
Chapter 13
Therapeutic Potential of Skeletal Muscle
Plasticity and Slow Muscle Programming for
Muscular Dystrophy and Related Muscle
Conditions

Gordon S. Lynch

Abstract Duchenne muscular dystrophy (DMD) is a devastating life-limiting
disease causing progressive and severe muscle wasting in boys and young men. It
is simply unacceptable that �30 years after the discovery of the culprit protein,
dystrophin, there is still no cure or effective treatment. Dystrophic muscles are
fragile, injury prone and compromised in their regenerative capacity. Interestingly,
in DMD and in two well-characterised murine models of the disease (mdx and
dko mice), fast muscle fibres are more susceptible to damage and pathological
progression than slow muscle fibres, which are resistant to damage and relatively
spared. Therefore, therapies that promote a slower, more oxidative phenotype could
protect muscles from damage, ameliorate the dystrophic pathology and improve
patient quality of life. Muscle plasticity can be achieved through exercise and/or
well-described pharmacologic approaches, including activation of AMP-activated
protein kinase (AMPK). Exercise has beneficial effects on muscle health, but
unfortunately many patients cannot exercise, especially DMD patients confined to
wheelchairs. Modulating muscle activity through low-frequency stimulation (LFS)
protocols could mimic exercise to promote a slow phenotype, protect muscles from
damage and enhance muscle repair. Enhancing these adaptations by combining LFS
with pharmacologic modifiers of muscle phenotype potentially represents a novel
therapy that could find immediate application to improve the pathology and enhance
patient quality of life. Alternative approaches like anabolic agents or myostatin
inhibition also have therapeutic potential, but their efficacy occurs through different
mechanisms. Better understanding of the mechanisms underlying skeletal muscle
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adaptations to different interventions and stimuli will help optimise novel strategies
to address the pathophysiology of DMD and related muscle conditions.
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Muscle regeneration • Fibre type • Fast-to-slow • Slow-to-fast • Muscle
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13.1 Introduction

Modifying muscle phenotype to confer protection from injury or pathology has its
origins in the study of muscle plasticity. Skeletal muscles are highly plastic and
capable of adapting to different perturbing stimuli. Muscle fibre composition can be
altered through pharmacologic manipulation of biochemical pathways that regulate
contractile and regulatory protein isoform composition as well as the muscle’s
metabolic machinery. Altering the pattern of neural stimulation to skeletal muscles
can similarly alter muscle phenotype. It is theoretically possible to completely alter
a muscle’s phenotype, from fast-to-slow or vice versa, depending on the nature
(frequency, intensity and duration) of the intervening stimuli. In most cases, the
nature of interventions like physical activity (exercise) or functional neuromuscular
electrical stimulation, like that applied to humans for therapeutic or rehabilitative
purposes, means that they are not sufficient to elicit extreme changes in muscle
phenotype. Regardless, the therapeutic potential of electrical stimulation for muscle
diseases has been identified and represents an exciting field of research. Despite
some promising outcomes from early studies on patients with Duchenne muscular
dystrophy (DMD), electrical stimulation as a therapy has not found wide application
for this condition.

This chapter describes the underlying basis of skeletal muscle programming
and its therapeutic potential for DMD and related conditions. It describes how
muscle phenotype can be altered by different stimuli, with potentially opposing
effects on parameters such as muscle fibre size and fibre composition. It highlights
how pharmacologic and electrical stimuli can alter muscle phenotype, to confer
beneficial outcomes that could improve muscle structure and function and ultimately
enhance quality of life for patients.

13.2 Duchenne Muscular Dystrophy

DMD is the most common of the muscular dystrophies, caused by mutations
and deletions in the dystrophin (dmd) gene on chromosome Xp21, leading to a
lack of expression or a non-functional corresponding protein in muscle. It is a



13 Therapeutic Potential of Muscle Plasticity for DMD and Related Muscle. . . 279

devastating, life-limiting disease affecting �1:3500–6000 live male births, resulting
in progressive and severe muscle wasting and weakness in boys and young men [10].
Patients become wheelchair dependent before their teens and have only 25% of the
muscle mass of healthy children. Eventually all muscles are affected and patients
eventually succumb to respiratory or cardiac muscle failure.

