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Abstract Longitudinal studies are based on repeatedly measuring the outcome of
interest and covariates over a sequences of time points. These studies play a vital role
in many disciplines of science, such as medicine, epidemiology, ecology and public
health. However, data arising from such studies often show inevitable incompleteness
due to dropouts or even intermittent missingness that can potentially cause serious
bias problems in the analysis of longitudinal data. In this chapter we confine our
considerations to the dropout missingness pattern. Given the problems that can arise
when there are dropouts in longitudinal studies, the following question is forced
upon researchers: What methods can be utilized to handle these potential pitfalls?
The goal is to use approaches that better avoid the generation of biased results.
This chapter considers some of the key modelling techniques and basic issues in
statistical data analysis to address dropout problems in longitudinal studies. The
main objective is to provide an overview of issues and different methodologies in
the case of subjects dropping out in longitudinal data for both the case of continuous
and discrete outcomes. The chapter focusses on methods that are valid under the
missing at random (MAR) mechanism and the missingness patterns of interest will
be monotone; these are referred to as dropout in the context of longitudinal data. The
fundamental concepts of the patterns and mechanisms of dropout are discussed. The
techniques that are investigated for handling dropout are: (1) Multiple imputation
(MI); (2) Likelihood-based methods, in particular Generalized linear mixed models
(GLMMs); (3) Multiple imputation based generalized estimating equations (MI-
GEE); and (4) Weighted estimating equations (WGEE). For each method, useful
and important assumptions regarding its applications are presented. The existing
literature in which we examine the effectiveness of these methods in the analysis
of incomplete longitudinal data is discussed in detail. Two application examples are
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presented to study the potential strengths and weaknesses of the methods under an
MAR dropout mechanism.

Keywords Multiple imputation GEE · Weighted GEE · Generalized linear mixed
model (GLMM) · Likelihood analysis · Incomplete longitudinal outcome ·Missing
at random (MAR) · Dropout

1 Introduction

Longitudinal studies play a vital role in many disciplines of science including medi-
cine, epidemiology, ecology and public health. However, data arising from such
studies often show inevitable incompleteness due to dropouts or lack of follow-up.
More generally, a subject’s outcome can be missing at one follow-up time and be
measured at the next follow-up time. This leads to a large class of dropout patterns.
This chapter only pays attention to monotone dropout patterns that result from attri-
tion, in the sense that if a subject drops out from the study prematurely, then on that
subject no subsequent repeated measurements of the outcome are obtained. These
commonly include studies done by the pharmaceutical industry as contained in pro-
tocols for many conditions where data are not collected after a study participant
discontinues study treatment. This is highlighted in a recent report on the prevention
and treatment of dropout by the National Research Council (Committee on National
Statistics Division of Behavioral and Social Sciences and Education, http://www.
nap.edu). A summary of the report was provided by Little et al. (2012). However,
even in these studies, there typically is both unplanned and planned dropout. A pre-
dominately monotone pattern for missing outcome data is less common in clinical
outcome studies and in publically-funded trials which are more of a pragmatic nature
(e.g., trials in which the intention-to-treat estimand is the primary objective).

Given the problems that can arise when there are dropouts in longitudinal studies,
the following question is forced upon researchers. What methods can be utilized to
handle these potential pitfalls? The goal is to use approaches that better avoid the
generation of biased results. The choice of statistical methods for handling dropouts
has important implications on the estimation of the treatment effects, depending
on whether one is considering a more of a pragmatic nature analysis or a more
exploratory analysis. In case of a pragmatic analysis (intention-to-treat analysis), the
goal of the clinical trial researchers is to produce a pragmatic analysis of the data.
However, for incomplete longitudinal clinical trials, the dropouts complicate this
process as most of the methods to be used when dealing with the dropout problem
produce an exploratory analysis in nature rather than a pragmatic perspective. The
literature presents various techniques that can be used to deal with dropout, and these
range from simple classical ad hocmethods tomodel-basedmethods. Thesemethods
should be fully understood and appropriately characterized in relation to dropouts
and should be theoretically proven before they are used practically. Further, each
method is valid under some but usually not all dropout mechanisms, but one needs

http://www.nap.edu
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to realize that at the heart of the dropout problems it is impossible to identify the
dropout mechanism (will be discussed later). Thus, it is important to address the
mechanisms that govern dropouts. In this chapter, we present some of the various
techniques to address the dropout problem in longitudinal clinical trials. The main
objective is to investigate various techniques, and to discuss the most appropriate
techniques for handling incomplete longitudinal data due to dropouts. The structure
of the chapter is as follows. Section2 presents the key notation and basic concepts
used in the entire chapter but when new notation arises it will be explained at the
point where it occurs. In Sects. 3 and 4, we give an overview of the various statistical
methods in handling incomplete longitudinal studies due to dropout. Two application
examples are provided for both cases, continuous and binary outcomes. The dropout
generation schemes are also discussed. In addition, full analysis and results of the
applications are also given. Finally, the chapter endswith a discussion and conclusion
in Sect. 5.

2 Notation and Basic Concepts

Some notation is necessary to describe methods for analyzing incomplete longi-
tudinal data with dropout. We will follow the terminology based on the standard
framework of Rubin (1976), Little and Rubin (1987) in formulating definitions for
data structure and missing data mechanisms. Let Yi = (Yi1, ...,Yini )

′ = (Yo
i ,Ym

i )′ be
the outcome vector of ni measurements for subject i, i = 1,...,n, where Yo

i represents
the observed data part and Ym

i denotes the missing data part. Let Ri = (Ri1, ...,Rini )
′

be the corresponding missing data indicator vector of the same dimension as Yi,
whose elements are defined as

Rij =
{
1 if Yij is observed,
0 otherwise.

(1)

Complete data refers to the vector Yi of planned measurements. This is the outcome
vector that would have been recorded if no data had been missing. The vector Ri

and the process generating it are referred to as the missingness process. In our case
the Ri are here restricted to represent participant dropout, and so it has a monotone
pattern (Verbeke and Molenberghs 2000). Thus the full data for the ith subject can
be represented as (Yi,Ri) and the joint probability for the data and missingness can
be expressed as: f (yi, ri | Xi,Wi, θ, ξ) = f (yi | Xi, θ)f (ri | yi,Wi, ξ), where Xi and
Wi are design matrices for the measurements and dropout mechanism, respectively,
θ is the parameter vector associated with the measurement process and ξ is the
parameter vector for the missingness process. According to the dependence of the
missing data process on the response process, Little and Rubin (1987), Rubin (1976)
classified missing data mechanisms as: missing completely at random (MCAR),
missing at random (MAR) and not missing at random (MNAR). The missingness
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process is defined as MCAR if the probability of non-response is independent of
the response; that is, f (ri | yi,Wi, ξ) = f (ri | Wi, ξ) and the missingness process is
defined as MAR when the probability of non-response depends on the observed
values of the response; that is, f (ri | yi,Wi, ξ) = f (ri | yoi ,Wi, ξ). Finally, the miss-
ingness process is defined asMNAR if neither theMCAR nor theMAR assumptions
hold, meaning that dependence on unobserved values of the response cannot be ruled
out. That is, the probability of nonresponse depends on the missing outcomes and
possibly on the observed outcomes. Our main focus is on the MAR mechanism for
the dropout process.

When missingness is restricted to dropout or attrition, we can replace the vector
Ri by a scalar variable Di, the dropout indicator, commonly defined as

Di = 1 +
n∑

j=1

Rij. (2)

For an incomplete dropout sequence, Di denotes the occasion at which dropout
occurs. In the formulation described above, it is assumed that all subjects are observed
on the first occasion so thatDi takes values between 2 and n + 1. Themaximumvalue
n + 1 corresponds to a complete measurement sequence. If the length of the com-
plete sequence is different for different subjects then we only need to replace n with
ni. However a common n holds where for example by design all subjects were
supposed to be observed for an equal number of occasions or visits. Accord-
ingly, an MCAR dropout mechanism implies f (Di = di | yi,Wi, ξ) = f (Di = di |
Wi, ξ), MAR dropout mechanism, f (Di = di | yi,Wi, ξ) = f (Di = di | yoi ,Wi, ξ)
andMNARdropoutmechanism, f (Di = di | yi,Wi, ξ) = f (Di = di | Ym

i ,Yo
i ,Wi, ξ).

There are parameters associated with the measurement process but suppressed for
simplicity. Note that the MCAR mechanism can be seen as a special case of MAR.
Hence the likelihood ratio test can be used to test the null hypothesis that the MCAR
assumption holds. However it is not obvious to say amodel based on theMARmech-
anism is a simplification of a model based on the MNAR assumption. This assertion
is supported by the fact that for any MNAR model there is a MAR counterpart that
fits the data just as good as the MNAR model (Molenberghs et al. 2008).

