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Abstract It is common to encounter data that have a hierarchical or nested
structure. Examples include patients within hospitals within cities, students within
classes within schools, factories within industries within states, or families within
neighborhoodswithin census tracts. These structures have become increasingly com-
mon in recent times and include variability at each level which must be taken into
account. Hierarchical models which account for the variability at each level of the
hierarchy, allow for the cluster effects at different levels to be analyzed within the
models (Shahian et al. in Ann Thorac Surg, 72(6):2155–2168, 2001). This chapter
discusses how the information from different levels can be used to produce a subject-
specific model. However, there are often cases when these models do not fit as addi-
tional random intercepts and random slopes are added to the model. This addition
of additional parameters often leads to non-convergence. We present a simulation
study as we explore the cases in these hierarchical models which often lead to non-
convergence. We also used the 2011 Bangladesh Demographic and Health Survey
data as an illustration.

1 Introduction

Hierarchical logistic regressionmodels consist of inherent correlation due to different
sources of variation. At each level of the hierarchy, we have random intercepts and
sometimes random slopes as well as the appropriate fixed effects. We have done
extensiveworkwith theGLIMMIX andNLMIXEDprocedures in fitting hierarchical
models and have noted the trials and tribulations in computing regression estimates
and covariance estimates associated with hierarchical models in SAS, as attested by
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others. We have had several occasions when our models do not converge. In some
cases, we found that the convergence criterion was satisfied, but the standard error
for the covariance parameters was given as “.” This problem has gained the attention
of many (Hartzel et al. 2001; Wilson and Lorenz 2015 to name a few). We do not
know with certainty why certain convergence problems exist. As such we provide
some understanding and make some suggestions based on our own work as well as
work done by others. We also provide the steps and results of a simulation study
which can be expanded upon for further exploration of the problem and its remedies.

In this chapter, we discuss the use of two-level and three-level hierarchical models
for binary data, although it is possible to analyze higher level data. We discuss the
use of models with effects at level 2 and level 3 representing random intercepts
and random slopes. These random effects are added into the model to account for
unobservable effects that are known to exist but were not measured or cannot be
measured. We also discuss the use of simulations as a means of investigating issues
or irregularities. This process is presented as an exercise in simulating hierarchical
binary data, which for simplicity is restricted to the two-level case, although the
techniques discussed can be readily expanded for higher levels. These simulated
models have incorporated a random intercept and a random slope at level 2. We
implement a hierarchical model using the GLIMMIX procedure in SAS, to identify
factors that contribute to AIDS knowledge in Bangladesh and investigate models that
do and do not converge based on the number of fixed effect predictors.

2 Generalized Linear Model

The birth of the generalized linear models unified many methods (Nelder and
Wedderburn 1972). These models consist of a set of n independent random vari-
ables Y1 . . . ..Yn, each with a distribution from the exponential family. We define
a generalized linear model as having three components: the random component,
the systematic component, and the link component. We define the log-likelihood
function based on unknown mean parameters, a dispersion parameter, and a weight
parameter, denoted by θi,ϕ, and ωi respectfully, and of the form (Smyth 1989),

l(φ−1
i ,ωi : yi) =

∑
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Thus we have a generalized linear model for the mean such that

μi = E(Yi) = b′(θi) = x′
iβ

where x′
i = (x1, . . . .., xp)′ is the vector of covariates and β is the vector of regression

parameters. The functions a (y) and b (θi) are known functions. We also present the
generalized linear model as

Y = Xβ + ε

where the random component belongs to the exponential family of distributions,
while in the marginal form we present g(E(Y)) = Xβ. However, when the set of
outcomes from the outcomes Yi are not independent, then the generalized linear
model in its pure form is no longer appropriate and we must use generalized linear
mixed models.

3 Hierarchical Models

It is common in fields such as public health, education, demography, and sociology to
encounter data structures where the information is collected based on a hierarchy. For
instance, in health studies, we often see patients nested within doctors and doctors
nested within hospitals. In these types of cases, there is variability at each level of
the hierarchy, resulting in intraclass correlation due to the clustering. As a result of
the correlation at each level inherent from these hierarchical structures, the standard
logistic regression is inappropriate (Rasbash et al. 2012). Ignoring these levels of
design while researching the outcome is sure to lead to erroneous results unless the
intraclass correlation is of an insignificant size (Irimata and Wilson 2017). Others
have demonstrated that ignoring a level of nesting in the data can impact variance
estimates and the available power to detect significant covariates (Wilson and Lorenz
2015).When seeking to appropriately analyze these types of correlated data, wemust
extend the generalized linear models by accounting for the association among the
responses.

Hierarchical models, also referred to as nested models or mixed models are sta-
tistical models that extend the class of generalized linear models (GLMs) to address
and account for the hierarchical (correlated) nesting of data (Hox 2002; Raudenbush
and Bryk 2002; Snijders and Bosker 1998). We will refer to these as the hierarchical
generalized linear models (HGLMs). This approach incorporates a random effect,
usually according to the normal distribution, although non-normal random effects
can also be used. The extension required in HGLMs is not as involved when the out-
comes follow a conditional normal distribution and the random effects are normally
distributed. However, when dealing with outcomes that are not normally distributed
(i.e. binary, categorical, ordinal), the extension is not as straightforward. In these
cases, we often use a link other than the identity and must specify an appropriate
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error distribution for the response at each level.We thus present the conditional mean
explanation rather than the marginal mean.

While most work have concentrated on random intercepts, we have often been
confronted with data requiring multiple random intercepts and even random slopes.
When using the GLIMMIX procedure in SAS, we often find that models which
include multiple random intercepts or even one random intercept with one random
slope may not converge. Therefore, this chapter introduces the reader to hierarchical
models with dichotomous outcomes (i.e., hierarchical generalized linear models),
and provides concrete examples of non-convergence and possible remedies in these
situations.

We present hierarchical models as

Y = Xβ + Zθ + ε

where the random effects θ have a multivariate normal distribution with mean vector
zero and covariance matrix G, with the distribution of the errors ε as normal with
mean vector 0 and covariance matrix R. The X matrix consists of the fixed effects
with vector of regression parameters β while the Z matrix consists of columns, each
representing the random effects with vector of parameters θ. Researchers refer to
this as compensating for the correlation through the systematic component. Thus we
often write in the conditional response form as

g(E[Y| θ]) = Xβ + Zθ

where θ ∼ N (0,G). The unconditional covariance matrix for Y, is

var(Y) = A1/2RA1/2 + G

and the conditional covariance matrix, given the random effects is given by

var(Y|θ) = A1/2RA1/2 = V.

