 38549.5 99

f3 DE 6.59E−01 9.83E−01 173894.5 18

ASFDE 7.03E−01 8.38E−01 170203.0 30

ABC 1.18E−01 2.36E−02 91146.9 93

PSO 6.95E−01 1.37E+00 195749.5 7

f4 DE 1.03E−02 1.05E−03 21515.0 99

ASFDE 1.00E−06 8.80E−06 34098.0 100

ABC 2.23E−06 7.52E−06 19553.0 100

PSO 6.71E−07 9.31E−06 33939.0 100

f5 DE 3.66E−01 8.49E−02 32264.5 86

ASFDE 2.59E−03 6.71E−03 7264.9 100

ABC 1.04E−01 1.48E−01 200022.3 0

PSO 2.18E−04 8.01E−04 49955.0 100

f6 DE 2.00E−03 4.39E−04 55793.0 74

ASFDE 2.71E−04 1.90E−04 34975.0 88

ABC 7.54E−05 1.87E−04 184167.6 18

PSO 1.02E−05 9.20E−05 35835.0 100

f7 DE 3.67E−01 1.60E−01 34831.0 84

ASFDE 2.55E−01 7.01E−02 17044.8 93

ABC 2.24E−07 6.56E−07 12356.6 100

PSO 3.57E−01 1.51E−01 46957.0 84

f8 DE 1.78E+00 2.46E+00 194758.5 3

ASFDE 2.12E−03 9.83E−02 66069.7 100

ABC 1.08E+00 7.85E−01 172996.3 20

PSO 2.98E+00 4.88E−01 190951.5 60

f9 DE 4.00E−15 4.29E−15 3806.0 100

ASFDE 4.32E−15 4.88E−15 3875.6 100

ABC 2.96E−06 5.85E−07 111670.7 65

PSO 3.01E−15 5.27E−15 9759.5 100
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Table 2. (Continued)

TF Algorithm SD ME AFE SR

f10 DE 6.37E−06 5.86E−06 34787.0 83

ASFDE 6.50E−06 5.82E−06 16845.1 92

ABC 6.52E−06 5.96E−06 657.0 100

PSO 3.36E−06 5.85E−06 23302.5 89

f11 DE 8.84E−05 1.96E−03 7751.5 97

ASFDE 2.85E−06 1.95E−03 1981.5 100

ABC 3.02E−06 1.95E−03 25993.6 100

PSO 2.50E−06 1.95E−03 3401.5 100

f12 DE 2.37E−01 5.07E−01 199314.5 1

ASFDE 1.89E−01 1.64E−01 169981.6 37

ABC 2.11E−03 7.66E−03 57215.8 100

PSO 3.05E−01 4.01E−01 177590.5 25

4.2 Trial Settings

For analyzing the performance of the developed algorithm ASFDE, a comparison
is done among ASFDE, DE, ABC [6] and PSO [4]. Following trial setting is
limited to test the algorithm DE, ASFDE, ABC and PSO over the considered
test problem.

– The number of run =100,
– Population S = 50,
– r = U [0.1, 1],
– Settings for ABC [6] and PSO [4] are taken from their elementary papers.

4.3 Outcomes

Outcomes of algorithms are displayed in Table 2 in a form of standard deviation
(SD), mean error (ME), average number of function evaluations (AFE) and
success rate (SR). Results in Table 2 replicates, many times ASFDE exceeds by
other algorithms in terms of reliability, efficiency, and accuracy.

Further, for comparison of examined algorithms, in a form of consolidated
achievement boxplots [1] study of AFE is carried out. Boxplot study presents the
empirical circulation of results graphically. The boxplots for DE, ASFDE, ABC
and PSO are depicted in Fig. 2. The outcomes clearly display that interquartile
span and median of ASFDE is relatively low.

Further, Mann-Whitney U rank sum test [8] is performed between ASFDE -
DE, ASFDE - ABC and ASFDE - PSO. Table 3 display the compared outcomes
of mean function evaluation and Mann-Whitney test for 100 simulations. In
Mann-Whitney test, we observe the remarkable difference between two data set.
If an outstanding difference is not seen then = symbol appears, and when a
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DE ASFDE ABC PSO

0

5

10

15

20
x 104

Fig. 2. Boxplot for AFE

remarkable difference is observed then, a comparison is performed regarding the
AFEs. And we use + and − symbol, + represent the ASFDE is superior to
the examined algorithms and − represent the algorithm is inferior. The total
number of + sign in the last line of Table 3, authorize the excellence of ASFDE
over chosen algorithms.

Further, all examined algorithms are analyzed regarding ME, SR and AFE
by performance indices (PI) [1] graph that are computed for DE, ASFDE, ABC,
and PSO respectively and shown in Fig. 3.

Table 3. Evaluations of outcomes in Table 2

Test problems ASFDE Vs DE ASFDE Vs ABC ASFDE Vs PSO

f1 = − +

f2 + − +

f3 = + +

f4 + − =

f5 + + +

f6 + + +

f7 + − +

f8 + + +

f9 = + +

f10 + − +

f11 + + +

f12 + − +

Total number of + sign 09 06 11

It is evident from Fig. 3 that PI of ASFDE algorithm is superior as com-
pared to others. At every phase, ASFDE performs better as compared to other
established algorithms.
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Fig. 3. Performance index; (a) SR, (b) AFE and (c) ME.

5 Conclusion

This paper presents a variant of DE algorithm, known as Adaptive Scale Factor
based DE (ASFDE). In ASFDE, modified version is adaptive through a change
in iterations which make the step-size adaptive due to which a proper balance
is maintained among two mechanism that is exploration and exploitation which
helps a leader to remove stagnation and achieve a good convergence speed. Fur-
ther, to avoid the stagnation, a limit based counter is associated with every
solution to check the not updating counts of the solution. The proposed algo-
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rithm is compared with DE, ABC, and PSO over different benchmark functions.
The obtained results state that ASFDE is a competitive variant of DE and also
a good choice for solving the continuous optimization problems. In future, the
newly developed algorithm may be used to solve various real-world optimization
problems of continuous nature.
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Abstract. Particle Swarm Optimization (PSO) is a refined optimiza-
tion method, that has drawn interest of researchers in different areas
because of its simplicity and efficiency. In standard PSO, particles roam
over the search area with the help of two accelerating parameters. The
proposed algorithm is tested over 12 benchmark test functions and com-
pared with basic PSO and two other algorithms known as Gravitational
search algorithm (GSA) and Biogeography based Optimization (BBO).
The result reveals that ABF-PSO will be a competitive variant of PSO.

Keywords: Meta-heuristic optimization techniques · Particle swarm
optimization algorithm · Swarm intelligence · Acceleration coefficients ·
Nature inspired algorithm

1 Introduction

Generally, real-world optimization problems are very difficult to solve. Optimiza-
tion tools are used to solve these kind of problems, though there is no surety to
get optimal solution always. So, by using different optimization methods several
problems are solved by trial and errors [8]. Development of Swarm intelligence and
bio-inspired algorithms make a new subject, inspired by nature. Based on the ori-
gins of motivation, these kind of meta-heuristic algorithms can be known as swarm-
intelligence-based, bio-inspired-based algorithm [6]. Particle Swarm Optimization
(PSO) is a refined optimization method, that has drawn interest of researchers in
different areas because of its simplicity and efficiency. Different versions of PSO
have been suggested already. PSO is a swarm - based, modifying search develop-
ment facilityfirstly suggestedbyJamesKennedyandRussellEberhart (1995).This
algorithm is inspired by mimicking the collective behavior of natural swarm’s like
fishes andbirds and evenhumancommon routine etc. [9]. In standardPSO(SPSO),
particles roam over the search area with the help of two accelerating parameters.
One parameter, known as the cognitive parameter, controls the local exploration
of the particles, while the second parameter, known as the social parameter, guides
the global search capability of the particles. Generally, diversification and intensi-
fication properties are managed by these two parameter. Various researchers have

c© Springer Nature Singapore Pte Ltd. 2017
K. Deep et al. (eds.), Proceedings of Sixth International Conference
on Soft Computing for Problem Solving, Advances in Intelligent Systems
and Computing 546, DOI 10.1007/978-981-10-3322-3 2
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found that, in the SPSO, particles immediately get a fine local solution, though
get stuck to that solution for rest of the iterations without a further improvement
[7,12,13].

In order to increase the convergence speed as well as the exploration capa-
bilities of PSO algorithms, an acceleration parameter PSO strategy has been
presented in this paper. In this paper a time differing acceleration parameter
scheme is introduced to efficiently manage the universal search and convergence
to the universal best solution. The primary attention of this modification is to
neglect overearly convergence in the initial phases and to enhance convergence
to the universal optimal solution in the later phases [14].

The rest of the paper is structured as follows: In Sect. 2, the particle
swarm optimization algorithm is discussed. In Sect. 3, introduction of scheduled
algorithm and the quality of the scheduled algorithm is tested with several bench-
mark datasets in Sect. 4. To show the quality of the scheduled strategy, a provi-
sional study is carried out among scheduled strategy, basic PSO and other algo.
namely Gravitational search algorithm (GSA) [10] and Biogeography based Opti-
mization (BBO) [15]. The simulation results reveals that the scheduled strategy
outperforms among the aforementioned algorithms. At last, Sect. 5 presents a
summary and the conclusion of the work.

2 Particle Swarm Optimization Algorithm (PSO)

The particle swarm optimization (PSO) is a swarm- based, modifying search
development facility firstly suggested by James Kennedy and Russell Eberhart
(1995). As the name suggests it is a swarm intelligence algorithm. This algorithm
is inspired by mimicking the collective behavior of natural swarm’s like fishes,
birds and even human common routine. It can be executed and practiced simply
to clarify distinct function optimization issues and the problems which could be
converted to function optimization issues [9].

To search the optimal solution, swarms are distributed to spot the food site.
When the swarms are seeking for food here and there, there is ever a swarm which
may scent the food positively, i.e., the swarm is detectable of the site where it
can get the food, keeping the superior food site knowledge. When they seeking
the food site, they are transferring the knowledge, specially the fine knowledge
at each time, forwarded by the fine knowledge, the swarms will finally went to
the food site [2]. Every particle modifies its flying based on its individual flying
experience and its colleagues flying experience. Y. Shi and Russell Eberhart
(1998) termed the initial as the cognition section and the later the social section.
For the social section, James Kennedy and Russell Eberhart (1995) introduced
Ubest (Universal best, experience based on all swarms) and Lbest (Local best,
experience based on individual swarm) components [5,18].

The primary PSO algorithm contains a group of swarms roaming in an n-
dimensional, real valued search area of feasible problem solutions. Generally,
a convinced fitness aspect is described for swarms to analyze distinct problem
solutions. Each swarm i at the time t has the subsequent attributes:
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pi(t) is the position vector;
si(t) is the speed (velocity) vector;
Li(t) is the limited memory saving its individual finest position seen earlier;
Ui(t) is the overall finest position.
Following are some points in PSO process [11]:

At first point, the population (swarms) size is assumed as N . The value of N
should be moderate that would give different positions to get optimum solution.

At second point, initial population p is evaluated with arbitrary order to get
the p1, p2, p3, . . . pn. Objective function evaluation for every swarm is given by
f [p1(0)], f [p2(0)], f [p3(0)], . . . f[ pn(0)].

At third point, update the speed for each swarm. The swarms roam facing
the optimum solution with a speed. At the initial point, speed of all the swarms
is taken as 0. Set iteration t =1. Now, at tth iteration, find some necessary
components for every swarm j such as:

– The values of local best (Lbest) and universal best (Ubest).
– When the speed is upgraded then the swarm is positioned to a latest position.

The latest position is easily computed with the addition of the earlier position
and the latest speed:

pi(t + 1) = pi(t) + si(t + 1) (1)

– Where the speed upgrading is computed as following relation:

si(t + 1) = wsi(t) + a1r1(Lbest(t) − pi(t)) + a2r2(Ubest(t) − pi(t)) (2)

where, w represents inertia weight constant, r1 and r2 are random numbers. a1
and a2 represent constant values and p represents the position of the swarm.

At the final point, check if the latest solution is convergent. If yes, then stop
the iteration, otherwise, repeat last phase by doing t = t+1 and compute the
values of local best (Lbest) and universal best (Ubest).

for every swarm do
Evaluate fitness value. If the current fitness value is better than the previous
best fitness value (Lbest) then set current value as the latest Lbest.
Select the swarm that contains the best fitness value among all swarms as the
Ubest.
for every swarm do

Evaluate latest speed:
si(t+1) = wsi(t) + a1r1(Lbest(t)-pi(t)) + a2r2(Ubest(t)-pi (t))
Upgrade position of the swarm:
pi(t+1) = pi(t) + si(t+1)
Until stopping pattern is found.

end for
end for

Algorithm 1. PSO algorithm
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3 Adaptive Balance Factor in Particle Swarm
Optimization (ABF-PSO)

In populous-based search algorithms, exploration and exploitation are the two
key properties of any Nature Inspired Algorithm (NIA). A proper balance
between these two properties are required to find the global optima. Explo-
ration identifies the promising regions by searching the given search space while
exploitation helps in finding the optimum solution in the promising search
regions. From the explanation of Particle swarm optimization, it is noted that,
the search process is managed with the help of two acceleration parameters (the
cognitive parameter and the social parameter). So, suitable discipline of those
two parameters is really necessary to get the optimal solution precisely as well
as effectively.

Mostly, in swarm-related optimization strategies, it is necessary to inspire
the swarms to roam over the full search area, beyond gathering around local
optimum, during the initial stages of the optimization. While, during the later
stages, it is necessary to increase convergence speed, to search the optimal solu-
tion effectively.

Suganthan [16] evaluated a form of linear diminishing both acceleration para-
meters with the time, but realized that the established acceleration parameters
at value 2 develop superior solutions. Anyhow, over experimental exercises he
offered that the acceleration parameters should not be equivalent to value 2
always. In PSO, for a high value of these two parameter, there is always enough
chance to skip the true solution due to large step size in the solution search
space.

Since those involvement, in this paper, time differing acceleration parameter
scheme is introduced for the PSO technique. The purpose of this expansion is
to increase the step size as well as the universal search in the initial stage, and
to decrease the step size of the swarms to motivate them to converge toward
the global optimum at the last stage of the search. In this scheme, the social
parameter is modified with the iterations to manage the step size. In this paper,
a balance between cognitive section and the social section is presented, to get
the optimal result. The proposed speed updating strategy is shown in following
equation:

si(t+1) = wsi(t)+a1∗r1(Lbest(t)−pi(t))+a0∗(1−(it/MaxIt))∗r2(Ubest(t)−pi(t))
(3)

where, w is inertia constant, r1 and r2 are random values, a1 has constant value,
a2 = a0 * (1 − (it/MaxIt)), a0 = 2.5, it is the latest iteration no, MaxIt is the
total no of iterations and p is particle position.

It is clear from above equation that initially, the social parameter will be
large so the step size will also be large and it will help in exploration of the
search area. Further, at later stage as the iteration increases the value of social
parameter will decrease so that the step size will also gradually decrease, this
will help in exploitation.
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Based on the above explanation the algorithmic representation is as shown:

for every swarm do
Evaluate fitness value. If the current fitness value is better than the previous
best fitness value (Lbest) then set current value as the latest Lbest.
Select the swarm that contains the best fitness value among all swarms as the
Ubest.
for every swarm do

Evaluate latest speed:
si(t+1) = wsi(t) + a1 * r1(Lbest(t)-pi (t) ) + 2.5 ∗ (1 − (it/MaxIt)) *
r2(Ubest(t)-pi (t))
Upgrade position of the swarm:
pi(t+1) = pi(t) + si(t+1)
Until stopping pattern is found.

end for
end for

Algorithm 2. ABF-PSO algorithm

4 Experimental Results

4.1 Test Problems Under Consideration

To study the quality of the scheduled algorithm ABF-PSO, 12 distinct universal
optimization issues(f1–f12) are selected as indexed in Table 1. All the issues
are continuous optimization issues and having distinct rates of difficulty. Test
problems f1 to f12 are yielded from [1,17] with their correlated offset values.

4.2 Experimental Setting

To verify the quality of the scheduled algorithm ABF-PSO, a performance analy-
sis is carried out among ABF-PSO, basic PSO and other algorithms namely
Gravitational search algorithm (GSA) [10], Biogeography based Optimization
(BBO) [15]. To analyze ABF-PSO, PSO, GSA and BBO over the specified prob-
lems, consecutive empirical setting is used:

– The number of simulations/run = 30,
– Population size nPop = 100 and Number of food sources SN = nPop/2,
– rij = rand[0, 1],
– a1 = 1.5 and a2 = 2.5 in PSO update equation.

4.3 Results Comparison

Numeral outcomes according to the empirical setting are given in Table 2. This
table represents the outcomes of the scheduled and other considered algorithms in
terms of standard deviation (SD), mean error (ME), average number of function
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Table 1. Test problems

S. No. Test problem Objective function Search space Objective
value

Dimension Acceptable
error

1 Ackley f1(x) = −20 + e +

exp(− 0.2
D

√∑D
i=1 xi

3)

[−1 1] f(0) = 0 30 1.0E−05

2 Alpine f2(x) =
∑n

i=1 |xisin xi + 0.1xi| [−10 10] f(0) = 0 30 1.0E−05

3 Michalewicz f3(x) =

−∑D
i=1 sin xi(sin ( i.xi

2

π
)20)

[0 π] fmin =
−9.66015

10 1.0E−05

4 Cosine
Mixture

f4(x) =
∑D

i=1 xi
2 −

0.1(
∑D

i=1 cos 5πxi) + 0.1D

[−1 1] f(0) =
−D × 0.1

30 1.0E−05

5 Schewel f5(x) =∑D
i=1 |xi| +

∏D
i=1 |xi|

[−10 10] f(0) = 0 30 1.0E−05

6 Salomon
Problem

f6(x) = 1 − cos(2π
√∑D

i=1 x2
i
) +

0.1(
√∑D

i=1 x2
i
)

[−100 100] f(0) = 0 30 1.0E−01

7 Levy
montalvo 1

f7(x) = Π
D

(10sin2(Πy1) +∑D−1
i=1 (yi − 1)2 × (1 +

10sin2(Πyi+1)) + (yD − 1)2),

where yi = 1 + 1
4
(xi + 1)

[−10 10] f(−1) = 0 30 1.0E−05

8 Levy
montalvo 2

f8(x) =

0.1(sin2(3Πx1)+
∑D−1

i=1 (xi −
1)2 × (1 + sin2(3Πxi+1)) +

(xD − 1)2(1 + sin2(2ΠxD))

[−5 5] f(1) = 0 30 1.0E−05

9 Braninss

function
f9(x) = a(x2 − bx2

1 + cx1 − d)2 +

e(1 − f) cos x1 + e

x1 ∈ [−510],
x2 ∈ [015]

f(0)=0.3979 2 1.0E−05

10 Kowalik f10(x) =∑11
i=1[ai − x1(b2i +bix2)

b2i +bix3+x4
]2

[−5 5] f(0.192833,

0.190836,

0.123117,
0.135766) =
0.000307486

4 1.0E−05

11 Shifted
Rastrigin

f11(x) =
∑D

i=1(z
2
i −

10 cos(2πzi) + 10) + fbias

z=(x-o),
x=(x1,x2,........xD),

o=(o1,o2,........oD)

[−5 5] f(0) =
fbias =
−330

10 1.0E−02

12 Six-hump
camel back

f12(x) = (4 − 2.1x2
1 + x4

1/3)x2
1 +

x1x2 + (−4 + 4x2
2)x2

2

[−5 5] f(−0.0898,

0.7126) =
−1.0316

2 1.0E−05

evaluations (AFE), and success rate (SR). According to outcomes in Table 2 max-
imum time ABF-PSO shows best outcomes in terms of performance, accuracy as
well as efficiency from the considered algorithm like PSO, GSA and BBO.

Moreover, boxplots study of AFE is accomplished for comparing the studied
algorithms in terms of centralized quality, still it can simply illustrate the empir-
ical distribution of statistic data graphically. The box plots for ABF-PSO, PSO,
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Table 2. Comparison of the results of test problems

Test problem Algorithm SD ME AFE SR

f1 PSO 8.26E−01 7.79E−01 107183.33 15

ABF-PSO 4.46E−07 9.39E−06 38833.33 30

GSA 5.83E−07 9.37E−06 161030 30

BBO 1.27E−06 8.61E−06 60383.33 30

f2 PSO 5.51E−04 1.40E−04 86393.33 19

ABF-PSO 1.41E−06 9.12E−06 33290 30

GSA 5.59E−07 9.29E−06 154615 30

BBO 5.78E−03 1.04E−02 200000 00

f3 PSO 9.42E−01 1.69E+00 200000 00

ABF-PSO 4.78E−01 5.79E−01 191080 02

GSA 2.35E−01 4.75E−01 197296.67 01

BBO 2.81E−01 6.20E−01 200000 00

f4 PSO 4.28E−01 9.95E−01 200000 00

ABF-PSO 7.32E−02 3.45E−02 69750 24

GSA 8.13E−07 8.66E−06 111176.67 30

BBO 1.97E−01 2.36E−01 156776.67 07

f5 PSO 4.47E−02 1.32E−02 158420 07

ABF-PSO 6.05E−07 9.26E−06 33406.67 30

GSA 4.94E−07 9.42E−06 181821.67 30

BBO 9.51E−07 9.09E−06 48673.33 30

f6 PSO 6.53E−02 3.20E−01 175233.33 04

ABF-PSO 4.42E−02 2.27E−01 84983.33 22

GSA 5.82E−02 8.00E−01 200000 00

BBO 1.12E−01 6.73E−01 200000 00

f7 PSO 1.85E−01 1.35E−01 116980 13

ABF-PSO 3.63E−01 2.73E−01 101920 17

GSA 8.82E−07 8.81E−06 90630 30

BBO 8.52E−01 1.17E+00 182070 03

f8 PSO 2.48E−02 6.64E−03 20616.67 28

ABF-PSO 8.29E−07 9.11E−06 26570 30

GSA 6.12E−07 9.00E−06 95498.33 30

BBO 1.93E−06 8.66E−06 18816.67 30

f9 PSO 3.18E−05 3.43E−05 1146.67 0 30

ABF-PSO 2.84E−05 2.65E−05 903.33 30

GSA 3.29E−05 4.93E−05 37113.33 30

BBO 1.87E−05 7.40E−05 54626.67 30

f10 PSO 7.39E−05 2.82E−04 303.33 30

ABF-PSO 7.28E−05 2.83E−04 303.33 30

GSA 1.07E−04 2.23E−04 75 30

BBO 5.51E−05 2.75E−04 110 30

f11 PSO 7.07E+00 1.39E+01 200000 00

ABF-PSO 1.84E+00 3.32E+00 188313.33 02

GSA 1.56E+00 5.14E+00 200000 00

BBO 3.35E+00 8.56E+00 200000 00

f12 PSO 9.83E−06 1.44E−05 1263.33 30

ABF-PSO 1.15E−05 1.59E−05 956.67 30

GSA 1.16E−05 1.17E−05 49801.67 30

BBO 3.74E−01 2.45E−01 76745 21
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Fig. 1. Box plot graphs (average function evaluation)

GSA and BBO are displayed in Fig. 1. The outcomes declares that interquartile
dimensions and medians of ABF-PSO are relatively small.

Next, all studied algorithms are also observed by offering sufficient priority
to the AFE, ME, and SR. This observation is calculated using the quality basis
that is detailed in [3,4]. The concluded values of PI for the ABF-PSO, PSO,
GSA and BBO are measured and subsequent performance index (PIs) graphs
are exhibited in Fig. 2.

The graphs relating to any of the cases i.e. offering sufficient priority to the
AFE, SR and ME (as described in [3,4]) are displayed in Fig. 2[a], [b] and [c]
subsequently. In the mentioned diagrams, parallel axis shows the priority and
perpendicular axis specifies the PI.
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Fig. 2. Performance index for test problems; [a] for SR, [b] for AFE and [c] for ME.
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It is clear from Fig. 2 that PI of ABF-PSO are better than the studied algo.
in every case. i.e. performance of ABF-PSO is superior on the studied test issues
as compared to the PSO, GSA and BBO.

5 Conclusion

To balance the step size of the swarms during the solution search process, a
new variant of PSO is presented namely, Adaptive Balance Factor PSO (ABF-
PSO) algorithm. In the ABF-PSO, the social parameter is modified such that
in initial iterations, the step size of the swarms will be high whereas in later
iterations, it will be low. Therefore, by managing the step size, an effort is made
to balance the diversification and intensification properties of the PSO algorithm.
The proposed ABF-PSO algorithm is practiced on the 12 standard functions and
compared with PSO, GSA and BBO algorithms. Through intensive analysis of
outcomes, it can be state that the ABF-PSO is an efficient varient of PSO and
it can be applied to solve the real world complex optimization problems.
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18. Tchomté, S.K., Gourgand, M.: Particle swarm optimization: a study of particle
displacement for solving continuous and combinatorial optimization problems. Intl.
J. Prod. Econ. 121(1), 57–67 (2009)

http://dx.doi.org/10.1007/BFb0040810


Community Detection in Complex Networks:
A Novel Approach Based
on Ant Lion Optimizer

Maninder Kaur(&) and Abhay Mahajan

Computer Science and Engineering Department,
Thapar University, Patiala 147004, India

manindersohal@thapar.edu

Abstract. The problem of community detection in complex networks has
established an increased amount of interest since the past decade. Community
detection is a way to discover the structure of network by assembling the nodes
into communities. The grouping performed for the communities encompasses
denser interconnection between the nodes than community’s intra-connections.
In this paper a novel nature-inspired algorithmic approach based on Ant Lion
Optimizer for efficiently discovering the communities in large networks is
proposed. The proposed algorithm optimizes modularity function and is able to
recognize densely linked clusters of nodes having sparse interconnects. The
work is tested on Zachary’s Karate Club, Bottlenose Dolphins, Books about US
politics and American college football network benchmarks and results are
compared with the Ant Colony Optimization (ACO) and Enhanced Firefly
algorithm (EFF) approaches. The proposed approach outperforms EFF and
ACO for Zachary and Books about US politics and produces results better than
ACO for Dolphins and EFF for American Football Club. The conclusion drawn
from experimental results illustrates the potential of the methodology to effec-
tively identify the network structure.

Keywords: AntLion optimization � Community detection � Modularity �
Social networks

1 Introduction

In the past decade, the research on complex networks has become more eye catching in
the fields of mathematics, sociology, physics, biology (Ferrara and Fiumara 2011;
Newman 2003; Clauset et al. 2004). The topological structure of complex systems can
simply be represented as a complex network with connected nodes. The existing net-
works of well-known social media and online social networking websites like Twitter,
Facebook, and Google+ (Ferrara and Fiumara 2011), characterize the system by means
of links and nodes. The nodes signify the systems and links represent the relationship
between the connecting or interrelating nodes. The network links in different type of
areas represent different types of relationship e.g. animal’s physical proximity, inter-
connectivity of infrastructures, human friendship, organizational structures, web
hyperlinks and abstract relationships like similarity between data points.
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The presence of communities shows the structure of the networks existing in
nature. Communities, named as modules/clusters, are the groups of relatively con-
nected nodes, and are said to be inherent arrangement of the networks present in nature
(Newman 2003). Nodes of the same community or cluster typically share common
interesting features such as a function, purpose and interest. For this reason, one of the
most crucial problems in network analysis is community detection.

Various contributions have been anticipated by the researchers in the field of
community detection in recent years to detect communities in complex networks, with
each methodology being classified according to its algorithm type. Many authors dug
into the field of community detection by proposing various analytical approaches. The
authors (Newman and Girvan 2004) proposed one of the first successful betweenness
based divisive algorithms for community detection. The proposed approach determined
the communities but it could not determine the strength of communities formed. Later
on the author (Newman 2004) proposed an algorithm based on agglomerative clus-
tering which used the modularity function determining the strength of communities.
This algorithm was efficient in case of speed but in practice, the modularity produced
by this algorithm was not high. The authors (Clauset et al. 2004) observed that the
Newman’s approach was not efficient for sparse networks as well as it was also
inefficient with respect to time and memory. They improved the Newman’s original
algorithm with the help of max-heap. Their algorithm was the first algorithm used for
analyzing large networks (about 106 nodes). The algorithm has a drawback that it
might form large communities in the early phase at the cost of existing small com-
munities. The author (Newman 2006) proposed a new method for optimizing the
fitness function with the help of associated matrix eigenvectors and eigenvalues. The
authors (Schuetz and Callisch 2008) proposed a variation of (Clauset et al. 2004)
algorithm by using the “Touched-Community-Exclusion-Rule” (TCER) in the imple-
mentation. The algorithm had same complexity as (Clauset et al. 2004) algorithm but
instead of creation and maintenance of the max-heap, it required the computation of
pairwise gains that increases the computational cost. The authors (Lambiotte et al.
2008) proposed a greedy hierarchical clustering algorithm named as Louvain method
considering modularity as objective function. The proposed algorithm is fast but on
multiple core architecture the sequential corrections make it slow and it is also inef-
ficient to be applied for very large networks. The authors (Le Martelot and Hankin
2013) proposed a new method based on local and global criteria, with global criteria
algorithm almost similar to Louvain method but with an advantage of application for
multiscale detection of communities. The local criterion has its advantage that it can be
used for overlapping communities.

Community detection being an NP hard problem (Fortunato 2010) various heuristic
approaches have been anticipated that assist in detecting communities of the complex
networks. There are the widely used properties to calculate the quality factors of the
clustered structure of networks. Amongst them, the most well-liked method is reliant
on the optimization of the profit function recognized as “modularity” over the feasible
partitions of a network. It is one approach to community detection that has been set
primarily competent. A growing number of evolutionary approaches (Pizzuti 2008;
Honghao et al. 2013; Shang et al. 2013; Hafez et al. 2014; Ma et al. 2014) dependent
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on modularity optimization in detecting communities have been published in past few
years. The author (Pizzuti 2008) presented a (GA) algorithm for uncovering commu-
nities in large networks named GA-Net. They introduced the concept named com-
munity score. The author also introduced the Safe individual criteria in GA to avoid
useless computation making the algorithm efficient. The algorithm showed effective
results in finding the communities in networks for synthetic as well as real world data
set. The author (Pizzuti 2012) further modified his work by presenting a new GA to
discover optimal communities in complex networks named MOGA-Net i.e. multiob-
jective GA basically a Non-dominated Sorting GA (NSGA-II). The algorithm used
modularity criteria as objective function and Normalized Mutual Information (NMI) for
measuring the performance of algorithm. The algorithm produced promising results in
implementation for synthetic as well as real world data set. The authors (Amiri et al.
2013) proposed a multicriteria optimization approach that utilizes EFF algorithm
Fuzzy- based grouping and mutation techniques for the detection of network com-
munities. The implementation and testing of EFA on real world and other synthetic
data networks showed its efficiency in finding different communities in large networks.
The authors (Shang et al. 2013) proposed a community detection approach named
MIGA on the basis of modularity function and an improved GA. The authors also used
prior information regarding the number of detecting communities. The results shown a
lesser computational complexity of MIGA in comparison to memetic algorithm
(ME) and GA for both real-world and computer-generated data networks. The authors
(Honghao et al. 2013) proposed an ACO method for detecting communities in net-
works using max-min ant system method for community detection. The algorithm was
tested on four real-life network and LFR bench mark and results showed the great
potential of algorithm in finding communities in networks. The authors (Hafez et al.
2014) used Artificial bee colony (ABC) optimization procedure to solve the community
detection problem. The algorithm has advantage of automatically detecting the count of
communities. The algorithm shown efficient results in terms of accuracy and detection
of communities when applied on real-world data as well as online social network. The
authors (Ma et al. 2014) proposed fast multi-level memetic algorithm for community
detection named MLCD that uses GA with multi-level learning strategies. The results
showed a lesser computation time in comparison with original memetic algorithm.

Various evolutionary approaches aforementioned have been applied in the field of
community detection for identification of network communities. There is still a gap
between the results obtained by existing evolutionary approaches for solving community
detection in comparison to original ones. The current work focuses on development of a
novel nature-inspired algorithmic approach based on Ant Lion Optimizer (Mirjalili
2015) that is aimed at maximizing the benefit function modularity to produce good
partitions of a network into different set of communities through exploration and
exploitation, by searching through the possible candidates for ones with high modularity.

2 Problem Statement

Given a graph GðV ;EÞ with a set of n nodes/vertices V ¼ v1; v2; . . .::vnf g and a set of
m interconnections/links E ¼ fe1; e2; . . .:emg, the graph reflecting the social structure
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corresponding to the given community is represented with an adjacency matrix A of
size V � V such that for any pair of vertices i and j

Ai;j ¼ 1 if an edge between i and j
0 Otherwise

�
ð1Þ

Where the adjacency matrix A is symmetric as shown in Eq. (1) (Assuming the
graph as undirected graph).

The problem of community detection relies on finding the subgraphs i.e. parti-
tioning the graph G into n subgraphs G1;G2; . . .. . .::Gn and V ¼ G1 [ G2 [ . . .. . .::Gn

such that all Gi8i 2 n correspond to the communities of densely linked nodes, with the
nodes belonging to different communities being only sparingly connected based on the
criteria of optimizing modularity value. The modularity function evaluates the quality
of cluster signifying the extent to which a given community partition is distinguished
by high number of intra-community connectivity in comparison to inter-community
ones (Newman and Girvan 2004).

The Modularity (Q) value can be mathematically stated as in Eq. (2)

Q ¼ 1=2m
X

i;j
Aij � didj

2m

� �
dði; jÞ ð2Þ

Where, Ai;j is the adjacency matrix, m is the number of edges in network, di; dj are
the degree (or strength) of nodes i; j and d i; jð Þ is the function which return 1 when both
i; j are in same community, 0 otherwise. The modularity value of a community ranges
from -1 to 1 that computes the degree of cohesiveness within community as compared
to interconnections between communities (Newman 2004; Pizzuti 2012). More the
modularity value better is the quality of the communities detected.

3 The Proposed Algorithm

The work presents a novel nature-inspired algorithmic approach based on Ant Lion
Optimizer for solving the Community Detection named ALOCD approach. The
underlying algorithm proposed by Seyedali Mirjalili (Mirjalili 2015) utilizes the unique
hunting behavior of antlion. The algorithm is inspired by of hunting behavior of victim
such as random walk of ants, constructing traps, entrapment of ants inside traps,
catching preys, and re- constructing traps. These features allow the antlions to take the
positions of ants, making the antlions move towards better fit ants to achieve optimal
solution. The main components of the proposed algorithm are as follows:

3.1 Solution Representation

In the proposed approach each solution/antlion in the population is encoded as a
collection of n antlion positions, s ¼ a1; a2; . . .:an½ � such that each value ai 2 ½1; n�
interprets the community to which the ith node belongs. The node i and node j belong
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to same cluster if the value ai equals aj for any set of i and j nodes. One antlion stands
for one solution that divides given community structure into sub-community partitions.
Figure 1 illustrates a solution representation of a social network with 10 nodes using
array data structure with set of nodes {2,4,8,10} belonging to the 1st sub-
community/cluster and set {1,5,9}, {3,6,7} belonging to 2nd and 3rd sub-community
respectively.

3.2 Random Walk of Ants

In each iteration, the position of each ant is updated with respect to elite (best antlion
obtained so far) and a selected antlion based on roulette wheel selection operator. This
updation of position is performed with the help of two random walks i.e. random walk
on the basis of roulette selected antlion and elite antlion.

For a given community of size say ‘n’, pick value at random position [1:n] from
candidate solution(elite/roulette selection) which represents sub-community number to
which that indexed vertex belongs to. Figure 2 shows the representation of Candidate
Solution before random walk.

Figure 3 shows one step in random walk procedure by taking a random position say
4th in candidate solution and generates new solution after merging 1st and 3rd com-
munities. If the newly generated solution gives better modularity than candidate
solution, the candidate solution is updated. This step of random walk is applied
recursively depending upon the size of the trap. For assuring exploitation of search
space, the radius of updating ant’s positions is contracted. This step is modeled by
decreasing the random walk rate as the iteration value approaches Num_of_gen value.

Communities  
/ Ant Positions 2 1 3 1 2 3 3 1 2 1

1 2 3 4 5 6 7 8 9 10

Fig. 1. Solution representation

Communities  
/ Ant Positions 1 3 2 1 2 1 3 1 2 3

1 2 3 4 5 6 7 8 9 10

Fig. 2. Candidate solution (before random walk)

Communities  
/ Ant Positions 1 1 2 1 2 1 1 1 2 1

1 2 3 4 5 6 7 8 9 10

Fig. 3. Solution after merging 1st and 3rd communities
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3.3 Updating the Position of Ants

During each iteration of the algorithm, the movements of all the ants are affected by
elite as well as selected antlion as every ant randomly walks around a selected antlion
by the roulette wheel and the elite concurrently. This concurrent effect of both selected
and elite antlion on the movement of ant is modeled using Update_Ant_pos() proce-
dure as shown in Fig. 4. The steps shown in Fig. 4 are repeated for all the possible
communities while retaining better solutions in every repetition.

The ALOCD approach is illustrated by the pseudo code as shown in Table 1.
A solution is encoded as a random permutation of n positions of ant/antlion repre-
senting the communities of given input net list file pertaining to the social network. The
initial solutions are preprocessed by randomly picking a vertex Vi and finding its
adjacent vertex say Vj. The community value of Vi is allocated to that of Vj. This
process is repeated for rest of vertices until sufficient number of solutions for initial
population are generated. After initialization, the best antlion (elite) is chosen from the
generated population on the basis of modularity value of antlion. More modularity

Solution1 (From Random walk around elite)

Solution2 (From Random walk around selected antlion)

(Assuming Solution1 has better modularity than Solution2)
        Vertices belonging to 1st community in Solution1     {1,4,6,8}
        Vertices belonging to 1st community in Solution2     {2,4,5,6,10}
        X=   Vertices_Solution1 U Vertices_solution2           {1,2,3,4,5,6,8,10}

C=    X-Solution1 = { 2,3,5,10}
Modified Solution1 using C value

Modified_ Solution1 
         If  Modified_ Solution1 _Modularity > Solution1 _Modularity

Then 
Solution1= Modified_ Solution1

Communities  
/ Ant Positions 1 3 2 1 2 1 3 1 2 3

1 2 3 4 5 6 7 8 9 10

Communities  
/ Ant Positions 3 1 3 1 1 1 3 2 2 1

1 2 3 4 5 6 7 8 9 10

Communities  
/ Ant Positions 1 1 1 1 1 1 3 1 2 1

1 2 3 4 5 6 7 8 9 10

Fig. 4. One step of Update_Ant_pos() procedure
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contributes to better antlion. The quality of solutions/antlions is improved through
random walk. After random walk, if the new ants have high fitness than antlions, then
antlion new positions will become positions of the ants for imitating the process of
catching the prey, the antlion is required to change its position to the most recent
position of the hunted ant to boost its chance of catching new prey. In each iteration,
the antlion with highest fitness is substituted as best antlion (elite). The process is
repeated until optimal solution is obtained. At final stage, the NMI value of the first
solution of the population with best modularity value is calculated.

Table 1. Pseudocode of proposed ALOCD algorithm

Community_AntLionDetector (Input_File,  Num_Nodes,  Num_nets,  Numclass , class, 
Pop_size,  Num_of_gen)

Input : Read the Benchmark files of communities 
Variables: pop_ant, pop_antlion - Array of structures of solution of size (Pop_size X 
Num_Nodes), Merge_solution -Array of structures of solution of size  (  (2 X Pop_size)  
X  Num_Nodes)
Class- True community of community structure, Numclass -Total no .of true communi-
ties
Output: Set of  Best Communiites

Begin
[adj_array]=Create Netlist(Input_File, Num_Nodes, Num_nets) 
[pop_ant]=Initalise(Pop_size,Num_Nodes,adj_array)
[pop_antlion]=Initalise(Pop_size ,Num_Nodes,,adj_array)
Set iteration:=1
While (iteration <= Num_of_gen) 

[Elite]=Findbest(pop_antlion,Pop_size,Num_Nodes)
For every ant  i=1:Pop_size  

For j=1:Pop_size
w(j)=pop_antlion(j).fit

EndFor
choice = RouletteWheelSelection(1./w,Pop_size)

If choice==-1  
choice=1

Endif
roulete_antlion=pop_antlion(choice)
RA = Random_walk (Elite,Num_Nodes,adj_array)

RB = Random_walk (roulete_antlion,Num_Nodes,adj_array)
Cross_R= Update_Ant_pos(adj_array,RA,RB,Num_Nodes)
pop_ant(i)=Cross_R
If pop_ant(i).fit>Elite.fit

Elite= pop_ant(i)
EndIf

EndFor
Merge_solution =Merge_Sort(pop_ant,pop_antlion, Pop_size,Num_Nodes)
[pop_antlion ]=Update_solution(Merge_solution, Pop_size,Num_Nodes)

Endwhile
[C]= pop_antlion(1).bit
[NMI] = Compute_NMI(class, C)
Print: 'nmi ', NMI
Print: 'Optimized Community ', pop_antlion(1).bit
End
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4 Simulation Results

The proposed ALOCD approach is implemented using matlab 7.11.0 (R2012a) on intel
core i5 processor, with 4 GB RAM under 64-bit Operating System. The work is tested
on Zachary’s Karate Club, Bottlenose Dolphins, American college football and Books
about US politics network (Newman 2009) benchmarks and results are compared with
the ACO and EFF (Amiri et al. 2013; Honghao et al. 2013). The characteristics of these
benchmarks are shown in Table 2.

The performance of ALOCD approach is evaluated using Normalized mutual
information (NMI) (Le Martelot and Hankin 2013; Pizzuti 2008; Pizzuti 2012; Amiri
et al. 2013) that quantifies the similarity between the detected and true community
structure. NMI denoted as I (X,Y) is calculated using the following formula as shown
in Eq. (3).

I(X,Y) = �
2
PCX

i¼1

PCY
j¼1 Cijlog

CijN
Ci

� Cj

� �
PCX

i¼1 Ci � logðCi=NÞþ
PCY

j¼1 C:jlogðC:j=NÞ
ð3Þ

Where X and Y denotes two network structures, C - the confusion matrix; Cij - the
count of nodes present in community i of X as well as in community j of Y; CX;CY -
the number of classes in part X and Y; Ci;C:j - the count of elements in row i and
column j of C; N - the total count of nodes in networks.

The larger value of NMI reflects more similarity between true and detected com-
munities leading to better solution quality. For both communities being same, the NMI
value equals 1 and NMI = 0 signifies different communities.

Table 3 shows the results of implementation of the proposed approach over 10
different runs for a given set of benchmark networks. The algorithm computes the NMI
value and determines the total number of communities in each run, as shown in Table 3.

From the tabulated values as given in Table 3, it is concluded that the proposed
approach is competent to identify 100% community structure for Zachary’s karate
network (Newman 2009). Figure 5 reveals NMI value equal to 1 at 5th and 8th run of
the program execution with the number of communities same as that of true community
structure for Zachary’s karate network.

Figures 6, 7 and 8 shows the NMI values of ten runs of ALOCD on Bottlenose
Dolphins, Books about US politics and American Football Club benchmark networks

Table 2. Shows the basic features of the real world networks and their true number of
community structures

Benchmark networks Nodes Edges True communities

Zachary’s Karate Club 34 78 2,4
Bottlenose Dolphins 62 159 2,4
Books about US politics 105 441 3
American College Football 115 613 12
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respectively. In 7th run of the implementation of ALOCD approach, the no. of com-
munities found for bottlenose dolphins is equal to true number of community structures
with NMI value of 0.887 as shown in Fig. 6.

From Fig. 7 it is clear that the number of communities found for Books about US
politics is equal to the number of true communities with NMI value of 0.733 at 6th run
of program execution. Figure 8 depicts same number of communities as that of actual
one at 8th run of implementation for American Football with NMI value of 0.850.

Table 3. Represents the NMI values and number of communities for multiple runs of ALOCD
approach

Benchmark
networks

Number of runs
1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

Zachary’s
Karate Club

NMI 0.732 0.732 0.592 0.494 1.000 0.732 0.516 1.000 0.732 0.732
NC 2 2 4 4 2 2 8 2 2 2

Bottlenose
Dolphins

NMI 0.502 0.534 0.699 0.798 0.698 0.835 0.887 0.802 0.513 0.756
NC 5 3 2 3 4 2 2 3 6 4

Books about
US politics

NMI 0.696 0.508 0.449 0.506 0.726 0.733 0.431 0.668 0.705 0.534
NC 4 3 10 15 4 3 7 5 3 9

American
College
Football

NMI 0.537 0.608 0.503 0.804 0.775 0.795 0.665 0.850 0.611 0.759
NC 17 16 14 13 12 13 22 12 20 14

NC-represents the number of Communities and bold faced values represent best results of
ALOCD approach for respective benchmark networks.

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

NMI 0.73 0.73 0.59 0.49 1 0.73 0.51 1 0.73 0.73

0

0.2

0.4

0.6

0.8

1

1.2

N
M

I

Zachary's Karate Club

Fig. 5. NMI values of ten runs of ALOCD on Zachary’s Karate Club
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Table 4 depicts excellent performance of ALOCD approach for Zachary’s Karate
Club Benchmark Networks. The solutions found by ALOCD approach split the
communities into 2, 3, 12 clusters with 1, 6, 13 nodes misplaced for Bottlenose Dol-
phins, Books about US politics, American College Football respectively.

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

NMI 0.50 0.53 0.69 0.79 0.69 0.83 0.88 0.80 0.51 0.75

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

N
M

I
Bottlenose Dolphins

Fig. 6. NMI values of ten runs of ALOCD on Bottlenose Dolphins

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

NMI 0.69 0.50 0.44 0.50 0.72 0.73 0.43 0.66 0.70 0.53

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

N
M

I

Books about US poli cs

Fig. 7. NMI values of ten runs of ALOCD on books about US politics
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1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

NMI 0.53 0.60 0.50 0.80 0.77 0.79 0.66 0.85 0.61 0.75

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

N
M

I
American Football Club

Fig. 8. NMI values of ten runs of ALOCD on American Football Club

Table 4. Shows the count and nodes of wrong communities along with best NMI of all
networks

Benchmark
networks

NMI Wrong
communities

Nodes in wrong communities

Zachary’s Karate
Club

1.000 – –

Bottlenose Dolphins 0.887 1 [20]
Books about US
politics

0.733 6 [8, 15, 28, 46, 54, 89]

American College
Football

0.850 13 [10, 18, 23, 32, 39, 47, 52, 54,65, 78,
82, 86, 101]

Table 5. Shows the comparison of best NMI values of ALOCD, ACO and EFF algorithm and
also shows at best NMI the respective communities found in all networks

Benchmark networks NMI and no. of communities ALOCD ACO EFF

Zachary’s Karate Club NMI 1.000 0.687 0.998
Communities 2 2 4

Bottlenose Dolphins NMI 0.887 0.587 0.988
Communities 2 2 4

Books about US politics NMI 0.733 0.560 0.599
Communities 3 2 4

American College Football NMI 0.850 0.890 0.798
Communities 12 12 11
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The results of the proposed approach are compared with ACO and EFF in terms of
best NMI values obtained. From Table 5 and Fig. 9, it is concluded that the proposed
ALOCD approach detects 100% true community structure statics for Zachary’s karate
network. For Dolphins networks, the algorithm obtained best normalized mutual
information of 0.887 closer to EFF best NMI value, while the NMI of ACO was 0.798.
For Books about US politics, the proposed approach has highest NMI value of 0.733 in
comparison with other approaches. On the American College Football network,
ALOCD obtained best normalized mutual information of 0.850 closer to ACO’s best
NMI value, while the NMI of EFF was 0.798. Consequently the proposed approach is
able to detect the true count of communities with NMI value close enough to NMI
value of true community structure.

5 Conclusion

The proposed approach optimizes the modularity function and is able to recognize
densely connected clusters of nodes bearing sparse interconnections. The performance
of the algorithm is measured in terms of Normalized Mutual Information
(NMI) function. The algorithm is tested on real-world networks i.e. Bottlenose
Dolphins, Zachary’s Karate Club, Books about US politics and American Football
Club. The experimental results show 100% community structure statics detection for
Zachary’s Karate club. The approach also gives promising results for other networks by
finding the true number of communities with NMI values close to true community
structures. The ALOCD approach is also compared with ACO and EFF over given set
of benchmarks. The approach outperforms EFF and ACO for Zachary and Books about

0

0.2

0.4

0.6

0.8

1

1.2

Zachary's Dolphins Polbooks Football

N
M

I
Comparison of ALOCD, ACO and EFF 

NMI values for all networks

ALOCD

ACO

EFF

Fig. 9. Comparison of best NMI values of ALOCD with ACO and EFF algorithm’s NMI
Values for four real world networks
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US politics and produces results better than ACO and comparable to EFF for Dolphins
and also produces results better than EFF and comparable to ACO for American
Football Club. The work can be further extended for other bigger real world networks
like Facebook, Twitter etc. This nature inspired approach can be improved to solve the
problem of community detection for overlapping communities and dynamic commu-
nity detection.
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Abstract. Tuned Mass Damper are widely used in the engineering community
for reduction in response of the structure during the hazardous earthquake
excitations or for other uses such as vibration control in slender and tall
buildings. But it is not necessary that the TMD used is reducing the response of
the structure effectively for the parameters set for it during the application. So
for the TMD to work at its best, the optimal parameters have to be found. The
work discusses the optimum parameters of Tuned Mass Damper for seismically
excited structures. The Hybrid Self Organizing Migrating Genetic Algorithm
(SOMGA) and Self Organizing Migrating algorithm with Quadratic Interpola-
tion (SOMAQI) are used to find the Optimum values of TMD parameters. All
parameters of TMD are searched in order to find the best results. TMD
parameters are checked under different excitations and the present approach is
also compared with other published results.

Keywords: Tuned Mass Damper ⋅ SOMGA ⋅ SOMAQI ⋅ Displacement
response ⋅ TMD Parameter Optimization

1 Introduction

Earthquake phenomenon is not new in India and tremors of earthquake from nearby
countries are often felt which causes threats to public safety and damage to property.
Based on geometric location quiet near to the seismic fault line of Himalayan range,
any structure has chances to fail especially high rise buildings. Damage induced due to
earthquake has increased over the last few years and some devastating examples are
from Gujarat earthquake in 2001, Nepal earthquake in 2015 and earthquake in Sumatra
in 2004 which left India and other South Asian countries shocked. Collapse of engi-
neered and non-engineered structure is the major contributor in loss to human life.

Over the past few decades progress has been made in making the structural control
system such as vibration control a practicable technology for improving structure
functionality and safety against natural hazards like earthquakes.
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The effectiveness of the Tuned Mass Damper (TMD) depends on the right stan-
dardization of the characteristics of TMD in a structure. Hybrid Self Organizing
Migrating Algorithm is used to optimize the TMD so that structural response can be
improved.

Frahm [2] in 1909 was the first to work and implement the concept of a Tuned
Mass Damper (TMD), to reduce vibrations and motion in ships. Later Den Hartog [3]
developed theory for a single degree of freedom system. A detailed discussion about
optimal parameters of Tuned Mass Damper was provided by them later in 1940. Sadek
et al. [4] suggested that TMD performs efficiently when first two modal damping
modes are equal, as earlier formulations by other authors don’t show the equality in the
damping of the first two modes. Bekdaş and Nigdeli [1] optimized the damper prop-
erties using metaheuristic technique known as Harmony search.

2 Simplification of a Structure to a SDOF System

A structure is actually not a single degree, but rather it is an infinite degree of freedom
system. It is however, mathematically impossible to simplify the structure’s model, an
approximation requires to use the lumped mass model, where the model goes from an
infinite to a multiple (finite) degree of freedom system. This is achieved by considering
each floor as a Single Degree of Freedom (SDOF), where the mass is the total mass of
the considered floor, and the stiffness and damping are calculated using equivalence
formulas - which depend on the properties of elements (E, l, C), the fixations at the end.

Equation of motion for a Multi Degree of Freedom (MDOF) system is given by

½m�fx ̈ðtÞgþ ½c�fx ̇ðtÞgþ ½k�fxðtÞg ¼ ½m�frgxg̈ðtÞ ð1Þ
Where m, c, k are mass matrix, damping matrix and stiffness matrix and {r} is

influence coefficient vector (nX1) with x ̈ tð Þ denoting relative acceleration vector x ̇ tð Þ
relative velocity vector and x tð Þ relative displacement vector, xg̈ðtÞ = EQ ground
acceleration or excitation.

The undamped eigen values and eigen vectors of MDOF are found for the char-
acteristic equation for n stories by:

k−ω2
i m½ �� �

∅i = 0;

detj k−ω2
i m½ �� �j= 0;

Where; i = 1 to n where n is total number of stories.
Where displacement response of MDOF is expressed as x tð Þ= ½∅� y tð Þf g;
Where y(t) represent modal displacement vector and [∅] is the mode shape matrix

given by [∅] = [∅1∅2∅3∅4 . . . . ∅n].
Substituting fxg= ½∅�fyg in Eq. 1 and pre multiplying by transpose of ½∅� i.e. ½∅�T

∅½ �T m½ �½∅�fy ̈ tð Þg+ ½∅�T c½ �½∅�fy ̇ tð Þg+ ½∅�T k½ �½∅�fy tð Þg
= ½∅�T m½ �frgxg̈ðtÞ
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½∅�T ½m�½∅�= ½M�; Generalized mass matrix
½∅�T ½c�½∅�= ½C�; Generalized damping matrix
½∅�T ½k�½∅�= ½K�; Generalized stiffness matrix

and equation becomes

y ̈i tð Þþ 2εiωiyi̇ tð Þþω2
i yi tð Þ ¼ τixg̈ðtÞ ð2Þ

Where; yi tð Þ = modal displacement response in ith mode

εi = modal damping ratio in ith mode
τi = modal participation factor for ith mode expressed by

τi = ð½∅�T m½ �frgxg̈Þ ̸ð½∅�T m½ �½∅�Þ

Equation (2) can also be written as

mx ̈ tð Þ+ cx ̇ tð Þ+ kx tð Þ= −mxg̈ðtÞ

Where; ω◦ =
ffiffiffi
k

p
m̸ and ε= c ð̸2mω◦Þ

2.1 Optimization Procedure

The primary objective of optimization is to reduce the vibration of structure subjected
to seismic loading under different earthquake excitations recorded in the past. The
fundamental parameter considered is the maximum displacement of the structure. To
increase the effectiveness of the TMD, the following parameters are optimized: Mass
ratio (μ) i.e., ratio of mass of TMD (md) to the mass of the structure (M)• Stiffness of
the Tuned Mass Damper (kd)• Damping coefficient of the TMD (cd)• The methodology
aims at optimizing the parameters for the first mode of vibration of the structure. In
order to optimize the parameters of TMD, the structure was idealized as lumped
spring–mass-damper single degree of freedom system (SDOF). The mass of the SDOF
was considered as the modal mass participated in the first mode of the structure.
The TMD was attached to the structure as spring-mass-damper system and the SDOF
structure becomes 2DOF system. The parameters of the TMD are found as follows,

• Mass of TMD (md)

md = μ M

• Stiffness of TMD (kd)

kd = ωo
2 * α * 2 m

• Damping of the TMD (cd)

cd = 2m εd ωd
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The equation of motion of system equipped with a TMD is given in Eq. 3, where
the parameters md , cd , kd were optimized by setting the range of the TMD parameters
of the structure and then finding the best optimum solution of TMD parameters with the
help of SOMGA and SOMAQI.

mþmdð Þu ̈þ cu ̈þ k u + md ud̈ þ cd uḋ þ kd ud ¼ p ð3Þ

Where;
m = mass of the structure alone
c = damping of the structure
k = stiffness of the building alone
md = mass of damper
cd = damping of the tuned mass damper
kd = stiffness of the damper
p = loading applied on the building
u = displacement of primary mass
ud = displacement of damper

The range is as follows:

md = 13850 to 69250
kd = 1.3375× 105 to 6.68759× 105

cd = 8.608× 103 to 43.04× 103

3 Case Studies

Two examples from the existing literature are selected and the use of Hybrid SOMA
method is applied on them for finding the optimum TMD parameters for them.

3.1 Case Study-1

Case Study 1 is on example taken from Singh et al. [5] in which all floors have the
same properties i.e. same mass, stiffness and damping coefficient as 360t, 650 MN/m,
and 6.2 MNs/m for all the ten floors. After performing the analyses for optimization,
optimum TMD parameters are found as md = 70.312t, cd = 93.6 kNs/m and kd =
2973.34 kN/m using SOMGA Technique and from SOMAQI technique parameters are
found as md = 180 t, cd = 46.8 kNs/m and kd = 7612.02 kN/m. These values for TMD
parameters are smaller than the values obtained by previous studies and this example
was analyzed under El Centro NS (1940) excitation for comparison with previous
results. The maximum displacement response obtained for first story, top story and
TMD under different earthquakes are presented in Table 1 and for the comparison,
response of all the stories under El Centro NS (1940) with displacement responses from
previous studies are presented in Table 2.

Table 2 shows the maximum displacement response reduction for the structure
stories in terms of percentage for the present study which are written against the values
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of optimized result from the past studies of Harmony search and Genetic algorithm
optimization. From the study, it is found that the maximum top floor displacement of
the building is reduced by 52.13% under EL Centro NS (1940) excitation with
SOMGA and 39.89% by SOMAQI, whereas GA showed 35.11% reduction and
Harmony Search algorithm showed reduction of 45.74%.

3.2 Case Study-2

The second example in Case Study 2 is also a ten story building which was optimized
before by Sadek et al. [4] and the structure has different values of parameters for all
floors as seen in Table 3 below.

In this study the damping matrix is taken proportional to the stiffness matrix i.e.
C = 0.0129 K for the second example as it was given in the paper that it can be taken
proportional to the stiffness matrix or the mass matrix. Optimum TMD parameters for
the Case Study-2 are found as md = 20.789 t, cd = 17.25 kNs/m and kd = 198.536 kN/m

Table 1. Maximum displacements respect to ground under different earthquakes for Case
Study-1

Story Maximum absolute displacement under ground excitation in m

El Centro El Centro NS Tabas

Without
TMD

With
TMD
SOMAQI

With
TMD
SOMGA

Without
TMD

With
TMD
SOMAQI

With
TMD
SOMGA

Without
TMD

With
TMD
SOMAQI

With
TMD
SOMGA

First 0.025 0.010 0.010 0.031 0.015 0.013 0.039 0.032 0.027
Top 0.173 0.078 0.078 0.189 0.114 0.089 0.264 0.226 0.205

TMD – 0.268 0.389 – 0.393 0.450 – 0.684 0.709

Table 2. Maximum displacements respect to ground under EL Centro NS excitation for Case
Study-1

Story Maximum absolute displacement respect to ground (m) % of reduction

Without
TMD

With
TMD
(GA)

Without
TMD (HS)

With TMD
SOMAQI

With TMD
SOMGA

GA HS SOMAQI SOMGA

1 0.031 0.019 0.016 0.015 0.013 38.71 48.93 51.61 58.06
2 0.060 0.037 0.031 0.030 0.025 38.33 48.33 50.00 58.33

3 0.087 0.058 0.044 0.044 0.036 33.33 49.43 49.43 58.62
4 0.112 0.068 0.057 0.058 0.047 39.29 49.11 48.21 58.03
5 0.133 0.082 0.068 0.071 0.057 38.35 48.87 46.62 57.14

6 0.151 0.094 0.078 0.082 0.067 37.75 48.34 45.69 55.63
7 0.166 0.104 0.087 0.093 0.075 37.35 47.59 43.98 54.82

8 0.177 0.113 0.094 0.101 0.081 36.61 46.89 42.94 54.24
9 0.184 0.119 0.099 0.108 0.086 35.35 46.20 41.30 53.26
10 0.188 0.122 0.102 0.113 0.090 35.11 45.74 39.89 52.13

TMD – 0.358 0.395 0.393 0.450 – – – –
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using SOMGA Technique and TMD parameters from SOMAQI are found as md =
69.25 t, cd = 43.04 kNs/m and kd = 668.759 kN/m. The maximum displacement
response obtained for first story, top story and TMD under different earthquakes are
presented in Table 4 and for the comparison, response of all the stories under El
Centro NS (1940) with displacement responses from previous studies are presented in
Table 5.

Table 3. Structure properties of Case Study 2

Story 10 9 8 7 6 5 4 3 2 1

Mass (t) 98 107 116 125 134 143 152 161 171 179
Stiffness (MN/m) 34.31 37.43 40.55 43.67 46.79 49.91 53.02 56.14 52.26 62.47

Table 4. Maximum displacements respect to ground under different earthquakes for Case
Study-2

Story Maximum absolute displacement under ground excitation in m

El Centro El Centro NS Tabas

Without
TMD

With
TMD
SOMAQI

With
TMD
SOMGA

Without
TMD

With
TMD
SOMAQI

With
TMD
SOMGA

Without
TMD

With
TMD
SOMAQI

With
TMD
SOMGA

First 0.036 0.021 0.015 0.041 0.022 0.017 0.132 0.0460 0.043
Top 0.285 0.196 0.134 0.327 0.205 0.151 0.821 0.431 0.378

TMD – 0.663 0.801 – 0.693 0.899 – 1.459 2.250

Table 5. Maximum displacements respect to ground under EL Centro NS excitation for Case
Study-2

Story Maximum absolute displacement respect to ground from different Optimization
methods (m)
Without
TMD

Den
Hartog

Sadek
et al.

Hadi and
Arfiadi

Gebrail and
Sinan

SOMAQI SOMGA

1 0.041 0.034 0.036 0.034 0.027 0.021 0.017
2 0.088 0.074 0.077 0.072 0.058 0.047 0.037
3 0.129 0.106 0.113 0.105 0.083 0.071 0.055
4 0.166 0.136 0.145 0.134 0.105 0.093 0.073
5 0.197 0.163 0.172 0.160 0.124 0.115 0.090
6 0.222 0.187 0.194 0.184 0.140 0.137 0.106
7 0.252 0.213 0.219 0.210 0.157 0.157 0.120
8 0.286 0.239 0.245 0.236 0.177 0.175 0.133
9 0.313 0.261 0.266 0.258 0.195 0.191 0.143
10 0.327 0.276 0.281 0.272 0.205 0.205 0.151
TMD – 0.602 0.456 0.635 0.449 0.693 0.899
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From Tables 4 and 5 it can be seen that both the soft computing techniques which
are used for optimization of the TMD parameters are working fine, as for the values of
TMD parameters, significant reduction in maximum absolute displacement of the
structure storey can be seen for Example 2 under different earthquake records. The
values of displacement obtained from the present study are better than the values
obtained from previous studies. While the results obtained from the TMD parameters
derived from SOMGA are performing in a better way as compared to the results
obtained from SOMAQI.

It is found that the maximum displacement of the top story is reduced by a
reduction of 53.82% by SOMGA and 37.31% by SOMAQI under El Centro NS (1940)
excitation, while the top story displacement is reduced with a reduction of 15.6% by
Den Hartog 14.07% by Sadek et al. and 37.31% by Gebrail-Sinan Harmony Search
method and 16.82% by Hadi-Arfiadi methods. TMD parameters obtained by SOMGA
are numerically smaller than various other methods which were compared and efficient
in reducing the displacement response, while the parameters obtained by SOMAQI are
similar to the parameters obtained by other studies in reducing the maximum absolute
response of the structure with respect to the ground under different earthquake
excitations.

4 Conclusions

In this paper two case studies have been considered for analysis. In case study 1, all the
floors have the same properties i.e. same mass, stiffness and damping coefficient for all
the ten floors and in Case study 2, different values of mass, stiffness and damping
coefficient has been taken for all floors. In both cases, the parameter of TMD has been
optimized by two soft computing techniques. Both the techniques are performing better
as the displacement is reduced as compared to previously published results. Results
showed that among these two techniques, SOMGA is showing better reduction of
displacement of the top and bottom storey as compared to SOMAQI. Hence it can be
concluded that displacement responses can be achieved for any structure incorporated
with TMD with the help of Hybrid Self Organizing Migration Algorithm.
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Abstract. Spider Monkey Optimization (SMO) is a recent optimiza-
tion method, which has drawn interest of researchers in different areas
because of its simplicity and efficiency. This paper presents an effort to
modify Spider Monkey Optimization Algorithm with higher exploitation
capabilities. A new acceleration coefficient based strategy is proposed in
the basic version of SMO. The proposed algorithm is named as Fast Con-
vergent Spider Monkey Optimization Algorithm (FCSMO). FCSMO is
tested over 14 benchmark test functions and compared with basic SMO.
The result reveals that FCSMO will surely become a good variant of
SMO.

Keywords: Meta-heuristic optimization techniques · Swarm intelli-
gence · Acceleration coefficient

1 Introduction

Optimization works to unfolds all potential outputs meeting some stated con-
straints. From past years NIA have proposed various methods to explain NP-
Hard and NP- complete optimization problems of real world [7]. Nature inspired
algorithm, inspired by nature, is a stochastic approach wherein an individual or a
neighbor’s interacts with each other intellectually to explain complicated preex-
isting mechanisms in an efficient manner. NIA is focused mainly on evolutionary
based algorithm and swarm based algorithm. Evolutionary algorithm is a com-
putational standard motivated by Darwinian Evolution [9]. Swarm intelligence
assets in unlocking optimization problems considering collaborative nature of
self-sustaining creatures like bees, ants, monkeys whose food-gathering capabili-
ties and civilized characteristics have been examined and simulated [5,6,8]. SMO
is a subclass of swarm intelligence, proposed by Jagdish Chand Bansal et al., in
the year 2014 [4]. SMO is a food foraging based algorithm, considering nature
and social frame work of spider monkeys. Fission-Fusion social system relates to
social configuration of spider monkey. Many researchers have been studied that
SMO algorithm is good at exploration and exploitation but there is possibilities
of further improvements.

c© Springer Nature Singapore Pte Ltd. 2017
K. Deep et al. (eds.), Proceedings of Sixth International Conference
on Soft Computing for Problem Solving, Advances in Intelligent Systems
and Computing 546, DOI 10.1007/978-981-10-3322-3 5
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To improve the convergence speed, a variant of SMO is proposed, i.e. name
as Fast Convergent Spider Monkey Optimization Algorithm. In the proposed
modification acceleration coefficients based strategy is incorporated in the basic
version of SMO.

The rest of the paper is structured as follows: In Sect. 2, SMO is described.
Fast Convergent Spider Monkey Optimization Algorithm (FCSMO) is proposed
in Sect. 3. In Sect. 4, performance of FCSMO is tested with several benchmark
functions. Finally, Sect. 5 includes a summary and conclude the work.

2 Overview of Spider Monkey Optimization (SMO)
Technique

A distinct class of NIA proposed by JC Bansal et al. [4], by trivial behavior
of monkeys i.e. Spider Monkey Optimization (SMO) technique. Spider Monkey
optimization, a Fission-Fusion mode is an extension of above discussed predica-
ment. Here, a populous, consistently dictated by a female, is fragmentized into
tiny clusters for seeking, chiefly food and they are buddy up to 40 to 50 singular
who rift into small groups in search of food who again are headed by a female.
In case she fails to meet the objective (food finding), further subdivides, again
succeeded by a female, replicating the process until reach the food. For recent
updates in their positions, various steps are undertaken: inspection of probing
of wide search space and picking or electing of superlative practical results [10].

2.1 Steps of SMO Technique

SMO technique is based on population repetitive methodology. It consists of
seven steps. Each step is described below in a detailed manner:

1. Initialization of Population: Originally a population comprised of N spider
monkeys signifying a D-dimensional range Mi where i=1,2,...N and i repre-
sents ith spider monkey. Each spider monkey (M) exhibits possible results of
the problem under consider. Each Mi is initialized as below:

Mij = Mminj + R(0, 1) × (Mmaxj − Mminj) (1)

Here Mminj and Mmaxj are limits of Mi in jth vector and R(0,1) is a random
number (0,1).

2. Local Leader Phase (LLP): This phase relies on the observation of local
leader and group mates, M renew its current position yielding a fitness value.
If the fitness measure of the current location is larger than that of the former
location, then M modifies his location with the latest one. Hence ith M that
also exists in kth local group modify its position.

Mnewij = Mij + R(0, 1) × (LLkj − Mij) + R(−1, 1) × (Mrj − Mij) (2)

Here Mij define ith M in jth dimension, LLkj correlate to the kth leader of
local assembly location in jth dimension. Mrj defines rth M which is randomly
picked from kth troop such that r �= i in jth dimension.
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3. Global Leader Phase (GLP): This following phase initiates just after
accomplishing LLP. Depending upon the observation of global leader and
mates of local troop, M updates their location. The position upgrade equation
for GLP phase is as follows:

Mnewij = Mij + R(0, 1) × (GLj − Mij) + R(−1, 1) × (Mrj − Mij) (3)

Here GLj poises for global leader’s location in jth dimension and j=1,2,3,...,D
defines an arbitrarily chosen index. Mi modify their locus considering prob-
abilities Pr′

is. Fitness is used to calculate probability of a specific solution,
with various methods such as

Pri = 0.1 + (
fitnessi

fitnessmax
) × 0.9 (4)

4. Global Leader Learning (GLL) Phase: Here greedy selection strategy
is applied on the population which modifies the locus of global leader i.e.
the location of M which has best fitness in the group is chosen as the mod-
ified global leader location. Also its is verified that global leader location is
modifying or not and in case not then GlobalLimitCount(GLC) is increased
by 1.

5. Local Leader Learning (LLL) Phase: Here, local leader locus is modified
by implement greedy selection in that population i.e. the location of M which
has best fitness among the entire group is chosen as the latest location of
local leader. Afterwards, this modified local leader location and old values
are compared and LocalLimitCount (LLC) is increment by 1.

6. Local Leader Decision (LLD) Phase: Here, updating of local leader loca-
tion is done in two ways i.e. by arbitrary initialization or by mixing informa-
tion obtained via global and local leader, if local leader location is not modi-
fied up to a precalculated limit named as LocalLeaderLimit through equation
based on perturbation rate (p).

Mnewij = Mij + R(0, 1) × (GLj − Mij) + R(0, 1) × (Mij − LLkj) (5)

Clearly, it is seen in equation that modified dimension of this M is fascinated
towards global leader and oppose local leader. Moreover, modified M’s fitness
is determined.

7. Global Leader Decision (GLD) Phase: Here, global leader location is
examine and if modification is not done up to precalculated iterations limit
named as GlobalLeaderLimit then division of population in small group is
done by local leader. Primarily population division is done in two classes
and further three, four and so on until the upper bound called groups of
maximum number (GM) is reached. Meanwhile, local leaders are selected
using LL method for newly formed subclasses.
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The pseudo-code of the SMO algorithm is as follows:-

(1) Define Population, LocalLeaderLimit, GlobalLeaderLimit, Perturbation rate.
(2) Determine fitness (each individual distance from sources of food)
(3) Apply greedy selection to choose global and local leaders.
while Termination condition is not met do
(i) To hit target, new locations for group population is formulated with the
help of self experience as well as local and group population experience,
using Local Leader Phase (LLP).
(ii) Relied on fitness value of group members, employ greedy selection
strategy.
(iii) Assess probabilities Pri for all companions using equation (4).
(iv) Generate new locations for each group companions, chosen by Pri, by
self experience, global leader experience also consider experience of group
member using Global Leader Phase (GLP).
(v) Greedy selection method is applied to modify global and local leaders
locations of entire groups.
(vi) Any local leader of a group, if fails to modify her locus within
LocalLeaderLimit then deflect that specific group companions for further
foraging using Local Leader Decision (LLD) Phase.
(vii) Any global leader if fails to modify her locus within GlobalLeaderLimit
then she diversifies group into subgroups by Global Leader Decision Phase
with the minimum threshold of each groups size being 4

end

Algorithm 1. Spider Monkey Optimization (SMO)

3 Fast Convergent Spider Monkey Optimization
Algorithm

In population repetitive methodology, exploration and exploitation are the two
basic properties of NIA. A convenient balance between both these two proper-
ties are required. Exploration describe the promising regions by searching the
given search space while exploitation helps in finding the optimal solution in
the promising search regions. In the basic SMO, it is good at exploration and
exploitation but there is possibilities of further improvements. So to improve the
basic SMO, on new variant named Fast Convergent Spider Monkey Optimization
Algorithm (FCSMO) is designed.

From the results of search process of basic SMO that it will get higher
opportunity for advancement in various iteration using two ways: (1) Global
Leader Phase (GLP) and (2) Local Leader Decision (LLD) phase. Exploration
and exploitation capacity should be managed in an effective way. The details of
these two steps of FCSMO implementation are explained below:

1. Global Leader Phase (GLP): In the GLP phase, depending upon the
observation of Global leader and mates of local troop, M updates their loca-
tion. In the GLP phase of iteration, solutions in search space are having
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large step-size resulting in exploration. In later iterations, there is a gradual
decrease in step-size by moving slowly iteration by iteration due to which
solution exploits the search space well and resulting good convergence. The
position upgrade equation for this phase is as follow:

Mnewij = Mij+R(0, 1)×(GLj−Mij)+(Mrj−Mij)×[1−(
iter

Maxiteration
)]×c

(6)
Here GLj poises for global leader’s location in jth dimension and j=1,2,3,...,D
defines an arbitrarily chosen index and iter and Max iteration show the
present iteration and the maximum iteration number, respectively. c is the
random number. Its value is 2. In this acceleration coefficient is added with
random member. The position upgrade method of GLP phase is exhibited in
following algorithm.

count=0;

while count < group do
for each member Mi ∈ group do

if R(0,1) < Pri then

count=count+1;

Randomly select j ∈ 1...D

Randomly select Mr ∈ group s.t r �= i

Mnewij = Mij + R(0, 1) × (GLj − Mij) + (Mrj − Mij) × [1 − ( iter
Maxiteration )] × c

end if

end for
end

Algorithm 2. Global Leader Phase (GLD)

2. Local Leader Decision (LLD) Phase: Here, updating of Local Leader
location is done in two ways i.e. by arbitrary initialization or by mixing infor-
mation obtained via global and local leader, if local leader location is not
modified up to a precalculated limit named as LocalLeaderLimit through
equation based on p. In the LLD phase of iteration, solutions in search space
are having large step-size resulting in exploration. In later iterations, there is
a gradual decrease in step-size by moving slowly iteration by iteration due to
which solution exploits the search space well and resulting good convergence.
The position upgrade equation for this phase is as follow:

Mnewij = Mij +(GLj −Mij)×(1−(
iter

Maxiteration
))+R(0, 1)×(Mij −LLkj)

(7)
Clearly, it is seen in equation that modified dimension of this M is fascinated
towards global leader and oppose local leader. Moreover, modified M’s fitness
is determined and iter and Max iteration show the present iteration and
the maximum iteration number, respectively. In this acceleration coefficient
is added with global leader. The position upgrade method of LLD phase is
exhibited in following algorithm.
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if LocalLimitCount > LocalLeaderLimit then

LocalLimitCount=0

for each j ∈ 1...D do
if R(0,1) ≥ p then then

Mnewij = Mij +R0, 1 × (Mmaxj − Mminj)
else

Mnewij = Mij + (GLj − Mij) × (1 − ( iter
Maxiteration

) +R(0, 1) × (Mij − LLkj)
end if

end for
end if

Algorithm 3. Local Leader Decision (LLD) Phase

The pseudo-code of the FCSMO algorithm is as follows:-
(1) Define Population, LocalLeaderLimit, GlobalLeaderLimit, Perturbation rate.
(2) Determine fitness (each individual distance from sources of food)
(3) Apply greedy selection to choose global and local leaders.
while Termination condition is not met do
(i) To hit target, new locations for group population is formulated with the
help of self experience as well as local and group population experience,
using Local Leader Phase (LLP).
(ii) Relied on fitness value of group members, employ greedy selection
strategy.
(iii) Assess probabilities Pri for all companions using equation (4).
(iv) Generate new locations for each group companions, chosen by Pri, by
self experience, global leader experience also consider experience of group
member using algorithm 2.
(v) Greedy selection method is applied to modify global and local leaders
locations of entire groups.
(vi) Any local leader of a group, if fails to modify her locus within
LocalLeaderLimit then deflect that specific group companions for further
foraging using algorithm 3.
(vii) Any global leader if fails to modify her locus within GlobalLeaderLimit
then she diversifies group into subgroups by Global Leader Decision Phase
with the minimum threshold of each groups size being 4

end

Algorithm 4. Fast Convergent Spider Monkey Optimization (FCSMO)

4 Experimental Results

4.1 Test Problems Under Consideration

To evaluate the quality of proposed FCSMO algorithm, 14 opposed global opti-
mization issue (f1 - f14) are selected as presented in Table 1. All the issues
are continuous optimization issues and having various rates of complexity. Test
problems (f1 - f14)) are yield from [1,11] with the correlated offset values.
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Table 1. Test problems

4.2 Experimental Setting

To verify the efficiency of proposed algorithm FCSMO, a relative study is taken
between FCSMO and SMO. To analysis FCSMO and basic SMO, over the exam-
ine testing issues, subsequent observational setting is emulated:

– The number of simulations/run =100,
– Population size (Monkeys) NP = 50
– R = rand[0, 1]
– GlobalLeaderLimit ∈ [N/2, 2× N] [4]
– LocalLeaderLimit= D× N [4]
– Perturbation rate (p) ε[0.1, 0.8]

4.3 Results Comparison

Table 2 represent the observational results of relative algorithm. Following
Table 2 gives a information about Standard Deviation (SD), Mean Error (ME),
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Table 2. Comparison of the results of test functions, TP: Test Problem

TP Algorithm SD ME AFE SR

f1 FCSMO 1.81E-06 7.99E-06 88298.07 100

SMO 1.56E-06 8.24E-06 96073.45 100

f2 FCSMO 4.79E-07 9.36E-06 23416.47 100

SMO 9.32E-07 9.26E-06 32438.70 100

f3 FCSMO 3.50E-06 5.52E-06 32438.20 100

SMO 3.72E-06 4.98E-06 52153.75 100

f4 FCSMO 4.01E-02 1.18E-02 32651.24 92

SMO 4.80E-02 1.77E-02 62144.30 88

f5 FCSMO 0.00E+00 0.00E+00 10792.21 100

SMO 0.00E+00 0.00E+00 14261.81 100

f6 FCSMO 4.38E-07 9.80E-06 124902.53 100

SMO 1.15E-05 1.23E-05 169082.28 90

f7 FCSMO 8.70E-07 9.02E-06 12917.52 100

SMO 1.45E-02 2.08E-03 20795.99 98

f8 FCSMO 1.09E-06 8.80E-06 12867.18 100

SMO 1.53E-03 2.28E-04 17814.27 98

f9 FCSMO 1.23E-03 1.39E-04 96079.51 97

SMO 4.27E-03 1.64E-03 134399.12 81

f10 FCSMO 4.70E-14 6.18E-14 130131.22 38

SMO 4.31E-14 7.05E-14 150535.16 28

f11 FCSMO 1.48E-05 1.68E-05 104691.82 50

SMO 1.42E-05 1.72E-05 106712.17 49

f12 FCSMO 4.11E-06 9.90E-06 177221.60 15

SMO 3.39E-06 1.05E-05 187621.00 10

f13 FCSMO 5.05E-03 8.29E-03 55146.68 97

SMO 5.38E-03 1.11E-02 154825.33 62

f14 FCSMO 1.07E-03 1.35E-04 89666.40 67

SMO 3.63E-05 3.39E-05 111436.91 57

Average Number of Function valuations (AFE) and Success Rate (SR). Accord-
ing to Results of Table 2, at maximum time FCSMO shows best results from
SMO, in terms of performance, efficiency and accuracy.