3 Dropout Analysis Strategies in Longitudinal Continuous
Data

Much of the literature involving missing data (or dropout) in longitudinal studies
pertains to the various techniques developed to handle the problem. This section is
devoted to providing an overview of the various strategies for handling missing data
in longitudinal studies.
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3.1 Likelihood Analysis

An appealing method for handling dropout in longitudinal studies is based on using
available data, and these only, when constructing the likelihood function. This
likelihood-based MAR analysis is also termed likelihood-based ignorable analy-
sis, or direct likelihood analysis Molenberghs and Verbeke (2005). Direct likelihood
analysis uses the observed data without the need of neither deletion nor imputation.
In other words, no additional data manipulation is necessary when a direct likelihood
analysis is envisaged, provided the software tool used for analysis is able to handle
measurement sequences of unequal length (Molenberghs and Kenward 2007). To do
so, under valid MAR assumption, suitable adjustments can be made to parameters
at times when data are prone to incompleteness due to the within-subject correla-
tion. Thus, even when interest lies in a comparison between two treatment groups
at the last measurement time, such a likelihood analysis can be conducted without
problems since the fitted model can be used as the basis for inference. When a MAR
mechanism is valid, a direct likelihood analysis can be obtained with no need for
modelling the missingness process. It is increasingly preferred over ad hoc meth-
ods, particularly when tools like the generalized linear mixed mixed effect models
(Molenberghs and Verbeke 2005) are used. The major advantage of this method is
its simplicity, it can also be fitted in standard statistical software without involving
additional programming, using such tools as SAS software, procedures MIXED,
GLIMMIX and NLMIXED. The use of these procedures has been illustrated by Ver-
beke andMolenberghs (2000), Molenberghs and Verbeke (2005). A useful summary
for these procedures is presented by Molenberghs and Kenward (2007). Despite the
flexibility and ease of implementation of direct likelihood method, there are funda-
mental issues when selecting a model and assessing its fit to the observed data, which
do not occur with complete data. The method is sensible under linear mixed models
in combination with the assumption of ignorability. Such an approach, tailored to the
needs of clinical trials, has been proposed by Mallinckrodt et al. (2001a, b). For the
incomplete longitudinal data context, a mixed model only needs missing data to be
MAR. According to Verbeke and Molenberghs (2000), these mixed-effect models
permit the inclusion of subjects with missing values at some time points for both
missing data patterns, namely dropout and intermittent missing values. Since direct
likelihood ideas can be used with a variety of likelihoods, in the first application
example in this study we consider the general linear mixed-effects model for contin-
uous outcomes that satisfy the Gaussian distributional assumption (Laird and Ware
1982) as a key modelling framework which can be combined with the ignorability
assumption. For Yi the vector of observations from individual i, the model can be
written as follows

Yi = Xiβ + Zibi + εi, (3)

where bi ∼ N(0,D), εi ∼ N(0, �i) and b1, ..., bN , ε1, ..., εN are independent. The
meaning of each term in (3) is as follows. Yi is the ni dimensional response vector
for subject i, containing the outcomes at ni measurement occasions, 1 ≤ i ≤ N , N
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is the number of subjects, Xi and Zi are (ni × p) and (ni × q) dimensional matrices
of known covariates, β is the p-dimensional vector containing the fixed effects, bi
is the q-dimensional vector containing the random effects and εi is a ni dimensional
vector of residual components, combining measurement error and serial correlation.
Finally, D is a general (q × q) covariance matrix whose (i, j)th element is dij = dji
and �i is a (ni × ni) covariance matrix which generally depends on i only through
its dimension ni, i.e., the set of unknown parameters in �i will not depend upon i.
This implies marginally Yi∼ N(Xiβ, ZiDZ ′

i + �i). Thus if we write Vi = ZiDZ ′
i + �i

as the general covariance matrix of Yi, then f (yi,β, Vi) = (2�)
−n
2 |Vi| −1

2 exp{−(yi −
Xiβ)′V−1

i (yi − Xiβ)/2} from which a marginal likelihood involving all subjects can
be constructed to estimate β. In the likelihood context, Little and Rubin (1987) and
Rubin (1976) showed that when MAR assumption and mild regularity conditions
hold, parameters θ and ξ are independent, and that likelihood based inference is
valid when the missing data mechanism is ignored. In practice, the likelihood of
interest is then based on the factor f (yoi | ξ) (Verbeke and Molenberghs 2000). This
is referred to as ignorability.

3.2 Multiple Imputation (MI)

Multiple imputation was introduced by Rubin (1978). It has been discussed in some
detail in Rubin (1987), Rubin and Schenker (1986), Tanner and Wong (1987) and
Little and Rubin (1987). The key idea behind multiple imputation is to replace each
missing value with a set of M plausible values (Rubin 1996; Schafer 1997). The
resulting complete data sets generated via multiple imputation are then analyzed by
using standard procedures for complete data and combining the results from these
analyses. The technique in its basic form requires the assumption that the miss-
ingness mechanism be MAR. Thus, multiple imputation process is accomplished
through three distinct steps: (1) Imputation—create M data sets from M imputa-
tions of missing data drawn from a different distribution for each missing variable.
(2) Analysis—analyze each of the M imputed data sets using standard statistical
analysis. (3) Data pooling—combine the results of the M analyses to provide one
final conclusion or inference. To discuss these steps in detail, we will follow the
approach provided by Verbeke and Molenberghs (2000). Recall that we partitioned
the planned complete data (Yi) into Yo

i and Ym
i to indicate observed and unobserved

data, respectively.Multiple imputation fills in themissing data Ym
i using the observed

data Yo
i several times, and then the completed data are used to estimate ξ. If we know

the distribution of Yi = (Yo
i ,Ym

i ) depends on the parameter vector ξ, then we could
impute Ym

i by drawing a value of Ym
i from the conditional distribution f (ymi | yoi , ξ).

Because ξ̂ is a random variable, wemust also take its variability into account in draw-
ing imputations. In Bayesian terms, ξ̂ is a random variable of which the distribution
depends on the data. So we first obtain the posterior distribution of ξ from the data,
a distribution which is a function of ξ̂. Given this posterior distribution, imputation
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algorithm can be used to draw a random ξ∗ from the distribution of ξ, and to put
this ξ∗ in to draw a random Ym

i from f (ymi | yoi , ξ∗), using the following steps: (1)
Draw ξ∗ from the distribution of ξ, (2) Draw Ym∗

i from f (ymi | yoi , ξ∗), and (3) Use
the complete data (Yo,Ym∗) and the model to estimate β, and its estimated variance,
using the complete data, (Yo,Ym∗):

β̂m = β̂(Y) = β̂(Yo,Ym∗), (4)

where the within-imputation variance is Um = ˆVar(β̂). The steps described above
are repeated independentlyM times, resulting in β̂m andUm, form = 1, ...,M. Steps
1 and 2 are referred to as the imputation task, and step 3 is the estimation task.
Finally, the results are combined using the following steps for pooling the estimates
obtained after M imputations (Rubin 1987; Verbeke and Molenberghs 2000). With
no missing data, suppose the inference about the parameter β is made using the dis-
tributional assumption (β − β̂) ∼ N(0,U). The overall estimated parameter vector
is the average of all individual estimates:

β̂∗ =
∑M

m=1 β̂m

M
, (5)

with normal-based inferences for β based upon (β̂ ∗ −β) ∼ N(0, V ) (Verbeke and
Molenberghs 2000). We obtain the variance (V ) as a weighted sum of the within-
imputation variance and the between-imputations variability:

V = W +
(
M + 1

M

)
B, (6)

where

W =
∑M

m=1 Um

M
(7)

defined to be the average within-imputation variance, and

B =
∑M

m=1(β̂m − β̂∗)(β̂m − β̂∗)′

M − 1
(8)

defined to be the between-imputation variance (Rubin 1987).

3.3 Illustration

To examine the performance of direct likelihood and multiple imputation methods,
four steps were planned. The steps were as follow: First, a model was fitted to the
full data (no data are missing), thus producing what we refer to as true estimates.
Second, we generated a dropout rate of 10, 15 and 20% in the outcome (selected
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at random) variable using defined rules to achieve the required mechanism under
MAR assumption. Third, the resulting incomplete data was analyzed using the two
different methods using multiple imputation and direct likelihood. Fourth, results
from the complete and incomplete data analysis were compared. The actual-data
results were presented and used as references. The study aims to investigate how
direct likelihood and multiple imputation compare to each other and to the true
analysis.