Thus, it is common in literature to refer to the G-side and R-side effects, which refer
to the covariance matrix of the random effects, and the covariance matrix of the
residual effects, respectfully.

In SAS, the GLIMMIX procedure distinguishes between the G-side and R-side
effects and can model the random effects as well as correlated errors. This procedure
fits generalized linear mixed models based on linearization and relies on a restricted
pseudo-likelihood method of estimation. We revisit the method here as it helps us to
understand the problems regarding non-convergence. This estimation is essentially
based on the following.
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Consider the conditional mean as

E[Y| θ] = g−1(Xβ + Zθ)

and using Taylor series expansion we linearize g−1 (Xβ + Zθ) about the points β̃

and θ̃ which gives

g−1 (Xβ + Zθ) ∼= g−1
(
Xβ̃ + Zθ̃

)
+ ∂g−1 (Xβ + Zθ)

∂β

(
β − β̃

)

+ ∂g−1 (Xβ + Zθ)

∂θ
(θ − θ̃)
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(
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)
+ �|β̃θ̃X

(
β−β̃

)
+ �|β̃θ̃Z(θ − θ̃)

where �|β̃ and �|θ̃ denote the matrix of derivatives evaluated at β̃ and θ̃ respectively.
Thus
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Hence we consider the approximation and use the similar structure denoted by
Xβ̃ + Zθ̃ to represent the matrix of fixed effects multiplied by a beta-like term
and Z matrix of random effects multiplied by a theta-like term and we denote

�|β̃θ̃
−1

{
(E[Y| θ]) − {g−1

(
Xβ̃ + Zθ̃

)}
= ζ as an error-like term. So we can think

of the approximation as a linear term and defined as

Yapprox = Xβ + Zθ + ζ
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with the variance

var[Yapprox| θ] = var[{(E [Y| θ])] = �|β̃θ̃
−1A1/2RA1/2�|β̃θ̃

−1

As such this can be seen as a linear approximation, given by Yapprox with fixed effects
β, and random effects θ and variance of ζ given by var[Yapprox| θ].

3.1 Approaches with Binary Outcomes

Binary outcomes are very common in healthcare research, amongstmany other fields.
For example, one may investigate whether a patient has improved or recovered after
discharge from the hospital or not. For healthcare and other types of research, the
logistic regression model is one of the preferred methods of modeling data when the
outcome variable is binary. In its standard form, it is a member of a class of gener-
alized linear models specific to the binomial random component. As is customary
in regression analysis, the model makes use of several predictor variables that may
be either numerical or categorical. However, a standard logistic regression model
assumes that the observations obtained from each unit are independent. If we were
to fit a standard logistic regression to nested data, the assumption of independent
observations is seriously violated. This violation could lead to an underestimation
of the standard errors, which in turn can lead to conclusions of a significant effect,
when in fact it is not.

Multilevel approaches for nested data can also be applied to analysis of dyadic
data to take into account the nested sources of variability at each level (Raudenbush
1992). Many researchers have explored the use of these two-level approaches with
binary outcomes (see for example McMahon et al. 2006).

4 Three-Level Hierarchical Models

In the analysis of multilevel data, each level provides a component of variance that
measures intraclass correlation. For instance, consider a hierarchical model at three
levels for the kth patient seeing the jth doctor in the ith hospital. The patients are
at the lower level (level 1) and are nested within doctors (level 2) which are nested
within hospitals at the next level (level 3). We consider the hospital as the primary
unit, doctors as secondary unit, and patients as the observational unit. These clusters
are treated as random effects. We make use of random effects as we believe there
are some non-measurable influences on patient outcomes based on the doctor and
also based on the hospital. Some effects may be positive and some effects may be
negative, but overall we assume their average effects are zero.
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4.1 With Random Intercepts

At level 1,wemay take responses fromdifferent patients,while noting their age (Age)
and length of stay (LOS). The outcomes are modeled through a logistic regression
model

log

[
pijk

1 − pijk

]
= γoij + γ1ijAgeijk + γ2ijLosijk (4.1)

where γoij is the intercept, γ1ij is the coefficient associated with the predictor Ageijk,
and γ2ij is the coefficient associated with the predictor Losijk (length of stay) for
k = 1, 2, . . ., nij patients; j = 1, 2, . . ., ni doctors and i = 1, . . ., n; hospitals. Each
doctor has a separate logistic model. If we allow the effects of Age and LOS on the
outcome to be the same for each doctor, but allow the intercept to be different on
the logit scale, we have parallel planes for their predictive model. The γoij intercept
represents those differential effects among doctors.

At level 2, we assume that the intercept γoij (which allows a different intercept
for doctors within hospitals) depends on the unobserved factors specific to the ith
hospital, the covariates given as associated with the doctors within the ith hospital,
and a random effect uoij associated with doctor j within hospital i. Thus,

γoij = γoi + γ1iExperienceij + uoij (4.2)

where Experienceij is the experience for the jth doctor within the ith hospital. Simi-
larly, hospital administration policies may have different effects on doctors. At level
3, the model assumes that differential hospital policies depend on the overall fixed
intercept β0 and the random intercept uoi associated with the unmeasurable effect for
hospital i. Thus,

γoi = β0 + uoi (4.3)

By successive substitution into the expression for γoi in (4.3) into (4.2), and then
by substituting the resulting expression for γoij into (4.1), we obtained

log

[
pijk

1 − pijk

]
= β0 + γ1iExperienceij + γ1ijAgeijk + γ2ijLosijk + uoi + uoij (4.4)

The combination of random and fixed terms results in a generalized linear mixed
model with two random effects; hospitals denoted by uoi ∼ N (0, σ2

ui) and doctors
denoted by uoij ∼ N (0, σ2

uij) with covariance σuoi,uoij . From Eq. (4.4), the model con-
sists of the overall mean plus experience of doctors plus age of patient, length of stay
plus effects due to hospitals and effects due to doctors for each individual. Hence,
we have a subject-specific model.
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4.2 Three-Level Logistic Regression Models with Random
Intercepts and Random Slopes

Consider the three-level random intercept and random slope model consisting of a
logistic regression model at level 1,

log

[
pijk

1 − pijk

]
= γoij + γ1ijAgeijk + γ2ijLosijk (4.5)

where both γoij and γ2ij are random, for k = 1, 2, . . ., nij; j = 1, 2, . . ., ni ; and
i = 1, . . ., n. So each doctor has a different intercept and the rates of change with
respect to length of stay are not the same for all the doctors. However, there are
some unobserved effects related to LOS that impact remission. There are factors
associated with LOS and the doctors’ impacts on patients vary as LOS varies. The
intercept represents a group of unidentifiable factors that impact the overall effect of
the doctor on the patient’s success, while the slope represents the differential impact
that the particular variable (LOS) has that results in differences among patients.

