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Abstract Missing data handling in longitudinal clinical trials has gained consider-
able interest in recent years. Although a lot of research has been devoted to statis-
tical methods for missing data, there is no universally best approach for analysis.
It is often recommended to perform sensitivity analyses under different assump-
tions to assess the robustness of the analysis results from a clinical trial. To evaluate
and implement statistical analysis models for missing data, Monte-Carlo simula-
tions are often used. In this chapter, we present a few simulation-based approaches
related to missing data issues in longitudinal clinical trials. First, a simulation-based
approach is developed for generating monotone missing data under a variety of miss-
ing datamechanism,which allows users to specify the expected proportion ofmissing
data at each longitudinal time point. Secondly, we consider a few simulation-based
approaches to implement some recently proposed sensitivity analysis methods such
as control-based imputation and tipping point analysis. Specifically, we apply a delta-
adjustment approach to account for the potential difference in the estimated treatment
effects between the mixed model (typically used as the primary model in clinical
trials) and the multiple imputation model used to facilitate the tipping point analysis.
We also present a Bayesian Markov chain Monte-Carlo method for control-based
imputation which provides a more appropriate variance estimate than conventional
multiple imputation. Computation programs for these methods are implemented and
available in SAS.

1 Introduction

Handling missing data in longitudinal clinical trials has gained considerable interest
in recent years among academic, industry, and regulatory statisticians alike.Although
substantial research has been devoted to statisticalmethods formissing data, no single
analytic approach has been accepted as universally optimal.A common recommenda-
tion is to simply conduct sensitivity analyses under different assumptions to assess
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the robustness of the analysis results from a clinical trial. For decades, the gold
standard for longitudinal clinical trials has been using mixed-models for repeated
measures (MMRM, see e.g., Mallinckrodt et al. 2008). However, the MMRM analy-
sis requires the assumption that all missing data are missing at random (MAR),
an assumption which cannot be verified, and might even be considered as unlikely
for some study designs and populations. The current expectation is that regulatory
agencies will require sensitivity analyses to be conducted to evaluate the robustness
of the analytic results to different missing data assumptions (European Medicines
Agency 2010; National Academy of Sciences 2010). Clinical trial statisticians are
thus well-advised to understand the ramifications that various missing data mech-
anisms (MDMs, see e.g., Little and Rubin 1987) have on their proposed analyses,
most notably on bias, type I error control, and power. To that end, Monte-Carlo
simulations are often used to conduct trial simulations under different MDMs for
evaluating statistical analysis models.

In this chapter, we present three simulation-based approaches related to missing
data issues in longitudinal clinical trials. First, a simulation-based approach is devel-
oped for generating monotone missing multivariate normal (MVN) data under a
variety ofMDMs (i.e., missing-completely-at-random [MCAR],MAR, andmissing-
not-at-random [MNAR]), which allows users to specify the expected proportion of
missing data at each longitudinal time point. Second, a simulation-based approach is
used to implement a recently proposed “tipping-point” sensitivity analysis method.
Specifically, a delta-adjustment is applied to account for the potential difference
in the estimated treatment effects between the mixed model (typically used as the
primary model in clinical trials) and the multiple imputation model used to facilitate
the tipping point analysis. Last, a Bayesian Markov chain Monte-Carlo (MCMC)
method for control-based imputation is considered that provides a more appropriate
variance estimate than conventional multiple imputation. Computation programs for
some of these methods are made available in SAS.

In practice, there are two types of missing data. The first type is intermittent
missing where the missing data of a subject is followed by at least one timepoint at
which data are observed. The second type is monotone missing, which is typically
caused by study attrition (i.e., early drop out of a subject). Common reasons for
intermittent missing data include missed subject-visits, data collection errors, or data
processing (e.g., laboratory) errors. Because these errors are unlikely to be related
to the value of the data itself (had that value been observed), an assumption that the
intermittent missing data are MAR, or even MCAR, is often appropriate. Therefore,
it may be considered reasonable to first impute the intermittent missing data under
MAR before performing the analysis (e.g., Chap. 4, O’Kelly and Ratitch 2014).
With this consideration, the discussion that follows focuses primarily on monotone
missing data. Although caution should be exercised because intermittent data might
be MNAR for some studies in which the disease condition is expected to fluctuate
over time.
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2 Generation of Study Data with a Specified MDM
and Cumulative Drop-Out Rates

Whether the clinical trial statistician wants to investigate novel approaches in the
analysis of missing data or simply wants to compute power for an upcoming study, it
is often useful to generateMVNdata (givenmeanμ and covariancematrix�) under a
specificMDM,with specified expected cumulative drop-out rates at each longitudinal
timepoint. This section presents amethod for generatingmonotonemissing data,with
a simple process outlining how to add intermittent (i.e., nonmonotone) missing data
provided at the end of this section.

It is of interest to generate longitudinal MVN data, given μ and �, with expected
cumulative drop-out rates (CDRs) over time under a given monotone MDM. For the
MCAR MDM, this step is easily accomplished by first generating a subject-specific
U(0,1) random-variate, and then comparing that variate to the target CDR at each
timepoint. Starting with the first postdose timepoint, if the random variate is smaller
than the target CDR, then that subject can be considered as having dropped out, with
the data at that timepoint and all subsequent timepoints set to missing.

The approach for the MAR and MNAR MDMs is more complicated because the
missingness for these MDMs depends on the data itself. Analytic or closed-form
solutions are not yet available for a general MDM specification. As opposed to the
unconditional approach used for the MCAR MDM, the subjects who have already
dropped out need to be accounted for. Specifically, the conditional probability needs
to be calculated for each individual who will drop out at Time t given that the subject
is still in the study at Time t–1. Defining CDRt, t = 1 to T, as the desired postdose
expected cumulative droprate at Time t, this conditional proabability is expressed
as (CDRt-CDRt−1)/(1-CDRt−1). For the purposes of this chapter, the baseline time
point is assumed to be nonmissing (i.e., CDR0 = 0).