Data Set—Heart Rates Trial

This data set was used in Milliken and Johnson (2009) to demonstrate analyses of
repeated measures designs and to show how to determine estimates of interesting
effects and provide methods to study contrasts of interest. The main objective was to
investigate the effects of three treatments involving two active treatments and a con-
trol (AX23, BWW9 andCTRL) on heart rates, where each treatment was randomized
to female individuals and each patient observed over four time periods. Specifically,
each patient’s heart rate was measured 5, 10, 15 and 20 min after administering the
treatment. The only constraint is that the time intervals are not randomly distributed
within an individual. In our case, we use the data to achieve a comparative analysis
of two methods to deal with missing data. A model which is used to describe the
data is similar to a split-plot in a completely randomized design. The model is

Hijk = μ + Timej + δi + Drugk + (Time ∗ Drug)jk + εijk, (9)

where Hijk is the heart rate of individual i at time j on drug k, i = 1, ..., 24, j =
1, 2, 3, 4 and k = 1, 2, 3. The model has two error terms: δi represents a subject
random effect, and εijk represents a time error component. The ideal conditions
for a split-plot in time analysis is that: (1) the δi are independently and identically
N(0,σ2

δ ), (2) the εijk are independently and identically N(0,σ2
ε ), and (3) the δi and

εijk are all independent of one another. The main purpose of this example is to
investigate the effects of the three drugs. Thus, the type III tests of fixed effects
and the differences between effects were the quantities of interest in the study. The
primary null hypothesis (the difference between the drug main effects) will be tested.
The null hypothesis is no difference among drugs. The significance of differences
in least-square means is based on Type III tests. These examine the significance of
each partial effect; that is, the significance of an effect with all the other effects in
the model. In analysis results we present the significance of drug main effects, time
main effects and the interaction of time and drug effects.

3.4 Simulation of Missing Values

Since there are nomissing values in the example data set described above, it provides
us with an opportunity to design a comparative study to compare the two methods
to deal with missing data using the results from the complete data analysis as the
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reference. We carry out an application study to generate the data set with dropouts.
In this application, we distinguish between two stages: (1) The dropout generation
stage. (2) The analysis stage.

3.4.1 Generating Missing Data

In the first stage, we use the full data set to artificially generate missing values by
mimicking the dropout at random mechanism. From the complete data, we draw
1000 random samples of size N = 96. The incomplete data was generated with
10, 15 and 20% dropout rate. We assume that the dropout depends only on the
observed data. Furthermore, a monotone dropout pattern was imposed in the heart
rate (outcome of interest); that is, if Hij is missing, then His is missing for s ≥ j. The
explanatory variables drug, time and interaction between drug and time are assumed
to be fully observed. In addition, in order to create the dropout model, we assume
that dropout can occur only after the first two time points. Namely, dropout is based
on values of H, assuming the H is fully observed in the first two time (time = 1,
2), while for the later times (time = 3, 4) some dropouts may occur. We assume
an MAR mechanism for the dropout process and the dropout mechanism depends
on individual previously observed values of one of the endpoints. For the MAR
mechanism, H was made missing if its measurements exceeded 75 (the baseline
mean for heart rate) the previous measurement occasion, beginning with the second
post baseline observation. Thus in the generation, the missingness at time = 3, 4
was dependent on the most recently observed values. This was done to achieve the
required mechanism under the MAR assumption.

3.4.2 Computations and Handling Missing Data

After generating the missing data mechanism and thus generating the data set with
dropout, the next step was to deal with dropout. Handling dropout was carried out
using direct likelihood analysis and multiple imputation methods with functions
available in the SAS software package. Ultimately, likelihood, multiple imputation
and analysis results from the fully observed data set can be compared in terms of
their impact on various linear mixed model aspects (fixed effects and least squares
means). The proposed methods dealt with the dropout according to the following:

• Imputing dropouts using multiple imputation techniques. This was achieved using
proceduresMI,MIXED andMIANALYZEwith an LSMEANS option. The impu-
tation model is based on model (9) which assumes normality of the variables. For
the dropout under MAR, the imputation model should be specified (Rubin 1987).
Thus, in the imputationmodel,we included all the available data (including the out-
come, H) to predict the dropouts since they were potentially related to the imputed
variable as well as to the missingness of the imputed variable. This means we
used variables in the analysis model, variables associated with missingness of the
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imputed variable and variables correlated with the imputed variable. This was
done to increase the plausibility of the MAR assumption, as well as to improve
the accuracy and efficiency of the imputation. Once the multiple imputation model
is chosen, the number of imputations must be decided. PROC MI was applied to
generate M=5 complete data sets. We fixed the number of multiple imputations
atM=5, since relatively small numbers are often deemed sufficient, especially for
parameter estimation from normally distributed data (see, Schafer andOlsen 1998;
Schafer 1999). PROC MIXED was used to set up effect parameterizations for the
class variables and we used the ODS statement output to create output data sets
that match PROCMIANALYZE for combining the effect mean estimates from the
5 imputed data sets. While PROCMIANALYZE cannot directly combine the least
square means and their differences to obtain the effect means of drug and contrasts
between drug groups from PROC MIXED, the LSMEANS table was sorted dif-
ferently so that we enabled the use of the BY statement in PROC MIANALYZE
to read it in.

• For comparison, the data was analyzed as they are, consistent with ignorability
for direct likelihood analysis implemented with PROC MIXED with LSMEANS
option. The REPEATED statement was used, in order to make sure the analysis
procedure takes into account sequences of varying length and order of the repeated
measurements. Parameters were estimated using RestrictedMaximum Likelihood
with the Newton-Raphson algorithm (Molenberghs and Verbeke 2005).

3.5 Results

A few points about the parameter estimates obtained by the proposed methods may
be noted in the resulting tables. In Table1, due to the similarities in the findings under
the three dropout rates, the results for type III tests of fixed effects under 20 and 30%
dropout rates are not presented but are available from the authors. Through the two
evaluation criteria in Table2, the largest bias, also the worst, are highlighted. For the
efficiency criterion, the widest confidence interval, also the worst, 95% interval are
highlighted.

The results that show the significance of the effects using direct likelihood and
multiple imputation to handle dropout are presented in Table1. Compared with the
results based on the complete data set, we see that type III tests of fixed effects show
that both direct likelihood and multiple imputation methods yielded statistically
similar results. The analysis shows that the drug effect has significant p-values as
its p-values, around 0.004, indicating a rejection of the null hypothesis of equal
drug means. The p-value of the drug effect under multiple imputation (0.0043) was
slightly higher in comparison to that of the direct likelihood analysis (0.0040), but
both methods indicate strong evidence of significance compared to the p-value of
0.0088 for the original complete data set. Evidently, there are no extreme differences
between the direct likelihood andmultiple imputationmethods. However, the p-value
for the drug effectwas significantly reduced by about 50%compared to the actual data
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Table 1 Statistical test for drug, time and drug × time effects of complete data, direct likelihood
and multiple imputation, under 15% dropout rate

Effect Type III tests of fixed effects

Num df Den df F-value Pr > F

Actual-data drug 2 21 5.99 0.0088

time 3 63 12.96 <0.001

drug × time 6 63 11.80 <0.001

Direct likelihood drug 2 17.1 7.78 0.0040

time 3 15.8 18.13 <0.001

drug × time 6 15.8 25.74 <0.001

Multiple imputation drug 2 21 7.14 0.0043

time 3 447 84.15 <0.001

drug × time 6 447 76.00 <0.001

Table 2 Bias and efficiency of MI and direct-likelihood, under different dropout rates: MIXED
least squares means—(interaction terms are not shown)

Dropout rate Effects Bias Efficiency

MI Direct-
likelihood

MI Direct-
likelihood

10% AX23 0.08 0.09 0.97 0.98
BWW9 −0.06 −0.08 0.95 0.97
CTRL 0.09 0.05 0.88 0.89
time1 0.00 0.00 0.99 0.99

time2 0.00 0.00 0.99 0.99

time3 0.07 0.09 0.97 0.98
time4 0.06 0.04 0.94 0.96

20% AX23 0.11 0.10 0.93 0.94
BWW9 0.08 0.10 0.94 0.97
CTRL 0.14 0.16 0.94 0.97
time1 0.00 0.00 0.98 0.98

time2 0.00 0.00 0.98 0.98

time3 0.09 0.11 1.27 1.54
time4 0.08 0.06 1.27 1.34

30% AX23 0.24 0.26 1.08 1.09
BWW9 0.14 0.15 1.08 1.11
CTRL 0.19 0.20 1.09 1.10
time1 0.00 0.00 0.97 0.97

time2 0.00 0.00 0.98 0.97

time3 0.15 0.17 1.55 1.68
time4 0.13 0.12 1.58 1.66

Note The largest bias and efficiency for each given estimate presented in bold. MI = multiple
imputation; Direct-likelihood
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p-value. This indicates a real problem with dropout, both multiple imputation and
direct likelihoodmay lead to rejection of the null hypothesis with a higher probability
than would be the case if the data were complete. The test of significance for time
effect in type III tests of fixed effects produced significant p-values of<0.0001 in both
methods. The test for the interaction between drug and time effects gave a p-value
of <0.0001 in both methods, indicating a strong evidence of time dependence on
the drug effects. Generally, the proposed methods presented acceptable performance
with respect to estimates of p-values in all cases when compared to that based on
actual data. In two cases, namely p-values of time effect and interaction drug× time,
the methods yielded the same results as those for complete data.