Moreover, boxplots evaluation of AFE is taken for comparing the relevant
algorithms in scheme of consolidated quality, so it can simply show the observed
distribution of statistic graphically. The boxplots for FCSMO and SMO are
presented in Fig. 1. The results declares that interquartile scope and medians of
FCSMO are comparatively low. Further, all relevant algorithms are studied by
allowing entire attention to the SR, AFE and ME. This study is determined
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Fig. 1. Boxplots graph for average function evaluation

using the quality basis i.e. represented in [2,3]. The evaluated values of PI for the
FCSMO and SMO are calculated and consecutive PIs graphs are represented
in Fig. 2. The graphs analogous to several cases i.e. allowing entire attention to
SR, AFE and ME (as explained in [2,3]) are represent in Figs. 2(a), (b), and (c)
respectively. In these diagram, horizontal axis means the weights and vertical
axis means the PI. It is clear from Fig. 2 that PI of FCSMO are superior than
the other studied algorithms in various case. i.e. FCSMO observe better on the
studied testing issues as compare to the SMO.
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Fig. 2. Performance index for test problems; (a) for weighted importance to SR, (b)
for weighted importance to AFE and (c) for weighted importance to ME.
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5 Conclusion

This paper presents a variant of SMO algorithm, known as Fast Convergent
Spider Monkey Optimization Algorithm (FCSMO). In FCSMO, an acceleration
coefficient based strategy is proposed in which step size is decreased through
iteration. To evaluate the proposed algorithm, it is tested over 14 benchmark
function. The results collected by the FCSMO is better than the basic SMO
algorithm. In future, newly developed algorithm may be used to solve various
real-world optimization problems of continuous nature.
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Abstract. In this paper, the proposed strategy is versatile such that the paper
moreover gives a test suite of twelve test problems, which includes eight
unconstrained and four compelled problems. The test suite comprises problems
with adaptable variables and necessities, which can be used to survey the limit
of the calculations in dealing with bi-levelproblems. To give design results, we
have handled the proposed test problems using a settled bi-level transformative
calculation. The results can be used for examination, while evaluating the
execution of some other bi-level streamlining calculation.

Keywords: Bi-level optimization ⋅ Test problem development system ⋅
Baseline arrangement ⋅ SMD problems

1 Introduction

Bi-level enhancement constitutes a testing class of headway problems, where one
change errand is settled within the other. A broad number of studies have been
coordinated in the field of bi-level programming [7, 9–13], and on its practical
applications [2]. Customary procedures commonly used to handle bi-levelproblems
fuse the Karush-Kuhn-Tucker approach [2, 4], Branch-and-bound frameworks [3] and
the use of censure limits [1]. Different studies have been performed towards using
formative calculations [7–9, 11, 13] for dealing with bi-levelproblems. In any case, the
examination on formative calculations for bi-levelproblems is still in early stage, and
foremost change in the present approaches is required.

Past studies [3] on bi-level upgrade have displayed different fundamental test prob-
lems. In any case, the levels of inconvenience can’t be controlled in these test problems.
In most of the studies, the problems are either immediate [4], or quadratic [5, 6], or
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non bi-scalable with settled number of decision variables. Application problems in
transportation (framework diagram, perfect assessing), monetary angles (Stackelberg
entertainments, crucial administrators problem, charge gathering, procedure decisions),
organization (framework office region, coordination of multi-divisional firms), building
(perfect design, perfect substance equilibria) et cetera [10] have also been used to display
the efficiency of calculations. For most of these problems, the veritable perfect course of
action is dark. Thusly, it is hard to recognize, whether a particular course of action got
using a present procedure is close to the optima. Under these vulnerabilities, it is doubtful
to proficiently evaluate course of action frameworks on realistic problems. These
drawbacks stance hindrances in calculation headway, as the execution of the calculations
can’t be surveyed on various inconvenience unsettled areas.

In this paper, we perceive the troubles normally experienced in bi-level streamlining
problems. A test problem improvement technique is proposed, which mimics these diffi-
culties controllably. Using the advancement technique, we propose a social event of bi-level
test problems flexible in regards to variables and objectives. The proposed arrangement
grants to control the difficulties at the two levels self-governingly of each other.

The paper is made as takes after. In the accompanying zone, we clear up the
structure of a general bi-level advancement problem and present the documentation that
is used all through the paper. Area 3 presents our structure for building adaptable test
problems for bi-level programming. Starting there, taking after the principles of the
advancement procedure, we prescribe a course of action of twelve versatile test
problems in Sect. 4. To make a benchmark for surveying distinctive arrangement
calculations, the problems are handled using an essential settled bi-level developmental
calculation which is a settled arrangement depicted in Sect. 5. The outcomes for the
standard calculation are inspected in Sect. 6.

2 Portrayal of a Bi-level Problem

A bi-level change problem incorporates two levels of progression errands, where one
level is settled within the other. The outer progression undertaking is commonly called as
upper level upgrade errand, and the internal change task is called as lower level
streamlining assignment. The problem contains two sorts of variables; particularly the
upper level variables xu, and the lower level variables xl. In the going with, we give two
equivalent definitions to a general bi-level upgrade problemwith one focus at both levels:

Definition 1 (Bi-level Optimization Problem). Let X=XU ×XL show the product of the
upper-level decision space XU and the lower-level decision space XL, i.e.
x = (xu, xiÞ∈X, if xu ∈XU and xl ∈XL. For upper-level target limit F: X → R and
lower-level target limit f: X → R, a general bi-level change problem is given by

Minimize F(x), x∈X

s.t. xl ∈ argminffðxÞj giðxÞ≥ 0, i∈ Ig,
xl ∈XL

GjðxÞ≥ 0, j∈ J.

ð1Þ

Bi-level Problem and SMD Assessment Delinquent 53



where the limits gi:X→R, i∈ I, address lower-level restrictions and Gj:X→R, j∈ J,
is the aggregation of upper-level requirements.

In the above definition, a vector x is seen as functional at
(0) the upper level, in case it satisfies all the upper level goals, and vector xl is

perfect
(0) at the lower level for the given xu. We find in this specifying the lower level

problem is a parameterized constraint to the upper-level problem. An indistinguishable
specifying of the bi-level change problem is procured by supplanting the lower level
streamlining problem with a set worth limit which maps the given upper-level decision
vector to the relating set of perfect lower-level game plans.

In the test problem development methodology, the Ψ limit gives an accommodating
delineation of the relationship between the upper and lower level problems. Figures 1
and 2 plot two circumstances, where Ψ can be a singular vector regarded or a
multi-vector regarded limit independently. In Fig. 1, the lower level problem is had all
the earmarks of being a paraboloid with a lone minimum limit regard identifying with
the game plan of upper level variables xu. Figure 2 addresses a circumstance where the
lower level limit is a paraboloid cut from the base with an even plane.

3 Test Problem Construction Procedure

The region of an additional streamlining errand within the requirements of the upper
headway assignment prompts a gigantic augmentation in multifaceted nature, when
appeared differently in relation to any single level improvement problem. The test
problems made using the development system are depended upon to be adaptable to the
extent number of decision variables and imperatives, such that the execution of the
computations can be evaluated

Fig. 1. Relationship amidst upper and lower level variables if there ought to be an event of a
single vector regarded mapping. For ease the lower level limit is alive and well of a paraboloid.

54 S. Vadali et al.



Case 1. Making co-agent communication: A test problem with co-operators associa-
tion case can be made by picking

F2ðxl1Þ=F2ðxl1Þ
F3ðxu2, xl2Þ=F4ðxu2Þ+ f3ðxu2, xl2Þ

ð4Þ

where F4 ðxu2Þ is any limit of xu2 whose base is known.

Case 2. Making clashing communication: A test problem with a conflict between the
two levels can be made by basically changing the signs of terms f2 and f3 on the right
hand side in (4):

F2 ðxl1Þ= − f2ðxl1Þ
F3 ðxu2, xl2Þ=F4ðxu2, Þ− f3ðxu2, xl2Þ.

ð5Þ

The choice of F2 and F3 prescribed here is an excellent case, and there can be
various diverse ways to deal with fulfill battle or co-operation using the two limits.

Case 3. Making blended connection: There may be a condition of both investment and
strife if limits F2 and F3 are picked with reverse signs as,

F2ðxl1Þ= f2ðxl1Þ
F3ðxu2, xl2Þ=F4ðxu2Þ− f3ðxu2, xl2Þ

ð6Þ

Or

F2 ðxl1Þ= − f2 ðxl1Þ
F3 ðxu2, xl2Þ=F4 ðxu2Þ+ f3 ðxu2, xl2Þ.

ð7Þ

Fig. 2. Relationship amidst upper and lower level variables if there ought to emerge an event of
a multi-vector regarded mapping. The lower level limit is seemed alive and well of a paraboloid
with the base cut with a plane.
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Illustration 2: Consider a bi-level enhancement problem where the lower level errand
is given by Example 1. According to the above strategies, we can make a test problem
with a conflict between the upper and lower level by portraying the upper level target
limit as takes after:

F1ðXu1Þ= ∑U1
i= 1 ðxiu1Þ2

F2ðxl1Þ=F2 = − ∑L1
i= 1 ðxil1Þ2

F3ðxu2, xl2Þ= − ∑U2
i= 1 ðxiu1 − xil2Þ2

ð8Þ

The picked definition thinks about to illustration 2, where F4ðxu2Þ= 0. The last
perfect course of action of the bi-level problem is FðF(xu, xlÞ.Þ= 0 for ðxu, xlÞ= 0.

Various Global Solutions at Lower Level

In this sub-territory, we discuss creating test problems with lower level limit having
various overall responses for a given course of action of upper level variables. To fulfil
this, we detail a lower level limit which has various lower level optima for a given
(xu, such that x�l ∈ΨðxuÞÞ. By then, we promise that out of all these possible lower level
perfect courses of action, one of them (x��l ) looks at to the best upper level limit
regard, i.e.,

x��l ∈ argminfFðXu;X
�
l ÞjX�

l ∈ ðXuÞg ð9Þ

To go along with this inconvenience in the problem, we pick the second limits at
the upper and lower levels. Given that the term f2ðxl1Þ is responsible for realizing
complexities exactly at the lower level, we can energetically arrange it such that it has
various lower level perfect game plans. From this it generally takes after that the entire
lower level limit has different perfect courses of action.

Sample 3: We depict the development methodology by considering a fundamental
case, where the cardinalities of the variables are, dim ðxu1Þ= 2, dim ðxu2Þ= 2, dim
ðxl1Þ= 2 and dim ðxl2Þ= 2, and the lower level limit is described as takes after,

f1ðxu1, xu2, Þ= ððx1u1Þ2 + ðx2u1Þ2 + ðx1u2Þ2 + ðx2u2Þ2

f2ðxl1Þ= ðx1l1 − x1l1Þ2

f3ðxu2, xl1Þ= ðx1u2 − x1l1Þ2 + ðx2u2 − x2l2Þ2
ð10Þ

Here, we watch that f2 ðxl1Þ influences different perfect game plans, as its base
quality is 0 for all. At the base f3 ðxu2, xl1Þ fixes the estimations of and to and inde-
pendently. Next, we make the upper level limit ensuring that out of the set, one of the
plans is best at upper level.

56 S. Vadali et al.



F1ðXu1Þ= ðx1u1Þ2 + ðx2u1Þ2

F2ðXl1Þ= ðx1l1Þ2 + ðx2l1Þ2

F2ðxu2, xl2Þ= ðx1u2 − x2l2Þ2 + ðx2u2 − x2l2Þ2
ð11Þ

The meaning of F2ðXl1Þ, as aggregate of squared terms ensures that gives the best
course of action at the upper level for any given ðXu1,Xu2Þ.

Inconveniences influenced by limitations. In this subsection, we inspect about the sorts
of requirements which can be knowledgeable about a bi-level headway problem.
Considering that the bi-level problems have the probability to have limitations at both
levels, and each basic could be a component of two different sorts of variables, the
constrained set at both levels can be further isolated into smaller subsets as takes after:

In Table 1, G and g mean the plan of confinements at the upper and lower level
independently. Each of the basic set can be broken into three more diminutive subsets,
as showed up in the table. If the important impediment subset (Ga or ga) is non-unfilled
at both of the two levels, then for any given xu we should check the achievability of
imperatives in the sets Ga and ga, before dealing with the lower level progression
problem. If, there is one or more infeasible objectives in ga, then the lower level
headway problem does not contain perfect lower level course of action ðX*

l Þ for the
given Xu. Regardless, in the event that one or more goals are infeasible within, Gb then
a lower level perfect course of action (X*

l ) may exist for the given Xu, however the pair
(x) will be infeasible for the bi-level problem. In light of this property, a decision can be
made, whether it is useful to handle the lower level progression problem at all for a
given Xu.

4 SMD Test Problems

By adhering to the layout benchmarks exhibited in the past portion, we now propose a
plan of twelve problems which we call as the SMD test problems. Each problem
addresses another inconvenience level similarly as meeting at the two levels, versatile
nature of coordinated effort between two levels andmulti-modalities at each of the levels.
The underlying eight problems are unconstrained and the staying four are obliged.

Table 1. Composition of the requirement sets at both levels.

Level Constraint Set Subsets Dependence

Upper G= fGj: j∈ Jg G=Ga ∪Gb ∪Gc Ga depends on xu
Gb relies on xl
Gc relies on xu and xl

Lower g= fgj: i∈ Ig g= ga ∪ gb ∪ gc ga depends on xu
gb reliess on xl
gc relies on xu and xl
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SMD1

This is a direct test problem where the lower level problem is a curved streamlining
undertaking, and the upper level is raised concerning upper level variables and perfect
lower level variables. The two levels partake with each other.

F1 ¼ ∑p
i¼1 ðxiu1Þ2

F2 ¼ ∑q
i¼1 ðxil1Þ2

F3 ¼ ∑r
i¼1 ðxiu2Þþ ∑r

i¼1 ðxiu2� tan xil2Þ2

f1 ¼ ∑p
i¼1 ðxiu1Þ2

f2 ¼ ∑q
i¼1 ðxil1Þ2

ð12Þ

f3 ¼ ∑r
i¼1 ðxiu2� tan xil2Þ2 ð13Þ

The extent of variables is according to the accompanying,
Relationship between upper level variables and lower level perfect variables is

given as takes after,
The estimations of the variables at the optima are xu = 0 and xl is gotten by the

relationship given above. Both the upper and lower level limits are identical to zero at
the optima.

Figure 3 shows the states of the upper and lower level limits with respect to the
upper and lower level variables for a four-variable test problem. The problem has two

Fig. 3. Upper and lower level four-variable SMD1
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upper level variables and two lower level variables, such that the estimations of xu1,
xu2, xl1 and xu2 are each one of the one. Sub-figure P exhibits the upper level limit
shapes with respect to the upper level variables, tolerating that the lower level variables
are at the optima. Settling the upper level variables (xu1, xu2) at five unmistakable
zones, i.e. (2,2), (−2,2), (2, − 2), (−2, − 2) and (0,0), the lower level limit structures
are showed up with respect to the lower level variables.

Figure 4 exhibits the types of the upper level limit concerning the upper and lower
level variables. Sub-figure P before long shows the upper level limit shapes concerning
the upper level variables. In any case, sub-figures Q, R, S, T and V now address the upper
level limit frames at different (xu1, xu2), i.e. (2,2), (−2,2), (2, − 2), (−2, − 2) and (0,0).

Fig. 4. Upper level for a four-variable SMD1 test.

Fig. 5. Upper and lower level limit shapes for a four-variable SMD2 test problem.
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From sub-figures Q, R, S, T and V, we watch that if the lower level variables move a
long way from its optimal zone, the upper level limit regard goes into disappear.

5 Baseline Solution Methodology

Around there, we depict the course of action system used to deal with the constructed
test problems. The prescribed strategy is a settled bi-level transformative count, and
requires that a lower level progression task unwound for each new course of action of
upper level variables made using the innate managers. We have realized a changed
adjustment of the procedure [1, 14, 15], which is used to handle the bi-level test
problems. The proposed methodology relies on upon a lone target Parent Centric
Crossover (PCX) [8]. A directed strategy for the computation is depicted as takes after:

5.1 Upper Level Optimization Procedure

Step 1: Initialization Scheme. Present a sporadic people ðNpÞ of upper level variables.
For each upper level people part execute a lower level improvement system to
choose the relating perfect lower level variables. Dole out upper level
wellbeing in light of the upper level limit quality and goals

Step 2: Selection of upper level people. Pick 2µ people from the past masses and
conduct an opposition decision to choose µ people

Step 3: Evolution at the upper level. Perform a PCX based crossover [8] (Refer
Sub-fragment 5.4) and a polynomial change to make λ off-springs. This gives
the upper level variables to each successor

Step 4: Lower level progression. Deal with the lower level progression problem
(Refer Sub-zone 5.2) for each successor. This gives the lower level variables
to each descendant

Step 5: Evaluate off-springs. Join the upper level variables with the relating perfect
lower level variables for each successors. Evaluate every one of the
off-springs in perspective of upper level limit worth and goals

Step 6: Population upgrade. Pick r self-assertive people from the watchman masses
and pool them with the λ off-springs. The best r people from the pool
supplant the picked r people from the masses

Step 7: Termination check. Proceed to the front line (Step 2) if the end check (Refer
Sub-fragment 5.6) is false

5.2 Lower Level Optimization Procedure

The lower level change system resembles the upper level technique beside the pre-
sentation step which fluctuates to some degree. Allow the lower level masses to size be
n Step 1, and the upper level part being progressed to be the execution is traded from
Step 1 of the upper level optimization x0u.
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Assignment then goes to (a) by and large go to (b), an: Initialize np lower level part
indiscriminately, and apportion lower level health (Fig. 5).

In perspective of the lower level limit worth and constraints. Go to Step 2.
b: Initialize np lower level people aimlessly. Choose the part closest to xou in the

upper level people. The lower level perfect variables from the closest upper level part
transforms into the part in the lower level people. Allot lower level health in light of the
lower level limit quality and objectives. Go to Step 2.
Step 2: Choose 2µ people discretionarily from the lower level masses. Perform an

opposition decision in regards to lower level health to make µ people
Step 3: Perform half and half and change to make λ off-springs
Step 4: Evaluate each descendants with respect to lower level limit and requirements
Step 5: Choose r people discretionarily from the lower level masses and pool them

with the λ lower level off-springs. The best r people concerning lower level
health supplant the picked r people from the lower level masses

Step 6: Proceed to the front line (Step 2) if the end check (Refer Sub-region 5.6) is
false

6 Results

In this fragment, we give the results gained from dealing with the proposed test
problems using the bi-level transformative count. We performed 11 number of con-
tinues running for each of the test problems with 5 and 10 estimations. In the event that
there ought to be an event of 5 estimations, for SMD1 to SMD5 and SMD7 to SMD12
we pick p = 1, q = 2 and r = 1, and for SMD6 we pick p = 1, q = 0, r = 1 and s = 2.
In the event that there ought to be an event of 10 estimations, for SMD1 to SMD5 and
SMD7 to SMD12 we pick p = 3, q = 3 and r = 2, and for SMD6 we pick p = 3, q = 1,
r = 2 and s = 2. The upper level people size Np and the lower level masses size were
picked as 30 for the five dimensional cases. Both masses sizes were picked as 50 for the
10 dimensional cases.

We consider a test problem settled if the refinement between the limit regard
finished by the estimation and the perfect limit worth is near 0.1. Exactly when the
range of the test problems is extended to 10. For SMD6 the accomplishment rate was
87%, for SMD7 it was 66% and for SMD8 it was 62%. The lower level problems
couldn’t be completely disentangled for SMD9 to SMD12, which introduced infeasible
people at the upper level.

7 Conclusion

The development method offers the flexibility to control the difficulties at the two levels
only and taking all things into account. The development technique has been used to
make a demonstrating ground of 12 bi-level change problems, out of which 8 are
unconstrained and 4 are constrained. The test-suite contains problems, which are
adaptable with respect to number of variables furthermore requirements.
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Five and ten-variable events of all the test problems have been comprehended,
which display the high computational need of bi-level problems despite for humbler
cases. This adequately exhibits the game plan of bi-level problems, even with a con-
structional figuring, is a trying errand and more thought ought to now be made to
become computationally speedier counts.
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Abstract. Over the past few years, cloud computing has become a popular
paradigm that provides computing over the internet. There are umpteen factors
that a cloud ecosystem need such as reliability, flexibility, dynamic load bal-
ancing etc. With the internet facility, resources are provided dynamically to the
end users in an on-demand fashion. Users could be billions in number accessing
the cloud. Their need for services have been increasing at an alarming rate. To
enhance the performance of the system, resources should be used efficiently.
Cloud computing needs to identify different issues and challenges. One of the
main issues in cloud computing is Load balancing, in which workload is dis-
tributed dynamically to all the nodes. Load balancing not only optimize the
resource use, maximize throughput, minimize processing time of datacenters
and response time of user base, but also helps in evading the overloading of any
single resource. This paper proposes an Adaptive firefly algorithm (ADF) for
solving the load balancing problem in cloud computing by performing virtual
machine scheduling over datacenters. The results have been compared with Ant
Colony Optimization (ACO) algorithm used for load balancing.

Keywords: Cloud computing � Scheduling of virtual machines � Adaptive
Firefly Algorithm � Ant Colony Optimization � Cloud analyst

1 Introduction

Cloud computing [15] is a faddish paradigm which has been proliferating both in
academia and industry. It starts affecting swarm of industries such as government,
finance, telecommunications, and education. Cloud computing is a prominent model in
which shared pool of resources such as servers, application, services, storage etc. are
accessed in an on-demand fashion. These computing resources are provisioned and
released rapidly with the minimal effort of management [16]. Although cloud com-
puting has been gaining popularity in the industry, the research on cloud computing is
still at an early stage. Umpteen existing issues are there which have not been fully
addressed. One of the important research issues which need to be focused for efficient
utilization of resources of datacentres are resource scheduling [13] as well as
scheduling the jobs which are being assigned to virtual machines. Here, this paper
proposes a load balancing algorithm by scheduling the virtual machines. Scheduling is
an important aspect of cloud computing. When resources are allocated optimally

© Springer Nature Singapore Pte Ltd. 2017
K. Deep et al. (eds.), Proceedings of Sixth International Conference
on Soft Computing for Problem Solving, Advances in Intelligent Systems
and Computing 546, DOI 10.1007/978-981-10-3322-3_7



among tasks in a finite time to achieve high quality of service, is called scheduling. It
aims in optimizing one or more objectives. Scheduling belongs to the category of
NP-hard problems because of large solution space and it is difficult to find an optimal
solution. The mapping of tasks [12] on large pool of resources is not an easy job to get
an optimal solution. There are no algorithms which provide optimal solution by sat-
isfying polynomial time to solve these problems. Therefore, In cloud environment, it is
preferable to find suboptimal solution, but in short period of time. As cloud computing
is growing exponentially, it has been widely adopted by the industry and thus making a
rapid expansion in availability of resources in the internet. As the cloud size increasing
at an alarming rate, cloud computing service providers requires handling of massive
requests. Thus in spite of glorious future of cloud computing, many critical problems
still need to be explored for its perfect realization. One of these issues is Load bal-
ancing. As the incoming requests changes dynamically [9] due to heterogeneity of
resources, dynamic resource allocation [16] is required in cloud computing. This
inherent dynamism in cloud computing requires efficient load balancing mechanism.
Load is nothing but the amount of work that a system performs. Load can be classified
as CPU load, memory size and network load.

Load balancing [8] over a cloud is a process of distributing workloads among the
multiple resources available in the cloud. With efficient load balancing of resources or
virtual machines over the cloud, user can achieve better service with reduced cost. This
is the most important factor which keeps a binding between users and cloud service
provider. So, to enhance the services of cloud, various new meta-heuristic techniques
have been applied to schedule virtual machines for load balancing which gave
promising results till now. Some of the meta-heuristic technique [1] which have been
applied are Genetic Algorithm [7], Particle Swarm Optimization [17], Ant Colony
Optimization [11] and many more. With the emergence of newer nature inspired
algorithm in the field of optimization, the field of virtual machine scheduling [19] over
cloud computing for load balancing has gained popularity.

The rest of the paper is organised as follows: Sect. 2 shows the related work in this
field using Ant Colony Optimization (ACO). Section 3 introduces the proposed
methodology of Adaptive Firefly Algorithm (ADF) for virtual machine scheduling in
cloud. Section 4 describes experimental setup required for evaluating proposed algo-
rithm. Section 5 analyse the results and finally, Sect. 6 concludes the paper.

2 Related Work

In this section of paper we are discussing Ant Colony Optimization for virtual machine
scheduling with which we will compare the result of our proposed technique. Ant
Colony Optimization (ACO) scheduling algorithm [14] is inspired by the behaviour of
real ants finding the shortest path between their colonies and a source of food. While
walking from their colony to the food source, ants leave pheromones on the ways they
move. The pheromone intensity on the passages increases with the number of ants
passing through and drops with the evaporation of pheromone. As the time goes on,
smaller paths draw more pheromone and thus, pheromone intensity helps ants to
recognize smaller paths to the food source. ACO methods are useful for solving
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discrete optimization problems that need to find paths to goals. The basic equation
which was proposed in [3] for pheromone representation in terms of Virtual machine
parameters are

s t = 0ð Þ¼ f MIPSj;L, BWj
� � ð1Þ

Where sij t ¼ 0ð Þ is the pheromone value in between two nodes i and j at turn t ¼ 0,
MIPSj is million instruction per second of virtual machine VMj and BWj is the com-
munication bandwidth availability of VMj:

For updating of pheromone at (t + 1) turn following equation had been proposed
in [3].

sj tþ 1ð Þ ¼ 1� qð Þ � sj tð ÞþDsj ð2Þ

where q pheromone trail decay coefficient.
Result of the mention technique had been compared to various existing opti-

mization algorithm at that time which are First Come First Serve (FCFS), Stochastic
Hill Climbing Algorithm (SHC) and Genetic Algorithm (GA). As presented in [3] the
result was quite promising as compared to others, the whole algorithm was developed
on cloud analyst simulator with various cloud computing configuration.

3 The Proposed Methodology

This section proposes an Adaptive Firefly algorithm (ADF) to schedule virtual
machines over cloud for better load balancing. As compared to original firefly algo-
rithm [2], adaptive firefly algorithm (ADF) as presented in [4] has an advantage of
variable step size for the movement of the firefly. The Basic firefly algorithm is inspired
by the behaviour of insects (firefly) which mostly produces short and rhythmic flash
with different intensities. The function of such flashes is to attract or alert the neigh-
bouring firefly. Depending upon the intensity of firefly, other firefly moves toward or
away from that firefly. The light intensity of the firefly also depends on the distance of
the eyes of beholder. It will be simple to say that more is the distance lesser will be the
intensity seen by the distant fireflies, thus intensity become less appealing to the distant
fireflies.

There are basically two variable on which firefly algorithm depend, one is light
intensity and other is attractiveness. The attractiveness is inversely proportional to the
distance of firefly from other firefly. In terms of cloud resources, intensity (represented
in Eq. 3) is been taken as the combination of parameter which actually represents the
basic utilization of virtual machine.

Ij tð Þ ¼ f Mipsj;BWj;CPUj;Memj; Sizej
� � ð3Þ

Where Mipsj is the million instructions per seconds, BWj is the bandwidth, CPUj is
the processing elements, Memj is the memory used and sizej is the available storage of
the virtual machine VMj and Ij is the intensity of the jth virtual machine.

An Adaptive Firefly Algorithm for Load Balancing 65



The attractiveness factor (represented in Eq. 4) of the firefly is mapped to virtual
machines as following

b ¼ bt�1 � e�c�r2
� �

þ a � bt�1 ð4Þ

Where b, is the attractiveness factor [18] of firefly, c is the function of free Pro-
cessing elements and a is the function for the variability of the movement of firefly
toward the other firefly. So the value of b decides the movement of firefly toward the
other firefly which actually depends on the newly added parameter a & c which gives
the variability to the attractiveness and depends on the number of processing elements
free (represented in Eqs. 5 and 6) at the time of allocation of virtual machine to the
opted job which may be different for different virtual machines.

a; c ¼ f ðPEkÞ ð5Þ

r ¼ f fbest; fkð Þ ð6Þ

Where k is the kth virtual machine, fbest is the current best solution having attrac-
tiveness of virtual machine and fk is the current attractiveness of virtual machine.
Pseudocode for proposed algorithm has been shown in Algorithm 1.

Algorithm 1:Pseudocode of adap ve firefly

4 Experimental Setup

To carry out the simulation of the proposed algorithm of Adaptive Firefly in load
balancing over cloud computing, we have used Cloud-Analyst developed by cloudlabs
using basic cloudsim toolkit which provide an interface for developing and integrating
your proposed approach [5, 6]. In this simulator to get appropriate result we have to set
the configuration of the Virtual machine at the end of cloud server over the datacenter
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part of cloud. Different result has been evaluated using different environment for the
same algorithm. In Cloud-Analyst, we have to set the number of data center over the
world and the configuration of virtual machine which has been placed over every
datacentre. Along with that we need to create client i.e. user base, which actually
request datacentres depending upon the policy for choosing datacentre, here we are
using closed datacentre policy to select the datacentre to execute user’s request over the
cloud.

Three different Configurations (C1;C2;C3) as shown in Table 4 has been set to get
the desired output of the simulator. The actual parameter of the configurations is
provided in the Tables 1, 2 and 3 below.

Table 1. Physical hardware detail of datacenter

Memory
(Mb)

Storage
(Mb)

Available
BW

No. of
processor

Processor
speed

VM policy

204800 100000000 1000000 4 10000 TIME_SHARED

Fig. 1. Cloud analyst configuration C2 of 15 DC and 25 UB

Table 2. Datacenter configuration

Arch OS VMM Cost
per
VM

Memory
cost per
VM

Storage
cost per
VM

Datacentre
transfer
cost

Physical
HW unit

X86 Linux Xen 0.1 0.05 0.1 0.1 2

Table 3. Userbase configuration

Requests per
user per hour

Data size per
request

Peak
hour
start

Peak
hour end

Average
peak user

Average off
peak user

60 100 3 9 1000 100
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5 Performance Analysis

After setting the defined configuration over the cloud in the cloud-analyst, different
result has been came out which has been displayed in Fig. 1. The graph represents the
Overall response time and Data centre processing time against the total execution time
for the simulation in mili-seconds. The graphs shows that over all response time kept
on decreasing as number of datacenter increases because of the sharing of the load
among datacenter which provides parallelism and saves execution time for the job or
request. Since request has been shared among different datacentre, the number of
request per datacentre become less and hence reduces the processing time of datacentre
for the request (Fig. 2).

Figures 3 and 4 represents the response time for the User base 21 for the config-
uration C3 for both the algorithm. As it has been cleared from the two figures that
response time with ADF is much better than ACO.

Table 4. Cloud configuration

Configuration No. of user base (UB) No. of datacentre (DC)

C1 25 10
C2 25 15
C3 30 20

0
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1200

C1 C2 C3
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n 
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m
e

Configurations
Overall response time Datacenter processing time

Fig. 2. Graphical representation of results

Fig. 3. Response time of UB 21 for AFA
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Figures 5 and 6 represent the processing time for datacentre 13 for both the
algorithm for same configuration, C3. The processing time of DC13 with AFA is much
better than with ACO.

Fig. 4. Response time of UB 21 for ACO

Fig. 5. Processing time of DC13 for ACO

Fig. 6. Processing time of DC13 for AFA
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As the number of datacenter increases, load will be balanced in datacenters due to
sharing of load. The overall response time of the userbase and data processing time will
be decreased as data centers increases and results shows that both parameters(overall
response time of userbase and datacenter processing time) decreases when ADF(An
adaptive firefly algorithm) outperformed ACO(Ant colony optimization) algorithm as
shown in Figs. 7, 8 and 9 below:

It has been cleared from the above figures that overall response time and data
processing time with ADF is much better than ACO.

Fig. 7. Results of ADF and ACO with 10 datacenters and 25 userbase

Fig. 8. Results of ADF and ACO with 15 datacenters and 25 userbase

Fig. 9. Results of ACO and ADF with 20 datacenters and 30 userbase
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6 Conclusion

Scheduling of resources [10] is a major concern in cloud computing so that users get
resources in an efficient manner. Need of scheduling is there because of NP-hard
problems, which will not give an optimal results. Scheduling can take place in appli-
cation layer, virtualization layer and deployment layer. Our major concern is with
virtualization layer where tasks are mapped to virtual resources in an efficient manner
to solve the solution of scheduling. Different scheduling algorithms have been
implemented to get the desired results but it needs an efficient VM load balancer.
Scheduling of resources leads to one major problem which is called load balancing in
datacenters. In our proposed work, we have implemented an algorithm which will load
the balance in datacenters by scheduling of virtual machines. There can be many
techniques which have not used yet in the field of load balancing. In our work, we have
proposed an algorithm i.e. An adaptive firefly algorithm (ADF). This algorithm is
compared with Ant colony optimization (ACO) algorithm by taking different param-
eters. ADF algorithm worked really well as compared to ACO by minimizing the
response time of userbase and datacenter processing time. Since various optimization
algorithms are being explored in near future which shows that there won’t be any end
until researcher keep finding the relation between the various nature’s algorithm. So
there won’t be an end to keep finding the better virtual machine scheduling over the
cloud computing to balance the load over the cloud.
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Abstract. In the category of swarm intelligence based algorithms, Par-
ticle Swarm Optimization (PSO) is an effective population-based meta-
heuristic used to solve complex optimization problems. In PSO, global
optima is searched with the help of individuals. For the efficient search
process, individuals have to explore whole search space as well as have
to exploit the identified search area. Researchers are continuously work-
ing to balance these two contradictory properties i.e. exploration and
exploitation and have been modified the PSO in many different ways to
improve its solution search capability in the search space. In this regard,
incorporation of inertia weight strategy in PSO is a significant modi-
fication and after that many researchers have been developed different
inertia weight strategies to improve the solution search capability of PSO.
This paper presents an analysis of the developed inertia weight strategies
in respect to problem-solving capability and their effect in the solution
search process of PSO. The effect of 30 recent inertia weight strategies
on PSO is measured while comparing over ten well known test functions
of having different degree of complexity and modularity.

Keywords: Soft computing · Optimisation · Inertia weight · Swarm
intelligence · Nature inspired algorithms

1 Introduction

Particle Swarm Optimization (PSO) algorithm was developed by Eberhart and
Kennedy in 1995 [1]. It is inspired by the intelligent behaviour of bird in search
of food. The PSO algorithm is used to solve the different complex optimization
problems including economics, engineering, complex real-world problems, biol-
ogy and industry [2]. PSO can be applied to non-linear, non-differentiable, huge
search space problems and gives better results with good accuracy [3].

For n- dimensional search space, the velocity and position of the ith particle
represents as: Vi = (vi1, vi2, ..., vid)T and Xi = (xi1, xi2, ..., xid)T respectively.
Where, vid and xid is the velocity and position of ith particle in d-dimension
respectively. The velocity of the swarm (particle) is defined as follows:

vid(new) = vid(old) + c1r1(pid − xid) + c2r2(pgd − xid) (1)
c© Springer Nature Singapore Pte Ltd. 2017
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xid(new) = xid(old) + vid(new) (2)

where, d = 1, 2, ..., n presents the dimension and i = 1, 2, ..., N represents the
particle index, N is the size of the swarm, c1 and c2 are called social scaling and
cognitive parameters respectively that determines the magnitude of the random
force in the direction of particle’s previously best visited position (pid) and best
particle (pgd) and r1, r2 are the uniform random variable between [0, 1]. The
maximum velocity (Vmax) assists as a constraint to control the position of the
swarms within the solution search space.

Further, Shi and Eberhart [4] was developed the concept of an inertia weight
(IW) in 1998 to ensure an optimal tradeoff between exploration and exploitation
mechanisms of the swarm population. This inertia weight strategy was to be able
to eliminate the need of maximum velocity (Vmax). Inertia weight controls the
particles movement by maintaining its previous memory. The velocity update
equation is considered as follows:

vid(new) = w ∗ vid(old) + c1r1(pid − xid) + c2r2(pgd − xid) (3)

This paper discusses the 30 different inertia weight strategies on 10 bench-
mark functions for PSO algorithm. A comprehensive review on 30 inertia weight
strategies have been presented in next section.

2 A Review on Different Inertia Weight Strategies
for PSO

Inertia weight plays an important role in the process of providing a trade-off
between diversification and intensification skills of PSO algorithm. When the
inertia weight strategy is implemented to PSO algorithm, the particles move
around while adjusting their velocities and positions according to Eqs. (1) and
(2) in the search space.

In 1998, first time Shi and Eberhart [4] proposed the concept of constant
inertia weight. A small inertia weight helps in explore the search space while a
large inertia weight facilitates in exploit the search space. Eberhart and Shi [5]
proposed a random inertia weight strategy and enhances the performance and
efficiency of PSO algorithm.

The linearly decreasing strategy [6] increases the convergence speed of PSO
algorithm in early iterations of the search space. The inertia weight starts with
some large value and then linearly decreases to some smaller value. The inertia
weight provides the excellent results from 0.9 to 0.4. In global-local best inertia
weight [7], the inertia weight is based on the global best and local best of the
swarms in each generation. It increases the capabilities of PSO algorithm and
neither takes a linearly decreasing time-varying value nor a constant value.

Fayek et al. [8] introduced a particle swarm simulated annealing technique
(PSOSA). This inertia weight strategy is optimized by using simulated annealing
and improves its searching capability.
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Chen et al. [9] present two natural exponent inertia weight strategies as e1-
PSO and e2-PSO, which are based on the exponentially decreasing the inertia
weight. Experimentally, these strategies become a victim of premature conver-
gence, despite its quick convergence speed towards the optimal positions at the
early stage of the search process.

Using the merits of chaotic optimization, chaotic inertia weight has been
proposed by Feng et al. [10] and PSO algorithm becomes better global search
ability, convergence precision and quickly convergence velocity.

Malik et al. [11] presented a sigmoid increasing inertia weight (SIIW) and
sigmoid decreasing inertia weight (SDIW). These strategies provide better per-
formance with quick convergence ability and aggressive movement narrowing
towards the solution region.

Oscillating Inertia Weight [12] provides a balance between diversification and
intensification waves and concludes that this strategy looks to be competitive
and, in some cases, better performs in terms of consistency.

Gao et al. [13] proposed a logarithmic decreasing inertia weight with chaos
mutation operator. The chaos mutation operator can enhance the ability to jump
out the premature convergence and improve its convergence speed and accuracy.

To overcome the stagnation and premature convergence of the PSO algo-
rithm, Gao et al. [14] proposed an exponent decreasing inertia weight (EDIW)
with stochastic mutation (SM). The stochastic mutations (SM) is used to
enhance the diversity of the swarm while EDIW is used to improve the con-
vergence speed of the individuals (Table 1).

Linearly decreasing inertia weight have been proposed by Shi and Eberhart [4]
and greatly improved the accuracy and convergence speed. A large inertia weight
facilitates at the inceptive phase of search space while later linearly decreases to
a small inertia weight.

Adewumi et al. [25] proposed the swarm success rate random inertia weight
(SSRRIW) and swarm success rate descending inertia weight (SSRDIW). These
strategies use swarm success rates as a feedback parameter. Further, it enhances
the effectiveness of the algorithm regarding convergence speed and global search
ability.

Shen et al. [18] proposed the dynamic adaptive inertia weight and used to
solve the complex and multi-dimensional function optimization problems. This
strategy can timely adjust the particle speed, jump out of a locally optimal
solution and improve the convergence speed.

Ting et al. [24] proposed the exponent inertia weight. There exist two impor-
tant parameters as a local attractor (a) and global attractor (b). This method
controls the population diversity by adaptive adjustment of local attractor (a)
and global attractor (b).

Chatterjee and Siarry [22] proposed nonlinear decreasing inertia weight strat-
egy with nonlinear modulation index. This strategy is quite effective as well as
avoid premature issues. Lei et al. [17] proposed adaptive inertia weight. It fur-
nishes with automatically harmonize global and local search ability and obtained
the global optima.
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Table 1. Inertia weight strategies

S.No. Name of inertia weight Formula of inertia weight

1 Logarithm Decreasing Inertia Weight [13] w=wmax+(wmin − wmax).log10(a + 10t
T

)

2 Exponent Decreasing Inertia Weight [14] w = (wmax − wmin − d1).exp( 1

1+
d2t
T

)

3 Natural Exponent Inertia Weight Strategy(e2

-PSO) [9]

w = wmin + (wmax − wmin).e

−[ t

( T
4 )

]2

4 Natural Exponent Inertia Weight Strategy(e1

-PSO) [9]

w = wend + (wstart − wend).e

[ −t

( T
10 )

]

5 Global-Local Best Inertia Weight [7] w = [1.1 − gbesti
pbesti

]

6 Simulated Annealing Inertia Weight [8] w = wmin + (wmax − wmin).λk−1

7 Oscillating Inertia Weight [12] w =

(
wmin+wmax

2 +
wmax−wmin

2 cos( 2Πt
T

)),

where T =
2S1
3+2k

8 Chaotic Random Inertia Weight [10] z = 4 ∗ z ∗ (1 − z), w = 0.5 ∗ rand + 0.5 ∗ z

9 The Chaotic Inertia Weight [10] w = (wmax − wmin) ∗ ( T −t
T

) + wmin ∗ z,

where, z = 4 ∗ z ∗ (1 − z)

10 Linear Decreasing Inertia Weight [6] w = wmax − (wmax − wmin)( t
T

)

11 Sigmoid Decreasing Inertia Weight [11] w=
(wmax−wmin)

(1+e−u(k−n∗gen))
+ wmin,

u=10log((gen)−2)

12 Sigmoid Increasing Inertia Weight [11] w=
(wmax−wmin)

(1+eu(k−n∗gen))
+ wmin,

u=10log((gen)−2)

13 Random Inertia Weight [5] w = 0.5 + 0.5 ∗ rand

14 Constant Inertia Weight [4] w=c, where c=0.2(considered for

experiments)

15 Chaotic Adaptive Inertia Weights (CAIWS-D) [15] w=[(wmax − wmin)( T −t
T

) + wmin] ∗ z,

where, z=4*SR*(1-SR)

16 Chaotic Adaptive Inertia Weights (CAIWS-R) [15] w=(0.5*SR+0.5)*z, where z=4*SR*(1-SR)

17 Decreasing Exponential Function Inertia Weight

(DEFIW) [15]

w = t−( t√t)

18 Fixed inertia weight (FIW) [16] w = 1
2ln(2)

19 Adaptive Inertia Weight Strategy [17] w=[
1−( t

T
)

(1+S t
T

)
]

20 Dynamic Adaptive Inertia Weight [18] w = wmin + (wmax − wmin)F (t)Ψ(t),

Ψ(t) = exp(− t2

(2σ2)
) and σ = T/3

21 Decreasing Inertia Weight (DIW) [19] w = winit ∗ u−t

22 Inertia Weight Strategy [20] w =
(winit−0.4)(gsize−i)

(gsize+0.4)

23 Double Exponential Dynamic Inertia Weight [2] w = exp(−exp(−R)), where R =
(T −t)

T

24 Tangent Decreasing Inertia Weight (TDIW) [21] w = (wmax − wmin) ∗ tan( 7
8 (1 − t

T
)k)

25 Nonlinear Decreasing Inertia Weight (NDIW) [22] w = (wmax − wmin)( T −t
T

)n + wmin

26 Linear or Non-Linear Decreasing Inertia Weight [23] w = ( 2
t
)0.3

27 Exponent Inertia Weight [24] w = w0e
−a( t

T
)

28 Swarm Success Rate Random Inertia Weight

(SSRRIW) [25]

w = 0.5 ∗ rand + 0.5 ∗ ssrt−1

29 Swarm Success Rate Descending Inertia Weight

(SSRDIW) [25]

w = (wmax −wmin)( T −t
T

)+wmin ∗ssrt−1

30 Descending Inertia Weight [25] w = wmin + (wmax − wmin)( T −t
T

)

J. asoc. [23] proposed the linear or non-linear decreasing inertia weight. This
strategy has global search ability and also helpful to find a better optimal solu-
tion. It overcomes the weakness of premature convergence and converges faster
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at the early stage of the search process. Jiao et al. [19] proposed the decreasing
inertia weight (DIW). This strategy provides the algorithm with dynamic adapt-
ability and controls the population diversity by adaptive adjustment of inertia
weight.

Li, L. et al. [21] proposed the tangent decreasing inertia weight (TDIW) based
on tangent function (TF). This strategy is to increase the diversity of swarm for
more exploration of the search space at initial iterations while later exploit the
search area. So that this approach provides better results with accuracy.

Chauhan et al. [2] proposed the double exponential dynamic inertia weight
(DEDIW). The inertia weight is calculated for whole swarm iteratively by using
gompertz function, and it is capable of providing a stagnation free environment
with better accuracy. Peram et al. [20] proposed a new inertia weight that pro-
vides the less susceptible to premature convergence and less likely to be stuck in
local optima. Sheng-Ta Hsieh et al. [16] introduced fixed inertia weight (FIW).
It provides better convergence speed and less computational efforts.

The decreasing exponential function inertia weight (DEFIW) [15] decreases
the value of inertia weight iteratively as the algorithm approaches equilibrium
state and furnishes the superiority to the competitors in fitness quality.

Arasomwan et al. [15] Proposed chaotic adaptive inertia weights as CAIWS-D
and CAIWS-R. These strategies simply combine chaotic mapping with the
swarm success rate as a feedback parameter to harness together chaotic and
adaptivity characteristics. These approaches provide more refine accuracy, faster
convergence speed as well as global search ability.

3 Experimental Results

To evaluate the performance of the inertia weight strategy, it is tested over 10
different benchmark functions (F1 to F10) as given in Table 2.

3.1 Parameter Settings

Following experimental settings are adopted:

– G0 = 100 and α = 20 [26],
– Number of runs = 30,
– Number of populations = 50,
– Maximum number of iterations (T) = 1000,
– Value of c1 and c2 are 2.0 [25].

3.2 Results and Discussion

In this section, 30 different inertia weight strategies are analyzed on 10 bench-
mark problems in terms of average number of function evaluations (AFE’s),
mean error (ME) and standard deviation (SD). The AFE’s, ME and SD are
presented in Tables 3, 4 and 5 respectively. Boxplot of AFE’s, ME and SD are
shown in Figs. 1, 2 and 3 respectively.
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Table 2. Test problems, D: Dimensions, AE: Acceptable Error

Test problem Objective function Search range Optimum value D AE

Sphere f1(x) =
∑D

i=1 x
2
i [-5.12 5.12] f(0) = 0 30 1.0E − 05

De Jong f4 f2(x) =
∑D

i=1 i.(xi)
4

[-5.12 5.12] f(0) = 0 30 1.0E − 05

Ackley f3(x) = −20 + e + exp(− 0.2
D

√∑D
i=1 xi

3) [-30, 30] f(0) = 0 30 1.0E − 05

Alpine f4(x) =
∑D

i=1 |xisin xi + 0.1xi| [-10, 10] f(0) = 0 30 1.0E − 05

Michalewicz f5(x) = −∑D
i=1 sin xi(sin ( i.xi

2

π
)20) [0, π] fmin=-9.66015 10 1.0E − 05

Cosine Mixture f6(x) =
∑D

i=1 xi
2−0.1(

∑D
i=1 cos5πxi)+0.1D [-1, 1] f(0)=−D × 0.1 30 1.0E − 05

Exponential f7(x) = −(exp(−0.5
∑D

i=1 xi
2)) + 1 [-1, 1] f(0) = −1 30 1.0E − 05

brown3 f8(x) =∑D−1
i=1 (xi

2(xi+1)
2+1

+ xi+1
2xi

2+1
)

[-1 4] f(0) = 0 30 1.0E − 05

Beale f9(x) = [1.5 − x1(1 − x2)]
2 + [2.25 −

x1(1 − x2
2)]

2 + [2.625 − x1(1 − x3
2)]

2
[-4.5,4.5] f(3, 0.5) = 0 2 1.0E − 05

Colville f10(x) = 100[x2 − x2
1]

2 + (1 − x1)
2 +

90(x4 − x2
3)

2 + (1− x3)
2 + 10.1[(x2 −

1)2 +(x4−1)2]+19.8(x2−1)(x4−1)

[-10,10] f(1) = 0 4 1.0E − 05

It is clear from the reported results that most of the Inertia weight strategies
produce poor results in case of michalewicz function (F5). It clear from Fig. 1
that constant inertia weight and linearly decreasing inertia weight (LDIW) is
best and worst strategy respectively in terms of AFE’s. It is observed from
Fig. 2 that the mean error taken by chaotic random inertia weight strategy and
global local best inertia weight strategy are minimum and maximum in terms of
mean error respectively compared to the other inertia weight strategies.

0
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3

4

5

x 10
4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Fig. 1. Boxplots for average number of function evaluations of 30 different Inertia
Weight strategies on 10 benchmark functions as per Table 3
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Table 3. Average number of function evaluations of different inertia weight strategies
for different benchmark functions

Inertia
Weight

Sphere De Jong
f4

Ackley Alpine Michalewicz Cosine
Mixture

Expone-
ntial

brown3 Beale Colville

1 09851.67 08540.00 15218.33 45575.00 49731.67 50100.00 9611.67 10270.00 2771.667 26260.00

2 22313.33 19670.00 32858.33 30181.67 50100.00 42166.67 22125.00 23351.67 6585.00 36578.33

3 25801.66 24028.33 35703.33 33166.67 48105.00 41483.33 25651.67 26728.33 09263.33 39870.00

4 18846.67 16835.00 29221.67 26516.67 48733.33 40691.67 18248.33 19665.00 06175.00 40780.00

5 50100.00 49196.67 50100.00 26536.67 48840.00 50100.00 50100.00 50100.00 00885.00 47108.33

6 13663.33 11920.00 23591.67 21495.00 50100.00 44928.33 13378.33 14915.00 3565.00 39290.00

7 29278.33 23780.00 50100.00 46190.00 47988.33 45698.33 26725.00 32083.333 3526.67 43920.00

8 39623.33 35648.33 50100.00 50100.00 47638.33 49888.33 35870.00 41895.00 3230.00 46575.00

9 32738.33 30196.67 42308.33 39525.00 48946.67 42490.00 31791.67 33640.00 04591.67 36876.67

10 44853.33 42535.00 50100.00 50096.67 48795.00 49615.00 43596.67 45206.67 10890.00 46073.33

11 13218.33 11451.67 23440.00 19735.00 49196.67 46841.67 12383.33 14135.00 02711.67 43118.33

12 25103.33 23176.67 34655.00 32036.67 46930.00 46618.33 24230.00 25821.67 12451.67 41675.00

13 15840.00 13016.67 29701.67 29538.33 49053.33 48191.67 15398.33 17851.67 03503.33 31575.00

14 8433.33 7330.00 18216.67 15083.33 49228.33 50100.00 07688.33 08975.00 02385.00 45735.00

15 26308.33 23300.00 47571.67 38541.67 48951.67 39000.00 24606.67 28170.00 2968.33 41273.33

16 26348.33 22995 47791.67 37485.00 49750.00 39408.33 24390.00 28135.00 4603.33 40158.33

17 11821.67 14613.33 28691.67 25045.00 50100.00 30740.00 11070.00 12343.33 4011.67 49971.67

18 11116.67 10255.00 20148.33 17286.67 49011.67 47786.67 10798.33 12016.67 01056.67 38490.00

19 21593.33 20201.67 28485.00 27230.00 49003.33 42706.67 21200.00 22236.67 07161.67 39731.67

20 13108.33 11238.33 44071.67 20541.67 46168.33 39801.67 36930.00 14003.33 1121.67 38113.33

21 10585.00 09818.33 17485.00 17256.67 47970.00 47661.67 10198.33 11496.67 03293.33 41001.67

22 18141.67 15730.00 26410.00 23940.00 50100.00 37963.33 17363.33 18841.67 06580.00 45256.67

23 32145 29100 44275.00 40775.00 49000.00 37770.00 31460.00 33501.67 03953.33 34638.33

24 17571.67 15713.33 26353.33 24056.67 49713.33 36716.67 16858.33 19021.67 06556.67 41691.67

25 42213.33 39358.33 50041.67 48980.00 49168.33 47785.00 41083.33 42838.33 10196.67 43158.33

26 10585.00 9818.33 17485.00 17256.67 47970.00 47661.67 10198.33 11496.67 03293.33 41131.67

27 24753.33 22180.00 35250.00 31966.67 49148.33 38595.00 23735.00 25720.00 07821.67 37138.33

28 23265.00 19488.33 40460.00 33003.33 49821.67 35823.33 21410.00 24258.33 02921.67 45111.67

29 26200.00 24011.67 36238.33 33400.00 47765.00 37798.33 25305.00 27360.00 07193.33 38271.67

30 45070.00 42221.67 50100.00 50085.00 49010.00 49023.33 43833.33 45480.00 08773.33 40638.33
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Fig. 2. Mean error value of 30 different Inertia Weight strategies on 10 benchmark
functions as per Table 4
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Table 4. Mean error value of different inertia weight strategies for different benchmark
functions

Inertia
Weight

Sphere De Jong
f4

Ackley Alpine Michalewicz Cosine
Mixture

Expone-
ntial

brown3 Beale Colville

1 8.90E-06 8.29E-06 5.03E-04 9.14E-04 8.79E-01 4.81E-01 8.40E-06 8.66E-06 4.09E-06 1.50E-03

2 9.15E-06 8.91E-06 9.59E-06 9.57E-06 4.52E-01 1.23E-01 9.23E-06 9.16E-06 3.99E-02 1.57E-03

3 9.32E-06 8.97E-06 9.55E-06 9.64E-06 4.47E-01 1.63E-01 9.17E-06 9.13E-06 3.99E-02 1.34E-03

4 9.28E-06 8.74E-06 9.50E-06 9.54E-06 4.48E-01 1.58E-01 9.28E-06 9.18E-06 3.99E-02 1.22E-03

5 4.54E-01 3.14E-01 5.21E-01 1.15E-04 8.86E-01 2.15E+00 2.19E-01 8.26E-01 5.55E-06 4.84E-03

6 9.08E-06 9.13E-06 9.52E-06 9.25E-06 8.45E-01 2.27E-01 9.15E-06 9.24E-06 2.00E-02 1.18E-03

7 9.04E-06 8.78E-06 3.96E-05 1.37E-05 4.07E-01 1.08E-02 8.77E-06 9.36E-06 2.00E-02 6.33E-03

8 9.44E-06 8.87E-06 4.51E-04 5.51E-05 2.67E-01 5.41E-03 9.33E-06 9.51E-06 2.00E-02 5.13E-03

9 9.25E-06 8.97E-06 9.61E-06 9.13E-06 3.92E-01 5.91E-02 9.28E-06 9.19E-06 2.00E-02 1.84E-03

10 9.26E-06 8.96E-06 1.78E-04 6.26E-05 4.00E-01 3.45E-02 9.30E-06 9.43E-06 3.99E-02 4.95E-03

11 9.15E-06 8.91E-06 9.67E-06 9.56E-06 4.90E-01 1.76E-01 9.20E-06 9.15E-06 2.00E-02 3.64E-03

12 9.22E-06 8.61E-06 9.58E-06 9.40E-06 4.26E-01 2.22E-01 9.11E-06 9.30E-06 4.57E-06 1.54E-03

13 9.17E-06 9.26E-06 9.58E-06 8.69E-06 6.41E-01 4.58E-01 9.13E-06 9.05E-06 2.00E-02 9.58E-04

14 8.96E-06 8.77E-06 1.00E-01 8.07E-06 9.71E-01 6.50E-01 9.23E-06 8.98E-06 2.00E-02 2.55E-03

15 9.13E-06 8.74E-06 1.27E-05 9.31E-06 3.52E-01 4.94E-03 9.14E-06 9.54E-06 2.00E-02 3.33E-03

16 9.43E-06 9.05E-06 1.39E-05 9.62E-06 3.55E-01 9.43E-06 9.26E-06 9.44E-06 3.99E-02 2.86E-03

17 8.52E-06 8.88E-06 8.69E-06 5.52E-04 9.13E-01 4.93E-03 8.08E-06 8.46E-06 3.99E-02 2.88E-01

18 9.06E-06 8.69E-06 9.59E-06 9.31E-06 8.54E-01 3.60E-01 8.94E-06 9.28E-06 5.66E-06 1.32E-03

19 9.12E-06 8.56E-06 9.46E-06 9.36E-06 5.09E-01 1.82E-01 8.96E-06 8.90E-06 2.00E-02 2.06E-03

20 9.32E-06 9.22E-06 9.61E-06 9.38E-06 3.54E-01 1.53E-01 9.18E-06 9.23E-06 4.88E-06 1.09E-03

21 8.84E-06 8.84E-06 9.54E-06 7.78E-06 6.34E-01 3.50E-01 8.64E-06 9.01E-06 2.00E-02 4.69E-03

22 8.98E-06 9.09E-06 9.62E-06 9.38E-06 6.00E-01 1.28E-01 9.12E-06 9.13E-06 5.99E-02 2.13E-03

23 9.32E-06 9.19E-06 9.68E-06 9.52E-06 4.05E-01 9.86E-03 9.26E-06 9.35E-06 2.00E-02 2.02E-03

24 9.24E-06 9.12E-06 9.61E-06 9.63E-06 4.94E-01 1.23E-01 9.19E-06 9.01E-06 5.99E-02 1.94E-03

25 9.11E-06 8.62E-06 3.85E-05 1.29E-05 4.16E-01 6.90E-02 9.33E-06 9.35E-06 3.99E-02 2.93E-03

26 8.84E-06 8.84E-06 9.54E-06 7.78E-06 6.34E-01 3.50E-01 8.64E-06 9.01E-06 2.00E-02 2.01E-03

27 9.17E-06 9.04E-06 9.54E-06 9.50E-06 6.36E-01 7.88E-02 9.49E-06 9.05E-06 5.99E-02 1.18E-03

28 9.26E-06 9.23E-06 9.61E-06 9.67E-06 3.73E-01 2.96E-02 9.43E-06 9.21E-06 2.00E-02 3.46E-03

29 9.27E-06 8.97E-06 9.49E-06 9.65E-06 2.95E-01 5.91E-02 9.27E-06 9.29E-06 5.99E-02 1.54E-03

30 9.31E-06 9.07E-06 1.93E-04 4.63E-05 4.02E-01 1.97E-02 9.52E-06 8.96E-06 2.00E-02 3.62E-03
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Fig. 3. Standard Deviation value of 30 different Inertia Weight strategies on 10 bench-
mark functions as per Table 5
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Table 5. Standard deviation value of different inertia weight strategies for different
benchmark functions

Inertia
Weight

Sphere De Jong
f4

Ackley Alpine Michalewicz Cosine
Mixture

Expone-
ntial

brown3 Beale Colville

1 1.54E-06 9.56E-07 2.66E-03 2.05E-03 6.06E-01 1.96E-01 1.86E-06 1.38E-06 2.38E-06 1.53E-03

2 8.26E-07 1.08E-06 3.58E-07 3.59E-07 3.24E-01 1.15E-01 6.84E-07 8.14E-07 1.49E-01 1.10E-03

3 6.19E-07 9.40E-07 3.49E-07 2.86E-07 3.96E-01 1.76E-01 7.40E-07 6.89E-07 1.49E-01 8.07E-04

4 6.45E-07 9.15E-07 4.10E-07 3.84E-07 3.13E-01 1.62E-01 5.22E-07 7.74E-07 1.49E-01 3.59E-04

5 4.34E-01 1.05E+00 5.36E-01 4.54E-04 6.88E-01 1.00E+00 1.64E-01 7.43E-01 3.02E-06 4.00E-03

6 8.16E-07 1.19E-06 3.28E-07 7.43E-07 5.70E-01 1.65E-01 5.50E-07 7.21E-07 1.07E-01 7.74E-04

7 7.26E-07 1.17E-06 2.10E-05 9.87E-06 3.15E-01 3.70E-02 1.09E-06 4.36E-07 1.07E-01 6.96E-03

8 5.53E-07 1.19E-06 2.74E-04 3.25E-05 2.29E-01 2.65E-02 6.58E-07 6.79E-07 1.07E-01 4.58E-03

9 6.61E-07 7.83E-07 3.54E-07 1.10E-06 2.92E-01 8.18E-02 4.59E-07 6.97E-07 1.07E-01 1.23E-03

10 6.61E-07 7.48E-07 1.23E-04 8.33E-05 3.60E-01 6.25E-02 6.82E-07 3.49E-07 1.49E-01 3.99E-03

11 7.83E-07 1.07E-06 4.02E-07 3.87E-07 4.01E-01 1.43E-01 5.79E-07 8.31E-07 1.07E-01 4.99E-03

12 5.26E-07 1.20E-06 4.27E-07 5.60E-07 3.77E-01 1.61E-01 6.72E-07 6.50E-07 3.30E-06 8.53E-04

13 8.54E-07 6.95E-07 4.37E-07 1.86E-06 5.43E-01 2.30E-01 8.55E-07 7.03E-07 1.07E-01 7.45E-05

14 1.02E-06 1.37E-06 3.75E-01 2.89E-06 5.38E-01 2.40E-01 4.98E-07 1.17E-06 1.07E-01 2.14E-03

15 8.31E-07 9.18E-07 5.80E-06 5.50E-07 2.90E-01 2.65E-02 5.92E-07 5.28E-07 1.07E-01 3.27E-03

16 6.17E-07 9.55E-07 1.22E-05 3.57E-07 2.81E-01 6.24E-07 6.58E-07 5.21E-07 1.49E-01 2.54E-03

17 1.74E-06 1.50E-06 1.63E-06 2.31E-03 5.80E-01 2.65E-02 2.04E-06 1.77E-06 1.49E-01 1.41E+00

18 9.20E-07 1.10E-06 5.99E-07 6.01E-07 6.15E-01 2.25E-01 8.30E-07 5.78E-07 2.85E-06 6.36E-04

19 7.09E-07 1.23E-06 5.04E-07 6.34E-07 4.16E-01 1.60E-01 9.73E-07 1.15E-06 1.07E-01 1.85E-03

20 6.24E-07 9.46E-07 3.94E-07 5.39E-07 2.94E-01 1.35E-01 5.31E-07 5.89E-07 2.98E-06 3.50E-04

21 8.07E-07 8.84E-07 3.55E-07 3.06E-06 5.18E-01 1.93E-01 1.36E-06 8.22E-07 1.07E-01 4.41E-03

22 7.53E-07 7.83E-07 4.40E-07 5.57E-07 4.41E-01 1.46E-01 8.90E-07 7.62E-07 1.80E-01 1.56E-03

23 6.08E-07 9.61E-07 3.55E-07 4.06E-07 3.60E-01 3.69E-02 6.05E-07 5.29E-07 1.07E-01 2.07E-03

24 6.71E-07 1.13E-06 3.58E-07 3.92E-07 3.38E-01 1.43E-01 6.37E-07 9.25E-07 1.80E-01 1.19E-03

25 9.37E-07 1.17E-06 2.93E-05 7.08E-06 3.60E-01 9.90E-02 4.63E-07 5.80E-07 1.49E-01 2.84E-03

26 8.07E-07 8.84E-07 3.55E-07 3.06E-06 5.18E-01 1.93E-01 1.36E-06 8.22E-07 1.07E-01 1.25E-03

27 6.81E-07 7.45E-07 4.11E-07 4.33E-07 5.58E-01 9.90E-02 4.22E-07 9.90E-02 1.80E-01 4.49E-04

28 6.41E-07 7.43E-07 3.61E-07 3.08E-07 3.01E-01 7.04E-02 5.76E-07 6.86E-07 1.07E-01 2.49E-03

29 6.65E-07 8.10E-07 3.12E-07 3.45E-07 2.30E-01 8.18E-02 5.80E-07 7.32E-07 1.80E-01 1.03E-03

30 5.71E-07 8.76E-07 9.32E-05 3.83E-05 3.18E-01 5.02E-02 3.12E-07 7.68E-07 1.07E-01 4.22E-03

If the comparison is made through standard divisions (SD’s)the chaotic ran-
dom inertia weight produces near optimal solutions in comparison to other iner-
tia weight strategies as shown in Fig. 3. The summary results of inertia weight
strategies are shown in Table 6.

Table 6. Summary Results for Inertia Weight

Criterion Best inertia weight strategy Worst inertia weight strategy

Average Function Evaluation Constant Inertia Weight Linear Decreasing Inertia Weight

Mean Error Chaotic Random Inertia Weight Global-Local Best Inertia Weight

Standard Deviation Chaotic Random Inertia Weight Global-Local Best Inertia Weight

4 Conclusion

This paper presents the significance of inertia weight strategies in the solu-
tion search process of particle swarm optimization (PSO). Here, total 30 iner-
tia weight strategies in PSO are analyzed in terms of efficiency, reliability and
robustness while testing over 10 complex test functions. Through boxplots and
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success rate, it is found that the chaotic random inertia weight is better in terms
of accuracy while constant inertia weight performs better in terms of efficiency
of PSO among the considered inertia weight strategies.
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Abstract. In this paper, the Gravitational Search Algorithm (GSA) is hybri-
dized with real coded Genetic Algorithm to solve Integer and Mixed Integer
programming problems. The idea is based on two earlier papers of the authors.
In the first paper, the authors proposed a methodology in which the Laplace
Crossover and Power Mutation were embedded in Gravitational Search Algo-
rithm and in the second paper, these algorithms were extended for the case of
constrained optimization problems. In order to deal with integer variables, a
special method is adopted. For dealing with the constraints the Deb’s technique
is implemented. The original GSA and three new variants are tested on a set of
benchmark problems available in literature. Based on the extensive numerical
and graphical analysis of results it is concluded that one of the proposed variants
outperform the original GSA and the other proposed variants.

Keywords: Gravitational search algorithm � Constrained optimization
problems � Integer and mixed integer programming problems � Laplace
crossover � Power mutation

1 Introduction

In many real life optimization problems, decision variables are desired to take integral
values. Mathematical models of these problems are known as integer programming
problems (IPPs) or mixed integer programming problems (MIPPs) depending upon
whether all or only some of the decision variables are to have integral values. Such
problems frequently arise in various applications such as finance, plant operation,
process flow sheet, chemical engineering, automobile engineering, VLSI manufactur-
ing, optimal design of gas and water distribution networks, scheduling [1–3] etc.
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A mixed integer optimization problem is usually written as:

Minimize f ðx; yÞ;
Subject to

gjðx; yÞ� 0; j ¼ 1; . . .; J

hkðx; yÞ ¼ 0; k ¼ 1; . . .;K

xil � xi � xiu; i ¼ 1; 2; . . .;m1:

yil � yi � yiu : integer; i ¼ 1; 2; . . .;m2:

x ¼ ðx1; x2; . . .; xm1Þ
y ¼ ðy1; y2; . . .; ym2Þ:

ð1Þ

where x represents a vector of continuous variables, y represents a vector of integer
variables, xli; x

u
i

� �
are lower and upper bounds of xi and yli; y

u
i

� �
are lower and upper

bounds of yi.
In literature several classical techniques are available to handle such problems (such

as branch and bound techniques, cutting plane technique relaxation technique etc.), but
these techniques are applicable to a restricted class of problems.

Since the last few decades, many heuristic algorithms are developed and used to
solve mixed integer optimization problems. Mohan and Nguyen [4] extended the
concept of controlled random search technique algorithm and proposed RST2ANU
algorithm for solving integer and mixed integer global optimization problems. Dif-
ferential Evolution [5], Line-up competition algorithm [6], Particle Swarm Optimiza-
tion [7] are also extended and used for integer and mixed integer programing problems.
Deep and Thakur [8, 9] proposed LXPM algorithm for global optimization. Later on
[1] Deep et al. modified and extended it and proposed MI-LXPM algorithm for integer
and mixed integer programing problems. Costa and Oliveria [10] presented a work in
which a comparison is made between an algorithm based on simulated annealing
(M-SIMPSA) and two evolutionary algorithms: Genetic Algorithms and Evolutionary
Strategies using a test bed of seven mixed integer non-linear programing problems.
Hong and Zhang [11] developed a discrete hybrid Differential Evolution (DHDE)
algorithm to solve global numerical optimization problems with discrete variables. Zhu
and Fan [12] proposed an algorithm to find a global minimizer of the box constrained
nonlinear integer programming problem. It minimizes the auxiliary function from
random initial points and this auxiliary function has the same discrete global mini-
mizers as the problem. Zhua and Ali [13] proposed an algorithm based on minimizing
the auxiliary function for constrained nonlinear integer programming problems and
auxiliary function is constructed based on a penalty function. Misra and Sharma [14]
proposed Misra Integer Programing (MIP) to solve integer programming problems
arising in the system reliability design. Tan et al. [15] combined a novel chaotic local
search in genetic algorithm and proposed MSCLSGA. Zhou et al. [16] used Quesada
Grossmann (QG) and Tabu search (TS) algorithm to solve mixed integer nonlinear
programming (MINLP) in a heterogeneous parallel structure simultaneously. In [17],
Ten et al. hybridized particle swarm optimization with a novel chaotic search and
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proposed CLSPSO to solve integer and mixed integer programming problems. Newby
and Ali [18] developed a trust-region-based derivative free algorithm for solving bound
constrained mixed integer nonlinear programs. Fahim and Hedar [19] proposed a
hybrid scatter search method for solving unconstrained or constrained integer pro-
gramming problems. Jun et al. [20] proposed an improved Differential Evolution
algorithm for constrained mixed integer programming problems. Gao et al. [21] pro-
posed a modified Differential Evolution algorithm for constrained nonlinear mixed
integer programing problems in which the positions of variation particles are
self-adaptively adjusted. Lin et al. [22] developed a hybrid Differential Evolution
(MIHDE) deal with the mixed-integer optimization problems in which individuals
clustering is avoided by the migration operation. Yokota et al. [23] proposed a method
for solving non-linear mixed integer programming (NMIP) problems using genetic
algorithm (GAs). Schlueter and Munetomo [24] discussed two different parallelization
strategies of evolutionary algorithms for mixed integer nonlinear programming
(MINLP). In first strategy, some internal parts of the evolutionary algorithm is paral-
lelized and in second strategy the MINLP function calls outside and independently of
the evolutionary algorithm is parallelized. Omran and Engelbrecht [25] investigated the
performance of two variants of Differential Evolution (DE), Self-adaptive DE and DE
on integer programing problems.

Gravitational Search Algorithm (GSA) [26] is a population based stochastic search
algorithm which mimic the Newton law of gravity. The concept of GSA was intro-
duced by Rashedi. Initially, it is used to solve unconstrained and constrained contin-
uous global optimization problems. Singh and Deep [27, 28] hybridized GSA with real
coded genetic algorithm operators namely Laplace Crossover and Power mutation and
proposed LXGSA, PMGSA, LXPMGSA variants for unconstrained continuous opti-
mization problems and in [29] same variants are extended for constrained optimization
problems. The major contribution of this research paper is two-folds. Firstly, it pro-
poses a MI-GSA which is extension of the GSA for Integer and Mixed Integer Pro-
gramming Problems. Secondly, the extension of LXGSA, PMGSA and LXPMGSA
proposed by the authors earlier are further extended for the case of Integer and Mixed
Integers Optimization Problems. A comparison analysis of all these four versions is
performed on a set of test benchmarks problems available in literature.

This paper is organized as follows: In Sect. 2, Gravitational Search Algorithm is
described. Constrained handling mechanism is described in Sect. 3. In Sect. 4, modi-
fied Laplace Crossover, modified Power Mutation and the three proposed variants of
GSA for Integer and Mixed Integer variables are described. In Sect. 5, numerical
results are analyzed and finally in Sect. 6, the conclusion are drawn.

2 Gravitational Search Algorithm

Gravitational Search Algorithm (GSA) [26, 30, 31] is a newly developed Nature
Inspired Algorithm based on the metaphor of gravity and mass interactions. In this
algorithm, the solution of the problem is represented by the position of the particle at
the specified dimension and quality of the solution is represented by the mass of the
particle, higher the mass better solution. Each iteration of GSA passes through three
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steps: (a) Initialization (b) Force calculation (c) Motion. Consider a system of N particle
in which the position of ith particle is represented by

Xi ¼ x1i ; x
2
i ; . . .; x

d
i ; . . .; x

m
i

� �
for i ¼ 1; 2; . . .;N ð2Þ

where xdi is the position of ith particle in dth direction.
In Initialization, a population of N particles is generated randomly in the search

space. The velocities of each particle are initialized to zero (it could be non-zero if
desired). Fitness value is evaluated using the objective function fitðXiÞ. The position of
the best particle at step t is denoted by Xbest.

In Force calculation, first mass of each particle is calculated using a function of
fitness of particle i.e. Mi ¼ gðf ðXiÞÞ. Where Mi 2 0; 1ð � and gð:Þ is bounded and
monotonically decreasing. The function g is defined in such a way that the best particle
has the largest value (normalized) and worst particle has smallest value. Thus, after
evaluating the current population fitness, the gravitational mass and inertia mass of
each particle are calculated as follows:

Mai ¼ Mpi ¼ Mii ¼ Mi ð3Þ

mi ¼ fitiðtÞ � worstðtÞ
bestðtÞ � worstðtÞ ; i ¼ 1; 2; . . .;N: ð4Þ

MiðtÞ ¼ miðtÞPN
j¼1

mjðtÞ
ð5Þ

where Mai is the active gravitational mass, Mpi is the passive gravitational mass, Mii is
the inertia mass of particle i, fitiðtÞ is the fitness value of the ith particle at time t. Also,
bestðtÞ and worstðtÞ are the best and worst particle with regard to their fitness value.

For minimization problem

bestðtÞ ¼ min
j2f1;2;...;Ng

fitjðtÞ and worstðtÞ ¼ max
j2f1;2;...;Ng

fitjðtÞ ð6Þ

For maximization problem

bestðtÞ ¼ max
j2f1;2;...;Ng

fitjðtÞ and worstðtÞ ¼ min
j2f1;2;...;Ng

fitjðtÞ ð7Þ

Then the force acting on mass ‘i’ from ‘j’ is evaluated by

Fd
ijðtÞ ¼ GðtÞMpiðtÞ �MajðtÞ

RijðtÞþ e
xdj ðtÞ � xdi ðtÞ

� �
ð8Þ

Hybridized Gravitational Search Algorithms 87



where MajðtÞ is the active gravitational mass related to particle j, MpiðtÞ is the passive
gravitational mass related to particle i. e is a small value. GðtÞ is the gravitational
constant and it is calculated by

GðtÞ ¼ G0 exp �at=max iterð Þ ð9Þ

RijðtÞ is the Euclidean distance between i and j particles and it is defined as follows:

RijðtÞ ¼ XiðtÞ;XjðtÞ
�� ��

2 ð10Þ

The total force acting on ith particle in dimension d is calculated by

Fd
i ðtÞ ¼

X
j2Kbest;j 6¼i

randjF
d
ijðtÞ ð11Þ

where randj is randomly distributed random number in interval 0; 1ð �, Kbest is the set
of first k particles with the best fitness value and k is a decreasing function with time.
Initially k is set to the number of particles in the system and it decreases linearly in such
a way that at the last iteration k ¼ 1.

In Motion, first acceleration of each particle is calculated by

adi ðtÞ ¼
Fd
i ðtÞ

MiðtÞ ð12Þ

where adi ðtÞ is the acceleration of particle i in the dimension d at time t. Then the
velocities and next position of particles i in the dth dimension are updated by

vdi ðtþ 1Þ ¼ randi � vdi ðtÞþ adi ðtÞ ð13Þ

xdi ðtþ 1Þ ¼ xdi ðtÞþ vdi ðtþ 1Þ ð14Þ

where randi is randomly distributed random number in the interval 0; 1ð �.

3 Constraint Handling Mechanism

To overcome the shortcoming of general penalty function methods, Deb [32] proposed
an efficient penalty parameter free constraint handling technique. In this method, a
penalty term is added to the objective function to penalize infeasible solutions.
Therefore the fitness function of (1) is defined as

fiti ¼
f ðXiÞ; if Xi is feasible

fworst þ
Pm
j¼1

/j Xið Þ�� ��; otherwise

8<
: ð15Þ
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where fworst is the objective function value of the worst feasible solution available in the
current population and /j Xið Þ refers to the amount of constraint violation of ith particle
in jth inequality constraint. In this method the fitness of feasible solution is fixed to its
objective function value and the fitness of infeasible solution depends on amount of
constraint violation and worst feasible solution of the current population. If all solution
are infeasible in the population then fworst is set to zero. Hence two solutions are
compared by the following rules:

1. A feasible solution is always preferred over an infeasible solution.
2. Between two feasible solutions, the one having a better objective function value is

preferred.
3. Between two infeasible solutions, the one having the smaller constraint violation is

preferred.

Hence infeasible solutions are pushed towards the feasible region.
Equality constraints are transformed into inequalities of the form

hkðx; yÞj j � e� 0; for k ¼ 1; . . .;K ð16Þ

A solution ðx; yÞ is regarded as feasible if gjðx; yÞ� 0 for j ¼ 1; . . .; J and
hkðx; yÞj j � e� 0; for k ¼ 1; . . .;K. Here, e is set to 0.0001.

4 Proposed Algorithms

In Singh and Deep [27], GSA is hybridized with Laplace Crossover [8] which is a real
coded genetic algorithm crossover operator and with Power Mutation [9] which is a
real coded genetic algorithm mutation operator. The resulting three hybridized version
namely LXGSA, PMGSA and LXPMGSA are compared with the original GSA, with
an objective to increase the efficiency and reliability of the original GSA. In the present
study, GSA, LXGSA, PMGSA and LXPMGSA are extended to solve integer and
mixed integer constrained optimization problems and four variants are proposed
namely MI-GSA, MI-LXGSA, MI-PMGSA and MI-LXPMGSA. Before proposing the
algorithm it is important to note how the Laplace Crossover and Power Mutation have
to be modified to deal with integer values.

4.1 Modified Laplace Crossover

Originally, Laplace Crossover (LX) is defied by Deep and Thakur [8] based on Laplace
distribution but to handle integer and mixed integer problems Deep et al. [1] modified
it. The working of the modified LX is described below. A pair of offspring y1 ¼
y11; y

2
1; . . .; y

m
1

� �
and y2 ¼ y12; y

2
2; . . .; y

m
2

� �
is generated from a pair of parents x1 ¼

x11; x
2
1; . . .; x

m
1

� �
and x2 ¼ x12; x

2
2; . . .; x

m
2

� �
in the following way. First, two uniformly

distributed random numbers ri; si 2 ½0; 1� are generated and a random number bi,
following Laplace distribution, is generated as:
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bi ¼
a� b logeðriÞ; si � 0:5

aþ b logeðriÞ; si [ 0:5

(
ð17Þ

where a is location parameter and b[ 0 is scaling parameter. b is different for integer
and real decision variables. It is b ¼ bint for integer decision variable otherwise
b ¼ breal.

Then offspring is created by the equations:

yi1 ¼ xi1 þ bi x
i
1 � xi2

�� ��;
yi2 ¼ xi2 þ bi x

i
1 � xi2

�� ��; ð18Þ

Let xilower and xiupper to be the lower and upper bounds of the unknown variables xi.

If xi\xilower or x
i [ xiupper for some i; then xi is assigned a random value in the interval

½xilower; xiupper�.

4.2 Modified Power Mutation

Power Mutation (PM) operator introduced by Deep and Thakur [9] is based on power
distribution. Later on it is modified by Deep et al. [1] to handle integer and mixed
integer problems. PM operator creates a solution y ¼ ðy1; y2; . . .; ymÞ in the vicinity of a
parent solution �x ¼ ð�x1;�x2; . . .;�xmÞ as follows. First, a uniformly distributed random
number r 2 ½0; 1� is generated. Then a random number wi following power distribution,
is generated by wi ¼ rp, where p is the index of distribution. p ¼ preal or p ¼ pint
depending on integer or real restriction on the decision variable. Offspring y is created
by the formula:

yi ¼ �xi � wið�xi � xlower Þ; if t\vi

�xi þwiðxupper � �xiÞ; if t� vi

(
; for i ¼ 1; 2; . . .;m ð19Þ

where vi 2 ½0; 1� is a uniformly distributed random number, t ¼ �xi�xlower
xupper�xlower

and xlower and

xupper are lower and upper bounds of decision variables.
If a decision variable xi has integer restrictions, then it uses ½xi� or ½xi� þ 1.
The working procedure of MI-GSA, MI-LXGSA, MI-PMGSA and MI-LXPMGSA

are as follows:

4.3 The Proposed MI-GSA

MI-GSA is a modified version of original GSA for integer and mixed integer con-
strained optimization problems. In the working procedure of MI-GSA, the fitness of
particles is evaluated using Deb’s rule during the initial generation of random popu-
lation as well as during each iteration and Lbest is updated if (i) Lbest is infeasible and
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best(t) is feasible (ii) both are feasible or infeasible but best(t) is better in term of fitness
(Fig. 3).

