
Chapter 1
Hesitant Fuzzy Set and Its Extensions

As uncertainty takes place almost everywhere in our daily life, many different tools
have been developed to recognize, represent, manipulate, and tackle such uncer-
tainty. Among the most popular theories to handle uncertainty include the proba-
bility theory and the fuzzy set theory, which are proposed to interpret statistical
uncertainty and fuzzy uncertainty, respectively. These two types of models possess
philosophically different kinds of information: the probability theory conveys
information about relative frequencies, while the fuzzy set theory represents simi-
larities of objects to the imprecisely defined properties (Bezdek 1993). Since it was
originally introduced by Zadeh (1965), the fuzzy set has turned out to be one of the
most efficient decision aid techniques providing the ability to deal with uncertainty
and vagueness. After the pioneering work of Zadeh (1965), the fuzzy set theory has
been extended in a number of directions, the most impressive one of which relates
to the representation of the membership grades of the underlying fuzzy set (Yager
2014). Recently, on the basis of the extensional forms of fuzzy set, Torra (2010)
proposed a new generalized type of fuzzy set called hesitant fuzzy set (HFS), which
opens new perspectives for further research on decision making under hesitant
environments.

HFS shows many advantages over traditional fuzzy set and its other extensions,
especially in group decision making with anonymity. The HFS has attracted many
scholars’ attentions. Torra (2010) firstly gave the concept of HFS, and defined the
complement, union and intersection of HFSs. Furthermore, Torra and Narukawa
(2009) presented an extension principle permitting to generalize the existing
operations on fuzzy sets to HFSs, and described the application of this new type of
set in the framework of decision making. Xu and Xia (2011a, b) originally gave the
mathematical expressions of HFS, and investigated the distance, similarity and
correlation measures for HFSs. Torra (2010) also established the relationship
between HFS and intuitionistic fuzzy set (IFS), based on which, Xia and Xu
(2011a) gave some operational laws for HFSs, such as the addition and multipli-
cation operations. Afterwards, Liao and Xu (2014a) introduced the subtraction and
division operations over HFSs.
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In this chapter, we first introduce the HFS and its operations, and then give the
subtraction and division operations over HFSs. The motivation of introducing these
operations for HFSs is based on the relationship between HFS and IFS: HFS
encompasses IFS as a particular case and the envelope of a HFS is an IFS (Torra
2010). Several operational laws of these two operations over HFSs are given. The
relationship between IFS and HFS is further verified in terms of these two opera-
tions. In addition, the relationships between these two operations are established.
We also discuss the comparison laws for HFSs. HFS has been extended into dif-
ferent forms, such as the interval-valued hesitant fuzzy set (IVHFS) (Chen et al.
2013b), the dual hesitant fuzzy set (DHFS) (Zhu et al. 2012) and the hesitant fuzzy
linguistic term set (Rodríguez et al. 2012). In this chapter, we also introduce the
definitions, the operational laws and the comparison laws of these extended HFSs.

1.1 Hesitant Fuzzy Set

1.1.1 Introduction to Hesitant Fuzzy Set

Zadeh (1965) introduced the concept of fuzzy set, which leads to a completely new
and very active research area today named as fuzzy logic.

Definition 1.1 (Zadeh 1965). An ordinary fuzzy set F in a set X is characterized by
a membership function lF which takes the values in the interval ½0; 1�; i.e., lF :
X ! ½0; 1�: The value of lF at x; lFðxÞ; named fuzzy number, represents the grade
of membership (grade, for short) of x in F and is a point in ½0; 1�:

For example, we can use the fuzzy set

F ¼ lFðx1Þ=x1 þ lFðx2Þ=x2 þ þ lFðx3Þ=x3 þ lFðx4Þ=x4
¼ 1=0þ 0:9=0:1þ 0:7=0:2þ 0:4=0:3

ð1:1Þ

to represent the linguistic term “low”, where the operation “þ ” stands for logical
sum (or).

As the membership grades in a fuzzy set are expressed as precise values drawn
from the unit interval ½0; 1�; the fuzzy set cannot capture the human ability in
expressing imprecise and vague membership grades of a fuzzy set. On the one
hand, in realistic decision making, imprecision may arise due to the unquantifiable
information, incomplete information, unobtainable information, partial ignorance,
and so forth. To cope with imperfect and imprecise information that two or more
sources of vagueness appear simultaneously, the traditional fuzzy set shows some
limitations. It uses a crisp number in unit interval [0,1] as a membership degree of
an element to a set; however, very often, such a crisp number is difficult to be
determined by a decision maker (or an expert). On the other hand, if a group of
decision makers (or experts) are asked to evaluate the candidate alternatives, they
often find some disagreements among themselves. Since the decision makers (or
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experts) may have different opinions over the alternatives and they cannot persuade
each other easily, a consensus result is hard to be obtained but a set of possible
values. In such a case, the traditional fuzzy set cannot be used to depict the group’s
opinions. Hence, the classical fuzzy set has been extended into several different
forms, such as the IFS (Atanassov 1986), the interval-valued IFS (Atanassov and
Gargov 1989), the type 2 fuzzy set (Mizumoto and Tanaka 1976), the type n fuzzy
set (Dubois and Prade 1980), and the fuzzy multisets (also named the fuzzy bags)
(Yager 1986). All these extensions are based on the same rationale that it is not
clear to assign the membership degree of an element to a fixed set.

The IFS, which assigns to each element a membership degree, a
non-membership degree and a hesitancy degree, is more powerful than fuzzy set in
dealing with vagueness and uncertainty.

Definition 1.2 (Atanassov 1983, 2012). Let a crisp set X be fixed and let A � X be
a fixed set. An IFS A� on X is an object of the following form:

A� ¼ f\x; lAðxÞ; vAðxÞ[ jx 2 Xg ð1:2Þ

where the functions lA : A ! ½0; 1� and vA : A ! ½0; 1� define the degree of
membership and the degree of non-membership of the element x 2 X to the set A,
respectively, and for every x 2 X

0� lA þ mA � 1 ð1:3Þ
Obviously, every ordinary fuzzy set has the form:

A� ¼ f\x; lAðxÞ; 1� lAðxÞ[ jx 2 Xg ð1:4Þ

That is to say, the ordinary fuzzy set is a special case of IFS.
For each IFS A� on X

pAðxÞ ¼ 1� lAðxÞ � mAðxÞ ð1:5Þ

is called the degree of non-determinacy (uncertainty) of the membership of the
element x 2 X to the set A. In the case of ordinary fuzzy sets, pAðxÞ ¼ 0 for every
x 2 X:

However, when giving the membership degree of an element to a set, the dif-
ficulty of establishing the membership degree is not because we have some pos-
sibility distribution (as in type 2 fuzzy set), or a margin of error (as in interval fuzzy
set and IFS), but because we have a set of possible values. In such cases, HFS, as a
generalization of fuzzy set, permits the membership degree of an element to a set
presented by several possible values between 0 and 1. It can better describe the
situations where people have hesitancy in providing their preferences over objects
in the process of decision making. The HFS was originally proposed by Torra
(2010).
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Definition 1.3 (Torra 2010). Let X be a fixed set, a HFS on X is in terms of a
function h that when applied to X returns a subset of ½0; 1�:

To be easily understood, Xia and Xu (2011a) represented the HFS in terms of the
following mathematical symbol:

H ¼ f\x; hAðxÞ[ jx 2 Xg ð1:6Þ

where hAðxÞ is a set of values in ½0; 1�; denoting the possible membership degrees of
the element x 2 X to the set A � X: For convenience, Xia and Xu (2011b) called
hAðxÞ a hesitant fuzzy element (HFE), which denotes a basic component of the
HFS.

Since the possible values of the membership degree in a HFS are random, the
HFS is, to some extent, more natural in representing the fuzziness and vagueness
than all the other extensional forms of fuzzy set. On the one hand, it is very close to
human’s cognitive process by using HFS. It is noted that modeling fuzzy infor-
mation by other extended forms of fuzzy set is based on the elicitation of single or
interval values that should encompass and express the information provided by the
decision makers (or experts) when determining the membership of an element to a
given set. Nevertheless, in some cases, the decision makers (or experts) involved in
the problem may have a set of possible values, and thus cannot provide a single or
an interval value to express their preferences or assessments because they are
thinking of several possible values at the same time. In such a case, the HFS, whose
membership degree is represented by a set of possible values, can solve this
problem perfectly, while the other extensions of fuzzy set are invalid.

On the other hand, due to the increasing complexity of socio-economic envi-
ronments, it is less and less possible for single decision maker (or expert) to
consider all relevant aspects of a problem when evaluating the considered objects.
Hence, in order to get a more reasonable decision result, a decision organization,
such as the board of directors of a company, which contains a collection of decision
makers (or experts), is set up explicitly or implicitly to assess the alternatives. As
pointed by Yu (1973), “when a group of individuals intend to form a corporation
with themselves as the shareholders or form a union to increase their total bar-
gaining power, they usually find some disagreements among themselves. The dis-
agreements come from the difference in their subjective evaluations of the decision
making problems which arise.” Since the decision makers (or experts) may have
different opinions over the alternatives due to their different knowledge back-
grounds or benefits and they cannot persuade each other easily, a consensus
evaluation result is sometimes hard to obtain but several possible evaluation values.
Then the HFS is suitable to handle this issue, and it is more powerful than all the
other extended fuzzy sets. For example, suppose that a decision organization is
asked to provide the degree to which an alternative is superior to another, and the
decision makers prefer to use the values between 0 and 1 to express their prefer-
ences. Some decision makers in the organization provide 0:2; some provide 0:6;
and the others provide 0:8: These three parts cannot persuade each other, and thus,
the degree to which the alternative is superior to the other can be represented by the
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hesitant fuzzy element (HFE) f0:2; 0:6; 0:8g. Note that the HFE f0:2; 0:6; 0:8g can
describe the above situation more objectively than the crisp number 0:2 (or 0:6 or
0:8Þ, or the interval-valued fuzzy number ½0:2; 0:8�; or the intuitionistic fuzzy
number ð0:2; 0:8Þ; because the degrees to which an alternative is superior to another
are not the convex combination of 0:2 and 0:8; or the interval between 0:2 and 0:8;
but just three possible values 0:2; 0:6 and 0:8: If we use any of the extended fuzzy
sets to represent the assessments given by these three parts of the decision orga-
nization, much useful information may be lost and this may lead to an unreasonable
decision. Therefore, it is more suitable and powerful to describe the uncertain
evaluation information by HFS.

The HFS encompasses IFS as a particular case, and it is a particular case of type
2 fuzzy set. The typical HFS is the one where hðxÞ is finite. Torra (2010) gave some
special HFEs for x in X:

(1) Empty set: hðxÞ ¼ f0g, denoted as O� for simplicity.
(2) Full set: hðxÞ ¼ f1g, denoted as E�.
(3) Complete ignorance (all is possible): hðxÞ ¼ ½0; 1�; denoted as U�.
(4) Nonsense set: hðxÞ ¼ ��.

Liao and Xu (2014a) made some deep clarifications on these special HFEs from
the view points of the definition of HFS and also from the practical decision making
process. As presented in the definition, the HFS on a reference set X is in terms of a
function h that when applied to X returns a subset of ½0; 1�: Hence, if the HFS
h returns no value, it is adequate for us to assert that h is a nonsense set.
Analogously, if it returns the set ½0; 1�; which means all values between 0 and 1 are
possible, we call it complete ignorance. Particularly, if it returns only one value
c 2 ½0; 1�; this certainly makes sense because single value c 2 ½0; 1� can also be seen
as a subset of ½0; 1�; i.e., we can take c as ½c; c�: When c ¼ 0; which means the
membership degree is zero, then we call it the empty set; if c ¼ 1; then we call it the
full set. Note that we shall not take the empty set as the set that there is no any value
in it, and we also should not take the full set as the set of all possible values. This is
the difference between the HFS and the traditional set. The interpretation of these
four special HFEs in decision making process is obvious. Consider that an orga-
nization with several experts from different areas evaluates an alternative using
HFS. The empty set depicts that all experts oppose the alternative. The full set
means that all experts agree with it. The complete ignorance represents that all
experts have no idea on the alternative, and the nonsense set implies nonsense.