Let Ytjk ∼ N(μk, �), with t = 0 to T, j = 1 to n, and k = 1 to K, for T total
timepoints, n total observations, and K total groups (e.g., treatment arms). As noted,
the baseline measurement, Y0jk, is assumed to be nonmissing. Let ptj represent the
estimated conditional probability of dropping out at postdose time t for subject j,
conditioned on subject j not having already dropped out. Finally, let � represent
one or more tuning parameters governing the effect of Y values on ptj, with the
designation of a positive (negative) value of � indicating that higher (lower) values
of Y are more likely to result in drop out.

Specifically, a logistic model, logit(ptj) = f(Yj, α, �) is considered, with the
tuning parameter(s)� pre-specified by users based on the desired MDM. The vector
α = (α1, . . ., αt) is then estimated based on Monte-Carlo simulations such that the
resulting missing data are sufficiently close to the specified CDRs (per the user-
defined tolerance parameter ε). Without loss of generality, consider the following
MDM,which follows a simpleMARprocess, wheremissingness at a given timepoint
is solely a function of the observation at the previous timepoint (conditioned on the
subject having not already dropped out). To simplify notation, the subject indicator
j for ptj and ytj is supressed in the following formulas:
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logit(pt) =
∑t

i=1
αi + ψ yt−1, t = 1, 2, . . .,T. (1)

The αi are solved in a stepwise manner, first solving for α1 using logit(p1) =
α1 + ψ y0, such that p1 is sufficiently close to CDR1.

Next, solve for α2 using logit(p2) = α̂1 + α2 + ψ y1, such that p2 is sufficiently
close to (CDR2 − CDR1)/(1 − CDR1), where α̂1was estimated from the previ-
ous step. Prior to iteratively solving for α2, it is required to identify and exclude
data from those subjects in the simulated dataset that have dropped out. This step
is accomplished by comparing a subject-specific (and timepoint-specific) U(0, 1)
variate with the subject-specific value of p1 (which is, in part, a function of the
recently solved α̂1). This process is continued through to time T.

Each αt is solved using a bisectional approach in conjunction with a large random
sample drawn from the specifiedMVNdistribution, with convergence for αt declared
when

|p̂t − (CDRt − CDRt−1)/(1 − CDRt−1)| < ε,

where ε is a user-defined convergence criterion and p̂t is a function of Y, �, and
α̂t . The detailed steps for calculating these α̂t are provided in the section that follows.

General Algorithm to Solve forα

A bisectional approach is used to solve for each αt sequentially as follows:

0. Generate a large dataset of observations (e.g., 100000), Y, comprised of Yk ∼
N(μk, �), with the proportion of observations following the distribution of Yk

equal to πk, as determined by the treatment ratio per the study design.

Do Steps 1–9 for t = 1, …, T:

1. Initialize αL = −10000, αC = 0, αU = 10000, DONE = 0, COUNTER = 0
2. If t ≥ 2, then simulate the missingness of observations at earlier timepoints by

using the previously computedα. Delete any subjects who are simulated as having
dropped out.

3. For each remaining observation in Y, compute an estimate of ̂f (αtj) (= f(Y, α,
�)), which is a function of the previously estimated α, αC, and some function of
the y and � (depending on the MDM model).

4. Compute p̂tj = (1+ exp(− ̂f (αtj))
−1 for each remaining observation in Y.

5. Compute p̂t as the mean of the p̂tj.
6. Compute DIFF = p̂t−(CDRt− CDRt−1)/(1 − CDRt−1), a measure of how accu-

rate this guess at αt(=αC) is.
7. (a) If |DIFF| < ε then DONE = 1 (We are satisfied with αC).

(b) else if DIFF > 0 then αU = αC and αC = (αL + αC) / 2 (i.e., search lower).
(c) else if DIFF < 0 then αL = αC and αC = (αU + αC) / 2 (i.e., search higher).

8. COUNTER = COUNTER+1; If COUNTER = 50 then DONE = 1. (the value
of COUNTER may be adjusted by users to avoid an endless loop due to noncon-
vergence, though COUNTER = 50 is likely sufficient.)

9. If Not DONE then Go to Step 3; if DONE, set α̂t = αC
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After the α vector has been estimated, the actual missing data of interest can be
simulated by randomly generating the complete MVN dataset (Y), followed by the
determination of missingness. Based on α, �, the MDM model, and the randomly
generated complete dataset Y, subject-specific cutpoints p̂tj are computed. These cut-
points represent the probability that Subject j will drop out of the study at timepoint
t (conditioned on not already having dropped out). For each timepoint, a uniform
variate is generated and compared to the appropriate cutpoint to determine whether
the subject drops out at that timepoint. The process starts at the first postdose time-
point, and proceeds sequentially up to last time point T. As noted above, this process
is actually required in the stepwise generation of the α values themselves (Step 2 in
the algorithm above).

We note that the proposed algorithm is set up to handle a mixed distribution, with
the CDRs at each timepoint defined over all treatments arms. Of course, the different
treatment arms will presumably still have different CDRs as a function of the μk. If
different defined CDRs are desired for each treatment arm (as opposed to defining
the CDRs over all treatment arms and letting the μk provide differentiation between
the treatment droprates), then the algorithm would need to be run once for each such
arm (or group of arms), yielding a different α vector for each.

