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Cytokines in Skeletal Muscle Growth and Decay

Arkadiusz Orzechowski

Abstract By definition, cytokines are the first messengers of intercellular com-
munications observed among leukocytes. Numerous cytokines control immune
system and biological reactions thereof, but are functionally grouped into pro-
and anti-inflammatory varieties (the latter are also involved in allergic reactions).
The bulk of evidence points to substantial role played by cytokines in skeletal
muscle growth and wasting. Cytokines and growth factors of immune origin affect
skeletal muscle growth and organ formation, regeneration, and wasting but are
also produced and secreted by muscle fibers as myokines. To orchestrate skeletal
muscle growth, hepatocyte growth factor/scatter factor (HGF/SF) and insulin-
like growth factors (IGF-I and IGF-II) play the primary physiological role being
mediated through PI3-K/Akt signaling pathway. Skeletal muscle mass is in turn
controlled negatively by myostatin, a member of transforming growth factor beta
(TGF-“) superfamily. Following muscle injury, the immune-derived cytokines are
most important in activation of muscle satellite cells: tumor necrosis factor alpha
(TNF-’) and interleukin 6 (IL-6); with IL-8 to arrange growth/regeneration; and
IL-15 to control muscle hypertrophy. Some life-threatening diseases are associated
with muscle wasting featured by accelerated muscle protein breakdown. In these
catabolic states, cytokines such as TNF-’ was often reported as causal factor.
Moreover, cross talk between myokines (IL-6, IL-15) and adipokines (leptin) is vital
for correct metabolic interorgan relations. Thus, cytokines and growth factors exist
as basic chemical signals that orchestrate skeletal muscle fate in normal and diseased
states.
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5.1 Cytokines in Skeletal Muscle Myogenesis and Somatic
Growth

In vertebrates skeletal muscles develop during embryonic life from paraxial meso-
derm (dermomyotome, myotome) specified to the myogenic lineage by paracrine
signals from surrounding tissues. Wingless-related integration sites (Wnts), sonic
hedgehog (SHH), and Noggin (NOG) stimulate, whereas bone morphogenetic
protein 4 (BMP4) inhibits the commitment to the myogenic lineage. Pax-3 and
Pax-7 are paired box genes targeted and co-expressed in the myotomal cells
(epithelial spheres of paraxial mesoderm) [166]. Next, sequential activation of basic
helix-loop-helix transcription regulators known as myogenic regulatory factors
(MRFs) determines muscle progenitors termed myoblasts. Initially, MyoD and/or
Myf5 gene expressions are upregulated followed by Myogenin and/or MRF4
gene activation. The latter are essential for induction of muscle-specific genes
and terminal differentiation of mononuclear myoblasts [16]. Some of muscle-
specific gene expressions such as myosin heavy chain (MyHC) or muscle creatine
kinase (MCK) are valuable skeletal muscle cell markers. Dividing myogenic cells
express MyoD/Myf5 (myoblasts); subsequently they withdraw from the cell cycle
to fuse upon Myogenin and/or MRF4 control. Replication of activated satellite
cells is possible by elevated levels of cyclin D, whereas terminal differentiation
is upregulated by Myogenin gene expression [144]. Finally multinucleated cell
syncytium (myotubes) is formed before establishing the fully mature contracting
skeletal muscle fiber. Some myoblasts do not differentiate and remain dormant
(satellite cells) embedded to the plasma membrane of contracting muscle fibers.
After asymmetric cell division, they form a subpopulation apt to regenerate damaged
muscle [46].

The major role in postnatal skeletal muscle growth is played by the growth
hormone (GH)-IGF axis. Receptors for GH are present in sarcolemma, although
direct binding of GH to muscle cells has never been demonstrated. In contrary
to GH, IGF-I and IGF-II are able to alter MRF expression and promote muscle
growth by increasing the proliferation and the differentiation of myoblasts [4, 38].
IGFs augment muscle mass through elevated DNA and protein synthesis [121,
158]. Increased number (hyperplasia) and fiber size (hypertrophy) are attributed
to activation of satellite cells that in turn supply myonuclei to existing or newly
formed muscle fibers [18, 19]. The hypertrophic effect of IGF-I differs from the
general meaning of hypertrophy, as it is not barely increase in cytoplasmic-to-DNA
volume ratio. IGFs are upregulated in skeletal muscle undergoing regeneration [48,
102], and these cytokines ameliorate muscle progenitor cells’ (MPCs) viability and
myogenic potential [95, 96]. Muscle growth and regeneration controlled by IGFs
have distinct time windows, IGF-I being induced before IGF-II during muscle
regeneration. In addition, IGFs’ activity brought about in target cells is altered
by local growth factor availability modulated by IGF-binding proteins (IGFBPs)
[207, 208]. Furthermore, by suppressing the expression of muscle-specific atrophy-
related ubiquitin ligases, muscle RING-finger protein 1 (MuRF1) and muscle
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atrophy F-Box/atrogin 1 (MAFbx/atrogin 1), IGF-I inhibits protein degradation and
protects skeletal muscle mass from loss. IGF-I differs from other growth factors
as it stimulates both proliferation and differentiation of muscle cells [59]. Several
existing isoforms of IGF-I (IGF-IEa, IGF-IEb, MGF) suggest distinct tasks played
by each isoform and give possible explanation for apparently opposite roles played
by IGF-I in muscle growth. Mechano growth factor (MGF) is believed to stimulate
myogenic cell proliferation, while IGF-IEa seems to be decisive for terminal
differentiation and muscle cell fusion [216]. It is less clear how IGF-II affects
skeletal muscle growth, even though it is known that it acts on target cells through
IGF-IR (no functional IGF-IIR was found) by autocrine and/or paracrine route. IGF-
II was reported to accelerate terminal differentiation of C2C12 murine myoblasts in
vitro and has some importance in prenatal skeletal muscle development [161]. Thus,
IGF-I and IGF-II activate distinct signaling cascades, with IGF-II eliciting a stronger
differentiation effect correlated with downregulation of G’i2 protein [160]. Insulin,
the main anabolic hormone in postnatal life, has numerous actions on target cells
with one that mimics IGF-I-dependent skeletal muscle growth-promoting effect.
Similar to IGF-I, insulin encourages skeletal myogenesis through activation of
membrane receptor-associated phosphatidylinositol 3-kinase PI3-K/Akt signaling
cascade that in turn inhibits glycogen synthase kinase 3-beta GSK-3“ and forkhead
box protein O1 (FoxO1) [104].