The results of MI and direct likelihood analysis in terms of bias and efficiency,
under three dropout rates are presented in Table2, which shows the results for the
least square means. Note that, again due to similarities in the findings, we do not
show full output, as the results of interactions terms are excluded. Examining these
results we find the following. For 10% dropout rate, in terms of the biasedness
of the estimates, the performance of both methods unsurprisingly yielded equally
good performance. However, the benefits of MI over a direct likelihood are clearly
evident. In some cases (estimates of time 1, time 2), the methods offered the same
estimates as compared to the estimates from complete data. Such results are expected
considering the fact that the first and second time points contained observed data for
all patients considered in the analysis. An examination of the efficiency suggested
that the estimates from MI were typically lower than those from direct likelihood.
Nevertheless, the corresponding MI estimates estimates did not differ significantly
from those of direct likelihood. Differences in efficiency estimates were never more
than 0.03.

Considering the 20% dropout rate, the results revealed that direct likelihood
slightly produces higher biases (the only exceptions to this rule occurred for estimate
ofAX23 and time 4). Regarding efficiency, both theMI and direct likelihoodmethods
yielded estimates similar to each other, and in general, MI tends to have the small-
est estimates. A comparison of 30% dropout rate again suggested that the estimates
associated with MI were less biased than for direct likelihood, except for time 4.
Efficiency results based on both methods were generally similar to their results with
10 and 20% dropout rates. Furthermore, between the two methods, the MI estimates
were slightly different from those obtained by direct likelihood, although the degree
of these differences was not very large. Overall, the performance of both methods
appeared to be independent of the dropout rate.

One would ideally need to compare various means with each other. If there is no
drug by time interaction, then we will often need to make comparisons between the
drug main effect means and the time main effect means. Since the interaction effect
mean is significant (as shown in Table1), we need to compare the drugs with one
another at each time point and/or times to one another for each drug. Comparisons
of the time means within a drug are given in Fig. 1. Since the levels of time are quan-
titative and equally spaced, orthogonal polynomials can be used to check for linear
and quadratic trends over time for each drug. The linear and quadratic trends in time
for all drugs reveal that drug BWW9 shows a negative linear trend, and drug AX23
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Fig. 1 a The heart rate data—Means over time for each drug for the heart rate data. b Direct
likelihood—Means over time for each drug for the heart rate data. c Multiple imputation—Means
over time for each drug for the heart rate data

shows a strong quadratic trend in all methods. Evidently, the differences occurred
with drug CTRL in graphs (b) and (c) for direct likelihood andMI, respectively. Both
methods yielded slightly different linear trends as compared to that from actual data.
The graph in Fig. 1 displays these relationships.

4 Dropout Analysis Strategies in Longitudinal Binary Data

There is a wide range of statistical methods for handling incomplete longitudinal
binary data. The methods of analysis to deal with dropout comprise three broad
strategies: semi-parametric regression, multiple imputation (MI) and maximum like-
lihood (ML). Inwhat follows,weutilize three common statisticalmethods in practice,
namelyWGEE, MI-GEE and GLMM. First, we compare the performance of the two
versions or modifications of the GEE approach, and then show how they compare to
the likelihood-based GLMM approach.
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4.1 Weighted Generalized Estimating Equation (WGEE)

Next, we follow the description provided by Verbeke andMolenberghs (2005) in for-
mulating the WGEE approach, thereby illustrating how WGEE can be incorporated
into the conventional GEE implementations. Generally, if inferences are restricted
to the population averages, exclusively the marginal expectations E(Yij) = μij can
be modelled with respect to covariates of interest. This can be done using the model
h(μij) = x′

ijβ, where h(.) denotes a known link function, for example, the logit link
for binary outcomes, the log link for counts, and so on. Further, the marginal vari-
ance depends on the marginal mean, with Var(Yij) = v(μij)�, where v(.) and �

denote a known variance function and a scale (overdispersion) parameter, respec-
tively. The correlation between Yij and Yik , where j �= k for i, j = 1, 2, ..., ni, can
be given through a correlation matrix Ci = Ci(ρ), where ρ denotes the vector of
nuisance parameters. Then, the covariance matrix Vi = Vi(β, ρ) of Yi can be decom-
posed into the form �A1/2

i CiA
1/2
i , where Ai is a matrix with the marginal variances

on the main diagonal and zeros elsewhere. Without missing data, the GEE estimator
for β is based on solving the equation

S(β) =
N∑
i=1

∂μi

∂β ′ (A
1/2
i CiA

1/2
i )−1(yi − μi) = 0, (10)

in which the marginal covariance matrix Vi contains a vector ρ of unknown para-
meters. Now, assume that the marginal mean μi has been correctly modeled, then it
can be shown that using Eq. (10), the estimator β̂ is normally distributed with mean
equal to β and covariance matrix equal to

Var(β̂) = I−1
0 I1I

−1
0 , (11)

where

I0 =
(

N∑
i=1

∂μ′
i

∂β
V−1
i

∂μi

∂β′

)
, (12)

and

I1 =
(

N∑
i=1

∂μ′
i

∂β
V−1
i V ar(yi)V

−1
i

∂μi

∂β′

)
. (13)

For practical purposes, in (13), Var(yi) can be replaced by (yi − μi)(yi − μi)
′ which

is unbiased on the sole condition that the mean is correctly specified (Birhanu et al.
2011). Note that GEE arises from non-likelihood inferences, therefore “ignorabil-
ity” discussed above, cannot be invoked to establish the validity of the method when
dropout is under MAR hold (Liang and Zeger 1986). Only, when dropout is MCAR;
that is, f (ri | yi,Xi, γ) = f (ri | Xi, γ) will estimating equation (10) yield consistent
estimators (Liang and Zeger 1986). Under MAR, Robins et al. (1995) proposed the
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WGEE approach to allow the use of GEE under MAR. The weights used in WGEE,
also termed inverse probability weights, reflect the probability for an observation
of subject to be observed (Robins et al. 1995). Therefore, the incorporation of these
weights reduces possible bias in the regression parameter estimates. Based onMolen-
berghs and Verbeke (2005), we discuss the construction of these weights. According
to them, such weights can be calculated as

ωij ≡ P[Di = j] =
j−1∏
k=2

(1 − P[Rik = 0 | Ri2 = ... = Ri,k−1=1]) ×

P[Rij = 0 | Ri2 = ... = Ri,j−1 = 1]I{j≤ni}, (14)

where j = 2, 3, ..., ni + 1, I{} is an indicator variable, andDi is the dropout variable.
The weights are obtained from the inverse probability provided the actual set of
measurements are observed. In terms of the dropout variable Di, the weights are
written as

ωij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

P(Di = j | Di ≥ j) for j = 2

P(Di = j | Di ≥ j)
j−1∏
k=2

[1 − P(Di = k | Di ≥ k)] for j = 3, ..., ni

ni∏
k=2

[1 − P(Di = k | Di ≥ k)] for j = ni + 1.

(15)

Now, from Sect. 2 recall that we partitioned Yi into the unobserved components (Ym
i )

and the observed components (Yo
i ). Similarly, the mean μi can be partitioned into

observed (μo
i ) and missing components (μm

i ). In the WGEE approach, the score
equations to be solved are:

S(β) =
N∑
i=1

ni+1∑
d=2

I(Di = d)

ωid

∂μi

∂β ′ (d)(A1/2
i CiA

1/2
i )−1(d)(yi(d) − μi(d)) = 0, (16)

where yi(d) andμi(d) are the first d − 1 elements of yi andμi respectively. In Eq. (16),
∂μi

∂β′ (d) and (A1/2
i CiA

1/2
i )−1(d) are defined analogously, in line with the definitions of

Robins et al. (1995). Provided that the ωid are correctly specified, WGEE provides
consistent estimates of the model parameters under a MAR mechanism (Robins et
al. 1995).
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4.2 Multiple Imputation Based GEE (MI-GEE)

An alternative approach that is valid under MAR is multiple imputation prior to gen-
eralized estimating equations, or, as we will term it in the remainder of this article,
MI-GEE. The primary idea of the combination of MI and GEE comes from Schafer
(2003). He proposed an alternative mode of analysis based on the following steps.
(1) Impute the missing outcomes multiple times using a fully parametric model, such
as a random effects type model. (2) After drawing the imputations, analyze the so-
completed data sets using a conventional marginal model, such as the GEE method.
(3) Finally, perform MI inference on the so-analyzed sets of data. As pointed out by
Beunckens et al. (2008), MI-GEE comes down to first using the predictive distribu-
tion of the unobserved outcomes, conditional on the observed ones and covariates.
Thereafter, when MAR is valid, missing data need no further attention during the
analysis. In terms of the dropout mechanism, in the MI-GEEmethod, the imputation
model needs to be specified. This specification can be done by an imputation model
that imputes the missing values with a given set of plausible values (Beunckens et al.
2008). Details of this method can be found in Schafer (2003), Molenberghs and
Kenward (2007) and Yoo (2009). In closely related studies, Beunckens et al. (2008)
studied the comparison between the two GEE versions (WGEE and MI-GEE), and
Birhanu et al. (2011) compared the efficiency and robustness ofWGEE,MI-GEE and
doubly robust GEE (DR-GEE). In this paper, however, we restrict attention to study
how the two types of GEE (WGEE and MI-GEE) compared to the likelihood-based
GLMM for analyzing longitudinal binary outcomes with dropout.