In the absence of historical treatment-specific drop-out information, one could
take a two-step approach in specifying the CDRs. The first step involves running the
algorithm assuming a CDR (perhaps corresponding to placebo data from literature)
over all treatment arms and letting the assumed efficacy (i.e.,μk) drive the treatment-
specific drop-out rates. One could then use available safety information on the drug
(and placebo) to fine tune those treatment-specific CDRs, thus generating a separate
α vector for each treatment group.

The process described above can also be used to generate study data with MNAR
MDM. For example, the model logit(pt) = ∑t

i=1αi + ψ yt−1 can be replaced with
two options: (a) logit(pt) = ∑t

i=1αi + ψ yt, inwhich themissing probability depends
on themissing data; or (b) logit(pt) = ∑t

i=1αi + ψ1yt−1 + ψ2 yt, inwhich pt depends
on both observed yt−1and the missing data yt. In all these models, the tuning para-
meters ψ, ψ1, and ψ2 are prespecified by users.

One might also wish to add intermittent (i.e., nonmonotone) missing data. This
can be accomplished by generating a vector (one for each postdose timepoint) of
independent uniform variates for each subject and then comparing that vector to
cutpoints (timepoint-specific, as desired) corresponding to the missing probability at
each timepoint (e.g., 0.01). Presumably, this process would be applied in conjunction
with themonotone process, with themonotone processmeant to emulatemissingness
due to subject-drop out and the intermittent process meant to emulate an MCAR
process. In such a case, the process used to generate the intermittent missing data is
applied independently of the process used to generate monotone missing data, with a
given observation designated as missing if either process determines that observation
is missing. The overall probability of missing would clearly be higher than the level
specified for either process on its own, thus requiring some downward adjustment of
the defined drop-out probabilities of one or both processes.
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Example: Power and Bias Evaluation for a Longitudinal Study
with Missing Data

For sample size and power calculations, analytic approaches are available when
missing data are MAR (e.g., Lu et al. 2008, 2009). In general, power loss stemming
from missing data in a longitudinal trial depends on the proportion and timing of
the missing data; that is, the cumulative drop-out rates (CDRs), as a function of the
different effective information yielded from the observations over time. For example,
one would expect that a study with drop outs occurring gradually over time would
have less power than a study in which all of the drop outs occurred between the
second-to-last and the last (presumably primary) timepoint.

Despite the available analytic approaches, power calculations for longitudinal
clinical trials are often conducted via simulations, given the extreme flexibility that
simulations afford. The use of simulations is especially common in trials with com-
plicating factors such as (a) interim analyses for futility or for overwhelming efficacy,
(b) multiplicity approaches covering multiple timepoints/endpoints, or (c) adapta-
tions built into the designs (e.g., dropping an arm or adjusting the randomization
ratio as a function of the accruing data). Of course, power calculations can also be
simulated for relatively straightforward clinical trial designs.

The following simulation study investigates the effect that different methods of
generating randomMVNdata, primarilywith respect toMDMs, have on both the bias
of the parameter estimates and the corresponding power calculations. The assumed
parameters are based on data obtained from an actual clinical trial. The results from
10,000 simulation runs are summarized in Table1.

The simulations used the following assumptions (four postdose timepoints):
α = 0.050;
N/per arm = 120.
μPbo = (0.00, 0.46, 0.92, 1.37, 1.83);μAct = (0.00, 0.23, 0.46, 0.69, 0.92);

(Higher means represent lower efficacy).
A functional form was used for the variance-covariance matrix, with σi = ci * σ0,

with σ0 = 0.860, and c = 1.288; i = 1, . . ., 4; and ρij = r*b|j−i|−1, with r = 0.748
and b = 0.832; i, j = 0, . . ., 4.

Notably σ 2
0 = 0.740, σ 2

4 = 5.616, and ρ0,4 = 0.431, with Var(Y4 − Y0) = 4.6.
CDR = (0.086, 0.165, 0.236, 0.300), with a 30% CDR at Timepoint 4 (T4).
The following missing data patterns (MDPs) were considered (with � = �1 =

�2 = 0.5).

• MDP0: No missing data.
• MDP1: MCAR
• MDP2:Data areMCARbut only the baseline and last timepoint values are included
in the analysis (Completers Analysis).

• MDP3: MAR with logit(pt) = ∑t
i=1αi + ψ yt−1

• MDP4: MNAR with logit(pt) = ∑t
i=1αi + ψ yt

• MDP5: Mixture of MAR and MNAR with logit(pt) = ∑t
i=1αi + ψ1yt−1 + ψ2 yt
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Although the simulations were conducted by defining a 30% drop-out rate over
the two treatment arms, readers should note that the two treatment arms still have
different drop-out rates for the MAR and MNAR MDMs. This difference is a result
of higher efficacy over time in the drug test group as compared with the placebo
group. In the data simulations, we use � = �1 = �2 = 0.5 such that a higher value
(worse) of observed (in MDP3) or unobserved (in MDP4 and MDP5) response will
result in a high probability of drop out. This simulates common drop out in clinical
trials due to lack of efficacy.

In going from MDP2 to MDP1, a modest gain in power is observed as a result of
using the partial data from subjects that dropped out prior toT4. This gain underscores
the importance of using the full longitudinal dataset when calculating power, as
opposed to considering only the final timepoint.

Focusing on the completers only, clear bias can be observed for the MAR and
MNAR scenarios (MDP3 to MDP5); this fact is important to note when powering
a study based on simple summary statistics from completers, as is often done when
using results from the literature. As expected, the MMRM is unbiased for all of the
MCARscenarios (MDP0 to MDP2), as well as for the MAR scenario (MDP3), since
MMRMs assume that all missing data is MAR. Conversely, bias is present in the
MMRM analysis for both of the MNAR scenarios (MDP4 and MDP5). Since this
bias is to the detriment of the drug under study (i.e., leads to a diluted estimate of
the treatment effect), these scenarios result in roughly 2% lower power. Compared
with the results from completers, the MMRM analysis had relatively smaller bias.