So, at level 2, γoij and γ2ij are treated as response variables within the model,

γoij = γoi + γ1iExperienceij + uoij (4.6)

γ2ij = γ2i + u2ij (4.7)

where γoi and γ2i are random effects. Equation (4.6) assumes the intercept γoij for
doctors nested within hospital j, depends on the unobserved intercept specific to the
ith hospital, the effects associated with the doctor’s experience in the hospital, and
a random term uoij associated with doctor j within hospital i. The slope γ2ij depends
on the overall slope γ2i for hospital i and a random term u2ij.

At level 3, the model shows that the hospitals vary based on random effects

γoi = β00 + uoi (4.8)

γ2i = β22 + u2i (4.9)

The intercept γoi depends on the overall fixed intercept β00 and the random term
uoi associated with the hospital i , while the hospital slope γ2i depends on the overall
fixed slope β22 and the random effect u2i associated with the slope for hospital i. By
substituting the expression for γoi and γ2i into (4.7) and (4.8), and then substituting
the resulting expression for γoij and γ2ij into (4.9), we obtained

log

[
pijk

1 − pijk

]
= β00 + γ1ijAgeijk + γ1iExperienceij + uoi + uoij+

(
β22 + u2i + u2ij

)
Losijk (4.10)
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Thus, we have a generalized linear mixed model with random effects uoi, uoij, γ1i

and γ1ij. Therefore, Losijk is associated with both a fixed and random part. We take
advantage of this regrouping of terms to incorporate the random effects and their
variance-covariance matrix, so that uoi, uoij, γ1i and γ1ij are jointly distributed nor-
mallywith ameanof zero and a covariancematrix reflecting the relationships between
the random effects.

4.3 Nested Higher Level Logistic Regression Models

For higher than three level nested we can easily present the model, though executing
the necessary computations may be tedious. Imagine if we had the data with another
level, hospitals nested within cities (level 4 denoted by h). Cities may have their
own way of monitoring healthcare within their jurisdiction. We also believed that the
number of beds within the hospital is a necessary variable. For such data, we will
have the kth patient nested within the jth doctor which is nested within ith hospital
which is nested in the hth city. Then the model is:

log

[
phijk

1 − phijk

]
= β00 + γ1hijAgehijk + γ1hiExperiencehij+

γ1hBedhi + uoh + uohi + uohij +
(
β22 + u2hi + u2hij

)
Loshijk (4.11)

5 Possible Problems with Hierarchical Model

5.1 Issues in Hierarchical Modeling

We found that convergence of parameter estimates can sometimes be difficult to
achieve, especially when fitting models with random slopes or higher levels of nest-
ing. Some researchers have found that convergence problems may occur if the out-
come is skewed for certain clusters or if there is quasi or complete separation. Such
phenomena destroy the variability within clusters which is essential to obtaining the
solutions. In addition, including toomany randomeffectsmay not be computationally
possible (Schabenberger 2005).

We also found what other researchers did; for hierarchical logistic models for
nested binary data, it is often not feasible to estimate random effects for both inter-
cepts and slopes at the same time in a model. Newsom (2002) showed that we
can have models with too many parameters to be estimated given the number of
covariance elements included. Others found that such models can lead to severe con-
vergence problems, which can limit the modeling. Before fitting these conditional
models, McMahon et al. (2006) suggested that one should determine whether there is
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significant cluster interdependence to justify the use of multilevel modeling. Irimata
and Wilson (2017) through simulation gave some further guidance.

Regardless of the number of clusters, Austin (2010) found that for all statistical
software procedures, the estimation of variance components tended to be poor when
there were only five subjects per cluster. The number of clusters on the mean number
of quadrature points was negligible. However, when the random effects were large,
Rodriquez and Goldman (1995) found substantial decreases in the estimation of
fixed effects and/or variance components. They also found that there was bias in the
estimation when the number of subjects per cluster was small.

These hierarchical models can be fitted through SAS with the GLIMMIX or
NLMIXED procedure as well as in SPSS and R. Maas and Hox (2004) claimed that
only one randomstatement is supported in theNLMIXEDprocedure so that nonlinear
mixed models cannot be assessed at more than two levels. However, Hedeker et al.
(2008), Hedeker et al. (2012) showed how more than one random statement can be
used for continuous data in the NLMIXED procedure with more than two-levels.

5.2 Parameter Estimations

The conditional joint distribution of the responses and the distribution of the ran-
dom effects provide a joint likelihood which cannot necessarily be readily written
down in closed form. However, we still need to estimate the regression coefficients
and the random components. In so doing, it is imperative for us to use some form
of approximations. Sometimes researchers have used the quasi-likelihood approach
through a Taylor series expansion to approximate the joint likelihood. The approxi-
mate likelihood is maximized to produce maximized quasi-likelihood estimates. The
disadvantage which many researchers have pointed out with this approach is the bias
involved with quasi-likelihoods (Wedderburn 1974). Other researchers have resorted
to numerical integration, split up into quadratures, to obtain approximations of the
true likelihood. More integration points will increase the number of computations
and thus impede the speed to convergence, although it increases the accuracy. Each
added random component increases the integral dimension. A random intercept is
one dimension (one added parameter), a random slope makes that two dimensions.
Our experience is that the three-level nested models with random intercepts and
slopes often create problems regarding convergence.

5.3 Convergence Issues in SAS

We spent considerable time overcoming the challenges of the GLIMMIX procedure.
We reviewed available literature and discussed with those with experience using
SAS. Although there are by nomeans guarantees that there will not be challenges, we
provide in this chapter our experiences, underscored by others, as well as suggestions
for improving the performance of this procedure.
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Non-convergence in the GLIMMIX procedure can be identified by looking at
the output and the log. The most obvious indication of issues is in the convergence
criterion, which is provided below the iteration history. When convergence is not
obtained, SAS will provide the following warning: “Did not converge”.