Sadly, there is still no cure or effective treatment for DMD.
Although a cure may eventually come from stem cell or corrective gene therapies,

limitations of delivery systems, gene carrying capacity, dissemination efficiency,
expression persistence and immunological tolerance all pose significant obstacles
for clinical application [92]. Until these techniques are perfected, DMD patients
will continue to die prematurely. The current mainstays in treating DMD are
glucocorticoids (prednisolone or deflazacort) which despite slowing the disease
progression have many deleterious side effects [30]. DMD patients also need
regular corrective surgeries to relieve stiff joints, correct scoliosis and similar
muscle-related interventions [18], which can aggravate the dystrophic pathology
and compromise an already defective regenerative process. Clearly, there is a
profound, urgent and unmet clinical need for therapies that can ameliorate the
pathology, preserve and protect muscles from damage and enhance muscle fibre
regeneration.

The most widely used animal model of DMD is the mdx dystrophic mouse which
has a point mutation in the dystrophin gene and an absence of dystrophin protein
expression in muscle [85]. Although sharing the same genetic deficit as DMD,
the muscle phenotype of mdx mice differs in that the hindlimb muscles undergo
severe degeneration at 3–4 weeks of age, but an enhanced regenerative capacity
ensures almost complete functional recovery. In mdx mice there is compensatory
upregulation of the dystrophin-like protein, utrophin, which may account for its
more benign phenotype. Unlike mdx mice, dystrophin-utrophin double knockout
(dko) mice exhibit severe wasting and weakness, spinal deformities (kyphosis) from
an early age and a shortened lifespan more phenotypically representative of DMD.
These models are fundamental for understanding the dystrophic pathophysiology
since functional roles for dystrophin and utrophin remain unclear, and much
information can be gained from knockout phenotypes [75, 76]. These murine
models are essential for understanding how dystrophic skeletal muscles adapt to
different interventions or stimuli that could ameliorate the pathophysiology of DMD
and related conditions [28].

13.3 Skeletal Muscle Diversity and Adaptability

Skeletal muscle is comprised of functionally diverse fibres ranging in size,
metabolism and contractility [4, 9, 37, 81, 82]. Based on myosin heavy chain
(MyHC) protein isoforms, which largely dictate the rate of force development,
shortening velocity and rate of cross-bridge cycling, mammalian muscle fibres are
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broadly classified as slow-twitch (type I) or fast-twitch (type IIa, IId/x and IIb).
Type I and IIa fibres primarily generate ATP via oxidative metabolism, whereas
type IId/x and IIb fibres generate energy mostly through glycolysis [59, 80].

Muscle fibres are highly plastic and can alter their structural, functional,
metabolic and molecular properties in response to altered contractile demands
or pharmacologic interventions that manipulate signalling pathways that regulate
isoform composition. Altered motor neuron activity can dramatically change
muscle fibre composition, a phenomenon first demonstrated through a series of
elegant nerve cross-reinnervation studies by Sir John Eccles and colleagues [8].
Together, these studies revealed that when fast muscles were innervated by a slow
nerve, the muscle transformed from a fast (glycolytic) to a slower, more oxidative
phenotype and contracted more slowly. When slow muscles were innervated by
a fast nerve, the muscle transformed from an oxidative to a more glycolytic
phenotype and contracted more quickly. Such phenotypic changes were attributed
to the specific impulse patterns delivered to the muscle via the motor neuron
[7]. Chronic low-frequency (10–15 Hz) stimulation induces transcription of slow
oxidative genes in fast muscles through sustained elevations in low-amplitude
intracellular [Ca2C] transients, which stimulate downstream signalling pathways
and key proteins regulating muscle phenotype, specifically promoting fast to slow
changes [52, 68, 94]. Through studies using transgenic mouse lines and specific
drug targeting, these key proteins have been identified and include: calcineurin,
peroxisome proliferator-activated receptor (PPAR) ” coactivator 1’ (PGC-1’),
PPAR“/•, silent mating type information regulator 2 homologue 1 (SIRT1) and
AMP-activated protein kinase (AMPK) [14, 42–44, 89]. These studies have
contributed significantly to our understanding of the signalling pathways regulating
skeletal muscle adaptation and plasticity and have been reviewed elegantly in detail
elsewhere [44].

13.4 Promoting a Slower, More Oxidative Muscle
Phenotype – A Therapeutic Target for DMD

The lack of dystrophin in the muscles of DMD patients and mdx and dko mice
renders muscle fibres fragile and prone to injury. Interestingly, muscles composed
of fast fibres are more susceptible to damage and pathological progression than
predominantly slow muscles, both in DMD patients and in mdx and dko mice.
Thus, dystrophin deficiency in fast muscle fibres of DMD patients is associated
with degenerative changes, while slower muscle fibres are more resistant to damage
and relatively spared [99]. Therefore, therapies that can promote a slower, more
oxidative muscle phenotype could ameliorate the dystrophic pathology and improve
patient quality of life.