3 Tipping Point Analysis to Assess the Robustness
of MMRM Analyses

As mentioned in Sect. 1, the MMRM, which is often used as the primary analysis
model, assumes that all missing data are MAR—an assumption that cannot be veri-
fied. Both the clinical trial sponsor and government regulatory agencies are interested
in assessing the robustness of any conclusions coming from an MMRM analyses
against deviations from the MAR assumption. Given this interest, many methods
for sensitivity analysis have been proposed and developed (see e.g., NRC, 2010
and references therein). Some of the more notable proposed methods include selec-
tion models, pattern-mixture models, and controlled-imputation models (see, e.g.,
Carpenter et al. 2013; Mallinckrodt et al. 2013; O’Kelly and Ratitch 2014). Another
method, which has recently gained attention is the so-called tipping point approach.
At a high level, a tipping point analysis varies the imputed values for the missing
data (usually for the treatment arms only) by the exact amount needed to make a
significant result turn nonsignificant.

Ratitch et al. (2013) have proposed three variations of tipping point analyses using
pattern imputation with a delta adjustment. Our discussion considers the variation in
which standard multiple imputation is performed first, and then a delta-adjustment
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(δ) is applied simultaneously to all imputed values in the treatment group. The goal
is to find the smallest δ that will turn the significant p-value (as calculated from the
primary MMRM model) to a nonsignificant value. In addition to being relatively
straightforward to interpret, this approach has the attractive quality of returning a
quantitative result that is directly comparable on the scale of interest, which can then
be put into clinical context. The following steps provide details for a bisectional
procedure to solve for this tipping point δ.

General Algorithm to Solve for Tipping Point δ

Note the definitions of the following algorithm variables:

• m: the number of imputations to be used in the multiple imputation procedure
(a value should be prespecified in the study protocol).

• d: the difference between the maximum and minimum values for the vari-
able/endpoint under investigation (i.e., the maximum allowable shift)

• df: degrees of freedom
• ptarget: Target probability (e.g., type-I error)
• ttarget: t-value corresponding to ptarget . If lower values ofY represent higher levels of
efficacy, then this value must be negated in the search algorithm because the target
t-value needs to be negative. (Note that the corresponding degrees of freedom (df)
are actually a function of the data, as defined in Step 5 below).

• ε: A tolerance level, on the t-scale, under which convergence can be declared (e.g.
0.001).

• pprim: p-value from the primary model

Given a dataset with intermittent missing data, the basic algorithm to conduct the
tipping-point analysis is outlined below; instructions for procedures conducted in
SAS refer to SAS version 9.3 or later.

0. Initialize δL = −d, δC = 0, δU = d, DONE = 0, COUNTER = 0.
1. Using a Markov Chain Monte-Carlo method (see e.g., Schafer 1997), make

the observed dataset monotone-missing. This step can be accomplished for
each treatment group using proc mi within SAS by using the option mcmc
chain=multiple impute=monotone in conjunction with all covariates
(excluding treatment) included in the primary analysis model. This step will gen-
erate m monotone-missing datasets. Note that the study protocol should specify
the random seed used in this step.

2. Applying parametric regression to the m monotone-missing datasets, impute the
missing values in a stepwise fashion starting with the first postdose timepoint.
This step can be accomplished for each treatment group using proc mi in SAS
using the monotone reg option in conjunction with all covariates (exclud-
ing treatment) included in the primary analysis model. This step will generate
m complete datasets (one imputed dataset for each of the m monotone-missing
datasets).
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Do Steps 3–9 while Not DONE

3. Subtract δC from each of the imputed values of the test drug treatment arms (to
the detriment of test drug).

4. Analyze eachof thempost-imputation complete datasets using the primarymodel,
obtaining point estimates for the parameter of interest (e.g., mean change-from-
baseline treatment difference at the last timepoint) and the associated variance.

5. Using the proc mianalyze procedure in SAS, combine the m means and
variances from the m analyses to obtain the final test statistic and p-value, tδc and
pδc , respectively (Rubin 1987). The final test statistic Q̂ / (V(1/2)) is approximately
distributed as tν , where Q̂. is the sample mean of the m point estimates, V = Û+
(m + 1) (B/m), Û is the sample mean of the m variance estimates, and B is
the sample variance of the m point estimates. The degrees of freedom, ν, are
computed as follows (Barnard and Rubin 1999): ν = [(ν1)−1 + (ν2)−1]−1, where
ν1 = (m −1) [1 + (Û/(1 + m−1) B)]2 and ν2 = (1 − γ ) ν0(ν0 +1) / (ν0 + 3),
with γ = (1 + m−1) B/V and where ν0 represents the complete-data degrees of
freedom.

6. Compute DIFF= tδc–ttarget.
7. (a) if |DIFF| < ε then DONE = 1 (We are satisfied with δC)

(b) else if (DIFF > 0) then δL = δC; δC = (δC + δU)/2; (subtract larger δ)

(c) else if (DIFF < 0) then δU = δC; δC = (δC + δL)/2; (subtract smaller δ)

8. If Not DONE, then COUNTER =COUNTER+1;
9. If COUNTER = 50, then DONE = 1; (guard against endless loop due to non-

convergence)

The final δ can be interpreted as the detrimental offset needed to apply to each
imputed observation to change a significant result to a nonsignificant result. Confi-
dence in the primary results stem from a large value of δ, relative to (a) the assumed
treatment difference, (b) the observed treatment difference per the primary model,
and/or (c) a widely accepted clinically meaningful difference. For example, in a
trial of an anti-depressant drug in which a clinically meaningful difference might be
around 2–3 points, a trial result could be considered as robust if we were to subtract
δ ≥ 3 points from every imputed value in the treatment arm and still maintain a
statistically significant result.