4.4 Proposed MI-LXGSA

Each iteration of MI-LXGSA is carried out as follows. Firstly, the steps of MI-GSA are
performed. Then Laplace Crossover is applied on Lbest and a randomly selected
particle as shown in Fig. 1 and Lbest is updated as per Fig. 3 Then the iteration is
incremented.

4.5 Proposed MI-PMGSA

Each iteration of MI-PMGSA is carried out as follows. Firstly, the steps of MI-GSA are
performed. Then Power Mutation is applied on Lbest as shown in Fig. 2. Lbest is
updated as per Fig. 3. Then the iteration is incremented.

Select parents x1 and x2 where x1 is Lbest and x2 is a randomly selected particle 
Obtain offspring be y1 and y2 by Laplace  
Crossover using eq. (18) 
Apply integer retraction if applicable on i

1y and i
2y , for i=1,2,…,m 

Determine worst particle of the population 
If fit(y

1
) < fit(worst) 

{ worst y
1

  update worst 
  update Lbest  
 } 

If fit(y2) < fit(worst) 
{ worst y2

        update Lbest  
 } 

Fig. 1. Implementation of Laplace Crossover

Select parent x where x is Lbest
Obtain offspring be y by Power Mutation using eq. (19)
Apply integer retraction if applicable on iy , for i=1,2,…,m
Determine worst particle of the population
If fit(y) <fit(worst) 

{              worst  y 
                              update Lbest

} 

Fig. 2. Implementation of Power Mutation

Hybridized Gravitational Search Algorithms 91



4.6 Proposed MI-LXPMGSA

Each iteration of MI-LXPMGSA is carried out as follows. Firstly, the steps of MI-GSA
are performed. Then Laplace Crossover is applied on Lbest and a randomly selected
particle as shown in Fig. 1. Lbest is updated as per Fig. 3. Then, Power Mutation is
applied on Lbest as shown in Fig. 2. Lbest is updated as per Fig. 3. Then the iteration is
incremented. The pseudo of the algorithm is given Fig. 4.

5 Experimental Results and Benchmark Functions

The performance of the proposed algorithms is tested on 18 problems, taken from
literature, arising in chemical engineering, reliability, etc. [1, 4, 33] and are listed in
Appendix A. Problem set consists of linear and nonlinear constraints integer and mixed
integer problems and the number of unknown decision variables varies from 2 to 100.
Problems F1 to F13 are minimization problem and F14 to F18 are maximization prob-
lems. The environment for running computer programs of the experiments is processor:
Intel(R) Xeon(R) CPU E5645 @ 2.40 GHz 2.39 GHz RAM: 12 GB, Operating Sys-
tem Window, Integrated Development Environment: MATLAB 2008. The parameters
of the algorithms are G0 ¼ 100; a ¼ 20; a ¼ 0; breal ¼ 0:15; bint ¼ 0:35; preal ¼
10; pint ¼ 4;(as in literature) and population size = 50.

In the present study, two types of experiments are performed. Since the global
optima, reported in Appendix A, is based on literature wherein these problems are
solved by heuristic techniques. Hence, it is hoped that optima may improve by pro-
posed algorithms. Therefore, the first experiment is carried out with stopping criteria:
maximum iterations = 5000. Second experiment is carried out to observe that out of the
four algorithms which is more reliable, robust and efficient. In this experiment, the
stopping criteria is either algorithm reaches 5000 iterations or absolute error is less than
0.01, if the optimal value of function is zero or relative error is less than 0.01, if the
optimal value of function is non-zero. Each problem is executed for 100 runs by all four
algorithms (MI-GSA, MI-LXGSA, MI-PMGSA and MI-LXPMGSA), making sure that
the first randomly generated population is used for first run of all algorithms, second
randomly generated population is used for second run of all algorithms, etc. A run is
considered a success if achieved value of the objective function is within 1% of the

If   Lbest and best(t) is infeasible and best(t)< Lbest
{        Lbest best(t)   

}                             
elseif  Lbest is infesible and best(t) is feasible

{       Lbest  best(t) 
} 

elseif  Lbest is fesible and best(t) is feasible and best(t)< Lbest
{       Lbest  best(t) 
} 

Fig. 3. Lbest Updating Procedure
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known optimal value (in case the optimal value of the objective is zero, a run is
considered success if the achieved absolute value of objective function is less than
0.01).

Set number of particle N, problem dimension m,
parameter value

0 ,G α , maximum iteration = max_iter
Deploy N particles randomly in the search space
Let ( ) ( ) ( ) ( )( )1 , , , ,d m

i i i ix t x t x t x t= be the position of

particle i at iteration t
Evaluate fitness fiti of all particles using eq. (16)

{ } { }1, , 1, ,
( ) min ( ( )), ( ) max ( ( )),jjj jN N

best t fit x t worst t fit x t
∈ ∈

==

Set Lbest= best(t);
t=0
while (t ≤ max_iter) do:
{ ( ) 0 ( m )ax_G t G exp t iterα= −

{ } { }1, , 1, ,
( ) min ( ( )), ( ) max ( ( )),jjj jN N

best t fit x t worst t fit x t
∈ ∈

== msum=0;                            

for i =1 to N

{ ( ( )) ( )
( ) ; msum=msum ( );

( ) ( )
i

ii

fit x t worst t
m t m t

best t worst t
−

= +
−

}

for i =1 to N
{ ( ) ( ) msum;i iM t m t= }       

for each particle i = 1 to N do:
{   for d = 1 to m do:

{ ( )
,

( ) ( )
( ) ( ) ( ) ( )

( )
pi ajd d d

i j j i
j kbest j i

ij

M t M t
F t rand G t x t x t

R t ε∈ ≠

×
= −∑

+

( ) ( ) ( )d d

i i ii
a t F t M t=

( 1) ( ) ( )d d d
i i i iv t rand v t a t+ = +

( 1) ( ) ( 1)d d d
i i ix t x t v t+ = + +

Apply integer restriction if applicable on ( 1)d
ix t +

 } 
} 

Evaluate fitness fiti of all particles using eq. (16)
{ } { }1, , 1, ,

( ) min ( ( )), ( ) max ( ( )),jjj jN N
best t fit x t worst t fit x t

∈ ∈
==

Update Lbest as per Fig 3

}
}

Apply Laplace Crossover as per Fig 1 //for MI-LXGSAUpdate Lbest as per Fig 3 //MI-LXPMGSAApply Power Mutation as per Fig 2 //for MI-PMGSAUpdate Lbest as per Fig 3

⎫
⎪
⎬
⎪
⎭

 } 
t=t+1
}

Fig. 4. Pseudo code of algorithms
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5.1 Analysis of Experiment I

In order to compare the quality of the solutions found by proposed algorithms Best,
Worst, Average, Median and standard deviation (STD) of objective function values are
calculated for experiment I and shown in Table 1 and the best entries are shown using
boldface. From the Table 1, it is concluded that the performance of MI-GSA,
MI-PMGSA, MI-LXGSA and MI-LXPMGSA are approximately same on F4, F5, F6,
F14 and F15. All four algorithms get optimal solution of these functions. MI-PMGSA,
MI-LXGSA and MI-LXPMGSA solve the functions F1, F2 and F11 with 100%, but
MI-GSA could not solve them with 100% success. All algorithms get equal Best and
equal worst on function F3, F7. As per average value of F3 the performance order of
algorithms is MI-LXGSA > MI-GSA > MI-LXPMGSA > MI-PMGSA but based on
the median, performance order is MI-LXPMGSA = MI-LXGSA > MI-PMGSA >
MI-GSA and based on average value of F7 the performance order is
MI-LXPMGSA = LXGSA > MI-GSA > MI-PMGSA but MI-GSA has worst median
in comparison to others. On F8, the best solution is found by MI-GSA and MI-LXGSA
and best median and best average are found by MI-LXGSA.

Algorithms have equal Best and equal Median on F9, F10 and F13. As per average
value, performance order on F9 is MI-LXGSA > MI-LXPMGSA > MI-PMGSA >
MI-GSA, on F10 is MI-LXPMGSA = MI-PMGSA > MI-LXGSA > MI-GSA and on
F13 is MI-LXPMGSA > MI-GSA > MI-LXGSA > MI-PMGSA. The performance
order of algorithms on F12 is MI-LXGSA > MI-PMGSA > MI-LXPMGSA >
MI-GSA. On F16, performance of MI-LXPMGSA and MI-PMGSA are same and it
is better than MI-LXGSA and MI-GSA. On F17, performance order is MI-
LXPMGSA > MI-PMGSA > MI-LXGSA > MI-GSA. On F18, best solution and
Median, obtained by MI-LXPMGSA and MI-LXGSA is same but MI-PMGSA and
MI-GSA get a slightly worse solution in comparison to others and based on average value
performance order is MI-LXPMGSA > MI-LXGSA > MI-PMGSA > MI-GSA. From
the Table 1, it is concluded that the overall performance of MI-LXPMGSA is better than
other proposed algorithms and on functions F16 and F17, the best optima found is better
than the literature [1, 4, 33].

To study the convergence behaviour towards optimal solution of MI-GSA,
MI-LXGSA, MI-PMGSA and MI-LXPMGSA, iteration wise convergence graphs are
plotted and shown in Figs. 5 and 6 for F1 to F13 (minimization problems) and Fig. 7 for
F15 to F18 (maximization problems). On the horizontal axis the iterations are shown,
whereas on the vertical axis the average best-so-far is shown. Average best-so-far is the
average value of objective function in each iteration over 100 runs. From these con-
vergence plots it is concluded that MI-LXPMGSA has faster convergence rate on all
problems except F3 and F9. On F3 and F9, MI-LXGSA has better convergence rate.

5.2 Analysis of Experiment II

For the experiment II percentage of success, average number of function evaluation of
successful run and average time in seconds of successful run are shown in Tables 2, 3
and 4, respectively and best entries are shown by boldface.
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Table 1. Results of experiment I showing Best, Worst, Average, Median and STD of objective
function values

Pro. Algorithm Best Worst Median Average STD

F1 MI-GSA 2.00000774 2.19600954 2.00229751 2.00714121 0.02305478
MI-LXGSA 2 2 2 2 2.2407E-12
MI-PMGSA 2 2 2 2 2.3617E-16
MI-LXPMGSA 2 2 2 2 3.0761E-16

F2 MI-GSA 2.12446758 2.21534922 2.12663433 2.13120049 0.01207187
MI-LXGSA 2.12446758 2.12446758 2.12446758 2.12446758 9.9763E-13
MI-PMGSA 2.12446758 2.12446758 2.12446758 2.12446758 1.7042E-11
MI-LXPMGSA 2.12446758 2.12446758 2.12446758 2.12446758 3.3709E-12

F3 MI-GSA 1.07654308 1.25 1.08893722 1.10468264 0.04533669
MI-LXGSA 1.07654308 1.25 1.07654308 1.08521593 0.03799451
MI-PMGSA 1.07654308 1.25 1.07654309 1.12858016 0.07988839
MI-LXPMGSA 1.07654308 1.25 1.07654308 1.11817274 0.07445373

F4 MI-GSA −6961.81388 −6961.81386 −6961.81387 −6961.81387 3.7835E-06
MI-LXGSA −6961.81388 −6961.81386 −6961.81387 −6961.81387 2.7931E-06
MI-PMGSA −6961.81388 −6961.81386 −6961.81387 −6961.81387 3.1469E-06
MI-LXPMGSA −6961.81388 −6961.81386 −6961.81387 −6961.81387 2.4882E-06

F5 MI-GSA −68 −68 −68 −68 0
MI-LXGSA −68 −68 −68 −68 0
MI-PMGSA −68 −68 −68 −68 0
MI-LXPMGSA −68 −68 −68 −68 0

F6 MI-GSA −6 −6 −6 −6 0
MI-LXGSA −6 −6 −6 −6 0
MI-PMGSA −6 −6 −6 −6 0
MI-LXPMGSA −6 −6 −6 −6 0

F7 MI-GSA 99.23963505 103.0236383 99.23974429 99.91642038 1.44059308
MI-LXGSA 99.23963505 103.0236383 99.23963505 99.61803538 1.14091991
MI-PMGSA 99.23963505 103.0236383 99.23963505 99.92075564 1.46109039
MI-LXPMGSA 99.23963505 103.0236383 99.23963505 99.61803538 1.14091991

F8 MI-GSA 3.557461258 3.896223807 3.557461664 3.564684354 0.04770295
MI-LXGSA 3.557461258 3.557468743 3.557461258 3.557461694 1.4281E-06
MI-PMGSA 3.557485108 3.89626245 3.557819894 3.562148961 0.03401905
MI-LXPMGSA 3.557461673 3.579585973 3.557686563 3.559477061 0.00596375

F9 MI-GSA 8 18 14 13.17 3.07171850
MI-LXGSA 8 18 14 11.68 3.47248928
MI-PMGSA 8 18 14 12.6 3.30900211
MI-LXPMGSA 8 18 14 12.39 3.94634468

F10 MI-GSA 14 20 14 14.87 1.64319841
MI-LXGSA 14 20 14 14.49 1.48047904
MI-PMGSA 14 20 14 14.34 1.20788654
MI-LXPMGSA 14 18 14 14.34 1.10298035

F11 MI-GSA −42.63212056 −38.86466472 −42.63212056 −42.48142232 0.74198681
MI-LXGSA −42.63212056 −42.63212056 −42.63212056 −42.63212056 8.5695E–14
MI-PMGSA −42.63212056 −42.63212056 −42.63212056 −42.63212056 8.5695E–14
MI-LXPMGSA −42.63212056 −42.63212056 −42.63212056 −42.63212056 8.5695E–14

(continued)
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In these tables best entries are shown using boldface. From the Table 2 it is con-
cluded that out of 18 problems considered, MI-GSA solves 10 problems with 100%
success, MI-LXGSA solves 13 problems with 100% success, MI-PMGSA solves 12
problems with 100% success and MI-LXPMGSA solves 13 problems with 100%
success.

Further, for a comparative study of these algorithms, Performance Index is plotted
as follows:

A specified weighted importance is given to the success rate, number of function
evaluations and computational time corresponding to each of the algorithms
considered.

The value of Performance Index PIj for j
th algorithm is evaluated by:

PIj ¼ 1
N

XN
i¼1

ðw1a
i
1 þw2a

i
2 þw3a

i
3Þ ð20Þ

Table 1. (continued)

Pro. Algorithm Best Worst Median Average STD

F12 MI-GSA 8.67552E-07 0.002136916 0.000374392 0.000432375 0.00037064
MI-LXGSA 1.44308E-29 0.000334796 9.14037E-07 1.15206E-05 4.237E-05
MI-PMGSA 3.43878E-29 0.001167474 2.79266E-08 1.36187E-05 0.00011734
MI-LXPMGSA 9.09685E-29 0.001167474 6.09026E-08 1.47824E-05 0.00011746

F13 MI-GSA 807 1778 892 883.16 104.033864
MI-LXGSA 807 2388 892 895.17 220.530859
MI-PMGSA 807 2388 892 899.71 242.73997
MI-LXPMGSA 807 2162 892 873.75 143.251166

F14 MI-GSA 32217.42778 32217.42778 32217.42778 32217.42778 1.8282E-11
MI-LXGSA 32217.42778 32217.42778 32217.42778 32217.42778 1.8282E-11
MI-PMGSA 32217.42778 32217.42778 32217.42778 32217.42778 1.8282E-11
MI-LXPMGSA 32217.42778 32217.42778 32217.42778 32217.42778 1.8282E-11

F15 MI-GSA 0.9434705 0.9434705 0.9434705 0.9434705 0
MI-LXGSA 0.9434705 0.9434705 0.9434705 0.9434705 0
MI-PMGSA 0.9434705 0.9434705 0.9434705 0.9434705 0
MI-LXPMGSA 0.9434705 0.9434705 0.9434705 0.9434705 0

F16 MI-GSA 1352439 1350118 1352439 1352193.49 439.943167
MI-LXGSA 1352439 1351252 1352439 1352300.63 304.498716
MI-PMGSA 1352439 1352439 1352439 1352439 0
MI-LXPMGSA 1352439 1352439 1352439 1352439 0

F17 MI-GSA 304152552 304078794 304145249.5 304143673 7690.61132
MI-LXGSA 304153193 304140258 304149757.5 304149509.5 2171.65575
MI-PMGSA 304159895 304132587 304156147.5 304154380.2 4437.1472
MI-LXPMGSA 304160077 304148020 304157276.5 304156854 2183.32289

F18 MI-GSA 0.99995467 0.99655553 0.99978734 0.99953678 0.00053881
MI-LXGSA 0.99995468 0.99966102 0.99994069 0.99992311 5.044E-05
MI-PMGSA 0.99995465 0.99962064 0.99993714 0.99991699 5.0978E-05
MI-LXPMGSA 0.99995468 0.99980700 0.99994069 0.99992920 3.0466E-05
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where ai1 ¼ Sri
Tri ð21Þ

ai2 ¼
Mf i

Af i
if Sri [ 0

0 if Sri ¼ 0

8><
>: ð22Þ

ai3 ¼
Mti

Ati
if Sri [ 0

0 if Sri ¼ 0

8<
: ð23Þ

here, N is the total number of considered problems and i ¼ 1; . . .;N. Tri represents the
total number of times the problem i is solved and Sri is the number of times problem i is
solved successfully. Af i is the average number of function evaluations used by
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Fig. 5. Iteration wise convergence plots of average best-so-far for function F1 to F5 and F7 to F9
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algorithm j to obtain the optimal solution of problem i in case of successful runs, and
Mf i is the minimum of the average number of function evaluation of successful run.
Similarly,Ati is average time required by algorithm j to obtain the optimal solution of
problem i in case of successful runs, and Mti is minimum of the average time by all the
algorithms under comparison to obtain the optimal solution of problem i. Further
w1;w2 and w3 are nonnegative assigned weight to the percentage of success, average
number of function evaluations used in successful run and the average execution time
of successful runs respectively with w1 þw2 þw3 ¼ 1. Algorithm having largest PI is
the winner, amongst the considered algorithms. In order to analyze the relative per-
formance of MI-GSA, MI-LXGSA, MI-PMGSA and MI-LXPMGSA, equal weights
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Fig. 6. Iteration wise convergence plots of average best-so-far for function F10 to F13
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Fig. 7. Iteration wise convergence plots of average best-so-far for function F15 to F18
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Table 2. Percentage of success obtained for all variants considered

Problem MI-GSA MI-LXGSA MI-PMGSA MI-LXPMGSA

F1 92 100 100 100
F2 93 100 100 100
F3 52 89 79 72
F4 100 100 100 100
F5 100 100 100 100
F6 100 100 100 100
F7 81 90 75 82
F8 99 100 99 100
F9 23 51 38 47
F10 63 87 82 85
F11 100 100 100 100
F12 100 100 100 100
F13 26 33 36 48
F14 100 100 100 100
F15 100 100 100 100
F16 100 100 100 100
F17 100 100 100 100
F18 100 100 100 100

Table 3. Average function evaluations of successful runs by all variants considered

Problem MI-GSA MI-LXGSA MI-PMGSA MI-LXPMGSA

F1 4711 1442 1444 899
F2 875 354 1042 301
F3 57135 36857 60599 35084
F4 46797 42632 35980 31075
F5 1882 899 1253 931
F6 52 52 52 52
F7 143 144 157 145
F8 57521 43842 50371 42435
F9 50 486 819 498
F10 1014 842 1005 880
F11 2550 51 53 51
F12 101 82 84 70
F13 14892 13225 15383 13037
F14 100 101 100 102
F15 164 170 181 188
F16 4924 4607 3577 3407
F17 1151 926 561 511
F18 14579 1756 4881 1447
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are assigned to two terms (w1; w2 and w3) at a time. Therefore PIj becomes a function
of single variable. Following three cases are possible

ðiÞ w1 ¼ w; w2 ¼ w3 ¼ ð1� wÞ=2; 0�w� 1

ðiiÞ w2 ¼ w; w1 ¼ w3 ¼ ð1� wÞ=2; 0�w� 1

ðiiÞ w3 ¼ w; w1 ¼ w2 ¼ ð1� wÞ=2; 0�w� 1

ð24Þ

Figures 8, 9, 10 shows the Performance Index graphs corresponding to each of
these three cases on 18 integer and mixed integer problems. Figure 8 corresponds to the
weight assigned for success rate w is varied. Figure 9 corresponds to weight assigned

Table 4. Average execution time (sec.) of successful runs by all variants considered

Problem MI-GSA MI-LXGSA MI-PMGSA MI-LXPMGSA

F1 0.6186 0.1849 0.1877 0.1131
F2 0.1132 0.0417 0.1382 0.0349
F3 7.3553 4.8375 7.7205 4.6344
F4 6.1147 5.5524 4.7740 4.1169
F5 0.2693 0.1232 0.1758 0.1276
F6 0.0018 0.0018 0.0017 0.0017
F7 0.0173 0.0173 0.0196 0.0175
F8 8.2834 6.3904 7.3320 6.1998
F9 0.0018 0.0670 0.1177 0.0689
F10 0.1672 0.1365 0.1651 0.1426
F11 0.2775 0.0017 0.0021 0.0017
F12 0.0122 0.0087 0.0091 0.0066
F13 2.2749 1.9994 2.3330 1.9693
F14 0.0112 0.0114 0.0113 0.0115
F15 0.0212 0.0220 0.0241 0.0250
F16 0.8417 0.8140 0.6334 0.6240
F17 0.3932 0.3171 0.1914 0.1741
F18 2.4496 0.2920 0.8232 0.2413
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Fig. 8. Performance Index of MI-GSA, MI-LXGSA, MI-PMGSA and MI-LXPMGSA when
percentage of success is varied
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for average function evaluations w is varied and Fig. 10 corresponds to the weight
assigned for average time of the successful runs w is varied. It is clear from the figures
that MI-LXPMGSA is best among them.

6 Conclusion

This paper presents, three hybridized variants of Gravitational Search Algorithm with
Real Coded Genetic Algorithm operators for solving Integer and Mixed Integer Pro-
gramming Problems. The idea has been extended from Singh and Deep [27] which
proposes three hybridized variants for the unconstrained continuous optimization
problems and Singh and Deep [29] which propose three hybridized variants for con-
strained optimization case. As earlier the three new variants are compared with the
similar version of GSA based on a set of benchmarks problems taken from literature.
A number of numerical and graphical analysis is performed and it is concluded that the
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Fig. 9. Performance Index of MI-GSA, MI-LXGSA, MI-PMGSA and MI-LXPMGSA when
average function evaluations of successful runs is varied
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Fig. 10. Performance Index of MI-GSA, MI-LXGSA, MI-PMGSA and MI-LXPMGSA when
average computational time of successful run is varied
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best performer is the variant in which the Laplace Crossover and Power Mutation are
incorporated into Gravitational Search Algorithm.
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Appendix A: Benchmark Functions

Problem 1:

Min f ðx; yÞ ¼ 2xþ y

Subject to : 1:25� x2 � y� 0

xþ y� 1:6

0� x� 1:6

y 2 0; 1f g

The global optima is ðx; y; f Þ ¼ ð0:5; 1; 2Þ.
Problem 2:

Min f ðx; yÞ ¼ �yþ 2x� lnðx=2Þ

Subject to : � x� lnðx=2Þþ y� 0;

0:5� x� 1:5;

y 2 0; 1f g:

The global optima is ðx; y; f Þ ¼ ð1:375; 1; 2:124Þ.
Problem 3:

Min f ðx; yÞ ¼ �0:7yþ 5ðx1 � 0:5Þ2 þ 0:8

Subject to : � expðx1 � 0:2Þ � x2 � 0;

x2 þ 1:1y� � 1:0;

x1 � 1:2y� 0:2;

0:2� x1 � 1:0;

� 2:22554� x2 � � 1:0;

y 2 0; 1f g:

The global optima is ðx1; x2; y; f Þ ¼ ð0:94194;�2:1; 1; 1:07654Þ.
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Problem 4:

Min f ðxÞ ¼ ðx1 � 10Þ3 þðx2 � 20Þ3

Subject to : ðx1 � 5Þ2 þðx2 � 5Þ2 � 100� 0:0;

� ðx1 � 6Þ2 � ðx2 � 5Þ2 þ 82:81� 0:0;

13� x1 � 100;

0� x2 � 100:

The global optima is ðx1; x2; f Þ ¼ ð14:095; 0:84296;�6961:81381Þ.
Problem 5:

Min f ðxÞ ¼ x21 þ x1x2 þ 2x22 � 6x1 � 2x2 � 12x3;

Subject to : 2x21 þ x22 � 15:0;

� x1 þ 2x2 þ x3 � 3:0;

0� xi � 10; integer i ¼ 1; . . .; 3:

The global optima is ðx1; x2; x3; f Þ ¼ ð2; 0; 5;�68Þ.
Problem 6:

Min f ðxÞ ¼ ðx1 þ 2x2 þ 3x3 � x4Þð2x1 þ 5x2 þ 3x3 � 6x4Þ;

Subject to : x1 þ 2x2 þ x3 þ 3x4 � 4:0;

x 2 0; 1f g4

The global optima is ðx1; x2; x3; x4; f Þ ¼ ð0; 0; 1; 1;�6Þ.
Problem 7:

Min f ðy1; v1; v2Þ ¼ 7:5y1 þ 5:5ð1� y1Þþ 7v1 þ 6v2

þ 50
y1

0:9 1� expð�0:5v1Þ½ �
þ 50

1� y1
0:8 1� expð�0:4v2Þ½ �

Subject to : 0:9 1� expð�0:5v1Þ½ � � 2y1 � 0;

0:8 1� expð�0:4v2Þ½ � � 2ð1� y1Þ� 0;

v1 � 10y1;

v2 � 10ð1� y1Þ;
v1; v2 � 0;

y1 2 0; 1f g:
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The objective is to select one between two candidate reactors in order to minimize
the production cost. The global optima is ðy1; v1; v2; f Þ ¼ ð1; 3:514237; 0; 99:239635Þ
Problem 8:

Min f ðx; yÞ ¼ ðy1 � 1Þ2 þðy2 � 1Þ2 þðy3 � 1Þ2 � lnðy4 þ 1Þ
þ ðx1 � 1Þ2 þðx2 � 2Þ2 þðx3 � 3Þ2

Subject to:

y1 þ y2 þ y3 þ x1 þ x2 þ x3 � 5:0;

y23 þ x21 þ x22 þ x23 � 5:5;

y1 þ x1 � 1:2;

y2 þ x2 � 1:8;

y3 þ x3 � 2:5;

y4 þ x1 � 1:2;

y22 þ x22 � 1:64;

y23 þ x23 � 4:25;

y22 þ x23 � 4:64;

x1; x2; x3 � 0;

y1; y2; y3; y4 2 0; 1f g:

The global optima is ðx1; x2; x3; y1; y2; y3; y4; f Þ ¼ ð0:2; 1:280624; 1:954483;
1; 0; 0; 1; 3:557463Þ.Our algorithm achieves solution ðx1; x2; x3; y1; y2; y3; y4; f Þ ¼
ð0:084607; 0:798719; 2:116424; 1; 1; 0; 1; 3:3685783Þ.
Problem 9:

Min f ðxÞ ¼ x21 þ x22 þ x23 þ x24 þ x25;

Subject to : x1 þ 2x2 þ x4 � 4:0;

x2 þ 2x3 � 3:0;

x1 þ 2x5 � 5:0;

x1 þ 2x2 þ 2x3 � 6:0;

2x1 þ x3 � 4:0;

x1 þ 4x5 � 13:0;

0� xi � 3; i ¼ 1; 2; . . .; 5; integer:

The global optimal solution is ðx1; x2; x3; x4; x5; f Þ ¼ ð1; 1; 1; 1; 2; 8Þ.
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Problem 10:

Min f ðxÞ ¼ x1x7 þ 3x2x6 þ x3x5 þ 7x4;

Subject to:

x1 þ x2 þ x3 � 6:0;

x4 þ x5 þ 6x6 � 8:0;

x1x6 þ x2 þ 3x5 � 7:0;

4x2x7 þ 3x4x5 � 25:0;

3x1 þ 2x3 þ x5 � 7:0;

3x1x3 þ 6x4 þ 4x5 � 20:0;

4x1 þ 2x3 þ x6x7 � 15:0;

0� x1; x2; x3 � 4;

0� x4; x5; x6 � 2;

0� x7 � 6;

xi; i ¼ 1; 2; . . .; 7; integers:

The global optimal solution is ðx1; x2; x3; x4; x5; x6; x7; f Þ ¼ ð0; 2; 4; 0; 2; 1; 4; 14Þ.
Problem 11:

Min f ðxÞ ¼ expð�x1Þþ x21 � x1x2 � 3x22 � 6x2 þ 4x1;

Subject to : 2x1 þ x2 � 8:0;

� x1 þ x2 � 2:0;

0� x1; x2 � 3;

x1; x2 integers:

The global optimal solution is ðx1; x2; f Þ ¼ ð1; 3;�42:632Þ.
Problem 12:

Min f ðxÞ ¼
X9
i¼1

exp � ui � x2ð Þx3
x1

� 	
� 0:01i


 �2
;

where; ui ¼ 25þ �50 lnð0:01iÞð Þ2=3;

Subject to : 0:1� x1 � 100:0;

0:0� x2 � 25:6;

0:0� x3 � 5:0;

x1; x2 integers:

The global optimal solution is ðx1; x2; x3; f Þ ¼ ð50; 25; 1:5; 0:0Þ.
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Problem 13:

Min f ðxÞ ¼ x21 þ x22 þ 3x23 þ 4x24 þ 2x25 � 8x1 � 2x2
� 3x3 � x4 � 2x5;

Subject to : x1 þ x2 þ x3 þ x4 þ x5 � 400;

x1 þ 2x2 þ 2x3 þ x4 þ 6x5 � 800;

2x1 þ x2 þ 6x3 � 200;

x3 þ x4 þ 5x5 � 200;

x1 þ x2 þ x3 þ x4 þ x5 � 55;

x1 þ x2 þ x3 þ x4 � 48;

x2 þ x4 þ x5 � 34;

6x1 þ 7x5 � 104;

0� xi � 99; integers i ¼ 1; 2; . . .; 5:

the global optimal solution is ðx1; x2; x3; x4; x5; f Þ ¼ ð16; 22; 5; 5; 7; 807Þ.
Problem 14:

Max f ðx; yÞ ¼ �5:357854x21 � 0:835689y1x3
� 37:29329y1 þ 40792:141;

Subject to : a1 þ a2y2x3 þ a3y1x2 � a4x1x3 � 92:0;

a5 þ a6y2x3 þ a7y1y2 þ a5x
2
1 � 110:0;

a9 þ a10x1x3 þ a11y1x1 þ a12x1x2 � 25:0;

27� x1; x2; x3 � 45;

y1 2 78; 79; . . .; 102f g;
y2 2 33; 34; . . .; 45f g:

The global optima is ðx1; x3; y1; ; f Þ ¼ ð27; 27; 78; 32217:4Þ and it is obtained with
various different feasible combination of ðx2; y2Þ.
Problem 15:

Max f ðyÞ ¼ r1r2r3;

r1 ¼ 1� 0:1y10:2y20:15y3 ;

r2 ¼ 1� 0:05y40:2y50:15y6 ;

r3 ¼ 1� 0:02y70:06y8 ;

Subject to:
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y1 þ y2 þ y3 � 1;

y4 þ y5 þ y6 � 1;

y7 þ y8 � 1;

3y1 þ y2 þ 2y3 þ 3y4 þ 2y5 þ y6 þ 3y7 þ 2y8 � 10;

y 2 0; 1f g8:

The global optimal solution is ðy; f Þ ¼ ð0; 1; 1; 1; 0; 1; 1; 0; 0:94347Þ.
Problem 16:

Max f ðxÞ ¼ 215x1 þ 116x2 þ 670x3 þ 924x4 þ 510x5
þ 600x6 þ 424x7 þ 942x8 þ 43x9 þ 369x10
þ 408x11 þ 52x12 þ 319x13 þ 214x14 þ 851x15
þ 394x16 þ 88x17 þ 124x18 þ 17x19 þ 779x20
þ 278x21 þ 258x22 þ 271x23 þ 281x24 þ 326x25
þ 819x26 þ 485x27 þ 454x28 þ 297x29 þ 53x30
þ 136x31 þ 796x32 þ 114x33 þ 43x34 þ 80x35
þ 268x36 þ 179x37 þ 78x38 þ 105x39 þ 281x40

Subject to:

8x1 þ 11x2 þ 6x3 þ x4 þ 7x5 þ 9x6 þ 10x7 þ 3x8 þ 11x9
þ 11x10 þ 2x11 þ x12 þ 16x13 þ 18x14 þ 2x15 þ x16 þ x17
þ 2x18 þ 3x19 þ 4x20 þ 7x21 þ 6x22 þ 2x23 þ 2x24 þ x25
þ 2x26 þ x27 þ 8x28 þ 10x29 þ 2x30 þ x31 þ 9x32 þ x33
þ 9x34 þ 2x35 þ 4x36 þ 10x37 þ 8x38 þ 6x39
þ x40 � 25; 000;

5x1 þ 3x2 þ 2x3 þ 7x4 þ 7x5 þ 3x6 þ 6x7 þ 2x8 þ 15x9
þ 8x10 þ 16x11 þ x12 þ 2x13 þ 2x14 þ 7x15 þ 7x16 þ 2x17
þ 2x18 þ 4x19 þ 3x20 þ 2x21 þ 13x22 þ 8x23 þ 2x24 þ 3x25
þ 4x26 þ 3x27 þ 2x28 þ x29 þ 10x30 þ 6x31 þ 3x32 þ 4x33
þ x34 þ 8x35 þ 6x36 þ 3x37 þ 4x38 þ 6x39 þ 2x40 � 25; 000

3x1 þ 4x2 þ 6x3 þ 2x4 þ 2x5 þ 3x6 þ 7x7 þ 10x8 þ 3x9
þ 7x10 þ 2x11 þ 16x12 þ 3x13 þ 3x14 þ 9x15 þ 8x16 þ 9x17
þ 7x18 þ 6x19 þ 16x20 þ 12x21 þ x22 þ 3x23 þ 14x24 þ 7x25
þ 13x26 þ 6x27 þ 16x28 þ 3x29 þ 2x30 þ x31 þ 2x32 þ 8x33
þ 2x34 þ 2x35 þ 7x36 þ x37 þ 2x38 þ 6x39 þ 5x40 � 25; 000

10� xi � 99; i ¼ 1; 2; . . .; 20;

20� xi � 99; i ¼ 21; 22; . . .; 40:
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Initially, this problem is solved by Monte Carlo technique on a random sample of
2000 points [33] and best solution is obtained at

48 73 16 86 49 99 94 79 98 86
94 33 95 80 53 86 87 50 39 78
47 72 97 98 73 86 99 81 77 95
28 95 58 23 55 70 35 82 32 94

0
BB@

1
CCA

with fmax ¼ 1030361. But proposed algorithm found the optimal solution at

99 99 99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99 99 99

0
BB@

1
CCA

with fmax ¼ 1352439:
Problem 17:

Max f ðxÞ ¼ 50x1 þ 150x2 þ 100x3 þ 92x4 þ 55x5 þ 12x6
þ 11x7 þ 10x8 þ 8x9 þ 3x10 þ 114x11 þ 90x12
þ 87x13 þ 91x14 þ 58x15 þ 16x16 þ 19x17 þ 22x18
þ 21x19 þ 32x20 þ 53x21 þ 56x22 þ 118x23 þ 192x24
þ 52x25 þ 204x26 þ 250x27 þ 295x28 þ 82x29

þ 30x30 þ 29x231 � 2x232 þ 9x233 þ 94x34 þ 15x335
þ 17x236 � 15x37 � 2x38 þ x239 þ 3x440 þ 52x41 þ 57x242
� x243 þ 12x44 þ 21x45 þ 6x46 þ 7x47 � x48 þ x49 þ x50
þ 119x51 þ 82x52 þ 75x53 þ 18x54 þ 16x55 þ 12x56
þ 6x57 þ 7x58 þ 3x59 þ 6x60 þ 12x61 þ 13x62 þ 18x63
þ 7x64 þ 3x65 þ 19x66 þ 22x67 þ 3x68 þ 12x69 þ 9x70
þ 18x71 þ 19x72 þ 12x73 þ 8x74 þ 5x75 þ 2x76 þ 16x77
þ 17x78 þ 11x79 þ 12x80 þ 9x81 þ 12x82 þ 11x83
þ 14x84 þ 16x85 þ 3x86 þ 9x87 þ 10x88 þ 3x89 þ x90

þ 12x91 þ 3x92 þ 12x93 � 2x294 � x95 þ 6x96 þ 7x97
þ 4x98 þ x99 þ 2x100

Subject to :
X100
i¼1

xi � 7500;

X50
i¼1

10xi þ
X100
i¼51

xi � 42; 000;

0� xi � 99; i ¼ 1; 2; . . .; 100:
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This is a nonlinear optimization problem with one hundred decision variables.
Initially, it is solved by Monte Carlo technique on a random sample of 10000 points
[33] and the global optimal solution of this problem is achieved at

51 10 90 85 35 36 75 98 99 30

56 23 10 56 98 94 63 8 27 92

10 66 69 10 39 38 49 8 95 96

86 14 1 55 98 64 8 1 18 99

84 78 4 19 85 33 59 95 57 48

37 95 62 82 62 62 87 38 95 14

91 21 72 85 68 69 30 30 85 93

73 19 26 62 94 59 53 11 0 1

2 26 43 50 42 93 27 71 61 93

44 94 15 92 8 18 42 27 66 49

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

with fmax ¼ 303062435:
The global optima of problem 17 is improved by MI-LXPMGSA and it is found at

99 99 99 99 99 99 71 99 0 0

99 99 99 99 99 99 99 99 99 99

99 99 99 99 99 99 99 99 99 99

99 0 99 99 99 99 0 0 99 99

99 99 0 99 99 0 0 0 0 0

99 99 99 99 99 99 99 99 4 99

99 99 99 99 0 99 99 99 99 99

99 99 99 99 0 0 99 99 99 99

99 99 99 99 99 0 99 99 0 0

99 0 99 0 0 99 99 0 0 0

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

with fmax ¼ 304160077:
Problem 18:

Max Rðm; rÞ ¼
Y4
j¼1

1� 1� rj
� �mj

� 

;

Subject to:

g1ðmÞ ¼
X4
j¼1

vj:m
2
j � vQ;

g2ðm; rÞ ¼
X4
j¼1

CðrjÞ: mj þ exp mj=4
� �� ��CQ;
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g3ðmÞ ¼
X4
j¼1

wj: mj: exp mj=4
� �� ��wQ;

1�mj � 10 : intger; j ¼ 1; 2; . . .; 4;

0:5� rj � 1� 10�6; j ¼ 1; 2; . . .; 4;

where, vj is the product of weight and volume per element at stage j;wj is the weight of
each component at stage j; and CðrjÞ is the cost of each component with reliability rj at
stage j as follows:

CðrjÞ ¼ aj:
�T
lnðrjÞ

� 	bj

where aj and bj are constants representing the physical characteristic of each compo-
nent at stage j and T is the operating time during which the component must not fail.
The known optimal solution is Rðm; rÞ ¼ 0:999955;m ¼ ½5; 5; 4; 6� and r ¼
½0:899845; 0:887909; 0:948990; 0:851017�: the design data is given below.
CQ ¼ 400:0;wQ ¼ 500:0; vQ ¼ 250:0; T ¼ 1000 h:
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Abstract. Spider Monkey Optimization (SMO) Algorithm being a
stretcher to the domain of meta-heuristics is performing well but has a
flaw of converging early. For eradicating this flaw and improving explo-
ration capability, a new modification is intended which is named as SMO
based on metropolis principle (SMOM). The Metropolis principle is taken
from simulated annealing in expectation to improve exploration capa-
bility of SMO. In this intended modification, non-prominent solutions
also get a chance to upgrade themselves and reach global optima. This
amendment enhances the global search capability of global leader phase
which helps in sustaining exploration and exploitation of algorithm while
maintaining the convergence speed. The intended algorithm is analyzed
with SMO, one of its recent variant namely, self-adaptive spider monkey
optimization (SaSMO) and another rooted algorithm i.e. particle swarm
optimization (PSO) over 12 benchmark functions and recorded outcomes
depicts that SMOM is a noted variant among them.

Keywords: Swarm intelligence · Nature inspired algorithms · Simu-
lated annealing · Metropolis principle

1 Introduction

Nature always being a good teacher and by taking inspiration from it, humans
evolve unique algorithms commonly known as nature-inspired algorithms [13].
Population-based meta-heuristics are one of its dominant class. A bevy of par-
ticles when reform their location based on their intellectual and unified behav-
ior fall under this category [8]. Artificial bee colony (ABC) [2], Particle swarm
optimization (PSO) [7], Gravitational search algorithm (GSA) [10] are few
population-based meta-heuristics. Spider Monkey Optimization (SMO) being
a new addition to this arena lessens the flaws of older meta-heuristics like stag-
nation in its basic design and an efficient algorithm. SMO is inspired by the
intelligent food foraging behavior of spider monkeys portraying the concept of
fission-fusion society and is developed by J. C. Bansal et. al [3]. Besides, being
an efficient algorithm it has some flaws too like being stuck in local optima [9].

c© Springer Nature Singapore Pte Ltd. 2017
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This paper exhibits a newly developed variant of SMO namely Spider Monkey
Optimization Algorithm based on Metropolis principle. This variant is evolved
to strengthen the exploration capability of all spider monkeys which guide them
to reach the optimal solution while maintaining their convergence speed.

Further, the structure of the paper is as: Sect. 2 presents an overview of the
SMO algorithm proceeding to Sect. 3 representing SMO based on metropolis
principle. Section 4 depicts the performance evaluation followed by conclusion in
Sect. 5.

2 Spider Monkey Optimization

Stimulated from the intellectual conduct of spider monkeys, researchers evolved
spider monkey optimization algorithm that portrays a perfect fission-fusion
structure. It has six phases except initialization that is interpreted below, and
its brief can be read in [3].

2.1 Local Leader Phase(LLP)

This phase presents the location amendment process of all spider monkeys (SM)
which depends on SM’s persistence and social influence. Its social influence is
based on their local leader and local group members experience. Location amend-
ment depends on greedy approach by which prominent SM is chosen. Location
amendment process is given in Eq. 1:

SMnewij = SMij + r1 × (LLkj − SMij) + r2 × (SMrj − SMij) (1)

where, SMij is the persistence of ith SM in jth dimension, LLkj represents the
local leader of kth group and SMrj is rth randomly selected SM. r1 is random
number between (0,1) and r2 varies in the range of (−1,1).

2.2 Global Leader Phase (GLP)

Taking inspiration from global leader and get influenced from neighbour, SM
update its position. In this phase, location is updated on the basis of fitness as
SM having high fitness get more chance to update itself as compared to less fit
SM. The location amendment process is given in Eq. 2:

SMnewij = SMij + r1 × (GLj − SMij) + r2 × (SMrj − SMij) (2)

Here, GLj is the location of global leader of the bevy. After amendment, greedy
selection is prescribed on the selection of individuals, i.e. if the fitness of monkey
is high, then its new location is selected else old one.

if fitnew (SM)> fitold(SM)
select new

else
select old
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2.3 Global Leader Learning Phase (GLLP)

This phase is about learning of global leader in whole bevy and monkey with
highest fitness get elected as global leader. If global leader doesn’t amend its
location then global limit count is set to 0 else incremented by 1.

2.4 Local Leader Learning Phase (LLLP)

Every sub-group has its leader that is elected in this phase. If a local leader
doesn’t amend itself then, a counter named local limit count is increased by 1.

2.5 Local Leader Decision Phase (LLDP)

If local leader of any bevy doesnt get relocated to a distinct edge known as Local
Leader Limit (LLL), then all the monkeys of that group amend their locations
either by random initialization or by using global leader wisdom through pr i.e.
perturbation rate given in Eq. 3:

SMnewij = SMij + r1 × (GLj − SMij) + r1 × (SMij − LLkj) (3)

2.6 Global Leader Decision Phase (GLDP)

If the global leader doesnt get relocated to a distinct edge known as Global
Leader Limit (GLL), then the global leader splits the bevy into smaller subgroups
or fuse subgroups into one unit group.

3 Spider Monkey Optimization Algorithm Based
on Metropolis Principle

SMO has a major flaw of being stuck in local optima due to which it bounces the
global optima. In global leader phase, there are possibility that global leader get
stuck or do not explore the search space properly. For enhancing the exploration
characteristics of the algorithm, spider monkey optimization algorithm based on
metropolis principle is depicted.

3.1 Modified Global Leader Phase

In global leader phase, the location amendment process of SM is given in Eq. 2.
From this equation, a new location of SM is evaluated, and then we have one old
position represented by SMij and new location by SMnewij . In the basic version
of SMO greedy approach is used. The greedy approach has a dominant flaw that
if the strength of the new solution is greater, then it is elected. Whereas, it may
be possible that a non-prominent solution also covers the possibility of reaching
to global optima.
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For eradicating this flaw, new modification is intended i.e. based on metropo-
lis principle taken from simulated annealing [5,6]. It simulates the cooling behav-
ior of the material. By this principle, non-prominent solutions are also accepted
with a probability in the intended modification which is evaluated as shown in
Eq. 5.

ΔC = Cnew − Cold (4)
P (ΔC) = exp(−ΔC/T ) (5)

In Eq. 4, Cnew and Cold are cost of new and old solutions respectively and
their difference is saved in ΔC. T represents the temperature i.e. used to evaluate
probability exponentially. From Eqs. 4 and 5, it is possible that if the cost of a
newly generated solution is less then also it is confirmed. This principle is the
backbone of simulated annealing [4] as by this chance of stagnation is less because
it has the power of accepting non-prominent solutions with probability.

Now, greedy selection of amended global leader phase is shown as:

if (fitnew (SM)> fitold)(SM) ‖ r > exp(−(fitnessnew − fitnessold)/T )
select updated solution

else
select previous solution

Here, r is a random number between (0,1), and T is the temperature which is
at 20. In above selection, there are two conditions of election reflecting the newly
selected location of a SM. Firstly, if an SM attains high strength at an altered
location, then it is elected. Secondly, in the case of non-prominent solutions if the
random number is greater than probability then also the non-prominent solution
is considered but with some probability. Through this modification, SM that
are not coming in the range of strength are also elected that is solution giving
high strength are chosen, but non-prominent are elected too which overcome
the flaw of global leader phase. It results in bettering global search capability
of global leader phase. By this modification, exploration ability is upgraded
because of which premature convergence speed is maintained, and there are
better possibilities to reach global optima.

4 Experimental Outcomes

4.1 Considered Test Problems

The proposed algorithm SMOM is tested over 12 benchmark functions to exam-
ine its indulgence among other rooted algorithms. These 12 benchmark functions
are taken from reference papers of taken algorithms for testing and are depicted
in Table 1.
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Table 1. Test problems

Test Prob-
lem

Objective function Search Range Optimum
Value

D Acceptable
Error

Alpine f1 =
∑D

i=1 |xisin xi + 0.1xi| [-10, 10] f(0) = 0 30 1.0E − 05

Michalewicz f2 = − ∑D
i=1 sinxi(sin(

i.xi
2

π )20) [0, π] fmin =
−9.66015

10 1.0E − 05

Salomon
Problem

f3 = 1 − cos(2π
√∑D

i=1 x2
i ) + 0.1(

√∑D
i=1 x2

i ) [-100, 100] f(0) = 0 30 1.0E − 01

Step func-
tion

f4 =
∑D

i=1 (�xi + 0.5�)2 [-100, 100] f(−0.5 ≤ x ≤
0.5) = 0

30 1.0E − 05

Inverted co-
sine wave

f5 = − ∑D−1
i=1

(
exp

(
−(x2

i +x2
i+1+0.5xixi+1)

8

)
× I

)
[-5, 5] f(0) = −D + 1 10 1.0E − 05

where, I = cos
(
4
√

x2
i + x2

i+1 + 0.5xixi+1

)
Levy mon-
talvo 1

f6 = Π
D (10sin2(Πy1)+

∑D−1
i=1 (yi−1)2×(1+10sin2(Πyi+1))+

(yD − 1)2), where yi = 1 + 1
4 (xi + 1)

[-10, 10] f(−1) = 0 30 1.0E − 05

Shifted
Rosenbrock

f7 =
∑D−1

i=1 (100(z2
i −zi+1)

2+(zi −1)2)+fbias, z = x−o+1,
x = [x1, x2, ....xD], o = [o1, o2, ...oD]

[-100, 100] f(0) = fbias =
390

10 1.0E − 01

Shifted
Griewank

f8 =
∑D

i=1
z2

i
4000 − ∏D

i=1 cos(
zi√

i
) + 1 + fbias, z = (x − o),

x = [x1, x2, ....xD], o = [o1, o2, ...oD]

[-600, 600] f(0) = fbias =
−180

10 1.0E − 05

Shifted Ack-
ley

f9 = −20 exp(−0.2
√

1
D

∑D
i=1 z2

i )−exp( 1
D

∑D
i=1 cos(2πzi))+

20 + e + fbias, z = (x − o), x = (x1, x2, ........xD), o =
(o1, o2, ........oD)

[-32, 32] f(0) = fbias =
−140

10 1.0E − 05

Shubert f10 = − ∑5
i=1 i cos((i + 1)x1 + 1)

∑5
i=1 i cos((i + 1)x2 + 1) [-10, 10] f(7.0835, 4.8580) =

−186.7309
2 1.0E − 05

Sinusoidal f11 = −[A
∏D

i=1 sin(xi − z) +
∏D

i=1 sin(B(xi − z))], A =
2.5, B = 5, z = 30

[0, 180] f(90 + z) =
−(A + 1)

10 1.0E − 02

Pressure
Vessel

f12=0.6224x1x3x4 + 1.7781x2x2
3 + 3.1661x2

1x4 + 19.84x2
1x3 x1=[1.1, 12.5]

x2=[0.6, 12.5]
x3=[0, 240]
x4=[0, 240]

0 6 1.0E − 05
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4.2 Experimental setting

To substantiate that SMOM is a competed member in arena of population based
meta-heuristics, comparative examination is performed among SMOM, SMO [3],
PSO [7] and SaSMO [11]. Following experimental setup is done:

– Population of Spider Monkeys (N) = 50;
– Max number of groups = 5;
– LLL = 1500
– GLL = 50
– Settings of SMO, PSO, and SaSMO are taken from their original papers

[3,7,11].

4.3 Results

Table 2 unfolded the attained outcomes of all the taken algorithms SMO, PSO,
SaSMO and SMOM based on above parameter settings. All taken algorithms are
tested on 100 runs in C++. Results are shown in the form of standard deviation
(SD), mean error (ME), average function evaluation (AFE) and success rate
(SR).

Results in above Table 2 exhibits that SMOM is a better variant than SMO,
PSO, and SaSMO regarding reliability and accuracy at a cost of function eval-
uations in some benchmarks because it is giving a remarkable success rate. In
addition to above results box-plots analysis of compared algorithms in terms of
success rate is presented. Box-plots analysis [12] of SMO, PSO, SaSMO, and
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Table 2. Comparison of outcomes of test problems

T P Algorithm SD ME AFE SR

f1 SMO 3.46E−06 9.79E−06 79051.30 99

SaSMO 2.82E−04 4.17E−04 98985.87 0

PSO 1.55E+00 2.30E−01 90070.00 72

SMOM 5.16E−07 9.44E−06 78543.94 100

f2 SMO 4.21E−03 4.95E−04 56524.47 98

SaSMO 4.88E−04 5.45E−05 54914.81 98

PSO 4.20E−01 4.20E−01 99402.50 2

SMOM 3.56E−06 4.84E−06 50766.33 100

f3 SMO 2.55E−02 1.93E−01 200862.84 7

SaSMO 1.35E−01 1.56E+00 101746.98 0

PSO 8.01E−02 3.98E−01 100003.00 1

SMOM 3.36E−02 1.87E−01 195533.78 13

f4 SMO 0.00E+00 0.00E+00 16239.24 100

SaSMO 0.00E+00 0.00E+00 21085.75 100

PSO 0.00E+00 0.00E+00 36092.50 100

SMOM 0.00E+00 0.00E+00 13021.23 100

f5 SMO 5.21E−02 5.25E−03 80817.68 99

SaSMO 1.56E−01 5.05E−02 91340.72 45

PSO 6.05E−01 1.58E+00 99659.50 2

SMOM 1.76E−06 8.09E−06 73350.00 100

f6 SMO 1.03E−02 1.05E−03 18723.73 99

SaSMO 1.74E−06 8.12E−06 39102.07 100

PSO 6.00E−07 9.30E−06 33252.50 100

SMOM 8.32E−07 8.92E−06 11838.42 100

f7 SMO 9.67E+00 2.50E+00 172472.86 39

SaSMO 1.35E+00 9.54E−01 94387.43 23

PSO 2.51E+01 8.38E+00 98430.50 3

SMOM 3.20E+00 1.33E+00 162517.47 50

f8 SMO 4.79E−03 1.79E−03 132298.41 81

SaSMO 2.83E−03 9.19E−04 59303.68 86

PSO 5.61E−02 6.59E−02 100050.00 0

SMOM 3.33E−03 9.95E−04 127305.92 87

f9 SMO 1.21E−06 8.46E−06 9126.81 100

SaSMO 1.30E−06 8.46E−06 33002.44 100

PSO 9.86E−07 8.95E−06 24719.00 100

SMOM 1.06E−06 8.60E−06 9097.11 100
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Table 2. (Continued)

T P Algorithm SD ME AFE SR

f10 SMO 5.29E−06 4.61E−06 4647.06 100

SaSMO 5.52E−06 4.82E−06 8944.04 100

PSO 2.49E−03 7.10E−04 46715.00 67

SMOM 5.24E−06 4.57E−06 4255.02 100

f11 SMO 6.37E−03 1.23E−02 158030.72 58

SaSMO 1.31E−02 2.40E−02 100020.13 11

PSO 3.47E−01 7.13E−01 96757.00 9

SMOM 1.22E−02 1.26E−02 147513.7 72

f12 SMO 2.15E−04 6.02E−05 114575.91 55

SaSMO 2.02E+00 1.86E+00 103297.65 0

PSO 3.28E−05 3.22E−05 59489.50 60

SMOM 9.29E−04 1.51E−04 97740.30 64

SMOM is shown in Fig. 1 representing the empirical distribution of data graphi-
cally. Figure 1 shows that variation, interquartile range and medians of developed
SMOM is higher than other three. After this, a comparison is made by using the
performance indices (PI) graph [1] based on ME, SR, and AFE. The computed
values of PI for SMO, SaSMO, PSO and SMOM are portrayed in Fig. 2.

SMO PSO SaSMO SMOM
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Fig. 1. Boxplot graph for success rate

Figure 2(a), (b) and (c) show the performance index of success rate, an aver-
age number of function evaluations and mean error respectively. Figure 2 indi-
cates that PI of SMOM is notable as compared to other variants.
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Fig. 2. Performance index for test problems; (a) for case (1) (b) for case (2) and (c)
for case (3).

5 Conclusion

Eradicating the pitfalls of SMO, Metropolis step is applied to improve the explo-
ration capability of SMO and avoiding stagnation in the population. This paper
presents the modified version of SMO that is more reliable and accurate, namely
metropolis operator based spider monkey optimization. This modification helps
the global leader to achieve an optimal solution by accepting a non-prominent
solution with some probability by using metropolis step. For testing the inten-
sity of SMOM, it is examined over 12 benchmark functions, and results show
that it is spell variant. Through statistical analysis, it is demonstrated that the
proposed strategy is more reliable (better success rate) at the cost of function
evaluations. In future, it can be applied to real-world optimization problems and
complex optimization problems of continuous in nature.
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Abstract. To construct Boolean function, many heuristic techniques
have been used like NSGA-II, PSO, Ant Colony Method etc., but results
are good only for few variables and complexity of these methods are very
high. So, to reduced the complexity and to get desired results instead of all
solutions, we have introduced a new concept of biasedness in our proposed
method. We have used NSGA-II as our heuristic technique with concept
of biasedness and got desired Boolean functions for 6 and 7 variables.

Keywords: MOOP · Genetic algorithms · Boolean functions ·
Biasedness · Nonlinearity

1 Introduction

In literature, there are many methods (heuristic as well as concatenation) to con-
struct optimized Boolean functions. But heuristic techniques are mostly used as
complexity of these methods are comparatively less and we can generate Boolean
functions on higher variables also. In [1] Aguirre et al. have given a very good
approach for multiobjectives. They took two and three objectives, and compared
the results with two stage optimization. In [2], Camion et al. mentioned a new
approach based on orthogonal arrays and constructed Boolean functions hav-
ing good correlation immunity. In [3], Clark et al. gave a new two stage method
based on simulated annealing, and result listed in this paper was better than pre-
vious results. But that method was able to get the optimum Boolean functions
only for some limited variables. In [10,13,14], Maitra et al. constructed correla-
tion immune functions keeping their nonlinearity optimal. First time they have
constructed 1-resilient Boolean function with maximum nonlinearity for 8 vari-
ables and that method was based on concatenation. In [6,8,9], Clark et al. have
found some functions with best tradeoff among Boolean function’s properties.
In [11,12,15], there are some construction methods but these methods are not
applicable for multiobjectives and complexity of these methods is not consider-
able. In [7], we have given a method based on multiobjective optimization (based
on genetic algorithms) but were able to get the functions only for 4, 5, 6 and 7
variables and complexity of method was high.

c© Springer Nature Singapore Pte Ltd. 2017
K. Deep et al. (eds.), Proceedings of Sixth International Conference
on Soft Computing for Problem Solving, Advances in Intelligent Systems
and Computing 546, DOI 10.1007/978-981-10-3322-3 11



Introducing Biasedness in NSGA-II to Construct Boolean Function 123

There are many others heuristic and other types of techniques available in
literature. But to find good trade-off among the properties, only a heuristic tech-
nique is not sufficient. We want a technique that is having less complexity and
should work for large number of variables. If we want to optimize many proper-
ties simultaneously, technique should be multiobjective also. So, by introducing
biasedness concept [4] in heuristic technique, we tried to find good Boolean func-
tions with less complexity. So, in present paper, we have given a new concept
(biasedness) and got some optimum results.

2 Some Definition [1,7]

2.1 Boolean Function

Any function g : K
n
2 → K2 is called a Boolean function of n-variables. Kn

2 is
vector space (n-dimensional) over K2 where K2 represents a field of two elements.
Zn is called the set of all Boolean functions (n-variables).

2.2 Balancedness

If number of 0’s in truth table representation is same as the number of 1’s, than
function is called balanced and the property is known as the balancedness.

2.3 Walsh Hadamard Transform

Boolean function can be represent in term of Walsh Hadamard Transform
(WHT) also. If Lλ is linear function, specified by λ ∈ K

n
2 , the we denote WHT

by Hg(λ) and can be defined as

Hg(λ) =
∑

x∈K
n
2

(−1)g(x)⊕λ.x. (1)

2.4 Non-linearity

Nonlinearity of a Boolean function is minimum hamming distance of that func-
tion from the set of all affine functions. It can be given by

nl(g) = (2n − max
λ∈K

n
2

|Hg(λ)|)/2. (2)

2.5 Autocorrelation

The derivative of Boolean function g(x), with respect to a vector s, is defined
as g(x)

⊕
g(x + s), where x and s ∈ K

n
2 . So, in polar form, derivative can be

defined as ĝ(x)ĝ(x + s). The autocorrelation of a function g is denoted by Ag(s)
and is defined by

Ag(s) =
∑

x∈K
n
2

ĝ(x)ĝ(x + s),

where ĝ(x) = (−1)g(x).
For a good Boolean function g, value of Ag should small.
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2.6 Correlation Immunity

A Boolean function g ∈ Bn is said to be correlation immune (order m) if
Hg(α) = 0 for all α ∈ K

n
2 such that 1 ≤ wH(α) ≤ m. Moreover, if g is bal-

anced than it is called the m-resilient.

3 Non-dominated Sorting Genetic Algorithm II
(NSGA-II) with Biasedness

Deb et al. [5] doveloped NSGA-II, that is a generational Multiobjective Opti-
mization Evolutionary Algorithm (MOEA). It is based on three modules and we
have explained the method in [7]. We have applied the algorithms on our devel-
oped method and got some good Boolean function [7]. But only this technique
was not sufficient to get desired Boolean functions as complexity of method was
comparatively high. Deb [4] discussed a sharing approach which uses a biased
distance metric. By introducing biasedness means we give extra weightage to
some specific objective function by introducing a constraint (same as objective
function) into MOOP. In present paper, we have introduced a new concept of
biasedness in NSGA-II to reduce the complexity. In our MOOP, we have formed
first objective to optimize nonlinearity and nonlinearity is most important prop-
erty here to optimize. So, in our MOOP, first objective and first constraint are
same.

4 Formulation of MOOP

It consists of (i) Introduction of biasedness into MOOP and (ii) Application of
NSGA-II.

(i) Formulation of MOOP with biasedness: Our main task is to form objec-
tive functions. To get optimum value of Nonlinearity, balancedness, autocorre-
lation and resiliency is our motive. We have formed first objective to optimize
nonlinearity, second to optimize resiliency, and we have optimized autocorrela-
tion by third objective. To get balanced functions, we have introduced two con-
straints. Nonlinearity is very important property. Hence to give extra weightage
to first objective we have introduced concept of biasedness and added another
constraints that is same as first objective.

First objective function: Based on the definition of nonlinearity [1,7]

nl = 2(n−1) − 1/2(max
λ

Hg(λ)),

We know maximum value of nonlinearity for 6 variables is 48 and for 7 variables
is 56. So, to form first objective function we have introduced a new constant
say T. Now, we want nl to take the value equal to T. So, first objective can be
formed as follows:

g1 = |nl − T |, (3)
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g1 is our the first objective function, where T is constant value for a fixed number
of variables. (Here we take its value as 48 for 6 variables and as 56 for seven
variables.)

Second objective function: Second objective is to optimize autocorrelation.
So, we have directly assigned the value of autocorrelation equal to second
objective.

To formulate second objective, we have used definition of autocorrelation
(Definition 2.5). According to the above definition of autocorrelation, we have
formulated

Ag(λ) =
∑

x∈K
n
2

(−1)g(x)⊕g(x+λ),

and Ag(0) is maximum,
So,

g2 = max
λ

|Ag(λ)| (4)

is our second objective function, where λ ∈ K
n
2 and λ �= zero

Now,
g1 = |nl − T |,

g1 = |2(n−1) − 1/2
∑

x∈K
n
2

(−1)g(x)⊕λ.x − T |, (5)

Similarly, for all λ ∈ K
n
2 ,

g2 = max
λ

∑
x∈K

n
2

(−1)g(x)⊕g(x+λ). (6)

Now

Third objective function: According to the definition 2.6, for a Boolean func-
tion to be m resilient, value of Walsh Hadamard Transform should be zero cor-
responding to all x ∈ K

n
2 having weight ≤ m. So, to form out third objective,

we take all WHT corresponding to all such x ∈ K
n
2 . We added all WHT and

assigned them to the third objective. Now our purpose is to minimize this third
objective (equal to zero). This is because with zero value of third objective, we
will get m-resilient functions. So, our third objective is,

g3 =
∑

λ

|Hf (λ)| (7)

where wH(λ) ≤ m for λ ∈ F
n
2

So, we design MOOP as:

min F = (g1, g2, g3)
subject to∑

x∈K
n
2

g(x) = 2n−1,

nl = T.

⎫⎪⎪⎬
⎪⎪⎭ (8)
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∑
x∈K

n
2

g(x) should be equal to 2n−1 for balanced function. To use biasedness
sharing technique, the second constraint nl = T is taken to give more weightage
to the first objective.

(ii) Application of above method: After applying above method (with biased-
ness concepts) to the MOOP, we get the desired results. Results are given in
Sect. 5. The list of parameters are listed in Table 2 (for 6 variables) and 3 (7
variables).

5 Result and Discussion

We got desired results by applying our method (In Sect. 4) on MOOP and
got some good Boolean functions from cryptography point of view. These bal-
anced functions have the best trade-off among non-linearity, autocorrelation and
resiliency. In Table 1, we have listed those functions for 6 and 7 variables and
parameters are given in Table 2 respectively. We have compared our results with
literature [1,3] and can conclude that our results are at least as better.

Table 1. Obtained results

No. of variables Previous results Our results

6 nl= 48, Ag =8, resiliency=1 nl= 48, Ag = 4, resiliency=1.

7 nl= 56, Ag =8, resiliency=1 nl= 56, Ag = 8, resiliency=1

Table 2. Parameters

Parameters For 6 variables For 7 variables

Size of generation 2000 4000

Size of population 500 2000

Probability of crossover 0.8 0.8

Probability of mutation 0.1 0.11

Random seed number 0.9876 0.9976

Number of bits (for binary variables) 1 1

How many objective functions 3 3

How many constraints 2 2

6 Conclusion

In present paper, we have developed a new method to design good Boolean
functions from cryptography point of view. We got Boolean functions for 6 and
7 variables that are better or at least comparable with [1,3]. So, we can conclude,
our method is at least as better as the methods available in the literature.
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Abstract. In distributed databases, data is replicated and fragmented across
multiple disparate sites spread across a computer network. Consequently, there
can exist large numbers of possible query plans for a distributed query. This
number increases with increase in the number of sites containing the replicated
data. For large numbers of sites, computing an efficient query processing plan
becomes a computationally expensive task. This necessitates the devising of a
distributed query processing strategy capable of generating good quality query
plans, from amongst all possible query plans, which minimize the total cost of
processing a distributed query. This distributed query plan generation (DQPG)
problem, being a combinatorial optimization problem, has been addressed in this
paper using the modified cuckoo search algorithm. Accordingly, a modified CSA
(mCSA) based DQPG algorithm (DQPGmCSA), which aims to generate good
quality Top-K query plans for a given distributed query, has been proposed herein.
Experimental based comparison ofDQPGmCSAwith the existingGA basedDQPG
algorithm (DQPGGA) shows that the former is able to generate comparatively
better quality Top-K query plans, which, in turn, would result in a reduction in the
query response time and thereby enabling efficient decision making.

Keywords: Distributed Query Processing � Distributed Query Plan Generation
(DQPG) � Swarm intelligence � Cuckoo Search Algorithm (CSA)

1 Introduction

In distributed databases, data is stored across multiple disparate sites distributed across
a computer network [2, 7]. Queries posed on such data would require transmission of
data between these sites. Since data is replicated at multiple sites, there could be several
possible semantically equivalent query plans for answering any distributed query.
Amongst these, the distributed query processing (DQP) strategy aims to compute such
query plans that would reduce the total query processing cost. This cost includes the
local processing cost as well as the site-to-site communication cost [4, 21]. Local
processing cost comprises the CPU cost and the I/O cost whereas, the site-to-site
communication cost depends on the communication network and the amount of data
transfer between sites. Since communication cost is the dominant cost, its reduction
becomes the prime goal of any DQP strategy [7]. Further, since the data is fragmented
and replicated at multiple disparate sites, the number of possible query plans increases
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exponentially with an increase in the number of sites required for processing a dis-
tributed query. For a large number of sites, the computation of an efficient query
processing plan becomes a computationally expensive task. One such problem
regarding the computation of efficient distributed query plans, from amongst large
numbers of distributed query plans, has been given in [15, 16]. This problem, referred
to as the Distributed Query Plan Generation (DQPG) problem, has been addressed in
this paper. The DQPG problem given in [15, 16] is concerned with the generation of
‘close’ distributed query plans that minimize the query proximity cost. The close query
plans, as defined in [15, 16], are those that involve fewer sites that have higher relation
concentrations at the participating sites. These query plans incur a lesser site-to-site
communication cost. As an example, consider the distributed SQL query given in
Fig. 1. The relation–site matrix, for the six relations accessed by this distributed query,
is also shown in Fig. 1. An entry ‘1’ or an entry ‘0’ in the relation-site matrix indicates
the presence or absence respectively of a relation at the corresponding site. Some of the
possible legal query plans are shown in Fig. 2. For example, the first query plan
indicates that relation R1 is in site S6, relation R2 in site S1, relation R3 in site S4,
relation R4 in site S1, relation R5 in site S2 and relation R6 at site S1.

Select A1, A2, A3, A4, A5
From R1, R2, R3, R4, R5, R6
Where R1.A1=R2.A1 and

R2.A2=R3.A2 and
R3.A3=R4.A3 and
R4.A4=R5.A4 and
R5.A5=R6.A5 

Relation\ Site S1 S2 S3 S4 S5 S6
R1 0 1 1 0 0 1
R2 1 0 1 1 0 1
R3 1 1 0 1 0 1
R4 1 0 0 1 0 1
R5 0 1 0 0 1 0
R6 0 1 1 1 0 1

Fig. 1. Distributed query and relation-site matrix

Fig. 2. Legal query plans and their QPC values
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To compute the optimal query, from amongst all query plans, is computationally
expensive. For N relations, where each relation is stored at M sites, the total number of
possible query plans is MN. This value increases with an increase in the number of
relations and the number of sites and, thus, for higher values of N and M, it becomes
computationally infeasible to compute an optimal query plan. In order to address this,
the DQPG problem aims to generate a set of good quality query plans that minimize the
query proximity cost (QPC) defined below [15, 16]:

QPC ¼
XS
i¼1

Si
N

1� Si
N

� �

where, S is the number of sites involved in the query plan, N is the number of relations
accessed by the query and Si is the number of times the ith site is used in the query plan.
The value of QPC varies from 0 to (N-1)/N. A lower QPC value is desirable, as it
involves fewer sites and higher concentrations of relations. The QPC computation of
the query plans given in Fig. 2, are given in Fig. 3. The 6th query plan is considered as
the most ‘close’ query plan, as it involves the least number of sites, i.e. 2, and has a
higher concentration of relations. On the other extreme, the 3rd query plan is the worst
query plan, as it involves the maximum number of sites, i.e. 5.

This DQPG problem, being a combinatorial optimization problem, has already
been addressed using PSO in [12], HBMO in [11], ACO in [14] and BCO in [13]. In
this paper, the modified Cuckoo Search Algorithm (mCSA), given in [17], has been
adapted and discretized to address the DQPG problem. Further, the query plans gen-
erated using the proposed mCSA based DQPG algorithm (DQPGmCSA) shall be com-
pared with those generated using the GA based DQPG algorithm (DQPGGA) [15, 16].

The paper is organized as follows: Sect. 2 discusses the DQPG using mCSA fol-
lowed by an illustrative example based on it in Sect. 3. Section 4 discusses the
experimental results. The conclusion is given in Sect. 5.

2 DQPG Using mCSA

Cuckoos are captivating birds. They are not only known for their melodious voice, but
also exhibit interesting breeding behavior. Cuckoos, instead of creating their own nests,
lay their eggs in nest of birds belonging to different species. They have the ability to
mimic the colors and patterns of the eggs of the birds, whose nests they use to lay their
eggs. The host bird is unable to distinguish the cuckoo’s eggs from their own eggs [8].
The cuckoo eggs hatch slightly earlier than those of the host bird’s egg whereupon the
cuckoo chicks dislodge the host birds eggs out of the nest [19]. Also, these cuckoo
chicks are adept in mimicking the sound of the host bird chicks in order to get a greater
share of the food brought in by the host bird. Such behavior of cuckoos has been the
major inspiration behind the cuckoo search algorithm (CSA) [19]. CSA has been suc-
cessfully applied to various engineering optimization problems like the travelling
salesman problem [5], the Knapsack problem [22], the independent test path generation
for software testing [10], the optimizing the web service composition process [3], the
job scheduling problem [1], design of a welded beam [20] etc. In this paper,
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the modified cuckoo search algorithm (mCSA), given in [17], has been used to address
the DQPG problem. mCSA modifies CSA by considering different step sizes for nest
abandonment and nest replacement. Also, mCSA considers the interaction between the
top cuckoos before they lay their eggs. Algorithm mCSA [17, 18] is given in Fig. 3.

mCSA commences with the initialization of the iteration count t to 1. An initial
random population of cuckoo eggs, of dimension n, is generated in the subsequent
step. Next, pa fraction of the worst cuckoo eggs are selected for abandonment. For
every cuckoo egg xi, amongst the worst cuckoo eggs, the step size a for Lévy Flight is
computed using the following equation:

a ¼ A=
p
t

where A is a constant, which is generally kept equal to 1, and t is the iteration counter.
The Lévy flight [9] is, thereafter, applied on cuckoo egg xi to generate a new cuckoo
egg xi’, which replaces xi. The Lévy flight operator is applied in a similar manner, as
applied in [19], using the step size defined above. Next, pb fraction of top cuckoo eggs
are selected for interaction. For each such top cuckoo egg xi, the step size a for Lévy
Flight is computed using the following equation:

a ¼ A=t2

Fig. 3. Algorithm mCSA
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where A is a constant, which is generally kept equal to 1, and t is the iteration counter.
Next, Lévy flight is applied to generate xi’ from xi. A random cuckoo egg xj from the
population is selected in the subsequent step. Thereafter, if the condition f(xj) > f(xi

’) is
satisfied, xj replaces xi’. Next, the cuckoo eggs are ranked according to their fitness
values and the above steps are repeated for a pre-specified maximum number of iter-
ations. Thereafter, the best cuckoo eggs are produced as the output. In this paper, mCSA
has been adapted and discretized to solve the DQPG problem.

mCSA [17] is a modified version of the original CSA [19], which involves inter-
action between top cuckoo eggs. So, in the context of the DQPG problem, there would
be interaction between the top query plans. A different Lévy flight operator is used in
nest replacement and the abandonment of the worst query plans. The Lévy flight
operator is discussed below:

The Lévy flight equation to replace the worst cuckoo eggs is given as:

xiþ 1 ¼ xi�a : t�1=2

where xi+1 represents the new solution generated around xi, which is the original
solution, ⊕ denotes the entry wise multiplication and a denotes the step size, which is
taken as 1 for most problems. In this adaptation, the change in query plan is represented
by b, which is computed using the following equation:

b ¼ a : t�1=2; where a ¼ N

The Lévy flight operator used to replace the worst cuckoo eggs is given below:

xiþ 1 ¼ xi�a : t�2

The value of b is computed by using the following equation.

b ¼ a : t�2; where a ¼ N

The value of a is taken as N, i.e. the magnitude of change lies between 1 and N.
mCSA, with the above mentioned Lévy distribution, has been adapted and dis-

cretized to solve the DQPG problem. Accordingly, the mCSA [17] based DQPG
algorithm (DQPGmCSA) is proposed and is discussed next.

2.1 DQPGmCSA

DQPGmCSA is given in Fig. 4. DQPGmCSA takes the relation-site matrix, the number of
relations accessed by the distributed query N, fraction of nests to be abandoned pa,
population size P, maximum number of iterations tmax, total query plans selected for
applying Lévy flight m and the number of top query plans pb, as input, and produces
the Top-K query plans, as output.
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In Step 1, the iteration counter t is initialized to 1. In Step 2, an initial population of
P query plans is randomly generated using the relation-site matrix. Size of each query
plan is N, where N is the total number of relations accessed by the distributed query.
For each query plan, its QPC is computed. In Step 3, pa fraction from among the worst
query plans is selected. For each such query plan, Step 5 to Step 7 is performed as
under:

In Step 5, Lévy flight is applied and the value of b is computed by using the
following equation:

b ¼ a : t�1=2; where a ¼ N

Next, the new query plan qpi’ is generated, by changing b bits randomly in the
original query plan qpi. qpi’ replaces qpi in Step 6. In Step 8, pb fraction of the top
query plans are selected. As per Step 9, for each such query plan, Step 10 and Step 11
are performed.

Fig. 4. Algorithm DQPGmCSA
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In Step 10, Lévy flight is performed, for which the value of b is computed by using
the following equation:

b ¼ a : t�2; Where a ¼ N

After the new query plan qpi’ is generated, by changing b bits in the original query
plan qpi, its QPC value is evaluated. In Step 11, another query plan qpj is randomly
selected from the population and its QPC is compared with the QPC of query plan qpi’
and the fitter amongst them is retained in the population. In Step 13, the iteration
counter t is incremented by 1. In Step 14, the query plans are ranked according to their
QPC whereafter Step 3 to Step 13 are repeated for a pre-specified maximum number of
iterations tmax. Thereafter, in Step 15, the Top-K query plans are produced, as output.

Next, an example illustrating the use of DQPGmCSA to generate Top-K query plans
is given.

3 An Example

Consider the distributed SQL query and the relation-site matrix given in Fig. 1. Let the
value of Pa and Pb be 0.7 and 0.25 respectively. The generation of Top-5 query plans
using DQPGmCSA is given below:

Initialize the iteration counter t = 1. Next, randomly generate an initial population
of P = 10 query plans, QP = {qp1, qp2 …qp10} and compute their QPC. The 10 query
plans, along with their QPC are given in Fig. 5. Select pa = 0.7 fraction of worst query
plans to be abandoned from the population. The 7 worst query plans selected are given
in Fig. 6. On each of these worst query plans qpi, Lévy Flight is applied to generate a
new query plan qpi’. The value of b is computed, as given below:

b ¼ a : t�1=2 ¼ 6� 1�1=2 ¼ 6

A new query plan qpi’ is generated by changing b bits in the original query plan qpi
and its QPC is evaluated. The modified query plans, along with their QPC, are given in
Fig. 7. Suppose pb = 0.25 fraction of the top query plans are to be selected. Then the
Top-2 query plans selected are given in Fig. 8.

Query Plan No. Query Plan QPC
qp1 [ 6, 6, 5, 6, 5, 6 ] 0.44
qp2 [ 2, 1, 1, 1, 2, 2 ] 0.50
qp3 [ 3, 4, 4, 4, 2, 3 ] 0.60
qp4 [ 2, 4, 1, 1, 2, 4 ] 0.66
qp5 [ 2, 3, 4, 4, 5, 2 ] 0.74
qp6 [ 3, 6, 1 ,6, 5, 6 ] 0.74
qp7 [ 2, 4, 5, 1, 2, 3 ] 0.77
qp8 [ 6, 1, 5, 4, 5, 3 ] 0.77
qp9 [ 6, 1, 2, 4, 5, 3 ] 0.94
qp10 [ 2, 6, 1, 4, 5, 3 ] 0.94

Fig. 5. Randomly generated population
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On each such query plan qpi, Lévy flight is applied to generate a new query plan
qpi’. The value of b is computed as given below:

b ¼ a : t�2 ¼ 6� 1�2 ¼ 6

The new query plan qpi’ is computed by changing 6 bits in the original query plan
qpi. The modified query plans are given in Fig. 9.

Next, the fitness of the query plan qpi’ is compared with the fitness of another
randomly selected query plan, say qpj, from the population and the fitter query plan,
among these two, is retained in the population. Let the randomly selected query plans
be qp7 and qp2. The selection procedure of query plans to be retained in the population
is given in Fig. 10.