A successful convergence message does not itself necessarily guarantee that the
model converged. In some cases, the convergence criterion will be satisfied, but
the standard error for one or more of the (non-zero) covariance parameters will be
missing. When this occurs, the standard error will be given by a “.” instead of an
actual estimate. In these cases, the output may look similar to the following:

Covariance Parameter Estimates
Cov Parm Subject Estimate Standard Error
Intercept div 0.09097 .
urban div 0.01127 .

When there is non-convergence, there are a number of possible remedies. Many
authors, such as Kiernan et al. (2012) have offered a number of possible solutions.
Researchers using the GLIMMIX procedure may choose to:

• Drop certain variables
• Relax the convergence criterion
• Increase the value of ABSCONV =
• Change the covariance structure using TYPE =
• Adjust the quadrature using QUAD =
• Utilize different approximation algorithms such as TECH = NRRIDG or TECH =
NEWRAP, in the NLOPTIONS statement.

• Increase the number of iterations using MAXITER = in the NLOPTIONS
statement

• Control the number of outer iterations using the INITGLM option
• Increase the number of optimizations using the MAXOPT = option
• Rescale data values to reduce issues relating to extreme values
• Utilize an alternative approach, such as the %HPGLIMMIX MACRO (Xie and
Madden 2014)

For a more thorough discussion of the procedure itself, Ene et al. (2015) provided
a thorough introduction to the use and interpretation of the GLIMMIX procedure in
SAS.

6 Simulation of Data

The IML procedure in SAS was used to simulate two-level data following a general-
ized linear mixed model with random intercepts and random slopes. In this example,
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we explored the effects of including an increasing number of fixed effects when
using the GLIMMIX procedure to fit a logistic regression model with one random
intercept and one random slope. The approaches discussed in this section can readily
be expanded to simulate data with more than two levels, although only two levels
are discussed for ease of interpretation and understanding.

6.1 Simulation Setup

Here we set the parameters for the simulation. We will assume that our random
intercept has variance σ 2

I NT=7 and that the random slope has variance σ 2
SLOPE=15.

We also assume that there are six continuous fixed effects. Each of the fixed effects
has a mean of 1, with some random noise added such that the means are not all
equal. The fixed effects are assumed to independent of one another and also pairwise
independent of the random slope. The simulated data will include 15 clusters of
observations, eachwith a randomly chosen number of observations between 2 and 40.

proc iml;
*Set the variance of the random slope; 
sigInt = 7; 
sigSlope = 15; 
*Set the coefficients; 
Bcont = 0.09; 
*Set the observation level parameters; 
*Set the means for 6 continuous fixed effects, and one 
random slope; 
means = {1,1,1,1,1,1,6};
*Slightly alter the means; 
noise = normal(j(7,1));
noise[7]=0;  
means = means+noise; 
*Set the covariance of the fixed and random predictors; 
R=I(7);
*Select the number of clusters; 
b = 15; 
*Randomly select the number of observations in each clus-
ter;
randobs = j(b,1);
call randgen(randobs, "Uniform"); 
*Transform to be between 2 and 40; 
n = 2 + floor((41-2)*randobs);
*Calculate the overall total number of observations; 
ntot = sum(n);

Once the parameters for the simulation are chosen, the cluster level data are
created. Each of the random (cluster) intercepts are chosen according to independent
random standard normal distributions with mean of 0 and standard deviation of 1.
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The random (cluster) slope coefficients are also chosen according to independent
random normal distributions with our specified variance and a mean of -1. In effect,
each of the 15 clusters is assigned a unique cluster level intercept and slope term.
Our design matrix is created using these random values.

*Create cluster level data;
*Cluster IDs; 
cid = (1:b)`;
*Cluster random intercepts; 
cint = randnormal(b,0,1);
*Cluster random slopes; 
cslope = randnormal(b,-1,sigSlope);
*Loop through to create the design matrix; 
cluster = j(ntot, 3);
startindex = 1;
do i=1 to b; 

1;
1] = cid[i]; 
2] = cint[i]; 
3] = cslope[i]; 

endindex = startindex + n[i] - 
cluster[startindex:endindex,
cluster[startindex:endindex,
cluster[startindex:endindex,
startindex = endindex + 1;

end;

Once the cluster level data are created, we can generate the observation level data.
We create a matrix of independent normal realizations to serve as the observations
for each of the six continuous fixed as well as the random slope variables. The
realizations of each variable are created using a multivariate random normal. The
fixed effect predictors are also transformed for better model fitting.

*Create observation level data;
X = randnormal(ntot, means, R); 
*Apply some changes to the observation level data; 
X[,1:6] = (X[,1:6]/1.6 + 5.1)*10;2] = bin(X[,2],cuts) - 1;

We combine our simulated data to create two matrices. The first matrix is used to
combine all fixed and random effects information, while the second matrix provides
a reduced set of information for use in simulation of the response. This secondmatrix
removes information on the true random slope coefficient and the true cluster ID and
thus contains information on the six fixed effects and the random intercept term.

*Create matrix of both cluster and observation level data;
alldat = X || cluster; 
*Final data for simulation, excluding the random slope 
predictor and cluster ID; 
keepind = {1,2,3,4,5,6,9};
simdat = alldat[,keepind];
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The coefficients for the fixed effect predictors are set according to those specified
at the start of the simulation. The cluster level (random) intercept is assigned a
coefficient equal to the square root of the random intercept variance term; since the
random intercepts were originally simulated from a standard normal distribution, this
coefficient introduces the specified variance into the simulation. These coefficients
are also standardized based on the standard deviation of the respective observations.

*Set coefficients;
beta = j(7,1);
beta[1:6]=Bcont;
beta[7] = sqrt(sigInt); 
*Standardize betas by the standard deviation; 
datadev = STD(simdat); 
beta = beta / datadev`; 

We create our response as a function of these covariates. The simulated data
are multiplied by the coefficients and the effect of the random slope is added in.
The resulting value is then converted into a probability and used to create a binary
response according to the Bernoulli distribution. This response is then combinedwith
a “blinded” data matrix which has the value of the cluster intercept and the random
slope coefficients removed. The final matrix is then output to a SAS data set with
specified variable names.