Given an intuitionistic fuzzy number (IFN) (Xu 2007b)ðx; lAðxÞ; mAðxÞÞ; its
corresponding HFE is straightforward: hðxÞ ¼ ½lAðxÞ; 1� mAðxÞ� if lAðxÞ 6¼ 1�
mAðxÞ: But, the construction of IFN from HFE is not so easy when the HFE contains
more than one value for each x 2 X: As for this issue, Torra (2010) pointed out that
the envelope of a HFE is an IFN, expressed in the following definition:

Definition 1.4 (Torra 2010). Given a HFE h, the IFN AenvðhÞ is defined as the
envelope of h, where AenvðhÞ can be represented as h�; 1� hþð Þ; with h� ¼
min c c 2 hjf g and hþ ¼max cjc 2 hf g:
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Definition 1.5 (Liao et al. 2015b). For a reference set X; let hðxÞ ¼ fc1; c2; . . .; clg
be a HFE with ck (k ¼ 1; 2; . . .; lÞ being the possible membership grades of x 2 X to
a given set and l being the number of values in hðxÞ: The mean of the HFE hðxÞ is
defined as:

�hðxÞ ¼ 1
l

Xl

k¼1
ck ð1:7Þ

Definition 1.6 (Liao et al. 2015b). For a reference set X; let hðxÞ ¼ fc1; c2; . . .; clg
be a HFE with ck (k ¼ 1; 2; . . .; lÞ being the possible membership grades of x 2 X to
a given set and l being the number of values in hðxÞ: The hesitant degree of the HFE
hðxÞ is defined as:

uhðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
l

Xl

k¼1
ck � �hðxÞð Þ½ �2

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
l

Xl

k¼1
ck �

1
l

Xl

k¼1
ck

� �� �2s
ð1:8Þ

Example 1.1 (Liao et al. 2015b). For two HFEs h1 ¼ f0:1; 0:3; 0:5g and
h2 ¼ f0:1; 0:3; 0:8g, based on Eqs. (1.7) and (1.8), we have �h1 ¼ 0:45; �h2 ¼ 0:6;
uh1 ¼ 0:2217; and uh2 ¼ 0:3786: Therefore, the HFE h2 is more hesitant than the
HFE h1.

1.1.2 Operational Laws of Hesitant Fuzzy Elements

Torra (2010) defined some operations such as complement, union and intersection
for HFEs:

Definition 1.7 (Torra 2010). For three HFEs h; h1 and h2, the following operations
are defined:

(1) Lower bound: h�ðxÞ ¼ min hðxÞ:
(2) Upper bound: hþ ðxÞ ¼ max hðxÞ:
(3) hc ¼ [ c2h 1� cf g:
(4) h1 [ h2 ¼ h 2 h1 [ h2jh�maxðh�1 ; h�2 Þ

� �
:

(5) h1 \ h2 ¼ h 2 h1 [ h2jh�minðhþ
1 ; hþ

2 Þ� �
:

Afterwards, Xia and Xu (2011a) gave other forms of (4) and (5) as follows:

(6) h1 [ h2 ¼ [ c12h1;c22h2max c1; c2f g:
(7) h1 \ h2 ¼ [ c12h1;c22h2min c1; c2f g:

Torra (2010) further studied the relationships between HFEs and IFNs:

Proposition 1.1 (Torra 2010). Let h; h1 and h2 be three HFEs. Then,

(1) AenvðhcÞ ¼ AenvðhÞð Þc.
(2) Aenvðh1 [ h2Þ ¼ Aenvðh1Þ [Aenvðh2Þ:
(3) Aenvðh1 \ h2Þ ¼ Aenvðh1Þ \Aenvðh2Þ:
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Proposition 1.2 (Torra 2010). Let h1 and h2 be two HFEs with hðxÞ being a
nonempty convex set for all x in X; i.e., h1 and h2 are IFNs. Then,

(1) hc1 is equivalent to IFS complement.
(2) h1 \ h2 is equivalent to IFS intersection.
(3) h1 [ h2 is equivalent to IFS union.

Proposition 1.2 reveals that the operations defined for HFEs are consistent with
the ones for IFNs. Based on the relationships between HFEs and IFNs, Xia and Xu
(2011a) gave some operational laws for HFEs.

Definition 1.8 (Xia and Xu 2011a). Let h; h1 and h2 be three HFEs, and k be a
positive real number, then

(1) hk ¼ [ c2h ck
� �

:

(2) kh ¼ [ c2h 1� ð1� cÞk
n o

:

(3) h1 	 h2 ¼ [ c12h1;c22h2 c1 þ c2 � c1c2f g:
(4) h1 
 h2 ¼ [ c12h1;c22h2 c1c2f g:

Let hj(j ¼ 1; 2; . . .; nÞ be a collection of HFEs, Liao et al. (2014a) generalized
(3) and (4) in Definition 1.8 to the following forms:

(5) 	n
j¼1

hj ¼ [ cj2hj 1�Qn
j¼1 ð1� cjÞ

n o
:

(6) 
n
j¼1

hj ¼ [ cj2hj
Qn

j¼1 cj
n o

:

It is noted that the number of values in different HFEs may be different. Let lhj be
the number of the HFE hj. Based on the above operational laws, the following
theorem holds:

Theorem 1.1 (Liao et al. 2014a). Suppose h1 and h2 are two HFEs, then

lh1	h2 ¼ lh1 � lh2 ; lh1
h2 ¼ lh1 � lh2 ð1:9Þ
Similarly, it also holds when there are n different HFEs, i.e.,

l	n
j¼1

hj
¼

Yn

j¼1
lhj ; l
n

j¼1
hj
¼

Yn

j¼1
lhj ð1:10Þ

Example 1.2 (Liao and Xu 2013). Let h1 ¼ ð0:1; 0:2; 0:7Þ and h2 ¼ ð0:2; 0:4Þ be
two HFEs, then by the operational laws of HFSs given in Definition 1.8, we have

h1 	 h2 ¼ [ c12h1;c22h2 c1 þ c2 � c1c2f g
¼ f0:1þ 0:2� 0:1 � 0:2; 0:1þ 0:4� 0:1 � 0:4; 0:2þ 0:2� 0:2 � 0:2; 0:2þ 0:4� 0:2 � 0:4;
0:7þ 0:2� 0:7 � 0:2; 0:7þ 0:4� 0:7 � 0:4g ¼ f0:28; 0:36; 0:46; 0:52; 0:76; 0:82g
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h1 
 h2 ¼ [ c12h1;c22h2 c1c2f g ¼ f0:1 � 0:2; 0:1 � 0:4; 0:2 � 0:2; 0:2 � 0:4; 0:7 � 0:2; 0:7 � 0:4g
¼ f0:02; 0:04; 0:04; 0:08; 0:14; 0:28g

Thus, lh1	h2 ¼ 6 ¼ 3� 2 ¼ lh1 � lh2 , lh1
h2 ¼ 6 ¼ 3� 2 ¼ lh1 � lh2 .
Theorem 1.1 and Example 1.2 reveal that the dimension of the derived HFE may

increase as the addition or multiplication operations are done, which may increase
the complexity of calculation. In order not to increase the dimension of the derived
HFE in the process of calculation, Liao et al. (2014a) adjusted the operational laws
of HFEs into the following forms:

Definition 1.9 (Liao et al. 2014a). Let hj(j ¼ 1; 2; . . .; nÞ be a collection of HFEs,
and k be a positive real number, then

(1) hk ¼ fðhrðtÞÞk; t ¼ 1; 2; . . .; lg.
(2) kh ¼ f1� ð1� hrðtÞÞk; t ¼ 1; 2; . . .; lg.
(3) h1 	 h2 ¼ fhrðtÞ1 þ hrðtÞ2 � hrðtÞ1 hrðtÞ2 ; t ¼ 1; 2; . . .; lg.
(4) h1 
 h2 ¼ fhrðtÞ1 hrðtÞ2 ; t ¼ 1; 2; . . .; lg.
(5) 	n

j¼1
hj ¼ f1�Qn

j¼1 ð1� hrðtÞj Þ; t ¼ 1; 2; . . .; lg.

(6) 
n
j¼1

hj ¼ fQn
j¼1 h

rðtÞ
j ; t ¼ 1; 2; . . .; lg.

where hrðtÞj is the tth smallest value in hj.

Example 1.3 (Liao and Xu 2013). Let h1 ¼ f0:2; 0:3; 0:5; 0:8g and h2 ¼
f0:4; 0:6; 0:8g be two HFEs respectively. Taking addition and multiplication
operations as an example, by using Definition 1.9, we have

h1 	 h2 ¼ hrðtÞ1 þ hrðtÞ2 � hrðtÞ1 hrðtÞ2

			t ¼ 1; 2; 3; 4
n o

¼ 0:2þ 0:4� 0:2� 0:4; 0:3þ 0:5� 0:3� 0:5f ; 0:5þ 0:6� 0:5� 0:6; 0:8þ 0:8� 0:8� 0:8g
¼ 0:52; 0:65; 0:8; 0:96f g

h1 
 h2 ¼ hrðtÞ1 hrðtÞ2

			t ¼ 1; 2; . . .; l
n o

¼ 0:2� 0:4; 0:3� 0:5; 0:5� 0:6; 0:8� 0:8f g
¼ 0:08; 0:15; 0:3; 0:64f g

It is noted that neither Torra (2010) nor Xia and Xu (2011a) paid any attention to
the subtraction and division operations over HFEs. The subtraction and division
operations are significantly important in forming the integral theoretical framework
of HFS. Meanwhile, it is also an indispensable foundation in developing some
well-known decision making method such as PROMETHEE with hesitant fuzzy
information. Hence, in the following, we introduce these basic operations over HFEs.

Considering the relationships between IFS and HFS, to start our investigation, let
us first review the subtraction and division operations over IFSs. The subtraction and
division operations over IFSs were firstly proposed by Atanassov and Riečan (2006).
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Later, Chen (2007) also introduced these operations for IFSs, which were derived
from the deconvolution for equations using addition and multiplication operations of
IFSs, and the forms of these two operations they proposed were similar to those of
Atanassov and Riečan (2006). Based on the different versions of the operation
“negation”, Atanassov (2009) further developed a family of different kinds of sub-
traction operations for IFSs. Among all these different subtraction operations,
Atanassov (2012) finally chose the following forms as the standard definitions for
subtraction and division operations over IFSs in his recent published book:

Definition 1.10 (Atanassov 2012). For two given IFSs A and B, the subtraction and
division operations have the forms:

A�B ¼ x; lA�BðxÞ; mA�BðxÞ

 �jx 2 X

� � ð1:11Þ

where

lA�BðxÞ ¼
if lAðxÞ� lBðxÞ and vAðxÞ� vBðxÞ

lAðxÞ�lBðxÞ
1�lBðxÞ and vBðxÞ[ 0

and vAðxÞpB � pAðxÞvBðxÞ
0; otherwise

8>><
>>: ð1:12Þ

and

mA�BðxÞ ¼
if lAðxÞ� lBðxÞ and mAðxÞ� mBðxÞ

mAðxÞ
mBðxÞ ; and mBðxÞ[ 0

and mAðxÞpBðxÞ� pAðxÞmBðxÞ
1; otherwise

8>><
>>: ð1:13Þ

and

A�B ¼ x; lA�BðxÞ; mA�BðxÞ

 �jx 2 X

� � ð1:14Þ

where

lA�BðxÞ ¼
if lAðxÞ� lBðxÞ and vAðxÞ� vBðxÞ

lAðxÞ
lBðxÞ ; and lBðxÞ[ 0

and lAðxÞpBðxÞ� pAðxÞlBðxÞ
0; otherwise

8>><
>>: ð1:15Þ

and

mA�BðxÞ ¼
if lAðxÞ� lBðxÞ and mAðxÞ� mBðxÞ

mAðxÞ�mBðxÞ
1�mBðxÞ and lBðxÞ[ 0

and lAðxÞpBðxÞ� pAðxÞlBðxÞ
1 otherwise

8>><
>>: ð1:16Þ
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Inspired by Definition 1.10 and based on the relationships between IFSs and
HFSs, the definitions of subtraction and division operations over HFEs can be
introduced:

Definition 1.11 (Liao and Xu 2014a). Let h, h1 and h2 be three HFEs, then

(1) h1�h2 ¼ [ c12h1;c22h2 tf g; where

t ¼
c1�c2
1�c2

; if c1 � c2 and c2 6¼ 1
0; otherwise

�

(2) h1�h2 ¼ [ c12h1;c22h2 tf g; where

t ¼
c1
c2
; if c1 � c2 and c2 6¼ 0

1; otherwise

�
To make it more adequate, let h�U� ¼ O�,h�U� ¼ O�. According to Definition

1.11, it is obvious that for any HFE h, the following equations hold:

• h�h ¼ O�; h�O� ¼ h; h�E� ¼ O�.
• h�h ¼ E�; h�E� ¼ h; h�O� ¼ E�.