5.2 Skeletal Muscle Repair and Regeneration

Regardless of injurious agent, any severe skeletal muscle damage starts the series
of events that recapitulate myogenesis. Skeletal muscle regeneration is a highly
coordinated process that absorbs adult muscle satellite cells to proliferate and
differentiate. Following muscle injury, several biologically active substances are
released, such as molecules from the injured fibers, soluble factors from connective
tissue, and, finally, cytokines from infiltrating leukocytes. Some of them have
been identified as trophic factors: fibroblast growth factor (FGF) and transforming
growth factor beta (TGF-“) families, IGFs, hepatocyte growth factor/scatter
factor (HGF/SF), tumor necrosis factor alpha (TNF-’), ciliary neurotrophic factor
IL (interleukin)-6 (IL-6), and leukemia inhibitory factor (LIF). There are also
neural-derived low molecular weight components including nitric oxide (NO) and
ATP. Not only extracellularly released factors, but cell-cell and cell-extracellular
matrix (ECM) communications are decisive to instigate muscle repair [49, 101,
182]. Disruption of muscle fiber integrity (necrosis) is critically important in
the inflammatory response and recruitment of satellite cells to the site of injury
(degeneration phase). Disturbed calcium homeostasis activates phospholipase
A2 with arachidonic acid being converted to prostaglandins and thromboxanes.
Sarcoplasmic proteins released through discontinued sarcolemma, as well as
inflammatory mediators, are believed to be chemoattractants for resident-activated
mononucleated inflammatory and muscle satellite cells (regeneration phase).
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Next, chemotactic signals attract circulating inflammatory cells. Reconstruction
of injured muscle is a highly orchestrated process driven by chemical signals that
grant the balance between pro- and anti-inflammatory factors. To fully resolve
damage with newly formed or reconstituted muscle fibers, the kinetics of order
of each phase (degeneration vs. regeneration) must be precisely synchronized.
The magnitude of inflammatory reaction is highest within 1–4 days after muscle
injury and lasts for another week or more [34]. Finally, after successive 3 weeks,
skeletal muscle is fully restored morphologically and functionally. The exact
timetable of regeneration is based on the observations obtained from laboratory
animal experiments carried out after intramuscular myotoxin injections [42, 75,
76], crushing and/or freezing the muscle [98, 99], single muscle autologous
transplantation, or after repeated bouts of eccentric exercise [15]. Alternatively,
animal models of skeletal muscle dystrophies were in extensive use as they
give opportunity to monitor the degeneration/regeneration process continuously.
The mdx mouse line, i.e., the animal model of human Duchenne muscular
dystrophy (DMD), is caused by deficiency of functional dystrophin protein, a
fundamental component of dystrophin-glycoprotein complex (DGC). Truncated
form of dystrophin renders skeletal muscle highly susceptible to contraction-
induced injury as links between cytoskeleton and ECM are weak and during
exercise sarcolemma is ruptured leading to myofiber necrosis [31]. From this
and other mouse models established to study consequences of skeletal muscle
damage, it is clear that, e.g., fibroblast growth factor (FGF) limits the efficiency of
muscle regeneration [12]. Several FGFs have been shown as potent MPC mitogens
and inhibitors of differentiation [4, 47, 70, 83, 98, 99, 112, 214]. Apparently, the
main task of FGFs is to expand the MPC compartment. Among FGFs, the FGF-
6 isoform is of particular interest, as this growth factor is specific for skeletal
muscle and it is elevated during regeneration phase [43, 60, 83]. Similarly to FGF-
6, the mitogenic effect was observed for FGF-2 and FGF-4 indicating possible
redundancy among FGFs. Although FGFs stimulate satellite cell proliferation and
muscle regeneration, the exact nature of FGF-induced skeletal muscle regeneration
is still debated and some authors even point to improved revascularization as
a cause, as FGFs are also highly angiogenic [100]. Physiological effects of
FGFs are mediated through cognate transmembrane FGF receptors (FGFR 1–
4) with the FGF-1R known to be the most prominent in skeletal muscle cells
[162]. FGFRs possess intrinsic tyrosine kinase domain typical to mediate trophic
actions of cytokines and growth factors. One has to admit that picture is more
complex as ECM limits the access of several molecules to the plasma membrane
receptors. Thus, it is obvious that availability of FGFs and other cytokines to
regulate skeletal muscle growth and regeneration is altered by the composition of
ECM. Heparan sulfate proteoglycans (HSPGs) are the most important for local
modulation of signals from muscle and non-muscle cells. The synergy between
FGFs and HGF/SF in MPC activation is believed to be dependent on HSPGs, as
heparan sulfate assists in c-Met (tyrosine kinase domain) transmembrane receptor
activation and amplifies downstream cellular signaling pathway [154]. For FGFRs
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the most potent HSPGs are syndecans because syndecan-3 and syndecan-4 were
identified on membrane surfaces of dormant and stimulated satellite cells [39].
Thus, MPCs are prepared by ECM for early activation by FGFs and/or HGF/SF,
and changes in ECM composition (especially protein sulfation) may considerably
impair MPC activation. With regard to HGF/SF, this growth factor is known to
play substantial role in primary and secondary organogenesis in prenatal as well
as organ regeneration in postnatal life [122, 123, 219]. Injured or crushed muscle
is a rich source of HGF/SF, as both HGF transcript and the peptide are elevated
at the onset of muscle regeneration [185]. It is not only a potent mitogen related
to serine protease plasminogen (precursor peptide has a catalytic inactive serine
protease homology domain which is cleaved through proteases like plasminogen
activator), but it also stimulates morphogenesis and cell migration (scattering)
[163]. HGF/SF is the ligand for proto-oncogene c-Met, plasma transmembrane
receptor that contains the tyrosine kinase domain liable for autophosphorylation on
tyrosine residues [118]. It plays dual role in myogenesis, as it encourages muscle
satellite cells to divide while it mitigates their subsequent differentiation and fusion
[64]. MPCs sense HGF/SF merely at the initial phase of muscle regeneration as
exogenous injection of this peptide do not improve muscle repair at later stages
[118]. Similarly, HGF/SF immunostaining is reduced at specimens obtained from
damaged muscle with time after injury [185]. c-Met exposed to HGF/SF is able
to activate MPCs through several signaling pathways (Gab1/Shp2/Ras/Raf/Erk,
Grb2/Sos/Ras/Raf/Erk, Gab1/PI3K/Akt, Gab1/Crk/C3G/Rap1) which regulate
cell proliferation/morphogenesis, survival, and actin reorganization, respectively.
Pleiotropic effects of HGF/SF lead to increased MPC population and backing up
satellite cell migration that in overall provide optimal myoblast density to the site
of muscle injury. Besides HGF/SF secreted by MPCs in an autocrine route [165],
certain pool is available from the ECM, especially when basal lamina is disrupted
[186] or NO is released by nNOS at the motor end plates [13]. Other organs can
also contribute to skeletal muscle regeneration, e.g., muscle damage stimulates
spleen to secrete HGF/SF in rats [183]. Altogether, HGF/SF comes out to be a
primary mitogen and the most important growth factor involved in skeletal muscle
regeneration (Fig. 5.1).