Conventionally, MMRM analysis is based on restricted maximum likelihood
while the tipping point methodology is implemented using multiple imputation (MI)
analysis. Ideally, applying δ = 0 to the MI analysis would yield the p-value from the
MMRM analysis (pprim). More important, setting ptarget = pprim would ideally yield
a solution of δ = 0. If the δ obtained does not equal 0, then the value of δ obtained
when setting ptarget = αwill be biased, per the intended interpretation. Unfortunately,
simulation results indicate that the abovemethodwill not always yield a δ value equal
to 0 when setting ptarget = pprim. This inconsistency might be due to additional vari-
ation in the analysis of multiple imputation as compared to the restricted maximum
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likelihood analysis. To overcome this discrepancy, we advise running the above
algorithm twice and in the following order: first, with the setting ptarget = pprim, and
then with the setting ptarget = α, yielding δprim and δα. The final δ is then computed as
δ = δα − δprim. The value δprim can be thought of as a calibration factor in going from
theMMRM to theMImodel, accounting for the methodological differences between
the two, as well as for the inherent randomness in the MI process. Simulation results
indicate that t-values and p-values arising from the MMRM and MI models (δ = 0)
are highly similar, providing reassurance that the δ (i.e., δα − δprim) obtained using
the MI model translates well to the MMRM model.

As might be expected, higher values of m will yield results with greater stabil-
ity. This stability applies not only to the estimates produced by the MI approach,
but also to the adjusted degrees of freedom (df). The adjustment for the df was first
proposed by Barnard and Rubin (1999), and has subsequently gained widespread
use (e.g., adopted in SAS). The major impetus for the adjustment, as compared
to the initial proposal for a df adjustment as cited in Rubin (1987), was to guard
against the possibility that the df used for the MI approach would exceed the df
present in the original MMRM for the complete data. However, this df adjustment
might be very conservative in certain situations, particularly for smaller sample sizes
when low numbers of imputations are used. This characteristic of the df adjustment
might have the effect of producing abnormally large δ values since the respective
t-values from the original MMRM and from theMI approach will be based on differ-
ent t-distributions. A simple fix is to ensure that a sufficient number of imputations
are used in the MI.

The following simulation study investigates (a) the variation of the df for the MI
approach at δ = 0 for different values of m, (b) the differences between the MMRM
and theMI approach (at δ = 0) for the t-values and p-values, (c) the variation of δprim
for different values ofm, and (d) the variation of δ = δα − δprim for various treatment
effect sizes and CDRs.

Unless otherwise noted, the assumptions used in the simulation study for Sect. 2
were also used for all simulations in Sect. 3. For ease of interpretability, a simple
MAR mechanism (MDP3 from Sect. 2) was assumed for the missing data.

Assessing the variation of thedf atδ = 0

Moderate-to-large differences in df between the original MMRM and the MI model
could cause convergence issues or unreliable results when attempting to solve for the
tipping point δ. Table2 shows the summary of dfs from the MMRM and MI model
using 1,000 simulations. For the case of MDP3, the trial had about 80% power with
about 30% missing data at Time 4. The tipping point analysis was performed for
about 800 simulated cases for which the MMRM results were significant. The dfs
from the MMRM analyses varied between 150 and 204. However, the dfs for MI
varied from 7 to 232 for m = 5, and from 47 to 199 for m = 20. Since the adjusted
df are a direct function of the data itself, it is challenging to provide absolute general
guidance as to how many imputations, m, are enough. For the scenario considered
in this section, it appears as though m = 100 is sufficient to have relatively small
variation for the df under consideration.
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Table 2 Summary of Variation for the df under MI approach (at δ = 0) by m (based on 1,000
simulations)

# Sig df

MMRM MI

m Mean p00, p25, p50, p75, p100 Mean p00, p25, p50, p75, p100

5 800 179 150, 174, 179, 184, 201 63 7, 27, 46, 84, 232

20 800 179 154, 173, 179, 184, 204 113 47, 95, 111, 129, 199

50 811 179 153, 174, 179, 184, 197 144 91, 133, 144, 155, 195

100 825 179 151, 173, 179, 185, 203 158 122, 150, 158, 166, 194

250 777 179 154, 174, 179, 184, 201 168 137, 162, 168, 174, 192

NoteMMRM = mixed-methods for repeated measures. MI = multiple imputation

Table 3 Summary of differences between the MMRM and the MI approach (at δ = 0) for the
t-values and p-values by m (based on 1,000 simulations)

m #
sig

t-value difference (MI-MMRM) p-value difference (MI-MMRM)

Mean p00, p25, p50, p75, p100 Mean p00, p25, p50, p75, p100

5 800 −0.05 −1.13, −0.30, −0.06, 0.19, 1.23 0.005 −0.034, 0.000, 0.000, 0.004, 0.114

20 800 −0.03 −0.59, −0.14, −0.03, 0.08, 0.58 0.000 −0.018, 0.000, 0.000, 0.000, 0.037

50 811 −0.01 −0.53, −0.07, −0.01, 0.06, 0.37 0.000 −0.015, 0.000, 0.000, 0.000, 0.027

100 825 0.01 −0.26, −0.04, 0.01, 0.06, 0.30 0.000 −0.010, 0.000, 0.000, 0.000, 0.017

250 777 0.01 −0.19, −0.02, 0.01, 0.04, 0.17 0.000 −0.011, 0.000, 0.000, 0.000, 0.000

NoteMI = multiple imputation. MMRM = mixed-methods for repeated measures

Assessing the variation of δprim

As discussed above, an adjustment (δprim) is needed to account for the differences
between the primary MMRM and the MI analysis used in the tipping point proce-
dure. The following simulation study examines the variation of δprim as well as the
differences of the t-values and p-values between the primary MMRM and the MI
approach with δ = 0 for various values of m. The tolerance level for convergence of
the t-values was set at ε = 0.005.