That slower, more oxidative muscle fibres express significantly more utrophin-A
protein compared with their faster, more glycolytic counterparts, has been suggested
as one factor protecting slower fibres against damage. Studies in transgenicmdx mice
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(overexpressing utrophin) established that utrophin can functionally substitute for
dystrophin and ameliorate the dystrophic pathology [5, 20, 34, 95]. Activation
of signalling pathways that promote a slower, more oxidative phenotype also
promote increases in utrophin-A expression, highlighting the therapeutic relevance
of manipulating muscle plasticity to mitigate the dystrophic pathology. For
example, calcineurin-NFAT (nuclear factor of activated T cells) signalling plays
an important role in regulating fast-to-slow muscle phenotypic adaptations [17].
Calcineurin is a Ca2C/calmodulin-dependent phosphatase that dephosphorylates
NFAT, resulting in its nuclear translocation and binding to specific sequences
on the promoters of target genes that induce slow oxidative fibre programming
[1, 23, 64, 65] with potential benefits for the dystrophic phenotype [13, 14,
87, 88]. For example, muscles of transgenic mdx mice expressing an active form
of calcineurin exhibited a shift to a slower, more oxidative phenotype, increased
utrophin-A expression and an attenuated dystrophic pathology [89, 90]. Inhibition
of this signalling exacerbated the dystrophic pathology in skeletal muscles of mdx
mice [15].

Conversely, promoting a slower, more oxidative muscle phenotype may have
beneficial effects on DMD that extend beyond simply increasing utrophin-A
expression [93]. Muscles of DMD patients and mdx and dko mice have impaired
oxidative phosphorylation and mitochondrial function, which contributes to the
disease aetiology [56]. Therefore, promoting a slower, more oxidative muscle phe-
notype may rescue normal mitochondrial function and help alleviate the dystrophic
pathology.

13.5 Exercise, Low-Frequency Stimulation and DMD

Physical activity, especially endurance training, has many beneficial effects on
muscle health including the potential to promote a slow, oxidative phenotype
[11, 44, 70]. Whether exercise has beneficial effects for DMD patients remains
contentious, with some activities like low-intensity, low-weight bearing exercise
shown to have therapeutic effects in some studies, while other exercises involving
potentially injurious lengthening (eccentric) contractions can aggravate the pathol-
ogy [50, 96]. For a comprehensive review on the effects of exercise on dystrophic
skeletal muscle, see Markert et al. [49].

Unfortunately many patients are simply unable to exercise, especially boys
with DMD who are confined to a wheelchair usually before their teens. Devising
contraction/activity protocols that mimic the benefits of exercise to attenuate loss
of muscle mass and improve function in these situations could provide a significant
improvement in patient quality of life. Low-frequency stimulation (LFS) is a well-
established model of muscle training that can promote a slower, more oxidative
muscle phenotype [51, 79]. A multitude of studies have shown that LFS mimics
the electrical discharge pattern of slow motor neurons innervating slow muscles and
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induces downstream signalling pathways that promote transcription of slower, more
oxidative, fibre-specific genes [54, 67]. The resultant faster-to-slower adaptations
include increased oxidative metabolism and mitochondrial biogenesis concurrent
with fibre transitions in the type IIb!type IId/x!type IIa!type I direction, even
within 14 d of daily LFS [42, 43]. While LFS challenges a muscle to its full adaptive
potential, it does so efficiently and in the absence of injury and regeneration (Pette
& Vrbova [53, 54, 71, 72]). Collectively, LFS is an ideal model for investigating
the therapeutic potential of promoting a slower, more oxidative muscle phenotype
to ameliorate the dystrophic pathology.

Electrical stimulation (especially LFS) to enhance muscle function in health and
disease has been studied for nearly a century and remains an intervention with broad
therapeutic relevance, for patients in the intensive care unit [86], with spinal cord
injury [12, 46], cerebral palsy [73], sarcopenia [2] and as a supplement for sports
training [41, 57].