5.3 Muscle Injury and Immune Cells

Even though molecular regulation of myogenesis and skeletal muscle regeneration
are almost indistinguishable, the immune response is observed solely in harmed
muscle. Immune cells are of myeloid origin and amount to high numbers (105/mm3)
in damaged muscle site. Immune cells actively secrete numerous cytokines and
growth factors in order to modulate own inflammatory activity, and they affect the
viability and transcriptional activities of regenerating muscle cells [190]. Most of the
biological effects observed in the immune system are mediated by cytokines divided
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Fig. 5.1 Humoral mediators and associated pathways drive anabolic and catabolic responses in
the skeletal muscle (Costamagna et al. [40])

into two groups: one represented by pro-inflammatory activity and second suited
by anti-inflammatory action. Nowadays, there is a strong belief that the balance
between pro- and anti-inflammatory cytokines is essential for accurate immune
response to injury. Although expression of myogenic genes occurs in the absence of
myeloid cells, the latter can control the extent and timing of expression. It is obvious
that some cytokines endorse muscle satellite cell proliferation in vitro [29, 109].

T lymphocytes embody major source of cytokines with CD4-expressing T lym-
phocytes (CD4C) also known as helper cells, the most useful cytokine producers.
CD4C T lymphocytes could be further subdivided into Th1 and Th2, while the
cytokines they secrete are termed Th1-type (pro-inflammatory such as interferon-
”, TNF-’, interleukin 1“) and Th2-type (anti-inflammatory such as interleukins
3, 5, 10, and 13), respectively. Inflammatory lesion in skeletal muscle begins the
fast infiltration with Ly6CC/F4/80� neutrophils during acute phase of inflammation
(the second hour) peaking between 6 and 24 h postinjury. This phase ends up with
phagocytic CD68C macrophages of M1 phenotype that rise in number between 24
and 48 h postinjury. M1 macrophages decline sharply 2 days postinjury, and this
decline heralds the infiltration of non-phagocytic CD206-expressing macrophages
of M2 phenotype (M2a, M2b, M2c) [170, 191]. The induction of MRF in skeletal
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muscle progenitors is in striking coincidence with the release of inflammatory and
vascular mediators by immune cells. First, the degree of inflammatory reaction
affects regenerating muscle, with greater injury observed in wide-ranging infiltration
by neutrophils and M1 macrophages. Free radicals (oxygen, nitrogen, and chlorate
species) released by neutrophils and M1 macrophages lead to plasma membrane
degradation (lipid peroxidation) and an extracellular debris for phagocytosis [27].
Thus, reductions in phagocyte-mediated damage facilitate and accelerate muscle
regeneration [220].