The simulation results in Table3 indicate that the differences of both the t-values
and the p-values between the MMRM and the MI model at δ = 0 are typically small,
particularly form ≥ 100. This finding provides general confidence that theMImodel
adequately approximates the MMRM.

Due to the extensive computation required to estimate δprim, only 100 simula-
tions were conducted to investigate the variation of δprim as a function of m. Table4
indicates that the variation of δprim generally decreases as m increases, with the
pencentiles generally shrinking to values closer to 0 as m increases. However, this
trend cannot be expected to continue as m → ∞, because some differences due to
methodology will persist. For the examined scenario, no clear improvement was seen
moving from m = 100 to m = 250.
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Table 4 Summary of δprim by m (based on 100 simulations)

m # sig δprim

Mean p00, p25, p50, p75, p100

5 81 0.48 −0.93, −0.26, 0.30, 0.95, 3.67

20 79 0.20 −0.34, −0.08, 0.19, 0.46, 1.02

50 79 0.17 −0.30, −0.09, 0.21, 0.40, 0.79

100 81 0.14 −0.16, −0.05, 0.16, 0.32, 0.56

250 85 0.18 −0.16, −0.04, 0.21, 0.37, 0.79

Assessing the Variation of the Final Tipping Point δ = δα − δprim

The effect of various treatment differences and CDRs on the distribution of δ was
examined using the same simulation assumptions as before, but fixingm = 100. Note
that μPbo = (0.00, 0.46, 0.92, 1.37, 1.83) is held constant, while μAct is set equal to
(1 − θ)μPbo, θ = 0.35 and 0.50, with larger values of θ resulting in larger efficacy
(since higher values of μ represent lower efficacy). Cumulative drop-out rates of
(0.054, 0.106, 0.154, 0.200) and (0.086, 0.165, 0.236, 0.300) were considered.

As shown in Table4, the offset δprim needed to align the results between the
MMRM and the MI model is non-ignorable across the scenarios. Focusing on the
scenario with a 30% CDR at T4 and θ = 0.50, we note that the mean value of δprim
needed to calibrate the two models was estimated as 0.14, with observed values
ranging from −0.16 to 0.56. As a frame of reference, the true treatment difference
at T4 is (1 − θ)μPbo − μPbo = −0.5(1.83) = −0.92.

Staying with the same scenario, the mean value of δ is equal to −1.34. That is, on
average, all of themissing values in the treatment armwould need to be detrimentally
adjusted 1.34 points in order to make the significant p-value obtained become
non-significant (i.e., equal to 0.05). Assuming these results were obtained for a
single study, and in the context of an observed (or assumed) treatment difference of
−0.92, such a δ can be considered as evidence of a fairly robust treatment effect.

Conclusions across scenarios are best drawn by focusing on the estimated mean
and quartiles (as opposed to the more variable quantities of the simulated minimum
and maximum values). As expected, Table5 demonstrates that larger detrimental
values have to be applied to the imputed data from the treatment arms as (a) the
drop-out rate goes down and (b) the true treatment effect goes up.

Without going into great detail, one technical point bearsmentioning.When apply-
ing δ to the imputed values, it seems reasonable to not allow adjusted values past
the minimum or maximum allowable value of the endpoint. However, this restriction
might need to be relaxed when applying the convergence algorithm.
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4 Monte-Carlo Approaches for Control-Based Imputation
Analysis

Control-based imputation (CBI) has recently been proposed as an approach for
sensitivity analysis (Carpenter et al. 2013), in which different imputation methods
are used for the treatment and control groups. The missing data in the control group
are imputed under the assumption of MAR, while the missing data in the treatment
group are imputed using the imputation model built from the control group. One of
the primary assumptions in this CBI approach is that the true post-discontinuation
efficacy response in the test drug group is similar to the efficacy response of those
subjects continuing in the trial in the control group. This control-based imputation
model might be reasonable when no rescue or other active medications are taken
by patients who drop out (Mallinckrodt et al. 2013). In general, this CBI can pro-
vide a conservative estimate of the treatment effect in superiority trials. Recently,
these methods have become more attractive because the assumptions are transparent
and understandable for clinical trial scientists. The methods address an attributable
treatment effect (estimand) under the intent-to-treat principle but exclude the poten-
tial confounding effect of rescue medications (Mallinckrodt et al. 2013). Thus, the
estimand captures the causal-effect outcomes for the test therapy.

The three most commonly used CBI methods (Carpenter et al. 2013) are defined
by specifying the mean profile after drop out in the treatment group using the profile
in the control group as follows:

I. Copy Increments in Reference (CIR): The increment mean change from the
time of drop out for a patient in the treatment group will be the same as the
increment mean change for a patient in the control group. Namely, the mean
profile after drop out for the treatment group will be parallel to the mean profile
of the control group.

II. Jump to Reference (J2R): The mean profile after drop out for the test drug
group will equal the mean profile of the control group. That is, the mean profile
for the test drug group has a ‘jump’ from the mean of test drug before drop out
to the mean of control after drop out.

III. Copy Reference (CR): the mean profile for a drop-out patient in test drug group
will equal the mean profile for the control group for all time points, including
the time points before drop out.

These CBI approaches can be implemented using multiple imputation. Several
SASmacros to implement this methodology have been developed by the Drug Infor-
mation Association (DIA) Missing Data Working Group (macros are available at
www.missingdata.org.uk).