In addition, it follows from the above equations that some special cases hold:

• E��E� ¼ O�; U��E� ¼ O�; O��E� ¼ O�.
• E��U� ¼ O�; U��U� ¼ O�; O��U� ¼ O�.
• E��O� ¼ E�; U��O� ¼ U�; O��O� ¼ O�.
• E��E� ¼ E�; U��E� ¼ U�; O��E� ¼ O�.
• E��U� ¼ O�; U��U� ¼ O�; O��U� ¼ O�.
• E��O� ¼ E�; U��O� ¼ E�; O��O� ¼ E�.

For the brevity of presentation, in the process of theoretical derivation thereafter,
we shall not consider the particular case where t ¼ 0 in subtraction operation and
t ¼ 1 in division operation. It is noted that the HFS encompasses the IFS as a
particular case; thus, the subtraction and division operations over HFEs should be
equivalent to the subtraction and division operations over IFNs when not consid-
ering the nonmembership degree of each IFN. Comparing Definitions 1.10 and
1.11, we can see that this requirement is met. The following theorems show that the
subtraction and division operations over HFEs in Definition 1.11 are convincing
and they satisfy some basic properties:

Theorem 1.2 (Liao and Xu 2014a). Let h1 and h2 be two HFEs, then

(1) h1�h2ð Þ 	 h2 ¼ h1, if c1 � c2; c2 6¼ 1:
(2) h1�h2ð Þ 
 h2 ¼ h1, if c1 � c2; c2 6¼ 0:

Theorem 1.3 (Liao and Xu 2014a). Let h1 and h2 be two HFEs, k[ 0; then

(1) k h1�h2ð Þ ¼ kh1�kh2, if c1 � c2; c2 6¼ 1:
(2) h1�h2ð Þk¼ hk1�hk2, if c1 � c2; c2 6¼ 0:
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Theorem 1.4 (Liao and Xu 2014a). Let h ¼ [ c2h cf g be a HFE, and k1 � k2 [ 0;
then

(1) k1h�k2h ¼ k1 � k2ð Þh; if c 6¼ 1:
(2) hk1�hk2 ¼ h k1�k2ð Þ, if c 6¼ 0:

Theorem 1.5 (Liao and Xu 2014a). For three HFEs h1, h2, and h3, the following
conclusions are valid:

(1) h1�h2�h3 ¼ h1�h3�h2, if
c1 � c2;c1 � c3;c2 6¼ 1;c3 6¼ 1;c1 � c2 � c3 þ c2c3 � 0:

(2) h1�h2�h3 ¼ h1�h3�h2, if c1 � c2c3; c2 6¼ 0; c3 6¼ 0:

Theorem 1.6 (Liao and Xu 2014a). For three HFEs h1, h2, and h3, the following
conclusions are valid:

(1) h1�h2�h3 ¼ h1� h2 	 h3ð Þ; if
c1 � c2; c1 � c3;c2 6¼ 1;c3 6¼ 1;c1 � c2 � c3 þ c2c3 � 0:

(2) h1�h2�h3 ¼ h1� h2 
 h3ð Þ; if c1 � c2c3; c2 6¼ 0;c3 6¼ 0:

It should be noted that in the above theorems, the equations hold only under the
given precondition. Moreover, the relationship between IFNs and HFEs can be
further verified in terms of these two operations:

Theorem 1.7 (Liao and Xu 2014a). Let h1 and h2 be two HFEs, then

(1) Aenvðh1�h2Þ ¼ Aenvðh1Þ�Aenvðh2Þ:
(2) Aenvðh1�h2Þ ¼ Aenvðh1Þ�Aenvðh2Þ:

Theorem 1.7 further reveals that the subtraction and division operations defined
for HFEs are consistent with the ones for IFNs. The following theorem reveals the
relationship between these two operations:

Theorem 1.8 (Liao and Xu 2014a). For two HFEs h1 and h2, the following
conclusions are valid:

(1) hc1�hc2 ¼ h1�h2ð Þc.
(2) hc1�hc2 ¼ h1�h2ð Þc.

Example 1.4 (Liao and Xu 2014a). Consider two HFEs h1 ¼ f0:3; 0:2g and
h2 ¼ f0:1; 0:2g. According to Definition 1.11, we have

h1�h2 ¼ 0:3� 0:1
1� 0:1

;
0:3� 0:2
1� 0:2

;
0:2� 0:1
1� 0:1

;
0:2� 0:2
1� 0:2

� 

¼ 2

9
;
1
8
;
1
9
; 0

� 

In addition, as hc1 ¼ f0:7; 0:8g, and hc2 ¼ f0:9; 0:8g, by Definition 1.11, we

obtain
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hc1�hc2 ¼
0:7
0:9

;
0:8
0:9

;
0:7
0:8

;
0:8
0:8

� 

¼ 7

9
;
8
9
;
7
8
; 1

� 


Since

h1�h2ð Þc¼ 1� 2
9
; 1� 1

8
; 1� 1

9
; 1� 0

� 

¼ 7

9
;
8
9
;
7
8
; 1

� 


Then, h1�h2ð Þc¼ hc1�hc2, which verifies (2) of Theorem 1.8. In analogous, (1) of
Theorem 1.8 can also be verified.

The subtraction and division operations are significantly important in forming
the integral theoretical framework of HFS. Meanwhile, it is also critical in devel-
oping some well-known decision making method such as PROMETHEE
(Behzadian et al. 2010) with hesitant fuzzy information. The operations of HFEs
can be immediately extended into interval-valued HFEs and dual HFEs.

1.1.3 Comparison Laws of Hesitant Fuzzy Elements

It is noted that the number of values in different HFEs may be different. Let lhj be
the number of values in hj. For two HFEs h1 and h2, let l ¼ maxflh1 ; lh2g. To
operate correctly, Xu and Xia (2011a) gave the following regulation, which is based
on the assumption that all the decision makers are pessimistic: If lh1\lh2 , then h1
should be extended by adding the minimum value in it until it has the same length
with h2; If lh1 [ lh2 , then h2 should be extended by adding the minimum value in it
until it has the same length with h1. For example, let h1 ¼ f0:1; 0:2; 0:3g,
h2 ¼ f0:4; 0:5g. To operate correctly, we should extend h2 until it has the same
length with h1. The pessimist may extend it as h2 ¼ f0:4; 0:4; 0:5g, and the optimist
may extend h2 as h2 ¼ f0:4; 0:5; 0:5g which adds the maximum value instead. The
results may be different if we extend the shorter one by adding different values. It is
reasonable because the decision makers’ risk preferences can directly influence the
final decision. As to the situation where the decision makers are neither pessimistic
nor optimistic, then the added value should be the mean value of the shorter HFE.
We can also extend the shorter one by adding the value of 0:5 in it. In such a case,
we assume that the decision makers have uncertain information.

Xia and Xu (2011a) defined the score function of a HFE:

Definition 1.12 (Xia and Xu 2011a). For a HFE h;

sðhÞ ¼ 1
lh

X
c2h c ð1:17Þ
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is called the score function of h; where lh is the number of values in h: For two
HFEs h1 and h2, if sðh1Þ[ sðh2Þ; then h1 [ h2; if sðh1Þ ¼ sðh2Þ; then h1 ¼ h2.

However, in some special cases, this comparison law cannot be used to distin-
guish two HFEs:

Example 1.5 (Liao et al. 2014a). Let h1 ¼ ð0:1; 0:2; 0:6Þ and h2 ¼ ð0:2; 0:4Þ be two
HFEs, then by (1.17), we have

sðh1Þ ¼ 0:1þ 0:2þ 06
3

¼ 0:3; sðh2Þ ¼ 0:2þ 0:4
2

¼ 0:3:

Since sðh1Þ ¼ sðh2Þ; we cannot tell the difference between h1 and h2 by only
using Definition 1.12. Actually, such a case is common in practice. Hence, Liao
et al. (2014a) introduced the variance function of HFE.

Definition 1.13 (Liao et al. 2014a). For a HFE h;

v1ðhÞ ¼ 1
lh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
ci;cj2h

ðci � cjÞ2
r

ð1:18Þ

is called the variance function of h; where lh is the number of values in h; and v1ðhÞ
is called the variance degree of h: For two HFEs h1 and h2, if v1ðh1Þ[ v1ðh2Þ; then
h1\h2; if v1ðh1Þ ¼ v1ðh2Þ; then h1 ¼ h2.

Example 1.6 (Liao et al. 2014a). According to Eq. (1.18), in Example 1.5, we have

v1ðh1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:22 þ 0:42 þ 0:52

p

3
¼ 0:2160; v1ðh2Þ ¼

ffiffiffiffiffiffiffiffiffi
0:22

p

2
¼ 0:1

Then, v1ðh1Þ[ v1ðh2Þ; i.e., the variance degree of h1 is higher than that of h2.
Thus, h1\h2.

From the above analysis, we can see that the relationship between the score
function and the variance function is similar to the relationship between mean and
variance in statistics. It is noted that recently, Liao and Xu (2015c) modified the
variance function into the following form:

v2ðhÞ ¼ 2
lhðlh � 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
ci;cj2h

ðci � cjÞ2
r

ð1:19Þ

where lh in the coefficient of Eq. (1.18) is replaced by C2
lh ¼

lhðlh�1Þ
2 :

In addition, Chen et al. (2015) introduced the deviation function of a HFE:

Definition 1.14 (Chen et al. 2015). For a HFE h, we define the deviation degree
v3ðhÞ of h as:

v3ðhÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
lh

X
c2h ðc� sðhÞÞ2

r
ð1:20Þ
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As it can be seen that v3ðhÞ is just conventional standard variance in statistics,
which reflects the deviation degree between all values in the HFE h and their mean
value.

Based on the score function sðhÞ and the variance function vqðhÞ(q ¼ 1; 2; 3Þ, a
comparison scheme can be developed to rank any HFEs (Liao et al. 2014a):

• If sðh1Þ\sðh2Þ; then h1\h2;
• If sðh1Þ ¼ sðh2Þ; then

– If vqðh1Þ\vqðh2Þ; then h1 [ h2.
– If vqðh1Þ ¼ vqðh2Þ; then h1 ¼ h2.

Note that we cannot claim that “For two HFEs h1 and h2, if vðh1Þ[ vðh2Þ; then
h1\h2; If vðh1Þ ¼ vðh2Þ; then h1 ¼ h2” due to the fact that sometimes variance is
bad, while sometimes variance is good. This assentation holds only under the
precondition that sðh1Þ ¼ sðh2Þ: It is well known that an efficient estimator is a
measure of the variance of an estimate’s sampling distribution in statistics. Hence,
under the condition that the score values are equal, which implies that the average
values are the same in statistics, it is appropriate to stipulate that the smaller the
variance, the more stable the HFE, and thus, the greater the HFE. Similar schemes
can be seen in the process of comparing two vague sets (Hong and Choi 2000), and
also the comparison between two IFNs (Xu and Yager 2006).