*Create the response with the random slope effect added;
xb = simdat * beta + cluster[,3] # alldat[,7];
probs = 1 / (1 + exp(-xb)); 
y = rand("Bernoulli",probs); 
*Create the final data with the cluster intercept removed; 
outdat = y || alldat[,1:8];
*Output to a data set; 
create SimData from

outdat[colname={"Y" "X1" "X2" "X3" "X4" "X5" "X6" 
"Xclust" "CID"}]; 
append from outdat; 
close SimData; 
*Quit IML; 
quit;

The outputted data set is then analyzed using the GLIMMIX procedure in SAS.
Each of the fixed effect predictors is added to the model one by one to determine the
point at which this procedure will fail, if at all. A partial example of these analyses
are shown below.
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*Analyze the data using glimmix;
*One fixed effect; 
proc glimmix data=SimData1; 

class CID; 
model Y(event="1") = X1 Xclust / dist=binary 

link=logit;
random intercept Xclust / type=vc subject=CID; 

run;
*Two fixed effects; 
proc glimmix data=SimData; 

class CID; 
model Y(event="1") = X1 X2 Xclust / dist=binary 

link=logit;
random intercept Xclust / type=vc subject=CID; 

run;
[…]

*Six fixed effects; 
proc glimmix data=SimData; 

class CID; 
model Y(event="1") = X1 X2 X3 X4 X5 X6 Xclust / 

dist=binary link=logit; 
random intercept Xclust / type=vc subject=CID; 

run;

6.2 Simulation Results

Although the GLIMMIX procedure is a powerful tool for fitting generalized linear
models, it is not uncommon to find that the procedure fails to provide results. We
utilized a simulation study similar to the one utilized in the previous section to
investigate the effect of the number of predictors on the failure rates in theGLIMMIX
procedure. A SAS macro was implemented to run the simulation across a variety of
conditions and the GLIMMIX procedure was used to analyze the data under each
condition for 1000 replications per condition. Each simulated data set contained
information on a binary outcome, an identifier label for cluster number, one (random)
cluster level predictor, and six fixed effect predictors. For each simulated data set,
the GLIMMIX procedure was used to analyze the data set six times, where each call
to the procedure included one additional fixed effect predictor.
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Table 1 Failure rates for the GLIMMIX procedure (three clusters)

Variances Number of predictors

Beta Intercept Slope 1 2 3 4 5 6

Weak Low Low 1 0.773 0.783 0.786 0.799 0.844

Moderate Low Low 1 0.760 0.784 0.804 0.798 0.815

Strong Low Low 1 0.780 0.785 0.807 0.817 0.821

Weak Low Medium 0 0.418 0.638 0.743 0.858 0.941

Moderate Low Medium 0 0.501 0.706 0.856 0.903 0.934

Strong Low Medium 0 0.325 0.506 0.675 0.788 0.893

Weak Low High 0 0.423 0.577 0.684 0.793 0.877

Moderate Low High 0 0.549 0.689 0.820 0.898 0.911

Strong Low High 0 0.450 0.629 0.703 0.826 0.865

Weak Medium Low 0 0.492 0.644 0.751 0.823 0.912

Moderate Medium Low 0 0.399 0.518 0.675 0.811 0.885

Strong Medium Low 0 0.322 0.488 0.641 0.745 0.817

Weak Medium Medium 0 0.459 0.604 0.698 0.820 0.899

Moderate Medium Medium 0 0.423 0.607 0.760 0.856 0.923

Strong Medium Medium 0 0.428 0.537 0.648 0.761 0.846

Weak Medium High 0 0.422 0.610 0.716 0.844 0.902

Moderate Medium High 0 0.367 0.557 0.725 0.846 0.910

Strong Medium High 0 0.393 0.543 0.636 0.788 0.831

Weak High Low 0 0.463 0.565 0.712 0.791 0.877

Moderate High Low 0 0.392 0.515 0.662 0.845 0.885

Strong High Low 0 0.364 0.509 0.664 0.743 0.851

Weak High Medium 0 0.529 0.701 0.777 0.880 0.956

Moderate High Medium 0 0.413 0.602 0.684 0.854 0.915

Strong High Medium 0 0.356 0.511 0.669 0.769 0.845

Weak High High 0 0.324 0.519 0.661 0.779 0.839

Moderate High High 0 0.327 0.484 0.656 0.831 0.869

Strong High High 1 0.376 0.581 0.738 0.808 0.842

In particular, the conditions examined were the number of data clusters, the
strength of the variance of both the random intercept and slope and strength of
fixed effect coefficients. The simulation took into account data sets with either 3, 15
or 45 clusters of data. The random effect variances we investigated included all com-
binations of low, medium and high variances for the random intercept and random
slope—yielding a total of nine different variance combinations. The fixed effects
also took three levels of strength—weak, moderate or strong.

The results of this simulation are given in Tables1, 2 and 3 and are also displayed
graphically in Fig. 1. These displays provide the failure rates for the 1000 simulations
conducted for each of the specified conditions, thus higher values indicate poorer
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Table 2 Failure Rates for the GLIMMIX Procedure (fifteen clusters)