One must bear in mind that innate immune response begins with TNF-’-
and interferon-”-driven activation of macrophages. These cells acquire M1 pro-
inflammatory phenotype with vast generation of nitric oxide (NO) by inducible form
of nitric oxide synthase (iNOS). By the way, other destructive nitrogen species such
as peroxynitrite could come out [201]. Importantly, M1 macrophages express CD68,
the receptor for oxidized LDLs which in turn stimulates phagocytosis and secretion
of pro-inflammatory cytokines [153].

TNF-’ plays a critical role in inflammation as this is the first cytokine released
by neutrophils and M1 macrophages to trigger production of other Th1 cytokines.
Besides, TNF-’ was frequently reported to encourage skeletal muscle regeneration
at early stage following acute injury as TNF-’ null mutants and TNF-’ receptor
mutants had lower expression levels of MyoD and MEF-2 than wild-type controls
[35, 204]. In differentiating C2C12 myotubes, TNF-’ administration augmented
cell growth [103], whereas it inhibited MyHC IIa protein expression in differentiated
myotubes [145, 146]. Apparently, muscle cell fusion is inhibited, whereas myoblasts
proliferation is stimulated by TNF-’ that might trigger network of complex
intracellular signaling pathways engaging NF-›B, signal transducer and activator
of transcription (STAT-1’) and other transcription factors [120, 145, 146]. NF-
›B activation by alternative pathway plays important function in skeletal muscle,
as it promotes the expression and stability of cyclin D1 leading to increased cell
proliferation and inhibition of differentiation [73]. Another explanation of NF-
›B-dependent skeletal muscle growth retardation comes from the observation that
MyoD and MyoD mRNA template are NF-›B targets for degradation [91]. Finally,
NF-›B was shown to bind skeletal muscle transcriptional repressor, namely, YY1
which depresses activation of muscle-specific genes [203]. Thus, the exact role of
TNF-’ in muscle growth and regeneration varies on the degree of muscle damage,
particular phase (transition from early to terminal differentiation), and cellular
target such as NF-›B [218]. Although TNF-’ levels peak at 24 h postinjury, this
cytokine levels remain elevated up to 2 weeks following acute muscle injury which
advocates principal role of TNF-’ played in skeletal muscle repair [204]. It also
points to TNF-’ targets other than NF-›B muscle regulatory pathways, possibly
p38 MAP kinase signaling [221]. Blocking the p38 kinase pathway resulted in
diminished myogenesis and increased NF-›B activity in C2C12 myotubes [90].
TNF-’-dependent effects on muscle growth/regeneration are also associated with
its chemoattractant attribute to stimulate directional migration of myoblasts and
satellite cells [195]. Presumably, when TNF-’ is released from polymorphonuclear
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cells (PMCs) and M1 macrophages at the site of injury, it is chemical attractant for
muscle stem and progenitor cells, by sensing this cytokine peel direction where the
cell damage is to be compensated. Chemoattraction can be inhibited by deletion
of TNF-’ with specific antibodies or by the suppression of M1 macrophages [106,
115]. Elevated muscle protein loss is another important product of TNF-’ activity
regardless of circumstances. It is now well established that this effect of TNF-’
is associated with induction of FBXO32/Atrogin1 gene and its expression product
atrogin-1 protein [24, 145, 146] mediated by p38 MAPK [103]. Apparently, TNF-’
plays two opposite roles in muscle repair, one related to degenerative phase where it
stimulates proliferation and migration of muscle stem and progenitor cells and the
second where it holds back regenerative phase by impaired muscle cell fusion and
accelerated protein decay [68, 145, 146].

Immune, type II, or ”-interferon (IFN-”) is secreted by thymus-derived (T)
cells under certain conditions of activation and by natural killer (NK) cells. IFN-
” controls several aspects of the immune response, comprising stimulation of
bactericidal activity of phagocytes, stimulation of antigen presentation through
class I and class II major histocompatibility complex (MHC) molecules, or by
orchestration of leukocyte-endothelium interactions linked to cell proliferation and
apoptosis [25].

IFN-” is also another pro-inflammatory cytokine of Th1 series widely known
from its pleiotropic activity taking in muscle growth and repair [36, 61]. It is
worth noting, IFN-” cooperates with TNF-’ in many aspects of initial adaptation to
skeletal muscle injury [10, 145, 146, 194, 207, 208]. Furthermore, IFN-” and TNF-
’ relations are also evident during muscle cell differentiation when muscle fibers
grow up and develop [145, 146, 168]. While early stages of skeletal myogenesis
are apparently stimulated by both cytokines (augmented proliferation), later phases
are markedly hampered, with noticed ATP-dependent proteolysis associated with
E3 ubiquitin ligases atrogin-1/MAFbx and MuRF1 [145, 146]. The latter muscle-
specific RING-finger protein 1 ligase and MAFbx are indicated as important IFN-”
and TNF-’ targets in cancer cachexia [1]. Transcriptome analysis of differentiating
C2C12 muscle cells revealed that IFN-” affects the expression of several genes. The
cytokine promoted cytokine/growth factor expression, cell proliferation, and migra-
tion but impaired muscle cell differentiation [72]. Presumably, the implementation
of such a variety of effects by a single cytokine is achieved by complex patterns
of skeletal muscle cell-specific gene regulation with IFN-” response regulated by
interaction with responses to other cytokines including TNF-’.