Query Plan No. Query Plan QPC
qp4 [ 2, 4, 1, 1, 2, 4 ] 0.66
qp5 [ 2, 3, 4, 4, 5, 2 ] 0.74
qp6 [ 3, 6, 1 ,6, 5, 6 ] 0.74
qp7 [ 2, 4, 5, 1, 2, 3 ] 0.77
qp8 [ 6, 1, 5, 4, 5, 3 ] 0.77
qp9 [ 6, 1, 2, 4, 5, 3 ] 0.94
qp10 [ 2, 6, 1, 4, 5, 3 ] 0.94

Fig. 6. Worst selected query plans

Query Plan Random string Modified Query Plan QPC
qp4 = [ 2, 4, 1, 1, 2, 4 ] [ 1 1 1 1 1 1 ] [ 3 1 1 6 5 2 ] 0.77
qp5 = [ 2, 3, 4, 4, 5, 2 ] [ 1 1 1 1 1 1 ] [ 6 3 2 4 5 3 ] 0.77
qp6 = [ 3, 6, 1 ,6, 5, 6 ] [ 1 1 1 1 1 1 ] [ 2 1 5 2 5 6 ] 0.72
qp7 = [ 2, 4, 5, 1, 2, 3 ] [ 1 1 1 1 1 1 ] [ 6 1 2 1 2 6 ] 0.66
qp8 = [ 6, 1, 5, 4, 5, 3 ] [ 1 1 1 1 1 1 ] [ 2 3 1 1 2 6 ] 0.72
qp9 = [ 6, 1, 2, 4, 5, 3 ] [ 1 1 1 1 1 1 ] [ 3 3 1 1 2 6 ] 0.72
qp10 = [ 2, 6, 1, 4, 5, 3 ] [ 1 1 1 1 1 1 ] [ 6 3 2 1 2 6 ] 0.72

Fig. 7. Modified query plans using lévy flight

Query Plan QPC
qp1 = [ 6 6 5 6 5 6 ] 0.44
qp2 = [ 2 1 1 1 2 2 ] 0.50

Fig. 8. Top-2 query plan

Query Plan Random string Modified Query Plan QPC
qp1 = [ 6 6 5 6 5 6 ] [ 1 1 1 1 1 1 ] qp1

’ = [ 3 1 2 6 2 4 ] 0.77

qp2 = [ 2 1 1 1 2 2 ] [ 1 1 1 1 1 1 ] qp2
’ = [ 6 6 6 6 2 6 ] 0.27

Fig. 9. Modified query plans using lévy flight
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The iteration counter t is then incremented by 1, i.e. t = t+1 = 2. The resulting
query plans are ranked, based on their QPC, as given in Fig. 11.

The above process is repeated for a pre-specified maximum number of iterations
tmax = 1000. Thereafter, the Top-5 query plans are produced, as output.

4 Experimental Results

DQPGmCSA and DQPGGA were implemented in MATLAB 7.12.0 in a Windows 8.1
environment. The two algorithms were compared by conducting experiments on an
Intel based 4 GHz PC having 2 GB RAM. The comparisons were carried out on
parameters like number of relations, Average QPC (AQPC), Top-K query plans and the
number of iterations. The population of 20 [20] query plans and a 50 � 50 relation-site
matrix are considered for experimentation. First graphs of AQPC vs. Iterations, for 10,
20, 30 and 40 relations over 1000 iterations, were plotted to determine the appropriate
values of (pa, pb) for DQPGmCSA. The values obtained are given in Fig. 12 and

Query Plan qpi
’ QPC Randomly Selected Query Plan QPC Query Plan Selected

qp1
’ = [ 3 1 2 6 2 4 ] 0.77 qp7 = [ 6 1 2 1 2 6 ] 0.66 qp7 

qp2
’ = [ 6 6 6 6 2 6 ] 0.27 qp2 = [ 2 1 1 1 2 2 ] 0.50 qp2

’

Fig. 10. Replaced query plans

Query Plan No. Query Plan QPC 
qp2 [ 6, 6, 6, 6, 2, 6 ] 0.27 
qp1 [ 6, 6, 5, 6, 5, 6 ] 0.44 
qp3 [ 3, 4, 4, 4, 2, 3 ] 0.60 
qp7 [ 6, 1, 2, 1, 2, 6 ] 0.66 
qp6 [ 2, 1, 5, 2, 5, 6 ] 0.66 
qp8 [ 2, 3, 1, 1, 2, 6 ] 0.74 
qp9 [ 3, 3, 1, 1, 2, 6 ] 0.74 
qp10 [ 6, 3, 2, 1, 2, 6 ] 0.74 
qp4 [ 3, 1, 1, 6, 5, 2 ] 0.77 
qp5 [ 6, 3, 2, 4, 5, 3 ] 0.77 

Fig. 11. Population after first iteration

DQPGmCSA (pα, pβ) 
NR (0.25, 0.2) (0.25, 0.25) (0.25, 0.3) (0.5, 0.2) (0.5, 0.25) (0.5, 0.3) (0.75, 0.2) (0.75, 0.25) (0.75, 0.3)
10 0.5160 0.3792 0.4296 0.4728 0.5000 0.4280 0.5136 0.4504 0.3696
20 0.5856 0.6128 0.6360 0.6418 0.6266 0.5878 0.5908 0.5774 0.6294
30 0.7422 0.6961 0.7262 0.7142 0.7474 0.7241 0.6720 0.7219 0.7096
40 0.7175 0.7233 0.7410 0.7411 0.7091 0.7612 0.7298 0.6990 0.7373

Fig. 12. Observed parameter values for DQPGmCSA
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Fig. 13. DQPGmCSA – AQPC Vs. Iterations for different pa and pb (10, 20, 30 and 40 relations
over 1000 iterations)
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Fig. 14. DQPGmCSA Vs. DQPGGA – AQPC Vs. Top-K Query Plans (10, 20, 30 and 40 relations
after 1000 iterations)
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the corresponding graphs are shown in Fig. 13. The values of pa and pb considered are
(0.25, 0.5, 0.75) [6, 20] and (0.2, 0.25, 0.3) [6] respectively. From these graphs and
tables, the appropriate values of pa and pb obtained for 10, 20, 30 and 40 relations are
DQPGmCSA(pa = 0.75, pb = 0.3), DQPGmCSA(pa = 0.75, pb = 0.25), DQPGmCSA(pa =
0.75, pb = 0.2) and DQPGmCSA(pa = 0.75, pb = 0.25) respectively. These observed
values are used for comparing DQPGmCSA with DQPGGA ((Pc = 0.6, Pm = 0.05),
(Pc = 0.8, Pm = 0.1) [15, 16] with respect to the AQPC of the Top-K (K = 1 to 10)
query plans generated by them. The comparison graphs for 10, 20, 30 and 40 relations
are shown in Fig. 14. It can clearly be inferred from the graphs that the proposed
algorithms DQPGmCSAA are able to generate Top-K query plans at a comparatively
lower AQPC than those generated using DQPGGA.

5 Conclusion

In this paper, a modified CSA based DQPG algorithm DQPGmCSA has been proposed to
address the DQPG problem given in [15, 16]. DQPGmCSA attempts to generate the Top-
K ‘close’ query plans for a given distributed query that incur a lower total query
processing cost. Experiments are carried out to determine the appropriate values of pa
and pb for which DQPGmCSA is able to generate the Top-K query plans having a
minimum AQPC. Thereafter, these observed values are used for comparing DQPGmCSA

with DQPGGA. The experimental results show that DQPGmCSA is able to generate Top-
K query plans that have a comparatively lower AQPC than those generated using
DQPGGA [15, 16]. The performance of DQPGmCSA becomes better with increase in the
number of relations accessed by the distributed query. Thus, the query plans generated
using DQPGmCSA have a comparatively better query response times and thus would
provide greater assistance in the decision making process.
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Abstract. Shuffled Frog-Leaping Algorithm (SFLA) is a memetic meta-
heuristic approach for solving complex optimization problems. Like other
evolutionary algorithms, it may also suffer from the problem of slow con-
vergence. To elevate the convergence property of the algorithm, locally
informed search strategy is incorporated with SFLA. To improve the
intensification and diversification capabilities of SFLA, locally informed
search strategy is embedded by calculating the mean of local best and
one randomly selected neighbour solution of memeplex while updating
the position of worst solution in local best updating phase. Similarly,
mean of global best and a randomly selected neighbour solution is used
to improve the position of worst solution while updating the position of
worst solution in global best updating phase. The proposed algorithm is
named as Locally Informed Shuffled Frog-Leaping Algorithm (LISFLA).
The modified algorithm LISFLA is analysed over 15 distinct benchmark
test problems and compared with conventional SFLA, its recent vari-
ant, namely Binomial Crossover Embedded Shuffled Frog-Leaping Algo-
rithm (BC-SFLA) and three other nature inspired algorithms, namely
Gravitational Search Algorithm (GSA), Differential Evolution (DE) and
Biogeography-Based Optimization Algorithm (BBO). The results mani-
fest that LISFLA is an antagonist variant of SFLA.

Keywords: Meta-heuristic optimization techniques · Swarm intelli-
gence · Shuffled frog leaping algorithm · Locally informed

1 Introduction

Nature-inspired algorithms (NIAs), that take inspiration from nature and its
foundation is biological components of nature i.e. human and nature. The main
objective of developing such algorithm is to solve distinct complex real world
problems whose absolute solution doesn’t exist and is to optimize engineering
problems [1]. Swarm intelligence based algorithms [5] are based on mimicking
collective behavior of natural swarm’s e.g. particle swarm optimization (PSO)
[2], artificial bee colony algorithm (ABC) [8], shuffled frog-leaping algorithm
(SFLA) [7] and bacterial foraging algorithm (BFO) [9] etc.

c© Springer Nature Singapore Pte Ltd. 2017
K. Deep et al. (eds.), Proceedings of Sixth International Conference
on Soft Computing for Problem Solving, Advances in Intelligent Systems
and Computing 546, DOI 10.1007/978-981-10-3322-3 13
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SFLA takes inspiration from the grubbing behavior of frogs that replicate
contagious information pattern with the natural and social behavior of species.
In SFLA, population (frogs) is partitioned into several memeplexes. Frogs
exchange their memes with other frogs using memetic evolution procedure which
helps to improve the performance of individual frog towards its global optimum
solution. There is always a presence of odds with all the evens, basic SFLA con-
verges slowly at the last stage and easily falls into local minima. To elevate the
performance of the conventional SFLA algorithm researchers are continuously
working on this algorithm [6,10,15].

To improve the convergence, intensification and diversification proficiency of
basic SFLA, locally informed search strategy is embedded in the local explo-
ration phase of the conventional SFLA to ameliorate the position of the worst
solution. In LISFLA, worst solution is take good memes either from local best
and one local random solution of the memeplex or global best and a randomly
chosen neighbour solution of the entire feasible search space. In this process,
worst solution is locally informed through the global best or local best with one
randomly selected neighbour to ameliorate the knowledge of worst solution of
memeplex. The contemplated algorithm is titled as Locally Informed Shuffled
Frog Leaping Algorithm (LISFLA).

The remaining paper is organized as shown: In Sect. 2, a brief overview of
standard SFLA is described. Locally Informed Shuffled Frog-Leaping Algorithm
(LISFLA) is proposed in Sect. 3. In Sect. 4, performance of LISFLA is tested
with several numerical benchmark functions. Finally, Sect. 5 conclude the work.

2 Overview of Shuffled Frog-Leaping Algorithm

Eusuff invented Shuffled Frog Leaping Algorithm (SFLA) in 2003 [7] for solving
distinct complex optimization problems. SFLA is a population-based cooperative
search metaphor inspired by foraging behaviour of frogs [13]. Memetic evolution
is used in SFLA for the purpose of spreading ideas among the solutions in a local
exploration which is same as PSO [2]. A shuffling approach helps for exchanging
ideas among local searchers that lead them toward a global optimum. SFLA con-
tains elements of global exploration, local exploration and shuffling procedures.
In general, a SFLA works as follows. Firstly, the parameters for the SFLA are
total number of memeplex (Mmpx), the number of frogs in each memeplex (Fm)
and the range of feasible search space are initialized. Therefore, the total pop-
ulation size (N) of swarm is denoted as N= Mmpx * Fm. Afterwards, objective
value of each frog is calculated. Rank is assigned accordingly to their objective
value and sort them in the descending order of their objective values. Then,
N frogs are partitioned into memeplexes (M), each containing frogs (F), like
that first rank frog goes to first memepelex, second rank frog goes to second
memeplex and third rank frog goes to third memeplex and so on. To construct
submemeplex, memplexes are divided into the submemeplex with having the
goal is that true solution to move towards its optimum solution by elevating
their ideas. Submemeplex selection process assigns weights to frogs. The weights
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are assigned with a triangular probability distribution (probk) using Eq. 1.

probk =
2(q + 1 − k)
q(q + 1)

(1)

Here, q is total number of population and k = 1, 2, 3, ..., q, represents rank of
frogs within the memeplex. The frog with the higher objective value has the
higher probability of being selected for the submemeplex. The frogs with the
lower objective value has lower probability. The position of best frogs and worst
frogs is recorded.

The worst solution is updated their position by using three phases: (1) Local
best updating phase (2) Global best updating phase and (3) Randomly initial-
ization of solution in the search space (Censorship).

1. Local best updating phase: To improve the position of worst frog. The
position update equation for worst solution is defined in Eq. 2.

Unew = PW + R(0, 1) ∗ (PLB − PW ) (2)

Here, Unew is the new position of worst frog, PLB and PW are position of
local best frog and worst frog respectively. R(0, 1) is a random number in
the range [0, 1]. If Unew lies in the feasible space, compute the new objec-
tive value. Greedy selection strategy is applied for improving the position of
worst solution. If the position of worst solution gets better than the previous
position then position is updated otherwise it goes in next phase i.e. global
best updating phase.

2. Global best updating phase: In this phase, the worst frog get chance to
update its position with the help of global best frog as defined in Eq. 3.

Unew = PW + R(0, 1) ∗ (PGB − PW ) (3)

Here, PGB represents the global best frog found so far. Again greedy selec-
tion strategy is applied for improving the position of worst solution. If worst
solution does not update its position then it is randomly initialized in the
feasible search space. After this phase memeplexes are updated with the new
position of worst frog solution.

3. Randomly initialization of solution in the search space (Censor-
ship): If new position of worst solution is infeasible means worst solution
exist outside the range of search space and old position which is calculated
by global best solution is not better. Meme of this frog not spread no longer
it means that worst frog does not have good meme so, randomly generate a
new frog within the range of feasible search space to replace the frog whose
new position was not so good to progress.

After the memetic evolutionary steps within each memeplexes are to be shuf-
fled and the population is to be sorted in decreasing order of their objective value.
Position of the best frog PGB is get updated. To check convergence, repeat the
above procedure until the stopping criteria is met.
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3 Locally Informed Shuffled Frog Leaping Algorithm
(LISFLA)

In the working of SFLA algorithm, there are enough possibilities for the solutions
to get stuck in local optima. It also suffers from the problem of slow convergence.
To reduce such problems, locally informed search process is incorporated by
taking mean of both local best and one randomly selected local neighbour of
memeplex and global best and one random neighbour for improving the position
of the worst solution in local best updating phase and global best updating phase
of basic SFLA respectively.

As it is clear from the solution’s search process of conventional SFLA that
the Eqs. (2, 3), the worst solution is updated during each iteration by using three
phases: (1) Local best updating phase (2) Global best updating phase and (3)
Randomly initialization of solution in the search space. Further, it is to be noted
that worst solution is simply influenced by the local best or global best solution,
which may lead to trap in local optima and leads to loss of intensification and
diversification capability.

To avoid such possibilities (stagnation or converging in local optima), in the
proposed strategy, the step size is calculated by taking the mean of both local
best or global best solution and one randomly selected neighbour solution of
memeplex otherwise it is randomly initialized in the search space. This type of
search phenomenon elevates the intensification and diversification proficiency of
the algorithm that are chief characteristics of the population-based optimiza-
tion algorithms. Therefore, to improve the convergence and to maintain the
intensification and diversification capability of SFLA, following modifications
are proposed.

3.1 Local Best Learning Phase with Random Neighbour

The position of worst solution is updated using the locally informed search
process. In the process of local search, the worst solution is get updated
(informed) by taking mean of both local best solution and one randomly selected
local neighbour solution of particular memeplex . The updated step size and
position update equations is defined as Eqs. (4 and 5).

Step = R(0, 1) ∗ (
PLB + PKL

2
− PW ) (4)

Unew = PW + Step (5)

Here, Unew is the updated position of the worst solution and Step shows the step
size. (PLB) and (PKL) represents the local best solution and a local neighbour
solution of PW respectively. R(0, 1) is a uniformly distributed random number
in the range between [0, 1]. If Unew lies in the feasible space, compute the new
objective value. Greedy selection strategy is applied for improving the position
of worst solution in the search space. If the position of worst solution gets better
than the previous position then the position of the worst solution is updated
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otherwise it goes to next phase. In the modified equation a new term is added
that is containing the information received from the local best solution and
a random neighbour solution of memeplex. In Eqs. (4, 5), worst solution PW is
informed through the both both PLB and PKL. In basic SFLA Eq. (2), sometimes
the worst solution (PW ) are not updated through the local best solution that
leads to loss of intensification and diversification proficiency of the search space.
Therefore, in Eqs. (4, 5) to improve the position of worst solution mean of both
PLB and PKL are taken that leads to move PW toward its optimum solution.

3.2 Global Best Learning Phase with Random Neighbour

In this phase the worst solution is get update its position by taking mean of
both global best and a random neighbour solutions of the feasible search space.
The position update process of worst solution is defined as Eqs. (6 and 7).

Step = R(0, 1) ∗ (
PGB + PKG

2
− PW ) (6)

Unew = PW + Step (7)

Here, Unew is the updated position of worst solution and Step shows the step
size. PGB and PKG represents the global best solution and neighbour solution
of PW respectively. If Unew is exist in the feasible space, compute its objective
value and apply greedy selection strategy between the new and worst solution. If
worst solution does not update its position then it is randomly initialized in the
feasible search space. In Eqs. (6, 7) both PGB and PKG has the ability to attract
the worst solution PW . In the modified equation a new term is added that is
containing the mean of the information received from the global best solution
and a randomly selected neighbour solution of the search space. According to
Eqs. (6, 7), in place of only global best solution, mean of both randomly chosen
neighbour solution and global best solution is used that commute the worst
solution in the direction of the global best solution with neighbour solution that
enhance the intensification and diversification potential of SFLA algorithm.

3.3 Censorship

If new position of worst solution is infeasible means worst solution exist outside
the range of search space and old position which is calculated by global best
solution is not better. Meme of this frog not spread no longer it means that worst
frog does not have good meme so, generate a new solution randomly within the
range of feasible search space to inplace the frog whose new position was not so
good to evolution.

After the memetic evolutionary steps within each memeplex, the memeplexes
are to be shuffled and the population is to be sorted in decreasing order of their
objective value. Position of best frog PGB is get updated. Then we check the
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stopping criteria of algorithm if it is satisfied then stop the process. Otherwise,
again partition the frogs into memeplexes.

Like SFLA, the LISFLA algorithm is also divided into two phases, namely
global exploration phase and local exploration phase. The locally informed search
strategy is embedded in the local exploration phase of the algorithm, while global
exploration phases are kept same as in the basic SFLA.

4 Results and Discussions

To analyze the validity of LISFLA algorithm, 15 distinct global optimization
functions (f1 to f15) are used here, demonstrated in Table 1.

To accredit the pursuance of the proposed algorithm LISFLA, a comparative
experiment is carried out among LISFLA, SFLA [7], BC-SFLA, GSA [11], DE
and BBO [14]. LISFLA is tested with the basic SFLA, BC-SFLA, BBO, DE
and GSA over considered optimization test functions. Following experimental
parameters are adopted:

– The number of simulations/run = 30,
– Total number of memeplexes (Mmpx) = 5
– Number of frogs in each memeplex (Fm) = 10 and total population Size

(Mmpx * Fm) (N) = 50
– Parameter settings for the algorithms basic SFLA, BC-SFLA, GSA, DE and

BBO are imitated from their elementary research papers. [7,11,14]

Table 2 shows the experimental results of the SFLA, BC-SFLA, GSA, DE
and BBO algorithms and also furnishes about the standard deviation (SD),
average number of function evaluations (AFE), mean error (ME), and success
rate (SR). Results in Table 2 reflects that most of the time LISFLA outrun in
terms of reliability, robustness, efficiency as well as accuracy in comparison to
the SFLA, BC-SFLA, GSA, DE and BBO.

Besides, boxplots [3,12] analysis is carried out for comparing the examined
algorithms in the form of combined performance though it can efficiently depict

LISFLA BCSFLA SFLA DE BBO GSA

0
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x 105

Fig. 1. Boxplots graphs (Average Function Evaluation)
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Table 2. Comparative result of TP, TP: Test Problem for LISFLA

TP Algorithm SD ME AFE SR

f1 LISFLA 9.80E−07 8.32E−06 5999.47 30

BCSFLA 9.67E−07 8.24E−06 8546.30 30

SFLA 1.12E−06 8.73E−06 12333.10 30

DE 1.16E−06 8.58E−06 18770.00 30

BBO 8.01E−07 8.98E−06 46193.33 30

GSA 1.34E−06 8.03E−06 63223.33 30

f2 LISFLA 1.03E−06 8.85E−06 8502.20 30

BCSFLA 1.77E−02 8.05E−01 200000.00 0

SFLA 2.19E−02 8.25E−01 200000.00 0

DE 1.03E−16 7.59E−01 200000.00 0

BBO 1.13E−03 7.63E−01 200000.00 0

GSA 3.21E−03 7.60E−01 200000.00 0

f3 LISFLA 5.23E−07 9.38E−06 14840.93 30

BCSFLA 5.95E−01 2.77E−01 56603.13 24

SFLA 5.62E−01 2.69E−01 61437.80 24

DE 4.28E−07 9.49E−06 42043.33 30

BBO 1.00E−02 4.53E−02 200000.00 0

GSA 5.84E−07 9.37E−06 161030.00 30

f4 LISFLA 3.69E−02 9.86E−03 20234.33 28

BCSFLA 1.61E−01 1.67E−01 136836.07 10

SFLA 2.47E−01 5.52E−01 193757.90 1

DE 7.96E−07 9.02E−06 21763.33 30

BBO 1.87E−01 1.58E−01 200000.00 0

GSA 8.13E−07 8.66E−06 111176.67 30

f5 LISFLA 8.41E−07 8.90E−06 5554.03 30

BCSFLA 8.74E−07 8.96E−06 8074.27 30

SFLA 7.73E−07 8.92E−06 10541.43 30

DE 6.91E−07 9.02E−06 17165.00 30

BBO 3.62E−07 9.54E−06 93826.67 30

GSA 7.56E−07 8.86E−06 91298.33 30

f6 LISFLA 9.45E−07 8.87E−06 9168.40 30

BCSFLA 6.82E−07 9.02E−06 10797.23 30

SFLA 7.06E−07 8.94E−06 18280.53 30

DE 6.87E−07 9.21E−06 22221.67 30

BBO 1.65E−05 4.26E−05 200000.00 0

GSA 1.07E−06 8.84E−06 99265.00 30

(continued)
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Table 2. (continued)

f7 LISFLA 6.19E−02 2.50E−01 108844.53 17

BCSFLA 1.29E−01 5.17E−01 200000.00 0

SFLA 1.47E−01 3.60E−01 167215.30 7

DE 3.00E−02 2.10E−01 155318.33 26

BBO 5.37E−02 4.67E−01 200000.00 0

GSA 5.82E−02 8.00E−01 200000.00 0

f8 LISFLA 8.56E−07 8.66E−06 8698.07 30

BCSFLA 6.53E−07 9.11E−06 12437.80 30

SFLA 9.55E−07 8.84E−06 16133.77 30

DE 7.81E−07 9.12E−06 25906.67 30

BBO 4.33E−04 1.28E−03 200000.00 0

GSA 1.02E−06 8.91E−06 109881.67 30

f9 LISFLA 2.73E−06 6.81E−06 2738.93 30

BCSFLA 1.93E−06 7.11E−06 2266.53 30

SFLA 1.36E−06 8.09E−06 6626.67 30

DE 2.28E−06 7.26E−06 7665.00 30

BBO 2.20E−06 7.48E−06 3241.67 30

GSA 1.81E−06 6.49E−06 46398.33 30

f10 LISFLA 0.00E+00 0.00E+00 3844.73 30

BCSFLA 4.76E−01 2.00E−01 38038.30 25

SFLA 0.00E+00 0.00E+00 9004.93 30

DE 0.00E+00 0.00E+00 10886.67 30

BBO 0.00E+00 0.00E+00 5351.67 30

GSA 0.00E+00 0.00E+00 11583.33 30

f11 LISFLA 1.07E−06 8.58E−06 9897.87 30

BCSFLA 8.49E−07 8.66E−06 14172.93 30

SFLA 8.00E−07 8.95E−06 18385.47 30

DE 9.63E−07 8.95E−06 29205.00 30

BBO 5.39E−03 1.44E−02 200000.00 0

GSA 9.47E−07 8.75E−06 95278.33 30

f12 LISFLA 3.96E−02 2.39E−02 59982.17 22

BCSFLA 6.44E−01 5.53E−01 149901.03 8

SFLA 3.15E+00 4.85E+00 194013.27 1

DE 7.17E−07 8.90E−06 26943.33 30

BBO 7.07E−01 8.54E−01 200000.00 0

GSA 8.82E−07 8.81E−06 90630.00 30

(continued)
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Table 2. (continued)

f13 LISFLA 1.79E−02 3.32E−03 14040.03 29

BCSFLA 8.89E−07 8.78E−06 11064.47 30

SFLA 1.79E−02 3.32E−03 20893.87 29

DE 1.02E−06 8.88E−06 23088.33 30

BBO 3.09E−05 1.04E−04 200000.00 0

GSA 6.13E−07 9.00E−06 95498.33 30

f14 LISFLA 5.87E−07 9.07E−06 12680.57 30

BCSFLA 1.03E−06 8.59E−06 13154.93 30

SFLA 6.76E−07 9.16E−06 25357.17 30

DE 5.87E−07 9.08E−06 26216.67 30

BBO 6.60E−04 2.33E−03 200000.00 0

GSA 2.33E−05 7.78E−04 134665.00 28

f15 LISFLA 9.31E−17 8.72E−16 21009.73 30

BCSFLA 9.95E−17 8.45E−16 28845.97 30

SFLA 4.86E−17 9.30E−16 37419.80 30

DE 6.21E−17 9.08E−16 58980.00 30

BBO 2.02E−03 5.94E−03 200000.00 0

GSA 1.34E−12 1.34E−11 200000.00 0

0 0.2 0.4 0.6 0.8 1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7

Success Rate

P
er

fo
rm

an
ce

 In
de

x

LISFLA
BCSFLA
SFLA
DE
BBO
GSA

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Average Number of Function Evolution

P
er

fo
rm

an
ce

 In
de

x LISFLA
BCSFLA
SFLA
DE
BBO
GSA

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

Mean Error

P
er

fo
rm

an
ce

 In
de

x

LISFLA
BCSFLA
SFLA
DE
BBO
GSA

(a) (b)

(c)

Fig. 2. Performance index for test problems; (a) for weighted importance to SR,
(b) for weighted importance to AFE and (c) for weighted importance to ME.
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the empirical dispersion of data graphically. The boxplots for LISFLA, SFLA,
BC-SFLA, GSA, DE and BBO are displayed in Fig. 1. The results manifest that
interquartile range and medians of LISFLA are comparatively low.

Nextly, all considered algorithms are also compared by giving weighted
importance to the ME, SR, and AFE. This comparison is measured using
the performance indices which is described in [3,4]. The resultant values of PI
for the LISFLA, BC-SFLA, SFLA, GSA, DE and BBO are computed and cor-
responding PIs graphs are demonstrated in Fig. 2.

The graphs belonging to each of the cases i.e. giving weighted importance to
AFE, SR and ME (as explained in [3,4]) are depicted in Figs. 2(a), (b), and (c)
respectively. In these figures, horizontal axis represents the weights while vertical
axis expresses the PI.

It is clear from Fig. 2 that PI of LISFLA are superior than the other con-
sidered algorithms in each case. i.e. LISFLA performs better on the considered
test problems as compare to the BCSFLA, SFLA, GSA, DE and BBO.

5 Conclusion

In this paper, a new variant of SFLA algorithm is presented, namely Locally
Informed Shuffled Frog Leaping Algorithm (LISFLA). In the proposed LISFLA,
a new position update strategy for the worst solution is proposed and that is
embedded in local exploration phase of primary SFLA. In the proposed locally
informed update process, the step size of the worst solution is decided on the
basis local best or global best and a local randomly selected neighbour solution
of memeplex. In this proposed LISFLA, local best and global best solutions
are intensified the search space while, randomly selected neighbour solution is
diversified the search area. Further, the proposed algorithm is compared with
basic SFLA, its recent variant, namely Binomial Crossover Embedded Shuffled-
Frog Leaping Algorithm (BC-SFLA) and three other nature inspired algorithms,
namely Gravitational Search Algorithm (GSA), Differential Evolution (DE) and
Biogeography-Based Optimization Algorithm (BBO). Experiments over the test
functions, depicts that the LISFLA outplays to the considered algorithms.
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Abstract. Artificial bee colony (ABC) algorithm is one of the most pop-
ular optimization methods for global optimization over real-valued para-
meters. Though it has been shown very competitive to other naturein-
spired methods, it suffers from some challenging problems, e.g., slow
convergence speed while solving unimodal problems, local optima stagna-
tion (premature convergence) while dealing with the complex multimodal
problems, and scalability problem in case of high dimensional problems.
In order to circumvent these problems, we propose a new variant of the
ABC, called Astute Artificial Bee Colony (AsABC) algorithm, which is
able to maintain a better trade-off between two conflicting aspects, explo-
ration and exploitation in the search space. In AsABC, we model a new
search behavior of the onlooker bees to foster the solutions towards better
region and to make the algorithm scalable. Performance of the AsABC is
evaluated on a test suite of 12 benchmark functions of three different cat-
egories: unimodal, multimodal, and rotated multimodal. Comprehensive
benchmarking and comparison of the AsABC with three other state-
of-the-art variants of the ABC demonstrate its superior performance in
terms of solution quality, scalability, robustness, and convergence speed.

Keywords: Artificial bee colony · Arithmetic recombination · Neighbor
solution · Genetic crossover

1 Introduction

In 2005, Karaboga [1] developed an algorithm called ABC by modeling the intel-
ligent foraging behavior of honey bees. Since then, It has emerged as a potential
method to solve many real-world problems [2,3]. In most of the works pertain-
ing to the ABC, generally a new version is designed to ameliorate its search
ability. In this context, a lot of work has been done to improve performance of
ABC for global optimization. Many researchers worked on the search equation of
ABC and proposed various ABC variants. The existing variants of ABC can be
grouped in two possible categories: (i) modification in the search equation and
(ii) hybridization of ABC with other operators. A brief review of the existing
work is delineated in subsequent paragraphs.

c© Springer Nature Singapore Pte Ltd. 2017
K. Deep et al. (eds.), Proceedings of Sixth International Conference
on Soft Computing for Problem Solving, Advances in Intelligent Systems
and Computing 546, DOI 10.1007/978-981-10-3322-3 14
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– Modification in the search equation: Akay et al. [4] observed that the conver-
gence rate of ABC is very slow while solving complex problems. They claimed
that the single dimensional perturbation of the solution is responsible for slow
convergence. Therefore, they introduced two new parameters to control the
frequency and magnitude of perturbation. Zhu et al. [5] pointed out that ran-
dom neighbor selection strategy of ABC leads to poor exploitation. In this
context, they integrated a best solution from the current population as an
additional neighbor. Xiang et al. [6] suggested a new version of ABC by modi-
fying search equations of both the onlooker bee and the scout bee. Kiran et al.
[7] integrated direction with each solution vector to improve the local search
ability. Karaboga et al. [8] proposed quick ABC with improved local search
ability by selecting most profitable neighbor in spite of randomly selected
neighbor.

– Hybridization of ABC with other operators: ABC has been hybridized by incor-
porating other operators into it. For example, Gao et al. [9] introduced a
modified version of ABC, in which the mutation operator of DE is adopted to
avoid the problem of premature convergence. Yan et al. [10], incorporated the
crossover operator of GA into the ABC. Yang et al. [11] proposed a hybrid
ABC-DE. The rationale behind the hybridization is to utilize the advantages
of both the ABC and the DE.

Recently, Kishor and Singh [12] made a comprehensive study of ABC to divulge
its pitfalls and proclivities. They discerned that ABC suffers from the problems
of slow convergence rate, premature convergence and scalability. Search strategy
of the ABC is itself responsible for the above mentioned drawbacks. Since, to find
a new solution, a bee makes random selection of another bee which is associated
with a different solution and communicate with her. Whilst, it is obvious that
there is only 50 % chance for random selected bee to be good one. Therefore,
this uncertainty entails all the issues.

In this paper, we propose new variant of ABC called AsABC which is geared
towards solving complex optimization problems in the continuous search space.
In AsABC, search strategies of the employed bees and the onlooker bees are
quite different. The search equation of the onlooker bee is replaced with the
arithmetic recombination operator of genetic algorithm (GA) as devised in [10].
Thus, the proposed AsABC belongs to the hybridization category as an arith-
metic recombination operator of GA is introduced in to it. The rest of the paper
is organized as follows. Standard ABC algorithm is briefed in Sect. 2. In Sect. 3,
the AsABC is presented in detail. In Sect. 4, benchmark functions, tuning para-
meter for algorithms, and experimental results are presented and discussed. In
last, a brief conclusion of the study is drawn in Sect. 5.

2 Standard ABC

Artificial bee colony (ABC) algorithm is a population-based stochastic optimiza-
tion technique [1]. According to the foraging behavior of honey bees, the colony
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of bees is divided into three groups. The members of the first group are known as
employed bees. Every employed bee keep a predefined position of a food source
in her mind and go for that position to discern the richness (i.e., nectar amount)
of that food. After discerning the richness of food source, each employed bee per-
forms waggle dance in the dancing area of the hive. A group of bees who decide
their food source by relying on the information disseminated by employed bees,
are called onlooker bees. Onlooker bees exploit the food sources, albeit with a
probability that corresponds to the qualities of the food sources. The third group
of bees is scout bees which explores new food source without paying any heed
for other bees.

In classical ABC algorithm, a food source position corresponds to a viable
solution, the virtual foraging land represents the search space and the nectar
amount of a food source signifies the fitness of that solution in the optimization
process.

The step-by-step procedure of the algorithm is outlined in Algorithm1 and
a brief explanation is presented in the subsequent paragraphs.

Similar to other optimization algorithms, the ABC also requires the setting
of some fundamental control parameters such as population size (number of food
sources or colony size) N , maximum cycle (generation) Gmax as the stopping cri-
terion, limit to determine abandoned food source and D to signify a solution as a
D-dimensional parameter vector. In this paper, the ith solution in the population
is represented as

X i = [xi
1, .., x

i
j , .., x

i
D]

where xi
j denotes the jth dimension of the ith solution.

The xi
j is initialized by (1).

xi
j = xi

l + φi
j(x

i
uj

− xi
lj ) (1)

where φi
j is a uniformly distributed random number over (0,1). The upper and

lower search bounds for a dimension j are denoted as xi
uj

and xi
lj

, respectively.
Initially, value of limit for each solution is set to zero. The three phases of the
ABC, i.e., employed bee phase, onlooker bee phase, and scout bee phase come
to play after initialization of the solutions. The detail description of these three
phases are as follows.

In the employed bee phase, every employed bee generate a new solution
(candidate solution) by mutating one of its parameter (dimension) of the solution
vector as shown in (2).

vi
j = xi

j + ψi
j(x

i
j − xi

k) (2)

where k ∈ (1,N ) such that k �= i, j is randomly chosen index, and ψi
j is a

random number over (−1,1).
After generating the candidate solution, its fitness is computed and compared

with its corresponding original solution. The new solution replaces the old one
if it is better than that and its limit counter is set to zero; otherwise the old one
remains in the population and its limit value is incremented by one.
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After the employed bee phase, an onlooker bee selects an affluent solution by
performing stochastic sampling in the current generation. The selection proba-
bility pi of a each solution i is calculated by (3).

pi =
fiti

N∑
i=1

fiti

(3)

Here, fiti corresponds to the fitness of ith solution.
After selecting a solution through probability, a candidate solution is gener-

ated as in employed bee phase by (2). The replacement policy and setting of the
limit counter are also similar to the employed bee phase.

A scout bee checks whether the value of limit counter of a solution exceeds
a predefined threshold. If yes, then she replaces such a solution with a newly
generated random solution using (1).

Algorithm 1. The Standard ABC Algorithm
1 begin
2 for i = 1 to N do
3 generate random solution by (1);
4 trial(i) :=0;

5 iter := 1;
6 while iter < Gmax do
7 for i = 1 to N do
8 generate candidate solution by (2);
9 apply greedy selection between candidate and original solution;

10 update the trial counter accordingly;

11 Calculate Probabilities for onlooker bees by (3);
12 for i = 1 to N do
13 select a solution according to the probability;
14 perform step 8;
15 perform step 9 and 10;

16 if trial(i) > limit then
17 generate random solution by (1);
18 trial(i) :=0;

3 Astute Artificial Bee Colony Algorithm

According to Karaboga [1], every employed bee exploits the food source which is
already in her mind before leaving from the hive. On the other hand, every
onlooker bee exploits a food source on the basis of information shared by
employed bees. Thus, theoretically, the food source exploitation policies of
employed bees and onlooker bees are absolutely different. But, it is quite notice-
able that in the standard ABC, this remarkable difference is not considered
and the search strategies of both the employed bees and the onlooker bees are
modeled with same mathematical formula (2).
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Moreover, to find a better solution in the vicinity of a solution X i, both
employed as well as onlooker choose a companion of X i, say X k, randomly from
the current population. Thereafter, the information sharing between these two
solutions is carried out on random dimension. Though, this search mechanism
may be reasonable for exploration, it is inadequate for the exploitation. The
rationale behind this is very clear: (a) a bee X i learns from its companion X k,
while she herself is not sure that her companion X k is good enough to guide
the search towards a better region, and (b) Suppose, X k is a better solution,
yet, for deciding the next potential solution, two bees communicate over single
dimension, which seems very poor in case of high dimensional problems.

In recent years, however, some researchers have made attempts to circumvent
these inefficiencies. Zhu et al. [5] included the information of the best solution in
the search equation of both employed as well as onlooker to improve exploitation
and suggested a new version of ABC called gbest-guided ABC (GABC). How-
ever, Gao et al. [13] claim that GABC suffers from a problem called oscillation
phenomenon which causes slow convergence. Further, Karaboga et al. [8] utilized
the best solution for onlooker bees to enhance local search ability and proposed
qABC. However, experimental study, clearly manifests that it is not able to
avoid premature convergence particularly in case of complex multimodal prob-
lems because the information sharing between bees is still single dimensional.
Yan et al. [10] suggested a hybridized ABC in which an extra phase is added.
This extra phase includes the arithmetic crossover and binary tournament selec-
tion operators of GA. Consequently, the extra phase increases the computational
complexity of the algorithm, which is unenviable for a good optimizer.

In this paper, without adding any extra phase, we make only two simple
modifications in the onlooker bee phase of the original ABC and propose a new
variant of ABC. Firstly, instead of choosing a neighbor solution X k randomly,
a solution with better fitness is selected as a neighbor solution, i.e., a solution
whose probability pi is greater than a random number φ (which is drawn from
the interval (0,1)) is selected for companionship. Secondly, the search equation
(2) is exchanged by (4) which is an arithmetic recombination operator of GA as
devised in [10]. This remodeled ABC is named as Astute Artificial Bee Colony
(AsABC) algorithm.

We do not present separate pseudo code for the AsABC as it is similar to
ABC (Algorithm 1) except one minor change that is as follows. In AsABC step
14 of Algorithm 1 reads as follows: generate candidate solution by (4)

V i = φi ∗ X i + φk ∗ X k (4)

where φi and φk are uniformly distributed random numbers over (0,1).

4 Experimental Study and Discussion

4.1 Benchmark Functions

To evaluate the performance of AsABC, we do experiment over a test suite of 12
benchmark functions suggested in CEC 2005 [14] which are reported in Table 1.
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Table 1. Benchmark functions Here, the global optimal value of each function is “0”;
for f9 to f12, M is an orthogonal matrix and yi = M × xi. Rotated is abbreviated as
“Rot”

Objective function Range

Sphere: f1(x) =
∑D

i=1 x2
i [−5, 5]

Schwefel 2.22: f2(x) =
∑D

i=1(|xi|) +
∏D

i=1(|xi|) [−100, 100]

Rosenbrock: f3(x) =
∑D−1

i=1 (100(x2
i − xi+1)

2+ (1 − xi)
2) [−15, 15]

Schaffer: f4(x) =
0.5+ sin2(

√∑D
i=1(x

2
i ) − 0.5)

(1+ 0.001(
∑D

i=1(x
2
i )))

[−100, 100]

Rastrigin: f5(x) =
∑D

i=1(x
2
i − cos(2πxi) + 10) [−15, 15]

Griewank: f6(x) = 1
4000

(
∑D

i=1 x2
i ) − (

∏D
i=1 cos( xi√

i
)) + 1 [−600, 600]

Ackley: f7(x) = 20 + e − 20e(−0·2
√

1
D

∑D
i=1 x2

i ) − e(
1
D

∑D
i=1 cos(2πxi)) [−32,32]

Weierstrass:f8(x) =∑D
i=1(
∑kmax

k=0 [akcos(2πbkzi)]) − D ×∑kmax
k=0 [akcos(2πbk × 0.5)]

[−0.5, 0.5]

a = 0.5, b = 3, kmax = 20, zi = (xi + 0.5)

Rot Rastrigin: f9(x) =
∑D

i=1(y
2
i − cos(2πyi) + 10) [−15, 15]

Rot Griewank: f10(x) = 1
4000

(
∑D

i=1 y2
i ) − (

∏D
i=1 cos( yi√

i
)) + 1 [−600,600]

Rot Ackley:

f11(x) = 20 + e − 20e(−0·2
√

1
D

∑D
i=1 y2

i ) − e(
1
D

∑D
i=1 cos(2πyi))

[−32, 32]

Rot Weierstrass:
f12(x) =

∑D
i=1(
∑kmax

k=0 [akcos(2πbkzi])−D×∑kmax
k=0 [akcos(2πbk×0.5)]

[−0.5,0.5]

zi = (yi + 0.5)

The first three functions f1 − f3 are unimodal functions. The next five functions
f4f8 are multimodal functions with many local optimal solutions other than the
global optimum. Finally, the last four functions f9f12 are rotated multimodal
functions introduced in [15].

4.2 Experimental Setting

To analyze relative performance of the AsABC, it is compared with original ABC
and two other state-of-the-art variants of ABC, i.e., GABC [5] and ABCDE [11].
The parameter setting adopted for all the algorithms is as follows. The popula-
tion size is set to 100 (colony size), the number of scout bee in an iteration is
at most one [1], and limit = (N* D/2) [1]. For each test function, all the algo-
rithms are simulated 30 times independently. The algorithm stops after 1,00,000
number of function evaluations(FEs). For the GABC, C = 1.5 [5] and for the
ABC-DE, F = 0.5, CR = 0.9 [11].

4.3 Discussion of the Results

On the Quality of Solution. The mean and standard deviation (std)
values yielded by different variants of ABC are summarized in Table 2.
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Table 2. Mean and the standard deviation (std) values achieved by algorithms

ABCs Functions

f1 f2 f3 f4 f5 f6

AsABC mean 7.77E−19 1.32E−17 4.85E+01 0 0 0

std 7.25E−19 7.32E−18 2.76E−01 0 0 0

ABC mean 9.14E−15 4.78E−06 2.51E−01 4.63E−01 2.00E−01 1.27E−07

std 6.19E−15 1.95E−06 2.38E−01 1.04E−02 4.04E−01 3.83E−07

GABC mean 9.38E−15 4.14E−06 2.94E−01 4.61E−01 3.48E−02 2.91E−04

std 4.28E−15 1.24E−06 2.71E−01 1.46E−02 1.82E−01 1.60E−03

ABC-DE mean 3.61E−17 2.74E−10 2.78E+01 1.52E−02 7.98E−01 0

std 9.62E−18 1.01E−10 9.29E−02 1.23E−02 1.09E+00 0

ABCs Functions

f7 f8 f9 f10 f11 f12

AsABC mean 8.88E−16 0 0 0 8.88E−16 0

std 0 0 0 0 0 0

ABC mean 5.68E−06 4.50E−04 3.24E+02 1.23E−02 7.19E+00 3.70E+01

std 2.64E−06 1.32E−04 2.12E+01 1.03E−02 4.12E+00 1.15E+00

GABC mean 6.27E−06 4.27E−04 3.24E+02 1.17E−02 6.65E+00 3.72E+0

std 3.23E−06 1.18E−04 2.48E+01 7.86E−03 3.73E+00 1.10E+00

ABC-DE mean 5.43E−11 1.21E−07 1.66E+02 2.83E−10 7.23E−11 1.17E−03

std 4.26E−11 4.43E−08 1.38E+01 2.87E−10 1.60E−11 2.49E−04

Numerical results reported in Table 2, imply that the AsABC is more robust
and reliable than other contestants. Furthermore, it is interesting to see that
in all the multimodal and rotated multimodal functions, the AsABC yields the
global optimal results, while others fail to obtain optimal solution, i.e., 0.0.

On the Convergence Rate. In order to compare the convergence speed of
the algorithms, the convergence characteristics of 6 test functions (2 from each
category) are illustrated in Fig. 1. From Fig. 1, it can be seen that the convergence
speed of the AsABC is far better than the other competitors as it requires
comparatively very less number of FEs to converge to global optimum.

On the Scalability of ABC Algorithms. In general, for most of the pop-
ulation based optimization algorithms, it is per se very difficult to solve high
dimensional problems efficiently. It is because increase in the dimensionality of
the search space increases its hyper-volume also which in turns deteriorates effi-
cacy of the algorithm. Therefore, to check the scalability of the AsABC, we test
it on three different functions. From Table 3, it is seen that AsABC is not only
scalable but insensitive to dimensionality growth of the problems.
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Fig. 1. Convergence graph on test functions

4.4 Time Complexity of RABC

As, we do not introduce any extra phase/operator in the standard ABC,
the worse-case running time of the AsABC remains similar to ABC, i.e.,
O(N .D.Gmax).

4.5 Effect of “Population Size” on AsABC

For investigating the effect of population size on AsABC, three benchmark func-
tions, i.e., f3, f7, and f9, are chosen from Table 1. Each function has different
property. The AsABC is tested on these three function for colony size: 50, 100,
200, and 400. The rest of the parameter setting is as in above experiment. The
results are shown in Table 4 which clearly indicate that the performance of the
AsABC is not influenced by changing population size. Results for other 9 bench-
mark functions follow a similar trend and have not been included to save space.

4.6 Effect of “limit” on AsABC

Karaboga [1] anticipated that in honey bees colony, scout bees are 5–10 % of the
population. They are responsible for exploration and random selection process
and the number of scout is controlled by limit parameter. Thus, to assess the
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Table 3. M = mean, S= std values obtained by AsABC, ABC, GABC, and ABC-DE
at D = 30,50,100 in 30 runs

F. AsABC ABC GABC ABC-DE

D =30 D =50 D =100 D =30 D =50 D =100 D =30 D =50 D =100 D =30 D =50 D =100

f1 M 7E−19 1E−18 1E−18 9E−15 3E−08 3E−04 9E−15 1E−07 3E−04 3E−17 5E−17 1E−14

S 7E−19 9E−19 1E−18 6E−15 3E−08 2E−04 4E−15 9E−08 3E−04 9E−18 1E−17 1E−14

f2 M 1E−17 1E−17 1E−17 4E−06 3E−03 3E−01 4E−06 3E−03 3E−01 2E−10 1E−07 3E−05

S 7E−18 6E−18 7E−18 1E−06 1E−03 8E−02 1E−06 1E−03 7E−02 1E−10 5E−08 2E−05

f4 M 0 0 0 4E−01 4E−01 5E−01 4E−01 4E−01 5E−01 7E−01 9E−03 3E−02

S 0 0 0 1E−02 2E−04 3E−06 1E−02 3E−04 2E−06 1E+00 2E−09 1E−10

f5 M 0 0 0 2E−01 5E+00 6E+01 3E−02 4E+00 7E+01 0 1E+01 5E+01

S 0 0 0 4E−01 1E+00 1E+01 1E−01 2E+00 1E+01 0 1E+00 1E+01

f9 M 0 0 0 3E+02 7E+02 2E+03 3E+02 7E+02 2E+03 1E+02 3E+02 7E+02

S 0 0 0 2E+01 4E+01 1E+02 2E+01 5E+01 1E+02 1E+01 2E+00 2E+01

f10 M 0 0 0 1E−02 7E−02 8E−01 1E−02 5E−02 8E−01 2E−10 4E−08 1E−07

S 0 0 0 1E−02 4E−02 1E−01 7E−03 2E−02 1E−01 2E−10 3E−08 7E−08

Table 4. Effect of colony size on the AsABC

f3 f7 f9

Colony size Colony size Colony size

50 100 200 400 50 100 200 400 50 100 200 400

mean 2E+01 4E+01 2E+01 2E+01 8E−16 8E−16 8E−16 8E−16 0 0 0 0

std 5E−01 2E−01 1E−01 1E−01 0 0 0 0 0 0 0 0

Table 5. Effect of limit value on the AsABC

f3 f7 f9

limit size limit size limit size

100 200 400 800 100 200 400 800 100 200 400 800

mean 2E+01 2E+01 2E+01 4E+01 8E−16 8E−16 8E−16 8E−16 0 0 0 0

std 3E−01 3E−01 3E−01 2E−01 0 0 0 0 0 0 0 0

performance of the AsABC in various limit values, we test it on three benchmark
functions over different limit size. The statistical results are recorded in Table 5.
It is interesting to see that the performance of the AsABC is not affected in
different setting of limit value.

5 Conclusion

In this paper, we proposed a new version of ABC algorithm namely AsABC,
which is based on intelligent foraging behavior of honey bees. In the AsABC,
the search strategy of onlooker bees is different to the employed bees and is
capable to maintain a proper trade-off between exploration and exploitation. In
order to judge the efficacy of the AsABC, we compare it with other three variants



162 A. Kishor et al.

of the ABC over a test bed of 12 benchmark functions. The superior performance
of the AsABC lead us to assert that it is a better alternative for optimization.
For future research, it would be very interesting to apply the AsABC in some
relevant real-world application and extended it to multi-objective domain.
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Abstract. Gravitational search algorithm (GSA) is a simple well known
meta-heuristic search algorithm based on the law of gravity and the law
of motion. In this article, a new variant of GSA is introduced, namely
Exploitative Gravitational Search Algorithm (EGSA). In the proposed
EGSA, two control parameters (Kbest and Gravitational constant) are
modified that play an important role in GSA. Gravitation constant G
is reduced iteratively to maintain a proper balance between exploration
and exploitation of the search space. Further, To enhance the searching
speed of algorithm Kbest (best individuals) is exponentially decreased.
The performance of proposed algorithm is measured in term of relia-
bility, robustness and accuracy through various statistical analyses over
12 complex test problems. To show the competitiveness of the proposed
strategy, the reported results are compared with the results of GSA, Fit-
ness Based Gravitational Search Algorithm (FBGSA) and Biogeography
Based Optimization (BBO) algorithms.

Keywords: Gravitational search algorithm · Swarm intelligence ·
Heuristic search algorithm · Elitism · Exponential · Gravitational con-
stant

1 Introduction

Nature is an origin of inspiration for solving hard and complex problems. Nature-
inspired algorithms (NIAs) are inspired by nature and used to deal with diffi-
cult real-world engineering problems [6]. Swarm intelligence algorithms [1,2] are
inspired by any type of collective behaviours of individuals in nature. Gravita-
tional search algorithm (GSA) [6] is a swarm intelligence type algorithm that
is inspired by the Newton’s physics concept gravitational force and motion of
individuals in nature. Individuals fascinate each others by the gravity force and
accelerate according to the force applied on individuals. Individuals with heavier
masses have high attraction power compare to lower masses individuals. By this
attraction power of individuals higher masses individuals move slowly as com-
pare to lower masses individuals. GSA is an optimization algorithm and provides
proper balancing between exploitation and exploration capabilities. So in this
algorithm, heavier masses individuals are responsible for exploitation whereas
lighter masses individuals are responsible for the exploration of the search area.
c© Springer Nature Singapore Pte Ltd. 2017
K. Deep et al. (eds.), Proceedings of Sixth International Conference
on Soft Computing for Problem Solving, Advances in Intelligent Systems
and Computing 546, DOI 10.1007/978-981-10-3322-3 15
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When searching process start lighter masses (individuals are far from the opti-
mum solutions) individuals move with large step size (exploration) and after this
when individuals converge to the optimum solutions i.e. higher masses individu-
als move with comparative small step size (exploitation). Researchers have been
progressively produce new techniques to refine the performance of the algorithm
[3,7,8,11].

In this paper, to improve the searching capability and diversification and
intensification proficiency of GSA algorithm, a new variant of GSA is designed,
namely Exploitative Gravitational Search Algorithm (EGSA). In the proposed
EGSA, Kbest (best individuals) and Gravitational constant G are modified
such that searching efficiency of GSA is increased and the solution explore the
search space in early iteration having large step size while exploit the identified
search region in later iterations with small step size. To balance the number of
individuals that applied force to other individuals as the iteration is increased,
Kbest value is exponentially decreased. Gravitational constant is also decreased
through iterations that is responsible for the step size of individuals.

The remaining paper is organised as shown: In Sect. 2, a brief overview of
GSA is illustrated. Exploitative GSA algorithm (EGSA) is proposed in Sect. 3.
In Sect. 4, performance of EGSA is tested with several numerical benchmark
functions. Finally, Sect. 5 gives a summary and conclude the work.

2 Gravitational Search Algorithm

E. Rashedi et al. developed Gravitational Search Algorithm (GSA) in 2009 [6].
GSA is a population-based stochastic search algorithm inspired by the Newton’s
gravitational law and movement of individuals in universe by gravitational force.
According to Newton’s gravity law “Every individuals in-universe fascinate each
other with force, this force is directly proportional to the product of individuals
masses and inversely proportional to the square of the distance between individ-
uals masses [6]”. Force applied to the individuals, by this force individuals are
accelerated from their position. Performance of individuals is measure by their
mass. Agents with higher mass are good as compare to lighter mass agents.

The GSA algorithm is described as follows: Each individual Xi in search
space with I number of individuals is represented as:

Xi = (x1
i , ....., x

d
i , ....., x

n
i ) for i = 1, 2, ....., I, (1)

here xd
i shows the position of ith individual in d dimensional area.

Mass of individuals is a based on the individuals fitness. The fitness of all
individuals are calculated and worst and best fitness are identified for calculating
the mass of individuals.

– For minimization problems best and worst fitness are:

best(g) = minfitj(g) j ∈ 1, · · ·, I (2)

worst(g) = maxfitj(g) j ∈ 1, · · ·, I (3)
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– For maximization problems best and worst fitness are:

best(g) = maxfitj(g) j ∈ 1, · · ·, I (4)

worst(g) = minfitj(g) j ∈ 1, · · ·, I (5)

maxfitj(g) and minfitj(g) show the maximum and minimum fitness value of
the jth individual at iteration g.

In GSA inertia, active and passive gravitational masses are equal. Individual
with heavier masses are more efficient. Heavier masses individuals have higher
attraction power and move slowly. Masses in GSA depend on the fitness value
of individuals and calculated as follows:

Maj = Mpi = Mii = Mi, i = l, 2, ...., I. (6)

mi(g) =
fiti − worst(g)

best(g) − worst(g)
(7)

Mi =
mi(g)∑I

j=1 mj(g)
(8)

here Mii and Mpi are inertia and passive gravitational masses of ith individual
respectively and Maj is active gravitational mass of jth individual. fiti is the
fitness value of ith individual.
G(g) is the gravitational constant computed as Eq. 9.

G(g) = G0e
(−αg/MaxIt) (9)

Here, G0 and α are constant and initialized at the starting. The value of G(g)
is reduced exponentially during each iteration for controlling search accuracy.
MaxIt is total number of iteration. Acceleration of individuals depends upon
the ratio of force and mass of the individual [5] and calculated as follows:

ad
i (g) = F d

i (g)/Mii(g) (10)

F d
i (g) is the overall force acting on ith individual computed as:

F d
i (g) =

∑
j∈Kbest,j �=i

randjF
d
ij(g) (11)

Kbest is computed as follows:

Kbest = finalper + (1 − g

MaxIt
) × (N − finalper) (12)

Kbest = round(N × Kbest

N
) (13)

Here, finalper is the constant and N is the total number of individuals in
the search space. Kbest is initial N individuals with the best fitness value and
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highest mass. Kbest will reduce linearly in each iteration and at the final only
one individual applying force to the other individuals.

Force on ith individual by jth individuals mass during iteration g is computed
using the following Eq. 14:

F d
ij(g) = G(g).(Mpi(g) × Maj(g)/Rij(g) + ε).(xd

j (g) − xd
i (g)) (14)

Here, Rij(g) is the Euclidian-distance between two individuals i and j at itera-
tion g. Gravitational constant G(g) is calculated using Eq. 9 while ε is a small
constant. The velocity update equation for individuals is defined as:

vd
i (g + 1) = randi × vd

i (g) + ad
i (g) (15)

here, rand is random variable in interval [0, 1]. vd
i (g) and vd

i (g + 1) are the
velocity of ith individual at the iteration g and g + 1 subsequently.

The position update equation for individuals is defined as:

xd
i (g + 1) = xd

i (g) + vd
i (g + 1) (16)

here, xd
i (g) and xd

i (g +1) are the position of ith individual at the iteration g and
g +1 subsequently. Velocity of individuals is updated during each iteration. Due
to changes in the velocity every individual update its position.

This procedure is carry on until their termination criteria is met or iteration
reach their maximum limit.

3 Exploitative Gravitational Search Algorithm

In the population-based algorithms, behavior of agent is measured by the
exploitation and exploration capability in the search space. Exploration is for
the enlarging the entire search space and exploitation is the finding optimum
solution from the previously visited good solutions. During the early iteration
of the algorithm, GSA visit the entire search space to find out the optimal solu-
tions. After the lapse of iteration GSA exploit the search space by visiting the
previously visited points. For the better performance of any population-based
algorithm it is necessary to maintain a proper balance between the exploitation
and exploration. Initially, when the individuals are not converged, exploration is
needed to find out the good solutions in the whole search space. For the explo-
ration large step size is necessary. After the lapse of iteration, individuals are
converged. Hence for finding the optimal solution of the algorithm, individuals
needs to exploit the search space (step size is comparatively less). In GSA grav-
itational constant G affects the step size of individuals. As mentioned in Eq. 14,
force is directly proportional to the gravitational constant G and from the Eq. 10,
acceleration is depend on the force of individuals. Acceleration in GSA plays a
vital role for the step size of the individuals. Therefore in this paper gravitational
constant G is modified as shown here:

G(g) = G0e
(−αg/MaxIt)(1 − g

MaxIt
) (17)
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From the Eq. 17, it is clear that the value of gravitational constant will be high
during the initial iteration and value is reduced iteratively. Therefore, the accel-
eration and step size of the individuals are decreased as the number of iteration
increased.

Kbest in Eq. 13 controls the number of individuals that apply the force to
other individuals in search space. A large number of Kbest (individuals) means
large number of individuals interact with each other and movement between the
individuals is high. As the result convergence speed is lower. From Eq. 13 it is
clear that Kbest is linearly decreased therefore change in Kbest is very small
as the number of iterations increase. Due to this movement and interaction
between individuals is comparatively lower but the effect in convergence speed
is not much. Therefore in this paper Kbest is modified as shown here:

Kbest = round(N × exp(−βg/MaxIt)) (18)

Here, N is total number of individuals and β is constant. The value of Kbest
is reduced exponentially during each iteration. From the Eq. 18 it is clear that
Kbest is exponentially decreased. At initial iteration Kbest is large therefore
movement and interaction between the individuals is more that show the explo-
ration of the search space. Whereas the number of iteration is increased Kbest
is reduced therefore movement and interaction between the individuals is com-
parative less that shows the exploitation of the individuals.
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Fig. 1. Effect of Kbest in number of individuals

Behaviour of Kbest through iterations is shown in Fig. 1. It is clear from this
figure that in EGSA, Kbest is decreases exponentially through iterations whereas
in GSA Kbest is decreases linearly through iteration. So initially large number
of individuals apply force as the number of iteration is increased comparatively
less number of individuals apply force. So, EGSA regulates a proper balance
between diversification and intensification proficiency and improve the searching
ability as the number of iteration increase. The pseudo-code of EGSA is shown
in Algorithm 1.
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– Identification of search area.
– Creating a randomly dispersed set of individuals;

while Stopping condition is not satisfied do

– Calculate fitness of individuals.
– Calculate individuals mass by Eq. 6 and 7.
– Evaluate constant (G) by Eq. 17.
– Evaluate Kbest by Eq. 18.
– Calculate force (F ) for each direction by Eq. 14 and acceleration (a) for

every individuals by Eq. 10.
– Update individuals velocity by Eq. 17 and position by Eq. 18.

end
Algorithm 1. EGSA Algorithm

4 Results and Discussions

To examine the outcome of the EGSA, 12 different benchmark functions (f1 to
f12) are picked as shown in Table 1.

To certify the prosection of the proposed algorithm EGSA, a comparative
analysis is carried out among EGSA, standard GSA, FBGSA [4] and BBO [10].
To authenticate the performance of the considered algorithms over the test prob-
lems, the experimental setting is given below:

– The number of simulations/run = 30,
– Number of population (N) = 50,
– G0 = 100, α = 20, β = 5 and finalper = 2,
– Experimental settings for the algorithms GSA, FBGSA [4] and BBO [10] are

simulated from their primary research papers.

Table 2 display the experimental results of the examine algorithms. A detailed
analysis about the standard deviation (SD), mean error (ME), average number
of function evaluations (AFE) along with the success rate (SR) are shown in
Table 2. Results in Table 2 replicates, many times EGSA exceeds in terms of
reliability, efficiency as well as accuracy as compare to the GSA, FBGSA and
BBO.

Further, Mann-Whitney U rank sum test [9] is performed at 5% level of
remarkable (α = 0.05) between EGSA - GSA, EGSA - FBGSA and EGSA -
BBO. Table 3 display the compared results of mean function evaluation and
Mann-Whitney test for 30 simulations. In Mann-Whitney test, we observe the
remarkable difference between two data set. If remarkable difference is not seen
then = symbol appears and when remarkable difference is observed then com-
parison is performed in terms of the AFEs. And we use + and - symbol, +
represent the EGSA is superior than the examined algorithms and - represent
the algorithm is inferior. The last row in Table 3, authorize the excellence of
EGSA over GSA, FBGSA and BBO.
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Table 2. Comparison of the results of test functions, TP: Test Problem

TP Algorithm SD ME AFE SR

f1 EGSA 4.76E-07 9.44E-06 127540.00 30

GSA 5.59E-07 9.30E-06 154615.00 30

FBGSA 5.57E-07 9.25E-06 141046.67 30

BBO 5.78E-03 1.04E-02 200000.00 0

f2 EGSA 1.01E-04 9.89E-03 84075.00 30

GSA 1.98E+00 3.61E+00 200000.00 0

FBGSA 8.65E+00 4.04E+01 200000.00 0

BBO 5.28E-03 1.77E-02 200000.00 0

f3 EGSA 4.65E-07 9.50E-06 151536.67 30

GSA 4.94E-07 9.42E-06 181821.67 30

FBGSA 6.47E-07 9.23E-06 166096.67 30

BBO 5.61E-02 5.61E-02 20000.00 0

f4 EGSA 1.25E-04 1.54E-01 8996.67 30

GSA 4.96E-03 2.56E+02 11583.33 30

FBGSA 5.60E-04 4.15E-02 12635.00 30

BBO 4.40E+01 4.80E-05 5351.67 30

f5 EGSA 1.49E-06 8.45E-06 67220.00 30

GSA 1.55E-06 7.73E-06 86376.67 30

FBGSA 1.86E-06 7.45E-06 81458.33 30

BBO 5.49E-02 1.42E-01 200000.00 0

f6 EGSA 1.60E-04 9.02E-04 74060.00 30

GSA 5.23E-02 1.88E-02 142220.00 26

FBGSA 3.73E-01 9.92E-02 200000.00 0

BBO 1.41E+00 2.73E-01 191210.00 3

f7 EGSA 7.92E-13 1.83E-12 14473.33 30

GSA 8.88E-13 1.85E-12 21290.00 30

FBGSA 7.81E-13 1.89E-12 21995.00 30

BBO 8.25E-13 1.79E-12 1090.00 30

f8 EGSA 1.15E-05 1.14E-05 36455.00 30

GSA 1.16E-05 1.17E-05 49801.67 30

FBGSA 1.20E-05 1.22E-05 47368.33 30

BBO 4.00E-01 3.26E-01 83296.67 18

f9 EGSA 2.70E-14 3.90E-14 127580.00 30

GSA 6.47E-02 6.67E-02 160010.00 28

FBGSA 2.70E-14 5.34E-14 155450.00 30

BBO 2.58E-14 3.10E-14 18711.67 30

f10 EGSA 6.74E-06 6.33E-06 29600.00 30

GSA 5.95E-06 5.50E-06 39686.67 30

FBGSA 6.24E-06 6.29E-06 36780.00 30

BBO 3.34E-16 1.22E+00 200000.00 0

f11 EGSA 7.48E-06 8.88E-05 30623.33 30

GSA 6.00E-06 8.96E-05 43526.67 30

FBGSA 5.66E-06 8.89E-05 41330.00 30

BBO 6.55E-06 8.96E-05 2600.00 30

f12 EGSA 4.13E-14 9.53E-13 179236.67 30

GSA 1.34E-12 1.34E-11 200000.00 0

FBGSA 9.24E-14 8.73E-13 192680.00 30

BBO 2.02E-03 5.94E-03 200000.00 0
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Table 3. Comparison based on Mann-Whitney U rank test at significance level α =
0.05 and mean function evaluations

Test problems EGSA Vs GSA EGSA Vs FBGSA EGSA Vs BBO

f1 + + +

f2 + + +

f3 + + +

f4 + + -

f5 + + +

f6 + + +

f7 + + -

f8 + + +

f9 + + -

f10 + + +

f11 + + -

f12 + + +

Total number of + sign 12 12 08

Moreover, for comparison of examined algorithms, in form of consolidated
achievement boxplots [2] study of AFE is carried out. Boxplot study efficiently
describe the empirical circulation of data graphically. The boxplots for EGSA,
GSA, FBGSA and BBO are depicted in Fig. 2. The results clearly show that
interquartile range and medians of EGSA are relatively low.

EGSA GSA FBGSA BBO
0

0.5

1

1.5

2

2.5

x 105

Fig. 2. Boxplots graphs (Average number of function evaluation)

To calculate the convergence speed of modified algorithm we use Acceleration
Rate (AR) [9] which is represent as shown below:

AR =
AFEcompareAlgo

AFEEGSA
(19)
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Table 4. Test Problems: TP, Acceleration Rate (AR) of EGSA compare to the Stan-
dard GSA, FBGSA and BBO

TP GSA FBGSA BBO

f1 1.212286342 1.105901417 1.568135487

f2 2.378828427 2.378828427 2.378828427

f3 1.199852621 1.096082356 1.319812587

f4 1.287513894 1.40440904 0.594849944

f5 1.284984628 1.21181692 2.975304969

f6 1.920334864 2.700513097 2.581825547

f7 1.470981115 1.519691386 0.075310917

f8 1.366113473 1.299364513 2.284917478

f9 1.254193447 1.218451168 0.146666144

f10 1.340765766 1.242567568 6.756756757

f11 1.421356264 1.349624469 0.08490258

f12 1.115843112 1.075003255 1.115843112

here, compareAlgo ∈ (GSA, FBGSA and BBO) and AR > 1 means EGSA is
faster than compared algorithms. For investigate the AR of modified algorithm it
compared with standard GSA, FBGSA and BBO, results of Table 2 are analyzed
and the value of AR is calculated using Eq. 19. It is cleared from the Table 4 that
convergence speed of EGSA is faster than other examined algorithms.

5 Conclusion

This paper presents a variant of GSA algorithm, known as Exploitative Gravita-
tional Search Algorithm (EGSA). In the modified version, two control parame-
ters gravitational constant G and Kbest are modified. Kbest is number of best
individuals that exponentially decreases with the number of iterations increases
and it increase the searching speed of algorithm. Gravitational constant G is
also deceased with number of iterations increased and it enhance the conver-
gence speed. This methodology is reliable and efficient and maintain the proper
balance between the exploitation and exploration proficiency of the algorithm.
The proposed algorithm is compared with GSA, FBGSA and BBO over differ-
ent benchmark functions. The obtained results state that EGSA is a competitive
variant of GSA and also a good choice for solving the continuous optimization
problems. In future, the newly developed algorithm may be used to solve various
real world optimization problems of continuous nature.
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Abstract. A best solution for decreasing software cost and reducing the cycle
time during software development is automatic software testing and it has been
seen by various organization. User specifications and requirements can be fully
achieved by software testing. A number of issues are underlying in the field of
software testing such as prioritization of test cases and automatic and effective
test case generation are to be handled properly and they mostly depends on
duration, cost and effort during the testing process. Testing can be done in two
different ways such as manual testing and automatic testing by using different
testing tools. Manual testing are very time consuming and this can be overcome
by automatic testing by generating test cases automatically. Several types of
evolutionary techniques like Genetic Algorithm, Particle Swarm Optimization
and Bee Colony Optimization have been used for software testing. In this
research paper, a survey of different evolutionary techniques used in software
testing have been presented by taking the various issues in to account.

Keywords: Test data generation ⋅ Software testing ⋅ Genetic algorithm
(GA) ⋅ Particle swarm optimization (PSO) ⋅ Bee Colony Optimization (BCO)

1 Introduction

Now-a-days automated software testing and developing of high quality test cases are
two main objectives in the software industry. To support a high quality assurance of
software, to create reliable, robust and trust worthy software or to deliver error free
software, testing is performed by gathering required information of the software. It is
also defined by the process of verification and validation, which meets the technical and
business requirements [1, 2] in software development process. Testing is a most time
consuming task which takes approximately 60% work load of the total software
development time. If the testing is performed using automated testing then it will lead
to reduce in software development cost by a significant margin [3–5].
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A best solution for decreasing software cost and reducing the cycle time during
software development is automatic software testing and it has been seen by various
organization [6]. By using different software tools software can tested either manually
or automatically. It is proved that automated software testing is better than manual
testing as manual testing is a very time consuming and expensive task [7, 8]. Various
types of techniques have been proposed by researchers and a lot of work has been done
for software testing using soft computing techniques such as GA, Neural Network,
genetic programming, fuzzy logic and evolutionary computing by providing high
quality test data [8–10]. These techniques can be applied for test data generation to
optimized problems.

This paper presents a survey of how different types of evolutionary techniques such
as GA, PSO and BCO have been efficiently used in software testing and have been
applied extensively for automated test data generation. Further the paper is partitioned
into 4 sections. Section 1 presents the Introduction to software testing, Sect. 2 presents
related work in the field of software testing using different types of evolutionary
techniques, Sect. 3 contains a brief description about the working of GA, PSO and
BCO and Sect. 4 gives a conclusion followed by our future work.

2 Related Work

This section provides a survey on different evolutionary techniques like GA, PSO and
BCO used in software testing field for generating best test cases.

Last et al. [11], proposed a hybrid fuzzy based GA, which is an age extension of
GA (FAexGA) to generate test cases for mutation testing. They found a very minimal
set of test cases. The faults in test cases are exposed by the use of mutated versions of
the original method. The proposed method uses a FLC (Fuzzy Logic Controller) for
obtaining the probability of crossover. The probability of crossover differs according to
the age intervals allocated during lifetime. The life time and age of chromosomes
(parents) are defined by the FLC state variables. The truth value for obtaining
Young-age, middle-age and old-age are shown in Table 1. Where,

In their work an effective set of test cases are generated for a Boolean expression of
100 Boolean attributes by using three logical operators AND, OR, and NOT. An
external application generates the correct expression randomly and one simple function

Table 1. Fuzzy rule for cross over probability [14]

Parent 1
Young-age Middle-age Old-age

Parent 2 Young-age Low Medium High
Middle-age Medium High Medium
Old-age Low Medium Low

Age ∈ [Young-age, Middle-age, Old-age]
Crossover Probability ∈ [Low, Medium, High]
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is evaluated for each test case to generate an erroneous expression. Here a 100-bit
lengthen binary strings of one dimension are generated as chromosomes.

Hla et al. [12], proposed a particle swarm optimization (PSO) algorithm based on
modified software units for embedded real time software regression testing. The pro-
posed algorithm prioritize the test cases automatically so that new higher priority test
cases are selected for regression testing. The PSO algorithm successfully applied to the
prioritization problem by taking solution as particle space and from which the best new
positions of test cases, based on software unit can be found. Their results shows that the
PSO algorithm can prioritized the test cases in the test suites by new best positions
effectively and efficiently.

McCaffrey [13], developed a simulated BCO algorithm by which pair wise test sets
can be generated to reduce the test set size as all systems are not supported for
exhaustive testing with all possible inputs. The technique is a combinatorial NP-hard
technique and it takes more time to generate test sets, which are far better than the test
sets generated by deterministic approach.

Nachiyappan et al. [14], proposed a model based on genetic algorithm to decrease
the cost of regression testing. Their proposed model creates population by taking the
test history, the fitness value is calculated depending on the block based coverage value
and run time of test case and the genetic operators are used for successive generations
till the test cases with optimum value is found. They used Average Percentage of Faults
Detected (APFD) metric to calculate the fitness function of individual test cases.
The APFD can determine the effectiveness about cost, coverage, runtime and ordering
of the new test case. The test cases are rejected which violates the specified time
constraints. The model shows a good optimal sized test set by reduced test suite
technique and the method is very highly adaptive as test case reduction is more
effective when the fitness granularity is increased.

Kaur and Goyal [15], presented a BCO algorithm for fault coverage to a maximum
limit. The authors have mapped the farmer bee’s scenarios to prioritize the test suite.
They explained their work by taking two examples like “college program for admission
in courses” and “Hotel Reservation”. In their work values have been compared using
APFD (Average Percentage of Fault Detection) metrics and the proposed algorithm has
been implemented in CPP compiler.

Ferrer et al. [16], presented two search based approaches as GTSG (Genetic Test
Sequence Generator) and ACOts (Ant Colony Optimization approach for Test
Sequence) for test sequence generation in functional testing with shortest valid path,
which covers full transition and class. They used one CIT (Combinatorial Interaction
Testing) approach, the classification tree method for test planning and design in
functional testing. The authors defined the entire model as an extended classification
tree to generate test sequences for a SUT (Software Under Test), which is needed for
both industry and academia. Their first approach is GTSG with memory operator to
preserve the memory for population evaluation as well as faster computation to get the
solution. The second one is ACOts, which deals with large construction graphs. Test
sequence can be generated with near-optimal solutions, where search spaces are sep-
arated. The authors performed the experiments using 12 software models by comparing
their proposed approaches with greedy algorithm and they found their approaches can
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generate test sequences with shortest valid path, which covers full transition and class
in functional testing.

Ankur and Srivastav [17], used GA to generate test data automatically for branch
testing. They developed an improved approach which focuses on branch ordering,
memory and elitism. The authors have discussed about DFS (Depth First Strategy),
BFS (Breadth First Strategy) and PPS (Path Prefix Strategy) for ordering the branches,
which are to be covered for testing. For improve test data they used elitism and memory
with branch orderings. They compared each strategy with RAN and RNS and found
best results with a mean number of generations and longer populations.

Andalib and Babamir [18], used PSO in discrete space for generating test data
where there is no data dependency between program lines in a software. They proposed
a method that produced minimum numbers of Test Case (TC) automatically with
highest covering of codes in a program. In their method Mc Cabe theory was used to
find the independent paths by reducing the number of paths in a program for selecting
the best test case. Investing the motion of all the particles (birds/fish), the fitness
function was taken for an optimal solution. They executed an integrated sorting pro-
gram and with only one TC, they found 75% of the regions and 50% of independent
paths are covered. The authors has compared their proposed algorithm with GA to
covered 100% of independent paths and found more efficient result.

Dixit and Tomar [19], developed and implemented a hybrid algorithm GPSHA
(Genetic Particle Swarm Hybrid Algorithm) combining the power of GA and PSO and
they found a less number of generations and less number of test cases which covers
around 100% of a program. Their results confirmed the effectiveness of the GPSHA
over GA and PSO after performing in real world problems.

Sharma et al. [20], implemented GA in software testing to increase the efficiency
and process time of testing. They generate test cases by using GA in Ruby, C++ and
Matlab. It is found that the best fitness function is evaluated to a population of 50 and
maximum generation 500. When the stopping condition is satisfied the iterative gen-
eration is stopped by providing an optimized and unique solution.

Yang et al. [21], developed a new intelligent search based algorithm RGA
(Regenerate Genetic Algorithm) to increase test coverage, search efficiency, restrain
population aging and produce less number of test cases for coverage oriented software
testing. They found RGA can give better optimized solution for large scale, highly
complex problems and solve the population aging problem. After comparing with GA
and random test method, authors found RGA is more efficient for required coverage
criteria of test cases and achieving greater test coverage with fewer iterations and test
cases.

Shahbazi and Miller [22], used a multi objective optimization in black box string
test case generation for random testing and adaptive random testing. The authors
performed their experiments by taking six different types of string distance functions
such as Levenstein, Hamming, Cosine, Manhattan, Cartesian and Locality-Sensitive
Hashing, to find effectiveness and run time of test cases. They introduce two objectives
for effective string test cases such as the length distribution of the string test cases and
the diversity control of the test cases within a test set. They used one diversity- based
fitness function to generate optimized test sets to reveal faults more effectively and
found superior test cases are produced by applying the objectives.
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Zhenga et al. [23], developed a decomposition based multi-objective evolutionary
algorithm (MOEA/D) for regression testing of programs from SIR repository. The
experiments are evaluated in four approaches such as NSGA-II (non-dominated sorting
genetic algorithm, MOEA/D (parameter c, used in normalization is fixed), MOEA/D
(c is chosen from tuning) and classic greedy algorithm. The authors compared their
work with Yoo and Harman [24] multi objective approaches where they used greedy
algorithm and two versions of NSGA-II. They found among all the approaches
MOEA/D with varying c is most effective and it produce the lowest HV(Hyper Vol-
ume) values with cheapest test suite. The two variants of MOEA/D have superior
performance in comparison to NSGA-II and greedy algorithm.

After an extensive study of different evolutionary techniques used in software
testing, we came to learn GA, PSO and BCO are used efficiently for generating test
cases and solving many complex problems. Table 2 shows a brief summary of different
evolutionary algorithm used in software testing and the results found in different related
work has been already done.

Table 2. A brief summary of different evolutionary algorithm used in software testing and
results found.

Authors Problem discussed
and solved

Algorithm
used

Work done in
particular area

Results

Mark Last
et al. [11]

Generate test cases
for mutation
testing.

GA Used a FLC
(Fuzzy Logic
Controller) for
obtaining the
probability of
crossover

FAexGA is
efficient as the
rate of finding
error is very fast
and number of
solution is
distinct.

Hla et al. [12] Prioritize test cases
to increase
effectiveness in
regression testing
for embedded real
time software.

PSO Focused on
coverage based
prioritization of
test suite.

PSO algorithm
can prioritized
the test cases in
very effectively
and efficiently

McCaffrey
[13]

Reducing test set in
pair wise testing

BCO Combinatorial
NP hard and
Pair wise
Testing

Test cases are
far better than
the test sets
generated by
deterministic
approach.

Nachiyappan
et al. [14]

Decrease the cost of
regression testing
by reducing the test
suite.

GA APFD is used to
determine the
effectiveness of
test cases.

The method is
very highly
adaptive as test
case reduction is
more effective
with increase of
fitness
granularity.

(continued)
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Table 2. (continued)

Authors Problem discussed
and solved

Algorithm
used

Work done in
particular area

Results

Kaur and
Goyal [15]

Fault based test suit
prioritization.