1.2 Extensions of Hesitant Fuzzy Set

1.2.1 Interval-Valued Hesitant Fuzzy Set

In many decision making problems, due to the insufficiency of available informa-
tion, it may be difficult for decision makers (or experts) to exactly quantify the
membership degrees of an element to a set by crisp numbers but by interval-valued
numbers within [0, 1]. Consequently, it is necessary to introduce the concept of
interval-valued hesitant fuzzy set (IVHFS), which permits the membership degree
of an element to a given set to have a few different interval values. The situation is
similar to that encounters in intuitionistic fuzzy environment where the concept of
IFS has been extended to interval-valued IFS (Atanassov and Gargov 1989).

Definition 1.15 (Chen et al. 2013b). Let X be a reference set, and D½0; 1� be the set
of all closed subintervals of [0, 1]. An IVHFS on X is

~H ¼ f\x; ~hAðxÞ[ x 2 Xgj ð1:21Þ
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where ~hAðxÞ : X ! D½0; 1� denotes all possible interval-valued membership degrees
of the element x 2 X to the set A � X: For convenience, we call ~hAðxÞ an
interval-valued hesitant fuzzy element (IVHFE), which reads

~hAðxÞ ¼ ~c ~c 2 ~hAðxÞ
		� � ð1:22Þ

Here ~c ¼ ½~cL;~cU � is an interval-valued number. ~cL ¼ inf ~c and ~cU ¼ sup~c rep-
resent the lower and upper limits of ~c; respectively.

The IVHFE is the basic unit of the IVHFS. It can be considered as a special case of
the IVHFS. The relationship between IVHFE and IVHFS is similar to that between
the interval-valued fuzzy number and interval-valued fuzzy set (Zadeh 1975).

Example 1.7 (Chen et al. 2013b). Let X ¼ fx1; x2g be a reference set, and the
IVHFEs hAðx1Þ ¼ f½0:1; 0:3�; ½ 0:4; 0:5�g and
hAðx2Þ ¼f½0:1; 0:2�; ½0:3; 0:5�; ½0:7; 0:9�g denote the membership degrees of xiði ¼
1; 2Þ to a set A � X respectively. We call ~H an IVHFS, where

~H ¼ f\x1; f½0:1; 0:3�; ½0:4; 0:5�g[ ;\x2; f½0:1; 0:2�; ½0:3; 0:5�; ½0:7; 0:9�gg

When a decision making problem needs to be characterized by interval-valued
numbers rather than crisp numbers, the IVHFS is a preferable choice because it has
a great ability in handling imprecise and ambiguous information. For example,
supposing two decision makers (or experts) discuss the membership degree of an
element x to a set A, one wants to assign [0.3, 0.5] and the other wants to assign
[0.6, 0.7]. They cannot reach consensus. In such a circumstance, the degree can be
represented by an IVHFE {[0.3, 0.5], [0.6, 0.7]}. Furthermore, in a usual
interval-valued fuzzy logic, it is common to average these interval membership
degrees or take the smallest interval that contains all these interval degrees.
However, the IVHFE can keep all interval values proposed by the decision makers
(or experts). That is to say, potentially, it keeps more information about the decision
makers’ (or experts’) opinions, the information that is normally dismissed. It
therefore can give a better result in information aggregation.

It should be noted that when the upper and lower bounds of the interval values
are identical, the IVHFS becomes the HFS, indicating that the HFS is a special case
of the IVHFS. Moreover, when the membership degree of each element belonging
to a given set only has an interval value, the IVHFE reduces to the interval-valued
fuzzy number and the IVHFS becomes the interval-valued fuzzy set. We can
introduce some special IVHFEs, such as:

(1) Empty set: ~O� ¼ \x; ~h
ðxÞ[ jx 2 X
� �

; where ~h
ðxÞ ¼ 0; 0½ �f g; 8x 2 X:

(2) Full set: ~E� ¼ \x; ~h�ðxÞ[ jx 2 X
� �

; where ~h�ðxÞ ¼ 1; 1½ �f g; 8x 2 X:

(3) Complete ignorance (all is possible): ~U� ¼ \x; ~hðxÞ[ jx 2 X
� �

; where
~hðxÞ ¼ 0; 1½ �f g; 8x 2 X:

(4) Nonsense set: ~�� ¼ \x; ~hðxÞ[ jx 2 X
� �

; where ~hðxÞ ¼ �, 8x 2 X:
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Chen et al. (2013b) defined some operations on IVHFEs through the connection
between IVHFEs and HFEs.

Definition 1.16 (Chen et al. 2013b). Let ~h; ~h1 and ~h2 be three IVHFEs, then

(1) ~hc ¼ ½1� ~cU ; 1� ~cL� ~c 2 ~h
		� �

:

(2) ~h1 [ ~h2 ¼ ½max ~cL1 ;~c
L
2


 �
;max ~cU1 ;~c

U
2


 �� ~c1 2 ~h1;~c2 2 ~h2
		� �

:

(3) ~h1 \ ~h2 ¼ ½min ~cL1 ;~c
L
2


 �
;min ~cU1 ;~c

U
2


 �� ~c1 2 ~h1;~c2 2 ~h2
		� �

:

(4) ~hk ¼ ½ð~cLÞk; ð~cUÞk� ~c 2 ~h
		n o

; k[ 0:

(5) k~h ¼ ½1� ð1� ~cLÞk; 1� ð1� ~cUÞk� ~c 2 ~h
		n o

; k[ 0:

(6) ~h1 	 ~h2 ¼ ½~cL1 þ~cL2 � ~cL1 � ~cL2 ; ~cU1 þ~cU2 � ~cU1 � ~cU2 � ~c1 2 ~h1;~c2 2 ~h2
		� �

:

(7) ~h1 
 ~h2 ¼ ½~cL1 � ~cL2 ; ~cU1 � ~cU2 � ~c1 2 ~h1;~c2 2 ~h2
		� �

:

Example 1.8 (Chen and Xu 2014). Suppose there are three IVHFEs ~h1 ¼
0:4; 0:6½ �f g; ~h2 ¼ 0:2; 0:3½ �; 0:5; 0:7½ �; 0:6; 0:8½ �f g; ~h3 ¼ 0:3; 0:4½ �; 0:7; 0:8½ �f g:

Let k ¼ 2; then we have

ð1Þ ~hc3 ¼ 1� ~cU3 ; 1� ~cL3
� �

~c3 2 ~h3
		� �

¼ 1� 0:8; 1� 0:7½ �; 1� 0:4; 1� 0:3½ �f g ¼ 0:2; 0:3½ �; 0:6; 0:7½ �f g:

ð2Þ ~h1 [ ~h2 ¼ max ~cL1 ;~c
L
2


 �
;max ~cU1 ;~c

U
2


 �� �
~c1 2 ~h1;~c2 2 ~h2
		� �

¼ max 0:4; 0:2ð Þ;max 0:6; 0:3ð Þ½ �; max 0:4; 0:5ð Þ;max 0:6; 0:7ð Þ½ �;f
max 0:4; 0:6ð Þ;max 0:6; 0:8ð Þ½ �g

¼ 0:4; 0:6½ �; 0:5; 0:7½ �; 0:6; 0:8½ �f g:

ð3Þ ~h1 \ ~h2 ¼ min ~cL1 ;~c
L
2


 �
;min ~cU1 ;~c

U
2


 �� �
~c1 2 ~h1;~c2 2 ~h2
		� �

¼ min 0:4; 0:2ð Þ;min 0:6; 0:3ð Þ½ �; min 0:4; 0:5ð Þ;min 0:6; 0:7ð Þ½ �;f
min 0:4; 0:6ð Þ;min 0:6; 0:8ð Þ½ �

¼ 0:2; 0:3½ �; 0:4; 0:6½ �f g
Noted that the symbol “{}” means the set of interval-valued numbers.

Considering that any two elements in a set must be different, the repeated elements
are thus deleted.

ð4Þ ~h1 	 ~h2 ¼ ~cL1 þ~cL2 � ~cL1 � ~cL2 ; ~cU1 þ~cU2 � ~cU1 � ~cU2
� �

~c1 2 ~h1;~c2 2 ~h2
		� �

¼ 0:4þ 0:2� 0:4 � 0:2; 0:6þ 0:3� 0:6 � 0:3½ �; 0:4þ 0:5� 0:4 � 0:5; 0:6þ 0:7� 0:6 � 0:7½ �f ;

0:4þ 0:6� 0:4 � 0:6; 0:6þ 0:8� 0:6 � 0:8½ �g
¼ 0:52; 0:72½ �; 0:7; 0:88½ �; 0:76; 0:92½ �f g:

16 1 Hesitant Fuzzy Set and Its Extensions



ð5Þ ~h1 
 ~h2 ¼ ~cL1 � ~cL2 ; ~cU1 � ~cU2
� �

~c1 2 ~h1;~c2 2 ~h2
		� �

¼ 0:4 � 0:2 ; 0:6 � 0:3½ �; 0:4 � 0:5 ; 0:6 � 0:7½ �f ; 0:4 � 0:6 ; 0:6 � 0:8½ �g
¼ 0:08; 0:18½ �; 0:2; 0:42½ �f ; 0:24; 0:48½ �g:

ð6Þ k~h3 ¼ 1� ð1� ~cL3Þ2; 1� ð1� ~cU3 Þ2
h i

~c3 2 ~h3
		n o

¼ 1� 1� 0:3ð Þ2; 1� 1� 0:4ð Þ2
h i

; 1� 1� 0:7ð Þ2; 1� 1� 0:8ð Þ2
h in o

¼ 0:51; 0:64½ �; 0:91; 0:96½ �f g:

ð7Þ ~h23 ¼ ð~cL3Þ2; ð~cU3 Þ2
h i

~c3 2 ~h3
		n o

¼ ð0:3Þ2; ð0:4Þ2
h i

; ð0:7Þ2; ð0:8Þ2
h in o

¼ 0:09; 0:16½ �; 0:49; 0:64½ �f g:

It is pointed out that if ~cL ¼ ~cU , then the operations in Definition 1.16 reduce to
those of HFEs.

Theorem 1.9 (Chen and Xu 2014). Let ~h be an IVHFE and k; k1; k2 [ 0; then

(1) ~h[ ~h ¼ ~h; ~h\ ~h ¼ ~h:
(2) ~h[ ~h
 ¼ ~h; ~h\ ~h
 ¼ ~h
.
(3) ~h[ ~h� ¼ ~h�, ~h\ ~h� ¼ ~h:
(4) ~h	 ~h
 ¼ ~h; ~h
 ~h
 ¼ ~h
.
(5) ~h	 ~h� ¼ ~h�, ~h
 ~h� ¼ ~h:
(6) k~h
 ¼ ~h
, k~h� ¼ ~h�.

(7) ~h


 �k¼ ~h
, ~h�


 �k¼ ~h�.

(8) ~hk1

 �k2¼ ~hk2


 �k1¼ ~hk1k2 , k2 k1~h

 � ¼ k1 k2~h


 � ¼ k1k2ð Þ~h:

Theorem 1.10 (Chen and Xu 2014). Let ~h1, ~h2 and ~h3 be three IVHFEs, then

(1) ~h1 [ ~h2 ¼ ~h2 [ ~h1.
(2) ~h1 \ ~h2 ¼ ~h2 \ ~h1.
(3) ~h1 \ ð~h2 \ ~h3Þ ¼ ð~h1 \ ~h2Þ \ ~h3.
(4) ~h1 [ ð~h2 [ ~h3Þ ¼ ð~h1 [ ~h2Þ [ ~h3.
(5) ~h1 	 ð~h2 	 ~h3Þ ¼ ð~h1 	 ~h2Þ 	 ~h3.
(6) ~h1 
 ð~h2 
 ~h3Þ ¼ ð~h1 
 ~h2Þ 
 ~h3.
(7) ~h1 \ ð~h2 [ ~h3Þ ¼ ~h1 \ ~h2


 �[ ~h1 \ ~h3

 �

:

(8) ~h1 [ ð~h2 \ ~h3Þ ¼ ~h1 [ ~h2

 �\ ~h1 [ ~h3


 �
:
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Theorem 1.11 (Chen and Xu 2014). Let ~h1 and ~h2 be two IVHFEs, then

(1) ~h1 \ ð~h1 [ ~h2Þ ¼ ~h1.
(2) ~h1 [ ~h1 \ ~h2


 � ¼ ~h1.