Consider a response vector for patient i, Y i = {Yij, j = 1, . . . , t}, and assume

Y i|Xi ∼ N
(
μi,Σ

)
.

www.missingdata.org.uk
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Let μij represent the mean for patient i at timej, with the MMRM specified as

μij = αj + βjDi + γ ′
jXi., (2)

where βj is the mean treatment difference from control at time j after adjusting for
the covariates Xi, Di is an indicator for treatment (1 for treatment and 0 for control),
and γ i is a vector of coefficients for the covariates. The following steps can be used
to implement the CBI analysis,

1. Fit the MMRM thus yielding the estimates α̂j, β̂j, γ̂ j and �̂;
2. Assume non-informative priors for the parameters, and draw a sample for these

parameters from their posterior distribution, denoted by αj, βj, γ j and Σ . Note
that the DIA Missing Data Working Group macros used SAS PROC MCMC to fit
the MMRM model and draw these parameters.

3. For a patient who dropped out at time j, draw a sample from the conditional
distribution to impute the missing vector, i.e.,

4.

ymis|yobs,X,μ, � ∼ N(μm + �mo�
−1
oo (yobs − μo) ,�mm − �mo�

−1
oo �om)

(3)
where

μ =
(

μo

μm

)
, � =

(
�oo �om

�mo �mm

)

are split into sub-vectors and block matrices with dimensions corresponding to
the observed (indicated with ‘o’) and missing data (indicated with m) portions
of the response vector. The patient and time indicators i and j are omitted in the
formulas for simplicity. To implement the CBI, if a patient is in placebo group,
the μo and μm for the placebo group will be used. Otherwise, the means will be
modified as specified per the chosen CBI approach. Specifically, a patient in the
treatment group who dropped out after time j will have

a.

μd
m =

⎧
⎪⎨

⎪⎩

μ
p
m + μd

j − μ
p
j for CIR

μ
p
m for JR

μ
p
m + �mo�

−1
oo (μd

o − μ
p
o) for CR

(4)

b. where the superscripts d and p are used to indicate the mean vector for drug
or placebo.

5. Repeat Steps 2 and 3 for the number of imputed datasets;
6. Analyze each imputed dataset using the primary model (e.g., ANCOVAmodel at

last visit) to get estimated treatment difference and its standard error;
7. Combine the results using Rubin’s rule for final statistical inference (Rubin 1987).
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Simulation studies show the estimated variances for the treatment differences
using the regular MI techniques are always larger than the corresponding empiri-
cal variances. This phenomenon has been noticed for the copy-reference imputation
method by Lu (2014) and Ayele et al. (2014). Lu (2014) proposed an analytical
approach to get the correct variance estimate using the delta method. However, that
approach is available only for copy-reference imputation and requires special pro-
gramming for each specific analysis model.

Liu and Pang (2015) proposed methods to get more appropriate variances for the
CBI estimates. One of their approaches is a Bayesian MCMC-based method that
accounts for the pattern of missing data and obtains the estimates for the treatment
difference and its variance from empirical MCMC samples. Based on the mean
profile specified in equation (3), the overall treatment difference at the last time point
under CBI can be written as a weighted average over the missing data patterns, that
is

θCBI =
∑t

j=1
πjμ

d
tj − μ

p
t

where μd
tj is the mean at last time point t under missing data pattern j as given in (3)

and the {πj, j = 1, ..., t} are the proportions of patients in the missing data patterns
for the drug group. As

∑t
j=1πj = 1, we have

θCBI =
⎧
⎨

⎩

∑t
j=1πj(μ

d
j − μ

p
j ) for CIR

πt(μ
d
t − μ

p
t ) for J2R∑t

j=1πj(μ
d
tj − μ

p
t ) for CR

(5)

whereμd
j andμ

p
j are themeans at time j for drug and placebo, respectively. Therefore,

the treatment effect under CBI can be expressed as a linear combination of the
parameters of MMRM and the proportions of patients in each pattern of missing
data. We note this approach is a special pattern-mixture model (PMM) where the
missing data are handled differently by the pattern of missing data only for the
treatment group. The missing data in the placebo group are all sampled assuming a
MAR process.

To account for the uncertainty of the proportions ofmissing data {πj, j = 1, ..., t},
random proportions are also drawn from a Dirichlet distribution in the Bayesian
MCMC process, which corresponds to a posterior distribution for the proportions
with a Jefferys prior. The empirical distribution and statistical inference for θCBI are
obtained from theMCMCsamples. Specifically, the following steps are implemented
in the process:

1. Specify flat priors for αj, βj, γ j and �, for example, use N(0, σ, 2 = 10000)
for αj, βj, and each of the element of γ j, and an inverse Wishart distribution IW
(t + 1, I), where I is an identity matrix of dimension t.We used SAS PROC MCMC
to fit the MMRM model, specifically:
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a. Use conjugate sampling to draw a sample for �;
b. Use random walk Metropolis to draw samples for αj, βj, γ j;
c. For a patient who dropped out at time j, PROC MCMC will draw a sample

for the missing vector ymis from conditional distribution as specified in (2)
with the parameters from above;

d. Draw {πj, j = 1, . . . , t} from the Dirichlet (m1 + 0.5, . . . ,mt + 0.5),
where mj is the number of drop-out patients at time j+1 in treatment group,
and mt is the number of completers;

e. Evaluate θCBI with the formula (4).

2. The above process will be run with a burn-in, then repeat Steps a through e to
obtain an empirical posterior distribution for θCBI .

Note that this Bayesian MCMC process is a simulation based approach. It is
important to check the convergenceof theMCMCsamples.Usually, the trace-plot can
be examined visually, or some statistical measures can be checked such as Geweke
or Raftery-Lewis that are provided by SAS PROC MCMC procedure.