Variances Number of predictors

Beta Intercept Slope 1 2 3 4 5 6

Weak Low Low 0 0.413 0.400 0.404 0.414 0.396

Moderate Low Low 0 0.415 0.424 0.433 0.434 0.422

Strong Low Low 0 0.441 0.430 0.431 0.418 0.428

Weak Low Medium 0 0.138 0.180 0.337 0.484 0.610

Moderate Low Medium 0 0.182 0.272 0.387 0.493 0.579

Strong Low Medium 0 0.121 0.199 0.273 0.378 0.459

Weak Low High 0 0.152 0.281 0.401 0.509 0.635

Moderate Low High 0 0.200 0.269 0.355 0.459 0.545

Strong Low High 0 0.131 0.239 0.332 0.370 0.473

Weak Medium Low 0 0.171 0.251 0.321 0.449 0.567

Moderate Medium Low 0 0.148 0.258 0.445 0.570 0.613

Strong Medium Low 0 0.093 0.157 0.222 0.328 0.411

Weak Medium Medium 0 0.148 0.243 0.325 0.411 0.530

Moderate Medium Medium 0 0.167 0.294 0.406 0.514 0.573

Strong Medium Medium 0 0.118 0.189 0.284 0.348 0.455

Weak Medium High 0 0.214 0.304 0.396 0.459 0.627

Moderate Medium High 0 0.220 0.295 0.399 0.478 0.590

Strong Medium High 0 0.158 0.238 0.305 0.404 0.489

Weak High Low 0 0.092 0.191 0.324 0.404 0.531

Moderate High Low 0 0.157 0.252 0.366 0.440 0.552

Strong High Low 0 0.085 0.141 0.249 0.351 0.446

Weak High Medium 0 0.129 0.217 0.347 0.446 0.532

Moderate High Medium 0 0.122 0.227 0.335 0.503 0.605

Strong High Medium 0 0.133 0.194 0.272 0.359 0.437

Weak High High 0 0.140 0.232 0.329 0.470 0.541

Moderate High High 0 0.093 0.173 0.258 0.369 0.505

Strong High High 0 0.129 0.199 0.266 0.332 0.465

performance as a higher proportion of the calls to the GLIMMIX procedure failed
to provide results. Tables1, 2 and 3 divide the results of the simulations based on
the number of clusters in each simulation, where Table1 summarizes the simulations
with 3 data clusters each, Table2 summarizes the simulations with 15 data clusters
each and Table3 summarizes the simulations with 45 data clusters each. The first
column in each of the tables provides the strength of the fixed effects predictor (weak,
moderate or strong). The second and third columns denote the simulation settings for
the variance of the random intercept and slope, respectively,where each variance term
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Table 3 Failure Rates for the GLIMMIX Procedure (forty-five clusters)

Variances Number of predictors

Beta Intercept Slope 1 2 3 4 5 6

Weak Low Low 0 0.243 0.247 0.245 0.236 0.235

Moderate Low Low 1 0.236 0.246 0.249 0.255 0.244

Strong Low Low 0 0.298 0.303 0.305 0.296 0.303

Weak Low Medium 0 0.055 0.090 0.123 0.159 0.184

Moderate Low Medium 0 0.051 0.098 0.127 0.163 0.243

Strong Low Medium 1 0.038 0.073 0.108 0.141 0.189

Weak Low High 1 0.035 0.073 0.099 0.140 0.197

Moderate Low High 1 0.038 0.061 0.101 0.157 0.214

Strong Low High 0 0.041 0.052 0.081 0.139 0.197

Weak Medium Low 0 0.060 0.089 0.134 0.169 0.223

Moderate Medium Low 0 0.061 0.093 0.127 0.189 0.215

Strong Medium Low 0 0.045 0.069 0.096 0.134 0.185

Weak Medium Medium 0 0.027 0.054 0.088 0.163 0.209

Moderate Medium Medium 0 0.062 0.104 0.139 0.168 0.208

Strong Medium Medium 0 0.071 0.099 0.118 0.146 0.187

Weak Medium High 0 0.041 0.088 0.130 0.177 0.209

Moderate Medium High 0 0.050 0.066 0.112 0.143 0.169

Strong Medium High 0 0.026 0.052 0.089 0.126 0.169

Weak High Low 0 0.031 0.057 0.080 0.141 0.209

Moderate High Low 0 0.031 0.061 0.104 0.139 0.187

Strong High Low 0 0.032 0.046 0.092 0.156 0.192

Weak High Medium 0 0.050 0.094 0.139 0.206 0.263

Moderate High Medium 0 0.068 0.111 0.161 0.182 0.259

Strong High Medium 0 0.030 0.068 0.101 0.129 0.173

Weak High High 0 0.038 0.086 0.139 0.170 0.235

Moderate High High 0 0.081 0.123 0.179 0.244 0.300

Strong High High 0 0.053 0.080 0.125 0.149 0.202

takes one of three levels (low, medium, high). The remaining six columns contain
the failure rates as a proportion for the GLIMMIX procedure with a given number
of fixed effects predictors. For instance, we can see from Table1, in the first data
row, in the last column that of the 1000 simulations with three clusters, weak fixed
effects, low intercept variance and low slope variance, 84.4% of the models with six
fixed effect predictors failed to converge.
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Fig. 1 Failure rates for the GLIMMIX procedure

Figure1 provides a graphical representation of the same simulated data presented
in Tables1, 2 and 3. Each individual plot contains three lines representing the failure
rates for each of the three strengths of the fixed effects. The blue line represents the
simulations with weak predictors, the red line represents the simulations with mod-
erate predictors and the green line represents the simulations with strong predictors.
The vertical (Y) axis of each individual plot denotes the failure rates as a percent-
age, where higher values indicate higher rates of failure. The horizontal (X) axis
within each of the individual plots represents the number of fixed effects included in
the model for those simulations. The individual plots are also organized into three
columns according to the number of data clusters in those simulations. The individ-
ual plots are further grouped into nine rows according to the strength of the random
effects for those simulations. For example, in the individual plot in the last column
of the first row contains information on the 1000 simulations in which there were 45
clusters, with weak fixed effects predictors, low random intercept variance and low
random slope variance.
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In general, as the number of predictors increased, the failure rates also increased.
Notable exceptions include the case where there is very little variance in the random
effects. For instance, in the case of low random intercept variance and low random
slope variance, the failure rates may actually decrease, or increase only slightly. We
can also see that the effect of increasing the number of predictors is also suppressed
when there are more data clusters. In general, the GLIMMIX procedure is more
successful in analyzing datawithmore clusters as illustrated by the lower failure rates.
Similarly, data with overall stronger random effect variance is also less susceptible
to failure as the number of predictors in the model increases. This holds true with
respect to both the random intercept variance as well as the random slope variance.

7 Analysis of Data

7.1 Description

A subset of data from the 2011 Bangladesh Demographic and Health Survey is used
in this study. This subset contains information on 1000 women between the ages of
10 and 49, living in Bangladesh. The data in this study are hierarchical in nature
in that each of the women is nested within one of seven different districts, which
correspond approximately to administrative regions in Bangladesh (NIPORT 2013).
A simplified version of this structure is represented as Fig. 2.

The outcome of interest in this data set is a binary variable representing the
woman’s knowledge of AIDS. The variable takes one of two values representing
knowledge of AIDS (1) or no knowledge of AIDS (0). In addition to this outcome,
the data set also includes information on the woman’s wealth index, age, number of
living children as well as whether or not the woman lives in an urban or rural setting.
Wealth index had five possible levels representing the quintile to which the woman
belonged. Age represented the woman’s age at the time of survey while number of
living children represented how many living children the woman had at the time of
survey. The urban/rural variable was a district level predictor as the value of this
predictor were partially driven by the administrative region.