From a clinical perspective, there was significant interest in LFS as a therapy for
DMD during the late 1970s to early 1990s, but this waned as the field shifted to
tackle the dystrophic pathophysiology through molecular biochemistry, especially
after the discovery of dystrophin in 1987 [31]. These early studies conducted
on DMD patients led by Vrbová, Dubowitz, Salmons, Zupan and colleagues
were highly encouraging (including conferring a preservation of strength in some
studies), but generally they were preliminary in nature (consisting of relatively few
patients and usually of limited duration) with a resulting lack of scientific and
statistical clarity [22, 83, 84, 101, 102]. There remains a dearth of information
regarding the application of such a well-described and utilised intervention like
LFS (with its current broad applications in rehabilitation medicine and physical
therapy) for ameliorating the dystrophic pathology. Until recently, the only previous
studies of LFS performed on dystrophic mice had not been conducted on mouse
models of DMD [19, 97]. These studies had shown LFS to have beneficial effects
on diseased (laminin-deficient) muscles of C57Bl/6J–dy2J (dy/dy) mice (a model of
congenital muscular dystrophy). These effects were different from those observed
in normal muscle and were not strictly relevant to DMD [97]. Only one study [41]
has looked at short-term (2 week), 20 min/day LFS in dystrophic mdx mice, and
this very preliminary proof-of-concept study was of too short a duration to have any
therapeutic relevance for the dystrophic pathophysiology [41]. Longer-term studies
evaluating the therapeutic merit of LFS have yet to be performed on the accepted
mouse models of DMD nor have studies been undertaken to determine whether
muscle wasting can be attenuated or reversed using different protocols of electrical
stimulation. As to the therapeutic merit of LFS for DMD, my contention is that the
jury is still out! Understanding how dystrophin-deficient muscles (in mdx and dko
mice) adapt to LFS is critical for informing best clinical practice for any strategy
that might be applied for DMD and related muscle conditions.



13 Therapeutic Potential of Muscle Plasticity for DMD and Related Muscle. . . 283

13.6 Pharmacologic Activation to Promote Slow Muscle
Programming

There is considerable evidence that upregulating key proteins like calcineurin,
PPAR”, PGC-1’, SIRT1 and AMPK (among others) can exert fast to slow changes
within muscles, including in mdx mice. Ljubicic et al. [44] comprehensively and
elegantly evaluated the merits of different pharmacologic and transgenic approaches
to exert fast to slow phenotypic changes within dystrophic muscles. AMPK
activation is among the best studied and effective approaches, with the AMPK
activator, AICAR, conferring significant slow oxidative myogenic programming and
improving the dystrophic pathology in mdx mice (Ljubicic et al. [42–44]. A critical
discovery by Ljubicic et al. [43] revealed that prior pharmacologic conditioning
with an AMPK activator was a salient determinant in how dystrophic muscles
adapted to complementary, acute physiological stress stimuli, like treadmill running.
Therefore, pharmacologic AMPK activation could potentially enhance the LFS-
mediated favourable phenotypic adaptations in dystrophic muscles. Since DMD
patients cannot exercise, one therapeutic option could be to combine AMPK activa-
tion with LFS, ideally to amplify the favourable effects of either intervention alone.
LFS could confer ‘exercise-like’ contraction-mediated benefits on muscle fibres that
pharmacological exercise mimetics are simply unable to elicit – producing not only
local muscle effects but potentially amplifying systemic benefits. The therapeutic
merit of this seemingly straightforward approach should be evaluated as a priority.
There are other powerful and effective activators of AMPK signalling that could
be employed to promote a slow, oxidative muscle phenotype that could potentially
ameliorate the dystrophic pathology, and these are therapeutic targets for muscular
dystrophy and related conditions.

It should be noted that adaptations within skeletal muscle fibres might differ
between those mediated by contraction or pharmacologic stimuli. For example,
physical activity or electrical stimulation may induce release of myokines from
activated muscles that regulate mitochondrial biogenesis [21, 24, 91] through
different mechanisms than what may be achieved through pharmacologic activa-
tion [35]. Load-bearing exercise may confer different cellular adaptations than
pharmacologic activation. Although the loading on skeletal muscle fibres would
be less during electrical stimulation than with physical activity, even that level of
cellular (mechanical) stress could induce different adaptive programming than with
pharmacologic activation. This issue remains speculative until hypotheses regarding
comparative adaptations and plasticity are tested rigorously.