We apply the regularMI analysis andBayesianMCMCapproach to an antidepres-
sant drug trial dataset created by theDIAMissingDataWorkingGroup (Mallinckrodt
et al. 2013). The dataset was constructed from an actual clinical trial and made avail-
able by theWorking Group (see www.missingdata.org.uk). The dataset contains 172
patients (84 in the treatment arm, 88 in the placebo control arm). Repeated measures
for Hamilton Depression 17-item total scores were taken at baseline and Weeks 1, 2,
4, and 6, post-randomization. The Week 6 measurements were completed by about
76% of the treatment group patients and about 74% of the the control group patients.
The analysis dataset included one patient record with intermittent missing data; in all
analysis methods, the missing data for this patient were imputed under the assump-
tion of MAR. The monotone missing data were imputed under CBI methods of CIR,
CR, or J2R.

In the analysis of this dataset, we noticed that the MCMC sampling had high
autocorrelation. To increase the stability of the results, we used 200 imputations in
the conventional MI analysis, and used 2,000 iterations for turning, 2,000 iterations
for burn-in, and 200,000 in the main sampling, keeping one from every 10 samples
(with option THIN=10 in PROC MCMC) to get a total of 20,000 samples for the
posterior mean and standard deviation. Table6 shows the analysis results. Compared
with the mixed model analysis, the Bayesian MCMC under MAR produced very
similar results. As compared to the results from the mixed model, the CBI analyses
based on regular MI are conservative. With CBI, the point estimates are shrunk
toward 0 but the standard errors (SEs) are very similar to the SEs from the MAR
analysis. As such, the CBI analyses with regular MI have large p−values compared
to the primary analysis under MAR. In fact, the result of the J2R analysis becomes
insignificant. With the Bayesian MCMC approach, the CBI analysis results have
similar point estimates as the CBI analysis with regular MI but have smaller SEs. As
a result, the p-values from CIR, CR, and J2R all maintained significance.

www.missingdata.org.uk
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Table 6 Primary and sensitivity analysis results for an anti-depressant trial

Method θ̂ (SE) 95 % CI p-value (%)

Primary analysis under MAR

Mixed Model −2.80(1.12) [−5.01,−0.60] 1.3

Bayesian MCMC −2.80(1.13) [−5.03,−0.57] 1.4

CBI using regular MI

CIR −2.46(1.10) [−4.65,−0.28] 2.7

CR −2.38(1.11) [−4.57,−0.20] 3.3

J2R −2.12(1.13) [−4.36, 0.12] 6.3

CBI using MCMC approach

CIR w MCMC −2.43(1.01) [−4.39,−0.44] 1.7

CR w MCMC −2.34(0.99) [−4.25,−0.53] 1.9

J2R w MCMC −2.10(0.86) [−3.77,−0.42] 1.5

Note CI = confidence intervals for mixed model and regular multiple imputation (MI), credible
interval for Bayesian MCMC (Markov chain Monte-Carlo method) approach. MAR = missing
at random. CBI = control-based imputation. CIR = copy increments in reference. CR = copy
reference. J2R = jump to reference

To check the convergence of the MCMC sampling, Fig. 1 shows the diagnostics
plots for both the Bayesian MCMC samples for the primary analysis under MAR
and the CR analysis. The trace-plots for both parameters show good mixing and
stabilization. With the option of THIN=10, the autocorrelation decreases quickly.
The posterior density curves are estimated well from the 20,000 samples.

5 Discussions and Remarks

In many clinical trials, missing data might be unavoidable. We have illustrated some
applications of Monte-Carlo simulation methods for handling of missing data issues
for longitudinal clinical trials. Simulation-based approaches to dealing with missing
data can be extremely useful in the conduct of clinical trials; most notably in the
design stage to calculate needed sample size and power, as well as in the final analy-
sis stage to conduct sensitivity analyses. We described a method to generate MVN
longitudinal data under different assumed MDMs with specified CDRs. As a sen-
sitivity analysis, we applied a δ -adjustment approach to account for the potential
difference between the MMRM (typically used as the primary model in clinical
trials) and the MI model used to facilitate the tipping point analysis, and to propose
an adjustment to the final tipping point calculation. Depending on the number of
imputations used, the inferential statistics produced by the MMRM and MI mod-
els can differ, due in part to differences in the approximated degrees of freedom.
A sufficient number of imputations should be used to reduce this variation. The
appropriate number of imputations to be used should be confirmed via simulation
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Fig. 1 Diagnostics plots for Bayesian MCMC under MAR and for Copy Reference Imputation
Method
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by the statistician during the analysis planning stage. We also presented a Bayesian
MCMC method for CBI that provides a more appropriate variance estimate than
regular multiple imputation.

The methods presented are only a few applications of simulation methods for
missing data issues. Of course, many other simulation-based methods are available
that can be used for missing data. For example, we considered only a logistic model
for the MDM, noting that other models such as a probit model can also be used. In
addition, the missing probabilities defined by the example MDMs depended only
on the current time point and/or the next time point. Other MDMs may be defined
allowing for the incorporation of additional time points. In the CBI approaches, we
considered a Bayesian MCMC approach, although other avenues might also be used
such as bootstrapping to obtain the appropriate variance for CBI methods. Although
we considered only continuous endpoints, simulation-based methods can also be
very useful in dealing with missing data for other types of endpoints such as binary,
categorical, or time-to-event data.

One drawback for simulation-based methods is the random variation from the
simulations. It is critical to assess the potential variation and/or monitor the con-
vergence. When using simulation-based method for analysis of clinical trials, the
analysis plan should pre-specify all the algorithms, software packages, and random
seeds for the computation. Naturally, the analysis should use a sufficient number
of imputations or replications in order to reduce the random variation. Of course,
simulations examine only the statistical properties under the assumptions used in
those simulations. Whenever possible, theoretical or analytic methods should be
considered over simulations.
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