Theorem 1.12 (Chen and Xu 2014). Let ~h1 and ~h2 be two IVHFEs and k[ 0; then

(1) kð~h1 [ ~h2Þ ¼ k~h1 [ k~h2.
(2) kð~h1 \ ~h2Þ ¼ k~h1 \ k~h2.
(3) ð~h1 [ ~h2Þk ¼ ~hk1 [ ~hk2.

(4) ð~h1 \ ~h2Þk ¼ ~hk1 \ ~hk2.

Theorem 1.13 (Chen et al. 2013b). Let ~h; ~h1 and ~h2 be three IVHFEs, we have

(1) ~h1 	 ~h2 ¼ ~h2 	 ~h1.
(2) ~h1 
 ~h2 ¼ ~h2 
 ~h1.
(3) kð~h1 	 ~h2Þ ¼ k~h1 	 k~h2, k[ 0:
(4) ð~h1 
 ~h2Þk ¼ ~hk1 
 ~hk2, k[ 0:
(5) k1~h	 k2~h ¼ ðk1 þ k2Þ~h; k1; k2 [ 0:
(6) ~hk1 
 ~hk2 ¼ ~hðk1 þ k2Þ, k1; k2 [ 0:

Proof For three IVHFEs ~h; ~h1 and ~h2, we have

(1) ~h1 	 ~h2 ¼ ½~cL1 þ~cL2 � ~cL1 � ~cL2 ; ~cU1 þ~cU2 � ~cU1 � ~cU2 � ~c1 2 ~h1;~c2 2 ~h2
		� �

¼ ½~cL2 þ~cL1 � ~cL2 � ~cL1 ; ~cU2 þ~cU1 � ~cU2 � ~cU1 � ~c1 2 ~h1;~c2 2 ~h2
		� �

¼ ~h2 	 ~h1

.

ð2Þ ~h1 
 ~h2 ¼ ½~cL1 � ~cL1 ; ~cU1 � ~cU1 � ~c1 2 ~h1;~c2 2 ~h2
		� �

¼ ½~cL2 � ~cL1 ; ~cU2 � ~cU2 � ~c1 2 ~h1;~c2 2 ~h2
		� � ¼ ~h2 
 ~h1:

ð3Þ kð~h1 	 ~h2Þ ¼ ½1� ð1� ð~cL1 þ~cL2 � ~cL1 � ~cL2ÞÞk; 1� ð1� ð~cU1 þ~cU2 � ~cU1 � ~cU2 ÞÞk� ~c1 2 ~h1;~c2 2 ~h2
		n o

¼ ½1� ð1� ~cL1Þkð1� ~cL2Þk; 1� ð1� ~cU1 Þkð1� ~cU2 Þk� ~c1 2 ~h1;~c2 2 ~h2
		n o

¼ ½1� ð1� ~cL1Þkþ 1� ð1� ~cL2Þk � ð1� ð1� ~cL1ÞkÞð1� ð1� ~cL2ÞkÞ;
n
1� ð1� ~cU1 Þk þ 1� ð1� ~cU2 Þk � ð1� ð1� ~cU1 ÞkÞð1� ð1� ~cU2 ÞkÞ� ~c1 2 ~h1;~c2 2 ~h2

		 o
¼ k~h1 	 k~h2:
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ð4Þ ð~h1 
 ~h2Þk ¼ ½ð~cL1 � ~cL2Þk; ð~cU1 � ~cU2 Þk� ~c1 2 ~h1;~c2 2 ~h2
		n o

¼ ½ð~cL1Þk � ð~cL2Þk; ð~cU1 Þk � ð~cU2 Þk� ~c1 2 ~h1;~c2 2 ~h2
		n o

¼ ~hk1 
 ~hk2:

ð5Þ k1~h	 k2~h ¼ ½1� ð1� ~cLÞk1 þ 1� ð1� ~cLÞk2 � ð1� ð1� ~cLÞk1Þð1� ð1� ~cLÞk2Þ;
n
1� ð1� ~cUÞk1 þ 1� ð1� ~cUÞk2 � ð1� ð1� ~cUÞk1Þð1� ð1� ~cUÞk2Þ� ~c 2 ~h

		 o
¼ ½1� ð1� ~cLÞk1ð1� ~cLÞk2 ; 1� ð1� ~cUÞk1ð1� ~cUÞk2 � ~c 2 ~h

		n o
¼ ½1� ð1� ~cLÞk1 þ k2 ; 1� ð1� ~cUÞk1 þ k2 � ~c 2 ~h

		n o
¼ ðk1þ k2Þ~h:

(6) ~hk1 
 ~hk2 ¼ ½ð~cLÞk1 � ð~cLÞk2 ; ð~cUÞk1 � ð~cUÞk2 � ~c 2 ~h
		n o

¼ ½ð~cLÞk1 þ k2 ; ð~cUÞk1 þ k2 � ~c 2 ~h
		n o

¼ ~hðk1 þ k2Þ:h
:

This completes the proof.
The relationships between the defined operations on IVHFEs are given in

Theorem 1.14.

Theorem 1.14 (Chen et al. 2013b). For three IVHFEs ~h; ~h1 and ~h2, we have

(1) ~hc1 [ ~hc2 ¼ ~h1 \ ~h2

 �c

.

(2) ~hc1 \ ~hc2 ¼ ~h1 [ ~h2

 �c

.

(3) ð~hcÞk ¼ ðk~hÞc.
(4) kð~hcÞ ¼ ð~hkÞc.
(5) ~hc1 	 ~hc2 ¼ ~h1 
 ~h2


 �c
.

(6) ~hc1 
 ~hc2 ¼ ~h1 	 ~h2

 �c

.

Proof For three IVHFEs ~h; ~h1 and ~h2, we have

ð1Þ ~hc1 [ ~hc2 ¼ maxð1� ~cU1 ; 1� ~cU2 Þ;maxð1� ~cL1 ; 1� ~cL2Þ
� �

~c1 2 h1;~c2 2 h2j� �
¼ 1�minð~cU1 ;~cU2 Þ; 1�minð~cL1 ;~cL2Þ

� �
~c1 2 h1;~c2 2 h2j� � ¼ ð~h1 \ ~h2Þc:

ð2Þ ~hc1 \ ~hc2 ¼ minð1� ~cU1 ; 1� ~cU2 Þ;minð1� ~cL1 ; 1� ~cL2Þ
� �

~c1 2 h1;~c2 2 h2j� �
¼ 1�maxð~cU1 ;~cU2 Þ; 1�maxð~cL1 ;~cL1Þ

� �
~c1 2 h1;~c2 2 h2j� � ¼ ð~h1 [ ~h2Þc:

ð3Þ ð~hcÞk ¼ ð1� ~cUÞk; ð1� ~cLÞk
h i

~c 2 ~h
		n o

¼ 1� ð1� ~cLÞk; 1� ð1� ~cUÞk
h i

~c 2 ~h
		n oC

¼ ðk~hÞc:
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ð4Þ k~hc ¼ k 1� ~cU ; 1� ~cL
� �

~c 2 ~h
		� � ¼ 1� ð1� ð1� ~cUÞÞk; 1� ð1� ð1� ~cLÞÞk

h i
~c 2 ~h
		n o

¼ 1� ð~cUÞk; 1� ð~cLÞk
h i

~c 2 ~h
		n o

¼ ð~hkÞc:

ð5Þ ~hc1 	 ~hc2 ¼ ð1� ~cU1 Þþ ð1� ~cU2 Þ � ð1� ~cU1 Þð1� ~cU2 Þ;
��

ð1� ~cL1Þþ ð1� ~cL2Þ � ð1� ~cL1Þð1� ~cL2Þ
�
~c1 2 ~h1;~c2 2 ~h2
		 �

¼ 1� ~cU1 � ~cU2 ; 1� ~cL1 � ~cL2
� �

~c1 2 ~h1;~c2 2 ~h2
		� � ¼ ~h1 
 ~h2


 �c
:

ð6Þ ~hc1 
 ~hc2 ¼ ð1� ~cU1 Þð1� ~cU2 Þ; ð1� ~cL1Þð1� ~cL2Þ
� �

~c1 2 ~h1;~c2 2 ~h2
		� �

¼ 1� ð~cU1 þ~cU2 � ~cU1 � ~cU2 Þ; 1� ð~cL1 þ~cL2 � ~cL1 � ~cL2Þ
� �

~c1 2 ~h1;~c2 2 ~h2
		� � ¼ ~h1 	 ~h2


 �c
:h

This completes the proof.
Since the number of interval values for different IVHFEs could be different and

the interval values are usually out of order, we arrange them in any order using
Eq. (1.23). To facilitate the calculation between two IVHFEs, we let l ¼
maxfl~a; l~bg with l~a and l~b being the number of intervals in the IVHFEs ~a and ~b: To
operate correctly, we give the following regulation: when l~a 6¼l~b, we can make them
equivalent through adding elements to the IVHFE that has a less number of ele-
ments. In terms of pessimistic principles, the smallest element can be added while
the opposite case will be adopted following optimistic principles. In this study we
adopt the latter. Specifically, if l~a\l~b, then ~a should be extended by adding the

maximum value in it until it has the same length as ~b; if l~a [ l~b, then
~b should be

extended by adding the maximum value in it until it has the same length as ~a:

Definition 1.17 (Xu and Da 2002). Let ~a ¼ ½~aL; ~aU � and ~b ¼ ½~bL; ~bU � be two
interval numbers, and k� 0; then

(1) ~a ¼ ~b , ~aL ¼ ~bL and ~aU ¼ ~bU .
(2) ~aþ ~b ¼ ½~aL þ ~bL; ~aU þ ~bU �:
(3) k~a ¼ ½k~aL; k~aU �; especially, k~a ¼ 0; if k ¼ 0:

The possibility degree is proposed to compare two interval numbers:

Definition 1.18 (Xu and Da 2002). Let ~a ¼ ½~aL; ~aU � and ~b ¼ ½~bL; ~bU �; and let l~a ¼
~aU � ~aL and l~b ¼ ~bU � ~bL. Then the degree of possibility of ~a� ~b is formulated by

pð~a� ~bÞ ¼ max 1�max
~bU � ~aL

l~a þ l~b
; 0

� �
; 0

� 

ð1:23Þ

The score function for IVHFEs is defined as follows:
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Definition 1.19 (Chen et al. 2013b). For an IVHFE ~h;

sð~hÞ ¼ 1
l~h

X
~c2~h ~c ð1:24Þ

is called the score function of ~h with l~h being the number of interval values in ~h; and
sð~hÞ is an interval value belonging to [0, 1]. For two IVHFEs ~h1 and ~h2, if
sð~h1Þ� sð~h2Þ; then ~h1 � ~h2.

Note that we can compare two scores using Eq. (1.23). Moreover, with
Definition 1.19, we can compare two IVHFEs.

1.2.2 Dual Hesitant Fuzzy Set

Zhu et al. (2012) defined the dual hesitant fuzzy set in terms of two functions that
return two sets of membership values and nonmembership values respectively for
each element in the domain:

Definition 1.20 (Zhu et al. 2012). Let X be a fixed set, then a dual hesitant fuzzy
set (DHFS) D on X is described as:

D ¼ f\x; hAðxÞ; gAðxÞ[ jx 2 Xg ð1:25Þ

in which hAðxÞ and gAðxÞ are two sets of some values in ½0; 1�; denoting the possible
membership degrees and nonmembership degrees of the element x 2 X to the set
A � X respectively, with the conditions:

0� c; g� 1; 0� cþ þ gþ � 1; ð1:26Þ

where c 2 hAðxÞ; g 2 gAðxÞ; cþ 2 hþ ðxÞ ¼ [ c2hAðxÞmaxfcg, and gþ 2 gþ ðxÞ ¼
[ g2gAðxÞmaxfgg for all x 2 X: For convenience, the pair dAðxÞ ¼ ðhAðxÞ; gAðxÞÞ is
called a dual hesitant fuzzy element (DHFE) denoted by d ¼ ðh; gÞ; with the
conditions: c 2 h; g 2 g; cþ 2 hþ ¼[ c2hmaxfcg, gþ 2 gþ ¼ [ g2gmaxfgg,
0� c; g� 1 and 0� cþ þ gþ � 1:

There are some special DHFEs:

(1) Complete uncertainty: d ¼ ðf0g; f1gÞ:
(2) Complete certainty: d ¼ ðf1g; f0gÞ:
(3) Complete ill-known (all is possible): d ¼ ½0; 1�:
(4) Nonsense element: d ¼ �, i.e., h ¼ �; g ¼ �.