Please note to use the included DHS subset data, you must register as a DHS
data user at: http://www.dhsprogram.com/data/new-user-registration.cfm. This sub-
set data must not be passed on to others without the written consent of DHS
(archive@dhsprogram.com). You are required to submit a copy of any reports/
publications resulting from using this subset data to: archive@dhsprogram.com.

http://www.dhsprogram.com/data/new-user-registration.cfm
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Fig. 2 Hierarchical
structure in 2011 DHS Study
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7.2 Data Analysis

We fit a logistic regression model with one random intercept and one random slope
for the urban/rural variable. For these data, the random effects were used to address
the clustering present due to districts. Each of these models was fitted using the
GLIMMIX procedure in SAS. The first model included one fixed effect predictor for
wealth index.

log

[
pjk

1 − pjk

]
= β0 + γ1Urbanj + γ1jWealthjk + uoj

As in the data simulation section, these data can be analyzed in SAS using code
similar to the example given below. Note that additional fixed effects predictors can
be included in the model statement to fit additional models.

proc glimmix data=bang;
class div urban wealth; 
model aids(event="1") = urban wealth / dist=binary 

link=logit;
random intercept urban /type=vc subject=div; 

run;

The convergence criterion noted that the GLIMMIX procedure converged suc-
cessfully and that we are also provided with standard errors for our random effects.
Therefore, we see the procedure was successful in fitting the model.



276 K.M. Irimata and J.R. Wilson

Iteration History
Iteration Restarts Subiterations Objective Function Change Max Gradient

0 0 4 4562.1081534 2.00000000 0.00012
1 0 3 4679.3151727 0.37988319 0.000023
2 0 2 4718.2025244 0.05445086 0.000019
3 0 1 4720.2027844 0.00248043 0.000042
4 0 1 4720.2171672 0.00004268 1.244E-8
5 0 0 4720.2172745 0.00000000 5.905E-6

Convergence criterion (PCONV=1.11022E-8) satisfied.

Fit Statistics
-2 Res Log Pseudo-Likelihood 4720.22
Generalized Chi-Square 973.41
Gener. Chi-Square / DF 0.98

Covariance Parameter Estimates
Cov Parm Subject Estimate Standard Error
Intercept div 0.1149 0.1102
urban div 0.05142 0.09565

Type III Tests of Fixed Effects
Effect Num DF Den DF F Value Pr > F
urban 1 6 1.48 0.2692
wealth 4 982 21.92 <.0001

We also fit the model which included fixed effects for both wealth and age.

log

[
pjk

1 − pjk

]
= β0 + γ1Urbanj + γ1jWealthjk + γ2jAgejk + uoj

In this case, we can similarly see that the convergence criterion is satisfied and that
estimates of the standard errors of the random effects are provided. Thus, we see that
the GLIMMIX procedure was successful in fitting a model.
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Iteration History
Iteration Restarts Subiterations Objective Function Change Max Gradient

0 0 4 4565.1551673 2.00000000 0.000164
1 0 3 4759.8377085 0.81042673 0.00017
2 0 2 4808.4720043 0.11542518 0.000114
3 0 1 4811.3231643 0.00580829 0.000136
4 0 1 4811.3435049 0.00011603 5.451E-8
5 0 1 4811.3434869 0.00000132 5.917E-9
6 0 0 4811.3434867 0.00000000 1.381E-7

Convergence criterion (PCONV=1.11022E-8) satisfied.

Fit Statistics
-2 Res Log Pseudo-Likelihood 4811.34
Generalized Chi-Square 973.16
Gener. Chi-Square / DF 0.98

Covariance Parameter Estimates
Cov Parm Subject Estimate Standard Error
Intercept div 0.1152 0.1059
urban div 0.03594 0.08961

Type III Tests of Fixed Effects
Effect Num DF Den DF F Value Pr > F
urban 1 6 1.70 0.2403
wealth 4 981 22.06 <.0001
age 1 981 43.47 <.0001

We added a third predictor for number of living children to our mixed model.

log

[
pjk

1 − pjk

]
= β0 + γ1Urbanj + γ1jWealthjk + γ2jAgejk + γ3jChildrenjk + uoj

With the inclusion of this third predictor, we see that the GLIMMIX procedure fails
to converge and consequently does not provide estimates of the standard errors of
the random effects. Hence, we see that, although SAS is able to fit the model with
two fixed effects, the inclusion of a third fixed effect leads to failure.
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Iteration History
Iteration Restarts Subiterations Objective Function Change Max Gradient

0 0 4 4583.476774 2.00000000 3.121596
1 0 3 4788.3397625 2.00000000 6.129E-6
2 0 2 4842.5826312 0.36041184 0.000157
3 0 1 4846.0866446 0.19708062 0.000187
4 0 1 4847.0951336 0.16428366 1.49E-7
5 0 1 4848.0956362 0.14098626 2.589E-9
6 0 1 4849.0959182 0.12352732 7.98E-9
7 0 1 4850.096021 0.10993349 4.498E-8
8 0 1 4851.0960586 0.09904095 6.01E-11
9 0 0 4852.0960724 0.09011439 4.282E-6
10 0 0 4853.0960785 0.08266460 5.821E-6
11 0 0 4854.0960808 0.07635276 6.385E-6
12 0 0 4855.0960816 0.07093651 6.594E-6
13 0 0 4856.0960819 0.06623786 6.674E-6
14 0 0 4857.0960819 0.06212302 6.687E-6
15 0 0 4858.0960828 0.05848863 6.683E-6
16 0 0 4859.0960811 0.05525857 6.782E-6
17 0 0 4860.0960789 0.05236722 6.898E-6
18 0 0 4861.0960963 0.04974318 5.95E-6
19 0 0 4862.0961081 0.04737287 7.581E-6

Did not converge.

Covariance Parameter Estimates
Cov Parm Subject Estimate Standard Error
Intercept div 0.09097 .
urban div 0.01127 .

Althoughwe do not explore its use in depth here, the%hpglimmixmacro provides
an alternative approach in SAS for fitting generalized linear mixed models (Xie
and Madden 2014). This macro offers improvements in memory usage as well as
processing time and supports the fitting of more complicated models as compared to
the GLIMMIX procedure. Although this macro does not currently provide standard
errors of the covariance parameter estimates or Type III test results, it can be useful
when alternative approaches fail to resolve convergence issues in the GLIMMIX
procedure. We fit the previously discussed model, which includes three fixed effects
predictors as well as one random intercept and one random slope for the Bangladesh
data. After loading the macro into the current SAS session, the model can be run
using code similar to the following.



Monte-Carlo Simulation in Modeling for Hierarchical Generalized Linear … 279

%hpglimmix(data=bang,
stmts=%str( 

class div urban wealth children; 
model aids = urban wealth age children / solu-

tion ; 
random int urban / subject=div solution; 

), 
error=binomial, maxit=50,
link=logit 

);

Though this model fails to converge in the GLIMMIX procedure, we see that
%hpglimmix provides results for the model which includes three fixed effect pre-
dictors.