IFN-” blocks the secretion of Th2 cytokines bulk which inhibits the inflam-
matory response. Thus, IFN-” probably upholds inflammatory response of injured
muscle in order to postpone tissue repair unless the population of muscle progenitor
cells is sufficient for muscle regeneration. Th2 cytokines represented by IL-4, IL-
10, and IL-13 stimulate M2 macrophages to take over M1 macrophages [69]. There
are several subcategories of M2 macrophages indicated by small letters (M2a, M2b,
M2c) (Fig. 5.2).
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Fig. 5.2 Secreted molecules and paracrine effects from resident and circulating cells involved in
skeletal muscle inflammation (Costamagna et al. [40])

5.4 Skeletal Muscle as an Important Source of IL-6

Myokines, a term used to describe a group of cytokines produced by skeletal
muscle during and following exercise, point to a brand new role played by this
organ [138]. Except MGF, remaining myokines are identical to previously described
and identified leukocytes (IL-6, IL-1, interleukin 1 receptor antagonist (IL-1ra),
IL-8, macrophage inflammatory protein ’ and “ (MIP-1’ and MIP-1“), TNF-’).
Nowadays, it is widely recognized that strenuous prolonged exercise, e.g., marathon
run, causes huge increase in the concentration of several pro- and anti-inflammatory
cytokines in the peripheral blood [51, 52, 138]. Previously, it was well established
that physical exercise stimulates the leukocytosis (increased number of leukocytes
in peripheral blood). However, the origin of myokines is different from immune
cells as both transcripts and proteins concentrate in skeletal muscles [66, 86,
176, 179]. The most prominent among myokines is IL-6 for the reason that
following exercise this cytokine basal plasma levels may increase up to 100-fold
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[58, 132, 135, 140–142]. The peak IL-6 plasma concentration is observed at the
end of the exercise or soon after [56, 57, 58, 132]. For a long time, IL-6 has
been considered as classical inflammatory cytokine suggesting that muscle fiber
injuries promote almost exponential raise of the cytokine plasma level during
a bout of heavy exercise. This assumption has no evidence as increase in IL-
6 is observed in both non-damaging (concentric) [211] and damaging (eccentric)
skeletal muscle contractions [107]. What is the role of IL-6 and why this myokine is
that much upregulated in exercised skeletal muscle? Since IL-6 release by skeletal
muscle is proportional to the muscle mass, exercise intensity, and duration (twofold
increase in IL-6 level was observed after 6 min, tenfold after 2 h, and 100-fold
after 6 h of running), there is presumption that this myokine is of paramount
importance for homeostasis in contracting muscles, as resting muscles exposed
to identical hormonal milieu do not release IL-6 [78]. Fluorescence-activated cell
sorting (FACS) of peripheral monocytes isolated from blood samples of cycling or
running athletes did not demonstrate any significant changes in IL-6 even during
prolonged exercise [173–175]. These and other experiments show that contracting
skeletal muscle is the major source of IL-6 in the peripheral blood in response to
exercise and that muscle fibers but not myoblasts, endothelial cells, fibroblasts,
or smooth muscle cells account for the systemic increase of plasma IL-6 [77,
86, 108, 143]. Interestingly, exercise-induced increase in IL-6 release from the
exercised legs (based on arteriovenous difference) could be blocked completely by
the supplementation of vitamins C and E for 4 weeks prior to the challenge [56, 57].
It appears that IL-6 gene activation is redox mediated in skeletal muscles following
exercise as antioxidants abolish this effect. Ablation of redox stimulus was also
observed in differentiating myoblasts following vitamin C preincubation [131].
Given that IL-6 derived from skeletal muscle is the normal physiologic response
to exercise, one may ask about its role and significance. IL-6 appears to be involved
in glucose homeostasis [181, 66], and IL-6 response to exercise is dependent
on pre-exercise skeletal muscle glycogen content [176]. Moreover, carbohydrate
supplementation attenuates the increase of plasma IL-6 of skeletal muscle origin
[174, 175]. In addition, IL-6 infusion is accompanied by extensive lipolysis and
accelerated fat oxidation pointing to its metabolic rather than immunologic function
[199]. Nowadays, the consistent findings indicating IL-6 secretion from exercised
muscles in the absence of noticeable inflammatory markers designate this cytokine
as a master switch that stimulates utilization of neutral fat when carbohydrates are
in shortage. With respect to IL-6, skeletal muscle is prompted to transcriptional,
translational, and secretory activities in reaction to rise in sarcoplasmic Ca2C level
during repetitive contractions. Importantly, the effect is calcineurin/nuclear factor
of activated T-cell (NFAT) dependent (inhibited by cyclosporin A and potentiated
by ionomycin). Sustained intracellular Ca2C is a well-known calcineurin activator
which is calcium- and calmodulin-dependent serine/threonine protein phosphatase
upstream to NFAT [62]. Furthermore, IL-6 gene expression at transcriptional and
translational levels is controlled by calcineurin/NFAT in cultured muscle cells
[86]. NFAT may be rephosphorylated by NFAT kinases like glycogen synthase
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kinase (GSK-3“) which makes NFAT inactive and withdrawn from the nucleus
[54]. We observed critical role played by GSK-3“ in myogenesis, as both insulin
and metabolic inhibitors of this kinase led to ameliorated muscle fiber formation
[104]. Strict pro-inflammatory TNF-’ is repressed in the same circumstances
(exercised muscle) demonstrating that IL-6 and TNF-’ are regulated differently
in skeletal muscle cells by altered Ca2C levels [84]. In addition, other possible
signaling pathways explain IL-6 increase in exercised skeletal muscle. Abundantly
expressed neuronal NO synthase isoform (nNOS) points toward NO production
within contracting skeletal muscles with cGMP and/or nitrosative mechanisms
leading to IL-6 production [93, 94, 156, 167]. Bulk of evidence collected from
the experiments with NO donors showed increase in IL-6 mRNA content and IL-
6 release from skeletal muscles challenged with NO, whereas opposite response
was noted upon the use of nNOS inhibitors [178]. Nuclear factor kappa light chain
enhancer of activated B cells (NF-›B) is another candidate as it is redox-sensitive
transcription factor, while trained skeletal muscle is a rich source of reactive oxygen
species (ROS) [167]. Antioxidants were mentioned as IL-6 repressors [189, 200];
thus it is very likely that ROS formation in skeletal muscle following exercise causes
IL-6 release in a NF-›B-dependent manner. In order to position NF-›B in the redox-
dependent cell signaling, nonsteroidal anti-inflammatory drugs (NSAIDs) were used
as NF-›B inhibitors [88]. Actually, indomethacin diminishes the exercise-induced
increase of IL-6 further supporting the notion of causal relationship between skeletal
muscle contractions, NF-›B and IL-6 synthesis [155]. Moreover, basal IL-6 plasma
concentrations are highly correlated with the skeletal muscle training, being lower
in trained vs. non-trained individuals [32, 137]. Despite the marked rise in IL-6
mRNA during exercise, the long-term training (1 h, 5 times a week for 10 weeks)
led to almost ten times lower IL-6 mRNA content in exercised skeletal muscles [56,
57]. Concomitantly IL-6R mRNA content was almost doubled in trained skeletal
muscle [85]. It reveals the nature of feedback mechanism of IL-6 myokine; while
plasma IL-6 is apparently downregulated by training, the muscular expression of
the IL-6R is upregulated at the same time to augment IL-6 sensing by muscle fibers.
The last but probably not the least, signaling pathway activated in skeletal muscle
during contraction is p38 MAPK known as stress-activated protein kinase [21].
In fact, fatigued muscle with reduced glycogen content has been found to boost
the p38 MAPK activity and its nuclear translocation [33]. Moreover, nuclear p38
MAPK phosphorylation through MAPK kinase (MKK-3 and MKK-6) is known to
activate IL-6 gene since inhibition of p38 MAPK results in loss of the IL-6 mRNA
transcriptional control [33]. For years, p38 MAPK was shown to be essential for
muscle fiber formation in myogenesis; thus its additional control of IL-6 gene brings
the role of the kinase updated [41, 90, 210]. It is very likely that the downstream
targets of p38 MAPK, ATF-2, and Elk1 may participate in regulating the expression
of IL-6 gene, owing to the fact that ATF-2 is a subunit of the AP-1 heterodimer
(Jun:ATF) [198], while Elk1 is a member of the Ets superfamily of transcription
factors [217].
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5.5 Cytokines Negatively Targeting Skeletal Muscle