For a given d 6¼ �, if h and g have only one value c and g respectively, and
cþ g\1; then the DHFS reduces to an IFS. If h and g have only one value c and g
respectively, and cþ g ¼ 1; or h owns one value, and g ¼ �, then the DHFS
reduces to a fuzzy set. If g ¼ � and h 6¼ �, then the DHFS reduces to a HFS.
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Hence, the DHFS encompasses the fuzzy set, the IFS, and the HFS as special cases.
DHFS consists of two parts, i.e., the membership hesitancy function and the
non-membership hesitancy function, which confront several different possible
values indicating the cognitive degrees whether certainty or uncertainty. As we all
know, when the decision makers provide their judgments over the objects, the more
the information they take into account, the more the values we will obtain from the
decision makers. As the DHFS can reflect the original information given by the
decision makers as much as possible, it can be regarded as a more comprehensive
set supporting a more flexible approach.

For simplicity, let c� 2 h� ¼ [ c2hðxÞminfcg, g� 2 g� ¼ [ g2gðxÞminfgg. cþ
and gþ are defined as above. For a typical DHFS, h and g can be represented by
two intervals as:

h ¼ ½c�; cþ �; g ¼ ½g�; gþ � ð1:27Þ

Based on Definition 1.4, there is a transformation between IFN and HFE, we can
also transform g to the second HFE h2ðxÞ ¼ ½1� gþ ; 1� g�� denoting the possible
membership degrees of the element x 2 X to the set A � X: In this way, both h and
h2 indicate the membership degrees. As such, we can use a “nested interval” to
represent dðxÞ as:

d ¼ ½½c�; cþ �; ½1� gþ ; 1� g��� ð1:28Þ

The common ground of these sets is to reflect fuzzy degrees to an object,
according to either fuzzy numbers or interval-valued fuzzy numbers. Therefore, we
use nonempty closed interval as a uniform framework to represent a DHFE d;
which is divided into different cases as follows:

d ¼

�; if g ¼ � and h ¼ �
ðcÞ if g ¼ � and h 6¼ �; c� ¼ cþ ¼ c

if g 6¼ � and h 6¼ �; c� ¼ cþ ¼ c ¼ 1� g� ¼ 1� gþ¼ 1� g

�
ð1� gÞ; if g 6¼ � and h ¼ �; g� ¼ gþ ¼ g

*

½c�; cþ �; if g ¼ � and h 6¼ �; c� 6¼ cþ

½1� gþ ; 1� g��; if g 6¼ � and h ¼ �; g� 6¼ gþ

�
c; ½1� gþ ; 1� g��½ �; if g 6¼ � and h 6¼ �; g� 6¼ gþ ; c� ¼ cþ ¼ c
½c�; cþ �; g½ �; if g 6¼ � and h 6¼ �; c� 6¼ cþ ; g� ¼ gþ ¼ g

�
½c�; cþ �; ½1� gþ ; 1� g��½ �; if g 6¼ � and h 6¼ �; g� 6¼ gþ ; c� 6¼ cþ

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð1:29Þ

Equation (1.29) reflects the connections between DHFS and other types of fuzzy
set extensions. The merit of DHFS is more flexible to be valued in multifold ways
according to the practical demands than the existing sets, taking into account much
more information given by decision makers.

The complement of the DHFS can be defined regarding to different situations.
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Definition 1.21 (Zhu et al. 2012). Given a DHFE represented by the function d;
and d 6¼ �, its complement is defined as:

dc ¼
ð[ g2gfgg; [ c2hfcgÞ; if g 6¼ � and h 6¼ �
ð [ c2hf1� cg; f�gÞ; if g ¼ � and h 6¼ �
ðf�g; [ g2gf1� ggÞ; if h ¼ � and g 6¼ �

8<
: ð1:30Þ

Apparently, the complement can be correspondingly represented as ðdcÞc ¼ d:
For two DHFSs d1 and d2, the corresponding lower and upper bounds to h and g

are h�, hþ , g� and gþ , respectively, where h� ¼ [ c2hminfcg,
hþ ¼ [ c2hmaxfcg, g� ¼ [ g2gminfgg, and gþ ¼ [ g2gmax gf g: Then the union
and intersection of DHFSs can be defined as follows:

Definition 1.22 (Zhu et al. 2012). Let d1 and d2 be two DHFEs. Then,

(1) d1 [ d2 ¼ ðfh 2 ðh1 [ h2Þjh�maxðh�1 ; h�2 Þg; fg 2 ðg1 \ g2Þjg�minðgþ
1 ; gþ

2 ÞgÞ:
(2) d1 \ d2 ¼ ðfh 2 ðh1 \ h2Þjh�minðhþ

1 ; hþ
2 Þg; fg 2 ðg1 [ g2Þjg�maxðg�1 ; g�2 ÞgÞ:

Example 1.9 (Zhu et al. 2012). Let d1 ¼ ðf0:1; 0:3; 0:4g; f0:3; 0:5gÞ and d2 ¼
ðf0:2; 0:5g; f0:1; 0:2; 0:4gÞ be two DHFEs, then we have

(1) Complement: dc1 ¼ ðf0:3; 0:5g; f0:1; 0:3; 0:4gÞ:
(2) Union: d1 [ d2 ¼ ðf0; 2; 0:3; 0:4; 0:5g; f0:1; 0:2; 0:3; 0:4gÞ:
(3) Intersection: d1 \ d2 ¼ ðf0; 1; 0:2; 0:3; 0:4g; f0:3; 0:4; 0:5gÞ:

Definition 1.23 (Zhu et al. 2012). For two DHFEs d1 and d2, let n be a positive
integer, then the following operations are valid:

ð1Þ d1 	 d2 ¼ ðhd1 	 hd2 ; gd1 
 gd2Þ
¼ ð[ cd12hd1 ;cd22hd2 fcd1 þ cd2 � cd1cd2g; [ gd12gd1 ;gd22gd2 fgd1gd2gÞ:

ð2Þ d1 
 d2 ¼ ðhd1 
 hd2 ; gd1 	 gd2Þ
¼ ð[ cd12hd1 ;cd22hd2 fcd1cd2g; [ gd12gd1 ;gd22gd2fgd1 þ gd2 � gd1gd2gÞ:

(3) nd ¼ ð[ cd2hdf1� ð1� cdÞng; [ gd2gdfðgdÞngÞ:
(4) dn ¼ ð[ cd2hdfðcdÞng; [ gd2gdf1� ð1� gdÞngÞ:

Theorem 1.15 (Zhu et al. 2012). Let d; d1 and d2 be any three DHFEs, k� 0;
then

(1) d1 	 d2 ¼ d2 	 d1.
(2) d1 
 d2 ¼ d2 
 d1.
(3) kðd1 
 d2Þ ¼ kd1 
 kd2.
(4) ðd1 
 d2Þk ¼ dk1 
 dk2.
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It is noted that the above operations for DHFEs are based on the Algebraic
t-conorm and t-norm. In fact, there are various types of t-conorm and t-norm. If we
replace the Algebraic t-conorm and t-norm in the above operations for DHFEs with
other forms of t-conorm and t-norm, we shall get more operational methods for
DHFEs. For example, the Einstein t-conorm and t-norm are given as:

SEðx; yÞ ¼ xþ y
1þ xy

; TEðx; yÞ ¼ xy
1þð1� xÞð1� yÞ ð1:31Þ

Based on the Einstein t-conorm and t-norm, Zhao et al. (2015) defined the
Einstein sum and the Einstein product of DHFEs as follows:

Definition 1.24 (Zhao et al. 2016a). For any two DHFEs d1 ¼ ðh1; g1Þ and d2 ¼
ðh2; g2Þ; we have

ð1Þ d1 _	d2 ¼ ð[ c
1
2h1 ;c22h2f

c
1
þ c

2

1þ c
1
c
2

g; [ g
1
2g1 ;g22g2 f

g
1
g

2

1þð1� g
1
Þð1� g

2
ÞgÞ:

ð2Þ d1 _
d2 ¼ ð[ c
1
2h1 ;c22h2f

c
1
c
2

1þð1� c
1
Þð1� c

2
Þg; [ g

1
2g1 ;g22g2 f

g
1
þ g

2

1þ g
1
g

2

gÞ:

To get the Einstein scalar multiplication and the Einstein power for DHFEs, the
following theorems are introduced:

Theorem 1.16 (Zhao et al. 2016a). Let d ¼ ðh; gÞ be a DHFE, and n be any
positive real number, then

nd ¼ ð[ c2hfð1þ cÞn � ð1� cÞn
ð1þ cÞn þð1� cÞng; [ g2gf 2gn

ð2� gÞn þ gn
gÞ ð1:32Þ

where nd ¼ d _	d _	 � � � _	d
zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{n

: Moreover, nd is a DHFE.

Proof We use mathematical induction to prove that Eq. (1.32) holds for the pos-
itive integer n:

(1) For n ¼ 1; it is obvious that Eq. (1.32) holds.
(2) Assume Eq. (1.32) holds for n ¼ k: Then for n ¼ kþ 1; we have

ðkþ 1Þd ¼ kd _	d ¼ ð[ c2hfð1þ cÞk � ð1� cÞk
ð1þ cÞk þð1� cÞkg; [ g2gf 2gk

ð2� gÞk þ gk
gÞ _	ð[ c2hfcg; [ g2gfggÞ

¼ ð[ c2hf
ð1þ cÞk�ð1�cÞk
ð1þ cÞk þ ð1�cÞk þ c

1þ ð1þ cÞk�ð1�cÞk
ð1þ cÞk þð1�cÞk c

g; [ g2gf
2gk

ð2�gÞk þ gk
g

1þð1� 2gk

ð2�gÞk þ gk
Þð1� gÞ

gÞ

¼ ð[ c2hfð1þ cÞkþ 1 � ð1� cÞkþ 1

ð1þ cÞkþ 1 þð1� cÞkþ 1g; [ g2gf 2gkþ 1

ð2� gÞkþ 1 þ gkþ 1
gÞ

Thus, Eq. (1.32) holds for n ¼ kþ 1:
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In the following, we prove that Theorem 1.16 holds when n is a positive real
number.

Since 0� c� 1; 0� g� 1; 1� 2� g� 2; and 1� c� g� 0; 1� g� c� 0;
obviously, we have

0� ð1þ cÞn � ð1� cÞn
ð1þ cÞn þð1� cÞn � 1 ð1:33Þ

0� 2gn

ð2� gÞn þ gn
� 1 ð1:34Þ

0� ð1þ cÞn � ð1� cÞn
ð1þ cÞn þð1� cÞn � ð1þ cÞn � ð1� cÞn

ð1þ cÞn þ gn
� ð1þ cÞn � gn

ð1þ cÞn þ gn
ð1:35Þ

0� 2gn

ð2� gÞn þ gn
¼ 2gn

ð1þð1� gÞÞn þ gn
� 2gn

ð1þð1� gÞÞn þ gn
� 2gn

ð1þ cÞn þ gn

ð1:36Þ

From Eqs. (1.35) and (1.36), we have

0� ð1þ cÞn � ð1� cÞn
ð1þ cÞn þð1� cÞn þ 2gn

ð2� gÞn þ gn
� 1 ð1:37Þ

Combining Eqs. (1.33), (1.34) and (1.37), we know that the DHFE nd is a
DHFE for any positive real number n. This completes the proof of Theorem 1.16.