13.7 Slow Muscle Programming and Protecting Against
Muscle Damage

Slow muscle programming may also confer protective effects within muscles that
promote better functional outcomes after surgeries, especially where concomitant
ischemia-reperfusion damage is unavoidable. This is relevant not just for DMD
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patients who must undergo regular surgical procedures, but for millions of otherwise
healthy patients worldwide who experience long-term disability and functional
deficits after such traumatic surgeries. Muscle injury is a significant public health
problem contributing to the large burden of musculoskeletal disability and suffering
worldwide [27]. Muscles can be injured in many ways including ischaemia-
reperfusion (I-R), contusion, crush, strains, laceration, extremes of temperature,
chemical (myotoxic) and metabolic injury. While regeneration usually occurs
spontaneously after damage, the process can be slow, incomplete and accompa-
nied by fibrosis (scarring) that compromises the restoration of function. This is
especially the case when the muscle blood supply has been occluded or when
blood vessels, nerves, basal laminae and other supporting structures have been
compromised.

I-R injury concomitant with tourniquet application is common during many
surgeries, especially those involving muscle transfers and microsurgical procedures.
I-R injury can also occur in muscles that have been crushed, with compartment
syndromes, in limbs that have been broken or traumatised and with the replantation
of amputated limbs. After injury induction, there is currently no effective treatment
[25]. I-R occurs when the blood/oxygen supply to a muscle is occluded (ischemia)
but later restored (reperfusion). Muscle fibres can be damaged in two ways during
I-R: during the ischemia when blood flow is occluded or during reperfusion where
free radical production accompanies a ‘second wave’ of injury [27]. This damage
can impact negatively on the outcome of surgical interventions and so protecting
muscles from I-R has the potential to improve tissue repair and enhance functional
restoration. Antioxidants to attenuate I-R damage have largely proved unsuccessful
[58] or produced only modest beneficial outcomes [6], and so novel and effective
approaches that better protect muscles during these surgeries are needed.

The fact that slow muscles are better protected than fast muscles from I-R
injury [98] provides the key rationale for advocating slow muscle programming
to confer protection from this type of damage. Successful repair is vital for
restoring mobility and patient quality of life, and there is an important medical
need for therapies that can attenuate muscle damage, promote regeneration, reduce
fibrosis and enhance function [27]. There has been renewed interest in LFS,
primarily at a cellular and subcellular level, with demonstrated increases in stem
cell proliferation, differentiation, matrix formation and migration, important for
tissue regeneration [40]. The potential for LFS to stimulate regeneration remains
a hypothesis worthy of rigorous testing in appropriate models of muscle health and
disease. Furthermore, since it has been argued that AMPK activators could ‘prime’
muscle for complementary interventions, it is important to determine whether co-
treatment of an AMPK activator with LFS might confer greater improvements in
regeneration than either intervention alone. If such interventions hasten restoration
of muscle function post-trauma, they could be rapidly applied in rehabilitation
medicine to optimise recovery in a wide range of affected patients with muscle
injuries.
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13.8 Muscle Plasticity in the Other Direction – Are
Slow-to-Fast Muscle Fibre Modifications
Contraindicated in Muscular Dystrophy?

Although conferring fast-to-slow muscle fibre modifications has therapeutic rele-
vance for muscular dystrophy, whether modifications in the opposite (i.e. slow-to-
fast) direction exacerbate the dystrophic pathophysiology is not definitive. Another
consideration is whether making muscles smaller (an adaptation with an interven-
tion like chronic LFS) has greater protective effects for the dystrophic pathology
than making muscles larger, such as with chronic administration of anabolic agents
such as “-adrenoceptor agonists (“-agonists). Are there therapeutic interventions
that preserve or increase muscle strength while simultaneously conferring fast-to-
slow muscle fibre modifications in muscle phenotype?

Slow-to-fast muscle fibre modifications are possible through high-frequency
electrical stimulation (HFS) as demonstrated in studies on rat skeletal muscle
[29] and in studies using variable (often higher) frequency protocols for potential
therapeutic and sports applications [3]. It is also well established that there are
transcriptional activators or repressors that control genes that regulate or alter fibre
composition (towards the fast, glycolytic myogenic programme) to ultimately affect
muscle performance and metabolism [74]. These include RIP140, NCoR1, Ets-2
repressor factor (ERF), E2F1 and Baf60c and their roles in myogenic programming
and skeletal muscle metabolism and phenotype have been reviewed in detail
elsewhere [44].