Chronic systemic inflammation (CSI) is a cause of cardiometabolic syndrome
(CMS) associated with higher risk of cardiovascular disease, type 2 diabetes,
and muscle cachexia (muscle wasting) [44, 53, 141, 142, 149, 157, 192, 209].
Two- to fourfold rise in plasma concentrations of pro- and anti-inflammatory
cytokines and acute-phase proteins are regarded as a common attribute of CSI
[28]. Regular exercise prevents CMS almost certainly through the elevated levels
of anti-inflammatory cytokines [IL-1ra, soluble TNF-’ receptors (sTNF-R), and IL-
10] which in turn override inflammatory response [134, 136, 139]. Throughout CSI
several pro-inflammatory cytokines are elevated in blood plasma, TNF-’, IL-1“,
and IL-6, even though TNF-’ plays the central role in insulin desensitization of
skeletal muscle [147, 148, 196]. Insulin resistance results in marked decline of
its anabolic effect and accelerated loss of skeletal muscle mass typical for type
2 diabetes [147, 148]. A bulk of evidence confirms that TNF-’-induced insulin
resistance is associated with NF-›B and STAT-1’ activation and inhibition of PI3-
K/Akt signaling pathway [26, 145, 146]. Thus, TNF-’ represents the causal factor
of insulin resistance [147]. It appears that the role of IL-6 in muscle decays as pro-
or anti-inflammatory cytokine is less clear as indicated by conflicting data [141,
142, 149, 172, 177]. Observations indicate that IL-6-deficient animals (knockout
mice) have higher levels of circulating TNF-’ [119], while IL-6 inhibits TNF-’
formation [55, 110]. Additionally, IL-6 stimulates formation of anti-inflammatory
cytokines IL-1ra and IL-10 [177]. IL-1ra is of particular importance as it weakens
inflammatory response being the efficient blocker of IL-1’ and IL-1“ binding to
cognate receptors [45]. Once it is established that IL-6 has anti-inflammatory rather
than pro-inflammatory characteristics, the rationale for protective role of physical
activity against muscle wasting is to be revealed. Nonetheless, there is no direct rela-
tionship between exercise and reduced CSI although several studies have reported
improved status of patients with CMS [67, 180]. To decipher the physiological role
of IL-6, further studies are needed, as IL-6 levels are augmented both in patients
with metabolic disease featured by insulin resistance and hyperlipidemia [37, 129]
and after strenuous exercise which improves insulin-stimulated glucose uptake
and plasma lipid profile [212]. This actually contradicting observations might be
explained by simultaneous alterations in TNF-’ concentration as increased TNF-’
and decreased IL-6 transcription lead to higher incidence of diabetes [89]; however,
the exact etiology of the CMS has at least few scenarios including elevated IL-6 as
a systemic feedback mechanism to adipocyte-secreted TNF-’ or alternative route
to sensitize skeletal muscle to insulin or perhaps it results from “IL-6 resistance.”
None of these hypotheses have sufficient substantiation.