Theorem 1.17 (Zhao et al. 2016a). Let d ¼ ðh; gÞ be a DHFE, and n be any
positive real number, then

dn ¼ ð[ c2hf 2cn

ð2� cÞn þ cn
g; [ g2gfð1þ gÞn � ð1� gÞn

ð1þ gÞn þð1� gÞngÞ ð1:38Þ

where dn ¼ d _
d _
 � � � _
d
zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{n

; and dn is a DHFE.
Based on Theorems 1.16 and 1.17, the Einstein scalar multiplication and the

Einstein power of DHFE can be defined:

Definition 1.25 (Zhao et al. 2016a). Let d ¼ ðh; gÞ be a DHFE, k[ 0; then

(1) kd ¼ ð[ c2hfð1þ cÞk�ð1�cÞk
ð1þ cÞk þð1�cÞkg; [ g2gf 2gk

ð2�gÞk þ gk
gÞ:

(2) dk ¼ ð[ c2hf 2ck

ð2�cÞk þ ck
g; [ g2gf ð1þ gÞk�ð1�gÞk

ð1þ gÞk þð1�gÞkgÞ:
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Theorem 1.18 (Zhao et al. 2016a). Let d; d1 and d2 be any three DHFEs, k[ 0;
then

(1) d1 _	d2 ¼ d2 _	d1.
(2) d1 _
d2 ¼ d2 _
d1.
(3) kðd1 _	d2Þ ¼ kd1 _	kd2.
(4) ðd1 _
d2Þk ¼ dk1 _
dk2 .
(5) k1d _	k2d ¼ ðk1 _	k2Þd:
(6) dk1 _
dk2 ¼ dk1 þ k2 .

Proof (1) and (2) are obvious. We prove (3) and (5), while (4) and (6) can be
proven similarly.

(3) kðd1 _	d2Þ ¼ kð [ c
1
2h1 ;c22h2f

c
1
þ c

2

1þ c
1
c
2

g; [ g
1
2g1 ;g22g2 f

g
1
g

2

1þð1� g
1
Þð1� g

2
ÞgÞ

¼ ð[ c
1
2h1 ;c22h2f

ð1þ c
1
þ c

2
1þ c

1
c
2
Þk � ð1� c

1
þ c

2
1þ c

1
c
2
Þk

ð1þ c
1
þ c

2
1þ c

1
c
2
Þk þð1� c

1
þ c

2
1þ c

1
c
2
Þk
g;

[ g
1
2g1 ;g22g2 f

2ð g
1
g
2

1þð1�g
1
Þð1�g

2
ÞÞk

ð2� g
1
g
2

1þð1�g
1
Þð1�g

2
ÞÞk þð g

1
g
2

1þð1�g
1
Þð1�g

2
ÞÞk

gÞ

¼ ð[ c
1
2h1 ;c22h2f

ð1þ c
1
Þkð1þ c

2
Þk � ð1� c

1
Þkð1� c

2
Þk

ð1þ c
1
Þkð1þ c

2
Þk þð1� c

1
Þkð1� c

2
Þk
g;

[ g
1
2g1 ;g22g2 f

2ðg
1
g

2
Þk

ð2� g
1
Þkð2� g

2
Þk þðg

1
g

2
Þk
gÞ

kd1 _	kd2 ¼ ð[ c12h1f
ð1þ c1Þk � ð1� c1Þk
ð1þ c1Þkþ ð1� c1Þk
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Thus, kðd1 _	d2Þ ¼ kd1 _	kd2.

ð5Þ k1d _	k2d ¼ ð[ c2hfð1þ cÞk1 � ð1� cÞk1
ð1þ cÞk1 þð1� cÞk1

g; [ g2gf 2gk1

ð2� gÞk1 þ gk1
gÞ

_	ð[ c2hfð1þ cÞk2 � ð1� cÞk2
ð1þ cÞk2 þð1� cÞk2

g; [ g2gf 2gk2

ð2� gÞk2 þ gk2
gÞ

¼ ð[ c2hf
ð1þ cÞk1�ð1�cÞk1
ð1þ cÞk1 þð1�cÞk1 þ

ð1þ cÞk2�ð1�cÞk2
ð1þ cÞk2 þð1�cÞk2

1þ ð1þ cÞk1�ð1�cÞk1
ð1þ cÞk1 þð1�cÞk1

ð1þ cÞk2�ð1�cÞk2
ð1þ cÞk2 þð1�cÞk2

g;

[ g2gf
2gk1

ð2�gÞk1 þ gk1
2gk2

ð2�gÞk2 þ gk2

1þð1� 2gk1

ð2�gÞk1 þ gk1
Þð1� 2gk2

ð2�gÞk2 þ gk2
Þ
gÞ

¼ ð[ c2hfð1þ cÞk1 þ k2 � ð1� cÞk1 þ k2

ð1þ cÞk1 þ k2 þð1� cÞk1 þ k2
g;

[ g2gf 2gk1 þ k2

ð2� gÞk1 þ k2 þ gk1 þ k2
gÞ ¼ ðk1 _	k2Þd:

Thus, k1d _	k2d ¼ ðk1 _	k2Þd: This completes the proof.
To compare the DHFEs, inspired by the comparison method of HFEs, the fol-

lowing definition is given:

Definition 1.26 (Zhu et al. 2012). Let d ¼ fh; gg be any two DHFEs,

sðdÞ ¼ 1
lh

X
c2h

c� 1
lg

X
g2g

g ð1:39Þ

is called the score function of d; and

pðdÞ ¼ 1
lh

X
c2h

cþ 1
lg

X
g2g

g ð1:40Þ

is called the accuracy function of d; where lh and lg are the numbers of the elements
in h and g; respectively.

Based on the score function and accuracy function of DHFEs, the following
scheme is proposed to compare any two DHFEs d1 and d2:

(1) If sðd1Þ[ sðd2Þ, then d1 is superior to d2, denoted by d1 � d2.
(2) If sðd1Þ ¼ sðd2Þ, then

(a) if pðd1Þ ¼ pðd2Þ, then d1 is equivalent to d2, denoted by d1 � d2.
(b) If pðd1Þ[ pðd2Þ, then d1 is superior than d2, denoted by d1 � d2.
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Example 1.10 (Zhu et al. 2012). Let d1 ¼ ðf0:1; 0:3g; f0:3; 0:5gÞ and d2 ¼
ðf0:2; 0:4g; f0:4; 0:6gÞ be two DHFEs, then based on Definition 1.26, we obtain
sðd1Þ ¼ sðd2Þ ¼ 0; pðd2Þð¼ 0:8Þ[ pðd1Þð¼ 0:6Þ: Thus, d2 � d1.

1.2.3 Hesitant Fuzzy Linguistic Term Set

It is noted that the above mentioned different forms of fuzzy sets suit the problems
that are defined as quantitative situations. However, in real world decision making
problems, many aspects of different activities cannot be assessed in a quantitative
form, but rather in a qualitative one. Using linguistic information to express experts’
opinions is suitable and straightforward because it is very close to human’s cog-
nitive processes. A common approach to model linguistic information is the fuzzy
linguistic approach proposed by Zadeh (1975), which represents qualitative infor-
mation as linguistic variables. Although it is less precise than a number, the lin-
guistic variable, defined as “a variable whose values are not numbers but words or
sentences in a natural or artificial language”, enhances the flexibility and reliability
of decision making models and provides good results in different fields.
Nevertheless, similar to fuzzy sets, the fuzzy linguistic approach has some limita-
tions and thus different linguistic representation models have been introduced, such
as the 2-tuple fuzzy linguistic representation model (Herrera and Martínez 2000),
the linguistic model based on type-2 fuzzy set (Türkşen 2002), the virtual linguistic
model (Xu 2004a), the proportional 2-tuple model (Wang and Hao 2006), and so
on. However, all these extended models are still very limited due to the fact that
they are based on the elicitation of single or simple terms that should encompass
and describe the information provided by decision makers (or experts) regarding to
a linguistic variable. When the experts hesitate among different linguistic terms and
need to use a more complex linguistic term that is not usually defined in the
linguistic term set to depict their assessments, the above mentioned fuzzy linguistic
approaches are out of use. Thus, motivated by the HFS, Rodríguez et al. (2012)
proposed the concept of hesitant fuzzy linguistic term set (HFLTS), which provides
a different and great flexible form to represent the assessments of decision makers.

In fuzzy linguistic approach, the decision makers’ opinions are taken as the
values of a linguistic variable which is established by linguistic descriptors and their
corresponding semantics (Herrera and Herrera-Viedma 2000b). Once the experts
provide the linguistic evaluation information, the following step is to translate these
linguistic inputs into a machine manipulative format in which the computation can
be carried out. Such translation is conducted by some fuzzy tools. Meanwhile, the
outputs of the computing with words (CWW) model should also be easy to be
converted into the linguistic information. To do so, Xu (2005b) proposed the
subscript-symmetric additive linguistic term set, shown as
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S ¼ fstjt ¼ �s; . . .;�1; 0; 1; . . .; sg ð1:41Þ

where the mid linguistic label s0 represents an assessment of “indifference”, and the
rest of them are placed symmetrically around it. In particular, s�s and ss are the
lower and upper bounds of the linguistic labels used by the decision makers in
practical applications. s is a positive integer, and S satisfies the following
conditions:

(1) If a[ b, then sa [ sb;
(2) The negation operator is defined: neg ðsaÞ ¼ s�a, especially, neg ðs0Þ ¼ s0.

The linguistic term set S is a discrete linguistic term set and thus is not con-
venient for calculation and analysis. To preserve all given linguistic information,
Xu (2005b) extended the discrete linguistic term set to a continuous linguistic term
set �S ¼ fsaj a 2 ½�q; q�g, where qðq[ sÞ is a sufficiently large positive integer. In
general, the linguistic term sa(sa 2 SÞ is determined by the decision makers, and the
virtual linguistic term �sa(�sa 2 �SÞ only appears in computation. The virtual linguistic
term provides a tool to compute with the linguistic terms. The mapping between
virtual linguistic terms and their corresponding semantics is easy to build, shown as
Fig. 1.1 (Liao et al. 2014b).

As traditional fuzzy linguistic approach can only use single linguistic term, such
as “medium”, “high” or “a little high”, to represent the value of a linguistic variable
but cannot express complicated linguistic expressions such as “between medium
and high”, “at least a little high”, Rodríguez et al. (2012) introduced the concept of
HFLTS, which can be used to elicit several linguistic terms or linguistic expression
for a linguistic variable.

Definition 1.27 (Rodríguez et al. 2012). Let S ¼ fs0; . . .; ssg be a linguistic term
set. A HFLTS, HS, is an ordered finite subset of the consecutive linguistic terms of S:

Since Definition 1.27 does not give any mathematical form for HFLTS, Liao
et al. (2015a) redefined the HFLTS mathematically as follows, which is much easier
to be understood. Liao and Xu (2015c) also replaced the linguistic term set by the
subscript-symmetric linguistic term set S ¼ fstjt ¼ �s; . . .;�1; 0; 1; . . .; sg.

0 0.17 0.33 0.5 0.67 0.83 1

3s

none
− 2s

very low
− 1s

low
− 0s

medium
1s

high
2s

very high
3s

perfect

1.3s

0.551 0.881

1.6s−

0.068 0.399

Fig. 1.1 Semantics of virtual
linguistic terms
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Definition 1.28 (Liao et al. 2015a). Let x 2 X; be fixed and S ¼ fstjt ¼
�s; . . .;�1; 0; 1; . . .; sg be a linguistic term set. A HFLTS in X; HS, is in mathe-
matical terms of

HS ¼ f\x; hSðxÞ[ jx 2 Xg ð1:42Þ

where the function hSðxÞ : X ! S defines the possible membership grades of the
element x 2 X to the set A � X and for every x 2 X; the value of hSðxÞ is repre-
sented by a set of some values in the linguistic term set S and can be expressed as
hSðxÞ ¼ sul

ðxÞjsul
ðxÞ 2 S; l ¼ 1; . . .; LðxÞ� �

with ul 2 f�s; . . .;�1; 0; 1; . . .; sg
being the subscript of a linguistic term sul

ðxÞ and LðxÞ being the number of lin-
guistic terms in hSðxÞ:

For convenience, Liao et al. (2015a) called hSðxÞ the hesitant fuzzy linguistic
element (HFLE) and let HS be the set of all HFLEs on S: For simplicity, hSðxÞ;
sul

ðxÞ and LðxÞ can be written respectively as hS, sul
and L for short. There are

several special HFLEs, such as:

(1) empty HFLE: hS ¼ fg.
(2) full HFLE: hS ¼ S:
(3) the complement of HFLE hS: hcS ¼ S� hS ¼ sul

jsul
2 S and sul

62 hS
� �

:

Although the HFLTS can be used to elicit several linguistic values for a lin-
guistic variable, it is still not similar to the human way of thinking and reasoning.
Thus, Rodríguez et al. (2012) further proposed a context-free grammar to generate
simple but elaborated linguistic expressions ll that are more similar to the human
expressions and can be easily represented by means of HFLTS. The grammar GH is
a 4-tuple ðVN ;VT ; I;PÞ where VN is a set of nonterminal symbols, VT is the set of
terminals’ symbols, I is the starting symbols, and P is the production rules.