Pharmacologic stimuli can also affect muscle fibre composition and muscle
metabolism. Chronic administration of “-agonists to rats and mice can exert
significant anabolic effects (increasing muscle mass through increases in muscle
fibre cross-sectional area) and shift muscles from an oxidative to a more glycolytic
phenotype, depending on the type of “-agonist, dose, mode of administration and
duration of treatment [47, 69, 77, 100]. In some studies, chronic “-agonist (clen-
buterol or formoterol) administration to rats transformed muscle fibre composition
in the soleus muscle from predominantly slow-twitch to a more mixed fast and
slow fibre composition, as well as increasing cross-sectional area of both of the
main fibre types [78]. The implications of a shift in muscle phenotype from slow
to fast, as well as an increase in muscle fibre size, are potentially significant for
the aetiology of muscular dystrophy. Therapeutic strategies in DMD to increase
muscle mass may well produce larger and stronger muscle fibres, but are they
contraindicated by increasing muscle susceptibility to contraction-induced injury
and so aggravating the dystrophic pathology? Large, fast type II fibres produce
higher forces than smaller, slow type I fibres and can be more susceptible to damage
after lengthening contractions [45, 48]. Fast muscle fibres are preferentially affected
in DMD [16, 66, 99], whereas smaller calibre fibres are relatively spared in DMD
and in animal models of muscular dystrophy [32, 33]. But the relationship between
muscle fibre size and susceptibility to damage in muscular dystrophy is not always
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clear. In one study, tibialis anterior muscles of mdx mice were not more susceptible
to contraction-induced injury if the mice had been treated with formoterol (100 �M
for 4 weeks). In fact, despite formoterol treatment increasing muscle mass and
force production, the cumulative force deficit was actually lower in TA muscles of
treated than untreated mdx mice [26]. This relatively low dose of formoterol did not
change fibre type or oxidative capacity (i.e. no slow-to-fast fibre changes) but was
sufficient to elicit a hypertrophic response in type IIb fibres that conferred protection
from contraction-mediated injury [26]. These findings support the contention that
anabolic agents also have therapeutic potential for DMD and related conditions.

13.9 Inhibiting Myostatin Signalling

Are there therapeutic interventions that preserve or increase muscle strength
while simultaneously conferring fast-to-slow muscle fibre modifications in muscle
phenotype? Such an attractive combination of phenotypic changes has therapeutic
relevance for muscle wasting disorders including DMD. One approach that can
confer these effects is myostatin inhibition. Myostatin, originally termed growth and
differentiation factor-8 (GDF-8), is a member of the transforming growth factor-“
(TGF-“) superfamily. Described as a negative regulator of skeletal muscle mass
because it inhibits myoblast proliferation and differentiation [38, 55], inhibiting
myostatin through genetic deletion or pharmacologic inactivation increases muscle
mass and strength [39]. In a series of studies examining the therapeutic applica-
tions of myostatin inhibition, our laboratory showed that the myostatin inhibitory
antibody PF-354 (developed by Pfizer Inc.) conferred favourable effects in mouse
models of cancer cachexia, muscular dystrophy (mdx), aging (sarcopenia) and
disuse atrophy with plaster casting (Murphy et al. [60–63]). In the Lewis lung
carcinoma (LLC) mouse model of cancer cachexia, PF-354 attenuated muscle
atrophy and loss of force production with improvements in muscle mass and
fatigue (force during repeated stimulation of tibialis anterior muscles in situ),
accompanied by increases in succinate dehydrogenase (SDH) activity and the
proportion of oxidative muscle fibres [62]. PF-354 conferred similar improvements
in these parameters in aged mice [61] and improved diaphragm structure-function
in young mdx mice [60] and in mice with unilateral plaster caster casting PF-354
attenuated muscle atrophy and loss of force [63]. There is still much to be learned
regarding the therapeutic potential of this and similar approaches for manipulating
myostatin/activin signalling in skeletal muscle. Conferring changes in muscle
phenotype (fast-to-slow) to improve muscle fatigue resistance while increasing
muscle mass and strength is an attractive combination of effects relevant to multiple
muscle wasting conditions, especially DMD. There is still considerable interest
in developing novel strategies to manipulate TGF-“ signalling for therapeutic
application in skeletal muscle conditions [36].
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13.10 Conclusion

Altering muscle phenotype can have dramatic effects on skeletal muscle structure,
function and metabolism. Muscle plasticity can be achieved through various means
including physical activity, electrical stimulation and pharmacologic activation,
and each approach has potential therapeutic merit for muscular dystrophy. Better
understanding the mechanisms underlying skeletal muscle adaptations to different
interventions and stimuli will help optimise novel strategies to address the patho-
physiology of DMD and related muscle conditions.
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