For decades TGF-“ superfamily of cytokines (growth factors) has been acknowl-
edged as inhibitors of both myoblasts proliferation and differentiation [3, 4, 23, 79].
Among several members myostatin (MSTN) also identified as growth and differ-
entiation factor-8 (GDF-8) attracts special interest as MSTN knockout mice have
unusually large shoulder and hip muscles [114, 184, 222]. “Loss of function” muta-
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tions in MSTN gene were demonstrated to enlarge skeletal muscles by increased
number and size of muscle fibers in other species including human beings [71, 81,
82, 113, 164]. When secreted, MSTN protein decreases myoblast proliferation by
stimulating p21 protein, a well-known cyclin-dependent kinase Cdk2 inhibitor [80,
187, 188]. Cdk2 in turn inhibits G1 to S phase transition. Molecular mechanism of
MSTN activity seems to hamper satellite cell proliferation through activin type II
receptor (Act RIIB) as dominant negative form of Act RIIB in transgenic mouse
lines exhibited dramatic increases in muscle mass comparable to those seen in
MSTN knockout mice [97]. MRF genes are transcriptionally repressed by MSTN
because signal transduction from Act RIIB directly activates Smad2/3 proteins with
resultant fall in MyoD and myogenin gene expression [92, 105]. Moreover, MSTN
is associated with increased Smad2/3 phosphorylation levels and decline in MyoD
and myogenin gene transcription [206]. Furthermore, satellite cell proliferation is
noticeably elevated in MSTN-null mice [111]. MSTN is produced by skeletal muscle
and adipose tissue [6], even though its expression levels are subject to regulation
following muscle damage [215]. Fasting and glucocorticoids were indicated as
possible MSTN gene incentives [11, 159], and both C/EBP-• and fewer miR-27a/b
seem to mediate the respective muscle wasting effects [5, 8]. Additionally, the
FoxO1 and TGF-“/Smad3, MyoD, and JNK/p38 kinase pathways are involved in
MSTN secretion [9, 74, 169]. The former, FoxO1-dependent muscle atrophy results
from insulin resistance, as insulin inhibits FoxO1 in skeletal muscle cells [104].
Additionally, constitutive FoxO1 activity causes MSTN gene disinhibition [9] in
insulin-resistant states being followed by elevated MSTN expression [7]. In contrast,
MSTN is downregulated during muscle regeneration and its levels are returned to
normal in mature fibers [116, 193, 197, 222]. To some extent, there is also contri-
bution of MSTN to aberrant regeneration in mdx mice (animal model of Duchenne
muscle dystrophy) as improved muscle regeneration was observed in mdx:MSTN�/�
mice [202].

5.6 Myogenic Myokines

Different cytokines are produced and released by skeletal muscle, while the exact
role played by each is not fully elucidated. Despite IL-6 which is fairly well
described in the context of skeletal muscle as endocrine organ, IL-8 is acknowledged
as potent chemoattractant for neutrophils during acute phase of inflammatory
reaction [17]. IL-8 belongs to distinct family of CXC chemokines where the
acronym’s C stands for cysteine while X is any amino acid that separates two
cysteine residues at the NH2 terminus. Interestingly, IL-8 plasma concentration is
altered by physical activity but barely moderate-to-exhaustive eccentric exercise
rouses IL-8 gene expression in skeletal muscle and its blood plasma levels [125,
126]. A number of reports corroborated elevated IL-8 plasma levels following
training during and after marathon run [127, 128, 133]. While accurate physiological
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IL-8 function in skeletal muscle is not known, some authors ponder IL-8 as
locally acting and associated with mild inflammatory response associated with
single muscle fiber damage. This assumption is substantiated by the miniature IL-8
observed during and following concentric muscle contractions that in general are
not injurious to skeletal muscle. Some studies indicate that IL-8 is angiogenic.
Summing up, IL-8 by binding to its receptor CXCR1 induces chemotactic effect,
whereas it stimulates endothelial epithelium for neovascularization through CXCR2
[20, 87, 130].

Besides IL-6 and IL-8, also IL-15 gene was shown to be induced in skeletal
muscle during strength training [124]. The IL-15 signaling peptide acts on target
cells by attaching to heterotrimeric membrane receptors (IL-15R’“”) with Janus
kinases (JAK1 and 3) and STAT-3 and STAT-5 [65]. Since IL-15 cytokine is present
as intracellular and secretory form, its detection is not easy carrying inconsistent
reports [124, 125, 132, 135]. Anyway, several “in vitro” studies carried out on
myogenic cells revealed IL-15 as anabolic factor capable to increase MyHC in
differentiating muscle cells autonomously from IGFs [63, 151]. Similarly, this
cytokine was demonstrated to have anabolic effects on skeletal muscle “in vivo”
[150]. Furthermore, IL-15 participates in cross talk between muscle fibers and
adipocytes [14]. It reduces adipose tissue mass with concurrent skeletal muscle
overgrowth [30], and this is a unique muscle-to-fat endocrine axis with high
therapeutic potential to combat muscle wasting in cachexia. The distinctive function
of IL-15 is manifested in fully differentiated muscle cells where this cytokine
represses proteolysis in muscle cachexia [150]. Accordingly, the IL-15 mRNA was
markedly upregulated in differentiated skeletal myotubes but not undifferentiated
myoblasts [152]. Summing up, IL-15 could be regarded as skeletal muscle growth-
promoting myokine underestimated in prevention of muscle wasting.