BCO Used APFD
(Average
Percentage of
Fault Detection)
metrics and
CPP compiler.

Maximum
numbers of
faults are
covered in
regression
testing.

Ferrer et al.
[16]

Test sequence
generation with
shortest valid path
to cover transition
and class.

GA &
ABC

CIT
(Combinatorial
Interaction
Testing), the
extended
classification
tree method.

Generate test
sequences with
shortest valid
path, which
covers full
transition and
class in
functional
testing.

Ankur and
Srivastav.
[17]

Generate test data
automatically for
branch testing.

GA Focused on
branch ordering,
memory and
elitism.

Generate best
results with a
mean number of
generations and
longer
populations.

Andalib and
Babamir [18]

Generating
minimum number
of Test Case
(TC) automatically
with highest
covering of codes
in a program.

PSO Used Mc Cabe
theory to find
the independent
paths for
selecting the
best test case.

Covered 100%
of independent
paths and found
more efficient
result.

Dixit and
Tomar [19]

Generation of Less
and unique
numbers of test
cases.

GA &
PSO

Combining the
power of GA
and PSO

GPSHA results
a less number of
generations and
less number of
test cases and
covers around
100% of a
program.

Sharma et al.
[20]

Increase the
efficiency and
process time of
testing.

GA Generate test
cases by using
GA in Ruby,
C ++ and
Matlab.

Providing an
optimized and
unique solution
for testing.

(continued)
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3 An Introduction to Evolutionary Algorithm

Evolutionary algorithm based on biological behavior or evolution of population, which
can be used to solve many complex and real life problems by producing high quality
test data automatically [15, 23]. This algorithm is based on the principle of survival of
the fittest and models some natural phenomena like genetic inheritance and Darwinian
strife for survival, constitute an interesting category of modern heuristic search [9, 19].
Figure 1 shows the work flow of evolutionary technique.

3.1 Genetic Algorithm (GA)

GA has emerged as a practical, robust optimization technique and search method and it
is inspired by the way nature evolves species using natural selection of the fittest
individuals.

The algorithm was developed by John Holland in United States [14]. The solution
to a specific problem can be solved by a population of chromosomes. A chromosome is

Table 2. (continued)

Authors Problem discussed
and solved

Algorithm
used

Work done in
particular area

Results

Yang et al.
[21]

Judging the
population aging
process.

GA Used population
regeneration
strategy

RGA is more
efficient by
reducing the
number of test
cases and
achieving
greater test
coverage with
fewer iterations
and test cases.

Shahbazi and
Miller [22]

Generate effective
set of black box
string test cases
through multi
objective
optimization.

GA &
MOGA

Used several
string distance
functions to find
effectiveness
and run time of
test cases.

Superior test
cases are
produced by
using multi
objective
optimization
technique.

Zhenga et al.
[23]

To achieve full
coverage for
regression testing

MOEA &
GA

Used MOEA/D
with a
normalization
parameter c to
solve multi
objective
optimization
problem

MOEA/D have
superior
performance in
comparison to
NSGA-II and
greedy
algorithm.
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a string of binary digits and each digit is called a gene and population can be created
randomly. It is a best way to solve optimization problems by searching for good genes
and applying the different genetic operators like selection, crossover, mutation and
Elitism [11, 17, 22].

Selection: A selection operation is performed to determine the individuals that meets
the fitness function where fitness function is a specific function depending upon the
criteria which returns a number indicating the acceptability of the program. This
function is used in the selection process to determine the optimum point and the
variants survive to the next iteration [8, 21]. Selection methods are of six different types
such as roulette wheel, stochastic universal sampling, linear rank, exponential rank,
binary tournament and truncation.

Crossover or Recombination: After selection, the crossover operation is applied to
the selected chromosomes, which swaps genes or sequence of bits in the string between
two individuals. For binary encoding different types of crossover operators are used
like one point, two point, uniform and arithmetic. Cross over process is repeated with
different parent individuals. Finally the mutation operator is applied to a randomly
selected subset of the population [17, 20].

Mutation: It is used to maintain genetic diversity in the population by altering chro-
mosomes to introduce new good traits. Basically six types of mutation operators are
used in Genetic algorithm such as Bit string, flip bit, boundary, uniform, non uniform
and Gaussian [17, 21].

True

Initialize population

mutation

crossover

Evaluating Fitness function and sorting

Environmental  selection

False

Parent selection

Check for termination condition Best population

Fitness function and sorting

Fig. 1. Work flow of evolutionary technique
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Elitism: Elitism process involves copying a small proportion of the fittest candidates
into the next generation, which are related to the best solution found [17].

The basic process of Genetic algorithms mainly involves creating an initial set of
random solutions (population) and evaluating them [21, 23], by using the GA opera-
tors, in which the better solutions are identified (parents) and are then used to generate
new solutions (children). These values can be used to replace with other population.
This new population (generation), is then reevaluated and the process for generating
new values continues until a final solution is found based on a specified condition of
the fitness function [14]. Finally the function minimization is applied to the fitness
function for test data generation.

3.2 Particle Swarm Optimization Algorithm (PSO)

PSO is a search based optimization technique that studies the social behavior of bird
flocking or fish schooling. This algorithm mainly based on the movement and intel-
ligence of swarms [18, 19]. The best solution can be found by a number of particles
constituting a swarm, moving around in a particular search space of N-dimensional and
adjusting their flying according to own and other’s flying experience. Particles are
always keeping track for personal best solution, denoted by p-best and the best value of
any particle, denoted by g-best. Simultaneously the speed is adjusted dynamically of
each particle depending on flying experiences. The velocity of each particle can be
changed by considering the parameters like current position and velocity, distance
between current position and its p-best as well as the distance between current position
and its g-best [12, 19].

3.3 Bee Colony Optimization Algorithm (BCO)

Bee Colony Optimization (BCO) is a special type of Swarm Intelligence (SI), where the
honey bees are the agents of the group. They communicate with each other by “Waggle
Dance” principle to exchange information about the location for rich food source. In
this system there is a well coordinated interaction between bees of a particular colony,
organized team work and simultaneous task performance [13, 15].

In a bee colony different types of bees are present like a queen bee, many male
drone bees and thousands of worker bees where the Queen is responsible to lay eggs
for creating new colonies the male drones are responsible to mate with the Queen. At
the time of downfall, male drones are discarded from the colony. The females of the
hive are the worker bees. They are main responsible to build blocks of the hive as well
as to comb, clean, maintain, guard the hive, search and collect rich food to feed the
queen and drones. The worker bees are of two types such as forager bees and scout
bees. The scout bees search food sources randomly and after finishing their distance
limits they return back to the hive to give the information to foragers by “Waggle
Dance” principle. Finally after observing the direction and information regarding
location of rich food sources the foragers start flying to collect food [13, 24]. BCO
algorithms are used to solve diverse domains problems, bench mark problems like
routing problems, NP-hard problems and Travelling Salesman Problems [15].
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4 Conclusion and Future Work

In this review paper we analyzed how different types of evolutionary techniques such
as GA, PSO, ABCO and BCO have been efficiently used in software testing and have
been applied extensively for automated test data generation. The results and perfor-
mance of testing can be improved by these techniques. The evolutionary generation of
test cases is proved to be very efficient and cost effective than manual testing. In future,
we planned to combine the power of GA, PSO, ABCO and BCO in such a way that the
new hybridized algorithm can produce a less number of test generations from which
best test cases can be achieved for software testing. It is also planned to develop a new
algorithm to generate test cases randomly and further optimize to find the best test
cases.
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Abstract. Genetic algorithm (GA) is adaptive heuristic search evolu-
tionary algorithm. GA has had a great measure of success in the opti-
mization process. Spider monkey optimization (SMO) is the relatively
new swarm intelligence algorithm. SMO inspired by food foraging behav-
ior of spider monkeys. We introduce a new idea that integrates swarm
intelligence and evolutionary technique into the optimization process.
In this article, we propose two hybridization methodologies for SMO
and GA, namely SMOGA (SMO followed by GA) and GASMO (GA
followed by SMO) for the numerical optimization problems. These algo-
rithms effectiveness have been tested here on both its “ancestors”, SMO
and GA for various benchmark problems.

Keywords: Spider monkey optimization · Genetic algorithms ·
Hybridization · Metaheuristic

1 Introduction

Metaheuristic algorithms are solving tool for real-world optimization problems
using stochastic techniques. Each algorithm has an own skill to solve optimiza-
tion problems. In the literature various metaheuristic algorithms such as genetic
algorithm (GA) [7], ant colony optimization (ACO) [3], particle swarm optimiza-
tion (PSO) [4], differential evolution (DE) [20], bacterial foraging optimization
(BFO) [16], artificial bee colony (ABC) [12], biogeography-based optimization
(BBO) [19], harmony search algorithm (HSA) [24] and spider monkey optimiza-
tion (SMO) [2] etc. are available. These metaheuristic algorithms developed
according to the demand of the problems. In view of no free lunch theorem given
by Wolpert and Macready [22], there is no such algorithm which can beat the
other algorithm for solving all optimization problems motivates researchers to
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develop better algorithms. Therefore hybridization is the new view to perform
better in the optimization process. Hybridization is the agreement or correla-
tion of different schemes in time. In this paper, we considered an evolutionary
algorithm (real coded GA) with swarm intelligence technique (SMO) to solve
numerical optimization problems. Some hybridized schemes with classical GA
are as follows: In [9], Juang et al. developed hybrid genetic algorithm and par-
ticle swarm optimization (HGAPSO). In HGAPSO, new individuals generation
function mimics the social behavior of animals, breeding and survival of the
fittest and applied to recurrent neural/fuzzy network design. Lee et al. [13] pro-
posed a hybrid search algorithm with the advantage of genetic algorithm and
ant colony optimization that performs better exploration and exploitation skills.
Hwang et al. [8] proposed a hybrid genetic algorithm called a novel adaptive real-
parameter simulated annealing genetic algorithm (ARSAGA). In ARSAGA, the
crossover is maintained by GA, and mutation is utilized by GA and SA. Harada
et al. [6] developed a scheme with hybridization of GA and local search (LS)
and applied in multi objective optimization problem. In this hybridized scheme
the advantages of both GA and LS exploits maximally. Grimaccia et al. [5] pre-
sented genetical swarm optimization (GSO) combined by PSO and GA has a
characteristic to set the parameter as hybridization coefficient (hc) in order to
adjust itself to any specific problem. GA-PSO developed by Kao et al. [11] is the
hybridized optimization algorithm incorporates the concept of GA and PSO. In
GA-PSO, individuals in each iteration improved based on social interaction and
their personal experience. Wahed et al. [1] introduced a hybrid approach com-
bined by PSO and GA for solving nonlinear optimization problems. Pan et al.
[15] developed an improves multi-agent genetic algorithm (IMAGA) and Tian
et al. [21] presented a hybrid adaptive genetic algorithm with chaos searching
technique for numerical optimization.

This paper proposed two hybridized algorithms using genetic algorithm (GA)
and spider monkey optimization (SMO) technique. These proposed algorithms
are spider monkey optimization followed by genetic algorithm (SMOGA) and
genetic algorithm followed by spider monkey optimization (GASMO). Further,
these proposed algorithms are tested on various benchmark test problems.

The remaining content of the paper is organized as follows: In Sect. 2, a brief
explanation of spider monkey optimization and genetic algorithm have given.
Details of proposed hybridization are given in Sect. 3. Section 4 describes the
numerical experiments and discussion. The paper is concluded in Sect. 5.

2 Spider Monkey Optimization and Genetic Algorithm

Swarm intelligence and evolutionary algorithm both are stochastic techniques.
Spider monkey optimization (SMO) is swarm intelligence algorithm and genetic
algorithm (GA) is an evolutionary algorithm. In this section, a brief discussion
of SMO and GA are introduced.
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2.1 Spider Monkey Optimization

Spider Monkey Optimization Algorithm (SMO) is a relatively new swarm intel-
ligence algorithm based on the food foraging behavior of spider monkeys. SMO
is fast emerging swarm intelligence technique which incorporates meta-heuristic
approach to solve global optimization problems. The algorithm is inspired by for-
aging behavior of intelligent animals including spider monkeys which use fission-
fusion social structure (FFSS) to efficiently locate food resources. The algorithm
comprises 7 major phases:

Initializing population: In this phase, N potential solutions (each of dimen-
sion D) are uniformly seeded across the search space. Each spider monkey ini-
tialized as follows:

smij = smminj + u(0, 1) × (smmaxj − smminj) (1)

Where sm represents the spider monkey. Here i ∈ {1, 2, ...., N} and j ∈
{1, 2, .....,D}. u(0,1) is the uniformly distributed random number between 0 and
1. smminj is the lower bound of smij and smmaxj is the upper bound of smij .

Local Leader Phase (LLP): In local leader phase, each spider monkey updates
its position based on the experience of the local group leader and fellow group
members. The fitness value of the updated position is computed and the monkey
updates its position if the value is greater than its previous value. In this phase
spider monkey updated as follows:

sm(new)ij = smij + u(0, 1) × (llkj − smij) + u(−1, 1) × (smrj − smij) (2)

Where ll represents the local group leader. u(-1,1) is the uniformly distributed
random number between −1 and 1. Here r �=i, r ∈ {1, 2, ...., N}, k ∈ local group.

Global Leader Phase (GLP): After the completion of local leader phase,
global leader phase starts. In this phase, spider monkeys update their position
based on the experience of global leader and fellow group members. The position
update in this phase is based on the probability values which is computed using
fitness. Hence, the one with higher fitness has more chances to update its position
and reach the optimum. The new fitness value is calculated and position is
updated in case of better fitness value. The new position of spider monkey is
updated in this phase as follows:

sm(new)ij = smij + u(0, 1) × (glj − smij) + u(−1, 1) × (smrj − smij) (3)

Where gl represents the global leader.

Global Leader Learning Phase (GLL): In this phase, the position of the
global leader is updated making a greedy selection amongst the whole popu-
lation. Hence, the monkey with best fitness value is chosen as the new global
leader. In case the global leader does not update its position, the global limit
count is increased by 1.
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Local Leader Learning Phase (LLL): In this phase, the monkey with the
best fitness in each group is chosen to be the local leader. If the local leader does
not update its position, the local limit count is increased by 1.

Local Leader Decision Phase (LLD): If the local leader does not update
its position in subsequent previously defined local leader limit, all members of
the group re-initialize their position either randomly or based on the combined
experience of local and global leaders. The local leader count is made 0. The
updated position of spider monkeys’ as follows:

sm(new)ij = smij + u(0, 1) × (glj − smij) + u(0, 1) × (smij − llkj) (4)

Global Leader Decision Phase (GLD): If the global leader does not update
its position in a subsequent pre-decided number called the global leader limit, the
global leader splits the population into smaller groups until it reaches maximum
group number. The global leader decision phase is always followed by local leader
learning phase to elect a leader in each newly formed group. If the global leader’s
position is not updated despite the maximum number of groups, the global leader
recombines all groups to form a single group and the complete process restarts.

2.2 Genetic Algorithm

Genetic algorithm (GA) is inspired by natural evolution and developed by John
Holland in the 1960s [7]. GA is an optimization method and optimization is based
on the development of the population. The population of candidate solutions are
called individuals to an optimization problem. Here in real coded GA, chromo-
some is a vector of real numbers represents the solution of the optimization
problem. Each chromosome includes the set of genes and each gene represents
the variable of the problem. Initially, a finite number of individuals are gener-
ated randomly, each is associated with fitness. Fitness is usually a value of the
objective function in the optimization problem being solved. Based on fitness
value and genetic operators, new population generated iteratively.

Reproduction, crossover and mutation are three genetic operators used in the
development of genetic algorithm as follows:

Reproduction/selection: This is the first operator applied on population.
Parents (chromosomes) are selected from the population and produce offspring
by crossover. According to Darwin’s theory of evolution, only fittest candidate
survive. Thus reproduction operator is also known as selection operator. During
this phase, in each successive generation a proportion of the existing population
is selected to breed a new generation. There are various selecting methods are
available as: Roulette-wheel selection, Boltzmann selection, Tournament selec-
tion, Rank selection and Steady-state selection. But in this paper randomized
selection is applied.

Crossover: Crossover operator is applied after completing reproduction process.
This operator applied to the mating pool to create a better individual. Generally
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in crossover operator, randomly pick two individuals from the mating pool and
exchange some gene (variable) between the individuals. There are numbers of
crossover have been defined for real coded GA. Some commonly used crossover in
real coded GA are Flat crossover [17], Arithmetic crossover [14], BLX-α crossover
(Blend crossover) [18], Linear BGA (Breeder Genetic Algorithm) crossover [18]
and Wright’s heuristic crossover [23]. In this paper, we have used Arithmetic
crossover. Short review of Arithmetic crossover is:

Let us assume two parents (chromosomes) are P1 and P2 are selected for
crossover as follows:

P 1 = (p1
1, p

1
2, ........, p

1
n)

P 2 = (p2
1, p

2
2, ........, p

2
n)

(5)

Where n represents the number of genes (variables) in each chromosome.
Similar representation for two offspring O1 and O2 produced by two parents

are as follows:

O1 = (o1
1, o

1
2, ........, o

1
n)

O2 = (o2
1, o

2
2, ........, o

2
n)

(6)

The offspring are in Arithmetic crossover defined by Kaelo et al. [10] as:

o1
i = αip

1
i + (1 − αi)p2

i (7)
o2

i = αip
2
i + (1 − αi)p1

i (8)

Where i is a position ∈ {1, 2, ......, n} and αi is uniform random number [14].

Mutation: Mutation operator preserves and introduces population diversity.
After crossover, chromosomes are subjected to mutation. Mutation operator is
applied according to user definable mutation probability. Mutation probability
is set low because the search will be covert into primitive random search due to
high mutation probability.

3 Hybridization of SMO and GA

Numerical optimization requires a balance between exploration and exploita-
tion. This paper discusses the hybridization of one meta-heuristic approach to
other, in order to provide a better balance between exploration and exploitation.
The two algorithms discussed here are genetic algorithm (GA) and spider mon-
key optimization (SMO). The proposed structure has two broad phases, each
consisting of one of the two classical (real coded GA and SMO) algorithms.
The first phase deals with randomly seeding potential solutions throughout the
search space followed by optimizing the test function by using one algorithm
(real coded GA or SMO). The optimized output of the first phase is fed as input
to the second phase which makes use of the second algorithm (SMO or GA) to
optimize the test function further.
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3.1 Spider Monkey Optimization Followed by Genetic Algorithm
(SMOGA)

In this algorithm, the first broad case consists of spider monkey optimization
algorithm followed by genetic algorithm (SMOGA) in the subsequent phase.
SMOGA algorithm is developed to combine the properties of two algorithms
SMO and GA. Hybrid technique SMOGA maintains the integration of two
techniques for the entire run. Initially individual are generated randomly and
updated by SMO procedure until (no progress > 100 iterations). Updating pro-
cedures are followed by GA until (no progress > 100 iterations). Working pro-
cedure of SMOGA is depicted in Fig. 1. The termination criteria for SMOGA is
as follows:

Continue SMO
Until (no progress > 100 iterations)
Continue GA
Until (no progress > 100 iterations)
The first phase is further divided into 6 sub-divisions:

– Local Leader Phase
– Global Leader Phase
– Global Leader Learning Phase
– Local Leader Learning Phase
– Local Leader Decision Phase
– Global Leader Decision Phase

There are four control parameters in SMO algorithm: LocalLeaderLimit, Glob-
alLeaderLimit, Maximum Groups (MG) and Perturbation Rate (pr).

The second phase is subdivided as in 5 sub-divisions:

– Initialization
– Selection
– Crossover
– Mutation
– Termination

In the initialization step optimized solutions of the first phase are initialized
as input to the second phase. Selection, crossover and mutation are processed.
The algorithm is terminated if the best solution after the iterations gets over is
presented as the output of the algorithm.

Fig. 1. Schematic representation of SMOGA
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3.2 Genetic Algorithm Followed by Spider Monkey Optimization
(GASMO)

In genetic algorithm followed by spider monkey optimization (GASMO), genetic
algorithm and spider monkey optimization are used in the subsequent phase.
GASMO incorporates the properties of both algorithms GA and SMO. Hybrid
technique GASMO also maintains the integration of two techniques for the entire
run. Here the procedure starts with randomly generated individuals and updated
by GA procedure until (no progress > 100 iterations). Updating procedures are
followed by SMO until (no progress > 100 iterations). Working procedure of
GASMO is depicted in Fig. 2. The termination criteria for GASMO is as follows:

Continue SMO
Until (no progress > 100 iterations)
Continue GA
Until (no progress > 100 iterations)

Fig. 2. Schematic representation of GASMO

4 Numerical Experiments and Discussion

In this section, we compare basic SMO, real coded GA, SMOGA and GASMO.
The parameters settings adopted for experiment are:

• Population Size: 100
• LocalLeaderLimit: 3000
• GlobalLeaderLimit: 100
• Perturbation Rate: [0.1, 0.4] linearly increasing over iterations
• Maximum Groups: 10
• Mutation Rate: 0.1
• Number of Simulations: 30
• Max Iterations: 2000

In order to compare the effect of proposed algorithm, 20 different unconstrained
continuous minimization benchmark functions are selected with their optimum
values given in Table 1. Comparison results of GA, SMO, SMOGA and GASMO
based on best fitness and average fitness over 30 runs are reported in Table 2.
In Table 2, column 1 illustrates the benchmark function, columns 2, 4, 6 and
8 report the best fitness of 30 runs using GA, SMO, SMOGA and GASMO
algorithms, respectively. Columns 3, 5, 7 and 9 report the average fitness over 30
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Table 1. Test problems (TP: Test problem, D: Dimensions)

TP Objective function Search range Optimum value D

Parabola

sphere

f1(x) =
∑D

i=1 x2
i [−5.12,5.12] 0 30

Step function f2(x) =
∑D

i=1 �xi + 0.5�2 [−100,100] 0 30

Ackley f3(x) = −20 exp

(

−0.2
√

1
D

∑D
i=1 x2

i

)

−
exp( 1

D

∑D
i=1 cos(2πxi)) + 20 + e

[−32.768,32.768] 0 30

Griewank f4(x) =
∑D

i=1
x2

i
4000 −∏D

i=1 cos(
xi√

i
) + 1 [−600,600] 0 30

Axis parallel

hyper

ellipsoid

f5(x) =
∑D

i=1 ix2
i [−5.12,5.12] 0 30

Levy f6(x) = sin2(πω1)
∑d−1

i=1 (ωi − 1)2[1 +

10sin2(πωi + 1)] + (ωd − 1)2[1 +

sin2(2πωd)], Where ωi = 1 +
xi−1

4 , i =

1, ...., d

[−10,10] 0 30

Rastrigin f7(x) =
∑D

i=1(x
2
i − 10 cos(2πxi) + 10D) [−5.12,5.12] 0 30

Rosenbrock f8(x) =
∑D

i=1[100(x
2
i −xi+1)

2+(xi−1)2] [−5,10] 0 30

Schewefel f9(x) = −∑D
i=1 xisin(

√| xi |) [−500,500] −12569.487 30

Schewefel1.2 f10(x) = −∑D
i=1(

∑i
j=1 xj)

2 [−100,100] 0 30

Sum of

different

power

f11(x) =
∑D

i=1 | xi |i+1 [−1,1] 0 30

Dixon price f12(x) = (x1 −1)2 +
∑D

i=2 i(2x2
i −xi−1)

2 [−10,10] 0 30

Easom f13(x) =

−(−1)n(
∏D

i=1 cos2(xi)) exp[−∑D
i=1(xi−

π)2]

[−2π, 2π] 0 30

Michalewicz f14(x) = −∑D
i=1 sin(xi)

[
sini(xi)

2

π

]20
[0,π] −9.66015 30

Perm f15(x) =
∑D

i=1(
∑D

j=1(j + β)(xi
j − 1

ji ))2 [−30,30] 0 30

Rotated

hyper

ellipsoid

f16(x) =
∑D

i=1
∑i

j=1 x2
j [−65.536,65.536] 0 30

Styblinski

Tang

f17(x) = 1
2

∑D
i=1(x

4
i − 16x2

i + 5xi) [−5,5] −1174.9797 30

Trid Function f18(x) =
∑D

i=1(xi − 1)2 −∑D
i=2 xixi−1 [−900,900] fmin =

− (D∗(D+4)∗(D−1))
6

30

Xin She f19(x) = (
∑D

i=1 | xi |
) exp[−∑D

i=1 sin(x2
i )]

[−2π, 2π] 0 30

Zakharov’s f20(x) =
∑D

i=1 x2
i +
(∑D

i=1
i
2xi

)2
+
(∑D

i=1
i
2xi

)4
[−5,10] 0 30

runs using GA, SMO, SMOGA and GASMO algorithms, respectively. According
to the average fitness over 30 runs, GASMO outperforms on 2 test problems (f10,
f13), SMO outperforms on 5 test problems (f8, f14, f18, f19, f20) and SMOGA
outperforms on 10 test problems (f1, f3, f4, f5, f6, f9, f11, f15, f16, f17). SMO,
SMOGA and GASMO algorithms are equally better than GA algorithm for f12.
Also for 2 test problems (f2, f7), SMO and SMOGA obtained the optimum
value. Comparing according to the best value, SMO and SMOGA outperform
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over GA and GASMO. Thus overall comparison shows that SMOGA algorithm
outperforms over GA, SMO and GASMO algorithms.

Here some statistical analysis based on boxplot and Mann–Whitney U rank
sum test are also presented. The boxplot for average fitness over 30 runs for all
considered algorithms (SMO, GA, SMOGA and GASMO) have been depicted
in Fig. 3. From the Fig. 3, it is clearly seen that SMOGA is the better candidate
as compare to SMO, GA and GASMO.

Further Table 3, shows the Mann–Whitney U rank sum test to see the signif-
icant difference in the performance of considered algorithms. In this paper, this
test is performed on average fitness over 30 runs to see the difference SMO Vs
SMOGA, GA Vs SMOGA, SMO Vs GASMO and GA Vs GASMO. In Table 3,
column 1 illustrates the test problems. Columns 2, 3, 4 and 5 report the signifi-
cance difference between SMO Vs SMOGA, GA Vs SMOGA, SMO Vs GASMO
and GA Vs GASMO, respectively. In column 2, ‘+’ sign indicates SMOGA is
significantly better than SMO, ‘=’ sign indicates there is no significance differ-
ence between SMO and SMOGA and ‘−’ sign indicates SMOGA performs worse
than SMO. Here ‘+’ sign indicates in column 3 (SMOGA is better than GA),
in column 4 (GASMO is better than SMO) and in column 5 (GASMO is better
than GA). Similarly ‘=’ and ‘−’ sign indicates as discussed above. In Table 3,
total number of ‘+’ signs are 8 in SMO Vs SMOGA, 18 in GA Vs SMOGA, 4
in SMO Vs GASMO and 12 in GA Vs GASMO. It is clear that SMOGA and
GASMO outperform over GA.

Table 2. Comparison of GA, SMO, SMOGA and GASMO based on average fitness
over 30 runs

TP GA SMO SMOGA GASMO

Best Average Best Average Best Average Best Average

f1 9.97E−66 8.79E−08 5.45E−17 1.03E−16 9.24E−53 1.49E−22 1.47E−34 2.21E−13

f2 0.00E+00 2.33E−01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.00E−01

f3 2.22E−14 2.67E−01 7.99E−15 2.10E−01 7.99E−15 9.94E−06 7.99E−15 6.20E−02

f4 0.00E+00 7.01E−03 0.00E+00 3.61E−03 0.00E+00 8.21E−04 0.00E+00 1.81E−03

f5 5.73E−65 5.65E−07 6.26E−17 1.11E−16 6.83E−53 2.71E−27 4.06E−34 7.70E−12

f6 1.50E−32 2.26E−05 4.95E−17 8.99E−17 1.50E−32 6.32E−20 1.50E−32 6.11E−14

f7 5.97E+00 9.37E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 8.95E+00 1.44E+01

f8 2.64E+01 8.12E+01 4.97E−07 9.52E+00 7.63E−03 2.28E+01 3.72E−03 2.09E+01

f9 −1.15E+04 −1.10E+04 −1.26E+04 −1.26E+04 −1.26E+04 −1.26E+04 −1.17E+04 −1.11E+04

f10 1.46E+02 3.60E+02 2.31E−12 3.49E−03 3.53E−03 1.25E+01 2.53E−08 1.71E−03

f11 1.44E−34 2.61E−20 2.09E−18 3.25E−17 9.13E−36 1.34E−21 1.20E−35 5.22E−18

f12 6.67E−01 1.60E+00 6.67E−01 6.67E−01 6.67E−01 6.67E−01 6.67E−01 6.67E−01

f13 −1.00E+00 −1.00E+00 −7.85E−139 −2.62E−140 −1.00E+00 −1.00E+00 −1.00E+00 −1.00E+00

f14 −2.78E+01 −2.68E+01 −2.96E+01 −2.94E+01 −2.95E+01 −2.92E+01 −2.81E+01 −2.62E+01

f15 7.17E+00 6.85E+02 1.30E−04 2.38E+01 2.05E−04 1.55E+01 1.81E−04 2.20E+02

f16 4.72E−61 3.87E−01 5.26E−17 9.32E−17 1.10E−52 1.88E−24 2.19E−32 6.58E−12

f17 −1.16E+03 −1.10E+03 −1.17E+03 −1.17E+03 −1.17E+03 −1.17E+03 −1.16E+03 −1.10E+03

f18 3.60E+02 2.66E+03 1.51E+01 1.08E+02 1.50E+01 1.99E+02 1.50E+01 1.32E+02

f19 5.89E−12 7.79E−12 3.51E−12 3.52E−12 3.51E−12 3.66E−12 5.18E−12 8.10E−12

f20 1.18E−01 5.39E−01 1.17E−12 6.56E−10 1.07E−07 4.78E−05 3.98E−10 1.29E−08
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Table 3. Results of Mann–Whitney U rank sum test

TP SMO Vs SMOGA GA Vs SMOGA SMO Vs GASMO GA Vs GASMO

f1 + + − +

f2 = + = =

f3 + + + +

f4 + + = =

f5 + + − +

f6 + = − +

f7 = + − −
f8 − + − +

f9 = + − =

f10 − + + +

f11 + + + −
f12 = + = +

f13 + = + +

f14 − + − −
f15 = + = +

f16 + + − +

f17 = + − =

f18 − + = +

f19 − + − =

f20 − + − +

Total number of ‘+’ signs 8 18 4 12

Fig. 3. Boxplot for average fitness

5 Conclusion

In this paper, two hybrid optimization algorithms, spider monkey optimiza-
tion followed by genetic algorithm (SMOGA) and genetic algorithm followed by
spider monkey optimization (GASMO) have been presented. Both hybridized
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methodologies (SMOGA and GASMO) which yielded better results in once
instance while worse in the other. Hence, hybridization has the potential to
improve the performances of various algorithms and their combinations pro-
vided it is used efficiently. These proposed algorithms have been tested over
most known benchmark problems and outperform over classical procedures.

This paper opens possibilities to hybridize varied combinations of optimiza-
tion algorithms for better performance and their application to various real world
optimization problems.
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Abstract. The main objective of this paper is to do the modeling and
optimization of production cost of RCF kapurthala using TFLPP-(s, l, r)
and triangular (Right angle) fuzzy linear programming problem. The
total costs of the different constrains are vacillating or uncertain, so to
minimize the production cost, fuzzy LPP (right angle triangular) and
TFPP- (s, l, r) model are used. Owing to probabilistic increments in
the availability of different constrains, the actual cost of production is
to leading the destruction. Here the situational based Fuzzy model is
being expressed to mitigate the destruction in the cost optimization
and examining the credibility of optimized value. The data of RCF
Kapurthala constitutes the production cost of different coaches from the
year 2009–10. The total cost has been targeted to optimize with respect
to the constraints of Labor cost, Material cost, Administrative overhead
charges, Factory overhead charges, Township overhead charges, Shop
overhead charges and Performa charges. The lower and upper bound
have been calculated using TFLPP-(s, l, r), TFLPP-(s, l), TFLPP-(s, r)
and TFLPP-(s) for the objective function of the optimized fuzzy LPP.
This optimized fuzzy LPP will provide the membership grade for the
optimized production cost.

Keywords: Fuzzy linear programming · Ranking · Trapezoidal fuzzy
number · Optimization

1 Introduction

Operation research has become increasingly important in the face of fast moving
technology and increasing complexities in business and industry. Business and
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economic situation are concerned with planning activity. It can be maximum pro-
duction, minimum cost, and maximum profit under limited resource constraints.
Such problems are referred to as the problem of constraints optimization.

A linear programming is a technique for determining an optimum sched-
ule of interdependent activities in view of accessible resources. A problem thus
obtained, known as linear programming problem. Linear programming also called
linear optimization is a technique to achieve the best outcome in a mathematical
model. This new approach to systematic and scientific study of the operation of
the system was called the operation research.

With the help of linear programming problem, the optimal solution and the
best sense of efficiency can be emphasized.

In the mathematical model of LPP, the requirements are represented by linear
relation. The representation of linear programming problem is as follows:

Maximize/Minimize cTx

subject to Ax ≤ b

and x ≥ 0
(1)

Standard Form of Linear Programming problem can be written as:

Maximize/Minimize = c1x1 + c2x2 + . . . + cnxn

subject to
a11x1 + a12x2 + . . . + a1nxn(≤=≥)b1
a21x1 + a22x2 + . . . + a2nxn(≤=≥)b2
am1x1 + am2x2 + . . . + amnxn(≤=≥)bm
OR

mn∑
i=1,j=1

aijxj ≤ or ≥ bi

(2)

These linear equations are the constraints for the objective function. Here
are the decision variables and represents the availability of m constraints Unfor-
tunately, some times, the actual practical situations are often not deterministic.
There exist certain types of dubieties in social, industrial and economic systems,
such as randomness of occurrence of events can lead to improper optimization.
Such types of dubieties (Feasible uncertainties) are associated with the difficulty
of making sharp or precise decision. Feasible uncertainties deal with the situ-
ation where the information cannot be valued sharply or cannot be described
clearly in linguistic term, such as preference related information. At a certain
point of time, the availabilities of m constraints can be fluctuated in term of
probabilistic increment, probabilistic decrement or in the both directions then
general LPP cannot explicit the proper optimization. In these situations fuzzy
lpp can provide the better optimization.

If the fluctuation is available in terms of increment or decrement then the
use of triangular (right angle) fuzzy linear programming problem benefits in
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introducing the credibility for the increase or decrease in the . This credibility
fulfills the necessities to find out the lower and upper bounds for the initial LPP.
If the fluctuation is available in the both directions then triangular (s, l, r) fuzzy
linear programming problem can be proposed to achieve the required optimiza-
tion. In this project we are proposing the triangular (s, l, r) fuzzy LPP to achieve
realistic optimization. The triangular(s, l, r) Fuzzy LPP in which only the right
hand side numbers Bi are fuzzy number can be expressed as:

Max
n∑

j=1

cjxj

such that
n∑

j=1

aij(s, l, r)xj ≤ Bi(s, l, r)

∀xj ≥ 0 and j ∈ Nn

(3)

where aij and Bi terms are fuzzy number. This model has an appropriate and
reasonable interpretation of situational based optimization and it can fill the gap
between the vagueness of constrains and standard optimization.

2 Fuzzy Set

Fuzzy sets [17] are those sets which allows partial membership i.e. between
0 and 1. A fuzzy set S can be defined on the universe of discourse U as follows:

S = {(x, μS(x))|xεU} (4)

where μS is the membership function of fuzzy set S within range [0,1] and μS(x)
indicates the degree of membership of x in S lies in range [0,1].

2.1 Convex Fuzzy Set

If the membership value of any membership function are monotonically increase
and decrease for some element in universe then those fuzzy set S in universe of
discourse U is called a convex fuzzy set [9].

2.2 Normal Fuzzy Set

A fuzzy set [9] is said to be normal fuzzy set if there exists at least one element
xεU such that μS(x) = 1 where no membership function has its value equal to
1 is called sub-normal fuzzy set.

2.3 Fuzzy Number

A fuzzy number [9] is a regular number in which the value corresponding to
element between 0 and 1, called membership functions, instead of one single
value.
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2.4 Defuzzification

The process of converting the fuzzy number output to a crisp value is called
defuzzification. In order to make decisions to maintenance the actions it is nec-
essary to convert the fuzzy number output into a crisp value.

3 Literature Review

The fuzzy logic idea was first presented by Loft Zadeh, professor at the University
of California at Berkley. This fuzzy logic when applied to linear decision making
then fuzzy linear programming came in existence. Because of the continuous
efforts of the researchers the fuzzy linear programming now days is broadly
applicable to many fields. With the assistance of fuzzy programming we can
calculate the variation in some objective function when there is variation in the
constraints of the objective function. There are numerous real life applications
of fuzzy linear programming similar in the analysis of future performance of
organizations and factories.

The basic arithmetic operations for two generalized positive parabolic fuzzy
numbers [7] by using the concept of the distribution functions. There is no need
to compute the -cut of the fuzzy number which becomes more powerful than
the standard method. A newly generalized improved score function [6] has been
presented to incorporating the idea of weighted average in fuzzy set environment.
The method for solving the multi-criteria decision making (MCDM) problem has
also been presented for unknown attribute weights. Singh [16] proposed a method
to reduce the large data-set using soft computing techniques, such as fuzzy sets
and artificial neural network, which can decrease the dimensionality of data-set.
Garg [5] proposed a method to quantify the uncertainties, generic, extensible for
the application domain and sensitivity of system performance which investigates
the various reliability parameters in terms of membership and non-membership
functions by using -cut and the weakest t-norm based arithmetic operations on
triangular intuitionistic fuzzy sets. Rani, Gulati, and Garg [14] demonstrated a
method for solving multi-objective optimization problem under the optimistic
and pessimistic view point. This problem considered as the parabolic multi-
objective non-linear optimization programming problem (PMONLOPP) such
as linear/non-linear membership functions corresponding to each objective has
been taken.

Weldon A. Lodwick and Katherine A. Bachman [10] concentrated on solving
large scale fuzzy and possibilistic optimization problems. They took an optimiza-
tion problem in radiation therapy with many orders of complexity from 100 to
62,250 constraints for fuzzy and possibilistic linear and non-linear programming
implementations possessing fuzzy inequalities, fuzzy right-hand side values and
possibilistic right-hand side is used to show that fuzzy and possibilistic optimiza-
tion are useful. In this project he concentrated on the uncertainty in the right side
of limitations which arises in the context of the radiation therapy problem. The
result shows that fuzzy and possibilistic optimization is a natural and effective
way to model of various type of optimization under uncertainty problems.
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P.K. De and D. Das [1] proposed a new ranking procedure for trapezoidal
intuitionistic fuzzy number(TRIFN). To serve this purpose, the value and ambi-
guity index of TRIFNs have been defined. In order to define the rank of TRIFNs,
they proposed a ranking function by taking the sum of value and ambiguity
index.

Wan [13] proposed a technique on multi-attribute group decision making
problems (MAGDM) in which attribute values are expressed with (TrIFNs),
which are further solved by developing a new decision method based on the
power average operators of (TrIFNs). Hereby the power average operator of real
numbers is extended to four kinds of power operators of (TrIFNs) such as power
average operator of (TrIFNs), the weighted power average operator of (TrIFNs),
the power ordered weighted average operator of (TrIFNs), and the power hybrid
average operator of (TrIFNs).

Ganesan and Veeramani [4] proposed fuzzy linear programming problem
which involve symmetric trapezoidal fuzzy numbers. Some interesting and impor-
tant results are obtained, to a solution of fuzzy linear programming problems
without converting them to crisp linear programming problems.

Pandey [11] proposed four new aggregation operators based on the geometric
and arithmetic means of L- and R- or right side and left side angles of apex for
triangular and trapezoidal fuzzy numbers respectively. In this technique, a new
aggregation operator for TFNs in which the L- and R- membership function of
lines of the aggregate (TFN) in which slopes are the arithmetic means of the
corresponding L- and R- slopes of the individual (TFNs).

Hassan Mishmast Nehi and Hamid Reza Maleki [12] worked on Intuitionistic
fuzzy numbers and its applications in fuzzy optimization problem. He intro-
duces the trapezoidal intuitionistic fuzzy numbers and proved some operation
for them. He also introduces the intuitionistic fuzzy optimization problem by
use of the membership and non-membership functions. Frank Rogers, J. Neggers
and Younbae Jun [15] demonstrated method for optimizing linear problems with
uncertain constraints. They have focused on linear fuzzy programing problem.
When they were solving the problems they found that optimizing fuzzy con-
straints and objective that consist of triplet and appears like triangular fuzzy
numbers but they differ in that way that they are a hybrid fuzzy number that
has characteristics that are both fuzzy and crisp.

Ali Ebrahimnejad and Madjid Tavana [3] worked on method for solving linear
programing problems with symmetric trapezoidal fuzzy numbers. They proposed
a new method for solving fuzzy linear programming problem in which the coef-
ficient of the objective function and the values and the of the right hand side
are symbolized by symmetric trapezoidal fuzzy number while the elements of
the coefficients matrix are represented as real numbers. Then they converted the
fuzzy linear programming problem into an equivalent crisp Linear programming
problem and solved the crisp problem with the general primal simplex method.
They showed that the method they were using is simpler and computationally
more efficient that two competing fuzzy linear programming technique commonly
used in the literature.
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Yenilmez and Gasimov [8] they concentrate on linear programming problem
with only fuzzy technological coefficients. Only the case of fuzzy numbers with
linear membership functions is being considered and the “modified sub gradient
method” for solving these types of problems have proposed. They also compared
this method with well known “fuzzy decisive set method”.

4 Methodology

4.1 Method of Calculation:

The general form of triangular Fuzzy LPP is (s, l, r) fuzzy LPP in which aij and
Bi are fuzzy number is:

Max
n∑

j=1

cjxj

such that
n∑

j=1

aij(s, l, r)xj ≤ Bi(s, l, r)

∀xj ≥ 0 and j ∈ Nn

(5)

where aij and Bi terms are fuzzy number.
Any triangular fuzzy number A can be represented by three real number

(s, l, r) whose meaning is defined in the below Fig. 1.

Fig. 1. Triangular (s,1,r) fuzzy number

Using this representation, we can write A= (s, l, r). Now according to D.K.J.
Dipankar [2].

Max
n∑

j=1

cjxj

such that
n∑

j=1

(sij , lij , rij)xij ≤ (ti, ui, vi)(i ∈ Nm)

∀xj ≥ 0, (j ∈ Nm)

(6)
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where aij = (sij , lij , rij) and Bi = (ti, ui, vi) are fuzzy number. The general
structure of Eq. (3) is defined as follows:

Max
n∑

j=1

cjxj

such that
n∑

j=1

sijxj ≤ ti

n∑
j=1

(sij − lij)xj ≤ ti − ui

n∑
j=1

(sij + rij)xj ≤ ti + vi(i ∈ N)∀xj ≥ 0 and j ∈ N

(7)

Here the problem is of second type i.e. the fuzzy linear programming problem
with fuzzy right hand side numbers.

Max z =
n∑

j=1

cjxj

subject to
n∑

j=1

aijxj ≤ b̃i

where 1 ≤ i ≤ m, 1 ≤ j ≤ n, xj ≥ 0

(8)

b̃i represents the availability of constraints the accent symbol shows that this
quantity is fuzzy means there is increase or decrease in this quantity after some
time. But in this project work the optimization is with respect to increase in the
availability of constraints. This means the problem will be converted into the
LPP.

Max z =
n∑

j=1

cjxj

subject to
n∑

j=1

aijxj ≤ bi + pi

where 1 ≤ i ≤ m, 1 ≤ j ≤ n, xj ≥ 0

(9)

In this LPP is the probabilistic increase in the availability of constraints. The
main task is to optimize the problem when there is an increase in the availability
of constraints.

In the above kind of problem, the membership grades can be introduced with
respect to the increase in the availability of constraints. The membership grades
for will be as follows:

Bi =

⎧⎪⎨
⎪⎩

1 when x ≤ bi,
bi+pi−x

pi
when bi ≤ x ≤ bi + pi,

0 when x ≥ bi + pi

(10)
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These are the membership grades for the right hand side coefficient i.e. the
availability of constraints. Here x is the variable and x R. For the optimization
of this type of problem we have to calculate the lower and upper bounds of the
optimal values. The value for lower bound (Zl) will be:

Max z =
n∑

j=1

cjxj

subject to
n∑

j=1

aijxj ≤ bi

where 1 ≤ i ≤ m, 1 ≤ j ≤ n, xj ≥ 0

(11)

The LPP with the initial value of the right hand side coefficient will be the lower
bound for the problem.

Now the value for the upper bound (Zu) will be-

Max z =
n∑

j=1

cjxj

subject to
n∑

j=1

aijxj ≤ bi + pi

where 1 ≤ i ≤ m, 1 ≤ j ≤ n, xj ≥ 0

(12)

Here the right hand coefficient will be total probabilistic increase in the avail-
ability of constraints.

These LPPs for lower and upper bounds can be solved by using the Simplex
method which is a technique for solving LPP. These lower and upper bounds
will be used to get the optimized fuzzy LPP.

Optimized fuzzy LPP:

Max z = λ

subject to λ(Zu − Zl) − cx ≤ −Zl

λ(pi) +
n∑

j=1

aijxj ≤ bi + pi

where x ≥ 0 and 0 ≤ λ ≤ 1

(13)

This fuzzy optimized LPP will give the membership grade for our initial LPP.
Here represents the membership grade and Zu and Zl are the upper and lower
bounds. is the objective function of the initial LPP. The term with summation
sign represents the constraints of given LPP and is the probabilistic increase in
the availability of the constraints.
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5 Data and Problem Identification

The data given below in Table 1 is of the railway industry, Kapurthala of the year
2009–10. This data shows the manufacturing cost of different types constrains
of coaches. Kapurthala railway was established in 1986, it is a coach manu-
facturing unit of Indian railway and manufactured more than 30000 passenger
coaches of different types in Table 1 where LAB= labor, MAT= Material, AOH=
Administrative overhead charge, FOH= Factory overhead charges, TOH= Town-
ship overhead charges, SOH= Shop overhead charges, PROF. CHAR= Performa
charges.

Table 1. Production cost of different coaches

COACH TYPE LAB. MAT. FOH AOH TOH SOH TOTAL

O/Heads

PROF.

CHAR

TOTAL

COST

SCN/AB 4.11 46.15 6.20 5.49 1.10 0.18 12.97 2.91 66.14

SCN/AB(CBC) 4.27 62.28 6.75 5.09 1.11 0.59 13.54 3.69 83.78

SLR/AB 3.82 39.95 5.76 5.10 1.02 0.15 12.03 2.57 58.37

SLR/AB(CBC) 3.98 38.03 6.28 4.74 1.04 0.36 12.42 2.51 56.94

GS/AB 3.78 41.28 5.70 5.05 1.01 0.16 11.92 2.63 59.61

GS/AB(CBC) 3.92 56.65 6.20 4.67 1.02 0.54 12.43 3.37 76.37

MEMU/MC 9.33 205.01 14.13 12.51 2.49 0.78 29.91 11.26 255.51

MEMU/TC 3.88 45.77 5.85 5.18 1.03 0.17 12.23 2.85 64.73

ACCN/SG 7.11 103.36 11.24 8.48 1.86 0.96 22.54 6.13 139.14

ACCN/SG(CBC) 7.11 116.88 11.24 8.48 1.86 1.11 22.69 6.76 153.44

WACCNH 5.91 63.32 10.22 7.27 1.69 0.37 19.55 4.09 92.87

WACCNH (H.HEIGHT) 5.91 63.32 10.22 7.27 1.69 0.37 19.55 4.09 92.87

WRRMDAC 6.70 179.46 10.13 8.97 1.79 0.68 21.57 9.58 217.31

VPH 2.96 34.16 4.45 3.94 0.79 0.13 9.31 2.14 48.57

VPU 2.99 34.22 4.73 3.57 0.78 0.33 9.41 2.15 48.77

EOG/LBH/ACCB 9.82 178.21 15.13 11.41 2.50 1.69 30.73 8.57 227.33

EOG/LBH/WLRRM 9.94 285.52 17.82 12.05 2.68 1.73 34.28 12.92 342.66

EOG/LBH/ACCW 10.63 177.81 16.41 12.37 2.71 1.69 33.18 8.68 230.30

EOG/LBH/ACCN 10.73 205.56 16.17 14.32 2.85 0.78 34.12 8.58 258.99

LGS(LC) 4.82 62.2 8.39 5.97 1.39 0.42 16.17 3.83 87.02

TOTAL 121.72 2039.140 193.020 151.930 32.410 13.190 356.270 109.310 2660.720

In the year 2009–2010 the total cost of different coaches is taken as an objec-
tive function which is to be minimized with respect to the cost constraints. As
per the given data the total availability of cost constraints is LAB, MAT, FOH,
AOH, TOTAL O/HEAD, and PROF. CHAR: - 121.72, 2039.14, 193.02, 151.93,
32.41, 13.19, 356.27, 109.31 respectively. But they can be increased and decreased
as per requirement. So, in this situation we are proposing a Triangular Fuzzy
LPP (s, l, r) and Right Angle Triangular Fuzzy LPP to minimize the production
cost. However, Table 2 shows the quantities of increments and decrements in the
basic production cost.
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Table 2. Total basic availability of cost parameter with probabilistic increments and
decrements

Cost parameter Total basic cost l(Decrement in the cost) r(Increment in the cost)

l 121.72 6.086 6.086

2 2039.14 101.957 101.957

3 193.02 9.651 9.651

4 151.93 7.5965 7.5965

5 32.41 1.6205 1.6205

6 13.19 0.6595 0.6595

7 356.27 17.8135 17.8135

8 109.31 5.4655 5.4655

5.1 Modeling and Optimization:

The total cost is minimized using the real time data as follows

Minimize Z = 66.14x1 + 83.78x2 + 58.37x3 + 56.94x4 + 59.61x5 + 76.37x6 +
255.51x7 + 64.73x8 + 139.14x9 + 153.44x10 + 92.87x11 + 92.87x12 + 217.31x13 +
48.57x14 + 48.77x15 + 227.33x16 + 342.66x17 + 230.30x18 + 258.99x19 + 87.02x20

4.11x1 +4.27x2 +3.82x3 +3.98x4 +3.78x5 +3.92x6 +9.33x7 +3.88x8 +7.11x9 +
7.11x10 + 5.91x11 + 5.91x12 + 6.70x13 + 2.96x14 + 2.99x15 + 9.82x16 + 9.94x17 +
10.63x18 + 10.73x19 + 4.82x20 ≤ (121.72, 6.086, 6.086)

46.15x1 + 62.28x2 + 39.95x3 + 38.03x4 + 41.28x5 + 56.65x6 + 205.01x7 +
45.77x8 + 103.36x9 + 116.88x10 + 63.32x11 + 63.32x12 + 179.46x13 + 34.16x14 +
34.22x15 + 178.21x16 + 285.52x17 + 177.81x18 + 205.56x19 + 62.2x20 ≤
(2039.14, 101.957, 101.957)

6.2x1 +6.75x2 +5.76x3 +6.28x4 +5.70x5 +6.20x6 +14.13x7 +5.85x8 +11.24x9 +
11.24x10 + 10.22x11 + 10.22x12 + 10.13x13 + 4.45x14 + 4.73x15 + 15.13x16 +
17.82x17 + 16.41x18 + 16.17x19 + 8.39x20 ≤ (193.02, 9.651, 9.651)

5.49x1 +5.09x2 +5.10x3 +4.74x4 +5.05x5 +4.67x6 +12.51x7 +5.18x8 +8.48x9 +
8.48x10 +7.27x11 +7.27x12 +8.97x13 +3.94x14 +3.57x15 +11.41x16 +12.05x17 +
12.37x18 + 14.32x19 + 5.97x20 ≤ (32.41, 7.5965, 7.5965)

1.10x1 +1.11x2 +1.02x3 +1.04x4 +1.01x5 +1.02x6 +2.49x7 +1.03x8 +1.86x9 +
1.86x10 + 1.69x11 + 1.69x12 + 1.79x13 + 0.79x14 + 0.78x15 + 2.50x16 + 2.68x17 +
2.71x18 + 2.85x19 + 1.39x20 ≤ (32.41, 1.6205, 1.6205)

0.18x1 +0.59x2 +0.15x3 +0.36x4 +0.16x5 +0.54x6 +0.78x7 +0.17x8 +0.96x9 +
1.11x10 + 0.37x11 + 0.37x12 + 0.68x13 + 0.13x14 + 0.33x15 + 1.69x16 + 1.73x17 +
1.69x18 + 0.78x19 + 0.42x20 ≤ (13.19, 0.6595, 0.6595)
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12.97x1 +13.54x2 +12.03x3 +12.42x4 +11.92x5 +12.43x6 +29.91x7 +12.23x8 +
22.54x9+22.69x10+19.55x11+19.55x12+21.57x13+9.31x14+9.41x15+30.73x16+
34.28x17 + 33.18x18 + 34.12x19 + 16.17x20 ≤ (356.27, 17.8135, 17.8135)

2.91x1 +3.69x2 +2.57x3 +2.51x4 +2.63x5 +3.37x6 +11.26x7 +2.85x8 +6.13x9 +
6.76x10 +4.09x11 +4.09x12 +9.58x13 +2.14x14 +2.15x15 +8.57x16 +12.92x17 +
8.68x18 + 8.58x19 + 3.83x20 ≤ (109.31, 5.4655, 5.4655)

6 Results and Discussion

Sometimes classical optimization techniques fail to deliver the targeted result due
to uncertainty of data. We can apply the fuzzy optimization techniques in these
situations to mitigate the distortion of the result due to uncertainty of data. If
the constraints are uncertain and have uncertain increment and decrement then
Triangular Fuzzy linear programming problem (s, l, r) help to get the required
outcome. Here we have proposed a TFLPP (s, l, r) and triangular fuzzy lpp
model to optimize the cost of production of different coaches of RCF Kapurthala.
The minimized cost with (s, l, r) fuzzy LPP is Z = 2792.887 . If the cost is
minimized using increment, then the minimized cost with (s, r) fuzzy LPP is Z =
2808.6939934732. If the cost is minimized using decrement. The minimized cost
with (s, l) is Z = 2541.1993274281. The minimized cost without the increments
and decrement is Z = 2674.9466604506. Now these optimal solutions can be
categorized into three different cases to achieve the desired membership grade
with respect to optimal solution.

6.1 Case-I

The optimized fuzzy lpp (Right angle triangle) for membership grade has been
constructed using the optimal solution of (s, l, r)lpp as a lower bound and (s, r)lpp
as an upper bound and then the membership grade has been derived. The follow-
ing graph is representing the membership grade function of right angle triangular
fuzzy LPP (Fig. 2).

The optimized membership grade is derived that is 0.013

B(X) =

⎧⎪⎨
⎪⎩

1 when x ≤ 2792.887,
2808.693−x

15.806 when 2792.887 ≤ x ≤ 2808.693,

0 when x ≥ 2808.693
(14)

The final optimal solution for Case-I is obtained by using the membership
grade (0.013) and that is x=2808.483.
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Fig. 2. Membership function of optimized cost using optimal solution of (s, l r) and
(s, r) LPP

6.2 Case-II

The optimized fuzzy lpp (Right angle triangle) for membership grade has been
constructed using the optimal solution of (s, l) as a lower bound and (s, l, r) as
an upper bound and then the membership grade has been derived. The following
graph is representing the membership grade function of right angle triangular
fuzzy LPP (Fig. 3).

Fig. 3. Membership function of optimized cost using optimal solution of (s, l) and
(s, l, r)

The optimized membership grade is derived that is 0.541

B(X) =

⎧⎪⎨
⎪⎩

1 when x ≤ 2541.199,
2792.887−x

251.687 when 2541.199 ≤ x ≤ 2792.887,

0 when x ≥ 2792.887
(15)

The final optimal solution for Case-II is obtained by using the membership grade
(0.541) and that is x=2656.484.
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6.3 Case-III

The optimized fuzzy lpp (Right angle triangle) for membership grade has been
constructed using the optimal solution of (s)lpp as a lower bound and (s, l, r)lpp
as an upper bound and then the membership grade has been derived. The follow-
ing graph is representing the membership grade function of right angle triangular
fuzzy LPP (Fig. 4).

Fig. 4. Membership function of optimized cost using optimal solution of (s, l) and
(s, l, r)

The optimized membership grade is derived that is 0.295

B(X) =

⎧⎪⎨
⎪⎩

1 when x ≤ 2674.946,
2792.887−x

117.940 when 2674.946 ≤ x ≤ 2792.887,

0 when x ≥ 2792.887
(16)

The final optimal solution for Case-III is obtained by using the membership
grade (0.295) and that is x=2758.007.

7 Conclusion and Future Scope

The modeling and optimization of production cost of RCF kapurthala has been
done using the Triangular (s, l, r)triangular (Right angle) fuzzy linear program-
ming problem. Owing to probabilistic increments in the availability of different
constrains, the actual costs of production were vacillating or uncertain, the sit-
uational based Fuzzy models have been expressed to mitigate the destruction
in the cost optimization and examined the credibility of optimized value. The
production costs of different coaches from the year 2009–10 were considered as
input. The total cost has been targeted in order to optimize. The lower and upper
bound have been calculated using TFLPP-(s, l, r), TFLPP-(s, l), TFLPP-(s, r)
and TFLPP-(s) for the objective function of the optimized fuzzy LPP. The min-
imized cost with (s, l, r) fuzzy LPP is Z = 2792.887. The cost is minimized
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using the TFLPP-(s, r) and that is Z = 2808. 6939934732.The cost is mini-
mized using TFLPP-(s, l) and that is Z = 2541.1993274281 and the minimized
cost without the increments and decrement is Z = 2674.9466604506. The fol-
lowing results have been made from described modelling. The optimized fuzzy
lpp (Right angle triangle) for membership grade has been constructed using the
optimal solution of TFLPP (s, l, r) as a lower bound and TFLPP (s, r) as an
upper bound and then the membership grade has been derived. The final optimal
solution for this case is obtained and that is x=2808.483 with membership grade
0.013 The optimized fuzzy lpp (Right angle triangle) for membership grade has
been constructed using the optimal solution of TFLPP (s, l) as a lower bound
and TFLPP (s, l, r) as an upper bound and then the membership grade has
been derived. The final optimal solution for this case is obtained and that is
x=2656.484 with membership grade 0.541 The optimized fuzzy lpp (Right angle
triangle) for membership grade has been constructed using the optimal solution
of TFLPP(s) as a lower bound and TFLPP (s, l, r) as an upper bound and then
the membership grade has been derived. The final optimal solution for this case
is obtained and that is x=2758.007 with membership grade 0.295.

The validity of the method has been evaluated by solving some problems
to analysis and optimize the production cost with symmetric and right angle
Triangular fuzzy number through fuzzy linear programming problem. Further,
the proposed approach can be applied to engineering and mathematical science
problems which can be taken for further research.
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Abstract. In this paper, we have introduced a new intuitionistic fuzzy
(IF) entropy called intuitionistic fuzzy entropy of order-α in the settings
of intuitionistic fuzzy set theory. It considers both the uncertainty and
hesitancy degree of IF sets. Also, we have shown that the entropy sug-
gested by Vlachos and Sergiadis is the particular case of the proposed
entropy which does not satisfies the maximality property. Further we
have proved the validity of the proposed intuitionistic fuzzy entropy.
Some of the properties of the proposed entropy are also discussed and
proved that the maximum and minimum values of the proposed entropy
are independent of α. At last, application of the proposed entropy is
given in multiple attribute decision making (MADM) problem. For this
purpose, we have taken a case study on insurance companies.

Keywords: Intuitionistic fuzzy entropy · Intuitionistic fuzzy entropy
of order-α · Multiple attribute decision making (MADM) · Insurance
services

MS Classifications: 94A15 · 94A24 · 26D15

1 Introduction

Zadeh [12], firstly proposed the notion of fuzzy sets to model the vague phenom-
enan. Since then the theory of fuzzy sets became an thursting area of research in
different disciplines such as engineering, medical science, signal processing etc.
Fuzziness, a feature of uncertainty, lacks from the fact that a particular element
is a member of the set or not. A measure of fuzziness was also first introduced by
[13]. [5] first axiomatized the fuzzy entropy and defined a new entropy measure
of a fuzzy set based on [8].

Concept of intuitionistic fuzzy set (IFS) was firstly introduced by [1] as a
generalization of notion of fuzzy set. The distinguishing fact of intuitionistic
fuzzy set is that it considers membership degree, non-membership degree and
the hesitancy degree as well. Atanassov and many other researchers studied

c© Springer Nature Singapore Pte Ltd. 2017
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various properties of IFSs in decision making problems particularly in madical
analysis and sales analysis etc. In the present communication, a new entropy
called “intuitionistic fuzzy entropy of order-α” is proposed for intuitionistic fuzzy
sets.

This paper is managed as follows. After the introductory section, Sect. 2 is
devoted to some needed basic concepts and definitions related to fuzzy sets and
intuitionistic fuzzy sets. In Sect. 3, we have introduced a new entropy called
“intuitionistic fuzzy entropy of order-α” and established its validity. Some of
the mathematical properties of the proposed intuitionistic fuzzy entropy are
also discussed in this section. Application of the proposed entropy in multiple
attribute decision making is given in Sect. 4. At last paper is concluded with
“Concluding Remarks” in Sect. 5.

2 Preliminaries

In this section, some needed basic concepts and definitions of fuzzy sets and
intuitionistic fuzzy sets are introduced.

Definition 1 (See [1]). Let X = (z1, z2, . . . , zn) be a finite universe of dis-
course. A fuzzy set P is given by

P = {〈zi, μP (zi)〉/zi ∈ X}, (1)

where μP : X → [0, 1] is the membership function of P . The number μP (zi) is
the degree of belongingness of zi ∈ X in P . [5] defined fuzzy entropy for a fuzzy
set P corresponding to Shannon’s entropy [8] as:

H(P ) = − 1
n

n∑
i=1

[μP (zi) log(μP (zi)) + (1 − μP (zi) log(1 − μP (zi))] . (2)

Later, Bhandari and Pal [4] surveyed the information measures on fuzzy sets
and proposed some new measures of fuzzy entropy. Corresponding to Renyi’s
entropy [6], they defined a new measure as:

Hα(P ) =
1

n(1 − α)

n∑
i=1

log [μα
P (zi) + (1 − μP (zi))α] ;α �= 1, α > 0. (3)

Attanassov [1,2] as mentioned earlier, generalized Zadeh’s [12] idea of fuzzy sets
to intuitionistic fuzzy sets, defined as:

Definition 2 (See [7]). An intuitionistic fuzzy set P in a finite universe of
discourse X = (z1, z2, . . . , zn) is given by

P = {〈zi, μP (zi), νP (zi)〉/zi ∈ X}, (4)

where μP : X → [0, 1], νP : X → [0, 1] satisfying 0 ≤ μP (zi) + νP (zi) ≤ 1,
∀zi ∈ X. Here μP (zi) and νP (zi), respectively, denotes the membership degree
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and non-membership degree of zi ∈ X to the set P . For each IFS P in X,
πP (zi) = 1 − μP (zi) − νP (zi), zi ∈ X represents the hesitancy degree of zi ∈ X
to the set P and is also called intuitionistic index. Obviously, if πP (zi) = 0 then
intuitionistic fuzzy set becomes fuzzy set. Thus, the fuzzy sets are special cases
of intuitionistic fuzzy sets.

Definition 3 (See [3]). Let IFS(X) be the the set of all intuitionistic fuzzy
sets in the universe X and let P,Q ∈ IFS(X) be given by

P = {〈zi, μP (zi), νP (zi)〉/zi ∈ X},

Q = {〈zi, μQ(zi), νQ(zi)〉/zi ∈ X}. (5)

Then usual set operations and relations are defined as follows:

(i). P ⊆ Q if and only if μP (zi) ≤ μQ(zi) and νP (zi) ≥ νQ(zi) for all zi ∈ X;
(ii). P = Q if and only if P ⊆ Q and Q ⊆ P ;
(iii). P c = {〈zi, νP (zi), μP (zi)〉/zi ∈ X};
(iv). P ∩ Q = {〈μP (zi) ∧ μQ(zi) and νP (zi) ∨ νQ(zi)〉/zi ∈ X};
(v). P ∪ Q = {〈μP (zi) ∨ μQ(zi) and νP (zi) ∧ νQ(zi)〉/zi ∈ X}.

[7] generalized the axioms of [5] and proposed a new entropy measure in settings
of intuitionistic fuzzy sets.

Definition 4 (See [7]). An entropy on IFS(X) is a real-valued function E :
IFS(X) → [0, 1], satisfying the following four axioms:

E1 (Sharpness): E(P ) = 0 iff P is a crisp set; i.e., μP (zi) = 0, νP (zi) = 1 or
μP (zi) = 1, νP (zi) = 0 for all zi ∈ X.

E2 (Maximality): E(P ) = 1 if and only if μP (zi) = νP (zi) for all zi ∈ X.
E3 (Resolution): E(P ) ≤ E(Q) if and only if P ⊆ Q, i.e., if μP (zi) ≤ μQ(zi)

and νP (zi) ≥ νQ(zi) for μQ(zi) ≤ νQ(zi), or if μP (zi) ≥ μQ(zi) and νP (zi) ≤
νQ(zi), for μQ(zi) ≥ νQ(zi) for any zi ∈ X.

E4 (Symmetry): E(P ) = E(P c).

Throughout this paper, set of all intuitionistic fuzzy sets and fuzzy sets will
be denoted by IFS(X) and FS(X), respectively.

With these concepts in mind, in the next section, we introduce a new entropy
called “intuitionistic fuzzy entropy of order α” for intuitionistic fuzzy sets with
α as a parameter.

3 Intuitionistic Fuzzy Entropy of Order-α

Definition 5. The intuitionistic fuzzy entropy of order-α for intuitionistic fuzzy
set P is defined as

Eα(P ) =

1

n(21−α − 1)

n∑

i=1

[
(μ

α
P (zi) + ν

α
P (zi)) × (μP (zi) + νP (zi))

1−α
+ 2

1−α
πP (zi) − 1

]
;α > 0( �= 1). (6)



A New Intuitionistic Fuzzy Entropy of Order-α with Applications in MADM 215

Limiting and Particular Cases:

1. When α → 1 (6) becomes

E1(P ) = − 1
n

n∑
i=1

[
(μP (zi) log(μP (zi) + νP (zi) log(νP (zi))

−(1 − πP (zi)) log(1 − πP (zi)) − πP (zi)
]

(7)

which is studied by Vlachos and Sergiadis [10] and does not satisfy the max-
imality property.

2. If πP (zi) = 0 then (6) becomes

Eα(P ) =
1

n(21−α − 1)

n∑
i=1

[(μα
P (zi) + (1 − μP (zi))α) − 1] ;α > 0(�= 1). (8)

Now, we establish the validity of the proposed entropy.

Theorem 1. The intuitionistic fuzzy entropy of order-α, i.e., Eα(P ) defined in
(6) is a valid entropy for IFSs, i.e., it satisfies all the axioms given in Definition 4.

Proof (E1). Let P be the crisp set having membership values either 0 or 1 for
all zi ∈ X. Then from (6), we have Eα(P ) = 0.

Conversly, if Eα(P ) = 0, then

1

n(21−α − 1)

n∑
i=1

[
(μα

P (zi) + να
P (zi)) × (μP (zi) + νP (zi))

1−α + 21−απP (zi) − 1
]
= 0,

Since α �= 1, therefore

(μα
P (zi) + να

P (zi)) × (μP (zi) + νP (zi))
1−α + 21−απP (zi) − 1 = 0,

⇒ (μα
A(zi) + να

A(zi)) × (μA(zi) + νA(zi))
1−α + 21−α(1 − μA(zi) − νA(zi)) = 1,

⇒ (μα
P (zi) + να

P (zi)) × (μP (zi) + νP (zi))
1−α − 21−α(μP (zi) + νP (zi)) = 1 − 21−α,

⇒ (μP (zi) + νP (zi))
[

(μα
P (zi)+να

P (zi))

(μP (zi)+νP (zi))α − 21−α
]
= 1 − 21−α

(9)
Since, α > 0(�= 1), therefore (9) will hold only if μP (zi) = 0, νP (zi) = 1 or

μP (zi) = 1, νP (zi) = 0 for all zi ∈ X.
Hence Eα(P ) = 0 if and only if μP (zi) = 0, νP (zi) = 1 or μP (zi) = 1,

νP (zi) = 0 for all zi ∈ X. This proves (E1).

(E2)
Eα(P ) = 1 iff μP (zi) = νP (zi) ∀zi ∈ X.

Let
Eα(P ) = 1

⇒ 1
n(21−α−1)

∑n
i=1

[
(μα

P (zi) + να
P (zi)) × (μP (zi) + νP (zi))

1−α + 21−απP (zi) − 1
]
= 1

⇒ [(μα
P (zi) + να

P (zi)) × (μP (zi) + νP (zi))
1−α + 21−απP (zi) − 1

]
= 21−α − 1

⇒ (μα
A(zi) + να

A(zi)) × (μA(zi) + νA(zi))
1−α + 21−α(1 − μA(zi) − νA(zi)) = 21−α,

⇒ (μP (zi) + νP (zi))
[

(μα
P (zi)+να

P (zi))

(μP (zi)+νP (zi))α − 21−α
]
= 0.

(10)
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(10) will hold only if

Either μP (zi) + νP (zi) = 0 ⇒ μP (zi) = νP (zi) = 0 ∀zi ∈ X,

or
(μα

P (zi) + να
P (zi))

(μP (zi) + νP (zi))α
− 21−α = 0,

which is possible only if μP (zi) = νP (zi),∀zi ∈ X. Therefore

Eα(P ) = 1 iff μP (zi) = νP (zi) ∀zi ∈ X.

(E3). E(P ) ≤ E(Q) if and only if P ⊆ Q, i.e., if μP (zi) ≤ μQ(zi) and νP (zi) ≥
νQ(zi) for μQ(zi) ≤ νQ(zi), or if μP (zi) ≥ μQ(zi) and νP (zi) ≤ νQ(zi), for
μQ(zi) ≥ νQ(zi) for any zi ∈ X.

In order to show that (6) satisfies (E3), it is sufficient to prove that the
function

g(s, t) =
1

21−α − 1
[
(sα + tα)(s + t)1−α + 21−α(1 − s − t) − 1

]
(11)

where s, t ∈ [0, 1] is an increasing function of s and decreasing function of t.
Differentiating g partially with respect to s and t, respectively, we get

∂g(s, t)
∂s

=
1

(21−α − 1)
[
(1 − α)(sα + tα)(s + t)−α + α(s + t)1−αsα−1 − 21−α

]
(12)

and

∂g(s, t)
∂t

=
1

(21−α − 1)
[
(1 − α)(sα + tα)(s + t)−α + α(s + t)1−αtα−1 − 21−α

]
(13)

For critical points of g, we put ∂g(s, t)/∂s = 0 and ∂g(s, t)/∂t = 0. This gives

s = t (14)

From (12) and (14), we get

∂g(s, t)
∂s

≥ 0 when s ≤ t, 0 < α < 1 and also forα > 1,

∂g(s, t)
∂s

≤ 0 when s ≥ t, 0 < α < 1 and also forα > 1. (15)

for all s, t ∈ [0, 1]. Thus g(s, t) is increasing function of s for s ≤ t and decreasing
function of s when s ≥ t.

Similarly, we can prove that

∂g(s, t)
∂t

≤ 0 when s ≤ t, 0 < α < 1 and also forα > 1,

∂g(s, t)
∂t

≥ 0 when s ≥ t, 0 < α < 1 and also forα > 1. (16)
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Suppose there are two sets P,Q ∈ IFS(X) such that P ⊆ Q. Let X =
{z1, z2, . . . , zn}, the finite universe of discourse, be divided into two disjoint sets
X1 and X2 with X = X1 ∪ X2.

Further, suppose that all zi ∈ X1 obey the condition

μP (zi) ≤ μQ(zi) ≤ νQ(zi) ≤ νP (zi), (17)

and all zi ∈ X2,
μP (zi) ≥ μQ(zi) ≥ νQ(zi) ≥ νP (zi). (18)

Thus, from the monotonic behaviour of the function g and equation (6), we
obtain that Eα(P ) ≤ Eα(Q) when P ⊆ Q.

(E4). Eα(P ) = Eα(P c)
We know that P c = {〈zi, νP (zi), μP (zi)〉/zi ∈ X} for zi ∈ X; i.e.,

μP c(zi) = νP (zi), νP c(zi) = μP (zi). (19)

Thus from (6), we have
Eα(P ) = Eα(P c). (20)

Hence, Eα(P ) is a valid intuitionistic fuzzy entropy.
Thus the theorem is proved. �

The proposed entropy (6) also satisfies the following additional properties

Theorem 2 Let P and Q be two IFSs defined in X = {z1, z2, . . . , zn}, where
P = {〈zi, μP (zi), νP (zi)〉/zi ∈ X}, Q = {〈zi, μQ(zi), νQ(zi)〉/zi ∈ X}, such that
for all zi ∈ X either P ⊆ Q or Q ⊆ P ; then

Eα(P ∪ Q) + Eα(P ∩ Q) = Eα(P ) + Eα(Q). (21)

Corollary: For any P ∈ IFS(X) and its complement P c,

Eα(P ) = Eα(P c) = Eα(P ∪ P c) = Eα(P ∩ P c). (22)

Theorem 3. The value of Eα(P ) is maximum when the set is most intuitionistic
fuzzy set and is minimum when the set is a crisp set; moreover, maximum and
minimum values are free of α.

4 Application of Proposed Entropy in Multiple Attribute
Decision Making (MADM) Using TOPSIS Method

An MADM problem is a problem in which there are so many factors need to be
considered simultaneously and it becomes very difficult to arrive at a conclusion.
So, by using proposed entropy we can compile the information and can take the
decision. Now, we apply the proposed entropy to solve an MADM problem in
the form of case study.
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A Case Study of Insurance Services Quality
In this section, we consider a case study of insurance companies. Let there be
n insurance companies I1, I2, . . . , In to be evaluated by their customers on the
basis of m criteria Z1, Z2, . . . , Zm through questionnaires. (In current example we
take n=m=4. This example is adopted from Toloie et al. [9]). The questionnaires
consists of four evaluation criteria ,i.e., Z1 (Confidence), Z2 (Responsiveness), Z3

(Reliability), Z4 (Tangibles). The perception of customers regarding the quality
of services is compiled through questionnaires.

We use TOPSIS (Technique for Order Preference by Similarity to Ideal Solu-
tion) method for ranking the alternatives. In this method, we take two ideal
solutions: One is the best solution and other is the worst solution. Then we
determine the solution which is nearest to the best solution and away from the
worst solution. This solution will be the best solution among all the solutions.
Computational procedure for ranking the performance of companies is as follows:

1. Construction of the IF values decision Matrix (Table 1).

Table 1. The IF values decision matrix.

I1 I2 I3 I4

Z1 (0.449, 0.370) (0.719, 0.188) (0.546, 0.192) (0.520, 0.337)

Z2 (0.565, 0.162) (0.630, 0.232) (0.727, 0.182) (0.630, 0.100)

Z3 (0.705, 0.232) (0.448, 0.378) (0.641, 0.322) (0.539, 0.271)

Z4 (0.730, 0.170) (0.557, 0.160) (0.399, 0.200) (0.679, 0.188)

2. Weight vector of the criteria is obtained by using the principle of minimum
entropy suggested by Wang and Wang [11].

Using min E =
m∑

i=1

n∑
j=1

ujEα(=15)(x̃ij), the weight vector of the evaluated

criteria is obtained as

min (E) = 0.9909u1 + 0.9660u2 + 0.9958u3 + 0.9804u4, (23)

such that

0 ≤ u1 ≤ 0.3; 0.1 ≤ u2 ≤ 0.2; 0.2 ≤ u3 ≤ 0.5; 0.1 ≤ u4 ≤ 0.3, (24)

with the condition u1 + u2 + u3 + u4 = 1. Solving this linear programming
problem using MATLAB software, the weights obtained are u1 = 0.3, u2 =
0.2, u3 = 0.2, u4 = 0.3.

3. The Best Solution (Z+) and Worst Solution (Z−)are respectively given as:

Z+ = ((α+
1 , β+

1 ), (α+
2 , β+

2 ), (α+
3 , β+

3 )(α+
4 , β+

4 )) = ((1, 0), (1, 0), (1, 0), (1, 0)),
Z− = ((α−

1 , β−
1 ), (α−

2 , β−
2 ), (α−

3 , β−
3 ), (α−

4 , β−
4 )) = ((0, 1), (0, 1), (0, 1), (0, 1)).
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4. The distance measures of Zi’s (i = 1, 2, 3, 4) from Z+ and Z− is:

s(Z1, Z
+) = 0.4272, s(Z2, Z

+) = 0.3215, s(Z3, Z
+) = 0.4282, s(Z4, Z

+) = 0.4854,

s(Z1, Z
−) = 0.7653, s(Z2, Z

−) = 0.8326, s(Z3, Z
−) = 0.6821, s(Z4, Z

−) = 0.8116.

5. The calculated relative degrees of closeness are:

D1 = 0.6418,D2 = 0.7214,D3 = 0.6143,D4 = 0.6258.

6. Ranking the options in descending order as per the values of Di’s. Based on
Di values, the sequence of alternatives obtained is: I2 � I1 � I4 � I3 and I2
is the best choice in view of service qualities.

5 Concluding Remarks

In this paper, we have proposed a new intuitionistic fuzzy entropy of order α.
It considers membership degree, non-membership degree and hesitancy degree.
It is generalized form of entropy studied by Vlachos and Sergiadis [10]. Besides
proving the validity of proposed entropy, we have also discussed some of its
properties. At last, a case study regarding the selection of insurance company is
given based on the TOPSIS method.

References

1. Atanassov, K.T.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20, 87–96 (1986)
2. Atanassov, K.T.: Intuitionistic Fuzzy Sets. Springer, New York (1999)
3. Atanassov, K.T.: Intuitionistic Fuzzy Sets. Physica, Heidelberg (1999)
4. Bhandari, D., Pal, N.R.: Some new information measures for fuzzy sets. Inf. Sci.

67, 209–228 (1993)
5. De Luca, A., Termini, S.: A definition of non-probabilistic entropy in the settings

of fuzzy set theory. Inf. Control. 20, 301–312 (1972)
6. Renyi, A.: On measures of entropy and information. In: Proceedings of the 4th

Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 547–
561. University of California Press, Berkeley (1961)

7. Szmidt, E., Kacprzyk, J.: Using intuitionistic fuzzy sets in group decision-making.
Control Cybern. 31, 1037–1054 (2002)

8. Shannon, C.E.: The mathematical theory of communication. Bell Syst. Tech. J.
27(379–423), 623–656 (1948)

9. Toloie, A., Nasimi, M.A., Poorebrahimi, A.: Assessing quality of insurance compa-
nies using multiple criteria decision making. Eur. J. Sci. Res. 54, 448–457 (2011)

10. Vlachos, I.K., Sergiadis, G.D.: Intuitionistic fuzzy information- applications to pat-
tern recognition. Pattern Recogn. Lett. 28, 197–206 (2007)

11. Wang, J., Wang, P.: Intuitionistic linguistic fuzzy multi-critria decision-making
method based on intutionistic fuzzy entropy. Control. Decis. 27, 1694–1698 (2012)

12. Zadeh, L.A.: Fuzzy sets. Inf. Comput. 8, 338–353 (1965)
13. Zadeh, L.A.: Probability measures of fuzzy events. J. Math. Anal. Appl. 23, 421–

427 (1968)



The Relationship Between Intuitionistic Fuzzy
Programming and Goal Programming

Sandeep Kumar(B)

Department of Mathematics, Chaudhary Charan Singh University,
Meerut 250004, Uttar Pradesh, India

drsandeepmath@gmail.com

Abstract. One of the generalizations of fuzzy programming (FP) is
intuitionistic fuzzy programming (IFP). IFP and goal programming (GP)
are two important techniques for determining the solution (optimal)
of multi-objective optimization problem by transforming it to a single
objective one. The main purpose of this article is to introduce the sim-
ilarities between IFP and GP. In this work, the max and min-operator
are considered to transform the IFP to a deterministic program. One
example is given to show the applicability of the proposed theory.