In the previous section, GEE, a special case of inverse probability weighting, was
described as a useful device for the analysis of incomplete data, under anMARmech-
anism. In this section, MI was described, and this suggests an alternative approach
to handlingMARmissingness when using GEE: use MAR-basedMI together with a
final GEE analysis for the substantivemodel. This emphasizes the valuable flexibility
that this facility brings toMI, and can be considered as an example of using unconge-
nial imputation model. The term uncongenial was introduced by Meng (1994) for an
imputation model that is not consistent with the substantive model, and it is for this
reason that MI has much to offer in this setting. Further, Meng (1994) stated that it is
one of the great strength ofMI that these twomodels (substantive and imputation) do
not have to be consistent in the sense that the two models need not be derived from
an overall model for the complete data. GEE is one of the examples of situations
in which such uncongenial imputation models might be of value (Molenberghs and
Kenward 2007). As noted above GEE is valid under MCAR but not MAR. An alter-
native approach that is valid under MAR isMI prior to GEE, in which the imputation
model is consistent with the MAR mechanism, but not necessarily congenial with
the chosen substantive model. The population-averaged substantive model does not
specify the entire joint distribution of the repeated outcomes, particularly the depen-
dence structure is left unspecified, and so cannot be used as a basis for constructing
the imputation model. Since we consider the MI-GEE method, the M imputed data
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sets combined with GEE on the imputed data is an alternative technique to likelihood
inference and WGEE. It requires MAR for valid inferences.

4.3 Generalized Linear Mixed Model (GLMM)

An alternative approach to deal with dropout under MAR is to use likelihood-
based inference (Verbeke andMolenberghs 2000). A commonly encountered random
effects (or subject-specific) model for discrete longitudinal data is the generalized
linear mixedmodel (GLMM)which is based on specifying a regressionmodel for the
responses conditional on an individual’s random effects and assuming that within-
subject measurements are independent, conditional on the random effects. The mar-
ginal likelihood in the GLMM is used as the basis for inferences for the fixed effects
parameters, complemented with empirical Bayes estimation for the random effects
(Molenberghs and Kenward 2007). As pointed out by Alosh (2010), the random
effects can be included as a subset of the model for heterogeneity from one indi-
vidual to another. Integrating out the random effects induces marginal correlation
between the responses through the same individual (Laird andWare 1982). Next, we
briefly introduce a general framework for mixed effects models provided by Jansen
et al. (2006) andMolenberghs andKenward (2007). It is assumed that the conditional
distribution of each Yi, given a vector of random effects bi can be written as follows

Yi | bi ∼ Fi(θ, bi), (17)

where Yi follows a prespecified distribution Fi, possibly depending on covariates,
and is parameterized via a vector θ of unknown parameters common to all individ-
uals. The term bi denotes the (q × 1) vector of subject-specific parameters, called
random effects, which are assumed to follow a so-called mixing distribution Q. The
distributionQ depends on a vector of unknown parameter, say ψ; that is, bi ∼ Q(ψ).
In terms of the distribution of Yi, the bi reflect the between unit-heterogeneity in the
population. Further, given the random effects bi, it is assumed that the components Yij
in Yi are independent of one another. The distribution function (Fi) provided inmodel
(17) becomes a product over the ni independent elements inYi. Inference based on the
marginal model for Yi can be obtained across their distributionQ(ψ), provided one is
not following a fully Bayesian approach. Now, assume that the fi(yi | bi) represents
the density function and corresponds to the distribution Fi, while q(bi) represents the
density function and corresponds to the distribution Q. Thus, the marginal density
function of Yi can be written as follows

fi(yi) =
∫

fi(yi | bi)q(bi)dbi. (18)

The marginal density is dependent on the unknown parameters θ and ψ. By assum-
ing the independence of the units, the estimates of θ̂ and ψ̂ can be obtained using
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the maximum likelihood function that is built into model (18). The inferences can
be obtained following the classical maximum likelihood theory. The distribution Q
is assumed to be of a specific parametric form, for example a multivariate normal
distribution. The integration in model (18), depending on both Fi and Qi, may or
may not be analytically possible. However, there are some proposed solutions based
on Taylor series expansions of either fi(yi | bi) or on numerical approximations of
the integral, for example, adaptive Gaussian quadrature. Verbeke and Molenberghs
(2000) noted that for the classical linear mixed model, E(Yi) equals Xiβ, meaning
that the fixed effects have a subject-specific as well as a population-averaged inter-
pretation. However, for nonlinear mixed models, the interpretation of random effects
has important ramifications for the interpretation of the fixed effects regression para-
meters. The fixed effects only reflect the conditional effect of covariates, and the
marginal effect is difficult to obtain, as E(Yi) is given by

E(Yi) =
∫

yi

∫
fi(yi | bi)q(bi)dbidyi. (19)

In GLMM, a general formulation is as follows. It assumes that the elements Yij of
Yi are conditionally independent, given a (q × 1) vector of random effects bi, with
density function based on a classical exponential family formulationwith conditional
mean depending on both fixed and random effects. This leads to the conditional mean
E(Yij | bi) = a′(ηij) = μij(bi), and the conditional variance is assumed to depend on
the conditional mean according to Yij | bi = �a′′(ηij). One needs a link function,
say h (for binary data, a canonical link is the logit link), and typically uses a linear
regression with parameters β and bi for the mean, i.e., h(μi(bi)) = Xiβ + Zibi. Here,
we note that the linear mixed model is a special case with an identity link function.
The random effects bi are again assumed to be sampled from a multivariate normal
distribution, with mean 0 and (q × q) covariance matrix. The canonical link function
is usually used to relate the conditional mean of Yij to ηi; that is, h = a′−1, such that
ηi = Xiβ + Zibi. In principle, any suitable link function can be used (Fitzmaurice et
al., 2004). In considering the link function of the logit form and assuming the random
effects to be normally distributed, the familiar logistic-linear GLMM follows. For
a more detailed overview, see, Jansen et al. (2006) and Molenberghs and Verbeke
(2005).

4.4 Simulation Study

Note that the parameters in a marginal model, such as GEE, and a hierarchical
model, such as GLMM, do not have the same interpretation. Indeed, the fixed effects
in the latter are to be interpreted conditional upon the random effect. While there
is no difference between the two in the linear mixed model, this is not the case
for non-Gaussian outcomes, in particular for binary data. Fortunately, as stated in
Molenberghs and Verbeke (2005) and references therein, the GLMM parameters can
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be approximately transformed to their marginal counterpart. In particular, when the
random-effects structure is confined to a random intercept bi, normally distributed
with mean 0 and variance σ2, then the ratio between the marginal and random effects
parameter is approximately equal to

√
1 + c2σ, where c = 16

√
3/(15π). This ratio

will be used in our simulation study to make the parameters comparable.

4.4.1 Design

The main objective of this study was to compare WGEE, MI-GEE and GLMM for
handling dropoutmissing at random in longitudinal binary data. To do so, we used the
following steps: (1) A complete longitudinal binary data set was generated, and the
marginal logistic regression was fitted to the data to derive the parameter estimators.
(2) Once the complete dataset was generated, 100 random samples of N = 250 and
500 subjects were drawn. (3) MAR dropout was created, for various dropout rates.
(4) The above methods were applied to each simulated data set. The results from the
simulated data were then compared with those obtained from the complete data. (5)
The performances of WGEE, MI-GEE and GLMM were evaluated in terms of bias,
efficiency and mean square error (MSE). The GLMM estimates were first adjusted
for comparability before this evaluation of performance.