Definition 1.29 (Rodríguez et al. 2012). Let S be a linguistic term set, and GH be a
context-free grammar. The elements of GH ¼ ðVN ;VT ; I;PÞ are defined as:

VN ¼ f\primary term[;\composite term[;

\unary relation[;\binary relation[;\conjunction[ g
VT ¼ flower than; greater than; at least; at most; between;
I 2 VN ;
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P ¼ fI ::¼ \primary term[ j\composite term[
\composite term[ ::¼ \unary relation[\primary term[ j

\binary relation[\conjunction[\primary term[
\primary term[ ::¼ s�sj � � � js�1js0js1j � � � jss
\unary relation[ ::¼ lower thanjgreater than
\binary relation[ ::¼ between

\conjunction[ ::¼ andg:
Note: In the above definition, the brackets enclose optional elements and the

symbol “|” indicates alternative elements.
The expressions ll generated by the context-free grammar GH may be either

single valued linguistic terms st 2 S or linguistic expressions. The transformation
function EGH can be used to transform the expressions ll that are produced by GH

into HFLTS.

Definition 1.30 (Rodríguez et al. 2012). Let EGH be a function that transforms
linguistic expressions ll 2 Sll, obtained by using GH , into the HFLTS HS. S is the
linguistic term set used by GH , and Sll is the expression domain generated by GH :

EGH : Sll ! HS ð1:43Þ

The linguistic expression generated by GH using the production rules are con-
verted into HFLTS by means of the following transformations:

• EGH ðstÞ ¼ fstjst 2 Sg;
• EGH ðat most smÞ ¼ fstjst 2 S and st � smg;
• EGH ðlower than smÞ ¼ fstjst 2 S and st\smg;
• EGH ðat least smÞ ¼ fstjst 2 S and st � smg;
• EGH ðgreat than smÞ ¼ fstjst 2 S and st [ smg;
• EGH ðbetween sm and snÞ ¼ fstjst 2 S and sm � st � sng.

With the transformation function EGH defined as Definition 1.30, it is easy to
transform the initial linguistic expressions into HFLTS. Liao et al. (2015a) used a
figure (see Fig. 1.2) to show the relationships among the context-free grammar GH ,
the linguistic expression ll and the HFLTS HS.

Example 1.11 (Liao et al. 2015a). Quality management is more and more popular
in our daily life. In the process of quality management, many aspects of certain
products cannot be measured as crisp values but only qualitative values. Here we

Transformation 
function 

Context-free 
grammar 

Experts judgments
Lingusitic 

expressions 
HFLTS

ll

HG
HGE

SH

Fig. 1.2 The way to obtain a HFLTS
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just consider a simple example that an expert evaluates the operational complexity
of three automatic systems, represented as x1, x2 and x3. Since this criterion is
qualitative, it is impossible to give crisp values but only linguistic terms. The
operational complexity of these automatic systems can be taken as a linguistic
variable. The linguistic term set for the operational complexity can be set up as:

S ¼ fs�3 ¼ very complex; s�2 ¼ complex; s�1 ¼ a little complex; s0 ¼ medium;

s1 ¼ a little easy; s2 ¼ easy; s3 ¼ very easyg
With the linguistic term set and also the context-free grammar, the expert deter-

mines his/her judgments over these three automatic systems with linguistic expres-
sions, which are ll1 ¼ at least a little easy; ll2 ¼ between complex and medium and
ll3 ¼great than easy: These linguistic expressions are similar to human way of
thinking and they can reflect the expert’s hesitant cognition intuitively. Using the
transformation function EGH , a HFLTS can be yielded as HSðxÞ ¼
f\x1; hSðx1Þ[ ;\x2; hSðx2Þ[ ;\x3; hSðx3Þ[ g with hSðx1Þ ¼ fs1; s2; s3g,
hSðx2Þ ¼ fs�2; s�1; s0g, and hSðx3Þ ¼ fs3g being three HFLEs.

Example 1.12 (Liao et al. 2015a). Consider a simple example that a Chief
Information Officer (CIO) of a company evaluates the candidate ERP system in
terms of three criteria, i.e., x1 (potential cost), x2 (function), and x3 (operation
complexity). Since the three criteria are qualitative, the CIO gives his evaluation
values in linguistic expressions. Different criteria are associated with different lin-
guistic term sets and different semantics. The linguistic term sets for these three
criteria are set up as:

S1 ¼fs�3 ¼ very expensive; s�2 ¼ expensive; s�1 ¼ a little expensive; s0 ¼ medium;

s1 ¼ a little cheap; s2 ¼ cheap; s3 ¼ very cheapg

S2 ¼fs�3 ¼ none; s�2 ¼ very low; s�1 ¼ low; s0 ¼ medium;

s1 ¼ high; s2 ¼ very high; s3 ¼ perfectg

S3 ¼ fs�3 ¼ too complex; s�2 ¼ complex; s�1 ¼ a little complex; s0 ¼ medium;

s1 ¼ a little easy; s2 ¼ easy; s3 ¼ every easyg

respectively.With these linguistic term sets and also the context-free grammar, the CIO
provides his evaluation values in linguistic expressions for a ERP system as: ll1 ¼
between cheap and very cheap; ll2 ¼ at least high; ll3 ¼ great than easy:Using the
transformation function EGH , a HFLTS is obtained as HðxÞ ¼ f\x1; hS1ðx1Þ[ ;
\x2; hS2ðx2Þ[ ;\x3; hS3ðx3Þ[ g with hS1ðx1Þ ¼ fs2; s3js2; s3 2 S1g, hS2ðx2Þ ¼
fs1; s2; s3j s1; s2; s3 2 S2g and hS3ðx3Þ ¼ fs3js3 2 S3g. Furthermore, if we ignore the
influence of different semantics over different linguistic term sets on the criteria, i.e.,
let S ¼ fs�3; s�2; s�1; s0; s1; s2; s3g, then the HFLTS HðxÞ can be rewritten as
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HSðxÞ ¼ f\x1; hSðx1Þ[ ;\x2; hSðx2Þ[ ;\x3; hSðx3Þ[ g with hSðx1Þ ¼ fs2; s3g,
hSðx2Þ ¼fs1; s2; s3g and hSðx3Þ ¼ fs3g.

From Examples 1.11 and 1.12, we can find that X; in Definition 1.28, could be
either a set of objects on a linguistic variable or a set of linguistic variables of an
object (in this case, the influence of different semantics over different linguistic term
sets on different linguistic variables should be ignored).

Rodríguez et al. (2012) defined the complement, union and intersection of
HFLTSs:

Definition 1.31 (Rodríguez et al. 2012). For three HFLEs hS, h1S and h2S, the fol-
lowing operations are defined:

(1) Lower bound: h�S ¼ minðstÞ ¼ sk, st 2 hS and st � sk, 8t:
(2) Upper bound: hþ

S ¼ maxðstÞ ¼ sk, st 2 hS and st � sk, 8t:
(3) hcS ¼ S� hS ¼ fstjst 2 S and st 62 hSg.
(4) h1S [ h2S ¼ fstjst 2 h1S or st 2 h2Sg.
(5) h1S \ h2S ¼ fstjst 2 h1S and st 2 h2Sg.

For a HFLE hS ¼ sul
jl ¼ 1; 2; . . .; L

� �
; the linguistic terms in it might be out of

order. To simplify the computation, we can arrange the linguistic terms sul

(l ¼ 1; . . .;LÞ in any of the following orders (Liao and Xu 2015c): ① ascending
order d : ð1; 2; . . .; nÞ ! ð1; 2; . . .; nÞ is a permutation satisfying dl � dlþ 1, l ¼
1; . . .; L; ② descending order g : ð1; 2; . . .; nÞ !ð1; 2; . . .; nÞ is a permutation sat-
isfying gl � glþ 1, l ¼ 1; . . .; L: In addition, considering that different HFLEs may
have different numbers of linguistic terms, we can extend the short HFLEs by
adding some linguistic terms in it till they have same length. Liao et al. (2014b)
introduced a method to add linguistic terms in a HFLE. For a HFLE hS ¼
sul

jl ¼ 1; 2; . . .; L
� �

; let sþ and s� be the maximal and minimal linguistic terms in
the HFLE hS, defined as sþ ¼ maxul

sul
jl ¼ 1; 2; . . .; L

� �
and s� ¼

min
ul

sul
jl ¼ 1; 2; . . .; L

� �
; respectively, and n ð0� n� 1Þ be an optimized parame-

ter, then we can add the linguistic term:

�s ¼ nsþ 	 1� nð Þs� ð1:44Þ

to the HFLE. The optimized parameter, which is used to reflect the decision
makers’ risk preferences, is provided by the decision makers.

Motivated by the score function and the variance function of HFS, Liao et al.
(2015c) introduced the score function and the variance function for HFLE.

Definition 1.32 (Liao et al. 2015c). For a HFLE hS ¼ [ sdl2hS sdl jl ¼ 1; . . .; Lf g
where L is the number of linguistic terms in hS, qðhSÞ ¼ 1

L

P
sdl2hS sdl ¼ s1

L

PL

l¼1
dl
is

called the score function of hS.
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Definition 1.33 (Liao et al. 2015c). For a HFLE hS ¼ [ sdl2hS sdl jl ¼ 1; . . .; Lf g
where L is the number of linguistic terms in hS, rðhSÞ ¼ 1

L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
sdl ;sdk2hS sdl � sdkð Þ2

q
¼ s

1
L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
sdl

;sdk
2hS

dl�dkð Þ2
q is called the variance function of hS.

The relationship between the score function and the variance function of HFLE
is similar to the relationship between mean and variance in statistics. Thus, for two
HFLEs h1S and h2S, the following approach can be used to compare any two HFLEs:

• If qðh1SÞ[ qðh2SÞ; then h1S [ h2S.
• Else if qðh1SÞ ¼ qðh2SÞ; then,

– if rðh1SÞ\rðh2SÞ; then h1S [ h2S;
– else if rðh1SÞ ¼ rðh2SÞ; then h1S ¼ h2S.

Example 1.13 (Liao et al. 2015c). Let S ¼ fs�3 ¼ none; s�2 ¼ very low; s�1 ¼
low; s0 ¼ medium; s1 ¼ high; s2 ¼ very high; s3 ¼ perfectg be a linguistic term
set. The linguistic information obtained by means of the context-free grammar is
/1 ¼ high; /2 ¼ lower than medium; /3 ¼ greater than high; and /4 ¼
between medium and very high: With the transformation function, the above lin-
guistic information can be represented as HS ¼ fh1S; h2S; h3S; h4Sg with h1S ¼ fs1g,
h2S ¼ fs�3; s�2; s�1; s0g, h3S ¼ fs1; s2; s3g and h4S ¼ fs0; s1; s2g. Then, we have
qðh1SÞ ¼ s1, qðh2SÞ ¼ s�1:5, qðh3SÞ ¼ s2, qðh4SÞ ¼ s1. Since qðh3SÞ[ qðh1SÞ ¼
qðh4SÞ[ qðh2SÞ; it yields that MAXðHSÞ ¼ h3S, MINðHSÞ ¼ h2S.

Calculating the variance functions of h1S and h4S, we have rðh1SÞ ¼ s0,
rðh4SÞ ¼ s0:8165. Since rðh1SÞ\rðh4SÞ; then we get h1S [ h4S. Hence, the rank of these
four HFLEs is h3S [ h1S [ h4S [ h2S.
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