Keywords: Fuzzy programming · Multi-objective problem · Intuition-
istic fuzzy programming · Goal programming

1 Introduction

Fuzzy programming is an extremely powerful tool for addressing a wide range of
real world optimization problems. In fact, FP have appeared more visibly rather
than crisp programming. Bellman and Zadeh [4] introduced the concept of fuzzy
set theory in decision making problems. On the basis of [4], Tanaka et al. [20]
proposed the concept of mathematical programming under fuzzy environment
in first time. Zimmermann [21] gave the first formulation of fuzzy linear pro-
gramming. Recently, FP has been used to solve many multi-objective problems,
see [9,13,14] and references therein. Fuzzy set theory deals only with uncer-
tainty in which sum of membership and non-membership functions is equal to
one at each point of universe. When this sum is less than to one i.e. membership
function and non-membership function are not complementary to each other,
fuzzy set theory is not capable to handle such types of situations. To handle
such cases, Atanassov [3] presented the concept of intuitionistic fuzzy set (IFS)
which is one generalization of fuzzy set. IFS is quite different from fuzzy set.
The reason is that IFS is characterized by two indices (membership function
and non-membership function), which can be used to describe three states of
fuzziness: favor, unfavor, and neutrality whereas fuzzy set is represented only by
one index (membership function). In fact, IFS is capable to express fuzziness of
“neither this nor that”. When the information about the degree of membership
c© Springer Nature Singapore Pte Ltd. 2017
K. Deep et al. (eds.), Proceedings of Sixth International Conference
on Soft Computing for Problem Solving, Advances in Intelligent Systems
and Computing 546, DOI 10.1007/978-981-10-3322-3 20
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and the degree of non-membership of the goals of objectives in fuzzy multi-
objective optimization problems are compared, then the theory of IFS is very
useful. Angelov [2] applied the concept of IFS to solve the optimization problems
like as transportation problem. Afterwards, a number of researchers have studied
the works on IFP [1,15] and references therein, and its applications [7,17,18].

In this article the author attempts a class of IFP and developed its rela-
tionship with crisp goal programming. Both membership and non-membership
functions are considered as linear in this work.

This article is organized as follows: A brief introduction of crisp goal pro-
gramming is given in Sect. 2. In Sect. 3, an intuitionistic fuzzy programming
is studied. In Sect. 4, a crisp goal programming from IFP is investigated. The
proposed relationship between IFP and GP is illustrated through a numerical
example, in Sect. 5.

2 Goal Programming

The concept of goal programming was introduced by Charnes and Copper [5]
in 1961. Subsequent works on goal programming were presented by Lee [10],
Charnes and Copper [6], Ignizo [8], Tamiz et al. [19] and others, see [11,16].

Now, consider the following multi-objective linear programming problem

Optimize G(Z) = [g1(Z), g2(Z), . . . , gm(Z)], Z = (z1, z2, . . . , zn)T

subject to,
AZ ≤ b, Z ≥ 0, (1)

where A and b are (p×n) and (p×1) matrices of real constants respectively. Let
G(Z) = [g1(Z), g2(Z), . . . , gm(Z)], denote the vector of aspiration levels for the
objectives and gk(Z)(k = 1, 2, . . . ,m) is the kth objective having its aspiration
level gk(Z). Then usually following three types of goals are used.
(i) gk(Z) ≥ gk(Z), (maximization problem),
(ii) gk(Z) ≤ gk(Z), (minimization problem),
(iii) gk(Z) = gk(Z), (equality problem).

The goals of any of the above types may be properly achieved, over achieved
or under achieved. So the distance between objective function and its aspira-
tion level is unrestricted, and is expressed by positive and negative deviational
variables (h+

k and h−
k ) where h+

k = max(0, gk(Z) − gk(Z)) = 1
2 [gk(Z) − gk(Z) +

|gk(Z)− gk(Z)|], and h−
k = max(0, gk(Z)− gk(Z)) = 1

2 [gk(Z)− gk(Z)+ |gk(Z)−
gk(Z)|].

Introducing the deviational variables, the above types of goals take the fol-
lowing forms:

gk(Z) − gk(Z) = h+
k − h−

k ,

gk(Z) − gk(Z) = h+
k − h−

k ,

gk(Z) − gk(Z) = h+
k + h−

k ,

respectively.



222 S. Kumar

In GP, the aim of decision maker (DM) is to minimize the undesirable devi-
ational variable. Therefore, in type (i) DM minimizes h−

k , in type (ii) minimizes
h+
k , and in type (iii) minimizes h+

k + h−
k .

Any of the following forms is chosen for solving a GP model.

(a) The min-max form: In this approach, DM minimizes the maximum devi-
ational variable, let it be D. The mathematical form of this approach is as
following:

min D
subject to,

AZ ≤ b,

gk(Z) + h−
k − h+

k = gk(Z), (k = 1, 2, . . . , m),
D ≥ fk(h−

k , h+
k ), (k = 1, 2, . . . ,m),

h−
k .h+

k = 0, (k = 1, 2, . . . ,m),
Z, h+

k , h−
k ≥ 0. (2)

where fk(h−
k , h+

k ) = h−
k or h+

k or h+
k +h−

k according to the requirement of goals.

(b) The min form: The mathematical form of this approach is

min
( m∑

k=1

fk(h−
k , h+

k )
)

subject to,

AZ ≤ b,

gk(Z) + h−
k − h+

k = gk(Z), (k = 1, 2, . . . ,m),
h−
k .h+

k = 0, (k = 1, 2, . . . ,m),
Z, h+

k , h−
k ≥ 0. (3)

(c) The weighted min form: The mathematical form of this approach is

min
( m∑

k=1

wkfk(h−
k , h+

k )
)

subject to,

AZ ≤ b,

gk(Z) + h−
k − h+

k = gk(Z), (k = 1, 2, . . . ,m),
h−
k .h+

k = 0, (k = 1, 2, . . . ,m),
Z, h+

k , h−
k ≥ 0, (4)

here w1, w2, . . . , wm are called weights, which are obtained by DM.

(d) The pre-emptive priority form: In this approach, the deviational vari-
ables are ranked into a number of priority levels and are minimized in a lexico-
graphic way. A lexicographic minimization means that the highest priority goal
is considered first, then the second and so on.
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The algebraic representation of a lexicographical goal program is

min
( ∑

k∈Pi

wkfk(h−
k , h+

k ), i = 1, 2, . . . , I

)
subject to,

AZ ≤ b,

gk(Z) + h−
k − h+

k = gk(Z), (k = 1, 2, . . . ,m),
h−
k .h+

k = 0, (k = 1, 2, . . . ,m),
Z, h+

k , h−
k ≥ 0, (5)

where I denotes the number of priority levels and k belongs to Pi indicates that
the kth goal constraint is present in the ith priority level.

3 Intuitionistic Fuzzy Programming

In model (1), without loss of generality, the following conditions are assumed:

(H1) Each objective is of maximization type.
(H2) All objectives are linear, i.e. the kth objective gk(Z), k = 1, 2, . . . , m can

be expressed as:

gk(Z) = c1z1 + c2z2 + · · · + cnzn,

where c1, c2, . . . , cn are real constants.
(H3) Each system constraint is described in crisp sense.

Using (H1)-(H3), the fuzzy version of model (1) is as follows:

Find Z such that

G(Z) � G(Z)
subject to,

AZ ≤ b,

Z ≥ 0, (6)

where � (�) is fuzzification of symbol ≥ (≤) in Zimmermann sense [21].
Let μk(Z) be the membership function for kth objective function. Then, by

using Bellman and Zadeh’s approach, the crisp equivalent of model (6) is as
follows:

max μk(Z)
subject to,

AZ ≤ b,

0 ≤ μk(Z) ≤ 1, k = 1, 2, . . . ,m,

Z ≥ 0. (7)
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In fuzzy optimization, Angelov [2] introduced the situation when the degree of
non-acceptance is defined together with the degree of satisfaction and sum of
these degrees is not exactly one. With this consideration, model (7) becomes

Find Z such that

max
Z

(
μk(Z)

)
,

min
Z

(
νk(Z)

)
,

subject to,

AZ ≤ b,

μk(Z) ≥ νk(Z), νk(Z) ≥ 0,

μk(Z) + νk(Z) ≤ 1, k = 1, 2, . . . ,m,

Z ≥ 0, (8)

where μk(Z) denotes the degree of acceptance of Z to the kth intuitionistic fuzzy
objective function and νk(Z) denotes the degree of non-acceptance of Z from
kth intuitionistic fuzzy objective function.

Using max and min-operator, the intuitionistic fuzzy optimization problem
(8) can be transformed to the following crisp model:

max (γ − δ)
subject to,

AZ ≤ b,

γ ≤ μk(Z),
δ ≥ νk(Z), k = 1, 2, . . . ,m,

γ ≥ δ, δ ≥ 0,

γ + δ ≤ 1, Z ≥ 0, (9)

where γ denotes the minimal acceptable degree of objectives and δ denotes the
maximal degree of rejection of objectives.

In model (9), there may be following four possibilities in selection of mem-
bership function μk(Z) and non-membership function νk(Z) of kth intuitionistic
fuzzy objective:

(i) μk(Z) and νk(Z) both are linear [12];
(ii) μk(Z) is linear and νk(Z) is non-linear [2];
(iii) μk(Z) is non-linear and νk(Z) is linear [2];
(iv) μk(Z) and νk(Z) both are non-linear.

In this article, both μk(Z) and νk(Z) are choosen as linear.
Now, the linear functions μk(Z) and νk(Z) for kth intuitionistic fuzzy objec-

tive function gk(Z) in sense of [21] are constructed, as follows:



The Relationship Between IFP and GP 225

μk(Z) =

⎧⎪⎨
⎪⎩

1; if gk(Z) ≥ gk(Z),
1 − gk(Z)−gk(Z)

t1k
; if lk ≤ gk(Z) ≤ gk(Z),

0; if gk(Z) ≤ lk,

(10)

where lk = gk(Z) − t1k.
And

νk(Z) =

⎧⎨
⎩

1; if gk(Z) ≤ lk,

1 − gk(Z)−lk
t2k

; if lk ≤ gk(Z) ≤ lk + t2k,

0; if gk(Z) ≥ lk + t2k,

(11)

where t2k < t1k.
Then, model (9) takes the following form:

max (γ − δ)
subject to,

AZ ≤ b,

γ ≤ 1 − gk(Z) − gk(Z)
t1k

,

δ ≥ 1 − gk(Z) − lk
t2k

, k = 1, 2, . . . ,m,

γ ≥ δ, δ ≥ 0,

γ + δ ≤ 1, Z ≥ 0. (12)

The program (12) can be solved by using simplex method.

4 The Relationship Between IFP and GP

Mohamed [11] established a relationship between fuzzy linear program (FLP)
and GP. The keyconcepts of this work are: (i) the aspiration level for each mem-
bership goal is one; (ii) the larger tolerance value indicates less important of the
goal. This relationship is described as:

Theorem 1. [11] Every FLP is equivalent to a weighted GP, where the weights
are the reciprocals of the admissible violation constants.

In this work, a relationship between intuitionistic fuzzy linear program and
GP is developed. This work is motivated by [2,11]. The proposed relationship is
stated in following theorem:



226 S. Kumar

Theorem 2. The intuitionistic FLP is equivalent to a weighted linear GP.

Proof. The model (12) can be rewritten as:

min (1 − γ) + δ
subject to,

AZ ≤ b,

1 − γ ≥ gk(Z) − gk(Z)
t1k

,

δ ≥ 1 − gk(Z) − lk
t2k

, k = 1, 2, . . . ,m,

δ ≥ 0, 1 − γ ≥ 0, γ ≥ δ,

γ + δ ≤ 1, Z ≥ 0. (13)

From model (13),

1 − γ ≥ max
(

0,
gk(Z) − gk(Z)

t1k

)
and

δ ≥ max
(

0, 1 − gk(Z) − lk
t2k

)
With the help of definition of deviational variables, the above inequalities can
convert into the following forms:

1 − γ ≥ h−
1k, where

gk(Z)
t1k

+ h−
1k − h+

1k =
gk(Z)
t1k

i.e. gk(Z) + t1kh
−
1k − t1kh

+
1k = gk(Z)

and δ ≥ h−
2k, where

gk(Z)
t2k

+ h−
2k − h+

2k =
lk + t2k

t2k
i.e. gk(Z) + t2kh

−
2k − t2kh

+
2k = lk + t2k

with h+
1k.h

−
1k = 0, h+

2k.h
−
2k = 0 and k = 1, 2, . . . ,m.

Further, letting 1 − γ = η ≥ 0, then model (13) can be written as:

min (η + δ)
subject to,

AZ ≤ b,

gk(Z) + t1kh
−
1k − t1kh

+
1k = gk(Z),

gk(Z) + t2kh
−
2k − t2kh

+
2k = lk + t2k,

η ≥ h−
1k, δ ≥ h−

2k,
δ ≤ η, η + δ ≤ 1,

h+
1k.h

−
1k = 0, h+

2k.h
−
2k = 0,

all variables ≥ 0, k = 1, 2, . . . ,m. (14)
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By taking t1kh
−
1k = h−

k and t2kh
−
2k = e−

k . The model (12) is equivalent to a
weighted GP which is similar to model (2). In this weighted GP, the deviational
variables are weighted with weights 1

h−
1k

for membership goals and 1
h−
2k

for non-
membership goals. This completes the proof.

Some new IFP can be investigated which are equivalent to GP models (3),
(4) and (5) in similar fashion.

5 Numerical Example

Consider the following numerical example [21]:

max g1(Z) = −z1 + 2z2,
max g2(Z) = 2z1 + 3z2,
subject to,

−z1 + 3z2 ≤ 21,

z1 + 3z2 ≤ 27,

4z1 + 3z2 ≤ 45,

3z1 + z2 ≤ 30,

z1, z2 ≥ 0. (15)

Let g1(Z) = 15, g2(Z) = 23 be aspiration levels for g1(Z) and g2(Z) respectively.
Suppose that t11 = 8, t12 = 10 and t21 = 5, t22 = 7.

The intuitionistic fuzzy program (12) becomes

max (γ − δ)
subject to,

γ ≤ −0.8750 − 0.125z1 + 0.25z2,
γ ≤ −1.3 + 0.2z1 + 0.3z2,

δ ≥ 2.4 + 0.2z1 − 0.6z2,

δ ≥ 2.8571 − 0.2857z1 − 0.4286z2,

−z1 + 3z2 ≤ 21,

z1 + 3z2 ≤ 27,

4z1 + 3z2 ≤ 45,

3z1 + z2 ≤ 30,

γ ≥ δ, γ + δ ≤ 1,

z1, z2, γ, δ ≥ 0. (16)

Using TORA software, the solution (optimal) of model (16) is (z∗
1 , z

∗
2) =

(0.2195, 7.0732), γ∗ = 0.8657, δ∗ = 0 and the equivalent GP of model (16) is
as follows:

min (η + δ)
subject to,
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−z1 + 3z2 ≤ 21,

z1 + 3z2 ≤ 27,

4z1 + 3z2 ≤ 45,

3z1 + z2 ≤ 30,

−z1 + 2z2 + h−
11 − h+

11 = 15,

−z1 + 2z2 + h−
21 − h+

21 = 12,

2z1 + 3z2 + h−
12 − h+

12 = 23,

2z1 + 3z2 + h−
22 − h+

22 = 20,

η ≥ h−
11
8 , δ ≥ h−

21
5 ,

η ≥ h−
12
10 , δ ≥ h−

22
7 ,

δ ≤ η, η + δ ≤ 1,

h+
1k.h

−
1k = 0, h+

2k.h
−
2k = 0, k = 1, 2, . . . ,m,

all variables ≥ 0. (17)

The solution (optimal) of model (17) is also (z∗
1 , z∗

2) = (0.2195, 7.0732), η∗ =
0.1341, δ∗ = 0.

6 Conclusion

In this article two important approaches IFP and GP are considered to solve
fuzzy multi-objective optimization problems. The relationship between IFP and
GP is introduced within this article. Developing of this relationship, a class of
membership functions and non-membership functions is constructed in which
non-membership function is not complement of membership function exactly.
This article is proposed a new type of IFP form using the sense of GP. In
future work the author intends to introduce a relationship between IFP, having
intuitionistic fuzziness in parameters and GP.
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Abstract. In this paper, we focus on measuring the performance effi-
ciencies of decision making units (DMUs) using dual slack based measure
(SBM) model with fuzzy data in data envelopment analysis (DEA). In
the conventional dual SBM model, the data and the weights of input and
output are found as crisp quantities. However, in real world applications,
input-output data and input-output weights may have vague/uncertainty
due to various factors such as quality of treatment and medicines, num-
ber of medical and non-medical staffs, number of patients, etc. in health
sector. To deal with such uncertainty, we can apply fuzzy set theory. In
this paper, we propose a SBM model with fuzzy weights in Fuzzy DEA
(FDEA) for fuzzy input and fuzzy output. This model is then reduced to
a crisp LPP by using expected values of a fuzzy number (FN). Finally,
we present an application of the proposed model to the health sector,
consisting of two input variables as (i) sum of number of doctors and
staff nurses (ii) number of pharmacists and two output variables as (i)
number of inpatients (ii) number of outpatients. Both the input variables
and output variables are considered as TFNs.

Keywords: Fuzzy DEA · Fuzzy dual SBM · Fuzzy weights · Hospitals
efficiencies

1 Introduction

DEA is non-parametric linear programing (LP) based technique to determine the
relative efficiency of homogeneous DMUs when the production process consists
of multiple inputs and multiple outputs (Ramanathan 2003). There exist some
mathematical programs in DEA such as: Fractional, Input minimization (Output
oriented) and Output maximization (Input oriented) etc. (Cooper et al. 2007).
DEA calculates maximal performance measure for each DMU relative to other
DMUs. CCR model (Charnes et al. 1978) find the constant returns to scale (CRS)
and BCC model (Banker et al. 1984) find the variable returns to scale (VRS),
they neglects the slacks in the evaluation of efficiencies. To solve this neglection
can be computed using the slack based measure (SBM) model non-radial and
non-oriented DEA model (Tone 2001).
c© Springer Nature Singapore Pte Ltd. 2017
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Conventional DEA deals with crisp input and crisp output data. But in
real world applications, some input and/or output data possess some degree of
fluctuation or imprecision or uncertainties such in health sector as quality of
input resources, quality of treatment, the satisfaction level of patients, quality
of medicines etc. The fluctuation can take the form of intervals, ordinal relations
and fuzzy numbers etc. Therefore, to deal with such type of real life situations,
we plan to extend crisp DEA to FDEA by making use of fuzzy numbers in
DEA. FDEA models represent real world applications more realistically than
the conventional DEA models.

The rest of the paper is organized as follows: Sect. 2 presents the literature
review. Section 3 presents preliminaries required to develop the model of which
include basic definitions performance efficiency, fuzzy number, triangular fuzzy
number and expected values. Section 4 presents the background of primal and
dual parts of the fuzzy SBM model. Section 5 presents an application to health
sector to illustrate the proposed model. Section 6 concludes the finding of our
work.

2 Literature Review

This section reviews some DEA based studies on health care sector around all
over the world. Over the last 50 years India has built a sound health sector
infrastructure (Agarwal et al. 2006). According to the literature, in the present
time, the role of the health care sector has been expanding than the public
health care sector in India. Determining the health care performance efficiency
has an important role in developed as well as developing countries. There are
some studies to determine the performance efficiencies of health care using DEA
in Indian context (Mogha et al. 2014(a),(b)). The most important role in the
economy of any developed as well as developing countries is health care of urban
and rural areas. Sengupta (1992) was the first author to introduce the fuzzy
measure, regression, entropy and fuzzy mathematical programming approach in
DEA. Afsharinia et al. (2013) determined the performance efficiency of clinical
units using fuzzy essence. Tsai et al. (2010) proposed the fuzzy analytic hierar-
chy process (FAHP) and fuzzy sensitive analysis based approach to measure the
policy of Taiwan hospitals in DEA. Dotoli et al. (2015) developed a novel cross-
efficiency fuzzy DEA model for evaluating different elements under uncertainty
with application to the health care system. Mansourirad et al. (2010) were the
first to introduce fuzzy weights in fuzzy CCR (FCCR) model and proposed a
model using α-cut approach to evaluate weights for outputs in terms of TFNs.
The SBM performance efficiency in DEA is extended to fuzzy forms (Jahan-
shahloo et al. 2004 and Saati et al. 2009). Puri and Yadav (2013) proposed a
slack based measure model with fuzzy weights corresponding to fuzzy inputs and
fuzzy outputs using α− cut approach.
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3 Preliminary

This section includes some basic definitions and notions of fuzzy set theory
(Zimmermann 1996), fuzzy number (FN), triangular fuzzy number (TFN), arith-
metic operations on TFNs (Chen 1994) and expected values (Ghasemi 2015).

3.1 Performance Efficiency (Charnes 1978)

The performance efficiency of a DMU is defined as the ratio of the weighted sum
of outputs (virtual output) to the weighted sum of inputs (virtual input). Thus,
Performance efficiency = virtual output

virtual input .
DEA evaluates the relative performance efficiency of a DMU in a set of

homogeneous DMUs. The relative performance efficiency of a DMU lies in the
range (0, 1].

3.2 Fuzzy Number (FN) (Zimmermann 1996)

An FN M̃ is defined as a convex normalized fuzzy set M̃ of the real line IR such
that

(1) there exists exactly one x0 ∈ IR with μM̃ (x0) = 1. x0 is called the mean
value of M̃ ,

(2) μM̃ is a piecewise continuous function, called the membership function of
M̃ .

3.3 Triangular Fuzzy Number (TFN) (Zimmermann 1996)

The TFN M̃ is an FN denoted by M̃ = (a, b, c) and is defined by the membership
function μM̃ given by

μM̃ (x) =

⎧⎨
⎩

x−a
b−a , a < x ≤ b,
c−x
c−b , b ≤ x < c,

0, elsewhere,

for all x ∈ IR.
This TFN can be said to be “approximately equal to b”, where b is called

the modal value, and (a,c) is called support of the TFN (a,b,c).

3.4 Arithmetic Operations on TFNs (Chen 1994)

Let M̃1 = (a1, b1, c1) and M̃2 = (a2, b2, c2) be two TFNs. Then, the arithmetic
operations on TFNs are given as follows:

– Addition: M̃1 ⊕ M̃2 = (a1 + a2, b1 + b2, c1 + c2).
– Subtraction: M̃1 � M̃2 = (a1 − c2, b1 − b2, c1 − a2).
– Multiplication: M̃1 ⊗ M̃2 = (min(a1a2, a1c2, c1a2, c1c2), b1b2,max(a1a2,

a1c2, c1a2, c1c2))
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– Scalar multiplication:

λM̃I =
{

(λa1, λb1, λc1), for λ ≥ 0
(λc1, λb1, λa1), for λ < 0

3.5 The Expected Values of FNs (Ghasemi 2015)

The expected interval (EI) of a TFN M̃ = (a, b, c) defined as follows: EI(M̃) =
[EL(M̃), EU (M̃)], where
EL(M̃) = a+b

2 and
ER(M̃) = b+c

2 .
And expected value (EV) of a TFN M̃ = (a, b, c) defined as follows:
EV (M̃) = 1

2 (EL(M̃) + EU (M̃)) = a+2b+c
4 .

4 Background

This paper measures the fuzzy input weights, fuzzy output weights and fuzzy
efficiency of 12 community health cares of Meerut district of Uttar Pradesh (UP)
State.

4.1 SBM DEA Model

Let the performance of a set of n homogeneous DMUs (DMUj = 1, 2, 3, ..., n)
be determined. The performance efficiency of DMUj is characterized by a
production process of m inputs xij(i = 1, 2, 3, ...,m) to produce s outputs
yrj(r = 1, 2, 3, ..., s). Assume xijo be the amount of the ith input used and yrjo

be the amount of the rth output produced by the DMUjo . Let input data and
output data be positive. The primal SBM model (Tone 2001) for DMUjo is given
by the following model:

Model 1: (Primal SBM model)

ρjo = min
1−(1/m)

∑m
i=1 s−

ijo
/xijo

1+(1/s)
∑s

r=1 s+
rjo

/yrjo

subject to
(1)

xijo =
∑n

j=1 xijμjjo + s−
ijo

, ∀i (2)

yrjo =
∑n

j=1 yrjμjjo − s+rjo
, ∀r (3)

μjjo ≥ 0, ∀j, s−
ijo

≥ 0, ∀i , s+rjo
≥ 0, ∀r (4)

where s−
ijo

and s+rjo
are the slack variables in the ith input of the DMUjo and

rth output of the DMUjo respectively.

Definition 1. (Tone 2001) ρjo is called SBM efficiency (SBME) of DMUjo .
DMUjo is SBM efficient if ρ∗

jo
= 1.

This condition is equivalent to s−∗
ijo

= 0 and s+∗
rjo

= 0, i.e., no output shortfalls
and no input excesses in optimal solution, otherwise inefficient.
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Model 1 can be transformed into linear programming (LP) using normaliza-
tion method (Charnes et al. 1978). In Model 1, multiply by a scalar pjo > 0 to
both the numerator and denominator. The value of pjo can be adjusted in such
a way that the numerator becomes 1. Thus Model 1 is reduced to the following
model (Model 2):

Model 2:
Ejo = max pjo + 1

s

∑s
r=1 S+

rjo
/yrjo ,

subject to
(5)

pjo − 1
m

∑m
i=1 S−

ijo
/xijo = 1, (6)

pjoxijo =
∑n

j=1 xijλjjo + S−
ijo

∀i, (7)

pjoyrjo =
∑n

j=1 yrjλjjo − S+
rjo

∀r, (8)

λjjo ≥ 0∀j, S−
ijo

≥ 0, ∀r, S+
rjo

≥ 0, ∀i, pjo > 0, (9)

where pjoμjjo = λjjo , ∀j, pjos
−
ijo

= S−
ijo

, ∀i and pjos
+
rjo

= S+
rjo

, ∀r

Let θjo , uijo and vrjo be the dual variables corresponding to (6), (7) and (8)
respectively. Then the Dual problem LPP in Model 2 is given by:

Model 3: (Dual SBM model)

ED
jo

= min θjo ,
subject to

(10)

∑s
r=1 yrjvrjo +

∑m
i=1 xijuijo ≤ 0, ∀j, (11)

θjo +
∑m

i=1 xijouijo +
∑s

r=1 yrjovrjo ≥ 1, (12)

uijo + θjo

mxijo
≤ 0∀i, (13)

vrjo ≥ 1
syrjo

∀r, θjo ∈ IR, (14)

All the variables θjo , uijo and vrjo are unrestricted in sign.

4.2 Proposed Fuzzy Dual SBM Model

In conventional SBM model the input-output data and input-output weights are
in crisp form. But in real world application, these weights and data may have
fuzzy values. Thus, in this paper, input-output data and input-output weights
are taken as TFNs. Model 3 is reduced to the following model:

Model 4:

ẼD
jo

= min θ̃jo ,
subject to∑s

r=1 ỹrj ⊗ ṽrjo +
∑m

i=1 x̃ij ⊗ ũijo ≤ 0̃, ∀j,

θ̃jo +
∑m

i=1 x̃ijo ⊗ ũijo +
∑s

r=1 ỹrjo ⊗ ṽrjo ≥ 1̃,

m ũijo ⊗ x̃ijo + θ̃jo ≤ 0̃ ∀ i, s ṽrjo ⊗ ỹrjo ≥ 1̃ ∀ r,
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where x̃ij and ỹrj are the triangular fuzzy inputs and outputs respectively; ũijo

is the triangular fuzzy weight corresponding to the ith input and ṽrjo is the
triangular fuzzy weight corresponding to the rth output. By using expected
values of TFN, Model 4 reduces to the following model:

Model 5:

EV (ẼD
jo) = min EV (θ1

jo , θ2
jo , θ3

jo),

subject to

EV (
∑s

r=1 y1
rjv

1
rjo ,
∑s

r=1 y2
rjv

2
rjo ,
∑s

r=1 y3
rjv

3
rjo) + EV (

∑m
i=1 x1

iju
1
ijo ,
∑m

i=1 x2
iju

2
ijo ,∑m

i=1 x3
iju

3
ijo) ≤ EV (0, 0, 0), ∀j,

EV (θ1
jo , θ2

jo , θ3
jo) + EV (

∑m
i=1 x1

ijou1
ijo ,
∑m

i=1 x2
ijou2

ijo ,
∑m

i=1 x3
ijou3

ijo)+

EV (
∑s

r=1 y1
rjov1

rjo ,
∑s

r=1 y2
rjov2

rjo ,
∑s

r=1 y3
rjov3

rjo) ≥ EV (1, 1, 1),

m EV (x1
ijou1

ijo , x2
ijou2

ijo , x3
ijou3

ijo) + EV (θ1
jo , θ2

jo , θ3
jo) ≤ EV (0, 0, 0), ∀i,

s EV (y1
rjov1

rjo , y2
rjov2

rjo , y3
rjov3

rjo) ≥ EV (1, 1, 1), ∀r,

Using expected values in Model 5, we get Model 6.

Model 6:

ED1
jo = min 1

4
(θ1

jo + 2θ2
jo + θ3

jo),

subject to∑s
r=1 (y1

rjv
1
rjo + 2y2

rjv
2
rjo + y3

rjv
3
rjo) −∑m

i=1 (x1
iju

1
ijo + 2x2

iju
2
ijo + x3

iju
3
ijo) ≤ 0, ∀j,

(θ1
jo + 2θ2

jo + θ3
jo) +

∑m
i=1 (x1

ijou1
ijo + 2x2

ijou2
ijo + x3

ijou3
ijo)+∑s

r=1 (y1
rjov1

rjo + 2y2
rjov2

rjo + y3
rjov3

rjo) ≥ 4,

m (x1
ijou1

ijo + 2x2
ijou2

ijo + x3
ijou3

ijo) + (θ1
jo + 2θ2

jo + θ3
jo) ≤ 0 ∀ i,

s (y1
rjov1

rjo + 2y2
rjov2

rjo + y3
rjov3

rjo) ≥ 4, ∀ r,

u1
ijo ≤ u2

ijo ≤ u3
ijo ∀i, v1

rjo ≤ v2
rjo ≤ v3

rjo ∀r, θ1
jo ≤ θ2

jo ≤ θ3
jo .

SBME of DMUjo is written as SBMEjo and is given by SBMEjo = (EDI
jo

)−1.

5 Application to the Health Sector

In this section, we present an application to illustrate the proposed fuzzy dual
SBM model. In this paper, DMUs are CHCs in Meerut district of Uttar Pradesh,
India. The performance of each CHC is determined based on two fuzzy inputs
and two fuzzy outputs. The input-output data in fuzzy form are given in Table 1.
For DMUj , j = 1, 2, 3, ..., 12

1st Input (x1j) = Sum of number of doctors and number of staff nurses
2nd Input (x2j) = Number of pharmacists
1st Output (y1j) = Number of inpatients
2nd Output (y2j) = Number of outpatients
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The fuzzy efficiencies of all CHCs are determined from Model 6, which are
given in Table 2. The fuzzy efficiency scores lie between zero and 1. The fuzzy
weights corresponding to fuzzy inputs and fuzzy outputs of the concerned CHCs
are also determined by using Model 6, which are given in Tables 2 and 3. The

Table 1. Fuzzy input and fuzzy output data Source: Chief Medical Office, Head Office,
Meerut, India.

DMUs Fuzzy input Fuzzy output

x1j x2j y1j y2j

H1 (10,13,15) (3,5,8) (3640,3650,3655) (134130,134137,134145)

H2 (10,12,14) (3,5,7) (4150,4160,4170) (116055,116062,116068)

H3 (9,12,14) (2,4,5) (4360,4370,4380) (94060,94066,94072)

H4 (6,8,11) (1,1,3) (485,492,500) (24320,24329,24335)

H5 (8,10,13) (3,4,6) (2460,2464,2470) (99740,99748,99760)

H6 (10,11,12) (2,3,4) (1360,1368,1375) (49395,49401,49410)

H7 (9,10,12) (1,2,6) (1055,1062,1070) (37765,37772,37780)

H8 (9,11,15) (1,4,7) (1295,1302,1310) (82835,82841,82850)

H9 (10,12,15) (2,5,7) (1660,1671,1680) (100590,100596,100605)

H10 (10,16,20) (2,4,6) (1010,1018,1025) (64345,64351,64360)

H11 (9,11,14) (3,5,8) (1500,1504,1510) (80050,80056,80061)

H12 (5,8,10) (1,4,6) (1960,1965,1972) (58160,58167,58175)

Table 2. Efficiencies and fuzzy Input weights of 12 hospitals

DMUs Fuzzy input weights

SBMEjo θ̃jo ũ1j ũ2j

H1 1 (0,0,4) (0.39 × 10−4, 0.39 ×
10−4, 0.39 × 10−4)

(−0.38,−0.38,0.36)

H2 1 (1,1,1) (−0.067,−0.067,0.021) (−0.1,−0.1,−0.1)

H3 1 (1,1,1) (−0.042,−0.042,−0.042) (−0.13,−0.13,−0.13)

H4 1 (1,1,1) (−0.06,−0.06,−0.06) (−0.25,−0.25,−0.25)

H5 1 (1,1,1) (−0.88,−0.88,−0.88) (−0.4,−0.4,0.38)

H6 1 (1,1,1) (−0.064,−0.064,−0.064) (−0.22,−0.22,−0.22)

H7 1 (1,1,1) (−0.49,−0.49,−0.49) (−0.36,−0.36,−0.31)

H8 1 (1,1,1) (−0.043,−0.043,−0.043) (−0.48,−0.48,0.031)

H9 1 (1,1,1) (−0.041,−0.041,−0.041) (−0.1,−0.1,−0.1)

H10 1 (1,1,1) (−0.85,0.12,0.12) (−0.14,−0.14,−0.14)

H11 0.66 (1.52,1.52,1.52) (−0.1,−0.1,−0.048) (−0.32,−0.32,0.13)

H12 1 (1,1,1) (−0.27,−0.27,0.36) (−0.71,−0.71,0.73)
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Table 3. Fuzzy output weights of 12 hospitals

DMUs Fuzzy output weights

ṽ1j ṽ2j

H1 (0.14×10−3, 0.14×10−3, 0.14×10−3) (0.37×10−5, 0.37×10−5, 0.37×10−5)

H2 (0.12×10−3, 0.12×10−3, 0.12×10−3) (0.43×10−5, 0.43×10−5, 0.43×10−5)

H3 (0.11×10−3, 0.11×10−3, 0.11×10−3) (0.53×10−5, 0.53×10−5, 0.53×10−5)

H4 (−0.217, 0.073, 0.073) (−0.091, 0.029, 0.09)

H5 (0.2 × 10−3, 0.2 × 10−3, 0.2 × 10−3) (−0.05, −0.05, 0.14)

H6 (0.36×10−3, 0.36×10−3, 0.36×10−3) (−0.15, −0.15, 0.46)

H7 (−0.07, −0.07, 0.21) (−0.017, −0.017, 0.53)

H8 (−0.13, −0.02, 0.16) (0.6 × 10−5, 0.6 × 10−5, 0.6 × 10−5)

H9 (0.052, 0.052, 0.052) (0.49×10−5, 0.49×10−5, 0.49×10−5)

H10 (−0.22, 0.073, 0.073) (0.87×10−5, 0.87×10−5, 0.87×10−5)

H11 (−0.1, −0.1, 0.31) (0.85×10−5, 0.85×10−5, 0.85×10−5)

H12 (0.00025, 0.00025, 0.00025) (−0.018, −0.018, .056)

fuzzy efficiencies and weights for every CHC are obtained by executing a MAT-
LAB program of Model 6. In this application H11 is SBM inefficient hospital,
other hospitals are SBM efficient.

6 Conclusion

In this piece of work, we proposed a fuzzy dual SBM model (Model 4) with fuzzy
weights in fuzzy DEA. Model 4 is then reduced to crisp LP SBM model (Model
6) by using expected values of FNs. Model 6 determines the fuzzy efficiencies and
components of fuzzy weights corresponding to fuzzy inputs and fuzzy outputs as
TFNs. Model 6 also determines the SBM efficient and SBM inefficient DMUs.
These fuzzy efficiencies and fuzzy weights provided extra information to the
decision maker, which is not provided by crisp dual SBM model.
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Abstract. As we all know that, in this era everyone wants to buy a car that may
be mid price ranged or may be a high price range car. People want that in their
car should carry feature according to them. It has been seen in the past decades
that the sale of automobile in India is increasing rapidly and a number of car
manufactures have joined Indian car market. Hence there is a tuff competition
between every car manufactures. In this case all car manufactures are trying to
attract customers by providing good aesthetic and advance features in the cars.
These aesthetic and features have a high impact on consumers mind. Selecting a
car from Indian car market is a very large decision making problems or cus-
tomers. In this work, the selection of a car from Indian car market has been
treated as Multi Criteria Decision Making (MCDM) problem and a number of
criterions have been selected for the study. A Fuzzy AHP (Analytic Hierarchy
Process) based approach has been used for selecting a sedan car on the bases of
various car criterion such as: Performance, Economy, Comfort etc. In the initial
stage, some important criterion has been discussed and their weight has been
calculated by FAHP. On the basis of criteria weights, the ranking of the cars has
been done. The main objective behind this paper is to facilitate the consumers to
have a clear idea about their preferences in purchasing a car.

Keywords: Fuzzy set ⋅ AHP (Analytic Hierarchy Process) ⋅ Car
purchasing ⋅ MCDM

1 Introduction

In day to day life, generally people have to make different types of decision. Daily life
is full of learning which can help people to know the diagnostic moments. Making
sudden decision might be risky and holding the work can moved the opportunities. For
making a right decision, people need a systematic approach for decision making.
Selecting a car from Indian car market is also a decision making problem. These types
of problem may carry a large number of criteria.

The Indian automobile market has become more and more competitive. The car
manufacturers are working on further advancement and new technologies so that there
sale may increases and hence as a result they can earn more profit. Buying a suitable car
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is difficult decision making problem. Generally peoples compare a large number of
attributes/features of cars such as: fuel, economy, safety, comfort etc. for decision
making. Preference of each consumer may be different from one another while pur-
chasing a car and hence purchasing a car is decision making problem that shows the
preference of consumer. In the presented work, problem of selecting a sedan car from
Indian car market has been considered as a multi criteria decision making problem and
an approach based on Fuzzy-AHP has been used for solving the same. Analytical
hierarchy process (AHP) is an approach for solving complex multi criteria decision
making problems. Fuzzy AHP is the extensions of AHP method when the fuzziness of
the decision maker is taken into account.

India is a growing influence of the smart technologies in the automobile sector.
More research work has been done in this field. As we know that automobile has a
greater impact on our day to day life. Now a day’s every middle class person wants to
purchase a sedan car because the purchasing power of these peoples is increasing day
by day. A number of researchers have worked on same type of decision making
problems and some of these have been discussed here such as:

Byun (2001) proposed AHP method to select the best product on the basis of
various categories such as cost, safety, fuel economy and appearance etc.

Gungor and Isler (2005) have used AHP method for the selection of the best car
among eight alternatives. Their criteria were price, acceleration, fuel consumption,
safety, comfort, maintenance cost for selection of best automobile.

Terz et al. (2006) have proposed a decision support model by using the AHP
methods which helps in making a right decision in automobile purchasing problem. In
their study they considered performance, economy, after sale services and safety of the
automobile in their model.

Zeshui (2007) has proposed the method for comparing two intuitionistic fuzzy
values and develops various aggregation operator like intuitionistic fuzzy weighted
averaging operator, intuitionistic fuzzy ordered weighted averaging operator and etc.
and gives different properties of the operator.

Sahin and Akyer (2011) have used AHP methods and by this they selected 4*4
search and rescue vehicle. The selection criteria were fuel consumption, price, accel-
eration, load capacity etc.

Raut et al. (2011) have used the multi criteria decision making (MCDM) approach
by using AHP method and quality function deployment fuzzy technique for preference.
Their results have certified the technology, economical aspects, safety, comforts etc.

Avikal et al. (2013a) have proposed a new heuristic to assign parts to the disas-
sembly work stations under precedence constraints. To prioritise the tasks assignment
they have used Analytic hierarchy process (AHP) and PROMETHEE methods. The
methodology has been explained with a case example.

Garg (2016) has proposed two methods first is a new generalized score function
which is interval-valued intuitionistic fuzzy sets (IVIFSs) environment based on
weighted average and second is IVIFSs method for solving MCDM problems.

Dong et al. (2015) have worked on multi criteria group decision making problem in
which decision making in done on alternative criteria & are shown by triangular fuzzy
number and make it to the form of incomplete reciprocal comparisons matrices.
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It has been seen that a number of people have worked on the same types of problem
but none of them is related to purchasing a sedan car from Indian car market. Now
Fuzzy-AHP has been applied for solving the addressed problem.

2 Proposed Methodology

The problem on this work has been considered as a Multi Criteria Decision Making
problem. It involves various stages:

SELECTION OF SEDAN CAR

Performance Economy Comfort A er sale Services Safety

CAR 6CAR 1 CAR 5CAR 2 CAR 3 CAR 4

Fuzzy AHP method:
In this work, the problem has been taken as a multi criteria decision making

(MCDM) problem, and fuzzy AHP has been used to evaluate the weight of each
criterion. Fuzzy AHP is the extension of conventional AHP by implementing Fuzzy set
theory. Fuzzy set theory allows the membership operations to work over the real
number [0, 1]. Fuzzy may be defined as the membership operations and all the data
about a fuzzy is describe by its membership operation. In the Fuzzy AHP triangular
Fuzzy numbers have been utilized to improve the scaling scheme. The fuzzy set theory
described by Avikal et al. (2013b) and Avikal and Jain (2014) has been taken as the
references for the computation.

3 Computational Example

A problem of Indian car market has been taken for this study. Total 6 Sedan cars have
been selected for comparison. The name of all these are:

1. Car 1 = TATA Indigo
2. Car 2 = Ford Figo Aspire
3. Car 3 = Maruti Swift Desire
4. Car 4 = Honda Amaze
5. Car 5 = Hyundai Xcent
6. Car 6 = Toyota Etios

An Approach for Purchasing a Sedan Car from Indian Car Market 241



3.1 Criteria Definition

Different five criteria (C1–C5) have been selected for this study. These criteria have
been given following:

Performance (C1): Is a factor that influences car performance such as power, pickup
and mileage.

Economy (C2): Basically defines initial cost of the vehicle.

Comfort/Advancement (C3): this criteria deal with the comfort available in the car
and new advancement in cars.

After sale services (C4): It means how much services are available outside in market
means how many dealers are there in market of that prospective brand.

Safety (C5): It defines that how safe is our car while we are driving it.

In Table 1, data of different cars has been given. The pair wise comparison matrix
of criterion by using triangular Fuzzy member function has been shown in Table 2. The
weights of all criterions have been calculated by the data given in Table 2 and pre-
sented in Table 3. The consistency ration of the comparison matrix is less than .1 and it
means that the data is consistent. The data available in Table 2 has been normalized
and presented in Table 4. Final ranking of the alternative has been done by multiplying
the weight of each criterion to the respective normalized data available in Table 4. In
the ranking of the alternatives, criteria 2 has negative impact because it is cost and it
should be minimum and all other criterion have positive impact in final score. The final
ranking of alternatives has been shown in Table 5.

Table 1. Data of different car selected for study (www.cardekho.com)

C1 (In Lakh) C2 (kmpl) C3 (out of 5) C4 (out of 5) C5 (out of 5)

Tata Indigo 4.9 15.60 3 4 4
Ford Figo Aspire 5.2 18.20 3.5 4 3.5
Maruti Swift Desire 6.4 16.80 3.5 4.5 4
Honda Amaze 5.5 17.80 4 4.5 4
Hyundai Xcent 5.4 19.10 4 3.5 3.5
Toyota Etios 6.5 16.78 3 4 3

Table 2. Pair wise comparison matrix by fuzzy AHP

C1 C2 C3 C4 C5

C1 1 *3 *3 *5 *3
C2 *3−1 1 *1 *3 *1
C3 *3−1 *1−1 1 *1 *3−1

C4 *5−1 *3−1 *1−1 1 *3−1

C5 *3−1 *1−1 *3 *3 1
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From Table 5 shows that Maruti Swift desire got the first position in car ranking,
Honda amaze got second, Toyota Etios got third, Tata Indigo got forth, Hyundai Xcent
got fifth and finally Ford Figo aspire got last position in car ranking.

4 Conclusion

In Indian car Market, it is very difficult to select a sedan car for middle class family. It
is a multi criteria decision making problem that depends on a number of criteria. These
criteria may have important impact on the decision making. In this case, it is necessary
to evaluate the importance of these criteria. In the presented work, a Fuzzy AHP based
approach has been proposed for evaluating the weights of all criteria selected for
decision making. The ranking of sedan cars has been cone with the help of criterion’s
weight those have been calculated by Fuzzy-AHP. From the final ranking, it has seen
that Maruti Swift desire got first rank. It got first rank as it got higher values for the
entire criterion such as: Performance, economy, comfort after sale service and safety

Table 3. Consistency index & Consistency ratio

Criteria Criteria weight Consistency index & Consistency ratio

C1 0.330
C2 0.191 CI = 0.1085
C3 0.113 CR = 0.097
C4 0.073
C5 0.198

Table 4. Normalizing of data

C1 C2 C3 C4 C5

C1 0.252 0.155 0.084 0.065 0.198
C2 0.267 0.181 0.099 0.065 0.173
C3 0.330 0.167 0.099 0.073 0.198
C4 0.278 0.177 0.113 0.073 0.198
C5 0.278 0.191 0.113 0.057 0.173

Table 5. Ranking of car

Car name Final weight Ranking

Tata Indigo ECS 0.444 4
Ford Figo Aspire 1.2 Ti VCT Ambient 0.423 6
Maruti Swift Desire LXI 0.533 1
Honda Amaze EI VTEC 0.485 2
Hyundai Xcent 1.2 Kappa Base 0.430 5
Toyota Etios J 0.460 3
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measures. All other cars got their own rank according to their final values. The
application of proposed work can help the middle class peoples to purchase a sedan car
from Indian car market. Some other ranking approach such as PROMOTHEE, TOPSIS
and Fuzzy TOPSIS may be used for final raking in the future work to improve the
results.

So application of proposed work has made ease to select a car and purchase it from
Indian car market. In the future work, ranking techniques such as: PROMOTHEE,
TOPSIS, ELECTRE may also be used improve the results.
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Abstract. Fuzzy subtractive clustering (FSC) has been applied as data mining
tool for making selection of a small set of polymers from a large set of
prospective polymers having potential for being chemical interfaces for elec-
tronic nose sensor array. The basic idea behind applying FSC selection is to
cluster the prospective polymers according to some measure of similarity among
them in relation to their interaction with the chemicals targeted for sensing. The
polymers defining the cluster centers are taken to make the selection set. The
basis for defining similarity among different polymers is the partition coefficients
associated with sorption of chemical analytes from vapor phase to polymer
phase in thermodynamic equilibrium. The goal for selection is to identify a
minimal set of polymers that provide the most diversely interaction possibilities
with the target vapors. The proposed selection method has been validated by
simulating responses of a polymer-coated surface acoustic wave (SAW) sensor
array for detection of freshness and spoilage of milk and fish food products. The
end use of the proposed selection method is suggested for developing low-cost
high-performance sensor array based electronic noses for commercial and
consumer applications.

Keywords: Fuzzy subtractive clustering ⋅ Data mining for sensor selection ⋅
Electronic nose ⋅ Intelligent system for food monitoring

1 Introduction

Electronic nose (E-nose) is an odor sniffing instrument that mimics mammalian smell
sensing organ [1]. The development of E-nose technology is important for a variety of
applications like detection of explosives and chemical weapon agents for homeland
security, industrial processes monitoring, air pollutants monitoring, detection of food
freshness and spoilage conditions for health safety, disease diagnostics through
detection of volatile biomarkers in body odor, detection of contrabands for monitoring
illicit activities etc. [1–4]. The E-noses are field-deployable practically real-time
instruments having odor recognition (chemical fingerprinting) capabilities in contrast to
the laboratory based analytical instruments for chemical analysis.
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An E-nose instrument consists of three major parts – an array of chemical vapor
sensors having broad selectivities for target chemical analytes analogous to the
olfactory receptor neurons in human nose, signal read out and processing unit, and
pattern recognition system. These parts are respectively analogous to the olfactory
epithelium, the olfactory bulb and the olfactory cortex in brain in human nose [1, 4].
The odor recognition capability becomes more accurate and robust if the sensor array
outputs carry diverse discriminatory information about chemical analytes. This capa-
bility in polymer functionalized sensor arrays comes from the set of polymer films
coated on the sensing devices providing broad selectivities. Therefore, the selection of
an optimal set of polymers as chemical interface materials (hence, chemical sensors)
becomes crucial for developing reliable E-noses for specific applications. The sensor
selection also impacts the efficiency of pattern recognition system [4].

Commonly, a large number of sensors using various prospective polymer interfaces
are fabricated, and best among them are selected after rigorously evaluating their
performance in some predesigned odor recognition tasks [1, 4]. This approach involves
large development time and cost. A method that can throw up a short list of polymers
from a large list of all prospective polymers would be of great help in reducing the
development time and cost. This is where data mining tools could be helpful. The
authors’ group in some recent studies took up this issue and investigated whether some
method could be developed for making polymer selection based on the information
available about their chemical interaction abilities with target vapors. The group
experimented with various data mining strategies based on some statistical and fuzzy
clustering techniques by using the vapor-polymer partition coefficients data [4–10]. In
these studies the polymer-coated surface acoustic wave (SAW) chemical sensors arrays
were employed for defining E-nose platform. The present study is in continuation of the
same approach where a ‘not analyzed before’ data mining method based on fuzzy
subtractive clustering (FSC) is analyzed, and its performance is evaluated in compar-
ison to earlier findings.

2 Earlier Work

In [4–10] a series of efforts were made for defining a data mining strategy for optimal
selection of a small set of polymers from a large set of prospective polymers based on
partition coefficient data. The partition coefficient (K) quantifies thermodynamic par-
titioning of a chemical analyte from vapor phase to polymer phase in equilibrium. It is
defined as the ratio of analyte concentration in polymer phase (CP) to that in vapor
phase (CV), that is, K = CP/CV. The set of partition coefficients for various
vapor-polymer pairs arranged in the form of a data matrix with vapors in rows and
polymers in columns is called K-matrix. Transpose of it called KT-matrix (polymers in
rows and vapors in columns) can then be treated as multivariate data with polymers
denoting the data vectors. A data vector (polymer) in KT-matrix has vapors as variables
with respective K values being components of the data vector. A data vector thus
quantitatively represents a polymer’s interaction strength with different vapors where
the polymer is a measurand and the partition coefficients its measurements. The basic
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idea for doing data mining here is to cluster polymers according to their similarity for
vapors and select maximally dissimilar set of polymers as sensor material.

In [5, 9] the principal component analysis (PCA) and hierarchical clustering
(HC) were used for making selection based on load plots and Euclidian distance, and
the validation was done by analyzing discrimination of vapor analytes in body odor. In
[6] a similar analysis was done for detection of explosive vapors under different
ambient conditions. In [7] a heuristic method was combined with PCA and fuzzy c-
means clustering (FCM) for discrimination between explosive vapors, chemical
weapon agents and drugs of abuse volatiles in presence of numerous interferents
represent different application scenarios. Subsequently in [8] a novel procedure for
using FCM was developed for detection of freshness and spoilage markers in milk and
fish headspace odor. In this method c clusters of polymers were searched repeatedly by
incrementing c in each successive search by 1 (c+ 1←c) with start at c= 2. This was
continued until a common set of polymers start reappearing in successive searches.
This common set was taken to be the final set of selection. In all these studies the
methods were validated by simulating SAW sensor array responses for headspace
vapors and interferents, and by doing neural network classification. The FCM based
selection appeared to be the best of all the procedures analyzed so far.

It appears natural then to test the efficacy of fuzzy subtractive clustering
(FSC) method for this purpose. In this study we have done that for a comparative
performance analysis with FCM. To avoid repeating FCM here we used the same data
set as reported in [8] for milk and fish (clarified in Sect. 4). After a brief review of FSC
below we present the results in Sect. 5.

3 Fuzzy Subtractive Clustering

This clustering algorithm was proposed by Chui [11] to overcome the strong depen-
dence of the quality of solutions (cluster centers) on initial values in FCM algorithm.
This method assumes that all data points are potential cluster centers, and assigns a
quantitative measure for their potentials. The data point having maximum potential is
chosen to be the first cluster center. After finding the first cluster center the potential of
each data point is revised in such a manner that the potentials of data points closer to
the selected cluster center are greatly reduced in comparison to those far away from it.
This is done to avoid the selection of a nearby data point to be the next cluster center.
After getting the revised potentials the data point with the maximum potential is chosen
to be the second cluster center. This procedure is repeated until a termination criterion
is reached. Briefly, the algorithm runs as follows.

Assuming there are N data points (total number of polymers) and d vapors (di-
mensionality of data space) the i-th data vector is represented as
Xi = fKi1,Ki2, . . . .,Kidg with Kij being the partition coefficient for j-th vapor in i-th
polymer (i= 1, 2, . . . ., N, j= 1, 2, . . . ., d). To every data point Xi a potential Pi is
assigned according to
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Pi = ∑
N

k= 1
expð− α Xi −Xkk k2Þ ð1Þ

where α= 4 r̸2a with ra being a positive constant. The latter denotes a radius measure of
the soft boundary of a spherical cluster with the data point at its center. The data point
with the highest potential P*

1

� �
is selected to be the first cluster center X*

1

� �
. Next, the

potential reduction of each data point is done according to

Pi ⇐Pi −P*
1 expð− β Xi −X*

1

�� ��2Þ, i= 1, 2, . . . ., N ð2Þ

where β= 4 r̸2b with rb > ra is a positive constant that denotes the radius of neighbor-
hood that will have measurable reduction in the potential. The data point with the
highest potential is then chosen to be the second cluster center. The process is con-
tinued by monitoring the following selection or rejection criteria.

At k-th step (that is, after making k-th cluster center selection):
if P*

k > ε̄P*
1 accept X*

k to be the cluster center and continue;
else if P*

k < εP*
1 reject X*

k and end the clustering process;
else let dmin = shortest of the distance between X*

k and previously found cluster
centers;

if dmin
ra

+ P*
k

P*
1
≥ 1 accept X*

k as cluster center and continue;

else reject X*
k and set the potential of X*

k to be 0;
select the data point with the next highest potential as the new X*

k and retest.
In the above ε and ε are two fractional threshold parameters that decide whether to

reject or accept the cluster center. The polymer selection corresponds to the set of
polymers associated with the final set of selected cluster centers.

4 Polymer Selection by FSC

As mentioned earlier, we consider here the same set of polymers, target vapors and
K-matrices as reported in [8]. It pertains to the detection of freshness and spoilage of
milk and fish products by sniffing their headspaces. A common list of 26 prospective
polymers is considered for both. The volatile organics in the milk headspace is con-
sisted of 29 chemical species, and in the fish headspace of 17 species. These include
freshness and spoilage species as well as some interferents (for details see [8]). The KT-
matrices are already calculated in [8], and are given as Table 4A & 4B for the milk and
Table 5 for the fish products. The FSC algorithm was implemented by using the
MatLab function ‘subclust’ with parameters: ra = 0.6, rb = 1.25ra, ε= 0.15, ε̄= 0.5 for
milk data; and ra = 0.55, rb = 1.25ra, ε= 0.204, ε̄= 0.5 for fish data. These parameters
were empirically optimized for producing the best results. The method selected a set of
six polymers. The FCM also selects a set of six polymers (taken from Table 8 in [8]).
Both the results are shown in Table 1. It can be seen that except one both FCM and
FSC select a different set of polymers.
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5 Validation

The SAW sensor array responses by FSC selection were calculated by using the same
SAW sensor model, VOCs concentration levels and noise model as used in [8] for
FCM selection. The sensor outputs in the form frequency shifts of the SAW sensor
oscillators due to vapor sorption and corrupted by additive frequency noise with uni-
form distribution over [−30, +30] Hz were generated for 100 samples of each vapor.
The concentrations were varied over ppt to ppm range similar to that Tables 1 and 2 of
[8]. Data preprocessing by normalization with respect to vapor concentration and
logarithmic scaling and PCA analyses were carried out as before [8], and the separa-
bility of vapor classes were examined in principal component (PC) space. Figure 1
shows the results for the milk VOCs and Fig. 2 shows similar results for the fish VOCs.
From these results it is clear that FSC selection also yields qualitatively similar set of
discriminating polymers as FCM in [8].

The visual examination of the PC score plots in Figs. 1 and 2 provides only a
qualitative feel of separability between freshness versus spoilage markers. For making
a comparison between FSC and FCM we need some quantitative performance measure.

Table 1. Set of polymers selected by FCM and FSC

Polymers selected by FCM

Milk OV25 PEI PMCPS SXPYR P4 V PLF
Fish OV202 PEI SXFA SXPYR P4 V PBF
Polymers selected by FSC
Milk PMPS PVA FPOL SXPHB PMHS PLF
Fish PMPS PEM P4 V SXPHB PMHS PLF

3 Metnolhyl Buta
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Fig. 1. FSC selection based PC1-PC2 score plots for milk headspace VOCs. The symbols on the
right hand side are arranged according to spoilage and freshness VOCs
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In [12] a quantity measure called class-separability (denoted by J) has been defined in
terms of within-class and between-class scatter matrices (denoted by Sw and Sb
respectively) of principal components. The scatter matrices are basically local and
global data covariances weighted by a priori probabilities of the classes. These are
defined as

Sw = ∑
Ω

i= 1
Piðx− μiÞðx− μiÞT ð3Þ

Sb = ∑
Ω

i= 1
Piðμi − μ0Þðμi − μ0ÞT ð4Þ

where x denotes the data matrix in the principal component space, Pi is a priori
probability for i-th class, μi is the mean vector for i-th class and μ0 is the global mean
vector. Note that Pi ≅ ni M̸ where ni denotes the number of data points in the i-th class
out of total M data points, and the summation runs over Ω vapor classes.

The local (vapor class) and global means are calculated as

μi =
1
ni

∑
ni

i= 1
xi ð5Þ

μ0 = ∑
Ω

i= 1
Piμi ð6Þ

The class-separability is defined as the ratio
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Fig. 2. FSC selection based PC1-PC2 score plots for fish headspace VOCs. The symbols on the
right hand side are arranged according to spoilage and freshness VOCs. Certain VOCs whose
concentrations fluctuate with time after fish death are indicated separately in spoilage block

250 T. Sonamani Singh et al.



J =
tracefSw + Sbg
tracefSwg ð7Þ

These definitions suggest that trace Sbf g, trace Swf g and J can be taken to indicate
quantitatively different aspects vapor discrimination by different polymer selections.
A small trace Swf g value would mean high intra-class compactness, a large trace Sbf g
would mean large inter-class separation, and a high J value would indicate overall
performance by a sensor array.

Table 2 below presents the values of these quantities obtained on the basis of both
FSC and FCM selections. The FCM result is based on PCA data in [8]. These results
are based on treating both the milk and fish data as a two-class problem for discrim-
ination between the fresh and the spoiled products. These results show that FSC
selection yields better values for all performance metrics in comparison to FCM −
lower trace {Sw} indicates more intra-cluster compactness, higher trace {Sb} indicates
more inter-class separation, higher J values means better overall performance.

6 Discussion

Chemical discrimination in a sensor array based E-nose system comes from the broad
interaction possibilities between the sensors coatings and the chemical analytes (both
target as well as interferents). The common approach for selecting an optical set of
sensors is fabrication of sensor and their evaluation and categorization based on some
specific identification task. The whole procedure involves massive experimentation and
analysis exercises, hence cost and time. The present data mining approach may reduce
this development burden by short listing a few among many prospective polymers. The
basis for selection is to segregate all prospective polymers into smaller subsets having
similar analyte loading capabilities, and then select the best from each subset. Fuzzy
clustering accomplishes this task by picking polymers at cluster centers in each cluster
(subset). The vapor loading is determined partitioning of analytes from vapor phase
into polymer phase. The polymers being similar means if subjected to interact with a
set of vapor analytes there will be similar net vapor loading in each. The selection of
polymer set based on this mining approach of partition coefficients therefore appears
attractive. In continuation of earlier investigations we applied this approach by using

Table 2. Comparison of the sensor array polymer selections by the FSC and FCM methods for
sensing the milk and fish volatiles in their headspaces

Trace {Sw} (× 104) Trace {Sb} (× 104) J

Milk Freshness/Spoilage (2-class)
FCM 8.5367 4.5129 1.5286
FSC 5.1727 6.1806 2.1948
Fish Freshness/Spoilage (2-class)
FCM 1.8093 1.7276 1.9549
FSC 1.3682 2.4703 2.8055
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two commonly used fuzzy clustering algorithms (FCM and FSC). The application of
FCM has already been analyzed in [8]. In this work we applied FSC for the same
problem as in [8], namely, the polymer selection for discrimination between freshness
and spoilage of milk and fish products. By generating SAW sensor array based syn-
thetic data and analyzing it as two-class (fresh versus spoiled) problem we found here
that FSC performs better than FCM.

Evaluation of spoilage state of a food product however needs quantitative esti-
mation of the spoilage markers. Usually, the vapor composition in headspace of food
products is quite complex and uncertain as it arises from several factors of chemical,
biological and environmental origin. Therefore, the inferences of this study alone can
not be decisive on the FCM versus FSC issue. We noted that certain freshness and
spoilage markers (e.g. indole as freshness marker for milk and trimethyl amine as
spoilage marker for fish) are better separated with FCM selection. Therefore, further
analyses are required for deciding which one is better in what respect. Possibly, both
may be used in combination for doing complimentary tasks for some specific
application.

7 Conclusion

In this study we analyzed the potentiality of using fuzzy subtractive clustering (FSC) as
a data mining tool for making the selection of chemically selective polymers for the
vapor sensor arrays in electronic nose systems. The data for mining consisted of the
thermodynamic partition coefficients for different chemical analytes specific to a par-
ticular application from vapor phase into all prospective polymers. The latter were
listed on the basis of available commercial and published research information. The
partition coefficients were calculated on the basis of the linear solvation energy relation
(LSER) by using experimentally determined solubility parameters. The FSC was
applied by treating polymers as measurand and vapors as probes. The polymers are
clustered according to how similar they are in regard to their affinities for various
chemicals in the vapor phase. The polymers defining the cluster centres were selected
for making the sensor array.

The selection procedure was validated for monitoring the freshness and spoilage of
the milk and the fish food products through their headspace sniffing. The virtual sensor
arrays were defined based on the FSC selected polymers by using polymer-coated
SAW oscillators as chemical sensors. The analysis of the sensor array responses by
principal component analysis (PCA) demonstrated that the proposed method is very
effective in discriminating the spoilage volatiles against the freshness indicators. The
comparison of class separability in principal component space with the previously
reported fuzzy c-means (FCM) method on the same data set indicates that the FSC
yields better selection than FCM at least for the applications analyzed here.
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Abstract. Clustering is an important unsupervised learning algorithm that
groups records according to their similarity. However, since uncertainty has
become an inherent of real world datasets, crisp clustering leads to inefficiency.
Hence, introduction of uncertainty based models like the fuzzy set and the intu-
itionistic fuzzy set is necessary to compensate for the ambiguity in data. Huang, in
his fuzzy k-modes algorithm, introduced the fuzzy component in clustering cat-
egorical data by modifying the existing k-means algorithm. This correspondence
describes an intuitionistic fuzzy k-modes algorithm for clustering categorical data
and establishes it to be more efficient than the fuzzy k-modes algorithm. Metrics
like accuracy, DB index and Dunn index are used to compare the efficiency of the
two algorithms. The experimental analysis section shows that the proposed
algorithm is more efficient than the existing one. Several graphical and tabular
representations have been provided for easy comparison of the results.

Keywords: k-modes ⋅ Fuzzy ⋅ Intuitionistic ⋅ Clustering ⋅ Categorical data

1 Introduction

In modern world, the data gathered and information gained from it affects the orga-
nization’s growth in a major way. One very common methodology for interpreting data
is by classifying similar types of data into groups or clusters and separating them from
the rest. This process of grouping similar data is known as clustering. The early
clustering algorithms were crisp in nature, i.e., a point either belongs to a cluster or it
doesn’t and were mostly based on numerical data. With advancement in technology
and information sciences, we started to face categorical data. Categorical values are
discrete and unordered, unlike numeric data. Therefore, the clustering algorithms
designed for numeric data cannot be used to cluster categorical data that exist in many
real world problems. The k-modes algorithm was proposed by Huang [3] in which he
modified the standard k-means process for clustering categorical data by replacing the
Euclidean distance function with a simple matching dissimilarity measure and using
modes to represent cluster centers, which are updated after every iteration.

The traditional clustering algorithms mentioned above cannot be applied to datasets
with inherent uncertainty. So, many uncertainty based models like fuzzy set, by Zadeh
in [11], rough set by Pawlak in [4] and intuitionistic fuzzy set by Atanassov in [5] were
introduced. While fuzzy sets depend upon graded membership values, intuitionistic
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fuzzy sets depend upon membership and non-membership values leading to hesitation
values associated with every element in the domain. Several k-means algorithm are
found in literature [9]. Also, a fuzzy k-modes algorithm was proposed by Huang [3] by
extending the k-modes algorithm and adding the fuzzy logic to it. In this paper, we
have extended this algorithm to propose an intuitionistic fuzzy k-modes algorithm.
There are many ways in which the complement can be defined in an intuitionistic fuzzy
set context, like the Sugeno’s complement [8, 10] and the Yager’s complement [6, 7].
In this article, we follow Yager’s approach.

The outline of this paper is as follows: In Sect. 2, we provide the definitions and
notations used in the paper. In Sect. 3, we explicate the Intuitionistic Fuzzy k-modes
algorithm. In Sect. 4, examples are provided to illustrate the effectiveness of Intu-
itionistic Fuzzy k-modes algorithm over the results obtained by using fuzzy k-modes
algorithm. Finally a concluding remark is given in Sect. 5.

2 Definitions and Notations

In this section we provide the definitions and notation used by us in the paper. Let the
set of objects to be clustered be stored in a table T and be defined by a set of m
attributes A1,A2, . . . ,Am. Each attribute Aj of the table T describes a domain of values
denoted by DOMðAjÞ. A domain DOMðAjÞ is defined as categorical if it is finite and
unordered, e.g., for any a, b∈DOMðAjÞ, either a= b or a≠ b.

2.1 Fuzzy k-modes

Fuzzy k-modes is an extension of k-modes which itself is an extension of the k-means
algorithm. The main algorithm iterates around minimizing the cost function

FðW ,ZÞ= ∑
k

l= 1
∑
n

i= 1
wα
lidcðZl,XiÞ ð1Þ

subject to,

0≤wli ≤ 1, 1≤ l≤ k, 1≤ i≤ n ð2Þ

∑
k

l= i
wli = 1, 1≤ i≤ n ð3Þ

and

0≤ ∑
n

i= 1
wli ≤ n, 1≤ l≤ k ð4Þ
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where kð≤ nÞ is the known number of clusters, X= fX1,X2, . . .Xng is the set of n
objects described by m attributes,W = ½wli� is a k × n real valued Fuzzy partition matrix,
α∈ ½1,∞Þ is a weighing exponent, Z is a set of cluster centers where each Zi ∈ Z is
represented as ½zl, 1, zl, 2, . . . , zl,m� for 1≤ l≤ k and dcðZl,XiÞð≥ 0Þ is a simple dissimi-
larity measure defined as follows:

dcðX,YÞ= ∑
m

j= 1
δðxj, yjÞ ð5Þ

where

δðxj, yjÞ 0, xj = yj
1, xj ≠ yj

�
ð6Þ

2.2 Introduction to IFS

Fuzzy sets only generate the membership function μðxÞ for x ϵ X, with non- membership
value v(x) = l − μðxÞ. Whereas the Intuitionistic Fuzzy Set (IFS) proposed by Ata-
nassov [5], takes into consideration the lack of knowledge and generates both mem-
bership μðxÞ and non-membership v(x). An Intuitionistic fuzzy set A in X is written as,

A= fx, μðxÞ, vðxÞ x∈Xgj ð7Þ

where μðxÞ → [0,1], v(x) → [0,1] are the membership and non-membership degrees
of the element x in the set A with the condition 0 ≤ μðxÞ + v(x) ≤ 1. At Atanassov
[5] introduced a hesitation degree π(x) which arises due to lack of knowledge in
defining the membership or non-membership of an element x to the set A and is given
by the following equation:

πðxÞ= 1− μðxÞ− vðxÞ; 0≤ πðxÞ≤ 1 ð8Þ

The value of v(x) can be calculated from Yager’s Intuitionistic fuzzy complement,
as:

vðxÞ= ð1− μðxÞθÞ1 θ̸ ð9Þ

Where θ > 0 is the Yager’s coefficient.

2.3 Metrics

In this section we will discuss the metrics that we will use to compare our algorithm’s
experimental results with those of the previously existing algorithms.
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Accuracy. A clustering result can be measured by the clustering accuracy r defined as:

r=
∑
k

l= 1
al

n
ð10Þ

where, al is the number of instances occurring in both cluster l and its corresponding
class, n is the number of instances in the dataset and k is the number of clusters.

Davies-Bouldin Index. The Davies-Bouldin criterion [12] measures the quality of the
clusters generated. It is based on a ratio of intra-cluster and inter-cluster distances. The
Davies-Bouldin index is defined as:

DB=
1
k
∑
k

i= 1
maxj≠ 1fDi, jg ð11Þ

where Di,j is the within-to-between cluster distance ratio for the ith and jth clusters. In
mathematical terms,

Di, j = ðdi + djÞ d̸i.j ð12Þ

dk̄ is the average distance between each point in the kth cluster and the centroid of the
kth cluster. di,j is the distance between centroids of the ith and jth clusters as per Eq. (5).
The optimal clustering solution has the smallest Davies-Bouldin index value.

Dunn Index. The aim of Dunn index (DI) [13] is to identify sets of clusters that are
compact, i.e., ones which have a small variance between members of the cluster, and
well separated from the other clusters. A higher Dunn index indicates better clustering.

The Dunn index is calculated as follows:

DIk =
min1≤ i< j≤ k dcðZi,ZjÞ

max1≤ l≤ k Δl
ð13Þ

where dc (Zi, Zj) is the inter-cluster distance metric calculated as per (5), and Δl is the
average distance of all the points in cluster l from the centroid of the cluster.

3 Algorithm

In this algorithm, we modify the fuzzy k-modes algorithm by using the Yager’s
Intuitionistic Fuzzy Complement (Eq. 9) instead of the standard fuzzy partition matrix.
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3.1 Intuitionistic Fuzzy k-modes Algorithm

1. Choose an initial set of centroids Z(1) ϵ X. DetermineW(1) such that the cost function
F(W,Z(1)) is minimised. Set the value of t as 1.

2. Determine Z(t+1) such that the cost function F(W(t), Z(t+1)) is minimized. If F(W(t),
Z(t+1)) = F(W(t),Z(t)), then go to step (4); else go to step (3).

3. Determine W(t+1) such that the cost function F(W(t+1),Z(t+1)) is minimized. If
F(W(t+1),Z(t+1)) = F(W(t),Z(t+1)), then go to step (4); else increment the value of t
by 1. And go back to step (2).

4. Calculate the cluster membership of each point in X with respect to the centroids
present in the Z(t+1) using the fuzzy partition matrix as mentioned in the Sect. 3.4.

5. Calculate the value of various metrics present in Sect. 2.3.

3.2 Updating Fuzzy Partition Matrix

Assume bZ to be fixed and consider the problem minw FðW , bZÞ subject to the same
conditions as the Eq. (1). For α> 1, the minimizer bW is given by:

bWli =

1, if Xi = bZl
0, if Xi = bZh, h≠ l

1 ̸ ∑
k

h= 1
½dcðbZl ,XiÞ
dcðbZh,XiÞ

�1 ð̸α− 1Þ, if Xi ≠ bZl andXi ≠ bZh, 1≤ h≤ k

8>><
>>:

ð14Þ

This bW is the membership function μðxÞ. We calculate the new W as:

W = 1− vðxÞ ð15Þ

Where v(x) is the calculated as per Eq. (9) using the above calculated Ŵ as: μðxÞ.

3.3 Updating Cluster Centers

Assume Ŵ to be fixed and consider the problem minz FðŴ ,ZÞ subject to the same
conditions as the Eq. (1). Let X be the set of categorical objects described by cate-

gorical A1,A2, . . . ,Am attributes and DOM(Aj) = að1Þj , að2Þj , . . . aðnjÞj

n o
where nj is the

number of different categories of attribute Aj for 1 ≤ j ≤ m. Let the cluster centers Zl
be represented by [zl,1, zl,2, …, zl,m] for 1 ≤ l≤ k. Then the cost function in Eq. (1) is

minimized iff zl, j = aðrÞj ∈ DOMðAjÞ

∑
i, xi, j = aðrÞj

wa
li ≥ ∑

i, xi, j = aðtÞj

wa
li, 1≤ t≤ nj ð16Þ

for 1 ≤ j ≤ m.
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3.4 Calculating Cluster Membership

The record Xi is assigned to the lth cluster if:

wli = max1≤ h≤ kfwhig ð17Þ

If the maximum is not unique, then Xi can be assigned to the first cluster achieving
the maximum.

4 Experimental Results and Analysis

In this section, we provide the results obtained by implementing our algorithm on
Python language and testing it with two datasets from the UCI repository, namely,
Soybean [1] and Zoo [2] dataset. The Soybean dataset consists of 47 records each

Fig. 1. Comparison of Accuracy, DB and Dunn values of different ∝ values for Soybean dataset
(θ = 1.7).
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described by 35 attributes. Out of these 35, we only selected 21 because the rest 14
attributes have same value for all records.

We tested our algorithm alongside the Fuzzy k-modes for different values of
α∈ ½1.1, 3� at fixed intervals. We also tested it for different values of θ. We provide the
results in both tabular and graphical format obtained by averaging over 100 iterations
(Figs. 1, 2, 3, 4).

From the above tables, it is evident that for both Soybean and Zoo dataset, the
intuitionistic fuzzy k-modes provides higher accuracy, lower DB index and higher
Dunn index than the existing fuzzy k-modes algorithm. From experimentation, it is
observed that the same trend is maintained for θ in the range [1.1, 8]. We also observed
that for θ > 8, the behaviour of this algorithm fluctuates and no conclusions can be
drawn. Since the value of θ is flexible, better results can be obtained by using the
intuitionistic fuzzy k-modes algorithm (Tables 1, 2).

Fig. 2. Comparison of Accuracy, DB and Dunn values of different ∝ values for Soybean dataset
(θ = 3.2).
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Fig. 3. Comparison of Accuracy, DB and Dunn values of different ∝ values for Zoo dataset
(θ = 1.7).

Table 1. Soybean Dataset with θ = 1.7 and θ = 3.2.

Metrics θ = 1.7 θ = 3.2
Fuzzy
k-modes

Intuitionistic Fuzzy
k-modes

Fuzzy
k-modes

Intuitionistic Fuzzy
k-modes

Average
accuracy

0.817 0.855 0.868 0.932

Average DB
index

1.276 1.027 1.095 0.914

Average Dunn
index

1.033 1.148 1.196 1.461
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5 Conclusion

In this paper we proposed a new categorical data clustering algorithm called the Intu-
itionistic Fuzzy k-modes algorithm. We could also experimentally establish by taking
two datasets, the Soybean and the Zoo, with two different values of θ (=1.7 and =3.2)

Fig. 4. Comparison of Accuracy, DB and Dunn values of different ∝ values for Zoo dataset
(θ = 3.2).

Table 2. Zoo Dataset with θ = 1.7 and θ = 3.2.

Metrics θ = 1.7 θ = 3.2
Fuzzy
k-modes

Intuitionistic Fuzzy
k-modes

Fuzzy
k-modes

Intuitionistic Fuzzy
k-modes

Average
accuracy

0.776 0.806 0.802 0.82

Average DB
Index

1.59 1.32 1.624 1.433

average Dunn
index

0.474 0.626 0.405 0.465
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that for the values of α in the range [1.1, 3], the proposed algorithm is more efficient than
the fuzzy k-modes algorithm for clustering categorical data.
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Abstract. The basic rough sets as introduced by Pawlak have been extended in
many directions. Two such extensions are the rough sets on fuzzy approxima-
tion spaces and the rough sets by De et al. in 1999 and rough sets on intu-
itionistic fuzzy approximation spaces by Tripathy in 2006. There are several
properties of these two types of rough sets established so far. However, in this
paper we show that some of the properties established are erroneous through
counter examples, establish their correct versions and illustrate their application
in real life situations through an example in computer vision.

Keywords: Rough sets � Intuitionistic fuzzy approximation spaces � Computer
vision � ða; bÞ � cut

1 Introduction

Rough set introduced by Pawlak [4] is one of the most fruitful models to handle
uncertainty in data. But as this basic notion depends upon equivalence relations, which
are relatively rare in real life situations several attempts have been made to make it
more general. De et al. introduced rough sets on fuzzy approximation spaces, which
were extended to rough sets on intuitionistic fuzzy approximation spaces by Tripathy
[6, 7]. Several properties of rough sets on intuitionistic fuzzy approximation spaces are
established in [9–12]. In this paper we show that some of these properties are erroneous
through counter examples and establish the correct versions. Also, we show their
application in the field of computer vision.

Several authors have worked on rough sets on fuzzy approximation spaces and
intuitionistic fuzzy approximation spaces [1, 2, 5, 8–11]. However, we found that some
of the basic properties established in De [9] and Tripathy [6, 7] are incorrect. So, the
analysis done based upon these results is obviously erratic. In this article, we show the
incorrectness of these results, provide the corresponding correct results and illustrate
their application through an application in computer vision.

The structure of the paper henceforth is as follows. We present the definitions to be
used and the notations to be followed in the paper in Sect. 2. The main results for rough
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sets on intuitionistic fuzzy approximation spaces will be discussed in Sect. 3. An
application of the results is to be provided in Sect. 4. In Sect. 5 we provide concluding
remarks.

2 Definitions and Notations

The most successful uncertainty based model is perhaps fuzzy sets introduced by
Zadeh in 1965, which was extended to define the concept of intuitionistic fuzzy sets by
Atanassov [3] in 1986, where the non-membership function is not necessarily the one’s
complement of the membership function. We have provided the definitions of these
two models in the introductory part. Another model of uncertainty is that of rough sets
introduced by Pawlak [4] in 1982. Here the notion of equivalence relation R is used to
approximate a set X through two other crisp sets called the lower and upper approx-
imations of the set with respect to R denoted by RX and RX respectively. A set X is said
to be R-definable if and only if RX ¼ RX and rough otherwise. We have defined these
concepts in detail in this paper.

We next state some definitions and notations to be used in this paper.

Definition 2.1. An intuitionistic fuzzy relation on a universal set U is an intuitionistic
fuzzy set defined on U x U.

Definition 2.2. lR(x,x) = 1 and vR (x,x) = 0, 8x2U.