4.4.2 Data Generation

Simulated datawere generated in order to emulate data typically found in longitudinal
binary clinical trials data. The longitudinal binary data with dropout were simulated
by first generating complete data sets. Then, 100 random samples of sizes N = 250
and 500 subjects were drawn. We assumed that subjects were assigned to two arms
(Treatment = 1 and Placebo = 0). We also assumed that measurements were taken
under four time points (j = 1, 2, 3, 4). The outcome (Yij) which is the measurement
of subject i, measured at time j, was defined as 1 if the measurement is positive, and
0 if otherwise. The two levels of the outcome can represent a specific binary health
outcome, but generally we labeled one outcome “success, i.e., 1” and the other
“failure, i.e., 0”. Then, we looked at logistic regression as modeling the success
probability as a function of the explanatory variables. The main interest here is in the
marginal model for each binary outcome Yij, which we assumed follows a logistic
regression. Consequently, longitudinal binary data were generated according to the
following logistic model with linear predictor

logitE(yij = 1|Tj, trti, bi) = β0 + bi + β1Tj + β2trti + β3(Tj ∗ trti), (20)

whereβ = (β0,β1,β2,β3), and the randomeffects bi’s are assumed to account for the
variability between individuals and assumed to be i.i.d. with a normal distribution,
i.e., bi ∼ N(0,σ2). In this model, fixed categorical effects include treatment (trt),
times (T) and treatment-by-time interaction (T ∗ trt). For this model, throughout, we
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fixed β0 = −0.25, β1 = 0.5, β2 = 1.0 and β4 = 0.2. We also set a random intercept
bi ∼ N(0, 0.07). For each simulated data set, dropouts were created in the response
variable, Yij, chosen stochastically. We assumed that the dropout can occur only after
the second time point. Consequently, there are three possible dropout patterns. That
is, dropout at the third time point, dropout at the fourth time point, or no dropout.
The dropouts were generated at time j and the subsequent times were assumed to be
dependent on the values of outcome measured at time j − 1. Under model (20), we
simulated a case where the MAR specification was different for the two outcomes
(positive and negative). In particular, for time point, j = 3, we retained the criterion
that if the dependent variable (Yij)was positive (i.e.,Yij = 1), then the subject dropped
out at the next time point, i.e., j + 1. Dropouts were selected to yield approximate
rates of 10, 20 and 30%. A monotone missing pattern (i.e., data for an individual
up to a certain time) was considered, thus simulating a trial where the only source of
dropout was an individual’s withdrawal.

4.5 Analysis

In the analysis, different strategies were used to handle dropout: by weighting, by
imputation and by analyzing the data with no need to impute or weight, consistent
with MAR assumption, for WGEE, MI-GEE and GLMM, respectively.

4.5.1 WGEE

As discussed above, theWGEEmethod requires a model for the dropout mechanism.
Consequently, we first fitted the following dropout model using a logistic regression,

logitP(Di = j | Di ≥ j) = γ0 + γ1yi,j−1 + γ2trti, j = 3, 4. (21)

where the predictor variables were the outcomes at previous occasions (yi,j−1), sup-
plementedwith genuine covariate information.Model (21) is based on logistic regres-
sion for the probability of dropout at occasion j for individual i, conditional on the
individual still being in the study (i,e., the probability of being observed is modeled).
Note that mechanism (21) allows for the one used to generate the data and described
in above only as a limiting case. This is because our dropout generating mecha-
nism has a deterministic flavor. Strictly speaking, the probabilities of observation in
WGEE are required to be bounded away from zero, to avoid issues with the weight.
The effect of our choice is that WGEE is subjected to a severe stress test. It will be
seen in the results section that, against this background,WGEE performs rather well.
To estimate the probabilities for dropout as well as to pass the weights (predicted
probabilities) to be used for WGEE, we used the “DROPOUT” and “DROPWGT”
macros described in Molenberghs and Verbeke (2005). These macros could be used
without modification. The “DROPOUT” macro is used to construct the variables
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dropout and previous. The outcome dropout is binary and indicates if individual had
dropped out of the study before its completion, whereas, the previous variable refers
to the outcome at previous occasions. After fitting a logistic regression, the “DROP-
WGT” macro is used to pass the weights to the individual observations in WGEE.
Such weights, calculated as the inverse of the cumulative product of conditional
probabilities, can be estimated as wij = 1/(λi1 × ... × λij), where λij represents the
probability of observing a response at time j for the ith individual, conditional on the
individual being observed at the time j − 1. Once the dropout model (21) was fitted
and the weight distribution was checked, we merely included the weights by means
of the WEIGHT statement in SAS procedure GENMOD. As mentioned earlier, the
marginal measurement model for WGEE should be specified. Therefore, the model
that we considered takes the form of

logitE(yij) = β0 + β1Tj + β2trti + β3(Tj ∗ trti). (22)

Here, we used the compound symmetry (CS) working correlation matrix. A random
intercept bi was excluded when considering WGEE.

4.5.2 MI-GEE

The analysis was conducted by imputing missing values using the SAS procedure
MI, which employs a conditional logistic imputation model for binary outcomes.
For the specification of the imputation model, an MAR mechanism is considered;
that is, the imputation model comprises two-level covariate (i.e., treatment versus
placebo classification) as well as longitudinal binary outcomes values at times j =
1; 2; 3; 4. To be precise, for the imputation model, we used a logistic regression with
measurements at the second time point as well as the two-level covariate to fill in the
missing values that occur at the third time point. In a similar way, the imputation at the
fourth timepoint is done using themeasurements at the third timepoint including both
imputed and observed, as predictors, as well as the measurements at the second time
point which is always observed and the two-level covariate. Note that we describe
here multiple imputation in a sequential fashion, making use of the time ordering of
the measurements. Therefore, the next value is imputed based on the previous values,
whether observed or already imputed. This is totally equivalent to an approach where
all missing values are imputed at once based on the observed sub-vector. This implies
that the dropout process was accommodated in the imputation model. It appears that
there is potential for misspecification here. However, multiple imputation is valid
under MAR. Whether missingness depends on one or more earlier outcomes, MAR
holds, so the validity of the method is guaranteed (Molenberghs and Kenward 2007).
In terms of the number of the imputed data sets, we used M = 5 imputations. GEE
was then fitted to each completed data set using SAS procedure GENMOD. TheGEE
model that we considered is based on (22). The results of the analysis from these 5
completed (imputed) data sets were combined into a single inference using Eqs. (5),
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(6), (7) and (8). This was done by using SAS procedure MIANALYZE. Details of
implementation of this method are given in Molenberghs and Kenward (2007) and
Beunckens et al. (2008).

4.5.3 GLMM

Conditionally on a random intercept bi, the logistic regression model is used to
describe the mean response, i.e., the distribution of the outcome at each time point
separately. Specifically, we considered fitting model (20). This model assumed that
there is natural heterogeneity across individuals and accounted for the within-subject
dependence in the mean response over time. Model (20) was fitted using the likeli-
hoodmethod by applying theNLMIXEDprocedure in SAS software. This procedure
relies on numerical integration and includes a number of optimization algorithms
(Molenberghs and Verbeke 2005). Given that the evaluation and maximization of the
marginal likelihood for GLMMneeds integration, over the distribution of the random
effects, the model was fitted using maximum likelihood (ML) together with adaptive
Gaussian quadrature (Pinheiro andBates 2000) based on numerical integrationwhich
works quite well in procedure NLMIXED. This procedure allows the use of Newton-
Raphson instead of a Quasi-Newton algorithm to maximize the marginal likelihood,
and adaptive Gaussian quadrature was used to integrate out the random effects. The
adaptive Gaussian quadrature approach makes Bayesian approaches quite appeal-
ing because it is based on numerical integral approximations centered around the
empirical Bayes estimates of the random effects, and permits maximization of the
marginal likelihoodwith any desired degree of accuracy (Anderson andAitkin 1985).
An alternative strategy to fitting the GLMM is the penalized quasi-likelihood (PQL)
algorithm (Stiratelli et al. 1984). However, in this study this algorithm is not used
as it often provides highly biased estimates (Breslow and Lin 1995). Also, we ought
to keep in mind that the GLMM parameters need to be re-scaled in order to have
an approximate marginal interpretation and to become comparable to their GEE
counterparts.

4.5.4 Evaluation Criteria

In the evaluation, inferences are drawn on the data before dropouts are created and
the results used as the main standard against those obtained from applying WGEE,
GLMM and MI-GEE approaches. We evaluated the performance of the methods
using bias, efficiency, andmean square error (MSE). These criteria are recommended
in Collins et al. (2001) and Burton et al. (2006). (1) Evaluation of bias: we defined
the bias as the difference between the average estimate and the true value; that is,

π = (
¯̂
β − β)where β is the true value for the estimate of interest, ¯̂

β = �S
i=1β̂i/S, S is

the number of simulation performed, and β̂i is the estimate of interest within each of
the i = 1, ..., S simulations. (2) Evaluation of efficiency: we defined the efficiency as



Statistical Methodologies for Dealing with Incomplete Longitudinal Outcomes … 201

the variability of the estimates around the true population coefficient. In this chapter,
it was calculated by the average width of the 95% confidence interval. The 95%
interval is approximately four times the magnitude of the standard error. Therefore,
a narrower interval is always desirable because it leads to more efficient methods. (3)
Evaluation of accuracy: the MSE provides a useful measure of the overall accuracy,
as it incorporates both measures of bias and variability (Collins et al. 2001). It can be

calculated as follows:MSE=(
¯̂
β − β)2+(SE(β̂))2, where SE(β̂) denotes the empirical

standard error of the estimate of interest over all simulations (Burton et al. 2006).
Generally, small values of MSE are desirable (Schafer and Graham 2002).