5.7 Adipokines in Skeletal Muscle Growth

There is more than 30 different adipokines produced by adipocytes, making adipose
tissue a significant source of regulatory factors with some being essential for fat-to-
muscle communication. Leptin peptide, a “satiety hormone” is probably the most
interesting amongst adipokines. It acts on target cells similarly to IL-6 as both leptin
receptor (LRb) and IL-6 receptor (gp130R“) share a sequence homology liable for
JAK recruitment and STAT phosphorylation needed for gene regulation although
LRb and gp130R“ are ligand specific without cross-reactivity [50]. Can a common
signaling pathway for leptin and IL-6 evoke distinct cellular responses? The answer
is yes, as IL-6 binds initially to IL-6R’ and as multifunctional cytokine exerts its
biological activities through two molecules: IL-6R’ (IL-6 receptor) and gp130R“.
When IL-6 binds to mIL-6R’ (membrane-bound form of IL-6R), homodimerization
of gp130“ is induced and a high-affinity functional receptor complex of IL-6, IL-
6R’, and gp130“ is formed. Interestingly, sIL-6R (soluble form of IL-6R) also binds
with IL-6, and the IL-6–sIL-6R complex can then form a complex with gp130“



5 Cytokines in Skeletal Muscle Growth and Decay 127

[117]. The complex activates JAKs that then phosphorylate tyrosine residues in
the cytoplasmic domain of gp130“. The gp130“-mediated JAK activation by IL-
6 triggers two main signaling pathways: the gp130“ Tyr759-derived SHP-2 (Src
homology 2 domain-containing protein tyrosine phosphatase-2)/ERK (extracellular
signal-regulated kinase) MAPK (mitogen-activated protein kinase) pathway and the
gp130“ YXXQ-mediated JAK/STAT pathway [171]. In contrast to LRb, gp130“
has more tyrosines for phosphorylation (Y767, 814, 905, 915) which is functionally
important to negate feedback mechanism mediated by suppressor of cytokine
signaling (SOCS) proteins [205]. SOCS3 binds to phosphorylated LRb through
its SH2 domain to stop JAK-mediated phosphorylations [22] and additionally
recruits ubiquitin-transferases for JAK/STAT degradation [2]. Consequently, leptin-
dependent regulation of skeletal muscle is transient, whereas IL-6 seems to induce
long-term effects. It was noticed that both cytokines possibly stimulate AMP-
activated protein kinase (AMPK) by T172 phosphorylation mediated by AMPK
kinase (LKB1) [213]. Alternatively, by increased cellular ATP turnover, leptin
and IL-6 may activate AMPK with elevated levels of allosteric activator AMP.
This system is fundamental for energy sensing and fatty acid oxidation in skeletal
muscle, so leptin and IL-6 are mighty directors in delivery of substrates for energy
production (acetyl-CoA). Recently, we observed other metabolic effects of leptin.
In cultured C2C12 mouse myogenic cell line, this cytokine stimulated myoblast
mitogenicity and inhibited muscle cell differentiation through JAK/STAT and MEK
signaling pathway where MEK is an upstream ERK kinase (MAPKK) [145,
146]. Leptin through MEK-dependent manner caused GSK-3“ phosphorylation
(Y216-GSK-3“) with resultant drop in myoblast viability and fusion. Overall,
more research on adipokines is required in order to shed light on fat-to-muscle
influences.

5.8 Conclusions and Perspectives

Skeletal muscle fibers as permanent cells do not divide, so upon injury this organ
regeneration is entirely reliant on stem cell subpopulations including satellite
cells which are activated by a myriad of signals where cytokines play the prime
role. Nowadays, it is widely accepted that cytokines which were initially specific
growth/differentiation factors of leukocyte origin are also synthesized and secreted
by other tissues including skeletal muscle (myokines). It appears, that myokine
profile is dependent on the physiologic (type and intensity of exercise, muscle
fiber type) or pathologic (the magnitude of injury) conditions. Thus, it is obvious
the pattern of myokines controls skeletal muscle growth and decline in health and
disease. Skeletal muscle growth is regulated by mitogenic and survival signals
(HGF/SF, FGF, IGFs, LIF), whereas damaged skeletal muscle is characterized by
necrosis and activation of pro-inflammatory (TNF-’, IFN-”, IL-1“, IL-6) followed
by anti-inflammatory cytokines (IL-1ra, soluble TNF-’ receptors (sTNF-R), and
IL-10) targeting muscle satellite cells and controlling skeletal muscle degeneration
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and regeneration phase, respectively. Finally, TGF-“ superfamily of cytokines,
greatly MSTN, stops further growth and muscle tissue regeneration. As skeletal
muscle satellite cells are decisive for skeletal muscle regeneration, understanding
the molecular mechanisms of their activation by myokines seems to be essential to
combat aberrant muscle growth and repair.
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