Let R be an intuitionistic fuzzy relation over a universal set U. Then R is intu-
itionistic fuzzy reflexive if and only if

lR x; xð Þ ¼ 1 and vR x; xð Þ ¼ 0; 8x 2 U: ð2:1Þ

R is intuitionistic fuzzy symmetric if and only if

lR x; yð Þ ¼ lR y; xð Þ and vR x; yð Þ ¼ vR y; xð Þ 8x; y 2 U: ð2:2Þ

Let I = [0,1]. Then we define the set J as J ¼ fðm; nÞjm; n 2 I and 0�mþ n� 1g:
Definition 2.3. Let ða; bÞ 2 J. Then the ða; bÞ -cut of R is denoted by Ra;b and is
given by

Ra;b ¼ fðx; yÞj lRðx; yÞ� a and vRðx; yÞ� b: ð2:3Þ

For any fuzzy proximity relation R on U and ða; bÞ 2 J, if ðx; yÞ 2 Ra;b then we
say that x and y are ða; bÞ -similar and we denote it by xRa;by:

Definition 2.4. Two elements x and y are said to be Ra;b-identical denoted by
xRða; bÞy if either xRa;by or there exists a sequence of elements u1; u2; . . .un in U such
that xRa;bu1Ra;bu2. . .unRa;by:

It may be noted that the relation Rða;bÞ is an equivalence relation for each ða; bÞ 2 J.
Here (U, R) is called an intuitionistic fuzzy approximation space. Also, it may be noted
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that for any ða; bÞ 2 J, ðU; Rða; bÞÞ is an approximation space in the same sense as
that used by Pawlak.

For any x in U we denote the equivalence class of x with respect to Rða; bÞ by
½x�Rða;bÞ:
Definition 2.5. Let U be a universal set and R be a intuitionistic fuzzy proximity
relation on U. Then for any ða ; bÞ 2 J we define the lower and upper approximations
[2, 3] of a subset X in U as

Rða ; bÞX ¼ fx 2 U j ½x�Rða ;bÞ �Xg and ð2:4Þ

Rða ; bÞX ¼ fx 2 U j ½x�Rða ;bÞ \ X 6¼ /g: ð2:5Þ

We say that X is Rða; bÞ discernible if and only if Rða; bÞX ¼ Rða; bÞX : Else, X is
said to be Rða; bÞ-rough.

3 Results on Rough Sets on Intuitionistic Fuzzy
Approximation Spaces

Several properties for rough sets on Intuitionistic fuzzy approximation spaces were
established by Tripathy in [6, 7, 9]. We show in this section that some of these results
are faulty by providing counter examples and also present corresponding rectified
results and prove them. Before stating the next result we establish some results which
are essential for the validity of the concepts. It is easy to see that if R and S are fuzzy
proximity relations over U then R[ S and R\ S are intuitionistic fuzzy proximity
relations over U. The first result incorrectly stated in [5] is that

Proposition 3.1. Let R and S be two intuitionistic fuzzy proximity relations on U.
Then

ðR[ SÞða; bÞ�Rða; bÞ [ Sða; bÞ ð3:1Þ

ðR\ SÞða; bÞ � Rða; bÞ \ Sða; bÞ ð3:2Þ

Counter Example 3.1:
The following example shows the incorrectness of property (3.1).
Suppose U = {x1, x2, x3, x4, x5, x6} be a universe. Two fuzzy proximity relations R

and S are defined over U are given in their matrix form in Tables 1 and 2 respectively.
From the above two tables we obtain the union and intersection and is represented

in the following tables. Table 3 represents R[ S and Table 4 represents R\ S.
Let us consider a = 0.7 and b ¼ 0:1.
Therefore from Tables 1 and 2 we obtain the following:

266 B.K. Tripathy and R.R. Mohanty



R ða; bÞ ¼ 2; 3ð Þ; 2; 4ð Þ; 3; 4ð Þ; 5; 6ð Þ; 3; 2ð Þ; 4; 2ð Þ; 4; 3ð Þ; 6; 5ð Þ; 1; 1ð Þ; 2; 2ð Þ; 3; 3ð Þ;ff
4; 4ð Þ; 5; 5ð Þ; 6; 6ð Þg

ð3:3Þ

Table 1. Fuzzy proximity relation R

R X1 X2 X3 X4 X5 X6

X1 (1,0) (0.3, 0.5) (0.3, 0.5) (0.3,0.5) (0.3, 0.5) (0.3, 0.5)
X2 (0.3,0.5) (1,0) (0.7, 0.2) (0.7,0.2) (0.3, 0.5) (0.3, 0.5)
X3 (0.3,0.5) (0.7, 0.2) (1,0) (0.7,0.2) (0.3, 0.5) (0.3, 0.5)
X4 (0.3,0.5) (0.7, 0.2) (0.7, 0.2) (1, 0) (0.3, 0.5) (0.3, 0.5)
X5 (0.3,0.5) (0.3, 0.5) (0.3, 0.5) (0.3,0.5) (1,0) (0.7, 0.2)
X6 (0.3,0.5) (0.3, 0.5) (0.3, 0.5) (0.3,0.5) (0.7, 0.2) (1,0)

Table 2. Fuzzy proximity relation S

S X1 X2 X3 X4 X5 X6

X1 (1, 0) (0.1,0.7) (0.1,0.7) (0.1,0.7) (0.1,0.7) (0.1,0.7)
X2 (0.1,0.7) (1, 0) (0.1,0.7) (0.1,0.7) (0.1,0.7) (0.1,0.7)
X3 (0.1,0.7) (0.1,0.7) (1,0) (0.1,0.7) (0.8, 0.1) (0.1,0.7)
X4 (0.1,0.7) (0.1,0.7) (0.1,0.7) (1,0) (0.1,0.7) (0.1,0.7)
X5 (0.1,0.7) (0.1.0.7) (0.8,0.1) (0.1,0.7) (1,0) (0.1.0.7)
X6 (0.1,0.7) (0.1.0.7) (0.1,0.7) (0.1,0.7) (0.1,0.7) (1, 0)

Table 3. Fuzzy Proximity relation R[ S

R[ S X1 X2 X3 X4 X5 X6

X1 (1,0) (0.3. 0.5) (0.3,0.5) (0.3,0.5) (0.3,0.5) (0.3, 0.5)
X2 (0.3. 0.5) (1,0) (0.7, 0.2) (0.7, 0.2) (0.3, 0.5) (0.3, 0.5)
X3 (0.3, 0.5) (0.7. 0.2) (1,0) (0.7, 0.2) (0.8,0.1) (0.3,0.5)
X4 (0.3, 0.5) (0.7. 0.2) (0.7, 0.2) (1,0) (0.3, 0.5) (0.3, 0.5)
X5 (0.3, 0.5) (0.3. 0.5) (0.8, 0.1) (0.3, 0.5) (1,0) (0.7,0.2)
X6 (0.3, 0.5) (0.3. 0.5) (0.3, 0.5) (0.3, 0.5) (0.7, 0.2) (1,0)

Table 4. Fuzzy Proximity relation R\ S

R\ S X1 X2 X3 X4 X5 X6

X1 (1,0) (0.1, 0.7) (0.1, 0.7) (0.1,0.7) (0.1,0.7) (0.1, 0.7)
X2 (0.1, 0.7) (1,0) (0.1, 0.7) (0.1,0.7) (0.1,0.7) (0.1, 0.7)
X3 (0.1, 0.7) (0.1, 0.7) (1, 0) (0.1,0.7) (0.3,0.5) (0.1, 0.7)
X4 (0.1, 0.7) (0.1, 0.7) (0.1, 0.7) (1, 0) (0.1,0.7) (0.1, 0.7)
X5 (0.1, 0.7) (0.1, 0.7) (0.3, 0.5) (0.1,0.7) (1,0) (0.1, 0.7)
X6 (0.1, 0.7) (0.1, 0.7) (0.1, 0.7) (0.1,0.7) (0.1,0.7) (1,0)
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S ða; bÞ ¼ 3; 5ð Þ; 5; 3ð Þ; 1; 1ð Þ; 2; 2ð Þ; 3; 3ð Þ; 4; 4ð Þ; 5; 5ð Þ; 6; 6ð Þf g ð3:4Þ

From Tables 3 and 4 we obtain the following:

ðR[ SÞða;bÞ ¼ 2; 3ð Þ; 2; 4ð Þ; 3; 4ð Þ; 3; 5ð Þ; 5; 6ð Þ; 2; 5ð Þ; 2; 6ð Þ; 3; 2ð Þ; 4; 2ð Þ; 4; 3ð Þ; 5; 3ð Þ;f
6; 5ð Þ; 1; 1ð Þ; 2; 2ð Þ; 3; 3ð Þ; 4; 4ð Þ; 5; 5ð Þ; 6; 6ð Þg

ð3:5Þ

ðR\ SÞða; bÞ ¼ 1; 1ð Þ; 2; 2ð Þ; 3; 3ð Þ; 4; 4ð Þ; 5; 5ð Þ; 6; 6ð Þf g ð3:6Þ

From (3.3) and (3.4) we obtain

Rða; bÞ [ Sða; bÞ ¼ 2; 3ð Þ; 2; 4ð Þ; 3; 4ð Þ; 5; 6ð Þ; 3; 5ð Þ; 5; 3ð Þ; 3; 2ð Þ;f
4; 2ð Þ; 4; 3ð Þ; 6; 5ð Þ; 1; 1ð Þ; 2; 2ð Þ; 3; 3ð Þ; 4; 4ð Þ; 5; 5ð Þ; 6; 6ð Þg

ð3:7Þ

Rða; bÞ \ Sða; bÞ ¼ 1; 1ð Þ; 2; 2ð Þ; 3; 3ð Þ; 4; 4ð Þ; 5; 5ð Þ; 6; 6ð Þf g ð3:8Þ

It follows from (3.5) and (3.7) that ðR[ SÞða; bÞ�Rða; bÞ [ Sða; bÞ is not true.
Counter Example 3.2:
This example shows the incorrectness of property (3.2).
Let U = {x1, x2, x3, x4, x5, x6} be a universe. Fuzzy proximity relations R and S

over U are given by Tables 5 and 6 respectively.
The tables for the fuzzy proximity relations R[ S and R\ S are given in Tables 7

and 8 respectively.

Table 5. Fuzzy proximity relation R

R X1 X2 X3 X4 X5 X6

X1 (1,0) (0.3, 0.6) (0.3, 0.6) (0.3, 0.6) (0.3, 0.6) (0.3. 0.6)
X2 (0.3, 0.6) (1,0) (0.7, 0.2) (0.3, 0.6) (0.3, 0.6) (0.3, 0.6)
X3 (0.3, 0.6) (0.7, 0.2) (1, 0) (0.7, 0.2) (0.3, 0.6) (0.3. 0.6)
X4 (0.3, 0.6) (0.3, 0.6) (0.7, 0.2) (1,0) (0.3, 0.6) (0.3, 0.6)
X5 (0.3, 0.6) (0.3, 0.6) (0.3, 0.6) (0.3, 0.6) (1,0) (0.1, 0.8)
X6 (0.3, 0.6) (0.3, 0.6) (0.3, 0.6) (0.3, 0.6) (0.1, 0.8) (1,0)

Table 6. Fuzzy proximity relation S

S X1 X2 X3 X4 X5 X6

X1 (1,0) (0.1,0.8) (0.1,0.8) (0.1, 0.8) (0.1, 0.8) (0.1,0.8)
X2 (0.1,0.8) (1. 0) (0.1,0.8) (0.1, 0.8) (0.8, 0.1) (0.1,0.8)
X3 (0.1,0.8) (0.1,0.8) (1,0) (0.1, 0.8) (0.1, 0.8) (0.1,0.8)
X4 (0.1,0.8) (0.1,0.8) (0.1,0.8) (1, 0) (0.8, 0.1) (0.1,0.8)
X5 (0.1,0.8) (0.8,0.1) (0.1,0.8) (0.8, 0.1) (1,0) (0.1,0.8)
X6 (0.1,0.8) (0.1,0.8) (0.1,0.8) (0.1, 0.8) (0.1, 0.8) (1,0)
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Let us consider a = 0.7 and b ¼ 0:1.
Therefore from Tables 5 and 6 we obtain the following:

R ða; bÞ ¼ f 2; 3ð Þ; 3; 4ð Þ; 2; 4ð Þ; 3; 2ð Þ; 4; 3ð Þ; 4; 2ð Þ; 1; 1ð Þ; 2; 2ð Þ;
3; 3ð Þ; 4; 4ð Þ; 5; 5ð Þ; 6; 6ð Þg ð3:9Þ

Sða; bÞ ¼ f 2; 5ð Þ; 5; 4ð Þ; 2; 4ð Þ; 5; 2ð Þ; 4; 5ð Þ;
4; 2ð Þ; 1; 1ð Þ; 2; 2ð Þ; 3; 3ð Þ; 4; 4ð Þ; 5; 5ð Þ; 6; 6ð Þg ð3:10Þ

and from Tables 7 and 8 we obtain the following:

ðR[ SÞða; bÞð Þ ¼ 2; 3ð Þ; 2; 5ð Þ; 3; 4ð Þ; 5; 4ð Þ; 2; 4ð Þ; 3; 2ð Þ; 5; 2ð Þ; 4; 3ð Þ; 4; 5ð Þ;f
4; 2ð Þ; 1; 1ð Þ; 2; 2ð Þ; 3; 3ð Þ; 4; 4ð Þ; 5; 5ð Þ; 6; 6ð Þg

ð3:11Þ

ðR\ SÞða; bÞð Þ ¼ 1; 1ð Þ; 2; 2ð Þ; 3; 3ð Þ; 4; 4ð Þ; 5; 5ð Þ; 6; 6ð Þf g ð3:12Þ

From (3.9) and (3.10) we obtain

R ða; bÞ [ S ða; bÞ ¼ 2; 3ð Þ; 2; 5ð Þ; 3; 4ð Þ; 5; 4ð Þ; 2; 4ð Þ; 3; 2ð Þ; 5; 2ð Þ; 4; 3ð Þ; 4; 5ð Þ;f
4; 2ð Þ; 1; 1ð Þ; 2; 2ð Þ; 3; 3ð Þ; 4; 4ð Þ; 5; 5ð Þ; 6; 6ð Þg

ð3:13Þ

Table 7. Fuzzy proximity relation R[ S

R[ S X1 X2 X3 X4 X5 X6

X1 (1,0) (0.3, 0.6) (0.3, 0.6) (0.3, 0.6) (0.3, 0.6) (0.3, 0.6)
X2 (0.3, 0.6) (1, 0) (0.7, 0.2) (0.3, 0.6) (0.8, 0.1) (0.3, 0.6)
X3 (0.3. 0.6) (0.7, 0.2) (1, 0) (0.7, 0.2) (0.3, 0.6) (0.3, 0.6)
X4 (0.3, 0.6) (0.3, 0.6) (0.7, 0.2) (1, 0) (0.8, 0.1) (0.3, 0.6)
X5 (0.3, 0.6) (0.8, 0.1) (0.3, 0.6) (0.8, 0.1) (1,0) (0.3, 0.6)
X6 (0.3, 0.6) (0.3, 0.6) (0.3, 0.6) (0.3, 0.6) (0.3, 0.6) (1,0)

Table 8. Fuzzy proximity relation R\ S

R\ S X1 X2 X3 X4 X5 X6

X1 (1,0) (0.1,0.8) (0.1. 0.8) (0.1,0.8) (0 1,0.8) (0.1, 0.8)
X2 (0.1,0.8) (1,0) (0.1. 0.8) (0.1,0.8) (0.3,0.6) (0.1, 0.8)
X3 (0.1,0.8) (0.1,0.8) (1,0) (0.1,0.8) (0.1,0.8) (0.1, 0.8)
X4 (0.1,0.8) (0.1,0.8) (0.1,0.8) (1,0) (0.3,0.6) (0.1, 0.8)
X5 (0.1,0.8) (0.3,0.6) (0.1,0.8) (0.3,0.6) (1,0) (0.1,0.8)
X6 (0.1,0.8) (0.1,0.8) (0.1,0.8) (0.1,0.8) (0.1,0.8) (1,0)
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R ða; bÞ \S ða; bÞ ¼ 2; 4ð Þ; 4; 2ð Þ; 1; 1ð Þ; 2; 2ð Þ; 3; 3ð Þ; 4; 4ð Þ; 5; 5ð Þ; 6; 6ð Þf g
ð3:14Þ

It is clear from (3.12) and (3.14) that
ðR\ SÞ ða; bÞ � R ða; bÞ \ S ða; bÞ is not true.

Theorem 3.1. Let R and S be two fuzzy proximity relations on U. Then for any
ða; bÞ 2 J,

ðR[ SÞða; bÞ � Rða; bÞ [ Sða; bÞ ð3:15Þ

ðR\ SÞða; bÞ�Rða; bÞ \ Sða; bÞ ð3:16Þ

Proof: Proof of (3.15)

ðx; yÞ 2 Rða; bÞ [ Sða; bÞ
) ðx; yÞ 2 Rða; bÞ or ðx; yÞ 2 Sða; bÞ

Now 4 cases can occur.
Case (i): xRa;by or xSa;by

Then ðlRðx; yÞ� a and mRðx; yÞ� bÞ or ðlSðx; yÞ� a and mSðx; yÞ� bÞ
So, maxflRðx; yÞ; lSðx; yÞg� a and minfmRðx; yÞ; mSðx; yÞg� b
) lðR[ SÞðx; yÞ� a and mðR[ SÞðx; yÞ� b
) ðx; yÞ 2 ðR[ SÞða; bÞ

Case (ii): xRa;by or 9a sequence u1; u2; . . .un such that xSa;bu1; u1Sa;bu2; . . .unSa;by
If xRa;by then lR x; yð Þ� a and mRðx; yÞ� b.
So, lðR[SÞ x; yð Þ ¼ maxflR x; yð Þ; lS x; yð Þg� a and
mðR[ SÞðx; yÞ ¼ minfmRðx; yÞ; mSðx; yÞg� b

Again, Suppose 9a sequence u1; u2; . . .un such that xSa;bu1; u1Sa;bu2; . . .unSa;by.
Then ðlSðx; u1Þ� a; mSðx; u1Þ� bÞ; ðlSðu1; u2Þ� a; mSðu1; u2Þ� bÞ; . . .; ðlSðun; yÞ�

a; mSðun; yÞ� bÞ.
So, as above

ðlðR[ SÞðx; u1Þ� a; mðR[ SÞðx; u1Þ� bÞ; ðlðR[ SÞðu1; u2Þ� a; mðR[ SÞðu1; u2Þ� bÞ; . . .;
ðlðR[ SÞðun; yÞ� a; mðR[ SÞðun; yÞ� bÞ:
This implies that xðR[ SÞða;bÞu1; u1ðR[ SÞða;bÞu2; . . .; unðR[ SÞða;bÞy.
Thus, xðR[ SÞða; bÞy.

Case (iii): 9a sequence u1; u2; . . .un such that xRa;bu1; u1Ra;bu2; . . .unRa;by or xSa;by

The proof is similar to case (ii) above.
Case (iv): 9a sequence u1; u2; . . .un such that xRða;bÞu1; u1Rða;bÞu2; . . .unRða;bÞy or

9a sequence v1; v2; . . .vm such that xSða;bÞv1; v1Sða;bÞv2; . . .vmSða;bÞy
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In any one of the cases we apply the same argument as in case (ii) 2nd part and
conclude that xðR[ SÞða; bÞy.

Hence in all the cases the proof follows. The proof of (3.16) is similar.
We denote the equivalence classes generated by a fuzzy proximity relation R over

U with respect to a grade ða; bÞ 2 J by R	
a;b.

The following result was established in [2, 3] basing upon this notion.

Proposition 3.2. Let R and S be two fuzzy proximity relations on U and ða; bÞ 2 J.
Then

ðR[ SÞ	ða;bÞ�R	
ða;bÞ [ S	ða;bÞ ð3:17Þ

ðR\ SÞ	ða;bÞ � R	
ða;bÞ \ S	ða;bÞ ð3:18Þ

We show below that the result is incorrect. For this we provide two counter
examples where the results fail to be true.

Counter Example 3.3:
We continue with the above example where the fuzzy proximity relations R and S

and their union and intersection are given in Tables 1, 2, 3 and 4. We have,

R	
ða;bÞ ¼ 1f g; 2; 3; 4f g; 5; 6f gf g; S	ða;bÞ ¼ 1f g; 2f g; 4f g; 6f g; 3; 5f gf g

Hence,

ðR[ SÞ	ða;bÞ ¼ 1f g; 2; 3; 4; 5; 6f gf g; ðR\ SÞ	ða;bÞ ¼ 1f g; 2f g; 3f g; 4f g; 5f g; 6f gf g

R	
ða;bÞ [ S	ða;bÞ ¼ 1f g; 2f g; 4f g; 6f g; 2; 3; 4f g; 3; 5f g; 5; 6f gf g; R	

ða;bÞ \ S	ða;bÞ
¼ 1f gf g

So, it is clear that (3.17) is not true.

Counter Example.3.4:
We continue with the above example where the fuzzy proximity relations R and S

and their union and intersection are given in Tables 5, 6, 7 and 8. We have,

R	
ða;bÞ ¼ 1f g; 5f g; 6f g; 2; 3; 4f gf g; S	ða;bÞ ¼ 1f g; 3f g; 6f g; 2; 4; 5f gf g

ðR[ SÞ	ða;bÞ ¼ 1f g; 6f g; 2; 3; 4; 5f gf g; ðR\ SÞ	ða;bÞ
¼ 1f g; 2f g; 3f g; 4f g; 5f g; 6f gf g

R	
ða;bÞ \ S	ða;bÞ ¼ 1f g; 6f gf g. Hence, it is clear that (3.18) is not true.

Theorem 3.2. Let R and S be two fuzzy proximity relations on U. Then
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ðR[ SÞ	ða;bÞ � R	
ða;bÞ [ S	ða;bÞ ð3:19Þ

ðR\ SÞ	ða;bÞ�R	
ða;bÞ \ S	ða;bÞ ð3:20Þ

Proof: Proof of (3.19)
Let x½ � 2 R	

ða;bÞ [ S	ða;bÞ. Then, ½x� 2 R	
ða;bÞ or ½x� 2 S	ða;bÞ.

So, for any y 2 ½x�,

ðx; yÞ 2 Rða; bÞ or ðx; yÞ 2 Sða; bÞ , ðx; yÞ 2 ðR[ SÞða; bÞ ðbyð3:15ÞÞ

Hence, ½x� 2 ðR[ SÞ	ða;bÞ.
Proof of (3.20)
Let ½x� 2 ðR\ SÞ	ða;bÞ. Then for any y 2 ½x�, ðx; yÞ 2 ðR\ SÞða; bÞ

) ðx; yÞ 2 Rða; bÞ \ Sða; bÞ ðbyð3:16ÞÞ

So, ½x� 2 R	
ða;bÞ \ S	ða;bÞ. This proved (3.20)

4 An Application of Rough Sets on Intuitionistic Fuzzy
Approximation Spaces

Let us consider a situation where the computer needs to match two images based on the
different matching properties of images.

Suppose V = fi1; i2; i3; i4; i5g be a set of images that needs to be matched based on
the criteria; edge matching, color matching, shape and surface area matching and texture
matching.

Table 10. Relation S: Matching colors

S i1 i2 i3 i4 i5
i1 (1,0) (0.30, 0.55) (0.90, 0.05) (0.60, 0.25) (0.75, 0.20)
i2 (0.30, 0.55) (1,0) (0.23, 0.76) (0.41, 0.45) (0.50, 0.35)
i3 (0.90, 0.05) (0.23, 0.76) (1,0) (0.60, 0.25) (0.41, 0.45)
i4 (0.60, 0.35) (0.41, 0.45) (0.60, 0.25) (1,0) (0.96, 0.03)
i5 (0.75, 0.20) (0.50, 0.35) (0.41, 0.45) (0.96, 0.03) (1,0)

Table 9. Relation R: Matching edges

R i1 i2 i3 i4 i5
i1 (1,0) (0.30, 0.60) (0.15, 0.80) (0.60, 0.25) (0.50,0.35)
i2 (0.30, 0.60) (1,0) (0.40, 0.45) (0.87,0.1) (0.20,0.70)
i3 (0.15, 0.80) (0.40, 0.45) (1,0) (0.52,0.45) (0.05, 0.85)
i4 (0.60, 0.25) (0.87,0.1) (0.52,0.45) (1,0) (0.66, 0.35)
i5 (0.50,0.35) (0.20,0.70) (0.05,0.85) (0.66,0.35) (1.0)
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After the feature extraction process of the images we obtain the matching per-
centages of properties of two images. R, S, T, and W are the relations based on the
above properties on the set V (Tables 9, 10, 11, and 12), which can be used to match
images based on the required criteria. To find matching images based on two or more
properties, we find the union or intersection of the relations based on the requirements.

If we fix a = 0.85 and b ¼ 0:1 as the percentage of matching property, we obtain
the following

R(a; bÞ ¼ 2; 4ð Þ; 4; 2ð Þ; 1; 1ð Þ; 2; 2ð Þ; 3; 3ð Þ; 4; 4ð Þ; 5; 5ð Þf g

R	
a;b ¼ 1f g; 3f g; 5f g; 2; 4f gf g

S(a; bÞ ¼ 1; 3ð Þ; 4; 5ð Þ; 3; 1ð Þ; 5; 4ð Þ; 1; 1ð Þ; 2; 2ð Þ; 3; 3ð Þ; 4; 4ð Þ; 5; 5ð Þf g

S	a;b ¼ 2f g; 4; 5f g; 1; 3f gf g; T(a; bÞ
¼ 4; 5ð Þ; 5; 4ð Þ; 1; 1ð Þ; 2; 2ð Þ; 3; 3ð Þ; 4; 4ð Þ; 5; 5ð Þf g

and T	
a;b ¼ 1f g; 2f g; 3f g; 4; 5f gf g. Again,

W ðaÞ¼ 1; 3ð Þ; 3; 1ð Þ; 1; 1ð Þ; 2; 2ð Þ; 3; 3ð Þ; 4; 4ð Þ; 5; 5ð Þf g and

W	
a ¼ 2f g; 4f g; 5f g; 1; 3f gf g

Table 11. Relation T: Matching shape and surface area

T i1 i2 i3 i4 i5
i1 (1,0) (0.46, 0.42) (0.30, 0.55) (0.70, 0.25) (0.25, 0.65)
i2 (0.46,0.42) (1,0) (0.50, 0.40) (0.35, 0.60) (0.80, 0.15)
i3 (0.30, 0.55) (0.50, 0.40) (1,0) (0.10, 0.75) (0.03, 0.85)
i4 (0.70, 0.25) (0.35, 0.60) (0.10, 0.75) (1,0) (0.95, 0.02)
i5 (0.25, 0.65) (0.80, 0.15) (0.03, 0.85) (0.95, 0.02) (1,0)

Table 12. Relation W: Matching texture

W i1 i2 i3 i4 i5
i1 (1,0) (0.09, 0.85) (0.87,0.08) (0.43, 0.47) (0.67, 0.33)
i2 (0.09, 0.85) (1,0) (0.15, 0.76) (0.33, 0.58) (0.54, 0,45)
i3 (0.87, 0.08) (0.15, 0.76) (1,0) (0.63, 0.37) (0.70, 0.25)
i4 (0.43, 0.47) (0.33,0.58) (0.63,0.37) (1,0) (0.30, 0.55)
i5 (0.67, 0.33) (0.54, 0,45) (0.70, 0.25) (0.30, 0.55) (1,0)
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Inference: From the above results we can conclude that based on the edge matching
property image i2 and i4 are matched maximum. Similarly based on color matching
image i1 and i3, and image i4 and i5 are matching. Image i4 and i5 are matched based on
shape and surface area, and i1 and i3 on texture matching.

Now if we want to find the matching images based on edge matching or shape and
surface area matching, we find the union of relations A1 and A3. The union of the two
relations is as shown in Table 13.

From Table 13 we find

ðR[ TÞðaÞ ¼ 2; 4ð Þ; 4; 5ð Þ; 2; 5ð Þf g and ðR[ TÞ	a ¼ 1f g; 3f g; 2; 4; 5f gf g

Inference: We can say that images i2, i4 and i5 form a group of matching images based
on edge matching and shape and surface area matching.

Next if we want to find the matching images based on color matching as well as
texture matching, we find the intersection of relations A2 and A4. The intersection of
the two relations is as shown in Table 14.

From Table 14 we find

ðS\WÞðaÞ ¼ ð1; 3Þ; 3; 1ð Þ; 1; 1ð Þ; 2; 2ð Þ; 3; 3ð Þ; 4; 4ð Þ; 5; 5ð Þf g

ðS\WÞ	a ¼ 2f g; 4f g; 5f g; 1; 3f gf g

Inference: We can say that images i1 and i3 is a set of images that are matched both in
terms of color and texture similarity.

Table 13. R[T

R[ T i1 i2 i3 i4 i5
i1 (1,0) (0.46, 0.42) (0.30, 0.55) (0.70,0.25) (0.50, 0.35)
i2 (0.46, 0.42) (1,0) (0.50,0.40) (0.87,0.1) (0.80, 0.15)
i3 (0.30, 0.55) (0.50.0.40) (1,0) (0.52, 0.45) (0.05,0.85)
i4 (0.70,0.25) (0.87,0.1) (0.52, 0.45) (1,0) (0.95, 0.02)
i5 (0.50, 0.35) (0.80, 0.15) (0.05,0.85) (0.95, 0.02) (1,0)

Table 14. S\W

S\W i1 i2 i3 i4 i5
i1 (1,0) (0.09, 0.85) (0.87, 0.08) (0.43, 0.47) (0.67, 0.33)
i2 (0.09, 0.85) (1,0) (0.15, 0.76) (0.33, 0.58) (0.50, 0.45)
i3 (0.87, 0.08) (0.15, 0.76) (1,0) (0.60,0.37) (0.41,0.45)
i4 (0.43, 0.47) (0.33, 0.58) (0.60, 0.37) (1,0) (0.30, 0.55)
i5 (0.67, 0.33) (0.50, 0.45) (0.41, 0.45) (0.30, 0.55) (1,0)
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5 Conclusions

Rough sets on intuitionistic fuzzy approximation space are a generalization of basic
rough sets introduced in 2006 [6, 7]. However, some of the properties established in the
first paper were erroneous. In this paper we first established that the results are incorrect
through counter examples and then established the correct versions of the properties.
Finally, we illustrated through an application in computer vision as how the results are
applicable in real life situations.
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Abstract. Customer’s view in online brand community acts as a foundation for
the co-creation of the brand, which results in increased purchase frequency.
Influencing attributes as the independent variables significantly influences per-
formance of these online platforms. Prioritization of these alternative platforms
would act as a boosting factor for marketer for their inclusive growth. In this
paper, an attempt has been made with the help of interval type-II fuzzy multiple
group decision making process for the said purpose. A fuzzy linguistic inter-
pretation membership has also been proposed which can further improve the
computed results.

Keywords: Interval type-II fuzzy � Multi attribute group decision making �
Online brand community

1 Introduction

Online brand community is bounded with a specific, non-geographical, and a set of
social relation amongst admirer of the brand [1]. Online brand communities are
designed to facilitate co-creation of product-brand, and other company related affairs
[2]. It offers a platform beyond mere acquisition and sharing of knowledge, such as
taking the lead in the community collaboration, persuading others to join the com-
munity [3]. In comparison to the traditional mechanism, online brand community is
easy to implement in a cost effective manner [4]. The work presented in [5] suggests
different levels of effects of different alternatives based on the level of participation in
the community, which can influence both forward and backward value chain of the
organization. Involvement in the community may supplement the organization’s R&D
through innovation, subsequently influences the brand value that became the decisive
factor for frequency of visit, frequency of purchase; and so on [6–8]. In this direction,
B.S. Butler in [9] has emphasized the lower form of involvement, like reading the
content, is crucial to increase the sales. However, R. Rishika and et al. in their literature
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in [10] revealed, high involvement creates higher scope for the company. Apart from
level of involvement, company has to be alert for the negative remark, which also has
equal negative pressure on the brand value of the company [11]. This sort of decision
making process can never be possible without considering uncertainty into account.
Fuzzy set theory is the best suitable tool to deal with uncertain (fuzziness) criteria [12].
Fuzzy set theory is based on the concept of approximation rather on the exact values.
Interval type-II fuzzy [13], the advanced fuzzy set has been applied for better accuracy
in result. This work emphasizes to rank the alternatives such as social networking, blog,
and pay-for-click based on decision makers inputs for the attributes. The following
points highlight the superiority of the proposed technique in comparison to the existing
methods.

• Attributes for online brand community have been considered to choose the pro-
posed alternatives using the interval type-II fuzzy group decision making tool.

• New interpretations of linguistic weights have also been introduced.

The paper is organized as follows: Sect. 2 reviews deterministic of purchase fre-
quency in online brand community, Sect. 3 briefs about the basics of type-II fuzzy, and
Sect. 4 illustrates arithmetic operations between type-II fuzzy sets. Section 5 discusses
interval type-II fuzzy multiple group decision making for alternatives ranking in online
brand community. The conclusions are discussed in Sect. 6.

2 Determination of Purchase Frequency in Online Brand
Community

Figure 1 represents the proposed model of Wu, J., et al. in [14] to determine the
purchase frequency in online brand community. Online brand community is no more
be considered as a passive tool to realize the thought process of consumer, rather it has

Fig. 1. Online brand community activity as proposed by Wu, J., et al. [14].
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a wider canvas to involve customer in contributing, reacting, evolving new product,
and many more [15]. The activities of the customers, based on their level of
involvement, has been broadly classified into: (i) content consumption- customers who
spends significant amount of time to study the posts of the other users for his decision
making process, (ii) content contribution- these group participate actively in replying
the posts, (iii) community collaboration- the number of her/his circle gives scope to
interact, and (iv) community leadership- are the customers who proactively involved in
the postings [16, 17]. All these activities are moderated via regulatory framework
considering ‘freight’ as the moderating variable. Similarly, ‘Purchase frequency’ as
explained by Wu, J., et al. (2015) has also been considered as dependent variable in the
previous related work [15]. However, the proposed work considers ranking of various
alternatives to facilitate purchase frequency of the online brand community.

3 Basics of Type-II Fuzzy

An interval type-II fuzzy [13] set expressed in Eq. (1) and Fig. 2.

~~Y ¼ ða; uÞ; l~~Y
ða; uÞI8a 2 A; 8u 2 Ja� 0; 1½ �; 0� l~~Y

ða; uÞ� 1
n o

ð1Þ

Equation (2) illustrates two examples of interval type-II fuzzy sets
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Fig. 2. Interval Type-II Trapezoidal Fuzzy sets
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4 Arithmetic Operations Between Type-II Fuzzy Sets

Considering (2), following operations are illustrated [13]:

• Addition of two interval type-II fuzzy numbers:

~~Y1� ~~Y2 ¼ ~Y
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• Subtraction of two interval type-II fuzzy numbers:
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• Multiplication of two interval type-II fuzzy numbers:
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5 Interval Type-II Fuzzy Multiple Group Decision Making
for Attributes Ranking of Online Brand Community

In the recent years many methods have been proposed to solve fuzzy multi attribute
decision making [19–22]. The current work has adopted interval type-II multiple group
decision making as proposed by Chen, S., et al. in 2010 for ranking the alternatives of
online brand community.

Step-I
The current work has proposed seven linguistic term namely: “Very Low” (VL),
“Low” (L), “Medium Low” (ML), “Medium” (M), “Medium High” (MH), “High” (H),
“Very High” (VH). The middle point of the seven linguistic variables is “Medium”
(M), is taken as the standard membership value [23]. The three higher and lower values
are calculated by the Eq. (6):
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yUHigher ðiÞ ¼ max yUMðiÞ
� �2� �n

; 1� yUMðiÞ
� �2� �n� �� �

; yLHigher ðiÞ ¼ max yLMðiÞ
� �2� �n
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where i ¼ 1; 2; 3; 4;

ð6Þ

Based on Eq. (6), linguistic terms for corresponding type-II fuzzy sets are shown in
Table 1. The medium (M) value is considered from Chen et al. [24].

Step-II
For the group decision making, Dz decision matrix was constructed with zth decision
makers as follows:

Dz ¼ ~~f szij
� �

m	n
¼

~~f sz11 . . . ~~f sz1n
..
. . .

. ..
.

~~f szm1 . . . ~~f szmn

0
B@

1
CA ð7Þ

The average decision matrix �Dz ¼ ~~f sij
� �

m	n

~~f sij ¼
~~f s1ij � ~~f s2ij � . . .~~f skij

k

0
@

1
A

where 1� i�m, 1� j� n; 1� z� k & k is the number of decision makers.
The work has been carried out with the help of professor in psychology (D1),

marketing management (D2), and computer science engineering (D3) to rank the
alternatives contributing towards purchase frequency in the online brand community.
Their preference in linguistic variable has been explained in Table 1 for five attributes
and corresponding alternatives (Table 2).

Weights of the attributes evaluated by decision makers are given in Table 3.

Table 1. Linguistic terms for corresponding type-II fuzzy sets

Linguistic term Interval type� 2 fuzzy sets

Very Low VLð Þ 0; 0; 0; 0:06; 1; 1ð Þ; 0; 0; 0; 0:02; 0:9; 0:9ð Þð Þ
Low Lð Þ 0:01; 0:06; 0:06; 0:24; 1; 1ð Þ; 0:03; 0:06; 0:06; 0:13; 0:9; 0:9ð Þð Þ
MediumLow MLð Þ 0:09; 0:25; 0:25; 0:49; 1; 1ð Þ; 0:16; 0:25; 0:25; 0:36; 0:9; 0:9ð Þð Þ
Medium Mð Þ 0:30; 0:50; 0:50; 0:70; 1; 1ð Þ; 0:40; 0:50; 0:50; 0:60; 0:9; 0:9ð Þð Þ
MediumHigh MHð Þ 0:91; 0:75; 0:75; 0:51; 1; 1ð Þ; 0:84; 0:75; 0:75; 0:64; 0:9; 0:9ð Þð Þ
High Hð Þ 0:99; 0:94; 0:94; 0:76; 1; 1ð Þ; 0:97; 0:94; 0:94; 0:87; 0:9; 0:9ð Þð Þ
VeryHigh VHð Þ 1; 1; 1; 0:94; 1; 1ð Þ; 1; 1; 1; 0:98; 0:9; 0:9ð Þð Þ
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Step-III
The weighted matrix Wtz, with zth decision makers is shown in Eq. (8)

Wtz ¼ ~~Wtzi
� �

1	m
¼ ~~Wtz1

~~Wtz2 . . .
~~Wtzm

� �
ð8Þ

Similarly the average weighted matrix is �Wt ¼ ~~Wti
� �

1	m
Where

~~Wti ¼
~~Wt1i � ~~Wt2i � . . . ~~Wtki

k

 !
ð9Þ

Table 2. Evaluating values of alternatives by the decision makers for different attributes

Attributes Alternatives Decision-makers
D1 D2 D3

Online time Social networking VH MH VL
Blog M L VH
Email, pay for click, etc. H VH L

Freight Social networking H VL VH
Blog ML H M
Email, pay for click, etc. VL H L

Number of replies Social networking M MH H
Blog H VL ML
Email, pay for click, etc. ML H MH

Number of friends Social networking VH VH VH
Blog H VH M
Email, pay for click, etc. L ML VL

Number of postings Social networking H M L
Blog VH L M
Email, pay for click, etc. M ML H

Table 3. Attributes weight

Attributes Decision
Makers
D1 D2 D3

Online time H VH H
Freight MH H M
Number of replies VH M VH
Number of friends H H H
Number of postings M MH H
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where 1� i�m, 1� z� k & k is the number of decision makers.
~~Wt1 = ((0.99,0.96,0.96,0.82;1,1)(0.98,0.96,0.96,0.91,0.9,0.9))

~~Wt2 = ((0.73,0.73,0.73,0.66;1,1), (0.74,0.73,0.73,0.70,0.9,0.9))

~~Wt3 = ((0.77,0.83,0.83,0.86;1,1), (0.80,0.83,0.83,0.86,0.9,0.9))

~~Wt4 = ((0.99, 0.94, 0.94, 0.76; 1, 1), (0.97, 0.94, 0.94, 0.87, 0.9, 0.9))

~~Wt5 = ((0.73, 0.73, 0.73, 0.66; 1, 1), (0.74, 0.73, 0.73, 0.70, 0.9, 0.9))

Step-IV
The weighted decision matrix is shown in Eq. 10

WDM ¼
Xm

i¼1;fi2F1

~~Wti � ~~f sij
� �

H
Xm

i¼1;fi2F2

~~Wti � ~~f sij
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WDM ¼ ~Yj
� �

1	n where n ¼ number of decisionmakers
ð10Þ

The computed decision weight of all three decision makers are mentioned in
Table 4:

In this work F1, known as set of benefit attributes, comprises of attributes ‘online
time’, ‘number of friends’, ‘number of replies’, ‘number of postings’. F2, known as set
of cost attributes consists of the only attributes ‘freight’.

Step-V

As suggested in [24], the type-II fuzzy set ~~li ¼ ~lUi ;~l
L
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Each element has been calculated in Eq. (12)
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1 
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whereE21 ¼ SD21
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Table 4. Weight decision matrix

~Y1 2.12 1.99 1.99 1.58 1 1 2.07 1.99 1.99 1.84 0.9 0.9
~Y2 1.36 1.56 1.56 1.57 1 1 1.46 1.56 1.56 1.61 0.9 0.9
~Y3 1.31 1.44 1.44 1.42 1 1 1.38 1.44 1.44 1.46 0.9 0.9
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Step-VI
The rank has been calculated for the upper value of type–II fuzzy sets ~YU

i as shown in
Eq. (13), similarly ~YL

i can also be calculated.

Rank ~YU
i

� � ¼ 1
nðn� 1Þ

Xn

k¼1
lð~YU

i 
 ~YU
k Þþ

n
2
� 1

� �
ð13Þ

where 1� i� n and
Pn

i¼1 Rank
~~Y
U
i

� �
¼ 1.

The final rank can be calculated as shown in Eq. (14)

Rank ~~Y
� �

¼ Rank ~YU
i

� �þRank ~YU
i

� �
2

ð14Þ

where 1� i� n and
Pn

i¼1 Rank
~~Y
U
i

� �
¼ 1.

Therefore, using (14), the rank values Rank ~Y1
� �

; Rank ~Y2
� �

; andRank ~Y3
� �

are
found to be 0.5833, 0.2557, and 0.1668 respectively. The above results along with the
computation of the same using the existing methodology presented in [24] can be
observed from Table 5.

The comparison of the rank computed for the online brand community using the
proposed and the existing techniques are presented in Table 5. It can be observed from
Table 5, Rank ~Y1

� � � Rank ~Y2
� �

for both the methods. However, the result in case of the
proposed one, strongly validates the above relationship in comparison to the existing
method based on the difference between the two defined alternatives. Similarly the
proposed method can be a superior option in case of the relationship of Rank ~Y2

� � �
Rank ~Y3

� �
and therefore incase of Rank ~Y1

� � � Rank ~Y3
� �

. Since Rank ~Y1
� � �

Rank ~Y2
� � � Rank ~Y3

� �
, the preference order of the alternatives is social network-

ing > blog > email and pay-per-click.

Table 5. Comparative rank for online brand community

Computed using proposed method Computed using existing method [24]

Rank ~Y1
� �

0.5833 0.4250

Rank ~Y2
� �

0.2557 0.3045

Rank ~Y3
� �

0.1668 0.2732
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6 Conclusions

The prioritization for the alternatives in online brand community with the help of
interval type-II fuzzy group decision has been successfully presented in this paper. As
per the concurrent expert views, it has been found that “social networking” is superior
medium amongst all considered alternatives for online brand community. Therefore,
the proposed interval type-II fuzzy mechanism for the said purpose is more suitable in
comparison to the existing methods used for the prioritization process.
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Abstract. Detecting users in an indoor environment based on Wi-Fi signal
strength has a wide domain of applications. This can be used for objectives like
locating users in smart home systems, locating criminals in bounded regions,
obtaining the count of users on an access point etc. The paper develops an
optimized model that could be deployed in monitoring and tracking devices
used for locating users based on the Wi-Fi signal strength they receive in their
personal devices. Here, we procure data of signal strengths from various routers,
map them to the user’s location and consider this mapping as a classification
problem. We train a neural network using the weights obtained by the proposed
fuzzy hybrid of Particle Swarm Optimization & Gravitational Search Algorithm
(FPSOGSA), an optimization strategy that results in better accuracy of the
model.

Keywords: Neural networks ⋅ Optimization methods ⋅ PSO ⋅ GSA ⋅
PSOGSA ⋅ User localization ⋅ Wi-Fi signal strength ⋅ Fuzzy logic

1 Introduction

Advancements in location based services have enabled wide prospects in mobile
computing. Many strategies have been adopted to provide users with custom locality
based services. These strategies have shown a tremendous boom in e-commerce rev-
enues, embedded smart systems, location based recommender systems and various
other fields. Technologies like the GPS, Bluetooth and Wi-Fi could be exploited to
provide such services. Bulusu et al. [1] used GPS methods for user localization, but
these methods were used to achieve precision only in certain ranges and cannot be
applied to indoor locations due to weak satellite signals. Bluetooth is another tech-
nology that can be used to serve this purpose, but it can only be well applied for short
ranges. Thus, the user localization by using the Wi-Fi access points could be a better
approach. Salazar et al. [2] introduced methods to predict the behavior of people by
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monitoring their daily movements. Such location detection systems could also be used
in panic situations and disasters, when people require necessary rehabilitation. Nguyen
et al. [3] suggests recognition techniques for patients suffering from severe brain
injuries who could be monitored by observing patterns in their movements. Pei et al.
[4] proposed SVM techniques and showed better classification rates compared to other
existing learning techniques. Cho [5] proposed learning methodologies to categorize
the locality of indoor and outdoor regions using the location service logs of smart
phones. Zou et al. [6] introduced an indoor localization mechanism based on extreme
machine learning strategies and depicted its easy adaptation to versatile environments.

Zadeh [7] introduced the fuzzy set theory that has been widely adopted in many
domains like real-time controllers, diagnostic systems etc. Real world data has various
dimensions, much more than the classical logic of true or false. The fuzzy logic is used
to correlate real life scenarios representing probabilities measuring the degree of truth
in the range 0 to 1. Jang and Sun [8] proposed the interesting concept of modelling
neural networks with fuzzy logic and parametrizing control. The neuro-fuzzy strategy
alone would not be sufficient to attain the best throughput to the neural networks. The
need for our problem lies to detect users at right locations using better learning tech-
niques. But most of the techniques proposed lack the apt usage of optimization
strategies that train the model rightly. We look into metaheuristic techniques that
promise sufficiently good solutions to optimization strategies. Eberhart and Kennedy
[9] introduced the Particle Swarm Optimization (PSO) strategy that considers a pop-
ulation of candidate solutions or particles moving around the search space and are
updated to their localBest or globalBest computed using their position and velocity
parameters. The standard PSO algorithm suffers from major problems like the ability to
explore new search spaces. Shi and Russell [10] introduced an adaptive PSO approach
that uses multiple benchmark functions to test the fuzzy system applied in various
dimensions of the PSO. Liu and Abraham [11] proposed a fuzzy PSO that highlights
the need to explore new search spaces by introducing a turbulence factor in the velocity
component of the PSO. However, these algorithms lack the assurance of obtaining the
global optimum. Mirjalili et al. [12] overcame this problem by proposing a hybrid,
PSOGSA that introduces the ability of the GSA to escape the local optimum and hence
improve the accuracy of the neural network. But, this algorithm lacks consistency and
saturates at the lower iterations of the search, when the dimensions of the problem are
increased. Nandy et al. [13] proposed a bee colony based back propagation approach to
train ANN. These techniques thus improvise the fact that MLP based classifiers when
trained with optimization approaches do give good performance accuracies. Kawam
et al. [14] used the cuckoo swarm and PSO technique to train a MLP and hence
depicted the need of using optimization strategies indeed enhances the performance of
the neural network considerably. But, various such techniques adopted often lack
proper convergence and guarantee that the complete population is explored.

Considering these factors, we propose the FPSOGSA that overcomes the possi-
bilities of trapping itself in the local minima and enhances the probability of a higher
convergence rate. At higher iterations, it gradually decreases the error rate rather than
attaining saturation, as seen in PSOGSA. It obtains better convergence, enhances the
ability of optimizing the neural network and hence reducing the mean square error of
the Fuzzy Neural Network (FNN). Many such approaches have been used to train
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various classifiers. Artificial Neural Network (ANN) is a model easy to understand and
use. More importantly it is nonlinear and non-parametric in nature. ANN is largely used
to solve various classification and forecasting problems with the Back Propagation
(BP) algorithm. However, the BP convergence is slow and not guaranteed. Therefore,
we need to use optimization strategies to attain faster convergence and higher accuracy
rates. Hence, we introduce the hybrid PSOGSA strategy as an optimization strategy
here. On the other hand, the ANN is said to be a black box learning approach. It cannot
deal with uncertainties. To overcome this, we introduce the fuzzy component. Fuzzy is
quite good in handling uncertainties and can also interpret the relationship between the
input and output by producing rules. Hence, we introduce the FPSOGSA algorithm.

2 User Localization as a Classification Problem

To predict the user’s location accurately, a definite and consistent model has to be
trained and deployed in a tracking or monitoring device. We measure the Wi-Fi signal
strength received from various routers in a bounded location and train the neural
network so that it could further predict the user’s location for an unknown tuple set
having signal strengths. Here, we consider a setup at an office location in Pittsburgh,
USA. The office has seven Wi-Fi routers and its signal strengths received from these
routers categorize the location of user in the conference room, kitchen or the indoor
sports room. Sample data tabulated is shown in Table 1. WS1 corresponds to the signal
strength received from the router 1, WS2 corresponds to the signal strength received
from the router 2, and similarly for the other routers. The class labels corresponding to
the conference room, kitchen and the indoor sport are labelled 1, 2 and 3 respectively.
In our setup facility, we have considered an Android device and tabulated strengths of
wireless signals captured by the device. At certain locations, the signal strengths were
observed by polling the wireless signal strength at a constant time interval (every 1 s
considered here). This was again repeated for other locations and suitable data was
collected for one thousand and five hundred observations made at this facility for seven
different routers. The model developed here, could hence be reused according to the
scenario of the bounded location and the number of wireless routers in the physical
facility. This data is being formulated into a pattern classification dataset by consid-
ering the seven wireless routers as the input dimensions which are used to predict the
user’s location in an office as one of the three dimensional categories. After having a
concrete dataset ready, we now train the neural network using a metaheuristic approach
that enhances the chances of classifying the right class label optimally. We discuss our
approach of training the model using Fuzzy PSO GSA (FPSOGSA) in Sect. 3.
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3 Evolution from the Conventional PSOGSA to FPSOGSA
and Training the Neural Network with the Proposed
Fuzzy-PSOGSA Algorithm

Mirjalili et al. [12] proposed the PSOGSA by introducing an exploitation capability to
the standard PSO algorithm that increases the probability of finding the globalBest
solution. The novel idea of using mass interactions among particles by including the
gravitational search capability, proposed by Rashedi et al. [15] further enhanced the
accuracy rates of the FNN. Later in this section, we introduce fuzzy decision param-
eters of the PSOGSA that decide the need for further exploration of the particle in the
search space. Suitable thresholds are set to decide if the particle needs to explore further
dimensions. This algorithm would hence fit the need of not missing out on the glo-
balBest, as it gives more exploration ability to the particles.

We initially consider a space with ‘N’ particles that have randomly allocated
positions that are referred to as the current positions (CurrPos) of the particles. The
positions of each of these particles have “d” dimensions and a configuration of these
positions is considered to be a candidate solution. The forces between the particles in
each iteration, are calculated as,

Fd
ijðtÞ=GðtÞMpiðtÞ×MajðtÞ

RijðtÞ CurrPosdj ðtÞ−CurrPosdi ðtÞ
� �

ð1Þ

where Mpi and Maj are passive and active gravitational masses of particles i and j re-
spectively and Rij is computed as the Euclidean distance between the two particles. The
total force acting on any particle i is computed as the sum of the forces acting on every
other particle in the space. The time variant gravitational constant, G(t) is computed as,

GðtÞ=G0 × exp − k ×CurrentIteration M̸axIterationð Þ ð2Þ

where k is a descending co-efficient and G0 is the initial gravitational constant value at
t. The mass of each particle is related to the fitness value. It is updated at every epoch
using the equation,

Table 1. Sample Data for user localization using wireless signal strength

WS1 WS2 WS3 WS4 WS5 WS6 WS7 Class

−64 −56 −61 −66 −71 −82 −81 1
−68 −57 −61 −65 −71 −85 −85 1
−17 −66 −61 −37 −68 −75 −77 2
−16 −70 −58 −14 −73 −71 −80 2
−52 −48 −56 −53 −62 −78 −81 3
-49 -55 -51 -49 -63 -81 -73 3
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MiðtÞ= CurrFiti − best
best−worst

ð3Þ

where best is the minimum fitness value for a minimization optimization problem and
worst is the maximum fitness value. The acceleration of the particle is computed as
follows:

adi ðtÞ=Fd
i ðtÞ M̸iðtÞ ð4Þ

The weight function, W is calculated using:

W =Wmin −CurrentIteration× Wmax −Wminð Þ M̸axIteration ð5Þ

Here we initialize Wmin and Wmax as suitable minimum and maximum inertia
weights.

Now, the velocity of the particle is updated by using the equation:

Veldi
� �

t+ 1 =W × exp loreVeldi
� �

t + randðÞ*adi + randðÞ*ðglobalBestj −CurrPosdi Þ
ð6Þ

where rand is any number between the range [0,1] and the globalBest is the best
solution obtained so far. The exploreVel is computed by using the fuzzy inference
mechanism discussed in the section later.

Consider a neural network as shown in Fig. 1 with seven input nodes as the
attributes of the user localization dataset and three output nodes as the class labels.
The FPSOGSA trains the neural network by using the exploration and exploitation
capabilities of the particles in the search space. As the PSO suffers saturation or slow
convergence at the ending few iterations, the particles sometimes do not tend to come
out of their constrained search space. This means that the mean square error
(MSE) does not further decrease and hence there is very little or no change found in the
accuracy of the neural network. Thus, in order to provide particles with an ability to
explore new search spaces, we provide an extra velocity component, exploreVelij that is
inferred from a Fuzzy Inference System (FIS). This enhances the search capability of
the particles by exploring new dimensions in the search space and hence increasing the
chances of obtaining a better globalBest solution. As discussed earlier, here we update
the mass and acceleration of the particles before obtaining the explore velocity from the
FIS. This is because the GSA component adds mass interactions that play a vital role in
achieving the global optimum and also the fact that the acceleration component is used
to update the velocity of the particle in the (t + 1)th iteration. The FIS takes in the
Normalized Current Best Fitness Value (NCBFV) and the velocity of the particle (Velij)
as inputs and infers the scaling factor ðSf Þ and the velocity threshold control parameter
(Vtc) as the output using the Fuzzy Rules discussed below in this section. The scaling
factor, Sf is obtained as a result to prevent the particle from overshooting off its domain
while getting extra exploration capability in the search space.
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The NCBFV is calculated as follows:

NCBFVi =
CurrFiti −MinFit
MaxFit−MinFit

ð7Þ

where CurrFiti, is the current fitness value of the particle, MinFit is the least fitness
value obtained by the particle till the current iteration and MaxFit is the maximum
fitness value obtained.

The threshold (θ) is calculated from the velocity threshold control parameter as
follows:

θ= e− ½10ð1+VtcÞ� ð8Þ

The Velij is the latest velocity of the particle attained until the previous iteration. For
the first iteration, the exploreVelocityij is considered to be the same as Velij. For iter-
ations after the first, the exploreVelocityij is obtained by checking for θ as follows:

exp lore Velocityij =
Velij, Velij ≥ jθj

UDistb½− 1, 1�×maxðVelijÞ S̸f , Velij ≤ jθj
� �

ð9Þ

where UDistb[−1,1] is an uniform distribution in the range [−1,1], max(Velij.) is the
maximum value of the velocity obtained till now, θ is a threshold obtained from Eq. (8)
and Sf is the scaling factor obtained as one of the results of the FIS. The given fuzzy
inference rules are used to obtain the values of the velocity threshold control parameter

Fig. 1. Neural Network for classification of a dataset with 7 attributes and 3 class labels
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(Vtc) and the scaling factor (Sf), which determine the exploreVelocityij of the particle
based on the threshold θ.

1. If (NCBFV is low) and (Vel is low) then (Vtc is high)
2. If (NCBFV is medium) then (Vtc is medium)
3. If (NCBFV is high) and (Vel is high) then (Vtc is low)
4. If (NCBFV is low) or (Vel is low) then (Sf is large)
5. If (NCBFV is medium) then (Sf is medium)
6. If (NCBFV is high) or (Vel is high) then (Sf is small)
7. If (Vel is high) then (Vtc is low) (Sf is medium)
8. If (Vel is low) then (Vtc is high) (Sf is medium)

The weight of each rule is assumed to be one. The fuzzy ranges are chosen suitably,
for low/medium/high/small and large depending on the inputs parameters of the
variables. Suitable triangular or Gaussian membership functions are used for
fuzzification.

Finally, the position of the particle is updated to the next optimal location using:

ðCurrPosijÞt+ 1 = ðCurrPosijÞt + ðVelijÞt ð10Þ

3.1 Algorithm

1. Begin FPSOGSA
2. Initialization – Set a suitable number of iterations as MaxIteration to train the FNN.

a. Initialize the dataset and normalize values in the range [-1, 1].
b. Select a suitable number of Input, Output and Hidden nodes for the FNN

depending on the dataset.
3. Obtain Weights to train the Neural Network (NN).

a. Initialize randomly the weights and bias values.
b. Choose the number of particles (N) and generate the initial population config-

uration of particles.
c. Compute the fitness values of each particle and store the best and worst fitness

values.
Computation– Updating and calculating the parameters of the particle in the
search space.

d. Update G using the Eq. (2) and compute the globalBest for each particle.
e. Calculate the mass, force and the acceleration of each particle using the

Eqs. (3), (1) and (4) respectively.
f. Update the inertia weights using the Eq. (5).

Fuzzification – to obtain the exploreVel
g. Obtain and normalize the current best fitness value of the particle using the

Eq. (7).
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h. Initialize the fuzzy inference system and infer the output variables, Sf and VT

using the rules defined above.
i. Obtain the velocity threshold θ, using the Eq. (8) and compute the exploreVel

using Eq. (9).
j. Update the velocity of the particle and the new position using the Eqs. (6) and

(10) respectively.
4. Training – Train the NN by passing the obtained weights
5. Obtain the mean square error of the FNN and compute the classification accuracy of

the FNN.
6. Repeat the above process until CurrentIteration = MaxIteration.
7. End FPSOGSA.

4 Experimental Computational Results and Discussion

The inputs to the network model are the seven attributes of wireless signal strengths
measured from the various routers. The outputs obtained are the class labels that
classify users based on their locality. 15 hidden nodes are chosen for the neural network
structure. The weights for the neural network are obtained from the optimization
algorithms. The neural network shown in Fig. 1, is being trained with PSO, GSA,
PSOGSA and the proposed FPSOGSA algorithms separately to obtain the initial
weights required to train the neural network. These weights are further optimized over
300 iterations to obtain the best accuracy for the dataset. The classification accuracies
of the neural networks after training with these algorithms for an evolution of 300
iterations are shown in Table 2. The proposed FPSOGSA boosts the performance of
the neural network as it enhances the probability of exploring new search spaces and
exploits the best particles so that they overcome the local minima. This is evident from
the steep decrease in the Mean Square Error (MSE) values as shown in the Fig. 3. The
figure also depicts the comparison in the decrease in mean square error values over
three hundred iterations for the various other optimization strategies considered here.

We can clearly observe that there is very minimal error when the weights are obtained
by FPSOGSA to train the neural network. Thus, the FPSOGSA is found to outperform
the Particle Swarm Optimization (PSO), Gravitational Search Algorithm (GSA) and the
hybrid PSOGSA (Fig. 2).

We also compare other models like the SVM and Naïve Bayes which are com-
monly used pattern classification approaches. However, we choose to use the neural
network due to the concrete reasons explained towards the end of Sect. 1. Here, Fig. 3.
shows the classification accuracies obtained using various algorithms for the dataset

Table 2. Classification Rates in (%)

PSO-NN GSA-NN PSOGSA-NN FPSOGSA-NN SVM Naïve Bayes

64.66 77.53 83.28 95.16 92.68 90.47
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procured. We performed tenfold cross validation and recorded the average of ten folds
as the classification accuracy. From the results obtained we conclude that the
FPSOGSA with neural networks give the highest classification rate.
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Abstract. The decision theoretic rough set model was introduced in the 90’s in
order to loosen the restrictions of conventional rough approximations. Following
this the conventional rough c-means was extended to the decision theoretic rough
set context by Li et al. 2014. However, the Euclidean distance used as the
similarity measure in this paper had the property of separability and to rectify this
problem Kernel measures were used to develop the Kernel based decision the-
oretic rough C-means by Ryan et al. in 2016. As it is known, the hybrid models
are more efficient than the individual models this approach was further extended
and the Kernel based decision theoretic rough Fuzzy C-means was introduced by
them recently in 2016. As a model of uncertainty intuitionistic fuzzy sets are
more general than the fuzzy sets, So, we use the intuitionistic fuzzy sets instead of
fuzzy sets and introduce a Kernel based Decision theoretic rough intuitionistic
Fuzzy C-means in this paper. To provide variety and measure the effects, we have
selected three of the most popular kernels; the Radial Basis, the Gaussian and the
hyperbolic tangent kernels in our model. For the experimentation purpose we use
three datasets namely the Iris, the wine and the glass data sets from the UCI
repository. The efficiency measuring indices DB and D are used for evaluating
the relative efficiencies of this algorithm and the other algorithms in this direc-
tion. Our results show that the proposed model provides improved results than
the other two models. Some diagrams are presented to show the results visually.

Keywords: Rough sets � Clustering algorithms � Decision theoretic rough set �
Similarity indices � Kernel measures

1 Introduction

The process of generating groups of similar objects (called clusters) from a given data
set according to the criterion of similarity is termed as clustering and it plays an
important role in data analysis. The early clustering algorithms are crisp by nature. It
has been observed that uncertainty in data has become an inherent feature. This
necessitated the development of uncertainty based algorithms like the fuzzy c-means
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[2], the intuitionistic fuzzy c-means [4], the rough c-means [9] and the hybrid algo-
rithms like the rough fuzzy c-means [10, 11] and the rough intuitionistic fuzzy c-means
[3]. A probabilistic model called the decision theoretic rough set (DTRS) was intro-
duced with the aim of relaxing the restrictions on the approximations in the conven-
tional rough set model. The DTRS model can derive several important rough set
models by using proper lost functions. Using this model a c-means algorithm was
introduced recently [8] and it has been found to be more efficient than the normal rough
c-mean. However, the dependence of the similarity measure in this algorithm on
Euclidean distance is prone to separability in data sets. So as a remedy to this, the
Euclidean distance is replaced by Kernels for measuring similarity and a Kernel based
Decision Theoretic Rough C Means were proposed and analyzed [14]. However, the
hybrid models are more efficient than the individual models and so the algorithm has
been extended to propose and study the Kernel based Decision Theoretic Rough Fuzzy
c-means algorithm, still very recently in [15]. However, it is well known that as an
imprecise model, the intuitionistic fuzzy sets [4] is more general and efficient than the
fuzzy sets. So, in this paper we propose a Kernel based Rough Intuitionistic Fuzzy
c-means algorithm. Here, we take three kernels; namely the Gaussian, the hyper tangent
and the radial basis function (RBF) for our study and compare their efficiencies. For the
experimental purpose, we use three data sets of different characteristics, from the UCI
repository, namely the iris data set, the wine data set and the glass data set. Measuring
indices; the DB index and the D index are computed for all the three data sets and four
algorithms, the Decision Theoretic Rough Intuitionistic Fuzzy C-Means (DTRIFCM),
the Decision Theoretic Kernalized Rough Intuitionistic Fuzzy C-Means (DTKRIFCM)
with kernels Gauss, RBF and Hyper Tangent. The results are presented in the tabular
form (Table 1) and in graphical forms (Figs. 1 and 2) for visual comparison. The
further structure of the paper is that we present definitions and notations in Sect. 2. In
Sect. 3 we present the DTKRIFCM algorithm. The experimental set up and results
form the contents of section followed by concluding remarks in Sect. 5. Finally the
paper ends with a compilation of papers and other sources referred during preparation
of this paper.

2 Definitions and Notations

Some definitions and notations to be used in this article are presented in this section.
Pawlak [8] introduced the rough set model in 1982 where he used equivalence relations
to generate two approximations called the lower and upper approximations of the set
with respect to the equivalence relation. As shown by Dubois and Prade [3] the notion
of rough sets and the earlier introduced notion of fuzzy sets by Zadeh [16] are com-
plementary in nature.

2.1 Rough Sets and Uncertainty Based Models

Extending the notion of fuzzy sets, intuitionistic fuzzy sets were introduced by
Atanassov as follows:
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Definition 2.1.1: Given an universal set Y, an intuitionistic fuzzy set B on Y is
characterised by the functions. mB and nB, given by, mB, nB :Y ! [0,1]. The hesitation
function associated with B is denoted by pB which is the one’s complement of
(mB + nB).

We denote by U and R, a universe discourse and an equivalence relation over U
respectively. For any x 2 U we denote its equivalence class by [x]R.

Definition 2.1.2: Given any X�U, we associate two crisp sets RX and �RX called the
lower and upper approximation of X with respect to R defined as

RX ¼ x 2 Uj½x�R�X
� �

and �RX ¼ x 2 Uj½x�R \X 6¼ /
� �

;

The R-boundarv BNR (X) of X is given by BNRðXÞ ¼ RX � RX. We say that X is
rough with respect to R if and only if RX 6¼ �RX, equivalentlv BNRðXÞ 6¼ /. X is said to
be R-defmable if and only if RX 6¼ �RX; or BNR ¼ /.

The properties following of the properties of Rough sets are to be used in decision
theoretic rough set model [14, 15]. RCM [5] does not verify all of these properties but
only uses these properties to assign data points.

RðXiÞ��RðXiÞ�U; 8Xi�U ð2:1Þ

RðXiÞ \RðXjÞ ¼ /; 8Xi; Xj�U; i 6¼ j ð2:2Þ

RðXiÞ \ �RðXjÞ ¼ /; 8Xi; Xj�U; i 6¼ j ð2:3Þ

If an object x 2 U is not a part of any lower approximations then it must belong to
the boundary areas of two or more clusters and hence belongs to the upper approxi-
mations of these clusters.

2.2 DTRS Model

The DTRS model applies the Bayesian decision procedure for the construction of
probabilistic approximations [17]. Let X ¼ fx1;x2; . . .;xsg be a finite set of states and
A ¼ fa1; a2; . . .amg be a finite set of possible actions. Let kðaijxjÞ denote the loss (or
cost) for taking action ai when the state is xj. Let PðxjjxÞ be the conditional probability
of an object being in state xj, supposing that the object is described by x. The expected
loss associated with taking the action ai is given by

RðaijxÞ ¼
Xs

j¼1

kðaijxjÞPðxjjxÞ
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In DTRS model. X ¼ A;Acf g denotes the set of states indicating that indicating that
an object is in A and not in A, respectively. Let A = {a1,a2,a3} be the set of actions,
where a1, a2 and a3 represent the three actions in classifying an object, deciding POS
(A). deciding NEG(A) and deciding BND(A) respectively. Here POS ¼ RðAÞ;
NEG ¼ U � �RðAÞ; BNDðAÞ ¼ BNRðAÞ.

The probabilities P Aj x½ �ð Þ and P(ACj[x]) are the probabilities that an object in its
equivalence class belongs to A or AC respectively. The expected loss Rðaij x½ �Þ asso-
ciated with taking the corresponding actions can be expressed as:

Rðaij½x�Þ ¼ ki1PðAj½x�Þ þ ki2PðACj½x�Þ; i ¼ 1; 2; 3:

The DTRCM and DTRFCM algorithms were proposed and studied in [14, 15].
Using Kernels instead of the Euclidean distance the DTKRCM and DTKRFCM
algorithms were introduced and studied in [10, 11]. Making use of hybridization of
DTRS model and Intuitionistic Fuzzy sets, the DTRIFCM algorithm was introduced by
Sresht et al. [12, 13]. In this paper, we carry the study forward by introducing the
hybrid Kernelised algorithm DTKRIFCM. For the presentation we require the fol-
lowing additional concepts and notations. It may be noted that some hybrid algorithms
like the rough fuzzy c-means have been introduced in literature [6, 7].

2.3 Calculating Risk

The lower approximation LðxlÞ of xl 2 X is defind as:

LðxiÞ ¼ x 2 X:Dðx; xiÞ� d^x 6¼ xif g; where ð2:3:1Þ

d ¼ min
1� k� c

Dðxl; vkÞ=p
� �

ð2:3:2Þ

Let the conditional probability of xl in Ci be as

PðCijxlÞ ¼ 1=
Xc

j¼1
Dðxl; viÞ=Dðxl; vjÞ
� �2=ðm�1Þ ð2:3:3Þ

Non-membership values are calculated mAðxÞ. ‘t’ is genarally taken as 2.

mAðxÞ ¼ 1� PðCijxlÞ
1þ t:PðCijxlÞ ; t[ 0 ð2:3:4Þ

We derive hesitation degree as

piðxiÞ ¼ 1� PðCijxlÞ 1� PðCijxlÞ
1þ t:PðCijxlÞ ; x 2 X ð2:3:5Þ
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Modifying the fuzzy membership value as PnewðCijxlÞ, where,

PnewðCijxlÞ ¼ PðCijxlÞþ piðxlÞ ð2:3:6Þ

Tx represents the group of clusters similar to each individual data point x.

Tx ¼ Ci 2 C : PnewðCijxÞ[ 1=cf g ð2:3:7Þ

The action set is defined as A = {a1,a2,…,ac}. where represents allocating a data
point to Cj. The loss related with taking the action aj for xl when xl belongs to Ci is
represented by kxlðajjCiÞ and defined as:

kxlðajjCiÞ ¼ kajCi
ðxlÞþ

X
x2LðxiÞ

bðxÞkajðxÞ; where ð2:3:8Þ

k
aj
Ci
ðxlÞ ¼ 0; if i ¼ j;

1; if i 6¼ j:

�
ð2:3:9Þ

kajðxÞ ¼ aj � Tx
�� ��=aj� � ¼ 0; if aj 2 Tx;

aj � Tx
�� ��=aj� � ¼ 1; if aj 62 Tx:

�
ð2:3:10Þ

bðxÞ ¼ exp �d2ðx; xlÞ=2r2
� � ð2:3:11Þ

The risk related with taking action aj for xl is represented by Rðaj=xiÞ and is defined as

Rðbj=xlÞ ¼
Xk
i¼1

kxiðbj=ciÞPnewðci=xlÞ ð2:3:12Þ

For each data point xl let ak ¼ argminai2A Rðai=xlÞf g. The index JD is a measure of
closeness of ak through risk value and is given by

JD ¼ jj RðajjxlÞ=RðakjxlÞ
� �� 1þ e ^ j 6¼ k

� � ð2:3:13Þ

If JD ¼ /; xl is assigned to Ck. Otherwise 8j 2 JD; xl 2 bnðCjÞ.

2.3.1 DTRS
Let the classes of a classification p of U be denoted as p ¼ A1;A2; . . .Amf g. The two
approximations are given by:

aprða;bÞðAiÞ ¼ POSða;bÞðAiÞ ¼ x 2 UjPðAj½x�Þ � af g;
aprða;bÞðAiÞ ¼ POSða;bÞðAiÞ [BNDða;bÞ ¼ x 2 UjPðAj½x�Þ � bf g
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The approximations of a partition p in terms of the approximations of Ai; i ¼
1; 2; . . .m are defined as follows:

POSða;bÞðpÞ ¼
[

1� i�m

POSða;bÞðAiÞ;BNDða;bÞðpÞ ¼
[

1� i�m

BNDða;bÞðAiÞ;NEGða;bÞðpÞ

¼ U � POSða;bÞðpÞ [BNDða;bÞðpÞ

The three regions defined above may not be mutually|exclusive but together they
form a covering for U.

2.4 Similarity Metrics

Similarity between two data points can be calculated using several measures. Though
one of the easiest and popular approaches to do this is by calculating Euclidean
distance, it has several limitations. Firstly, the eventual outcomes are dependent upon
the cluster centroids assigned in the beginning and secondly it is only able to segregate
the data points which are linearly separable. Solution for the second limitation is
provided by kernel based clustering approach which can create non-linear boundaries
to segregate the data points successfully. This is ensured by converting the data present
in the ordinary plane to feature plane. The feature plane is higher dimensional plane
and is known as kernel space. To ensure this kind of transformation some non-linear
mapping functions can be used. In this subsection we discuss on the similarity
measures.

Definition 2.4.1: (Euclidean distance). Suppose a ¼ ða1; a2; . . .; anÞ and b ¼ ðb1;
b2; . . .; bnÞ are two points in the n-dimensional Euclidean space. Then the Euclidean
distance d(a, b) between a and b is given by:

dða; bÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða1 � b1Þ2 þða2 � b2Þ2 þ . . .þðan � bnÞ2

q

Definition 2.4.2: (Kernel distance) [13]. Let ‘a’ denote a data point. Then transfor-
mation of ‘a’ to the feature plane which possess higher dimensionality be denoted by
UðaÞ. Description of inner product space is given by Kða; bÞ ¼ \UðaÞ;UðaÞ[ . Let
a ¼ ða1; a2; . . .; anÞ and b ¼ ðb1; b2; . . .; bnÞ are two points in the n-dimensional space.

Kernel functions use in this paper are stated as follows:

(a) Radial basis kernel:

Rða; bÞ ¼ exp �
Xn

i¼1
ðapi � bpi Þq=2r2

h i
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Implementations of all the algorithms corresponding to radial basis kernel have
been done using p = 2 and q = 2.

(b) Gaussian kernel: (RBF with p = 1 and q = 2)

Gða; bÞ ¼ exp �
Xn

i¼1
ðai � biÞ2

n o
=2r2

h i

(c) Hyper tangent kernel

Hða; bÞ ¼ 1� tanh �
Xn

i¼1
ðai � biÞ2

n o
=2r2

h i
;

Where r2 ¼ 1
N

PN
i¼1

ai � a0k k2 and a0 ¼ 1
N

PN
i¼1

ai:

For all the kernels functions, N denotes the total number of existing data points and
x� yk k denotes the Euclidean distance between points x and v which pertain to

Euclidean metric space. By [17].
D(a, b) denotes the complete form of kernel distance function where D a; bð Þ ¼

K a; að ÞþK b; bð Þ � 2K a; bð Þ and when similarity property (i.e. K(a, a) = 1) is applied,
we get D a; bð Þ ¼ 2 1� K a; bð Þð Þ

3 DTKRIFCM

In this section we present our proposed algorithm Decision Theoretic Kernelised
Rough Intuitionistic Fuzzy C-Means.

3.1 Basic Idea

In this algorithm, we modify the Decision theoretic Rough Intuitionistic Fuzzy C
means algorithm by using various different distance metrics such as the use of the
Gaussian kernel, Radial Basis kernel and the hyper tangent kernel.
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3.2 Algorithm Description

An Analysis of Decision Theoretic Kernalized Rough 303



4 Experimental Results

In this section we present the experimental results performed by us. Both the algo-
rithms have been implemented using the python programming language in the Canopy
software interface. Three popular datasets namely Iris, Wine and Glass have been taken
from the UCI Repository [1] for experimental purposes.

First we show the DB and D index values obtained for the three datasets using
various kernels as Gauss, Radial basis and Hyper-tangent kernel. Further we represent
the clustering results of the following algorithms on the Iris dataset following with the
DB/D index variation. The DTKRIFCM performs better than the existing DTRIFCM
shown by the lower DB value [5] and higher D index [7].

Table 1 displays the results of our experiment conducted by taking the iris dataset,
wine dataset and the glass data set to the four algorithms DTRIFCM and the three
kernelised versions of the DTKRIFCM with the three different kernels; the Gaussian
kernel, the RBF kernel and the hyper tangent kernel. We computed the DB and D
indices for all these algorithms for each of the data sets. It can be observed that the DB

Table 1. DB and D Values for different Algorithms with respect to different Datasets

Iris Dataset Wine Dataset Glass Dataset
DB D DB D DB D

DTRIFCM 0.3879 0.5199 1.2087 0.2820 0.9848 0.1701
DTKRIFCM (GAUSS) 0.3665 0.5313 1.0121 0.3231 0.9499 0.1896
DTKRIFCM (RBF) 0.3189 0.5796 1.1667 0.4166 0.8623 0.2179
DTKRIFCM (Hyper Tangent) 0.3545 0.5401 1.1898 0,3713 0.9378 0.1983

Fig. 1. Comparision of DB Values for different Algorithms and different Data
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values for all the kernelised DTKRIFCM algorithms are lower than that of DTRIFCM.
However, among the kernelised versions the RBF kernel provides the best value. For
the wine data set again all the kernelised versions provide lower values than the original
DTRIFCM. But, here the Gaussian kernel provides the best value. For the glass data set
the kernelised versions provide better DB values than the original algorithm. But, the
RBF kernel produces the best value. So, we conclude that the kernelised versions of
DTRIFCM are superior to the original algorithm. But among the kernels the hyper
tangent kernel is the most inferior one. The RBF and Gaussian share the honours as the
best for different data sets.

The D values computation shows that the Kernelised versions provide higher
values in comparison to the original algorithm. Among the kernelised versions the RBF
kernel provides the highest value in all cases. So, the DTKRIFCM algorithm with RBF
kernel is the best for D values. We can conclude that it is the best for all data sets taking
both the DB and D values into consideration as a whole.

The graphical representations are provided in Figs. 1 and 2 for visual support of the
conclusions drawn above.

5 Conclusions

In this paper a modified version of the DTRIFCM is introduced namely DTKRIFCM.
We have tested the new algorithm with existing popular datasets IRIS, WINE and
GLASS from the UCI Repository. The two algorithms are compared based on its per-
formance on the DB/D indexes. The DTKRIFCM performs better than the DTRIFCM.
Results obtained are shown in the tabular format for evaluation and comparison.
Also graphical representation of the clustered data is displayed along with the DB/D
index variation for further understanding. Also, the RBF kernel outperforms all the other
kernels in most cases and gives excellent clustering result.

Fig. 2. Comparison of D Values for different Algorithms different Data Sets
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Abstract. The Normal voltage balancing property of capacitor voltage has an
attractive choice of an flying capacitor converters. The study of H-bridge flying
capacitor converter with 5, 7 and 9 levels are carried out and to increase the
voltage levels falls the Total Harmonic Distortion. By using phase shifted carrier
pulse width modulation technique (PSCPWM) the root mean square output
voltage is controlled. For effective output voltage control, fuzzy controller is
used. Fuzzy controllers are designed for the different voltage levels of H-bridge
flying capacitor multilevel converter to control the Root Mean Square
(RMS) output voltage. The Performances of the fuzzy controllers with multi-
level converters of H-bridge flying capacitor for different levels are studied.

Keywords: Fuzzy logic � Fuzzy system � Flying capacitor � Phase shifted
carrier pulse width modulation technique � Total harmonic distortion � Voltage
balancing

1 Introduction

In Latest years it has been signified the development in multilevel inverter, more than
in the medium voltage drives. Compared to the diode clamped [13] and H-bridge
inverters [14–16], the H-bridge flying capacitor multilevel inverter (HBFCMLI) is the
new topology [1–5]. Through the switching state selection, the flying capacitor has
some distinct advantages over the absence of diodes in diode clamped and regulates
flying capacitor voltage. In many industrial applications, the flying capacitors are used
due to those advantages. The HBFCMLI converter, a capacitor is not an issue if voltage
balancing, It has some probable changes in the voltage ratio and reduction in order to
increase the voltage levels by improving the power quality [3].