4.5.5 Simulations Results

The simulations results of WGEE, MI-GEE and GLMM in terms of bias, efficiency
and MSEs, under N=250 and 500 sample sizes are presented in Table3. A few
points about the parameter estimates obtained by the proposed methods through
the three evaluation criteria may be noted for each estimate in Table3. First, the
largest bias, also the worst, are highlighted. Second, for the efficiency criterion, the
widest confidence interval, also the worst, 95% interval are highlighted. Third, for
the evaluation of MSEs, the greatest values, also the worst, are highlighted. As we
will see, the findings in general favoured MI-GEE over both WGEE and GLMM,
regardless of the dropout rates.

By looking at this table, we observed that for 10% dropout rate, bias was least in
the estimates of MI-GEE than in both WGEE and GLMM. In particular, the worst
performance of WGEE and GLMM on bias permeated through the estimates of β2

and (β0,β1,β3), respectively, indicating a discrepancy between the average and the
true parameter (Schafer and Graham 2002). Between the two MI-GEE and WGEE
methods, the WGEE estimates were slightly different from those obtained by MI-
GEE, although the degree of these differences was not very large. The efficiency
performance was acceptable for both methods and comparable to each other, but low
for most parameters under WGEE. The efficiency estimates associated with GLMM
were larger than with WGEE and MI-GEE. In terms of MSEs, both WGEE and
MI-GEE outperformed GLMM as they tend to have smallest MSEs. Overall, they
yielded MSEs much closer to each other, however under 500 sample size, MI-GEE
gave smallest MSEs.

Considering the 20% dropout rate, the results revealed that in most cases, GLMM
consistently produced the most biased estimates. The only exception occurred for
estimates of β2 under 250 sample size as well as β2 and β3, under 500 sample size.
For estimating all parameters, efficiency estimates by WGEE and MI-GEE were
similar to each other and smaller than GLMM’s estimates, except for β3 under 500
sample size. In comparison with WGEE and MI-GEE, GLMM gave larger MSEs in
magnitude than the two, except for estimate of β0 and β2 under 250 and 500 sample
sizes, respectively. Comparing WGEE and MI-GEE, the MSEs associated with both
methods were closer to each other and in one case—MSE of β3 under 250 sample
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Table 3 Bias, efficiency and mean square error of the WGEE, MI-GEE and GLMM Methods,
under MAR mechanism over 100 samples: N = 250 and 500 subjects.
Dropout
rate

Parameter Bias Efficiency MSE

WGEE MI-
GEE

GLMM WGEE MI-
GEE

GLMM WGEE MI-
GEE

GLMM

N = 250

10% β0 0.094 0.061 0.099 0.005 0.012 0.018 0.028 0.018 0.041

β1 −0.099 −0.030 −0.107 0.003 0.013 0.084 0.018 0.086 0.097

β2 0.053 0.039 0.050 0.004 0.004 0.011 0.051 0.093 0.107

β3 0.018 0.012 0.023 0.002 0.004 0.005 0.007 0.008 0.015

20% β0 0.047 0.006 0.052 0.012 0.012 0.031 0.027 0.060 0.031

β1 0.033 0.139 0.141 0.012 0.014 0.028 0.048 0.020 0.052

β2 0.131 0.122 0.130 0.005 0.011 0.017 0.051 0.091 0.102

β3 −0.076 −0.038 0.080 0.006 0.007 0.009 0.008 0.008 0.016

30% β0 −0.065 −0.036 −0.085 0.026 0.003 0.041 0.071 0.072 0.087

β1 0.167 0.143 0.169 0.023 0.011 0.013 0.089 0.035 0.044

β2 0.178 0.171 0.182 0.015 0.005 0.019 0.069 0.032 0.073

β3 0.033 0.104 0.079 0.013 0.005 0.016 0.025 0.014 0.047

N = 500

10% β0 0.043 0.011 0.051 0.156 0.144 0.162 0.019 0.016 0.059

β1 −0.179 −0.242 −0.249 0.057 0.054 0.068 0.048 0.044 0.053

β2 0.221 0.211 0.220 0.093 0.086 0.129 0.097 0.082 0.101

β3 0.047 0.010 0.056 0.036 0.032 0.034 0.009 0.009 0.017

20% β0 0.080 0.078 0.091 0.154 0.138 0.161 0.130 0.111 0.145

β1 −0.195 −0.139 −0.201 0.068 0.053 0.073 0.052 0.037 0.082

β2 0.265 0.293 0.289 0.099 0.089 0.153 0.120 0.118 0.119

β3 0.067 0.020 0.064 0.041 0.032 0.034 0.009 0.007 0.014

30% β0 0.136 0.117 0.121 0.131 0.164 0.173 0.139 0.193 0.198

β1 −0.232 −0.218 −0.243 0.072 0.048 0.074 0.066 0.061 0.091

β2 0.342 0.184 0.351 0.084 0.093 0.107 0.186 0.136 0.193

β3 0.067 0.066 0.064 0.097 0.029 0.068 0.012 0.010 0.012

Note The largest bias, efficiency and mean square error for each given estimate presented in bold.
MI-GEE = multiple imputation based generalized estimating equation; WGEE = weighted general-
ized estimating equation; LMM = linear mixed model; GLMM = generalized linear mixed model;
MSE = mean square error

size—they gave the same values. As was the case for 10% under 500 sample size,
MSEs by WGEE tended to be larger than those obtained by MI-GEE.

A comparison of 30% dropout rate again suggested that the results based on
GLMM typically displayed greater estimation bias than did WGEE and MI-GEE,
indicating a difference between the average estimate and the true values. Efficiency
by MI-GEE appeared to be independent of the sample size in most cases, meaning
theMI-GEEmethod yieldedmore efficient estimates across both sample sizes. Thus,
MI-GEE was more efficient than WGEE, yet more efficient than GLMM. The latter
yielded the largest values in most cases. With respect to MSEs, results that are
computed by GLMM yielded largest values, showing no substantial improvement
over GLMM under different sample sizes when compared with the results computed
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byWGEE andMI-GEE. Under 500 sample size, it can also be observed that in terms
of the estimate of β3, the MSE value for WGEE was equal to that based on GLMM,
and they gave larger MSEs than did MI-GEE, whereas compared to WGEE, the
MI-GEE still resulted in smaller MSEs. Generally, with increasing sample size, the
performance of MI-GEE was better than that for WGEE and GLMM.

4.6 Application Example: Dermatophyte Onychomycosis
Study

These data come from a randomized, double-blind, parallel group, multi-center study
for the comparison of two treatments (we will term them in the remainder of this
article, active and placebo) for toenail dermatophyte onychomycosis (TDO). Toenail
dermatophyte onychomycosis is a common toenail infection, difficult to treat, affect-
ing more than 2% of population. Further background details of this experiment are
given in De Backer et al. (1996) and in its accompanying discussion. In this study,
there were 2 × 189 patients randomized under 36 centers. Patients were followed
12 weeks (3 months) of treatment. Further, patients were followed 48 weeks (12
months) of total follow up. Measurements were planned at seven time points, i.e.,
at baseline, every month during treatment, and every 3 months afterward for each
patient. The main interest of this experiment was to study the severity of infection
relative to treatment of TDO for the two treatment groups. At the first occasion, the
treating physician indicates one of the affected toenails as the target nail, the nail that
will be followed over time. We restrict our analyses to only those patients for which
the target nail was one of the two big toenails. This reduces our sample under consid-
eration to 146 and 148 patients, in active group and placebo group, respectively. The
percentage and number of patients that are in the study at each month is tabulated in
Table4 by treatment arm. Due to a variety of reasons, the outcome has beenmeasured
at all 7 scheduled time points for only 224 (76%) out of the 298 participants. Table5
summarizes the number of available repeated measurements per patient, for both
treatment groups separately. We see that the occurrence of missingness is similar
in both treatment groups. We now apply the aforementioned methods to this data
set. Let Yij be the severity of infection, coded as yes (severe) or no (not severe), at
occasion j for patient i. We focus on assessing the difference between both treatment
arms for onychomycosis. An MAR missing mechanism is assumed. For the WGEE
and MI-GEE methods, we consider fitting Model (22). For the GLMM method, the
above mentioned ratio is used. A random intercept bi will be included in Model (22)
when considering the random effects models. The results of the three methods are
listed in Table6. It can be seen from the analysis that the associated p-values for the
main variable of interest, i.e., treatment are all nonsignificant, their p-values being
all greater than 0.05. Such results should be expected considering the fact both mar-
ginal and random effect model may present similar results in terms of hypothesis
testing (Jansen et al. 2006). However, when compared to WGEE and MI-GEE, the
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Table 4 Number and percentage of patients with severe toenail infection at each time point, for
each treatment arm separately