Iteration History
Iteration Evaluations Objective Function Change Max Gradient

0 4 4892.189763 . 6.524357
1 5 4892.1622318 0.02753122 5.886723
2 3 4892.1566979 0.00553391 5.959108
3 3 4892.1564908 0.00020710 5.957165
4 5 4892.0850182 0.07147255 3.174453
5 4 4892.0847449 0.00027336 3.145538
6 4 4892.0726771 0.01206780 0.563614
7 4 4892.0726558 0.00002129 0.569235
8 4 4892.0726553 0.00000047 0.568549
9 5 4892.0724006 0.00025469 0.41386

10 4 4892.0721478 0.00025279 0.01987

Convergence criterion (GCONV=1E-8) satisfied.

Covariance Parameter Estimates
Cov Parm Subject Estimate
Intercept div 0.09138
urban div 0.01301
Residual 0.9905

Fit Statistics
-2 Res Log Likelihood 4892.07215
AIC (smaller is better) 4898.07215
AICC (smaller is better) 4898.09666
BIC (smaller is better) 4897.90988
CAIC (smaller is better) 4900.90988
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Another possible remedy in this case is found in theNLMIXEDprocedure in SAS.
This procedure utilizes likelihood-based approaches to fitmixedmodels for nonlinear
outcomes (Wolfinger 1999). This procedure is readily available in SAS software and
provides similar techniques to those available in the GLIMMIX procedure. Although
the models that can be fit in both procedures are similar, it is worth noting that the
two procedures use different techniques for estimation and thus the results may vary
between the two approaches. However, because different estimation techniques are
employed there are also cases in which the NLMIXED procedure will converge,
while the GLIMMIX procedure will not.

The NLMIXED procedure is implemented differently as compared to many other
procedures in SAS software. In particular, one must provide starting values for each
of the parameters of interest, which can be estimated in a number of ways. In this
example, we first used the logistic procedure to obtain estimates of the fixed effects
parameters and specify a generic value of ‘1’ for the variance of each of our ran-
dom effects (intercept and slope). We also specified an equation with respect to our
parameters and observed predictor values, and use this equation in the specification
of our model statement through the calculation of our probability using the logit
link. Finally, each of the random effects as well as the corresponding distribution is
specified, and the subject assigned.

proc logistic data=bang;
model aids_knowledge(event="1") = urban wealth age 

children/ link=logit; 
run;
proc nlmixed data=bang; 

parms b0=0.6916 b1=0.3335 b2=0.5921 b3=-0.0287 b4=-
0.2616 s2u = 1 s2r = 1;

xb = b0 + u + (b1+rb1)*urban + b2*wealth + b3*age + 
b4*children;

p = exp(xb) / (1+exp(xb));
model aids_knowledge ~binary(p); 
random u rb1 ~ normal([0,0],[s2u,0,s2r]) sub-

ject=div;
run;

We found that the NLMIXED procedure converges successfully and also pro-
vides solutions for both our fixed and random effects for the model which includes
three fixed effects predictors. Wolfinger (1999) provides a good introduction to the
NLMIXED procedure and its usage, as well as some of the underlying calculations.
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NOTE: GCONV convergence criterion satisfied.

Fit Statistics
-2 Log Likelihood 972.1
AIC (smaller is better) 986.1
AICC (smaller is better) 986.2
BIC (smaller is better) 985.7

Parameter Estimates
Parameter Estimate Standard Error DF t Value Pr > |t | Alpha Lower Upper Gradient
b0 0.6547 0.3339 5 1.96 0.1072 0.05 –0.204 1.5131 –0.0001
b1 0.3267 0.2801 5 1.17 0.2960 0.05 –0.393 1.0468 0.00032
b2 0.6156 0.06906 5 8.91 0.0003 0.05 0.4381 0.7931 –0.0004
b3 –0.0296 0.01113 5 –2.66 0.0448 0.05 –0.058 –0.001 0.00999
b4 –0.2567 0.06031 5 –4.26 0.0080 0.05 –0.412 –0.102 0.0018
s2u 0.03178 0.04894 5 0.65 0.5450 0.05 – 0.094 0.1576 0.00059
s2r 0.2798 0.2937 5 0.95 0.3846 0.05 –0.475 1.0349 –0.0001

In general, we found that the results of our data analysis are in agreement with our
findings based on the simulation study. The GLIMMIX procedure was successful in
analyzing the models with fewer fixed effects predictors. However, once we included
additional fixed effects, we saw that the GLIMMIX procedure failed to converge.
In these cases, we may choose to investigate only the smaller subset of predictors
in order to get successful analyses. Alternatively, if the larger number of predictors
is of interest, we can utilize the %hpglimmix macro, which is able to achieve
convergence, although the output is reduced. We may also utilize the NLMIXED
procedure, which utilizes different methods for estimation.

8 Conclusions

Fitting hierarchical logistic regression models to survey binary data is common in a
number of disciplines. These models are useful in analyzing survey data in the pres-
ence of clustering or correlation, which otherwise would make standard approaches
inappropriate due to the lack of independence amongst the outcomes. Although there
are a number of powerful approaches for fitting these models, such as the GLIMMIX
and NLMIXED procedures in SAS, the computational complexity of the algorithms
can often lead to failures in convergence.

Through the use of simulations, we obtained useful information for exploring the
reasons for non-convergence, as well as steps to avoid these issues. In particular,
when using the GLIMMIX procedure, researchers should be careful in selecting
predictors to include in the model. The inclusion of too many predictors can lead
to convergence issues, regardless of whether these predictors are fixed or random.
When many predictors must be included due to research or knowledge constraints
and if the GLIMMIX procedure failures to converge, other options can be explored to
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fit similar models. Because it utilizes different approaches, the NLMIXED procedure
is a viable option for obtaining convergence in the mixed model setting when the
GLIMMIX procedure fails. Recent advances, such as the %hpglimmix macro can
also be utilized as a remedy.

While we concentrated and presented results applicable only to the convergence
issue in the GLIMMIX procedure for two-level hierarchical logistic regression mod-
els, we believe that these approaches can be readily adapted and expanded to explore
different or more complex problems. In general, Monte-Carlo simulation offers a
fast, and inexpensive avenue for investigating problems such as convergence, as well
as appropriate solutions.
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