The investigation of flying capacitor multilevel converter with three different
voltage levels, due to the THD, the three different voltage levels are balancing of Flying
Capacitor converter, through these three different voltage levels it is an important
property that provides safety and effective operation [6–8]. By differentiating with
single leg operation [4], high system order twice increased in H-bridge FC converter
and it obtains from the single leg prototype by using mirror speculation formalism. As
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behaviour of load current, modulation index, pulse proportion and load frequency, it
has dynamic variation of voltage balancing. The characteristics have dealt with in this
paper [9, 10].

The performance of H-bridge flying capacitor has the open loop analysing of 5, 7
and 9 level configurations, then the total harmonic distortion (THD) of those levels are
compared in MATLAB simulation, the closed loop analysis of FC inverter is per-
formed by using the fuzzy logic programs.

2 H-bridge Flying Capacitor Multilevel Inverter Analysis

In this segment the 5-level, 7-level and 9-level H-bridge Flying Capacitor Multilevel
Converters are investigated through the simulation of circuits using MATLAB Simu-
link. Based on pulse width modulation technique for the three configurations, phase
shifted carrier is used to generate the triggering pulse due to the converter circuits. This
phase shifted carrier based PWM is a hybrid of phase shifted and level shifted pulse
width modulation.

2.1 Five Level HBFCMLI

The 5-level H-bridge Flying capacitor (HBFC) topology is as shown in Fig. 1. The
configuration of H-bridge flying capacitor multilevel inverter has positive and negative
group, due to each cell, it has two complementary switches Sp1 & Sp10

� �
for cell

P1; Sp2 & Sp20 for cell P2; Sp3 & Sp30 for cell P3;Sp4 & Sp40 for P4; SN1 and SN10 for cell
N1; SN2 and SN20 for cell N2; SN3 and SN30 for N3; SN4 and SN40 for N4. For giving out
the positive waveform across the load will conduct the positive group of cell, then the
no. of voltage levels increases with increase in no. of cells. Due to the phase shifted
carrier pulse width modulation technique, it is used to control the complementary
switches such as S1; S10ð Þ, S2; S20ð Þ, S3; S30ð Þ, S4; S40ð Þ. By using the mirror speculation
formalism, the H-bridge converter obtained from its single leg prototype. The circuit
has 16 switching states. The capacitors C1 & C2 are flying capacitors and their voltages
Vc1 & Vc2 respectively. Capacitor voltages are equal Vc1 = Vc2. The capacitor volt-
ages which are controlled to be regulates at −Vdc/4, Vdc/2 and Vdc/4 correspondingly.

In the above Table 1, 5-level H-bridge flying capacitor MLI shows the 5-level
output voltage for different switching states and complete switching scheme. For five
level HBFCMLI is explained, in the above modes of operation. When there is an
increase in the no. of switches in positive group, these should be a consecutive increase
in the negative group also, by maintaining the equal no. of levels both in positive and
negative. When there is increase in the output voltage levels and there will be
increasing in no. of capacitors. The simulation results for output voltage of H-bridge
flying capacitor at 5-level inverters is as shown in Fig. 2. From the figure, it is noticed
that the 5-level output formed. The output voltage on y-axis and time period on x-axis
is shown in Fig. 2. By applying Fast Fourier Transform (FFT) analysis to the five level
HFCMLI as shown in Fig. 3. From the analysis, the total harmonic distortion for
5-level flying capacitor converter is 38.33% can be settled. THD value can be reduced
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by using proper filter circuit. The Fig. 3 it can be concluded that, harmonic order on
x-axis and harmonic magnitude (% of fundamental) on y-axis. The fundamental fre-
quency is 50 Hz for the simulation circuit.

DC

R

L

C1

C2

S2
S4

S1
S3

S1'
S3'

S2' S4'

Fig. 1. Five level H-bridge flying capacitor MLI

Table 1. Switching pattern of five level HBFCMLI

Output voltage
level

Switching states {(SP1, SP2), (SN1, SN2)}

−Vdc {(0, 0), (1, 1)}
+Vdc {(1, 1), (0, 0)}
0 {(0, 0), (1, 0)},{(1, 0) (0, 1)}{(0, 1), (1, 1)}, {(1, 0), (0, 0)}{(1, 0), (1, 0)}

{(1, 1) (1, 1)},{(0, 1), (0, 1)}
+(V/2)dc {(1, 1), (1, 0)}, {(0, 1), (0, 0)}
−(V/2)dc {(0, 0), (0, 1)},{(1, 0) (1, 1)}
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2.2 Seven Level HBFCMLI

For the existing 5-level H-bridge Flying Capacitor Inverter is planned to change the
7-level H-bridge Flying Capacitor by adding four more switches to the existing one and
polarised capacitors are used in place of normal capacitors in the circuit with all the
capacitors have taken same value. The 7-level HBFCMLI simulation result as shown in
Fig. 4. From the analysis, it can be concluded that there is seven level output created.
The switching sequence can be attained for creating five levels HBFCMLI by con-
tinuing the switching sequence.

The Fast Fourier Transform (FFT) analysis of 7-level flying capacitor converter is
shown in Fig. 5. From the analysis it can be concluded that, the total harmonic dis-
tortion is 24.30% for seven level H-bridge flying capacitor converter. The total har-
monic distortion of five level H-bridge multilevel inverter is 38.33%. The decrease in
total harmonic distortion is 14.03% from five levels to seven levels. The filter circuit
can be used by reducing the THD value. The seven level H-bridge Flying Capacitor
Multilevel Inverter diagram shows the output voltage across the load in y-axis and the
time in x-axis. The fundamental frequency is 50 Hz for seven levels HBFCMLI.

2.3 Nine Level HBFCMLI

For the modified 7-level H-bridge Flying Capacitor Inverter again planned to change the
9-level H-bridge Flying Capacitor Inverter by adding four more switches to the modified
one and capacitors also same as in the 7-level HBFC with same values. The 9-level
HBFCMLI simulation result as shown in Fig. 6. From the analysis it can be concluded
that, there is nine level output created. The switching sequence can be achieved for
creating seven levels HBFCMLI by continuing the switching sequence.

The Fast Fourier Transform (FFT) analysis of 9-level flying capacitor converter is
shown in Fig. 7. From the analysis it can be concluded that, the total harmonic dis-
tortion is 17.37% for nine levels H-bridge flying capacitor converter. The total har-
monic distortion (THD) for 5-level is 38.33% and for the 7-level total harmonic
distortion (THD) is 24.30%. The total harmonic distortion decreases from 5-level to
7-level is 14.03% and from 7-level to 9-level the total harmonic distortion is 6.93%.

The Five level, Seven level and Nine level H-bridge Flying Capacitor Multilevel
converter THD analysis as shown in Fig. 8, and it could be noticed from the figure that
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Fig. 2. Output voltage across the load for
5-level HBFCMLI
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the reduction of THD between 5-level and 7-level is faint, while the reduction between
7-level and 9-level H-bridge flying capacitor multicell converter is less.

3 Fuzzy Controller For H-bridge Flying Capacitor Multilevel
Converter

To Simulates human thinking by integrating the impression for all the physical system
characteristics by using Fuzzy Logic digital control scheme. By the binary control
variables into soft grades, Fuzzy Logic works with changing degrees of member-
ship. For its low selectivity the Fuzzy Logic is used. i.e. it gives flexible response for a
given input. The continuous variable systems, such as motors or positioning control the
Fuzzy Control system is finest for its smooth and continuous output. To test the
variables by using rules, which produce one or more outputs confessing in which rules
stated [11, 12].

By achieving the appropriate output, the inputs membership degrees and response
of centroid is calculated for its output of each rule is to be considered and discussing.
The main characteristics of multicell converter structure, its having many switching
devices. Therefore the mathematical model is complex. The Fuzzy controller technique
is used to capture the uncertain information by replicating the human behavior. The
Fuzzy Logic Controller (FLC) is used to control the system, when the control situation
is complex, nonlinear and its mathematical model is hard.

The advantages of FLC’S are as follows

1. It does not requires the accurate mathematical model.
2. By the FLC Controller, analysis of nonlinear systems can be handling easily.
3. Uncertain inputs can be handling easily.
4. Compared to Conventional controller, the FLC is vigorous.

The Fig. 9. Shows the closed loop fuzzy controlled converter. The difference of
reference voltage to output voltage gives the error signals. To calculate the fuzzy output
by using these error signals. The Fuzzifier, Rule Evaluator and Defuzzifier, these three
blocks are the main blocks in Fuzzy controller. The fuzzification is to be done by
converting numerical variables to linguistic variables, a Rule Evaluator block is the
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decision making block and a fuzzy is the decision making block and a fuzzy set can be
denoted as shown below.

lðx) ε ½0; 1�

A = [x, lðx) xj εX]

In the above equation X denotes collection of objects and is denoted by {x}.
The reverse of fuzzification, is called the Defuzzification. The linguistic variables

are converted to crisp values by using Defuzzification. The crisp output equation is
given by

CrispOutput =
X

Ai � Xi=
X

Ai

For the rule base block the linguistic control rules is used to design fuzzy controller.
The fuzzification and defuzzification is required for the definition of membership
function. The data base block is provides the fuzzification and defuzzification. In the
block diagram, the power converter block is to be considered as phase converter,
inverter or cycloconverter. The output of the FLC will be designed based on the circuit.
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For example, by controlling the triggering angle, the output voltage can be controlled
by FLC. In case of chopper it controls the duty ratio, in case of inverter and cyclo-
converter it controls the Modulation index and switching sequence respectively.

3.1 Fuzzy Controller for 5- Level HBFC Multilevel Converter

For 5-level H-bridge Flying Capacitor converter is used to design the fuzzy controller
with input and output membership functions. From Fig. 10 it is noticed that the fuzzy
controller designed is different from that of input membership function. Figure 11
shows and explained by the designed fuzzy controller membership function output. The
output variable amplitude presents in the x-axis and membership magnitude presents in
the y-axis. For the fuzzy controller arrangement, the Root Mean Square (RMS) output
voltage is control and the 5-level H-bridge multilevel inverter using fuzzy controller
results as shown in Fig. 14. While the output voltage for load is also shown in the same
figure. The Fig. 13 shows the Root mean square value (RMS) and Reference voltage.

From the Fig. 12, it can be noticed the reference voltage is initially kept at 50 v and
then after 0.5 s, then it is raised to 70 v as shown in Fig. 13 it is observed that the initial
part of the voltage in pulse width is less (while the reference voltage is 50 v), after
0.5 s, it is increased to raise the output voltage to 70 v for pulse width. By using fuzzy
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Fuzzy Logic Controller

Reference

Voltage

+

-

e

de

Regulated

Voltage

Fig. 9. Power converter FLC internal
structure

Fig. 10. Fuzzy controller membership func-
tion for Input (error)

Fig. 11. Designed fuzzy controller member-
ship function for output (amplitude)

Fig. 12. Surface view of the fuzzy controller
designed
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controller, the reference voltage and RMS voltage of the five level multilevel inverter is
obtained in Fig. 13. 50 v is kept at minimum reference voltage and still maintained at
0.1 s.

3.2 Fuzzy Controller for 7-Level H-Bridge Flying Capacitor Multilevel
Converter

The 7-level H-bridge flying capacitor converters is similar to the five level scheme,
which is designed from the fuzzy controller. The rules and input, output membership
functions are same to the five level configuration, it is incorporated with its range of
input member functions, and the range is −80 to +80 in the case of five level H-bridge
flying capacitor, when the range is changed to −88 to +88 at seven level H-bridge
flying capacitor multilevel converter. The designed fuzzy controller is simulated with
seven level H-bridge Flying Capacitor multicell converter. The simulation result is
obtained as shown in Fig. 16, which is the load across the output voltage, from the
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Fig. 17 it can be noticed that initially 50 v kept as reference voltage then it is changed
to 80 v after 0.5 s the Root Mean Square output voltage changed along with reference
voltage, which can be concluded. The reference voltage and RMS output voltages as
shown in Fig. 15. During the initial period the wave form pulse width is less while
pulse width increases after 0.5 s to raise the RMS output voltage to 80 v.

3.3 Fuzzy Controller for 9-Level H-bridge Flying Capacitor Multilevel
Converter

The 9-level H-bridge flying capacitor converters are similar to the five level and seven
level schemes, which is also designed from the fuzzy controller. Therefore there is
small changes made in the input membership function, i.e. input range is kept at −90 to
+90, the remaining all the input and output membership functions are similar to that of
five level and seven level configurations. The designed fuzzy controller is simulated
with nine level H-bridge flying capacitor multicell converter. The simulation result is
obtained as shown in Fig. 18, which is the reduced output voltage across the load, from
the figures it can be noticed that initially 60 v kept as reference voltage then it is
changed to 80 v after 0.3 s the root mean square output voltage changed along with
reference voltage, which can be concluded. To obtain the output RMS voltage of 80 v
with increased pulse width, by changing the reference voltage from 60 v minimum
pulse width to 80 v and the nine level H-bridge flying capacitor multilevel inverter
reference voltage as shown in Fig. 16 (Table 2).
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controlled nine level HFCMLI

Table 2. Output parameters comparison for 5, 7 and 9-levels.

Type of inverter
Configuration

Output parameters
Output peak
voltage (Volts)

Output RMS
voltage (Volts)

Voltage
THD (%)

Output load
current (amp)

5-level 71 50.21 38.33 0.083
7-level 74 52.33 24.30 0.064
9-level 76 53.74 17.33 0.072
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4 Conclusion

The Natural voltage balancing of capacitor voltages is one of the main advantages of
H-bridge flying capacitor multilevel converter. For getting better voltage balancing
with capacitors in the circuit it uses phase shift carrier based PWM technique. For all
the flying capacitors with different levels i.e. five level, seven level and nine level
H-bridge flying capacitor converters are studied. With their performance the THD is
main comparison factor, which is found that the total harmonic distortion for five levels
is 38.33%, seven levels is 24.30% and nine levels is 17.37% respectively. Suitable
fuzzy controllers have been designed for all the three flying capacitor multilevel
converters and their performance has been verified. By using fuzzy controller technique
to reduce the error to zero by taking feedback from the output of the circuit.
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Abstract. In latest years, commercial companies rely upon using static power
converters for developing large voltage and large current applications. For these
kind applications preferably we choose multilevel inverters. The multilevel
inverters are used to convert DC input power to AC output power with more
number of voltage levels and with less Total Harmonic Distortion (THD). In this
paper, we evolved a new technique, soft switching for unique power converter
called stacked multicell converter (SMC). The fuzzy logic controller used to
controls the multi levels of operation for Stacked Multicell Converter. As
compared to the conventional converter, This SMC topology provides more
input voltage levels, reduces the converter energy storage, and also reduces the
voltage and current burden on semiconductor switching devices. This paper
presents the analysis and simulation results for fuzzy logic controlled multilevel
inverter of circuit topologies for open and closed loop operations.

Keywords: Stacked Multicell Converter � Soft switching controller � Phase
shifted carrier Pulse Width Modulation (PWM) technique � Total Harmonic
Distortion (THD)

1 Introduction

Recently all the industrial companies and research works be the more attractive towards
the multilevel inverters with high power switching devices to produce large voltage and
currents [1]. The inverter is one which converts DC input power into AC output of
single or three phases. The voltage and current stress on the inverter is increases
because the high power switching devices [2]. Now a days we are using high power
semiconducting switches are Insulated Gate Bipolar Transistor (IGBT) and Metal
Oxide Semi controlled Field Effect Transistor (MOSFET).

In this paper we presented a new scheme to improve dynamic performance of the
multilevel inverter by using fuzzy controlled Stacked Multicell Converter. By using
this scheme the output voltage levels of the converter improves and also energy stored
in the flying capacitor reduces. So the switching losses of the devices reduce. A SMC
works as inverter and is suits for medium and high voltage level applications.
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The stacked Multicell Converter constructed by p cells and n stacks. In the SMC
topology, the voltage and current stress on the semiconductor devices are reduced by
distributing stress equally to all the switches. The fuzzy logic controlled SMC topology
give less harmonic distortion with increasing output voltage levels [2]. So this topology
most popular for the applications like Un interrupted power supplies (UPS), switched
mode power supplies (SMPS) and motor drives. The new SMC topology uses the phase
shifted carrier pulse width modulation technique as control technique. This technique
provides desired switching pulses to the semi conducting devices by comparing the
reference sinusoidal wave and phase shifted carrier wave [6]. The fuzzy logic controller
monitors accurate switching pulses to the corresponding power switches.

This paper presents the analysis and simulation results for fuzzy logic control of
closed loop and open loop SMC with different output voltage levels. The output levels
consider for this analysis are five, seven and nine. The phase shifted carrier pulse width
modulation generates triggering pulses for the power switches, to make the SMC
output less harmonic [9].

2 Stacked Multicell Converter

The Stacked Multicell Converter (SMC) is behaves like Voltage Source Inverter
(VSI) and it comes under the group of multilevel converter. This converter is capable to
handle large voltages and gives better output control rather than the other types of
converters. The voltage and current stress on the inverter is reduced, because the total
stress is distributes to all semi conducting switches equally. The basic diagram of
switching cell is shown in Fig. 1.

In Fig. 1 there are 2 switches and are namely ‘A’ and ‘a’. Both the switches never
triggered at a time i.e., if A is in conduction means a must be in OFF state vice versa.
The switches ON/OFF accordingly with less amount of stress on the both the switches
and to obtain better output voltage. The new SMC construct p cells as columns and n
stacks as rows. This SMC topology addition with flying capacitors called as flying
capacitor stacked multicell converter. The SMC topology helps to reduce total energy
stored by capacitors [3]. The flying capacitor is connected in such a way that to avoid
damage of semi conducting devices. So the capacitor is connected among the two p
cells, to share the voltage stress equally between the switches. So, the semiconducting
switches protected from the damages caused by voltage stress. In the new SMC

Fig. 1. Basic model of switching cell
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topology, there are two voltage sources which are placed top and bottom of the rows.
The function of upper DC source is to increases the voltage levels in positive cycle and
lower DC source is to increases voltage levels in negative half cycle. The output
voltage level can increase by adding additional cell in series with the inverter circuit.
The capacitors in the circuit will supplies stable voltage to the inverter circuit when the
supply is shut down.

In this paper, the simulation of five level, seven level and nine level fuzzy con-
trolled stacked multicell converters is analysed by MATLAB simulink software. The
triggering signal for all the three configurations of converters are generated by phase
shift carrier based pulse width modulation. These trigger pulses are given to the power
semiconductor switches in the inverter circuit. This triggering configuration is hybrid.

2.1 Stacked Multicell Converter Topology for Five Level Systems

In the stacked multicell topology the output level of the converter increased by adding
the p cells cascading to the previous converter system. The operational diagram of Five
Level output voltage system for SMC is shown in Fig. 2.

The five level inverter there are 2 columns i.e., p = 2 cells, and two rows i.e., n = 2
stacks. It consists of p � n = 4 semi conducting switching cells and flying capacitors of
(p – 1) * n = 2. In Fig. 2, there are 8 switching devices, 2 voltage sources and 2 flying
capacitors. The switches are divided into two groups one is positive (SP1 & SP2) group
and another is negative (SP3 & SP4). In addition with the above switches there are
complimentary switches and they also in positive (SP1′ & SP2′) group and negative
(SP3′ & SP4′) groups [6]. The function of the flying capacitor is to distribute the
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Fig. 2. Five level inverter system

Table 1. Switching states
for five level output

Output
voltage
level

Switching
states of
{SN1, SN2,
SP1, SP2}

–2Vdc {0, 0, 0, 0}
–Vdc {0, 1, 0, 0}

{1, 0, 0, 0}
0 {1, 1, 0, 0}

{0, 1, 0, 1}
{1, 0, 1, 0}

+Vdc {1, 1, 0, 1}
{1, 1, 1, 0}

+2Vdc {1, 1, 1, 1}
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available voltage so the stress on the switches reduces. The capacitor voltage is almost
half of the source voltage.

The capacitor voltage is given by

VC ¼ E=2 ð1Þ

The value of the capacitor is find out by using formulae

C = (IrmsÞ=ðVripple � 2 � p � FsÞ ð2Þ

The switching states of the five level converters are shown in Table 1. The Stacked
Multilevel Converter topology for five level system turn ON and turn OFF pules
generated by using Fuzzy controller. The soft switching patterns develop pulses for the
SMC to get different voltage levels by changing switching modes of operations [5].

2.2 Open Loop SMC Simulation Results for Five Level Output

The number of switches in the positive group is equal to number of switches in
negative group to get constant voltage level on both positive and negative cycles. The
upper side DC voltage source responsible for positive cycle voltage level and lower
side DC voltage source is responsible for negative cycle voltage level. The open loop
Stacked Multicell Converter simulation results for five level output is shown in Fig. 3.
In Fig. 3 X-axis as time period and Y-axis as output voltage.

The five level open loop SMC topology output analyzed by Fast Fourier Transform
(FFT) and is show in Fig. 4. In the FFT analysis the THD for five level SMC is
38.54%. By designing the proper filter circuit Total Harmonic Distortion value of the
converter is reduced. In Fig. 4 X-axis is order of the harmonic and Y-axis is THD
magnitude and is simulated for power frequency of 50 Hz.
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2.3 Stacked Multicell Converter Topology for Seven Level Output

The SMC topology for seven level output voltage topology is simple. By adding one p
column in series with five level SMC topology circuit we can get seven level SMC
topology. The SMC topology for seven level output configuration is shown in Fig. 5.

In seven level inverter circuit designed as columns of p = 3 cells and rows of n = 2
stacks. It consist of p � n = 6 semi conducting switching cells and flying capacitors of
(p – 1) * n = 4 [5]. The SMC seven level topology consists of 12 power switches, 2 DC
voltage sources and flying capacitors of 4 which are shown in Fig. 5. In this topology
all the switches are high power and low frequency. The seven level SMC configura-
tions there are three switches for both positive and negative cycles. The positive group
devices represent as “SP1, SP2, and SP3” and negative group devices represents as
“SN1, SN2 and SN3”. This circuit also consists of complimentary devices, they are
positive group complimentary devices represents as SP1′, SP2′, and SP3′ and negative
group complimentary devices represented as SN1′, SN2′, SN3′. This circuit having 4
flying capacitors and they work like same as five level SMC. The number of capacitors
increased because of the increase in cells and voltage level. The voltage across the
flying capacitors is differs according to the placement. The first pair of capacitors
voltage be the two-third of source voltage and second pair of capacitors voltage be the
one-third of source voltage [4].
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Fig. 5. Seven level inverter system

Table 2. Switching states for
seven level

Voltage
level

Switching states
of {SN1, SN2,
SN3, SP1, SP2,
SP3}

–3Vdc {0, 0, 0, 0, 0, 0}
–2Vdc {0, 0, 1, 0, 0, 0}

{0, 1, 0, 0, 0, 0}
{1, 0, 0, 0, 0, 0}

–Vdc {1, 1, 0, 0, 0, 0}
{1, 0, 1, 0, 0, 0}
{0, 1, 1, 0, 0, 0}

0 {1, 1, 1, 0, 0, 0}
+Vdc {1, 1, 1, 0, 0, 1}

{1, 1, 1, 0, 1, 0}
{1, 1, 1, 1, 0, 0}

+2Vdc {0, 0, 0, 0, 0, 1}
{1, 1, 1, 1, 0, 1}
{1, 1, 1, 0, 1, 1}

+3Vdc {1, 1, 1, 1, 1, 1}
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The capacitors voltage across first pair is

VC ¼ 2E/3 ð3Þ

The capacitors voltage across second pair is

VC ¼ E/3 ð4Þ

The switching states of the seven level converters are shown in Table 2. The SMC
operates according to the switching patterns given by the fuzzy controller. The
switching mode controls the output voltage levels by turn ON/OFF of switches. In this
SMC seven level topology there are seven output level and each level is controlled by
turning ON and turning OFF of particular switches at the given instant of time. The
switching patterns for each level are different [4, 5].

2.4 SMC Open Loop Simulation Results for Seven Level Output

The SMC for seven level voltage output get by using of 12 semi conducting switches
and 2 DC voltage sources as same as five level SMC topology. The simulation results
for SMC for seven level is shown in Fig. 6. The upper DC source increases the level of
voltage in positive half cycle and lower DC source increase the level of voltage in
negative half cycle. In Fig. 6 X-axis as time period and Y-axis as output voltage
(Fig. 7).

2.5 Stacked Muticell Converter Topology for Nine Level Output

The SMC topology for nine level topology is getting by adding one p cell in series with
seven level SMC circuit. The SMC circuit for nine level is shown in Fig. 8. The SMC
topology for nine level output voltage design by using of columns of p = 4 cells and
rows of n = 2 stacks. It consists of p � n = 8 semi conducting switching cells and
flying capacitors of (p – 1) * n = 6. The SMC for nine level voltage circuit consists of
16 power switches, 2 DC voltage sources and fling capacitors of 6. Which are shown in
Fig. 8.

The switches in nine level SMC topology also divided into two groups. The positive
group switches are SP1, SP2, SP3, SP4 and negative group switches are SN1, SN2, SN3,
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SN4. The complimentary switches for positive group is SP1′, SP2′, SP3′, SP4′
and negative group complimentary switches are SN1′, SN2′, SN3′, SN4′ [6]. The
function of flying capacitors is to distribute the over voltages among the all power semi
conducting switches to avoid over heating of switches. The value of THD is reduces with
increasing of level in the converter circuit [7].

2.6 SMC Open Loop Simulation Results for Nine Level Output

The SMC topology for nine level output voltage circuit consists of 16 semi conducting
switches. The triggering pulses for the converter circuit are generated by phase shifted
carrier PWM with fuzzy controller. The simulation circuit for SMC for nine level
output is shown in Fig. 9. The converter output nine level is generated by using the 2
DC sources same as in five level and seven level. In Fig. 9 X-axis as time period and
Y-axis as output voltage.

The nine level open loop SMC topology output analyses by Fast Fourier Transform
(FFT) and is show in Fig. 10. In the FFT analysis the THD for nine level SMC
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topology is 17.37%. By designing the proper filter circuit THD value of the converter is
reduced. In Fig. 10 X-axis is order of the harmonic and Y-axis is THD magnitude and
is simulated for power frequency of 50 Hz.

The above all FFT analysis for different levels clearly concludes that the THD value
is reduces with increases number of voltage levels and is presented. The THD values of
five level SMC is 38.54%, seven level SMC is 24.54% and nine level SMC is 17.37%.
By reducing the THD value the purity of the sinusoidal wave is increases. The analysis
for all voltage levels are represented in a graph shown in Fig. 11.

3 Soft Switching Control of Stacked Multicell Converter

The control strategy for converters is changes day by day to improve the converter
efficiency and power quality. The closed loop analysis of power electronic converters is
done with P, PI and PID controller. Now, the researches going on the soft switching for
power converters. One of the best soft switching controls is fuzzy. For closed loop
analysis the fuzzy logic controller will give the control signals to the converters. The
fuzzy logic was invented by Lotfi Zadeh in 1965. This logic is based on “Degree of
Truth”. By using this logic the results were more accurate rather than Boolean
expressions such as ‘0’ or ‘1’. Unlike the other controls the fuzzy uses range-to-point
and range-to-range controls. It is just like as person feelings and interference procedure.
Fuzzy develops digital signals as same as human thinking by simulating all the physical
systems and are integrated. Fuzzy get output soft grades by converting from binary
input variables with respect to the changes in the membership function. One of the
major advantage of Fuzzy controller is low selectivity i.e., for any given input it
produces adaptive responses. Fuzzy system is best suited for controlling of motors with
continuous variable systems like positing systems, because output of the motor is
smooth and continuous. The fuzzy system generates one or more responses for a testing
variable according to the rules. The output of the system depends on input response of
the rule and centroid of the response.

The multilevel inverter consists of many switching devices in the circuit. The more
number of switches be the main advantage of the multilevel inverters. To analyze that
many switches are mathematically complex. The Fuzzy controller produces outputs for
uncertain information like human brain. The Fuzzy Logic Controller (FLC) used for

Fig. 11. Complete FFT analysis
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nonlinear systems, control complex systems and system which having hard to find
mathematical model [6].

The output of the fuzzy controller is obtained only after fuzzification of each input
with membership function. This type of control is mostly suited for mechanical objects
with software or hardware. Fuzzy logic is the combination of many valued logics and
reasoning that approximate like as human. In the Boolean logic the variables are with
the logic 0 or 1 but in the fuzzy logic the truth value varies in between 0 to 1. Let take
an example using fuzzy logic controller for the temperature controller. The output of
the controller range will be cool, medium or heat. The basic structure of Fuzzy Logic
Controller using in closed loop operation is shown in Fig. 12.

3.1 Fuzzy Working

The fuzzy sets consists of variables which having relations with physical system
variables. All the fuzzy elements have degree of membership. Classical sets obeys
bivalent condition i.e., the element in the set belongs to that set or not. In this manner
all the elements in the classical set are mapped with two capacity components of 1 or 0.
According to the fuzzy set theory, classical bivalent sets are called as crisp sets. In crisp
set information is “imprecise or imperfect”. Fuzzy uses the ‘If-Then’ rule to analyze the
inputs. In fuzzification process all the inputs are process with the membership function
and all the input variables are mapped with the different relations in the knowledge
base. The rule base is a decision maker to choose the precise decision suitable for the
case. This can be explained with simple example on temperature samples; the tem-
perature of the system classifies into 3 categories (i) Low (0–20 °F), (ii) Medium
(20 °F–60 °F) and (iii) High (60 °F–100 °F). In the classical set any value of the
temperature is the one subset of any of the above classification. If temperature is 30 °F
the classical set clearly fit for Medium. But in the fuzzy set, one value of temperature is
divided into two or three possible subsets at the same instant of time. For the same
value of 30 °F is fix in with LOW to a specific degree say 0.4°, but it also fix in with

Fig. 12. Fuzzy logic controller basic model
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MEDIUM to around 0.7°. For another value of temperature say 50 °F fuzzy consider in
all the three cases, the value of degree 0.2 with LOW or HIGH and have a maximum
value of degree 1 for MEDIUM [8]. The classical set for temperature samples is shown
in Fig. 13.

The MATLAB software consists of fuzzy tool bar to simulate fuzzy outputs for
physical systems. In FIS editor, there are many membership functions are preloaded.
The membership block shows the duty ratio of the function and error of the system.
The amplitude duty ratio function circuit is shown in Fig. 14, and input error mem-
bership function is show in Fig. 15.

3.2 Five Level SMC Topology Using Fuzzy Controller

The circuit using for this simulation is same as five level open loop SMC circuit. The
closed loop operation of SMC is analyse by using fuzzy controller. The fuzzy logic is
used to obtain the voltage RMS value to find error value. The VRMS is compared with
reference value of voltage VREF to get error signal. The generated error signal fed to the
fuzzy controller and this compared with open loop SMC for five level output topology.
The output voltage generated by using fuzzy controller for five level SMC is shown in
Fig. 16. The RMS voltage (VRMS) and reference voltage (VREF) is shown in Fig. 17. In
figures time is taken as X-axis and voltage taken as Y-axis.

By considering the Fig. 17, it is clear that the RMS output voltage increase with
increase in reference voltage. From 0 to 0.5 s the reference voltage is constant at 50 V

Fig. 13. Classical
set for samples Fig. 14. Amplitude membership Fig. 15. Error membership
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and RMS output voltage is 50 V. At the instant of 0.5 s the reference voltage mag-
nitude increased to 80 V. The RMS output voltage is also increased to 80 V.

3.3 Seven Level SMC Topology Using Fuzzy Controller

The seven level SMC topology operation using fuzzy control gives RMS voltage as
output and is shown in Fig. 18. The closed loop operation of seven level SMC is same
as five level fuzzy controlled SMC. The only difference is range of membership
function for the input variables. For five level fuzzy controlled SMC input range of the
membership is [–80, +80]. For seven level fuzzy controlled SMC input range of
membership is [–88, +88].

The RMS output voltage and reference voltage wave forms for fuzzy controlled
seven level SMC is shown in Fig. 19. The VREF voltage maintained constant at 50 V
up to time reaches to 0.5 s. Whenever time reaches to 0.5 s the reference voltage
increased to 80 V and the RMS voltage also rises to 80 V.

3.4 Nine Level SMC Topology Using Fuzzy Controller

The fuzzy controlled nine level SMC topology gives output voltage VRMS shown in
Fig. 20. The closed loop operation of seven level configuration is same for nine level
SMC also. But only difference is input range of membership function. For seven level
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Fig. 18. Fuzzy controller output voltage for
seven level SMC
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SMC input range of membership is [–88, +88]. For nine level SMC configuration input
range of membership is [–89, +89].

The RMS output voltage and reference voltage wave forms for fuzzy controlled
nine level SMC is shown in Fig. 21. The VREF voltage maintained constant 60 V up to
time reaches to 0.5 s. Whenever time reaches to 0.5 s the reference voltage increased to
80 V and the RMS voltage also rises to 80 V

4 Conclusion

This paper analysed the operation of open loop and closed loop configurations of
Stacked Multicell Converter (SMC). This topology best suited for the applications
using low power high voltage semi conducting switches. The proposed topology
reduces the Total Harmonic Distortion (THD) by increasing the number of voltage
levels. The closed loop analysis of SMC is explains with soft switching control called
Fuzzy Logic Controller (FLC). The MATLAB Simulink software is used to develop
Phase shifted carrier Pulse Width Modulation (PWM) to generate pulses for the power
semiconducting switches in the SMC. The simulation results for Five level, Seven level
and Nine level SMC with open loop and closed loop operation has been presented. The
design and operation of closed loop control SMC is achieved by using FLC. The fuzzy
controlled SMC output voltage satisfied the circuit requirements. The advantage of this
work is to reduce THD by increasing the number of output levels by SMC. The
proposed FLC stacked multicell converter for closed loop operation reduces the har-
monics in the supply. In future by changing the control strategies for SMC converter
improves the system performance.
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Abstract. In present study, fuzzy logic is used to predict the free convection
over a heated vertical cylindrical tube. Tube has diameter 38 mm and length
500 mm. Numerical simulation involves use of implicit finite difference scheme
to solve the fluidics equations for vertical tube. Tube is imposed to a fine
structural grid and appropriate boundary conditions. Properties of two fluids
namely air and water vapour is used for numerical simulation. Grashof number
is varied from 2.04 × 106 to 2.62 × 108 and 2.69 × 106 to 3.36 × 108 for air
and water vapour respectively. A computer code in FORTRAN programming
language is used to draw velocity and temperature profiles. Fuzzy Interface
System Mamdani is used to evaluate output membership from different fuzzy
sets. Fuzzy predicted results are found in good agreement with experiments.
Rayleigh number was found 1.45 × 107 to 3.63 × 108 and 2.66 × 107 to
6.67 × 108 for air and water vapour. Fuzzy logic results confirm ±4% agree-
ment with experimental results.

Keywords: Free convection ⋅ Vertical cylinder ⋅ Fuzzy logic ⋅ Implicit
scheme ⋅ Finite difference method

1 Introduction

Natural convection from a vertical cylinder is important in field of heat transfer. Wide
range of engineering applications is heat exchanger, refrigerator condensers, electronic
components etc. [1, 2]. Free convection from horizontal and vertical cylinder has been
studied numerically and experimentally by many of researchers. In earlier days,
Blottner [3] performed a mathematical analysis using finite difference method to find
out the solution of boundary layer equations. Doulas et al. [4] investigated a parabolic
equation by combining the finite element and finite difference method through a
method of characteristics. Result showed smaller truncation error while those compared
with standard methods for a convection-dominated problem. Saha and Hossain [5]
performed a numerical study to analyze the free convection laminar flow. The effect of
buoyancy was established due to mass and thermal diffusion in a stable thermally
stratified medium adjacent to vertical surface. The governing equation solved through
an implicit finite difference method and local non-similarity method. Results showed

© Springer Nature Singapore Pte Ltd. 2017
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various aspects of complex interaction of the two buoyant mechanisms. Fahiminia et al.
[6] performed a computational analysis on laminar natural convection using an implicit
scheme finite volume approach through CFD simulations. They solved the flow domain
in presence of density gradients under a gravitational field on vertical surfaces. Results
showed that convective heat transfer rate from fin arrays depends on fin height, fin
length, fin spacing and base-ambient temperature difference. Zhanlav and Ulziibayar
[7] developed a numerical model for solving obtained finite-difference scheme for the
Helmholtz equation. Shiferaw and Mittal [8] performed a numerical study on 3-D
Poisson’s equation by second-order finite differences in cylindrical coordinates system
with the Dirichlet’s boundary conditions using Hockney’s method. They observed the
model was helpful in saving the number of computation, computational time and
accuracy level. Ahmad and Bilal [9] performed a numerical study by solving the
Blasius equation through neural network algorithms. They approximated the governing
equations by finite difference method and simulated through Sequential Quadratic
Programming algorithm and hybrid AST-INP techniques. Petrova [10] performed
mathematical analysis of integrability of the Euler and Navier-Stokes equations.
Results showed that these equations define solution on the tangent non-integrable
manifold and integrable structures.

Fuzzy logic is used over a wide range to solve different type of problems. Zadeh
[11] developed a method to design the system for conducting the experiments. A fuzzy
logic is an approach including fuzzy system established by fuzzy sets namely mem-
bership function and rule table [11, 12]. Yousefi et al. [13] had performed a numerical
as well experimental study the natural convection from heated horizontal cylinder
placed a vertical channel. Karami et al. [14] had performed a simulation study the free
convection heat transfer over an isothermal horizontal cylinder in a vertical channel
using fuzzy logic. The aim of present work is to investigate the effect of various
parameters on heat transfer over a vertical cylinder. The governing equations are solved
using Finite difference method with implicit scheme and simulated in FORTRAN 95
program code. Fuzzy logic is implemented in MATLAB R2012 7.14.0.739 software
package. Fuzzy model Mamdani is used as Fuzzy interface system [15]. The aim of
using fuzzy approach in present study is to evaluate the effect of membership functions
i.e. parameters on output.

2 Physical Model of Problem

A two-dimensional model of coordinate system (x, y) in region around a vertical tube is
shown in Fig. 1(a). Symbol Q represents the heat flow and velocity is denoted by u.
The far region exists at y → ∞. The tube diameter (d) and length (L) are considered as
38 and 500 mm respectively. Three basic fluidic equations are employed to physical
model. The continuity, momentum and energy equations are given as Eqs. 1, 2 and 3
respectively.

∂v
∂y

+
∂u
∂x

= 0 ð1Þ
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= gβ T −Tað Þ+ v
∂
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∂y2
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− v
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ð2Þ
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∂
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∂y2

− v
∂T
∂y

ð3Þ

The governing equations are solved by using implicit finite difference method
which follows Taylor series expansion [16]. The combined algorithmic approach is
used to solve the governing equations for a heated vertical tube. Combined approach
utilizes the both Forward difference and Central difference algorithms. The partial
derivatives of x are solved by forward-difference and derivatives of y are solved by
central-difference scheme. The truncated equations are follows.

Continuity equation is truncated as:

vi+ 1, j+ 1 = vi+ 1, j− 1 −
2Δy
Δx

ui+ 1, j − ui, j+ 1
� � ð4Þ

Similarly, truncated form of Momentum equation is given as:

ui+ 1, j =
ui, j −

vi, j

ui, j
. Δx
2Δy ui+ 1, j+ 1 − ui+ 1, j− 1

� �
+

β.g.Δx Ti, j − Ta½ �
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� �
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Fig. 1. (a) Physical model of vertical cylindrical tube (b) Grid of flow geometry
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Similarly, the Energy equation is given as follows:

Ti+ 1, j =
αΔx

2ui, jΔy2 Ti+ 1, j+ 1 + Ti+ 1, j− 1
� �

− vi, jΔx
ui, j2Δy . Ti+ 1, j+ 1 −Ti+ 1, j− 1

� �
+ Ti, j

1+ 2αΔx
2Δy2ui, j

h i ð6Þ

Discretized governing equations such as Eqs. 4–6 are subjected to boundary values
condition given as:

y= 0, T =Ts, u= 0, v= 0 ð7Þ

y→∞, T =Ta, u→ 0, v≠ 0 ð8Þ

In Eq. 7, the condition y = 0 interprets the region from which the boundary layer
starts i.e. no slip boundary condition. In Eq. 8, the condition at infinity interprets the
region just outside the boundary layer i.e. free slip boundary condition. Equations 4–6
are programmed in FORTRAN 95 language for simulation purpose. Grid subjected to
this program is shown in Fig. 1(b). Grid independency test has been carried out on
m × n grid at 1001 × 51, 1001 × 101 and 2001 × 101 points. The results comes
out from this grid are approximately same but 1001 × 101 is selected as a balanced
grid. The points along the surface of cylindrical tube in x-axis are denoted as i points.
Space perpendicular to tube at right angle i.e. along y-axis denotes by j points. Where
i points varies from 1 to n + 1 and j points varies from 1 to m + 1. LINUX-based
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Fig. 2. Schematic diagram of (a) experimental set up of vertical tube (b) heater unit

Table 1. Properties of air and water vapour at Tf = 310 K [16]

Property Units Air Water vapour

Kinematic viscosity (α) m2s−1 23 × 10−6 14 × 10−6

Thermal diffusivity (υ) m2s−1 16 × 10−6 14 × 10−6

Thermal conductivity (k) W/m K 0.0268 0.01845
Prandtl number (Pr) – 0.712 0.9978
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Ubuntu 2.6.321 operating system is used for numeric calculations. Typical CPU time
needed for a single run was the order of 10–15 s.

3 Experiments

Experiments are performed in order to validate the numerical simulation. Experiments
are conducted on laboratory scale equipment (manufactured by ARE educational
equipment Pvt. Ltd., Maharashtra). Schematic diagram of setup is shown in Fig. 2
(a) which consists of hollow brass tube having diameter 38 mm and length 500 mm.
Figure 2(b) represents the heater assembly which consist of RTD-100 type sensors to
measure the surface temperature of tube at different locations. Heater input of 6.76 W is
established at steady-state achieved after 4 h. The surface temperature (Ts) was
maintained as 310 K. Ambient (Ta) and film temperature (Tf) were found as 294 and
302 K respectively. Volumetric coefficient of thermal expansion (β) is 3.33 × 10−3

K−1 at the given film temperature. Table 1 shows the properties of air and water vapour
at Tf.

4 Results and Discussion

4.1 Variation of Parameters Along Length of Vertical Tube

Figure 3 represents the velocity profiles for air and water vapour which evaluate the
hydraulic boundary layer thickness at various locations along length of tube. Con-
vectional currents involves during the natural convection which initially gave rise to the
velocity. Velocity gradient drops slowly under the influence of outer fluid and falls to
zero when travels in y-axis.

Figure 4 represents the temperature profiles for air and water vapour which evaluate
the thermal boundary layer thickness at various locations along length of tube. Tem-
perature gradient attains highest value at heated surface of tube and rapidly drops as
moves in y-axis. Thermal boundary layer δT for air and water vapour is shown in
Fig. 5. Characteristics lines are drawn for δT with respect to x which evaluates that air

Fig. 3. Velocity profiles for (a) air and (b) water vapour
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having Pr = 0.7122 show higher values as compare to water vapour having Pr =
0.9978. Higher the boundary layer thickness results in high heat transfer.

4.2 Dependency of Rayleigh Number, Ra

In literature Raleigh number can be determined from Grashof and Prandtl number
given as:

Rax =Grx.Pr ð9Þ

It is clear from the linear relation that Ra is higher for air than that of water vapour.
Rayleigh number varies from 106 to 109. The minimum value of Ra and Gr, for air; is
1.46 × 106 and 2.04 × 106 & for water vapour; is 2.68 × 106 and 2.69 × 106;
respectively. Themaximum value of Ra andGr, for Air; is 2.4 × 108 and 3.36 × 108 &
water vapour is 2.62 × 108 and 2.61 × 108; respectively.

Figure 6(a) shows the dependency of boundary layer thickness on Rayleigh number.
Characteristic curve of boundary layer thickness for air is away from water vapour.
From Figure, it can be clearly seen that as the value of Prandlt number increases the
larger boundary layer is formed. Figure 6(b) shows the dependency of Rayleigh number

Fig. 4. Temperature profiles for (a) air and (b) water vapour

Fig. 5. Variation of δT along x
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on Grashof number. The curve for Air passes nearby and slightly below from slope
whereas the curve for water vapour passes much above from the slope. It is observed that
as the Pr increases the linearity between the Ra and Pr disturbs.

4.3 Dependency of Nusselt Number, Nu

In this section, the Nusselt number is calculated from numerical results of thermal
boundary layer. Nusselt number has been calculated from numerical heat transfer
coefficient. Heat transfer coefficient h can be calculated from slope of temperature
gradient dT d̸y along length follows:

hx = − k

dT
dy

� �
x

Ts − Ta
ð10Þ

Nux =
hxx
k

ð11Þ

Figure 7 shows the results ofNusselt number against length of tube. It is observed that
results of Nu shows the higher value characteristics curve at Pr of 0.9978 than 0.7122.

Fig. 6. Variation of Ra with respect (a) δT, and (b) Gr

Fig. 7. Variation of Log (Nu) along x
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Characteristics line for air passes above the line of water vapour. It indicates that the Nu
increases with increase in high Pr.

Figure 8(a) shows the characteristic curves in-between Nu and Gr for air and water
vapour at Pr of 0.9978 and 0.7122 respectively. Curve for air is smooth as compare to
that of Water vapour. It is because of higher value of Pr, the higher value of Pr i.e.
above 1.0 the turbulence starts. For Pr which is close to 1.0 have turbulence behavior.
This is the reason behind noise in curve for air at Pr = 0.7122. Figure 8(b) show the
characteristic curves in-between Nu and Ra at Pr = 0.9978 and 0.7122. Curve for air is
again found smooth as compare to water vapour. Turbulence is observed when Pr
approaches to 1.

5 Defuzzification of Free Convection

The aim of present study is to consider the effect of location, Grashof and Prandtl
numbers on Rayleigh number from vertical tube. In order to implement fuzzy logic,
input and output levels are determined. The value of vertical location in five levels is
ranging from 0.1 to 0.5 m, Grashof number in five levels ranging from 2.04 × 106 to

Fig. 8. Variation of Nu with respect to (a) Gr (b) Ra

FIS 

(mamdani) 

x

Gr 

Pr 

Ra 

Fig. 9. Fuzzy interface system
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2.62 × 108, Prandtl number at single level 0.712 are chosen. Rayleigh number is
chosen as output variable. Fuzzy interface system (FIS) Mamdani is used as shown in
Fig. 9. Triangular member functions are used for input and output variables [17].
Figure 10 represents input membership functions used in FIS. Twelve rules are applied
to by accounting various combinations of input variables. Output comes out in form of
Raleigh number.

Figure 11 indicates that as the location along vertical cylinder increases the
Rayleigh number as increases. It was observed that Grashof number increases with
increase in vertical location which directly related with Rayleigh number as seen in
Eq. 9. The Value of Rayleigh number was found in deviation of ±4% with experi-
mental data as mentioned in Fig. 12. Therefore, fuzzy logic results show good

Fig. 10. Membership functions of (a) vertical location (b) Prandtl number (c) Grashof number

Fig. 11. Evolution of Gr and Ra at various location of cylinder along length
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agreement with experiments. So, Fuzzy logic approach can be reliable approach to
predict Rayleigh number.

6 Conclusion

In present work, the numerical modeling of fluidic equations has been done and sub-
jected to the implicit scheme of finite difference method. For this purpose, a combined
algorithmic approach had been selected for discretization of governing equations and
these are subjected to adequate boundary conditions. Thermal boundary layer thickness
is obtained. Thermal boundary layer thickness comes out numerically has been plotted
with respect to Ra and Nu. It can be concluded that the thermal heating in order of
lateral distance is continuous and increases with transverse distance. However,
numerical thermal boundary layer thickness shows ±10% deviation with analytical
boundary layer thickness. Thermal boundary layer shows higher value for high value of
Pr. It can be concluded that for high value of Pr the thermal boundary layer will form
larger. Rayleigh number varies from 106 to 109 so laminar behavior of convection was
observed. It is clear from the linear relation that Rayleigh number is higher for high for
value of Prandtl number which is proved in fuzzy logic. The Prandtl number increases
the value of Nusselt number increases. Water vapour showed the turbulence behavior.
For a higher value of Prandtl number the turbulence behavior observed. Prandtl number
becomes dominating in convection as Pr approaches to 1. Curve with Pr = 0.9978
contains noise. The Prandtl number for air is away from critical value so it shows the
ideal laminar behavior. Fuzzy logic showed ±4% agreement with experimental results
which proves the fuzzy logic as reliable approach.
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Abstract. The main objective of this manuscript is to discuss the avail-
ability analysis of the industrial plant. Conventionally availability studies
assume that probability in Markov models are accurate. However in real-
ity, data is either insufficient or contain uncertainty which violates this
assumption. Keeping this in view the availability of Butter oil process-
ing plant is evaluated after developing the intuitionistic fuzzy differential
equations for the system by using its Markov model. (α, β)-Cut method
has been used to evaluate intuitionistic fuzzy availability of the system.

Keywords: Availability · Intuitionistic fuzzy differential equations ·
Markov model · Runge-Kutta fourth order method

1 Introduction

The majority of industrial systems are repairable and consist of various subsys-
tems and each subsystem is composed of many components. The probability that
the system performs in expected manner depends directly on the performance
of each of its components. With the growing complexity of systems, the study
of their reliability and availability becomes more important. The understanding
of this role requires an attempt to characterize, study and examine the systems
behavior by shrinking the likelihood of the failures and thus increasing their
operational availability and designed life.

For measuring the performance of the system, many techniques such as
event tree, fault tree analysis (FTA), petri nets (PNs), reliability block diagrams
(RBDs) and Markovian approach etc. are available in the literature [1,3].

These independent models analyze reliability of a repairable system using
different approaches and have been applied in different scenario. Out of these,
Markov analysis is considered to be the most widespread technique being used
nowadays.
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In various engineering problems, the binary assumption in reliability theory
is not acceptable. In 1965, L.A. Zadeh [4] discussed the basic concepts of fuzzy
set theory. But in real life, there are many situations concerned with the degree of
hesitation. Then in 1983 Atanassov [5,6] introduced the concept of intuitionistic
fuzzy set (IFS) theory as the generalization of fuzzy set theory. Many authors
[7,8] worked in theoretical as well as in practical applications of intuitionistic
fuzzy set theory.

Thus binary state assumption in reliability theory is replaced by intuition-
istic fuzzy state assumption. Kumar et al. [9] discussed fuzzy reliability analy-
sis of dual-fuel steam turbine propulsion system in LNG carriers considering
data uncertainty. Garg [10] proposed an approach for analyzing the reliability
of industrial system using fuzzy Kolmogorov differential equations. Knezevic
and Odoom [2] discussed reliability modeling of repairable systems using petri-
nets and fuzzy lambda-tau methodology. For the evaluation of reliability, the
system is mathematically modeled in terms of the differential equations from its
transition diagram having uncertainties in the involved parameters. Fuzzy differ-
ential equations have also been studied [11–13]. Garg [14] discussed an approach
for solving fuzzy differential equations using Runge-Kutta and Biogeography-
based optimization. Many authors [15,16] discussed intuitionistic fuzzy differen-
tial equations.

In this present paper intuitionistic fuzzy differential equations have been
derived with the help of the existing crisp Markov model of Butter oil process-
ing plant. The rest of the paper has been divided into five sections. In Sect. 2
some basic definitions are given. Section 3 describes the methodology for the
availability analysis of the system by solving the intuitionistic fuzzy differential
equations. In Sect. 4 case study of butter oil processing plant with the given
assumptions has been discussed. The final results by considering the case of
transient is discussed in Sect. 5.

2 Preliminaries

In (1983) Atanassov [5] proposed the concept of IFS as the extension of the notion
of fuzzy set theory. In IFS theory, the characteristic function of the element x
in the universe X is expressed in terms of their membership (called acceptance)
as well as non membership (called rejection) value such that their sum always
belongs to unit interval [0, 1]. A brief description of main concepts and definitions
[6,7] regarding to intuitionistic fuzzy set is given below.

2.1 Intuitionistic Fuzzy Set (IFS)

Definition: Let X be a universe of discourse. Then the IFS Ã in X is given by
Ã = {< x, μÃ(x), νÃ(x) >| x ∈ X}, where the functions

μÃ : X → [0, 1] and νÃ : X → [0, 1]
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are subjected to the condition 0 ≤ μÃ(x)+νÃ(x) ≤ 1 ∀x ∈ X. The values μÃ(x)
and νÃ(x) represent the membership and non membership degree of element x

to a set Ã respectively.

2.2 (α, β)-Cut

Definition: An (α, β)−cut of IFS Ã denoted as Ã[α, β] [16] is defined by
Ã[α, β] = Ãα ∩ Ãβ , where Ãα = {x ∈ X | μÃ(x) ≥ α} and Ãβ = {x ∈ X |
νÃ(x) ≤ β} for α ∈ (0, 1] and β ∈ [0, 1) such that α + β ≤ 1.

In this paper, we separately define Ã0 as the closure of the union of all Ãα’s
for α ∈ (0, 1]. Similarly, Ã1 as the closure of the union of all Ãβ ’s for β ∈ [0, 1).

2.3 Convex Intuitionistic Fuzzy Set

Definition: An IFS Ã in universe U is convex iff its membership function μÃ(x)
is fuzzy convex while non membership function νÃ(x) is fuzzy concave. i.e.

μÃ(λx1 + (1 − λx2)) ≥ min(μÃ(x1), μÃ(x2))

and
νÃ(λx1 + (1 − λx2)) ≤ max(νÃ(x1), νÃ(x2))

∀x1, x2 ∈ U, 0 ≤ λ ≤ 1

2.4 Normal Intuitionistic Fuzzy Set

Definition: An IFS Ã in X is normal if there exists at least one point x0 ∈ X
such that μÃ(x0) = 1.

2.5 Intuitionistic Fuzzy Number (IFN)

Definition: An intuitionistic fuzzy subset Ã = {< x, μÃ(x), νÃ(x) >| x ∈ R} of
the real line R is called Intuitionistic Fuzzy Number (IFN) if

1. Ã is normal and convex IFS,
2. μÃ(x) is upper semi-continuous and νÃ(x) is lower semi-continuous,
3. Ã = {x ∈ X, νÃ(x) < 1} is bounded.

2.6 Triangular Intuitionistic Fuzzy Number (TIFN)

A TIFN Ã with parameters a′
1 ≤ a1 ≤ a2 ≤ a3 ≤ a′

3 is a subset of IFS in R,
denoted as Ã =

〈
(a1, a2, a3); (a′

1, a2, a
′
3)

〉
with membership and non-membership

functions defined respectively by

μÃ(x) =

⎧⎪⎨
⎪⎩

x−a1
a2−a1

, a1 ≤ x ≤ a2

a3−x
a3−a2

, a2 ≤ x ≤ a3 and
0, otherwise

νÃ(x) =

⎧⎪⎨
⎪⎩

a2−x
a2−a′

1
, a′

1 ≤ x ≤ a2

x−a2
a′
3−a2

, a2 ≤ x ≤ a′
3

1, otherwise
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3 Methodology

For the evaluation of reliability, the system is mathematically modeled in terms
of the differential equations from its transition diagram having uncertainties
using markov model. These equations are then converted into intuitionistic fuzzy
differential equations for handling the uncertainties.

Strategy followed through this approach is described here.

Step 1. Collection of the data from various resources: Information in the form of
system components’ failure rates (λ′s) and repair rates (μ′s) from the database,
historical records, literature and expert opinion etc.

Step 2. Conversion of crisp numbers into vague numbers: As the collected data
is either out of date or collected under different environmental conditions, leads
to the problem of uncertainty in the failure and repair rates. So crisp numbers in
the extracted data are converted into intuitionistic fuzzy numbers having known
spreads as suggested by system reliability analyst.

Step 3. In this step, a the system of intuitionistic fuzzy differential equations
has been derived with the help of the markov model of the system. A linear first
order intuitionistic fuzzy differential equation can be written as:

dỹ(t)
dt

= ãỹ(t) + g(t), with initial conditions ỹ(0) = γ̃, (1)

where γ̃ and ã are triangular intuitionistic fuzzy numbers with g(t) as continuous
function on the interval I.

Let ỹ(t) be the intuitionistic fuzzy subset of real numbers for t ∈ I. Let
ỹ(t)[α, β] = ỹ(t)α ∩ ỹ(t)β where ỹ(t)α and ỹ(t)β are closed and bounded intervals
for all t. Let

ỹ(t)α = [ỹ(t)α
(L), ỹ(t)α

(R)]

ỹ(t)β = [ỹ(t)β(L), ỹ(t)β(R)],

where ỹ(t)α
(L) and ỹ(t)α

(R) are functions of t and α. ỹ(t)β(L) and ỹ(t)β(R) are
functions of t and β.

Assume that all ỹα
(L), ỹ

α
(R), ỹβ(L) and ỹβ(R) are continuously differentiable func-

tions on t for all α and β. Now substitute the (α, β)-cuts of ỹ(t) into Eq. (1).
Then using the concepts of interval arithmetic, system of differential equations (1)
reduces to following differential equations:

ỹ′(t)α
(L) = b + g(t), (2)
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where b = min(ãα
(L)ỹ

α
(L), ã

α
(L)ỹ

α
(R), ã

α
(R)ỹ

α
(L), ã

α
(R)ỹ

α
(R))

ỹ′(t)α
(R) = c + g(t), (3)

where c = max(ãα
(L)ỹ

α
(L), ã

α
(L)ỹ

α
(R), ã

α
(R)ỹ

α
(L), ã

α
(R)ỹ

α
(R))

ỹ′(t)β(L) = b′ + g(t), (4)

where b′ = min(ãβ(L)ỹβ(L), ãβ(L)ỹβ(R), ãβ(R)ỹβ(L), ãβ(R)ỹβ(R))

ỹ′(t)β(R) = c′ + g(t), (5)

where c′ = max(ãβ(L)ỹβ(L), ãβ(L)ỹβ(R), ãβ(R)ỹβ(L), ãβ(R)ỹβ(R))

with the initial conditions ỹ(0)α
(L) = γ̃α

(L), ỹ(0)α
(R) = γ̃α

(R), ỹ(0)β(L) = γ̃β(L) and
ỹ(0)β(R) = γ̃β(R).

Then these converted ordinary differential equations (2)–(5) for each α, β ∈
[0, 1] can be solved by Runge-Kutta fourth order method. Clearly ỹ(t) is an
intuitionistic fuzzy solution for all t if the obtained values of ỹ(t)α

(L), ỹ(t)α
(R),

ỹ(t)β(L) and ỹ(t)β(R) define the (α, β)-cuts

([ỹ(t)α
(L), ỹ(t)α

(R)], [ỹ(t)β(L), ỹ(t)β(R)])

of triangular intuitionistic fuzzy numbers.

The basic assumptions used in this methodology are :

– Failure rates and repair rates are independent of each other and their unit is
per day.

– There is no simultaneous failure of the systems.
– Subsystem B fails through reduced state only.
– Repaired components function like new components and switch-over devices

used for standby systems are perfect.

4 Case Study

Gupta et al. [17] used Markov model with crisp parameters to calculate crisp reli-
ability. In the present paper intuitionistic fuzzy parameters are used in place of
crisp parameters and the above described methodology is applied to Butter Oil
processing plant. Markov model of Butter Oil Processing plant is shown in Fig. 1

4.1 System Description

A butter-oil manufacturing plant is a complex engineering system comprising of
various subsystems situated mostly in northern part of India. The main subsys-
tems of plant are briefly described below [17]:
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– Separator (A): In this subsystem, motor, bearings and gearbox are connected
in series. Failure of this subsystem causes the complete failure of the system.

– Pasteuriser (B): Herein two units of pasteurisers are arranged in parallel con-
figuration with one operative and other in cold standby. Complete failure of
pasteuriser occurs when both the components fail.

– Continuous Butter Making (C): The CBM consists of gearbox, motor and
bearings in series. Failure of this subsystem causes the complete failure of the
system.

– Melting Vats (D): This system consists of monoblock, motors, pumps and
bearings in series. Failure of this subsystem causes the complete failure of the
system.

– Butter-Oil Clarifier (E): The unit consists of gearbox and motor in series.
Failure of this subsystem will cause the complete failure of the system.

– Packaging (F): This subsystem consists of printed circuit board and pneumatic
cylinder in series. Failure of this subsystem causes the complete failure of the
system.

The failure and repair rates corresponding to each subsystem of the system
are given as:

Failure rate (λ) = [0.008 0.0054 0.0027 0.0009 0.0027 0.0055 0.01111]
Repair rate (μ) = [0.41 0.40 0.70 0.30 0.65 6.00]
As the data collected for evaluation of reliability contains uncertainty. So, to

account for uncertainties and vagueness in data, the obtained crisp data are con-
verted into intuitionistic fuzzy numbers as suggested by decision makers/system
analyst. An input data for intuitionistic fuzzy failure rate (λi) and intuitionistic
fuzzy repair rate (μi) for ith component of the system is in the form of triangular
intuitionistic fuzzy numbers with 15% in both the directions with membership
and 20% in both the directions with non-membership functions.

4.2 Notations:

– B1 indicates that subsystem B is working in reduced state.
– λi, i = 1, 2, ..., 7 represent the failure rates of the subsystems A, C, D, E, F,

B1 and B respectively.
– μi, i = 1, 2, ..., 6 represent the repair rates of the subsystems A, C, D, E, F

and B respectively.
– The symbols a, b, c, d, e and f represent the failed state of the subsystems A,

B, C, D, E and F respectively.
– Pj(t), j = 1, 2, ..., 13 represent the probability that the system is in jth state

at time t.

4.3 Mathematical Formulation

Using the concepts of probability and markov modeling, following intuitionistic
fuzzy differential equations corresponding to the transition diagram (Fig. 1) are
formulated as:
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Fig. 1. Transition diagram of Butter oil processing plant

dP̃1(t)
dt

⊕ δ̃1P̃1(t) =
5∑

j=1

μ̃jP̃j+2(t) ⊕ μ̃6P̃13(t) (6)

dP̃2(t)
dt

⊕ δ̃2P̃2(t) =
5∑

j=1

μ̃jP̃j+7(t) ⊕ λ̃6P̃1(t) (7)

dP̃i+2(t)
dt

⊕ μ̃iP̃i+2(t) = λ̃iP̃1(t), i = 1, 2, ...5 (8)

dP̃i+7(t)
dt

⊕ μ̃iP̃i+7(t) = λ̃iP̃2(t), i = 1, 2, ...5 (9)

dP̃13(t)
dt

⊕ μ̃6P̃13(t) = λ̃7P̃2(t) (10)

with δ̃1 =
∑6

j=1 λ̃j and δ̃2 =
∑5

j=1 λ̃j ⊕ λ̃7

with the initial conditions:
P̃1(0) = 〈(0.94, 0.96, 0.98); (0.935, 0.96, 0.985)〉
P̃2(0) = 〈(0.004, 0.005, 0.006); (0.0035, 0.005, 0.0065)〉 and
P̃j(0) = 〈(0, 0, 0); (0, 0, 0)〉 for j = 3 to 13.
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The availability function Ãv(t) of the system in terms of P̃1(t) and P̃2(t) can
be obtained by

Ãv(t) = P̃1(t) ⊕ P̃2(t)

5 Results

Intuitionistic fuzzy system availability is evaluated by the set of first order intu-
itionistic fuzzy differential equations at different (α, β)− cuts and mission time
t = 365 days. Solution obtained from the differential equations (6)–(10) is sum-
marized in Table 1 for α, β = 0, 0.2, 0.4, 0.8, 1.0. From the analysis, it has been
observed that results computed by proposed approach are better than the exist-
ing results. Based on these probabilities, the corresponding (α, β)− cut of the
overall system availability, for the mission time t = 365 days by proposed app-
roach lies in the interval [0.9036677, 0.9438700]. Similar effect on the overall sys-
tem availability at different level of uncertainties is computed and summarized
in Table 2. From these results it has been concluded that

– The results computed by the traditional method (crisp) [17] do not give the
exact idea about the behavior of the system. As these methods deal with the
precise data and cannot deal with the data containing uncertainties.

– Results provided by the proposed method deal with the various degrees of
membership and non-membership functions. For instance, the system avail-
ability corresponding to α = 0.7 and β = 0.1 lies in [0.9212317, 0.9263048].

– On the other hand, the results are computed by the proposed approach by
handling the uncertainties in the data in the form of intuitionistic triangular
fuzzy numbers. From this, corresponding to different presumption levels, the
system availability has been computed for t = 365 days.

The complete results of system availability are summarized in Table 2. With
the help of (α, β)-cut, approximated value of membership and non-membership
function of intuitionistic fuzzy availability at t = 365 days is defined here.

μÃv(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x−0.9036677
0.0201005 , 0.9036677 ≤ x ≤ 0.9237682

1, x = 0.9237682
0.9438700−x
0.0201018 , 0.9237682 ≤ x ≤ 0.9438700

0, otherwise

νÃv(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0.9237682−x
0.0253642 , 0.8984040 ≤ x ≤ 0.9237682

0, x = 0.9237682
x−0.9237682
0.0253666 , 0.9237682 ≤ x ≤ 0.9491348

1, otherwise

System availability at t = 365 days in term of intuitionistic fuzzy set is shown
in Fig. 2.
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Table 2. System availability at t = 365 days

α, β ↓ Ãv
α
(L) Ãv

α
(R) Ãvβ(L) Ãvβ(R)

0 0.9036677 0.9438700 0.9237682 0.9237682

0.1 0.9056777 0.9418598 0.9212317 0.9263048

0.2 0.9076877 0.9398496 0.9186951 0.9288415

0.3 0.9096977 0.9378394 0.9161586 0.9313781

0.4 0.9117077 0.9358292 0.9136221 0.9339147

0.5 0.9137178 0.9338190 0.9110856 0.9364514

0.6 0.9157278 0.9318089 0.9085492 0.9389881

0.7 0.9177379 0.9297987 0.9060128 0.9415247

0.8 0.9197480 0.9277885 0.9034765 0.9440614

0.9 0.9217581 0.9257784 0.9009402 0.9465981

1.0 0.9237682 0.9237682 0.8984040 0.9491348

0.89 0.9 0.91 0.92 0.93 0.94 0.95
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Intuitionistic fuzzy availability at t = 365 days
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Fig. 2. Intuitionistic fuzzy availability (membership and non-membership functions are
shown by black and red lines respectively) (Color figure online)

6 Conclusion

In the present article, authors have analyzed the reliability analysis of Butter
oil processing plant using intuitionistic fuzzy differential equations. Based on
the summary given in the tabular form, system analyst can predict the behav-
ior of the system in more consistent manner. This methodology will assist the
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plant managers in design modifications to reduce the failures and to help in
maintenance decision making.
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Abstract. This paper proposes fuzzy probabilistic PROMETHEE outranking
multi-criteria decision making technique and applies the proposed technique to a
real-life multi-criteria case study. In many situations, selection of particular
alternatives based on certain criteria found out to be uncertain. In such
conflicting situations, probabilistic treatment for the alternatives is required.
Since the determination of values of such probabilities is difficult and unrealistic
as well, thus this paper proposes fuzzy probability values for the alternatives.
The fuzzy probabilistic PROMETHEE outranking technique is applied for the
purpose. Numerical example through a case shows the applicability of the
proposed technique.

Keywords: Fuzzy probability ⋅ Triangular Fuzzy Number ⋅ PROMETHEE ⋅
Multi-Criteria Decision Analysis technique

1 Introduction

Decision making in practical problem generally consists of multiple criteria. Thus the
existing literature shows significant number of Multi-Criteria Decision Analysis
(MCDA) techniques in order to solve such problems. A few of such techniques include
Analytical Hierarchy Process (AHP), TOPSIS, PROMETHEE, MACBETH, ANP and
so on [1]. These techniques have been applied in numerical applications. Some of those
research studies the works of Bandyopadhyay and Bhattacharya [2], Kumar et al. [3],
Ho et al. [4], Galankashi et al. [5], Lima et al. [6], Shemshadi et al. [7] and so on.
Besides, there are hybrid methods as proposed in the literature. for example, Bilisik
et al. [8] combined weighted satisfaction score with correlation coefficient; Feng et al.
[9] combined multi-objective programming model ad Tabu search algorithm; Scott
et al. [10] combined AHP with Quality Function Deployment; Rezaei and Davoodi
[11] combined Integer Programming with Genetic Algorithm; Zeydan et al. [12]
combined fuzzy AHP with fuzzy TOPSIS. In spite of such vast number of applications,
there are still numerous aspects of MCDA techniques which need attention from the
researchers and practitioners of the respective fields of study. Some of those aspects
include the need of a method to compare the results of MCDA techniques, accounting
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for the cases where the consideration of alternatives and/or criteria is uncertain and so
on. This paper addresses the problem of uncertainty in the consideration of the alter-
natives in a MCDA problem. PROMETHEE multi-criteria technique has been applied
for the purpose. The technique applied in this paper is briefly described through
numerical example. The book of Ishizaka and Nemery [1] can be consulted for the
concept of the basic PROMETHEE. The fuzzy probabilistic PROMETHEE as applied
in this paper is described in the following section though a case study.

2 Fuzzy Probabilistic PROMETHEE

The following case has been used for this study. A fast food chain plans to open up a
new branch in one of the following 3 areas – an open market area, an industrial area, a
city center and a densely populated residential area. The area will be selected based on
the rental cost, proximity to raw vegetables and meat, number of similar food shops in
the area, average number of random customers visiting such shop in the locality. The
company has 4 managers who are in conflict in selecting these criteria for particular
alternatives and each has his own reason to exclude one or more alternatives for certain
criteria. Thus an analyst is hired at cheap rate who selects the best location considering
the uncertainty of selecting the alternative based on uncertain criteria. Thus, the criteria
and alternatives as considered in this paper are - C1: Rental cost, C2: Proximity to raw
vegetables and meat, C3: Number of similar food shops in the area, C4: Average
number of random customers visiting such shop in the locality; A1: An open market
area, A2: An industrial area, A3: A city center, A4: A densely populated residential
area. The four managers (decision makers) assign various preference values in various
linguistic terms. The linguistic terms for the criteria and the alternatives as considered
in this paper are shown in Tables 1 and 2 respectively.

Table 1. Linguistic terms for criteria

Linguistic terms Fuzzy number

Little important (LI) (0.0, 0.10, 0.20)
Moderately important (MI) (0.10, 0.20, 0.40)
Important (I) (0.20, 0.40, 0.60)
Very important (VI) (0.40, 0.60, 0.80)
Absolute importance (AI) (0.60, 0.80, 1.00)

Table 2. Linguistic terms for alternatives

Linguistic terms Fuzzy number

Very little important (VLI) (0.0, 0.0, 0.16)
Little important (LI) (0.0, 0.16, 0.32)
Moderately important (MI) (0.16, 0.32, 0.48)
Important (I) (0.32, 0.48, 0.64)
Very important (VI) (0.48, 0.64, 0.80)
Extremely important (EI) (0.64, 0.80, 1.00)
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Tables 3 and 4 represent the linguistic preference values from the decision makers
for the alternatives and the criteria respectively. To deal with the uncertainty in con-
sideration of the alternatives by the decision maker, uniform fuzzy probability values
have been assumed and are provided in Table 5. Thus Tables 1, 2, 3, 4 and 5 serves as
input to the PROMETHEE technique.

At first, the weights of the criteria are calculated just by averaging the fuzzy
numbers representing the linguistic preferences from the decision makers. For example,
for criterion C1, the linguistic preference values from the four decision makers are AI
(0.60, 0.80, 1.00), VI (0.40, 0.60, 0.80), VI, AI. The average of these values are
calculated as: ð0.60+ 0.40+ 0.40+ 0.60Þ 4̸, ð0.80+ 0.60+ 0.60+ 0.80Þ 4̸, ð1.00+ 0.80
+ 0.80+ 1.00Þ 4̸= ð0.50, 0.70, 0.90Þ. The weights of the criteria are shown in Table 6.

Table 3. Preferences of decision makers for alternatives

DM1 C1 C2 C3 C4

A1 VI VI EI EI
A2 MI EI EI EI
A3 VI VI I MI
A4 EI LI MI EI

DM2

A1 VI MI LI LI
A2 EI EI I I
A3 EI VLI MI MI
A4 EI VI MI I

DM3

A1 MI VI VI EI
A2 I MI EI EI
A3 EI EI EI VI
A4 VI EI MI MI

DM4

A1 VLI MI EI VI
A2 I LI MI EI
A3 VI EI I EI
A4 EI I MI VI

Table 4. Preferences of decision makers for criteria

C1 C2 C3 C4

DM1 AI AI I LI
DM2 VI MI LI AI
DM3 VI AI MI I
DM4 AI VI VI LI
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Next, the linguistic preferences for the alternatives in Table 3 are multiplied with the
fuzzy probability values as provided in Table 5 to include the uncertainty in considering
the alternatives. For example, for decision maker DM1, for criterion C1 and for alter-
native A1, the linguistic preference is VI (0.48, 0.64, 0.80) (by Table 3) and the
respective uniform fuzzy probability number is (70, 80). The mean representation of this
fuzzy number is ð70%+ 80%Þ 2̸= 75%. Thus the fuzzy probabilistic preference is cal-
culated as: 0.48× 0.75, 0.64× 0.75, 0.80× 0.75= 0.36, 0.48, 0.60. Similarly the other
fuzzy probabilistic preferences are calculated. Now these values are multiplied with the
fuzzy criteria values as provided in Table 6, in order to get weighted fuzzy probabilistic
preferences. For example, the fuzzy probabilistic preference value for DM1, A1, C1 is
(0.36, 0.48, 0.60) and the weight of C1 is (0.5, 0.7, 0.9) (Table 6). The weighted fuzzy
probabilistic preferences are calculated as: 0.36× 0.5, 0.48× 0.7, 0.60× 0.9= 0.18,
0.336, 0.54. The other weighted fuzzy probabilistic preferences (rounded up to 4 dec-
imal places) are also calculated similarly and the results are shown in Table 7.

Table 5. Uniform fuzzy numbers for the alternatives from the decision makers

DM1 C1 C2 C3 C4

A1 70, 80 72, 80 80, 90 90, 100
A2 60, 70 60, 65 82, 92 95, 100
A3 80, 90 90, 95 80, 90 80, 90
A4 90, 100 70, 80 72, 78 85, 95

DM2

A1 75, 85 70, 80 80, 90 70, 80
A2 90, 100 73, 83 80, 90 75, 85
A3 85, 95 70, 80 90, 100 72, 80
A4 85, 95 70, 80 90, 100 82, 90

DM3

A1 85, 95 95, 100 75, 85 70, 80
A2 90, 100 95, 100 82, 92 72, 80
A3 70, 80 80, 88 80, 90 82, 90
A4 75, 85 82, 87 70, 80 92, 100

DM4

A1 70, 80 70, 80 95, 97 90, 100
A2 90, 100 70, 80 85, 92 80, 90
A3 80, 90 72, 80 85, 95 70, 80
A4 70, 80 82, 85 70, 80 60, 70

Table 6. Weights of criteria

Criteria Weight

C1 0.5, 0.7, 0.9
C2 0.425, 0.6, 0.8
C3 0.175, 0.325, 0.5
C4 0.2, 0.35, 0.5
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PROMETHEE is now applied on Table 7. At first, the preference function values
(Table 8) are calculated followed by preference index values (Table 9) and outranking
flows (Table 10). Table 10 also shows the final ranking of the alternatives. Thus
Table 10 indicates that the alternative A3 is the best alternative (with rank 1), that is,
the company can open its new branch at the city center.

Table 7. Weighted fuzzy probabilistic preferences

C1 C2 C3 C4

A1 0.11, 0.22, 0.4032 0.1140, 0.2386,
0.4216

0.0675, 0.1703,
0.3403

0.0772, 0.1827,
0.3375

A2 0.135, 0.2707,
0.4718

0.1132, 0.2363,
0.4220

0.0672, 0.1698,
0.3395

0.0853, 0.1969,
0.3596

A3 0.1633, 0.3137,
0.5305

0.1254, 0.249,
0.4420

0.0637, 0.1637,
0.3292

0.0774, 0.1823,
0.3358

A4 0.1828, 0.3432,
0.5723

0.1251, 0.2495,
0.4424

0.0550, 0.1467,
0.3003

0.0750, 0.1781,
0.3291

Table 8. Preference function values

C1 C2 C3 C4

A1,
A2

−0.024, −0.04667,
−0.0686

0.000831,
0.002293,
−0.00044

0.000296,
0.000462,
0.000733

−0.00814,
−0.01416,
−0.02206

A1,
A3

−0.05229, −0.08973,
−0.1273

−0.0114,
−0.01043,
−0.02043

0.003791,
0.006644,
0.011095

−0.00019,
0.000449,
0.001717

A1,
A4

−0.0718, −0.11918,
−0.16909

−0.01113,
−0.01096,
−0.02082

0.012484,
0.023582,
0.03997

0.002239,
0.004628,
0.00843

A2,
A1

0.024, 0.046667, 0.0686 −0.00083,
−0.00229,
0.000444

−0.0003,
−0.00046,
−0.00073

0.008142,
0.014156,
0.022056

A2,
A3

−0.02829, −0.04307,
−0.0587

−0.01223,
−0.01272,
−0.01999

0.003496,
0.006182,
0.010362

0.007949,
0.014604,
0.023773

A2,
A4

−0.0478, −0.07251,
−0.10049

−0.01196,
−0.01326,
−0.02038

0.012188,
0.02312,
0.039237

0.010381,
0.018784,
0.030485

A3,
A1

0.052286, 0.089733,
0.1273

0.011403,
0.01043,
0.020432

−0.00379,
−0.00664,
−0.0111

0.000193,
−0.00045,
−0.00172

A3,
A2

0.028286, 0.043067,
0.0587

0.012235,
0.012724,
0.019987

−0.0035,
−0.00618,
−0.01036

−0.00795,
−0.0146,
−0.02377

(continued)
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Table 8. (continued)

C1 C2 C3 C4

A3,
A4

−0.01952, −0.02945,
−0.04179

0.000271,
−0.00053,
−0.00039

0.008692,
0.016938,
0.028875

0.002432,
0.004179,
0.006712

A4,
A1

0.071805, −0.224,
0.169089

0.011132,
0.010963,
0.020821

−0.01248,
−0.02358,
−0.03997

−0.00224,
−0.00463,
−0.00843

A4,
A2

0.047805, −0.27067,
0.100489

0.011963,
0.013256,
0.020376

−0.01219,
−0.02312,
−0.03924

−0.01038,
−0.01878,
−0.03049

A4,
A3

0.019519, −0.31373,
0.041789

−0.00027,
0.000533,
0.000389

−0.00869,
−0.01694,
−0.02887

−0.00243,
−0.00418,
−0.00671

Table 9. Preference index values

A1, A2 −0.01, −0.02709, −0.05474
A1, A3 −0.02346, −0.0549, −0.10651
A1, A4 −0.02997, −0.06682, −0.1257
A2, A1 0.009995, 0.027093, 0.054736
A2, A3 −0.01346, −0.02781, −0.05177
A2, A4 −0.01997, −0.03972, −0.07096
A3, A1 0.023459, 0.054904, 0.106508
A3, A2 0.013463, 0.027811, 0.051773
A3, A4 −0.00651, −0.01191, − 0.01919
A4, A1 0.029968, −0.13909, 0.125697
A4, A2 0.019973, −0.16618, 0.070961
A4, A3 0.00651, −0.194, 0.019189

Table 10. Outranking flows and rank of alternatives

PHI+ PHI− PHI Mean Rank

A1 −0.02114, −0.0496,
−0.09565

0.021141, −0.01903,
0.095647

−0.04228, −0.03057,
−0.19129

−0.08805 4

A2 −0.00781, −0.01348,
−0.02267

0.007814, −0.05516,
0.022666

−0.01563, 0.041674,
−0.04533

−0.00643 3

A3 0.010138, 0.023601,
0.046364

−0.01014, −0.09224,
−0.04636

0.020275, 0.115838,
0.092728

0.07628 1

A4 0.018817, −0.16642,
0.071949

−0.01882, −0.03948,
−0.07195

0.037634, −0.12694,
0.143898

0.018198 2
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