Baseline 1 month 2 month 3 month 6 month 9 month 12 month

Active
group

Number
severe

54 49 44 29 14 10 14

N% 146 141 138 132 130 117 133

(%) 37.0 34.7 31.9 22.0 10.8 8.5 10.2

Placebo
group

Number
severe

55 48 40 29 8 8 6

N% 148 147 145 140 133 127 131

(%) 37.2 32.6 27.6 20.7 6.0 6.3 4.6

Table 5 Toenail data: Number of available repeated measurements for each patient, by treatment
arm separately

Number of observed Active group Placebo group

N % N %

1 4 2.74 1 0.68

2 2 1.37 1 0.68

3 4 2.74 3 2.03

4 2 1.37 4 2.70

5 2 1.37 8 5.41

6 25 17.12 14 9.46

7 107 73.29 117 79.05

Total 146 100 148 100

Table 6 Toenail data: (parameter estimates; standard errors) and p-values for WGEE, MI-GEE
and GLMM

Effect Parameter WGEE MI-GEE GLMM

Intercept β0 (−0.301; 0.216)
(0.4613)

(−0.051; 0.233)
(0.4016)

(0.421; 3.981)
(0.5400)

trti β1 (−0.201; 0.069)
(0.1211)

(−0.309; 0.039)
(0.0998)

(0.432; 0.251)
(0.1312)

Tij β2 (0.511; 0.442)
(0.0073)

(0.025; 0.301)
(0.0008)

(0.705; 0.487)
(0.0410)

trti ∗ Tij β3 (−0.118; 0.164)
(0.8004)

(−0.044; 0.063)
(0.7552)

(0.401; 0.222)
(0.6602)
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GLMM method provided different results. Namely, its estimates were much bigger
in magnitude. This in line with previous study conducted by Molenberghs and Ver-
beke (2005). In addition, the parameter estimates as well as the standard errors are
more varied for GLMM than in the WGEE and MI-GEE methods.

5 Discussion and Conclusion

In the first part of this chapter, we have compared two methods applied to incom-
plete longitudinal data with continuous outcomes. The findings of our analysis in
general suggest that both direct likelihood and multiple imputation performed best
under all three dropout rates, and they are more broadly similar in results. This
is to be expected as both approaches are likelihood based and Bayesian analysis,
respectively, and therefore valid under the assumption of MAR (Molenberghs and
Kenward 2007). The result of direct likelihood are in line with the findings that
likelihood-based analyses are appropriate for the ignorability situation (Verbeke and
Molenberghs 2000; Molenberghs and Verbeke 2005; Mallinckrodt et al. 2001a, b).
Because of simplicity, and ease of implementation using many statistical tools such
as the SAS software procedures MIXED, NLMIXED and GLIMMIX, direct likeli-
hood might be adequate to deal with dropout data when the MARmechanism holds,
provided appropriate distributional assumptions for a likelihood formulation of the
data also hold. Moreover, a method such as multiple imputation can be conducted
without problems using statistical software such as the SAS procedures MI and
MIANALYZE, and if done correctly, is a versatile, powerful and reliable technique
to deal with dropouts that are MAR in longitudinal data with continuous outcomes.
It would appear that the recommendation of Mallinckrodt et al. (2003a), Mallinck-
rodt et al. (2003b) to use direct likelihood and multiple imputation for dealing with
incomplete longitudinal data with continuous outcomes is supported by the current
analysis. At this point, we have to make it clear that the scope of this study is limited
to direct likelihood and multiple imputation strategies. We note that there are several
other strategies available to deal with incomplete longitudinal data with continuous
outcome under ignorability assumption, however these methods are not covered in
this study.

From the second part of the chapter that is based on dealing with binary outcomes,
the results in general favouredMI-GEE over bothWGEE and GLMM. ThisMI-GEE
advantage is well documented in Birhanu et al. (2011). However, the current analysis
differs from that based on Birhanu et al. (2011) as their analysis compared MI-GEE,
WGEE and Doubly robust GEE in terms of the relative performance of the singly
robust and Doubly robust versions of GEE in a variety of correctly and incorrectly
specifiedmodels. Furthermore, the bias forMI-GEEbased estimates in this studywas
fairly small, demonstrating that the imputed values did not produce markedly more
biased results. This was to be expected as many authors, for example, Beunckens
et al. (2008) noted that the MI-GEEmethod may provide less biased estimates than a
WGEE analysis when the imputation model is correctly specified. From an extensive
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small and high sample sizes (i.e., N=250 and 500) simulation study, it emerged
that MI-GEE is rather efficient and more accurate than other methods investigated
in the current paper, regardless of dropout rate which also shows that the method
does well as the dropout rate increases. Overall, the MI-GEE performance appeared
to be independent of the sample sizes. However, in terms of efficiency, in some
cases, it was less efficient than WGEE, yet more efficient and accurate than GLMM.
This was specially true for WGEE when the rate of dropout was small and the
sample size was small as well. In summary, the results further recommended MI-
GEE over WGEE. However, both MI-GEE and WGEE methods may be selected
as the primary analysis methods for handling dropout under MAR in longitudinal
binary outcomes, but convergence of the analysis models may be affected by the
discreteness or sparseness of the data.

Molenberghs and Verbeke (2005) stated that the parameter estimates from the
GLMM are not directly comparable to the marginal parameter estimates, even when
the random effects models are estimated through a marginal inference. They also
transformed the GLMM parameters to their approximate GEE counterparts, using
a ratio that makes the parameter estimates comparable. Therefore, an appropriate
adjustments need to be applied to GLMM estimates in order to have an approximate
marginal interpretation and to become com- parable to their GEE counterparts. Using
this ratio in the simulation study, the findings showed that, although all WGEE, MI-
GEE and GLMM are valid under MAR, there were slight differences between the
parameter estimates and never differed by a large amount, in most cases. As a result,
it appeared that for both sample sizes, the GLMM based results were characterized
by the larger estimates for nearly all cases, although the degree of the difference in
magnitude was not very large. In addition, it did not appear that the magnitude of
this difference differed between the three dropout rates.

Although there was a discrepancy between the GLMM results on the one hand,
and both the WGEE and MI-GEE results on the other, there are several important
points to consider in the GLMM analysis of incomplete longitudinal binary data.
The fact is that the GLMM may be applicable in many situations and offers an
alternative to the models that make inferences about the overall study population
whenone is interested inmaking inferences about individual variability to be included
in the model (Verbeke and Molenberghs 2000; Molenberghs and Verbeke 2005).
Furthermore, it is important to realize that GLMM relies on the assumption that the
data are MAR, provided a few mild regularity conditions hold, and it is as easy to
implement and represent as it would be in contexts where the data are complete.
Consequently, when this condition holds, valid inference can be obtained with no
need for extra complication or effort, and the GLMM assuming an MAR process,
is more suitable (Molenberghs and Kenward 2007). In addition, the GLMM is very
general and can be applied for various types of discrete outcomes when the objective
is to make inferences about individuals rather than population averages, and is more
appropriate for explicative studies.
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As a final remark, recall that MI-GEE has been the preferred method for analy-
sis as it outperformed both the WGEE and GLMM estimations in the simulation
study results. Despite this, the current study has focussed on handling dropout in the
outcome variable, the MI-GEE can be well conducted in terms of the missingness
in the covariates in the context of real-life, and can yield even more precise and
convincing results since the choice for the WGEE method is not that straightfor-
ward. This can be justified by the fact that in the imputation model, the covariates
that are conditioned on the analysis model are not included. The other available
covariates can be included in the imputation model without being of interest in the
analysis model, therefore yielding better imputations as well as wider applicability.
Additionally, multiple imputationmethods such asMI-GEE avoid some severe draw-
backs encountered using direct modeling methods such as the excessive impact of
the individual weights in the WGEE estimation or the poor fit of the random subject
effect in the GLMM analysis. For further discussion, see Beunckens et al. (2008).

Lastly, we submit that the scope of the second part of thus chapter is limited to
three approaches. This work is not intended to provide a comprehensive account
of analysis methods for incomplete longitudinal binary data. We acknowledge that
there are several methods available for incomplete longitudinal binary data under the
dropouts that are MAR. However, these methods are beyond the scope of the study.
This article exclusively deals with the WGEE, MI-GEE and GLMM paradigms that
represent different strategies to deal with dropout under MAR.
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